
UltraLite.NET™ User’s
Guide

Part number: DC50043-01-0900-01

Last modified: June 2003



Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’ 1997–2001
Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom
Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S.
patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii



Contents

About This Manual v
SQL Anywhere Studio documentation . . . . . . . . . . . . . . . . . vi
Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . ix
The CustDB sample database . . . . . . . . . . . . . . . . . . . . . . xi
Finding out more and providing feedback . . . . . . . . . . . . . . . . xii

1 Introduction to UltraLite.NET 1
UltraLite.NET features . . . . . . . . . . . . . . . . . . . . . . . . . . 2
System requirements and supported platforms . . . . . . . . . . . . 3
UltraLite.NET architecture . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Tutorial: Visual Studio Application 5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Lesson 1: Create a Visual Studio project . . . . . . . . . . . . . . . . 7
Lesson 2: Create an UltraLite schema file . . . . . . . . . . . . . . . 9
Lesson 3: Connect to the database . . . . . . . . . . . . . . . . . . . 10
Lesson 4: Insert, update, and delete data . . . . . . . . . . . . . . . 14
Lesson 5: Build and deploy your application . . . . . . . . . . . . . . 22

3 Understanding UltraLite Development 25
Connecting to a database . . . . . . . . . . . . . . . . . . . . . . . . 26
Accessing and manipulating data with dynamic SQL . . . . . . . . . 29
Accessing and manipulating data with the Table API . . . . . . . . . 34
Transaction processing in UltraLite . . . . . . . . . . . . . . . . . . . 40
Accessing schema information . . . . . . . . . . . . . . . . . . . . . 41
Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
User authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Adding ActiveSync synchronization to your application . . . . . . . . 44

Index 45

iii





About This Manual

Subject This manual describes UltraLite.NET, which is part of the UltraLite
Component Suite. With UltraLite.NET you can develop and deploy database
applications to desktop computers, or handheld, mobile, or embedded
devices.

Audience This manual is intended for .NET application developers who wish to take
advantage of the performance, resource efficiency, robustness, and security
of an UltraLite relational database for data storage and synchronization.

v



SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

vi



♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

vii



In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

viii



Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [ owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [ owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [ column-constraint , . . . ]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [ savepoint-name ]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ ASC | DESC ]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[ QUOTES { ON | OFF } ]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix



Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x



The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xi



Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xii



CHAPTER 1

Introduction to UltraLite.NET

About this chapter This chapter introduces you to UltraLite.NET. It assumes that you are
familiar with the features of UltraLite, as described in “Welcome to
UltraLite” [UltraLite Database User’s Guide,page 3].

Contents Topic: page

UltraLite.NET features 2

System requirements and supported platforms 3

UltraLite.NET architecture 4

1



UltraLite.NET features
UltraLite.NET provides the following benefits for developers targeting small
devices:

♦ a robust relational database store

♦ .NET programming ease-of-use

♦ deployment on the Windows CE and Windows XP platforms

☞ For more information on the features and benefits of the UltraLite, see
“Introduction” [UltraLite Database User’s Guide,page 4].

UltraLite and .NET The .NET Compact Framework is the Microsoft .NET runtime component
for Windows CE. It must be deployed on any Windows CE device running a
.NET application.

Developers deploying UltraLite applications using the .NET Compact
Framework have the option of programming their applications in either
Visual Basic .NET or the C# programming language, both of which are
supported by UltraLite.NET. UltraLite.NET provides an
iAnywhere.UltraLite namespace together with an UltraLite runtime library.
This combination provides the benefits of .NET development together with
access to operating-system specific features such as ActiveSync
synchronization.

UltraLite.NET provides you:

♦ Component API UltraLite.NET shares API features and structure with
the other UltraLite components.

♦ Windows CE deployment UltraLite.NET has been developed with
Windows CE as a deployment target. It also supports ActiveSync
synchronization.

2



Chapter 1. Introduction to UltraLite.NET

System requirements and supported platforms
Deployment Deployment requires one of the following:

♦ Microsoft .NET Compact Framework 1.0.3705 or later on Windows CE
3.0 and higher, with Pocket PC on Arm or MIPS processors. The
Windows CE emulator is also supported.

♦ Microsoft .NET Compact Framework version 1.0.5000 or later on
Windows XP.

In addition to your application code and the .NET Compact Framework, you
must deploy the following files to your Windows CE device or computer
running Windows XP:

♦ iAnywhere.UltraLite.dll This file contains the UltraLite.NET
namespace.

♦ iAnywhere.UltraLite.resources.dll The resources needed by
UltraLite.NET.

♦ ulnet9.dll The UltraLite runtime. A separate version of this runtime
is provided for each target platform.

♦ UltraLite schema file The UltraLite runtime library uses the
information in the schema file to set the database schema. Once a
database file is created, the schema file is no longer required.

☞ For more information, see “UltraLite host platforms”[Introducing SQL
Anywhere Studio,page 126], and “UltraLite target platforms”[Introducing SQL
Anywhere Studio,page 136]

3



UltraLite.NET architecture
The UltraLite.NET namespace is namediAnywhere.UltraLite . It includes a
set of classes for data access and synchronization: Some of the more
commonly-used high level classes are:

♦ DatabaseManager You create one DatabaseManager object for each
UltraLite.NET application.

☞ For more information, seeiAnywhere.UltraLite.DatabaseManager
in the API Reference.

♦ Connection Each Connection object represents a connection to the
UltraLite database. You can create a number of Connection objects.

☞ For more information, seeiAnywhere.UltraLite.Connection in the
API Reference.

♦ Dynamic SQL objects - PreparedStatement, ResultSet, and
ResultSetSchema objects allow you to create Dynamic SQL
statements, make queries and execute INSERT, UPDATE and DELETE
statements, and attain programmatic control over database resultsets.

☞ For more information on the PreparedStatement, Resultset, and
ResultSetSchema objects, see
ianywhere.UltraLite.PreparedStatement,
ianywhere.UltraLite.ResultSetand
ianywhere.UltraLite.ResultSetSchema.

♦ Table The Table object provides access to the data in the database.

☞ For more information, seeiAnywhere.UltraLite.Table in the API
Reference.

♦ SyncParms You use the SyncParms object to add synchronization to
your application.

☞ For more information, seeiAnywhere.UltraLite.SyncParms in the
API Reference.

The API Reference is supplied in thedocssubdirectory of your
SQL Anywhere installation and is accessible from the front page of the SQL
Anywhere Studio online books under the title iAnywhere.UltraLite.

4



CHAPTER 2

Tutorial: Visual Studio Application

About this chapter This chapter walks you through all the steps of building an UltraLite.NET
application in Visual Studio.

