
UltraLite™ Static Java User’s
Guide

Part number: DC50033-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’ 1997–2001
Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom
Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S.
patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual v
SQL Anywhere Studio documentation vi
Documentation conventions . ix
The CustDB sample database . xi
Finding out more and providing feedback xii

1 Introduction to the Static Java API 1
System requirements and supported platforms 2
Developing static Java applications 3
Benefits and limitations of the static Java API 4

2 Tutorial: Build an Application Using Java 5
Introduction . 6
Lesson 1: Add SQL statements to your reference database 8
Lesson 2: Run the UltraLite generator 10
Lesson 3: Write the application code 11
Lesson 4: Build and run the application 15
Lesson 5: Add synchronization to your application 16
Lesson 6: Undo the changes you have made 18

3 Data Access Using Pure Java 19
Introduction . 20
The UltraLite Java sample application 21
Connecting to and configuring your UltraLite database 26
Including SQL statements in UltraLite Java applications 32
UltraLite Java development notes . 33
Building UltraLite Java applications 34

4 Adding Non Data Access Features to UltraLite Applications 37
Adding user authentication to your application 38
Configuring and managing database storage 41
Adding synchronization to your application 45
Developing multi-threaded applications 56

5 UltraLite Static Java API Reference 57
UltraLite API reference . 58

6 Synchronization Parameters Reference 69
Synchronization parameters . 70

iii

Index 87

iv

About This Manual

Subject This manual describes the UltraLite static Java API. It is a complement for
theUltraLite Database User’s Guide.

Audience This manual is intended for application developers writing Java programs
that use the UltraLite database. Familiarity with relational databases and
Adaptive Server Anywhere is assumed.

v

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

vi

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

vii

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

viii

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xi

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xii

CHAPTER 1

Introduction to the Static Java API

About this chapter This chapter introduces the static Java interface to UltraLite databases. It
assumes that you are familiar with the UltraLite database system and the
development models it offers.

☞ For more information, see “Welcome to UltraLite”[UltraLite Database
User’s Guide,page 3].

Contents Topic: page

System requirements and supported platforms 2

Developing static Java applications 3

Benefits and limitations of the static Java API 4

1

System requirements and supported platforms
The supported target platform is a Sun JRE version 1.1.8 or later.

Application development requires a supported JDK. You must also have an
Adaptive Server Anywhere reference database.

☞ For more detailed information, see “UltraLite host platforms”
[Introducing SQL Anywhere Studio,page 126], and “UltraLite target platforms”
[Introducing SQL Anywhere Studio,page 136].

2

Chapter 1. Introduction to the Static Java API

Developing static Java applications
When developing static Java UltraLite applications, you use a JDBC-like
programming interface. In order to develop these applications you should be
familiar with the Java programming language.

The development process for static Java UltraLite applications is as follows:

1. Design your database.

Prepare an Adaptive Server Anywhere reference database that contains
the tables and indexes you wish to include in your UltraLite database.

2. Add SQL statements to the database.

The SQL Statements you wish to use in your application must be added
to the reference database.

3. Generate the classes for your application.

The UltraLite generator provides the classes your application needs.

4. Write your application.

Data access features in your application code use JDBC and other
function calls.

☞ For a guide to the interface, see“UltraLite Static Java API
Reference” on page 57.

5. Compile your .java files.

You can compile the generated .java files just as you compile other .java
files.

☞ For a full description of the development process, see“Building
UltraLite Java applications” on page 34.

3

Benefits and limitations of the static Java API
UltraLite provides several programming interfaces, including both static
development models (of which the static Java interface is one) and UltraLite
components. A Java-based component (Native UltraLite for Java) is among
those available.

The static Java API has the following advantages:

♦ Pure Java solution The UltraLite runtime library for the static Java
API is a pure Java application. This is different from the Native UltraLite
for Java component, which shares the same C++-based UltraLite runtime
library as other UltraLite interfaces. In the Native UltraLite for Java
component, access to the UltraLite runtime is provided by native
methods.

♦ Extensive SQL support With the static Java API you can use a wider
range of SQL in your applications than using the component-based
interface.

The static Java API has the following disadvantages:

♦ Complex development model The use of a reference database to hold
the UltraLite database schema, together with the need to generate classes
for your specific application, makes the static Java API development
process complex. The UltraLite components, including Native UltraLite
for Java, provide a much simpler development process.

♦ SQL must be specified at design time Only SQL statements defined
at compile time can be included in your application. The UltraLite
components allow dynamic use of SQL statements.

The choice of development model is guided by the needs of your particular
project, and by the programming skills and experience available.

4

CHAPTER 2

Tutorial: Build an Application Using Java

About this chapter This chapter provides a tutorial that guides you through the process of
developing a Java UltraLite application. The first section describes how to
build a very simple Java UltraLite application. The second section describes
how to add synchronization to your application.

☞ For an overview of the development process and background
information on the UltraLite database, see“Adding Non Data Access
Features to UltraLite Applications” on page 37.

☞ For information on developing Java UltraLite Applications, see“Data
Access Using Pure Java” on page 19.

Contents Topic: page

Introduction 6

Lesson 1: Add SQL statements to your reference database 8

Lesson 2: Run the UltraLite generator 10

Lesson 3: Write the application code 11

Lesson 4: Build and run the application 15

Lesson 5: Add synchronization to your application 16

Lesson 6: Undo the changes you have made 18

5

Introduction
This tutorial describes how to construct a very simple application using
UltraLite Java. The application is a command-line application, developed
using the Sun JDK, which queries data in the ULProduct table of the
UltraLite 9.0 Sampledatabase.