Contents Topic: page

Introduction 6

Lesson 1: Create a Visual Studio project 7

Lesson 2: Create an UltraLite schema file 9

Lesson 3: Connect to the database 10

Lesson 4: Insert, update, and delete data 14

Lesson 5: Build and deploy your application 22

5



Introduction
This tutorial walks you through building an UltraLite.NET application in
Visual Studio.

Timing The tutorial takes about thirty minutes if you cut and paste the code. It takes
significantly longer if you type the code yourself.

Competencies and
experience

This tutorial assumes:

♦ you are familiar with the C# programming language or the Visual Basic
.NET programming language

♦ you have Microsoft Visual Studio .NET 2003 installed on your machine

♦ you know how to create an UltraLite schema using either ulinit or the
UltraLite Schema Painter.

☞ For more information, see “UltraLite Schema Painter Tutorial”
[UltraLite Database User’s Guide,page 83].

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing UltraLite.NET applications in the Visual Studio
environment.

This tutorial contains code for both a Visual Basic .NET application and a
Visual C# application.

6



Chapter 2. Tutorial: Visual Studio Application

Lesson 1: Create a Visual Studio project
The first step is to set up a new Visual Studio application. You also need to
create a schema from which to generate your database.

❖ Create a new project in Visual Studio

1. Create a Visual Studio project to hold your work:

(a) From the Visual Studio .NET 2003 File menu, choose New➤ Project
to create a new project. The New Project window appears.

(b) Select either a Visual Basic Smart Device Application or a Visual C#
Smart Device Application and name your projectVBapp or CSapp,
depending on whether you’ve selected a Visual Basic or C# project.

(c) Enter a Location ofc:\tutorial\uldotnetand click OK. The Smart
Device Application Wizard appears.

(d) Choose Pocket PC as the target platform, and select Windows
Application as the project type. Click OK. A Design workspace
appears, displaying a form.

2. Add references to your project:

(a) From the Project menu, choose Add References. The Add Reference
window appears.

(b) Select iAnywhere.UltraLite from the components listed. Click Select
to add it to the list of selected components and click OK.

If UltraLite.NET does not appear in the list, click Browse and locate it
in theultralite\UltraLite.NET\cesubdirectory of your SQL Anywhere
installation. SelectiAnywhere.UltraLite.dlland click Open.

Alternatively, open a command prompt and browse to the
ultralite\UltraLite.NET\cesubdirectory of your SQL Anywhere
installation. Runinstall.btm. For usage, type the following command:

install ?

(c) Click Project➤ Add Existing Item and browse to the
ultralite\UltraLite.NET\ce\ensubdirectory of your SQL Anywhere
installation. Select the fileiAnywhere.UltraLite.resources.dll. Click
the arrow on the Open button and select Link File to link it to your
project.

(d) Click Project➤ Add Existing Item and browse to the
ultralite\UltraLite.NET\cesubdirectory of your SQL Anywhere
installation.

Open the folder corresponding to the processor of the CE device you
are using (for the Pocket PC emulator, open thex86 folder) and select

7



ulnet9.dll. Click on the arrow on the Open button and select Link File
to link it to your project.

(e) Create a form for your application.

Open Form1, and add the following components to it:

Type Name Text

Button btnInsert Insert

Button btnUpdate Update

Button btnDelete Delete

TextBox txtName

ListBox lbNames

Label laName Name:

Your form should look like this:

You are now ready to move to the next lesson.

8



Chapter 2. Tutorial: Visual Studio Application

Lesson 2: Create an UltraLite schema file
This section assumes some familiarity with the UltraLite Schema Painter.
For more information, see the “UltraLite Schema Painter Tutorial”[UltraLite
Database User’s Guide,page 83].

❖ Create a schema file

1. Use the UltraLite Schema Painter to create a database schema in the same
directory as your application with the following characteristics:

♦ Schema file name tutorial.usm

♦ Character set Default

♦ Case sensitivity Leave unchecked.

♦ Table name Names

♦ Columns Create columns in the Names table with the following
attributes:

Column

Name

Data Type

(Size)

Allow NULL? Default value

id integer No autoincrement

name char(30) No None

♦ Primary key Ascendingid

2. Link the schema file to your application:

(a) From the Visual Studio .NET 2003 interface, choose Project➤ Add
Existing Item.

(b) Browse to your tutorial directory and select tutorial.usm.

(c) Click the down arrow on the Open button and choose Link File to add
the file to your application.

(d) Once the tutorial schema file has been linked to your application, right
click it in the Solution Explorer and select Properties. In the properties
pane, set the Build Action property to Content.

You have now added the schema file to your application.

9



Lesson 3: Connect to the database
In this lesson you add code to your .NET application that connects to a
database using the schema you have created.

UltraLite database files have an extension of.udb. If an application attempts
to connect to a database and the specified database file does not exist,
UltraLite uses the schema file to create the database.

This tutorial assumes that if you are designing a C# application, your files
are in the directoryc:\tutorial\uldotnet\CSappand that if you are designing a
Visual Basic application, your files are in the directory
c:\tutorial\uldotnet\VBapp. If you create a directory with a different name,
use that directory instead ofc:\tutorial\uldotnet\CSAppor
c:\tutorial\uldotnet\VBAppthroughout the tutorial.

❖ To connect to an UltraLite database

1. Right click on your form and select View Code. For a Visual C#
application, add the following statement at the beginning of the file:

using iAnywhere.UltraLite;

This references the iAnywhere.UltraLite.NET libraries. Visual Basic
projects do not need this explicit declaration.

Add the following global variables to the form declaration of your Visual
C# project, after the code describing the form components.

private DatabaseManager DbMgr = new DatabaseManager();
private Connection Conn;
private PreparedStatement PrepStmt;
private int[] ids;

For a Visual Basic project, add the following code after the declaration of
the form’s components:

Dim DbMgr As New iAnywhere.UltraLite.DatabaseManager
Dim Conn As iAnywhere.UltraLite.Connection
Dim PrepStmt As iAnywhere.UltraLite.PreparedStatement
Dim ids[] As Integer

2. Double click on a blank area of your form to create a Form1_Load
method. If developing a C# application, add the following code to the
method:

10



Chapter 2. Tutorial: Visual Studio Application

try
{

CreateParms parms = new CreateParms();
parms.DatabaseOnCE =

" \\Program Files \\CSApp\\tutorial.udb";
parms.Schema.SchemaOnCE =

" \\Program Files \\CSApp\\tutorial.usm";

try
{

Conn = DbMgr.OpenConnection( parms );
MessageBox.Show(

"Connected to an existing database." );
}
catch( SQLException err )
{

if( err.ErrorCode ==
SQLCode.SQLE_ULTRALITE_DATABASE_NOT_FOUND )