In this tutorial, you create a Java source file, create a project in a reference
database, and use these sources to build and run your application. The early
lessons describe a version of the application without synchronization.
Synchronization is added in a later lesson.

To follow the tutorial, you should have a Java Development Kit installed.

Overview

In the first lesson, you write and build an application that carries out the
following tasks.

1. Connects to an UltraLite database, consisting of a single table. The table
is a subset of the ULProduct table of the UltraLite Sample database.

2. Inserts rows into the table. Initial data is usually added to an UltraLite
application by synchronizing with a consolidated database.
Synchronization is added later in the chapter.

3. Writes the rows of the table to standard output.

In order to build the application, you must carry out the following steps:

1. Create an Adaptive Server Anywhere reference database.

Here we use the UltraLite sample database (CustDB).

2. Add the SQL statements to be used in your application to the reference
database.

3. Run the UltraLite generator to generate the Java code and also an
additional source file for this UltraLite database.

The generator writes out a.javafile holding the SQL statements, in a
form you can use in your application, and a.javafile holding the code
that executes the queries.

4. Write source code that implements the logic of the application.

Here, the source code is a single file, namedSample.java.

5. Compile and run the application.

6

Chapter 2. Tutorial: Build an Application Using Java

In the second lesson you add synchronization to your application.

Create a directory to hold your files

In this tutorial, you will be creating a set of files, including source files and
executable files. You should make a directory to hold these files. In addition,
you should make a copy of the UltraLite sample database so that you can
work on it, and be sure you still have the original sample database for other
projects.

Copies of the files used in this tutorial can be found in the
Samples\UltraLite\JavaTutorialsubdirectory of your SQL Anywhere
directory.

❖ To prepare a tutorial directory

1. Create a directory to hold the files you will create. In the remainder of the
tutorial, we assume that this directory isc:\JavaTutorial.

2. Make a backup copy of the UltraLite 9.0 Sample database into the
tutorial directory. The UltraLite 9.0 Sample database is the filecustdb.db,
in theUltraLite\Samples\CustDBsubdirectory of your SQL Anywhere
installation directory. In this tutorial, we use the original UltraLite 9.0
Sample database, and at the end of the tutorial you can copy the
untouched version from theAPITutorial directory back into place.

7

Lesson 1: Add SQL statements to your reference
database

The reference database for this tutorial is the UltraLite 9.0 Sample database.
In a later step, you use this same directory as a consolidated database for
synchronization. These two uses are separate, and in your work you may use
different databases for the two roles.

Add the SQL statements to the reference database using the
ul_add_statement stored procedure. In this simple application, use the
following statements:

♦ Insert An INSERT statement adds an initial copy of the data into the
ULProduct table. This statement is not needed when synchronization is
added to the application.

♦ Select A SELECT statement queries the ULProduct table.

When you add a SQL statement, you must associate it with an UltraLite
project. Here, we use a project name of Product. You must also add a name
for the statement, which by convention is in upper case.

❖ To add the SQL statements to the reference database

1. Start Sybase Central, and connect to the UltraLite 9.0 Sample data source
using the Adaptive Server Anywhere plug-in.

2. Add a project to the database:

♦ In Sybase Central, open the custdb database.

♦ Open the UltraLite projects folder.

The folder contains one project already: the custapi project used for
the sample application. You must create a new project.

♦ Double-click Add UltraLite Project.

♦ EnterProduct as the project name, and click Finish.

3. Add the INSERT statement to the Product project.

♦ Double-click Product to open the project.

♦ Double-click Add UltraLite Statement.

♦ EnterInsertProduct as the statement name. Click Next.

♦ Enter the statement text:

INSERT INTO ULProduct (prod_id, price, prod_name)
VALUES (?,?,?)

8

Chapter 2. Tutorial: Build an Application Using Java

The first argument is the project name, the second is the statement
name, and the third is the SQL statement itself. The question marks in
the SQL statement are placeholders, and you can supply values at
runtime.

♦ Click Finish to complete the operation.

This operation in Sybase Central is equivalent to executing the following
stored procedure call:

call ul_add_statement(’Product’, ’InsertProduct’,
’INSERT INTO ULProduct(prod_id, price, prod_name)

VALUES (?,?,?) ’)

4. Add the SELECT statement to the Product project.

♦ From the Product project, double-click Add UltraLite Statement.

♦ EnterSelectProductas the statement name. Click Next.

♦ Enter the statement text:

SELECT prod_id, prod_name, price FROM ULProduct

♦ Click Finish to complete the operation.

This operation in Sybase Central is equivalent to executing the following
stored procedure call:

call ul_add_statement(’Product’, ’SelectProduct’,
’SELECT prod_id, prod_name, price FROM ULProduct’)

5. Close Sybase Central.

You have now added the SQL statements to the database, and you are ready
to generate the UltraLite database.

☞ For more information, see “ul_add_project system procedure”[UltraLite
Database User’s Guide,page 212], and “ul_add_statement system procedure”
[UltraLite Database User’s Guide,page 212].

9

Lesson 2: Run the UltraLite generator
The UltraLite generator writes out two Java files. One contains the SQL
statements, as an interface definition, which is here named
ISampleSQL.java. You can use this interface definition in your main
application code. The second file holds the code that implements the queries
and the database, and is here namedSampleDB.java.

❖ To generate the UltraLite database code

1. Open a command prompt, and go to yourJavaTutorialdirectory.

2. Run the UltraLite generator with the following arguments (all on one
line):

ulgen -a -t java -c "dsn=UltraLite 9.0 Sample"
-j Product -s ISampleSQL -f SampleDB

The arguments have the following meanings:

♦ -a Generate SQL string names in upper case. TheInsertProduct and
SelectProductstatements come toINSERT_PRODUCT and
SELECT_PRODUCT.