{
Conn = DbMgr.CreateDatabase( parms );
MessageBox.Show(

"Connected to a new database.");
}
else
{

throw err;
}

RefreshLB();
}

}
catch( SQLException err )
{

MessageBox.Show("Exception: " + err.Message +
" sqlcode=" + err.ErrorCode);

}
catch ( System.Exception t )
{

MessageBox.Show( "Exception: " + t.Message);
}

For a Visual Basic application, use this code:

11



Try
Dim parms As New iAnywhere.UltraLite.CreateParms
parms.DatabaseOnCE = _

" \\Program Files \\VBApp\\tutorial.udb"
parms.Schema.SchemaOnCE = _

" \\Program Files \\VBApp\\tutorial.usm"
Try

Conn = DbMgr.OpenConnection(parms)
MessageBox.Show( _

"Connected to an existing database.")
Catch err As iAnywhere.UltraLite.SQLException

If err.ErrorCode = _
SQLCode.SQLE_ULTRALITE_DATABASE_NOT_FOUND _

Then
Conn = DbMgr.CreateDatabase(parms)
MessageBox.Show("Connected to a new database.")

Else
Throw err

End If
End Try

RefreshLB()
Catch

MsgBox("Exception: " + err.Description)
End Try

This code carries out the following tasks:

♦ Instantiates and defines a new CreateParms object. CreateParms stores
the parameters necessary to connect to or create a database. Here, the
parameters are the location of the database file on the device, and the
location of the schema file on the device to use if the database does not
exist.

♦ Opens a connection to the database using the CreateParms object.

If the database file does not exist, a SQLException is thrown. The code
that catches this exception uses the schema file to create a new
database and establish a connection to it.

If the database file does exist, a connection is established.

♦ Calls the RefreshLB method, which you will define later in this
tutorial.

♦ If an error occurs, prints the error message. For SQL errors, the code
also prints the error code. For more information on the error code, you
can look it up in the Adaptive Server Anywhere Error Messages book
that is part of this documentation set.

3. Build the project.

Choose Build➤ Build Solution. At this stage, you should get a single
error reported, which is that the name RefreshLB does not exist.

12



Chapter 2. Tutorial: Visual Studio Application

If you get other errors, check the code until they are fixed. Check for
common errors, such as case differences (for example, UltraLite, DbMgr
must match case exactly).

Once the project builds with a single error, you can move to the next lesson.

13



Lesson 4: Insert, update, and delete data
This lesson shows you how to modify your database. It uses dynamic SQL
to modify the data. You can also use a table-based API.

☞ For more information, see “Data access in UltraLite”[UltraLite Database
User’s Guide,page 11].

The first step in this section is to create a supporting method to maintain the
list box. Once that is complete, you can add code to modify data.

❖ Add code to maintain the listbox

1. Right click on the form and select View Code. Add the following method
to update and populate the listbox; it will be used by other methods in
your form.

The following code is for a C# application:

private void RefreshLB()
{

try
{

ResultSet DisplayAll;
long NumRows;
ListBoxNames.Items.Clear();
PrepStmt = Conn.PrepareStatement(

"SELECT id, name FROM Names");
DisplayAll = PrepStmt.ExecuteQuery();
DisplayAll.MoveBeforeFirst();
NumRows = DisplayAll.RowCount;
ids = new int[ NumRows ];

while (DisplayAll.MoveNext())
{

lbNames.Items.Add(
new LBItem(DisplayAll.GetString(2),

DisplayAll.GetInt(1))
);

ids[ DisplayAll.GetInt(1) - 1 ] =
DisplayAll.GetInt(1);

}

14



Chapter 2. Tutorial: Visual Studio Application

DisplayAll.Close();
PrepStmt.Close();

}
catch( SQLException err )
{

MessageBox.Show(
"Exception: " + err.Message +
" sqlcode=" + err.ErrorCode);
}
catch ( System.Exception t )
{

MessageBox.Show(
"Exception: " + t.Message );
}

}

For a Visual Basic application, use this code:

Private Sub RefreshLB()
Try

Dim DisplayAll As iAnywhere.UltraLite.ResultSet
Dim NumRows As Long

lbNames.Items.Clear()
PrepStmt = Conn.PrepareStatement( _

"SELECT id, name FROM Names")
DisplayAll = PrepStmt.ExecuteQuery
DisplayAll.MoveBeforeFirst()
NumRows = DisplayAll.RowCount

While (DisplayAll.MoveNext)
ListBoxNames.Items.Add( _

New LBItem(DisplayAll.GetString(2), _
DisplayAll.GetInt(1)) )
Ids[ DisplayAll.GetInt(1) - 1 ] =

DisplayAll.GetInt(1)
End While

DisplayAll.Close()
PrepStmt.Close()

Catch
MessageBox.Show(

"Exception: " + Err.Description
)

End Try
End Sub

This code carries out the following tasks:
♦ Clears the listbox.

♦ Instantiates a PreparedStatement and assigns it a SELECT query that
returns the Names table in the database.

♦ Instantiates an integer array with length equal to the number of rows in
the Names table.

15



♦ Populates the listbox with the names stored in the database, returned
by the PreparedStatement, and populates the integer array with the ids
returned by the PreparedStatement.

♦ Closes the resultset and prepared statement.

♦ If an error occurs, prints the error message. For SQL errors, the code
also prints the error code. For more information on the error code, you
can look it up in the Adaptive Server Anywhere Error Messages book
that is part of this documentation set.

2. Add the following method to create a new listbox item class to store the
name and id.

The following code is for a C# application:

public class LBItem
{

public String ItemName;
public int ItemID;

public LBItem(String name, int id)
{

ItemName = name;
ItemID = id;

}

public override string ToString()
{

return ItemName;
}

}

For a Visual Basic application, add the following code after your Form1
class:

Public Class LBItem
Public ItemName As String
Public Itemid As Integer

Public Sub New(ByVal name As String, ByVal id As Integer)
ItemName = name
Itemid = id

End Sub

Public Overrides Function ToString() As String
ToString = ItemName

End Function
End Class

3. Add the following method to the Form1 class to get the ID of a selected
listbox item.

The following code is for a C# application:

16



Chapter 2. Tutorial: Visual Studio Application

private int GetSelectedID()
{

int curSel;
LBItem item;
curSel = lbNames.SelectedIndex;
if (curSel < 0)
{

return -1;
}
else
{

item = (LBItem)lbNames.Items[ curSel ];
return item.ItemID;

}
}

For a Visual Basic application, add the following code just before the end
of your Form1 class:

Private Function GetSelectedid() As Integer
Dim curSel As Integer
Dim item As LBItem

curSel = lbNames.SelectedIndex
If curSel < 0 Then

GetSelectedid = -1
Exit Function

End If

item = lbNames.Items(curSel)
GetSelectedid = item.Itemid

End Function

This code carries out the following tasks:

♦ Gets the SelectedIndex property of the listbox.

♦ If the SelectedIndex does not correspond to a selection, returns -1.

♦ If the SelectedIndex does correspond to a selection, returns the ID for
that item.

4. Build the project.

You should be able to build the solution with no errors.

17



❖ Add data modification methods

1. Double click on the Insert button to create a btnInsert_Click method. If
developing a C# application, add the following code to the method:

try
{

long RowsInserted;

PrepStmt = Conn.PrepareStatement(
"INSERT INTO Names(name) VALUES (?)");

PrepStmt.SetStringParameter(1, txtName.Text);
RowsInserted = PrepStmt.ExecuteStatement();
PrepStmt.Close();
RefreshLB();

}
catch( SQLException err )
{

MessageBox.Show("Exception: " + err.Message +
" sqlcode=" + err.ErrorCode);

}
catch ( System.Exception t )
{

MessageBox.Show( "Exception: " + t.Message);
}

For a Visual Basic application, use the following code:

Try
Dim RowsInserted As Long

PrepStmt = Conn.PrepareStatement( _
"INSERT INTO Names(name) VALUES (?)")

PrepStmt.SetStringParameter(1, txtName.Text)
RowsInserted = PrepStmt.ExecuteStatement()
PrepStmt.Close()
RefreshLB()
Catch

MessageBox.Show("Exception: " + Err.Description)
End Try

This code carries out the following tasks:
♦ Instantiates a PreparedStatement and assigns it an INSERT statement

that inserts the value in the textbox into the database.

♦ Executes the statement.

♦ Closes the statement.

♦ Refreshes the listbox.

♦ If an error occurs, prints the error message. For SQL errors, the code
also prints the error code. For more information on the error code, you
can look it up in the Adaptive Server Anywhere Error Messages book
that is part of this documentation set.

18



Chapter 2. Tutorial: Visual Studio Application

2. Double click on the Update button to create a btnUpdate_Click method.
If developing a C# application, add the following code to the method:

try
{

long RowsUpdated;
int updtid = ids[ lbNames.SelectedIndex ];

PrepStmt = Conn.PrepareStatement(
"UPDATE Names SET name = ? WHERE id = ?" );

PrepStmt.SetStringParameter(1, txtName.Text);
PrepStmt.SetIntParameter(2, updtid);
RowsUpdated = PrepStmt.ExecuteStatement();
PrepStmt.Close();
RefreshLB();

}
catch( SQLException err )
{

MessageBox.Show(
"Exception: " + err.Message +
" sqlcode=" + err.ErrorCode);

}
catch ( System.Exception t )
{

MessageBox.Show( "Exception: " + t.Message);
}

For a Visual Basic application, use the following code:

Try
Dim RowsUpdated As Long
Dim updtid As Integer = ids(lbNames.SelectedIndex)

PrepStmt = Conn.PrepareStatement( _
"UPDATE Names SET name = ? WHERE id = ?")

PrepStmt.SetStringParameter(1, txtName.Text)
PrepStmt.SetIntParameter(2, updtid)
RowsUpdated = PrepStmt.ExecuteStatement()
PrepStmt.Close()
RefreshLB()

Catch
MessageBox.Show("Exception: " + Err.Description)

End Try

This code carries out the following tasks:

♦ Instantiates a PreparedStatement and assigns it an UPDATE statement
that inserts the value in the textbox into the database based on the
associated id (saved in the integer array ids).

♦ Executes the statement.

♦ Refreshes the listbox.

♦ Closes the prepared statement.

19



♦ If an error occurs, prints the error message. For SQL errors, the code
also prints the error code. For more information on the error code, you
can look it up in the Adaptive Server Anywhere Error Messages book
that is part of this documentation set.

3. Double click on the Delete button to create a btnDelete_Click method. If
developing a C# application, add the following code to the method:

try
{

int delid = ids[lbNames.SelectedIndex];
long RowsDeleted;

PrepStmt = Conn.PrepareStatement(
"DELETE From Names WHERE id = ?" );

PrepStmt.SetIntParameter(1, delid);
RowsDeleted = PrepStmt.ExecuteStatement();
PrepStmt.Close();
RefreshLB();

}
catch( SQLException err )
{

MessageBox.Show("Exception: " + err.Message +
" sqlcode=" + err.ErrorCode);

}
catch ( System.Exception t )
{

MessageBox.Show( "Exception: " + t.Message);
}

For a Visual Basic application, use the following code:

Try
Dim delid As Integer = ids(lbNames.SelectedIndex)
Dim RowsDeleted As Long

PrepStmt = Conn.PrepareStatement( _
"DELETE From Names WHERE id = ?")

PrepStmt.SetIntParameter(1, delid)
RowsDeleted = PrepStmt.ExecuteStatement()
PrepStmt.Close()
RefreshLB()

Catch
MessageBox.Show("Exception: " + err.description)

End Try

This code carries out the following tasks:

♦ Instantiates a PreparedStatement and assigns it a DELETE statement
that deletes the selected row from the database, based on the associated
id from the integer array ids.

♦ Executes the statement.

♦ Refreshes the listbox.

20



Chapter 2. Tutorial: Visual Studio Application

♦ Closes the prepared statement.

♦ If an error occurs, prints the error message. For SQL errors, the code
also prints the error code. For more information on the error code, you
can look it up in the Adaptive Server Anywhere Error Messages book
that is part of this documentation set.

21



Lesson 5: Build and deploy your application

❖ Deploy and run your application

1. Build the solution.

Ensure that your application builds without errors.

2. Select Debug➤ Start.

This builds an executable file containing your application and deploys it
to the Pocket PC emulator. The process may take some time, especially if
it must deploy the .NET Compact Framework before running the
application.

3. The first time you run the application, it should display the following text
in a message box:

Connected to a new database.

Subsequent times, it displays the following text in a message box:

Connected to an existing database.

Deployment checklist If errrors are reported, you may wish to check that your deployment was
completed successfully. For example:

♦ Confirm that the application is deployed into \Program Files\appname,
whereappnameis the name you gave your application in Lesson 1
(CSApp or VBApp ).

♦ Confirm that the schema file is deployed into the same directory as the
application.

♦ Confirm that the path to the schema file in your application code is
correct (see“Lesson 3: Connect to the database” on page 10).