♦ -t The language of the generated code. Generate Java code instead of
C code.

♦ -c The connection string to connect to the database.

♦ -j The UltraLite project name. This name corresponds to the project
name you provided when you added the SQL statement to the
database. The generator produces code only for those statements
associated with this project.

♦ -s The name of the interface that contains the SQL statements as
strings.

♦ -f The name of the file that holds the generated database code and
query execution code.

10

Chapter 2. Tutorial: Build an Application Using Java

Lesson 3: Write the application code
The following code listing holds a very simple UltraLite application.

You can copy the code into a new file and save it asSample.javain your
c:\JavaTutorialdirectory, or open a new file and type the content. You can
find this source code inSamples\UltraLite\JavaTutorial\Sample.java.

11

// (1) Import required packages
import java.sql.*;
import ISampleSQL.*;
import ianywhere.ultralite.jdbc.*;
import ianywhere.ultralite.support.*;
// (2) Class implements the interface containing SQL statements
public class Sample implements ISampleSQL
{

public static void main(String[] args)
{

try{
// (3) Connect to the database
java.util.Properties p = new

java.util.Properties();
p.put("persist", "file");
SampleDB db = new SampleDB(p);
Connection conn = db.connect();
// (4) Initialize the database with data
PreparedStatement pstmt1 =

conn.prepareStatement(INSERT_PRODUCT);
pstmt1.setInt(1, 1);
pstmt1.setInt(2, 400);
pstmt1.setString(3, "4x8 Drywall x100");
int rows1=pstmt1.executeUpdate();
pstmt1.setInt(1, 2);
pstmt1.setInt(2, 3000);
pstmt1.setString(3, "8’ 2x4 Studs x1000");
int rows2=pstmt1.executeUpdate();
// (5) Query the data and write out the results
Statement stmt = conn.createStatement();
ResultSet result = stmt.executeQuery(

SELECT_PRODUCT);
while(result.next()) {

int id = result.getInt(1);
String name = result.getString(2);
int price = result.getInt(3);
System.out.println (name +

" \tId=" + id +
" \tPrice=" + price);

}
// (6) Close the connection to end
conn.close();

} catch (SQLException e) {
Support.printException(e);

}
}

}

Explanation of the
sample program

Although too simple to be useful, this example contains elements that must
be present in all Java programs used for database access. The following
describes the key elements in the sample program. Use these steps as a guide
when creating your own Java UltraLite application.

12

Chapter 2. Tutorial: Build an Application Using Java

The numbered steps correspond to the numbered comments in the source
code.

1. Import required packages.

The sample program utilizes JDBC interfaces and classes and therefore
must import this package. It also requires the UltraLite runtime classes,
and the generated interface that contains the SQL statement strings.

2. Define the class.

The SQL statements used in the application are stored in a separate file,
as an interface. The class must declare that it implements the interface to
be able to use the SQL statements for the project. The class names are
based on the statement names you provided when adding the statements
to the database.

3. Connect to the database.

The connection is established using an instance of the database class. The
database name must match the name of the generated Java class (in this
caseSampleDB). Thefile value of thepersist Properties object
states that the database should be persistent.

4. Insert sample data.

In a production application, you would generally not insert sample data.
Instead, you would obtain an initial copy of data by synchronization. In
the early stages of development, it can simplify your work to directly
insert data.

♦ Create aPreparedStatementobject using theprepareStatement()
method.

♦ To execute SQL commands, you must create aStatementor
PreparedStatementobject. Use aStatementobject to execute simple
SQL commands without any parameters and aPreparedStatement
object to execute SQL commands with parameters. The sample
program first creates aPreparedStatementobject to execute an insert
command:

PreparedStatement pstmt1 =
conn.prepareStatement(INSERT_PRODUCT);

TheprepareStatementmethod takes a SQL string as an argument;
this SQL string is included from the generated interface.

5. Execute a select SQL command using a Statement object
♦ Create aStatementobject using thecreateStatement()method.

Unlike thePreparedStatementobject, you do not need to supply a
SQL statement when you create aStatementobject. Therefore, a

13

singleStatementobject can be used to execute more than one SQL
statement.

Statement stmt = conn.createStatement();

♦ Execute your SQL query.

Use theexecuteQuery()method to execute a select query. A select
statement returns aResultSetobject.

♦ Implement a loop to sequentially obtain query results.

TheResultSetobject maintains a cursor that initially points just before
the first row. The cursor is incremented by one row each time the
next() method is called. Thenext() method returns a true value when
the cursor moves to a row with data and returns a false value when it
has moved beyond the last row.

while(result.next()) {
...
}

♦ Retrieve query results using thegetxxx() methods.

Supply the column number as an argument to these methods. The
sample program uses thegetInt() method to retrieve the product ID
and price from the first and second columns respectively, and the
getString() method to retrieve the product name from the third.

int id = result.getInt(1);
int price = result.getInt(2);
String name = result.getString(3);

6. End your Java UltraLite program

♦ Close the connection to the database, using theConnection.close()
method:

conn.close();

14

Chapter 2. Tutorial: Build an Application Using Java

Lesson 4: Build and run the application
After you have created a source fileSample.javausing the sample code in
the previous section, you are ready to build your UltraLite application.

❖ To build your application

1. Start the Adaptive Server Anywhere personal database server.

By starting the database server, the UltraLite generator has access to your
reference database. Start the database server from the Start menu:

Start➤ Programs➤ Sybase SQL Anywhere 9➤ UltraLite ➤ Personal
Server Sample for UltraLite.

2. Compile your Java source files.

Include the following locations in your classpath:

♦ The current directory (use a dot in your classpath).

♦ The Java runtime classes. For JDK 1.2, include thejre\lib\rt.jar file in
your classpath. For JDK 1.1, include theclasses.zipfile from your Java
installation.

♦ The UltraLite runtime classes. These classes are in the following
location

%ASANY8%\UltraLite \java \lib \ulrt.jar

where%ASANY9% represents your SQL Anywhere directory.

Use thejavacfunction of the Java development kit as follows:

javac *.java

You are now ready to run your application.

❖ To run your application

1. Go to a command prompt in theJavatutorialdirectory.

2. Include the same classes in the classpath as in the earlier step.

3. Enter the following command to run the application

java Sample

The list of two items is written out to the screen, and the application
terminates.

You have now built and run your first UltraLite Java application. The next
step is to add synchronization to the application.

15

Lesson 5: Add synchronization to your application
Once you have tested that your program is functioning properly, you can
remove the lines of code that manually insert data into the ULProduct table.
Replace these statements with a call to theJdbcConnection.synchronize()
function to synchronize the remote database with the consolidated database.
This process will fill the tables with data and you can subsequently execute a
select query.

Adding synchronization actually simplifies the code. Your initial version of
Sample.javauses the following lines to insert data into your UltraLite
database.

PreparedStatement pstmt1 = conn.prepareStatement(ADD_PRODUCT_1
);

pstmt1.setInt(1, 1);
pstmt1.setInt(2, 400);
pstmt1.setString(3, "4x8 Drywall x100");
int rows1=pstmt1.executeUpdate();
pstmt1.setInt(1, 2);
pstmt1.setInt(2, 3000);
pstmt1.setString(3, "8’ 2x4 Studs x1000");
int rows2=pstmt1.executeUpdate();

This code is included to provide an initial set of data for your application. In
a production application, you would not insert an initial copy of your data
from source code, but would carry out a synchronization.

❖ To add synchronization to your application

1. Replace the hard-coded inserts with a synchronization call.

♦ Delete the instructions listed above, which insert code.

♦ Add the following line in their place:

UlSynchOptions synch_opts = new UlSynchOptions();
synch_opts.setUserName("50");
synch_opts.setPassword("pwd50");
synch_opts.setScriptVersion("custdb");
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=localhost");
((JdbcConnection)conn).synchronize(synch_opts);

TheULSocketStreamargument instructs the application to
synchronize over TCP/IP, to a MobiLink synchronization server on the
current machine (localhost), using a MobiLink user name of 50.

2. Compile and link your application.

Enter the following command, with a CLASSPATH that includes the
current directory, the UltraLite runtime classes, and the Java runtime

16

Chapter 2. Tutorial: Build an Application Using Java

classes:

javac *.java

3. Start the MobiLink synchronization server running against the sample
database.

From a command prompt in yourJavaTutorialdirectory, enter the
following command:

start dbmlsrv9 -c "dsn=UltraLite 9.0 Sample"

4. Run your application.

From a command prompt in yourJavaTutorialdirectory, enter the
following command:

java Sample

The application connects, synchronizes to receive data, and writes out
information to the command line. The output is as follows:

Connecting to server:port = localhost(a.b.c.d):2439
4x8 Drywall x100 Id=1 Price=400
8’ 2x4 Studs x1000 Id=2 Price=3000
Drywall Screws 10lb Id=3 Price=40
Joint Compound 100lb Id=4 Price=75
Joint Tape x25x500 Id=5 Price=100
Putty Knife x25 Id=6 Price=400
8’ 2x10 Supports x 200 Id=7 Price=3000
400 Grit Sandpaper Id=8 Price=75
Screwmaster Drill Id=9 Price=40
200 Grit Sandpaper Id=10 Price=100

In this lesson, you have added synchronization to a simple UltraLite
application.

☞ For more information on theJdbcConnection.synchronize()function,
see“synchronize method” on page 63.

17

Lesson 6: Undo the changes you have made
To complete the tutorial, you should shut down the MobiLink
synchronization server and restore the UltraLite 9.0 Sample database.

❖ To finish the tutorial

1. Close down the MobiLink synchronization server.

2. Restore the UltraLite 9.0 Sample database.

♦ Delete thecustdb.dbandcustdb.logfiles in the
Samples\UltraLite\custdbsubdirectory of your SQL Anywhere
directory.

♦ Copy thecustdb.dbfile from yourJavatutorialdirectory to the
Samples\UltraLite\custdbdirectory.

3. Delete the UltraLite database.

♦ The UltraLite database is in the same directory as the jar file, and has a
.udb extension. The application will initialize a new database next time
the application is run.

18

CHAPTER 3

Data Access Using Pure Java

About this chapter This chapter provides details of the UltraLite development process that are
specific to Java. It explains how to write UltraLite applications using Java
and provides instructions on building and deploying a Java UltraLite
application.

Contents Topic: page

Introduction 20

The UltraLite Java sample application 21

Connecting to and configuring your UltraLite database 26

Including SQL statements in UltraLite Java applications 32

UltraLite Java development notes 33

Building UltraLite Java applications 34

19

Introduction
UltraLite applications can be written in the Java language using JDBC for
database access.

The UltraLite development process for Java is similar to that for other
development models. For a description, see “Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 195].

This chapter describes only those aspects of application development that
are specific to UltraLite Java applications. It assumes an elementary
familiarity with Java and JDBC.

20

Chapter 3. Data Access Using Pure Java

The UltraLite Java sample application
This section describes how to compile and run the UltraLite Java version of
the CustDB sample application.