♦ Confirm that you chose Link File when adding the schema file to the
project and that you set the Build Action to Content. If you did not, the
files will not be deployed to the device.

♦ Ensure that you added a reference to the correct version ofulnet9.dll for
your target platform, or ran the ce installer. If you switch between the
emulator and a real device, you must change the version of this library
that you use. See“Lesson 1: Create a Visual Studio project” on page 7.

22



Chapter 2. Tutorial: Visual Studio Application

❖ Test your application

1. Insert data into the database.

Enter a name in the text box and click Insert. The name should now
appear in the listbox.

2. Update data in the database.

Select a name from the listbox. Enter a new name in the text box. Click
Update. The new name should now appear in place of the old name in the
listbox.

3. Delete data from the database.

You have now written, built, and tested an UltraLite.NET application.

This completes the tutorial.

23





CHAPTER 3

Understanding UltraLite Development

About this chapter This chapter describes how to develop applications with UltraLite.NET.

Contents Topic: page

Connecting to a database 26

Accessing and manipulating data with dynamic SQL 29

Accessing and manipulating data with the Table API 34

Transaction processing in UltraLite 40

Accessing schema information 41

Error handling 42

User authentication 43

Adding ActiveSync synchronization to your application 44

25



Connecting to a database
Any UltraLite application must connect to a database before it can carry out
any operation on the data. This section describes how to write code to
connect to an UltraLite database.

Note
The following code samples are in Microsoft C#. If you are using one of
the other supported development tools, modify the instructions to fit your
tool.

❖ To connect to an UltraLite database

1. Create a DatabaseManager object.

You can create only one DatabaseManager object per application. This
object is at the root of the object hierarchy. For this reason, it is often best
to declare the DatabaseManager object global to the application.

The following code creates a DatabaseManager object named dbMgr.

DatabaseManager dbMgr = new DatabaseManager();

2. Declare a Connection object.

Most applications use a single connection to an UltraLite database and
keep the connection open all the time. Multiple connections are only
required for multi-threaded data access. For this reason, it is often best to
declare the Connection object global to the application.

Connection conn;

3. Attempt to open a connection to an existing database.

♦ The following code establishes a connection to an existing database
held in themydata.udbfile on Windows.

ConnectionParms parms = new ConnectionParms();
parms.DatabaseOnDesktop = "mydata.udb";
try {

conn = dbMgr.OpenConnection( parms );
// more actions here

}

♦ The method establishes a connection to an existing UltraLite database
file and returns that open connection as a Connection object.

♦ It is common to deploy a schema file rather than a database file, and to
let UltraLite create the database file on the first connection attempt. If
no database file exists, you should check for the error and create a
database file.

26



Chapter 3. Understanding UltraLite Development

The following code illustrates how to catch the error when the database
file does not exist:

catch( SQLException econn ) {
if( econn.GetErrorCode() ==

SQLCode.SQLE_ULTRALITE_DATABASE_NOT_FOUND ){
// action here

}

4. If no database exists, create a database and establish a connection to it.

♦ The following code carries out this task on Windows, using a schema
file of mydata.usm.

CreateParms parms = new CreateParms();
parms.DatabaseOnDesktop = "mydata.udb";
parms.Schema.SchemaOnDesktop = "mydata.usm";
try {

conn = dbMgr.CreateDatabase( parms );
}

Example The following code opens a connection to an UltraLite database named
mydata.udb.

CreateParms parms = new CreateParms();
parms.DatabaseOnDesktop = "mydata.udb";
parms.Schema.SchemaOnDesktop = "mydata.usm";
try {

conn = dbMgr.OpenConnection( parms );
System.Console.WriteLine(

"Connected to an existing database." );
}

catch( SQLException econn ) {
if( econn.GetErrorCode() ==

SQLCode.SQLE_ULTRALITE_DATABASE_NOT_FOUND ){
conn = dbMgr.CreateDatabase( parms );
System.Console.WriteLine(

"Connected to a new database." );
} else {

throw econn;
}

}

In general, you will want to specify a more complete path to the file.

Using the Connection
object

Properties or methods of the Connection object govern global application
behavior, including the following:

♦ Commit behavior By default, UltraLite applications are in autocommit
mode. Each insert, update, or delete statement is committed to the
database immediately. You can also set Connection.AutoCommit to false
to build transactions into your application.

27



☞ For more information, see“Transaction processing in UltraLite” on
page 40.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using methods to
Grant and Revoke connection permissions. Each application can have a
maximum of four user IDs.

☞ For more information, see “User authentication”[UltraLite Database
User’s Guide,page 38].

♦ Synchronization A set of objects governing synchronization are
accessed from the Connection object.

☞ For more information, see the API Reference in the online
documentation.

♦ Tables UltraLite tables are accessed using methods of the Connection
application.

♦ Prepared statements A set of objects is provided to handle the
execution of dynamic SQL statements and to navigate result sets.

☞ For more information, see Connection.SyncParms and
Connection.SyncResult in the API Reference in the online documentation.

Multi-threaded
applications

Each Connection and all objects created from it should be used on a single
thread. If you need to have multiple threads accessing the UltraLite
database, then each thread should have its own connection.

28



Chapter 3. Understanding UltraLite Development

Accessing and manipulating data with dynamic
SQL

UltraLite supports dynamic SQL for accessing data in tables. This section
describes the programming interface to access dynamic SQL features,
including the following topics:

♦ Inserting, deleting, and updating rows.

♦ Retrieving rows to a result set.

♦ Scrolling through the rows of a result set.

☞ This section does not describe the SQL language itself. For information
about dynamic SQL features, see “Dynamic SQL”[UltraLite Database User’s
Guide,page 125].

☞ The sequence of operations required is similar for any SQL operation.
For an overview, see “Using dynamic SQL”[UltraLite Database User’s Guide,
page 126].

Data manipulation: INSERT, UPDATE and DELETE

To perform SQL Data Manipulation Language operations (INSERT,
UPDATE, and DELETE), you carry out the following sequence of
operations:

1. Prepare the statement.

You can indicate parameters in the statement using the ? character.

2. Assign values for parameters in the statement.

For any INSERT, UPDATE or DELETE, each ? is referred to by its
ordinal position in the prepared statement.

3. Execute the statement.

4. Repeat steps 2 and 3 as required.

29



❖ To perform INSERT operations using ExecuteStatement:

1. Declare a PreparedStatement.

PreparedStatement prepStmt;

2. Assign a SQL statement to the PreparedStatement object.

prepStmt = conn.PrepareStatement(
"INSERT INTO MyTable(MyColumn) values (?)");

3. Assign input parameter values for the statement.

The following code shows a string parameter.