The sample application is provided in theSamples\UltraLite\CustDB\java
subdirectory of your SQL Anywhere directory.

The applet version of the sample uses the Sun appletviewer to view the file
custdb.html, which contains a simple<APPLET> tag.

The appletviewer security restrictions require the applet to be downloaded
from a Web server, rather than to be run from the file system, for socket
connections to be permitted and synchronization to succeed.

The application version of CustDB persists its data to a file, while the applet
version does not use persistence.

☞ For a walkthrough of the C/C++ version of the application, which has
very similar features, see“Tutorial: A Sample UltraLite Application” on
page??.

The UltraLite Java sample files

The code for the UltraLite Java sample application is held in the
Samples\UltraLite\CustDB\javasubdirectory of your SQL Anywhere
directory.

The directory holds the following files:

♦ Data access code The fileCustDB.javaholds the UltraLite-specific
data access logic. The SQL statements are stored inSQL.sql.

♦ User interface code The filesDialogDelOrder.java, Dialogs.java,
DialogNewOrder.java, andDialogUserID.javaall hold user interface
features.

♦ readme.txt A text file containing detailed, release-dependent
information about the sample.

♦ Subdirectories There are two subdirectories in which you can run the
sample. These arejava11(for Java 1) andjava13(for Java 2). You
should make the former your current directory if you are using a 1.1.x
version of the JDK, and the latter if you are using 1.2.x or later. These
subdirectories contain batch files to run the samples. In each directory,
the batch files depend on the JAVA_HOME environment variable, which
should be set to the directory containing the JDK. For example:

SET JAVA_HOME=c:\jdk1.3.1

21

♦ Batch files to build the application The filesbuild.batandclean.bat
compile the application and delete all files except the source files,
respectively.

♦ Files to run the sample as an application TheApplication.javafile
contains instructions necessary for running the example as a Java
application, andrun.batruns the sample application.

♦ Files to run the sample as an applet TheApplet.javafile contains
instructions necessary for running the example as a Java applet, and
avapplet.batruns the sample applet using the appletviewer, with
custdb.htmlas the Web page.

You must install and start a Web server to run the sample as an applet. The
applet can be run using the appletviewer utility or by using a Web browser.
For more information, see theSamples\UltraLite\CustDB\Java\readme.txt
file.

Building the UltraLite Java sample

This section describes how to build the UltraLite Java sample application for
the Sun Java 1 or 2 environment.

❖ To build the UltraLite Java sample

1. Ensure you have the right JDK.

You must have JDK 1.1 or JDK 1.3 to build the sample application, and
the JDK tools must be in your path.

2. Open a command prompt.

3. Change to theSamples\UltraLite\CustDB\java\java13subdirectory of
your SQL Anywhere directory, or thejava11directory if you are using
Java 1.

4. Build the sample:
♦ Set the JAVA_HOME environment variable. For example:

SET JAVA_HOME=c:\jdk1.3.1

♦ From the command prompt, enter the following command:

build

The build procedure carries out the following operations:
♦ Loads the SQL statements into the UltraLite sample database.

This step uses Interactive SQL, theSQL.sqlfile, and relies on the
UltraLite 9.0 Sample data source.

22

Chapter 3. Data Access Using Pure Java

♦ Generates the Java database classcustdb.Database.
This step uses the UltraLite generator and the UltraLite 9.0 Sample
data source.

♦ Compiles the Java files.

This step uses the JDK compiler (javac) andjar utility.

Running the UltraLite Java sample

You can run the sample application as a Java application or as an applet. In
either case, you need to prepare to run the sample by starting the MobiLink
synchronization server running on the same machine that the application is
running on.

❖ To prepare to run the sample

1. Start the MobiLink synchronization server running on the UltraLite
sample database:

From the Start menu, choose Programs➤ SQL Anywhere 9➤ MobiLink
➤ Synchronization Server Sample.

❖ To run the sample as an application

1. Open a command prompt in theSamples\UltraLite\CustDB\java\java13
directory (or thejava11directory if you are using Java 1).

2. Run the sample:

♦ Set the JAVA_HOME environment variable. For example:

SET JAVA_HOME=c:\jdk1.3.1

♦ Enter the following command:

run

The application starts and the Enter ID dialog is displayed.

3. Enter the employee ID.

Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. If you have
run the sample as either an application or applet before, there is data in
the database.

4. If there is no data in the database, synchronize.

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

23

You can now carry out operations on the data in the database.

☞ For more information on the sample database and the UltraLite features
it demonstrates, see“Tutorial: A Sample UltraLite Application” on page??.

❖ To run the sample as an applet using appletviewer

1. Start a Web server and ensure that the appropriate subdirectory is
configured as the default directory for the server, or as one of the virtual
directories.

2. Open a command prompt in theUltraLite\samples\CustDB\java\java13
directory, orjava11if you are using Java 1.

3. Enter the following command:

avapplet

♦ The applet starts and a field to enter an employee ID is displayed.

4. Enter the employee ID.

Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. The first
time you run the sample, there is no data in the database. If you have run
the sample as either an application or applet before, there is data in the
database.

5. Synchronize the application:

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

You can now carry out operations on the data in the database.

❖ To run the sample as an applet using A Web browser

1. Start a Web server and ensure that the appropriate subdirectory is
configured as the default directory for the server, or as one of the virtual
directories.

2. Start a Web browser and enter the URL for the
Samples\UltraLite\CustDB\java\custdb.htmfile into the browser.

♦ The applet starts and a field to enter an employee ID is displayed.

3. Enter the employee ID.

Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. The first
time you run the sample, there is no data in the database. If you have run
the sample as either an application or applet before, there is data in the
database.

24

Chapter 3. Data Access Using Pure Java

4. Synchronize the application:

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

☞ For more information on the sample database and the UltraLite features
it demonstrates, see“Tutorial: A Sample UltraLite Application” on page??.

Resetting the sample You can delete all compiled files, the sample database, and the generated
code by running theclean.batfile.

25

Connecting to and configuring your UltraLite
database

This section describes how to connect to an UltraLite database. It describes
the recommended UltraLite method for connecting to your database, and
also how you can use the standard JDBC connection model to connect.

Connections to UltraLite databases have no user IDs or passwords. For more
information, see “User authentication”[UltraLite Database User’s Guide,
page 38].

UltraLite Java databases can bepersistent(stored in a file when the
application closes) ortransient (the database vanishes when the application
is closed). By default, they are transient.

You configure the persistence of your UltraLite database when connecting to
it. This section describes how to configure your UltraLite database.

Using the UltraLite JdbcDatabase.connect method

The generated UltraLite database code is in the form of a class that extends
JdbcDatabase, which has aconnectmethod that establishes a connection.

The following example illustrates typical code, for a generated database
class calledSampleDB:

try {
SampleDB db = new SampleDB();
java.sql.Connection conn = db.connect();

} catch(SQLException e){
// error processing here
}

The generated database class is supplied on the UltraLite generator
command line, using the-f option.

If you wish to use a persistent database, the characteristics are specified on
the connection as aPropertiesobject. The following example illustrates
typical code:

java.util.Properties p = new java.utils.Properties();
p.put("persist", "file");
p.put("persistfile", "c: \\dbdir \\database.udb");
SampleDB db = new SampleDB(p);
java.sql.Connection conn = db.connect();

The Properties are used on the database constructor. You cannot change the
persistence model of the database between connections.

26

Chapter 3. Data Access Using Pure Java

The two properties specify that the database is persistent, and is stored in the
file c:\dbdir\database.udb.

☞ For more information on the properties you can specify in the URL, see
“UltraLite JDBC URLs” on page 28.

☞ For more information see“Configuring the UltraLite Java database” on
page 30, and“The generated database class” on page 66.

Loading and registering the JDBC driver

The UltraLiteJdbcDatabase.connect()method discussed in the previous
section provides the simplest method of connecting to an UltraLite database.
However, you can also establish a connection in the standard JDBC manner,
and this section describes how to do so.

UltraLite applications connect to their database using a JDBC driver, which
is included in the UltraLite runtime classes (ulrt.jar). You must load and
register the JDBC driver in your application before connecting to the
database. Use theClass.forName()method to load the driver. This method
takes the driver package name as its argument:

Class.forName("ianywhere.ultralite.jdbc.JdbcDriver");

The JDBC driver automatically registers itself when it is loaded.

Loading multiple drivers Although there is typically only one driver registered in each application,
you can load multiple drivers in one application. Load each driver using the
same methods as above. TheDriverManager decides which driver to use
when connecting to the database.

getDriver method TheDriverManager.getDriver(url) method returns theDriver for the
specified URL.

Error handling To handle the case where the driver cannot be found, catch
ClassNotFoundExceptionas follows:

try{
Class.forName(

"ianywhere.ultralite.jdbc.JdbcDriver");
} catch(ClassNotFoundException e){

System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}

Connecting to the database using JDBC

Once the driver is declared, you can connect to the database using the
standard JDBCDriverManager.getConnectionmethod.

27

getConnection
prototypes

The JDBCDriverManager.getConnectionmethod has several prototypes.
These take the following arguments:

DriverManager.getConnection(String url, Properties info)
DriverManager.getConnection(String url)

The UltraLite driver supports each of these prototypes. The arguments are
discussed in the following sections.

Driver Manager TheDriverManager class maintains a list of theDriver classes that are
currently loaded. It asks each driver in the list if it is capable of connecting
to the URL. Once such a driver is found, theDriverManager attempts to
use it to connect to the database.

Error handling To handle the case where a connection cannot be made, catch the
SQLExceptionas follows:

try{
Class.forName(

"ianywhere.ultralite.jdbc.JdbcDriver");
Connection conn = DriverManager.getConnection(

"jdbc:ultralite:asademo");
} catch(SQLException e){
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();
}

UltraLite JDBC URLs

The URL is a required argument to theDriverManager.getConnection
method used to connect to UltraLite databases.

☞ For an overview of connection methods, see“Connecting to the
database using JDBC” on page 27.

The syntax for UltraLite JDBC URLs is as follows:

jdbc:ultralite:[database:persist:persistfile][;option=value...]

The components are all case sensitive, and have the following meanings:

♦ jdbc Identifies the driver as a JDBC driver. This is mandatory.

♦ ultralite Identifies the driver as the UltraLite driver. This is mandatory.

♦ database The class name for the database. It is required and must be a
fully-qualified name: if the database class is in a package, you must
include the package name.

For example, the URLjdbc:ultralite:MyProject causes a class
namedMyProject to be loaded.

28

Chapter 3. Data Access Using Pure Java

As Java classes share their name with the.javafile in which they are
defined, this component is the same as the output file parameter from the
UltraLite generator.

☞ For more information, see “The UltraLite generator”[UltraLite
Database User’s Guide,page 96].

♦ persist Specifies whether or not the database should be persistent. By
default, it is transient.

☞ For more information, see“Configuring the UltraLite Java database”
on page 30.

♦ persistfile For persistent databases, specifies the filename.