String newValue;
// assign value
prepStmt.SetStringParameter(1, newValue);

4. Execute the statement.

The return value indicates the number of rows affected by the statement.

long rowsInserted = prepStmt.ExecuteStatement();

5. If you have set AutoCommit to off, commit the change.

conn.Commit();

❖ To perform UPDATE operations using ExecuteStatement:

1. Declare a PreparedStatement.

PreparedStatement prepStmt;

2. Assign a statement to the PreparedStatement object.

prepStmt = conn.PrepareStatement(
"UPDATE MyTable SET MyColumn1 = ? WHERE MyColumn2 = ?");

3. Assign input parameter values for the statement.

String newValue;
String oldValue;
// assign values
prepStmt.SetStringParameter( 1, newValue );
prepStmt.SetStringParameter( 2, oldValue );

4. Execute the statement.

long rowsUpdated = prepStmt.ExecuteStatement();

5. If you have set AutoCommit to off, commit the change.

conn.Commit();

30



Chapter 3. Understanding UltraLite Development

❖ To perform DELETE operations using ExecuteStatement:

1. Declare a PreparedStatement.

PreparedStatement prepStmt;

2. Assign a statement to the PreparedStatement object.

prepStmt = conn.PrepareStatement(
"DELETE FROM MyTable WHERE MyColumn = ?");

3. Assign input parameter values for the statement.

String deleteValue;
prepStmt.SetStringParameter(1, deleteValue);

4. Execute the statement.

long rowsDeleted = prepStmt.ExecuteStatement();

5. If you have set AutoCommit to off, commit the change.

conn.Commit();

Data retrieval: SELECT

Use the SELECT statement to retrieve information from the database.

❖ To execute a SELECT query using ExecuteQuery:

1. Create a new prepared statement and result set.

PreparedStatement prepStmt;

2. Assign a prepared statement to your newly created PreparedStatement
object.

prepStmt = conn.PrepareStatement(
"SELECT MyColumn FROM MyTable");

3. Execute the statement.

In the following code, the result of the SELECT query contain a string,
which is output to a command prompt.

31



ResultSet customerNames = prepStmt.ExecuteQuery();
customerNames.MoveBeforeFirst();
while( customerNames.MoveNext() ) {

for ( int i = 1;
i <= customerNames.Schema.GetColumnCount();
i++ ) {

System.Console.Write(
customerNames.GetString( i ) + " "
);
System.Console.WriteLine();

}
}

Navigating through dynamic SQL result sets

You can navigate through a result set using methods associated with the
ResultSet object.

Moving through a result set

The result set object provides you with a number of methods to navigate a
result set.

The following methods allow you to navigate your result set:

♦ MoveAfterLast() moves to a position after the last row.

♦ MoveBeforeFirst() moves to a position before the first row.

♦ MoveFirst() moves to the first row.

♦ MoveLast() moves to the last row.

♦ MoveNext() moves to the next row.

♦ MovePrevious() moves to the previous row.

♦ MoveRelative(offset) moves a certain number of rows relative to the
current row, as specified by the offset. Positive offset values move
forward in the result set, relative to the current position of the cursor in
the result set, and negative offset values move backward in the result set.
An offset value of zero does not move the cursor. Zero is useful if you
want to repopulate a row buffer.

Result set schema description

The ResultSet.Schema method allows you to retrieve information about a
result set, such as column names, total number of columns, column

32



Chapter 3. Understanding UltraLite Development

precisions, column scales, column sizes and column SQL types. The
following example shows how you can use ResultSet.Schema to display
schema information in a console window.

for ( int i = 1;
i <= MyResultSet.Schema.GetColumnCount();
i++ ) {

System.Console.WriteLine(
MyResultSet.Schema.GetColumnName(i) + " " +
MyResultSet.Schema.GetColumnSQLType(i)

);
}

33



Accessing and manipulating data with the Table
API

UltraLite applications can access data in tables in a row-by-row fashion.
This section covers the following topics:

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

The section also provides a lower-level description of the way that UltraLite
operates on the underlying data to help you understand how it handles
transactions, and how changes are made to the data in your database.

Data manipulation internals

UltraLite exposes the rows in a table to your application one at a time. The
Table object has a current position, which may be on a row, before the first
row, or after the last row of the table.

When your application changes its row (by using one of the navigation
methods on the Table object) UltraLite makes a copy of the row in a buffer.
Any operations to get or set values affect only the copy of data in this buffer.
They do not affect the data in the database. For example, the following
statement changes the value of the ID column in the buffer to 3.

short id = t.Schema.GetColumnID( "ID" );
t.SetInt( id, 3 );

Using UltraLite modes UltraLite uses the values in the buffer for a variety of purposes, depending
on the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to a default mode, and in each mode the
buffer is used for a different purpose.

♦ Insert mode The data in the buffer is added to the table as a new row
when the insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
update method is called.

♦ Find mode The data in the buffer is used to locate rows when one of the
find methods is called.

♦ Lookup mode The data in the buffer is used to locate rows when one of
the lookup methods is called.

34



Chapter 3. Understanding UltraLite Development

Whichever mode you are using, there is a similar sequence of operations:

1. Enter the mode.

The Table methods set UltraLite into the mode.

2. Set the values in the buffer.

Use the set methods to set values in the buffer.

3. Carry out the operation.

Use a Table method to carry out an operation such as insert, update, or
find using the values in the buffer. The UltraLite mode is set back to the
default method and you must enter a new mode before performing
another data manipulation or searching operation.

Scrolling through the rows of a table

The following code opens the MyTable table and scrolls through its rows,
displaying the value of the MyColumn column for each row.

Table t = conn.GetTable( "MyTable" );
short colID = t.Schema.GetColumnID( "MyColumn" );
t.Open();
t.MoveBeforeFirst();
while ( t.MoveNext() ){

System.Console.WriteLine( t.GetString( colID ) );
}

You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order. The
following code moves to the first row of the MyTable table as ordered by the
ix_col index.

Table t = conn.GetTable("MyTable");
t.Open( "ix_col" );
t.MoveFirst();

☞ For more information, see iAnywhere.UltraLite.Table
iAnywhere.UltraLite.TableSchema and iAnywhere.UltraLite.Connection in
the online API Reference.

Accessing the values of the current row

At any time, a Table object is positioned at one of the following positions:

♦ Before the first row of the table.

♦ On a row of the table.

35



♦ After the last row of the table.