☞ For more information, see“Configuring the UltraLite Java database”
on page 30. The UltraLite Java properties are very similar to those for
C/C++ applications. Their names differ only in the absence of underscore
characters., except thatpersistfile is analogous tofile_name. See
“UL_STORE_PARMS macro”[UltraLite Database User’s Guide,page 216].

♦ options The following options are provided:
• uid A user ID.

• pwd A password for the user ID.

Alternatively, you can connect using a Properties object. The following
properties may be specified. Each have the same meaning as in the explicit
URL syntax above:

♦ database

♦ persist

♦ persistfile

♦ user

♦ password

Using a Properties object to store connection information

You can use aPropertiesobject to store connection information, and supply
this object as an argument togetConnectionalong with the URL.

☞ For an overview of connection methods, see“Connecting to the
database using JDBC” on page 27.

The following components of the URL, described in“UltraLite JDBC
URLs” on page 28, can be supplied either as part of the URL or as a member
of aPropertiesobject.

♦ persist

29

♦ persistfile

♦ The jdbc:ultralite components must be supplied in the URL.

If you wish to encrypt your database, you can do so by supplying akey
property. For more information, see“Encrypting UltraLite databases” on
page 41.

Connecting to multiple databases

UltraLite Java applications can connect to more than one database, unlike
UltraLite C/C++ applications.

To connect to more than one database, simply create more than one
connection object.

☞ For more information see“Connecting to the database using JDBC” on
page 27.

Configuring the UltraLite Java database

You can configure the following aspects of the UltraLite Java database:

♦ Whether the database is transient or persistent.

♦ If the database is persistent, you can supply a filename.

♦ If the database is transient, you can supply a URL for an initializing
database.

♦ You can set an encryption key.

These aspects can be configured by supplying special values in the database
URL, or by supplying a Properties object when creating the database. The
encryption key cannot be set on the URL, but must be set in a Properties
object.

☞ For more information, see“Using the UltraLite JdbcDatabase.connect
method” on page 26, and“Using a Properties object to store connection
information” on page 29.

Transient and persistent
databases

By default, UltraLite Java databases are transient: they are initialized when
the database object is instantiated, and vanish when the application closes
down. The next time the application starts, it must reinitialize a database.

You can make UltraLite Java databases persistent by storing them in a file.
You do this by specifying thepersistandpersistfileelements of the JDBC
URL, or by supplyingpersistandpersistfileProperties to the database
connectmethod.

30

Chapter 3. Data Access Using Pure Java

Initializing transient
databases

The database for C/C++ UltraLite applications is initialized on the first
synchronization call. For UltraLite Java applications that use a transient
database, there is an alternative method of initializing the database. The
URL for an UltraLite database that is used as the initial database is supplied
in thepersistfilecomponent to the URL.

Configuring the database The database configuration components of the URL are as follows:

♦ persist This can take one of the following values:

• none In this case, the database is transient. It is stored in memory
while the application runs, but vanishes once the application
terminates.

• file In this case, the database is stored as a file. The default filename
is database.udb, wheredatabaseis the database class name.

The default setting isnone.

♦ persistfile The meaning of this component depends on the setting for
persist.
• If the persistcomponent has a value ofnone, thepersistfile

component is a URL for an UltraLite database file that is used to
initialize the database.

Both the schema and the data from the URL are used to initialize the
application database, but there is no further connection between the
two. Any changes made by your application apply only to the transient
database, not to the initializing database.

The following JDBC URL is an example:

jdbc:ultralite:transient:none:http://www.address.com/transient.u
db

You can prepare the initializing database with an application that uses the
persistent form of the URL to create the database, synchronize, and exit.

♦ If the persistcomponent has a value offile, thepersistfilecomponent is a
filename for the persistent UltraLite database. The filename should
include any extension (such as.udb) that you wish to use.

31

Including SQL statements in UltraLite Java
applications

This section describes how to add SQL statements to your UltraLite
application.

☞ For information on SQL features that can and cannot be used in
UltraLite application, see “Overview of SQL support in UltraLite”[UltraLite
Database User’s Guide,page 108].

☞ The SQL statements to be used in your application must be added to the
reference database. The UltraLite generator writes out an interface that
defines these SQL statements aspublic static final strings. You invoke the
statements in your application by implementing the interface and referencing
the SQL statement by its identifier, or by referencing it directly from the
interface.

Defining the SQL
statements for your
application

The SQL statements to be included in the UltraLite application, and the
structure of the UltraLite database itself, are defined by adding the SQL
statements to the reference database for your application.

☞ For information on reference databases, see “Preparing a reference
database”[UltraLite Database User’s Guide,page 200].

Defining projects Each SQL statement stored in the reference database is associated with a
project. A project is a name, defined in the reference database, which
groups the SQL statements for one application. You can store SQL
statements for multiple applications in a single reference database by
defining multiple projects.

☞ For information on creating projects, see “Creating an UltraLite project”
[UltraLite Database User’s Guide,page 204].

Adding statements to
your project

The data access statements you are going to use in your UltraLite application
must be added to your project.

☞ For information on adding SQL statements to your database, see
“Adding SQL statements to an UltraLite project”[UltraLite Database User’s
Guide,page 205].

32

Chapter 3. Data Access Using Pure Java

UltraLite Java development notes
This section provides notes for development of UltraLite Java applications.

Creating UltraLite Java applets

If you create your JDBC program as an applet, your application can only
synchronize with the machine from which the applet is loaded, which is
usually the same as the HTML.