If the Table object is positioned on a row, you can use one of a set of
methods appropriate for the data type to access the value of each column.
These methods take the column ID as argument. For example, the following
code retrieves the value of the lname column, which is a character string:

short lname = t.Schema.GetColumnID( "lname" );
System.String lastname = t.GetString( lname );

The following code retrieves the value of the cust_id column, which is an
integer:

short cust_id = t.Schema.GetColumnID( "cust_id" );
int id = t.GetInt( cust_id );

In addition to the methods for retrieving values, there are methods for setting
values. These take the column ID and the value as arguments. For example:

t.SetString( lname, "Kaminski" );

By assigning values to these properties you do not alter the value of the data
in the database. You can assign values to the properties even if you are
before the first row or after the last row of the table, but it is an error to try to
access data when the current row is at one of these positions, for example by
assigning the property to a variable.

// This code is incorrect
t.MoveBeforeFirst();
id = t.GetInt( cust_id );

Casting values The method you choose must match the data type you wish to assign.
UltraLite automatically casts database data types where they are compatible,
so that you could use the getString method to fetch an integer value into a
string variable, and so on.

Searching for rows with find and lookup

UltraLite has several modes of operation when working with data. The Table
object has two sets of methods for locating particular rows in a table:

♦ find methods These methods move to the first row that exactly matches
specified search values, under the sort order specified when the Table
object was opened. If the search values cannot be found you are
positioned before the first or after the last row.

♦ lookup methods These methods move to the first row that matches or
is greater than a specified search value, under the sort order specified
when the Table object was opened.

36



Chapter 3. Understanding UltraLite Development

Both sets are used in a similar manner:

1. Enter find or lookup mode.

The mode is entered by calling a method on the table object. For example.

t.FindBegin();

2. Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example:

short lname = t.Schema.GetColumnID( "lname" );
t.SetString( lname, "Kaminski" );

Only values in the columns of the index are relevant to the search.

3. Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index:

tCustomer.FindFirst();

For multi-column indexes, a value for the first column is always used, but
you can omit the other columns and you can specify the number of
columns as a parameter to the find method.

4. Search for the next instance of the row.

Use the appropriate method to carry out the search. For a find operation,
FindNext() locates the next instance of the parameters in the index. For a
lookup, MoveNext() locates the next instance.

☞ For more information, see the following classes in the API Reference:

♦ iAnywhere.UltraLite.Table

Inserting updating, and deleting rows

To update a row in a table, use the following sequence of instructions:

1. Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching,
using find and lookup methods.

2. Enter update mode.

For example, the following instruction enters update mode on t:

t.BeginUpdate();

37



3. Set the new values for the row to be updated. For example:

t.SetInt( id , 3);

4. Execute the Update.

t.Update();

After the update operation the current row is the row that was just updated.
If you changed the value of a column in the index specified when the Table
object was opened, the current row is undefined.

By default, UltraLite.NET operates in autocommit mode, so that the update
is immediately applied to the row in permanent storage. If you have disabled
autocommit mode, the update is not applied until you execute a commit
operation. For more information, see“Transaction processing in UltraLite”
on page 40.

Caution
You can not update the primary key of a row: delete the row and add a new
row instead.

Inserting rows The steps to insert a row are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the insert operation. The order of row insertion into the table has no
significance.

For example, the following sequence of instructions inserts a new row:

t.InsertBegin();
t.SetInt( id, 3 );
t.SetString( lname, "Carlo" );
t.Insert();

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, the following
entries are added:

♦ For nullable columns, NULL.

♦ For numeric columns that disallow NULL, zero.

♦ For character columns that disallow NULL, an empty string.

♦ To explicitly set a value to NULL, use the setNull method.

As for update operations, an insert is applied to the database in permanent
storage itself when a commit is carried out. In AutoCommit mode, a commit
is carried out as part of the insert method.

38



Chapter 3. Understanding UltraLite Development

Deleting rows The steps to delete a row are simpler than to insert or update rows. There is
no delete mode corresponding to the insert or update modes. The steps are as
follows:

1. Move to the row you wish to delete.

2. Execute the Table.Delete() method.

39



Transaction processing in UltraLite
UltraLite provides transaction processing to ensure the correctness of the
data in your database. A transaction is a logical unit of work: it is either all
executed or none of it is executed.

By default, UltraLite.NET operates in autocommit mode, so that each insert,
update, or delete is executed as a separate transaction. Once the operation is
completed, the change is made to the database. If you set the
Connection.AutoCommit property to false, you can use multi-statement
transactions. For example, if your application transfers money between two
accounts, either both the deduction from the source account and the addition
to the destination account must be completed, or neither must be completed.

If AutoCommit is set to false, you must execute a Connection.Commit()
statement to complete a transaction and make changes to your database
permanent, or you must execute a Connection.Rollback() statement to cancel
all the operations of a transaction.

☞ For more information, see theianywhere.Ultralite.Connectionclass in
the API Reference, in the online books.

40



Chapter 3. Understanding UltraLite Development

Accessing schema information
Objects in the API represent tables, columns, indexes, and synchronization
publications. Each object has a Schema property that provides access to
information about the structure of that object.

Here is a summary of the information you can access through the schema
objects.

♦ DatabaseSchema The number and names of the tables in the database,
as well as global properties such as the format of dates and times.

To obtain a DatabaseSchema object, access Connection.Schema. See the
API Reference in the online books.

♦ TableSchema The number and names of the columns and indexes for
this table.

To obtain a TableSchema object, access Table.Schema. See the API
Reference in the online books.

♦ IndexSchema Information about the column in the index. As an index
has no data directly associated with it (only the type which is in the
columns of the index) there is no separate Index class, just a
IndexSchema class.

To obtain a IndexSchema object, call the TableSchema.GetIndex, the
TableSchema.GetOptimalIndex, or the TableSchema.GetPrimaryKey
method. See the API Reference in the online books.

♦ PublicationSchema Tables and columns contained in a publication.
Publications are also comprised of schema only, and so there is only a
PublicationSchema object and not a Publication object.

To obtain a PublicationSchema object, call the
DatabaseSchema.TableSchema.GetPublicationSchema method. See the
API Reference in the online books.

You cannot modify the schema through the API. You can only retrieve
information about the schema.

41



Error handling
You can use the standard .NET error-handling features to handle errors.
Most methods throw SQLException errors. You can use
SQLException.GetErrorCode() to retrieve the SQLCode value assigned to
this error. SQLCode errors are negative numbers indicating the particular
kind of error.

☞ For more information, see the following enumeration in the API
Reference, in the online books:

♦ iAnywhere.UltraLite.StreamErrorID

After Synchronization, you can use the SyncResult object to obtain more
detailed error information.

☞ For more information, see the following properties and enumerations in
the API Reference, in the online books:

♦ ActiveSyncListener.AuthStatusCode Enumeration

♦ SyncResult.StreamErrorID

♦ SyncResult.StreamErrorCode

♦ SyncResult.StreamErrorContext

42



Chapter 3. Understanding UltraLite Development

User authentication
There is a common sequence of events to managing user IDs and passwords.

1. New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and
SQL, respectively, you must first connect as this initial user and
implement user management only upon successful connection.

2. You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltraLite database.

3. To change the password for an existing user ID, use the
Connection.GrantConnectTo method.

☞ For more information, see the following classes in the API Reference:

♦ iAnywhere.UltraLite.Connection

43



Adding ActiveSync synchronization to your
application

This section describes special steps that you must take to add ActiveSync to
your application, and how to register your application for use with
ActiveSync on your end users’ machines.

Synchronization requires SQL Anywhere Studio. For general information on
setting up ActiveSync synchronization, see “Deploying applications that use
ActiveSync” [MobiLink Synchronization User’s Guide,page 225]in the
MobiLink Synchronization User’s Guide. For general information on adding
synchronization to an application, see “Synchronizing UltraLite
applications”[UltraLite Database User’s Guide,page 144].

ActiveSync synchronization can be initiated only by ActiveSync itself.
ActiveSync can automatically initiate a synchronization when the device is
placed in the cradle or when the Synchronization command is selected from
the ActiveSync window.

When ActiveSync initiates synchronization, the MobiLink ActiveSync
provider starts the UltraLite application, if it is not already running, and
sends a message to it. Your application must implement an
ActiveSyncListener to receive and process messages from the MobiLink
provider. Your application must specify the listener object using:

dbMgr.SetActiveSyncListener(
"MyAppClassName", listener );

where MyAppClassName is a unique Windows class name for the
application. For more information, see in the API Reference.

When UltraLite receives an ActiveSync message, it invokes the specified
listener’s ActiveSyncInvoked(boolean) method on a different thread. To
avoid multi-threading issues, your ActiveSyncInvoked(boolean) method
should post an event to the user interface.

If your application is multi-threaded, use a separate connection and use the
synchronizedkeyword to access any objects shared with the rest of the
application. The ActiveSyncInvoked() method should specify a
StreamType.ACTIVE_SYNC for its connection’s SyncParms.Stream and
then call Connection.Synchronize().

When registering your application, set the following parameters:

♦ Class Name The same class name the application used with the
Connection.SetActiveSyncListener method.

44



Index

Symbols
?

using 29

A
ActiveSync synchronization

about 44
autoCommit mode

UltraLite.NET 40

C
casting

data types 36
commit method

UltraLite.NET 40
commits

UltraLite.NET 40
connecting

UltraLite databases 26
UltraLite.NET 10

Connection object
introductionUltraLite.NET 26

conventions
documentation viii

D
data manipulation

UltraLite.NET 29, 34
Data Manipulation Language

UltraLite.NET 29
data types

accessing 35
casting 36

database schema
accessing 41

DatabaseManager object
introductionUltraLite.NET 26

databases
accessing schema information 41
connecting toUltraLite.NET 26

DatabaseSchema object

introduction 41
deleting rows

UltraLite.NET 37
deploying

UltraLite.NET 22
deployment

UltraLite.NET 3
DML operations

UltraLite.NET 29
documentation

conventions viii
SQL Anywhere Studio vi

dynamic SQL
UltraLite.NET 14

E
error handling

about 42
errors

handling 42

F
feedback

documentation xii
providing xii

Find methods
about 36

find mode
UltraLite.NET 34

G
grantConnectTo method

introduction 43

I
icons

used in manuals x
indexes

accessing schema information 41
IndexSchema object

introduction 41

45



Index

insert mode
UltraLite.NET 34

inserting rows
UltraLite.NET 37

internals
data manipulation 29, 34

L
Lookup methods

about 36
lookup mode

UltraLite.NET 34

M
modes

UltraLite.NET 34
MoveFirst method (Table object)

UltraLite.NET 31
using 35

MoveNext method (Table object)
UltraLite.NET 31
using 35

multi-threaded applications
thread safety 28

N
newsgroups

technical support xii

O
Open method (Table object)

UltraLite.NET 31
OpenByIndex method (Table object)

UltraLite.NET 31

P
passwords

authentication 43
prepared statements

UltraLite.NET 29
preparedStatement

UltraLite.NET 29
publications

accessing schema information 41
PublicationSchema object

introduction 41

R
result set schemas

UltraLite.NET 32
result sets

UltraLite.NET 32
revokeConnectionFrom method

introduction 43
rollback method

UltraLite.NET 40
rollbacks

UltraLite.NET 40
rows

accessing current row 35

S
schema

accessing 41
scrolling

through rows 31
UltraLite.NET 35

searching
rows 36

SQL Anywhere Studio
documentation vi

support
newsgroups xii

supported platforms
UltraLite.NET 3

synchronization
ActiveSync 44

T
Table object

introduction 31
tables

accessing schema information 41
TableSchema object

introduction 41
technical support

newsgroups xii
threads

multi-threaded applications 28
transaction processing

UltraLite.NET 40

46



Index

transactions
UltraLite.NET 40

tutorial
C# 5
UltraLite.NET 5
Visual Basic .NET 5

U
UltraLite

about 1
UltraLite.NET

architecture 4
connecting 10
deploying 22
deployment 3
dynamic SQL 14
features 2
supported platforms 3

update mode
UltraLite.NET 34

updating rows
UltraLite.NET 37

user authentication
about 43

users
authentication 43

V
values

accessing 35

47


	UltraLite.NET User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction to UltraLite.NET
	UltraLite.NET features
	System requirements and supported platforms
	UltraLite.NET architecture

	Tutorial: Visual Studio Application
	Introduction
	Lesson 1: Create a Visual Studio project
	Lesson 2: Create an UltraLite schema file
	Lesson 3: Connect to the database
	Lesson 4: Insert, update, and delete data
	Lesson 5: Build and deploy your application

	Understanding UltraLite Development
	Connecting to a database
	Accessing and manipulating data with dynamic SQL
	Data manipulation: INSERT, UPDATE and DELETE 
	Data retrieval: SELECT
	Navigating through dynamic SQL result sets
	Moving through a result set

	Result set schema description

	Accessing and manipulating data with the Table API
	Data manipulation internals
	Scrolling through the rows of a table
	Accessing the values of the current row
	Searching for rows with find and lookup
	Inserting updating, and deleting rows

	Transaction processing in UltraLite
	Accessing schema information
	Error handling
	User authentication
	Adding ActiveSync synchronization to your application


	Index