Including an applet in an
HTML page

The following is a sample HTML page used to create an UltraLite applet:

<html>
<head>
</head>
<body bgcolor="FFFF00">

<applet code="CustDbApplet.class" width=440
height=188 archive="custdb.zip,ulrt.jar" >

</applet>
</body>

</html>

The applet tag specifies the following:

♦ The class that the applet starts:

code="CustDbApplet.class"

♦ The size of the window in the web browser to display the applet to.

width=440 height=188

♦ The zip files that are necessary in order to run the applet.

archive="custdb.zip,ulrt.jar"

In this case, thecustdb.zipfile and the UltraLite runtime zip file are
necessary in order to run the UltraLite CustDB sample application.

33

Building UltraLite Java applications
This section covers the following subjects:

♦ “Generating UltraLite Java classes” on page 34

♦ “Compiling UltraLite Java applications” on page 35

Generating UltraLite Java classes

When you have prepared a reference database, defined an UltraLite project
for your application, and added SQL statements to define your data access
features, all the information the generator needs is inside your reference
database.

☞ For general information on the UltraLite generator, see “Generating the
UltraLite data access code”[UltraLite Database User’s Guide,page 209]. For
command-line options, see “The UltraLite generator”[UltraLite Database
User’s Guide,page 96].

The generator output is a Java source file with a filename of your choice.
Depending on the design of your database and the sophistication of the
database functionality your application requires, this file can vary greatly in
both size and content.

There are several ways to customize the UltraLite generator output,
depending on the nature of your application.

Overview You generate the classes by running the UltraLite generator against the
reference database.

❖ To run the UltraLite generator

1. Enter the following command at a command-prompt:

ulgen -c "connection-string" options

whereoptionsdepend on the specifics of your project.

Common command-line
combinations

When you are generating Java code, there are several options you may want
to specify:

♦ -t java Generate Java code. The generator is the same tool used for
C/C++ development, so this option is required for all Java use.

♦ -i Some Java compilers do not support inner classes correctly, and so the
default behavior of the generator is not to generate Java code that
includes inner classes. If you wish to take advantage of a compiler that
does support inner classes, use this option.

34

Chapter 3. Data Access Using Pure Java

♦ -p It is common to include your generated classes in a package, which
may include other classes from your application. You can use this switch
to instruct the generator to include a package name for the classes in the
generated files

♦ -s In addition to the code for executing the SQL statements, generate
the SQL statements themselves as an interface. Without this option, the
strings are written out as members of the database class itself.

♦ -a Make SQL string names upper case. If you choose the-a option, the
identifier used in the generated file to represent each SQL statement is
derived from the name you gave the statement when you added it to the
database. It is a common convention in Java to use upper case letters to
represent constants. As the SQL string names are constants in your Java
code, you should use this option to generate string identifiers that
conform to the common convention.

Example ♦ The following command (which should be all on one line) generates code
that represents the SQL statements in theCustDemoproject, and the
required database schema, with output in the fileuldemo.java.

ulgen -c "dsn=Ultralite 9.0 Sample;uid=DBA;pwd=SQL"
-a -t java -s IStatements CustDemo uldemo.java

Compiling UltraLite Java applications

❖ To compile the generated file

1. Set your classpath

When you compile your UltraLite Java application, the Java compiler
must have access to the following classes:

♦ The Java runtime classes.

♦ The UltraLite runtime classes

♦ The target classes (usually in the current directory).

The following classpath gives access to these classes.

%JAVA_HOME%\jre \lib \rt.jar;%ASANY8% \ultralite \java \lib \
ulrt.jar;.

where JAVA_HOME represents your Java installation directory, and
ASANY8 represents your SQL Anywhere installation directory.

For JDK 1.1 development,ulrt.jar is in ajdk11\lib subdirectory of the
UltraLite\javadirectory.

35

2. Compile the classes.

With the classpath set as in step one, usejavacand enter the following
command (on a single line):

javac file.java

The compiler creates the class files forfile.java.

The compilation step produces a number of class files. You must includeall
the generated.classfiles in your deployment.

Deploying Java applications

Your UltraLite application consists of the following:

♦ Class files you created to implement your application.

♦ Generated class files.

♦ The Java core classes (rt.jar).

♦ UltraLite runtime JAR file (ulrt.jar).

Your UltraLite application can be deployed in whatever manner is
appropriate. You may wish to package together these class files in a JAR file,
for ease of deployment.

Your UltraLite application automatically initializes its own database the first
time it is invoked. At first, your database will contain no data. You can add
data explicitly using INSERT statements in your application, or you can
import data from a consolidated database through synchronization. Explicit
INSERT statements are especially useful when developing prototypes.

36

CHAPTER 4

Adding Non Data Access Features to
UltraLite Applications

About this chapter This chapter describes features in addition to data access you can add to
UltraLite applications.

☞ For information about data access features, see“Data Access Using
Pure Java” on page 19.

Contents Topic: page

Adding user authentication to your application 38

Configuring and managing database storage 41

Adding synchronization to your application 45

Developing multi-threaded applications 56

37

Adding user authentication to your application
UltraLite provides an optional built-in user authentication scheme. You can
take advantage of this scheme to authenticate users before allowing them to
connect to the UltraLite database. By default, UltraLite databases have no
user userauthentication mechanism.

The UltraLite user authentication scheme does not provide the permissions
features implemented in multi-user database systems and in MobiLink.

☞ For a general description of UltraLite user authentication, see “User
authentication”[UltraLite Database User’s Guide,page 38].

☞ When you create an UltraLite database with user authentication enabled,
one authenticated user is created, with user IDDBA and passwordSQL.
UltraLite permits up to four different users to be defined at a time, with both
user ID and password being less than 16 characters long. Each user has full
access to the database once successfully authenticated.

☞ The case sensitivity of the UltraLite user ID and password is determined
by the reference database. If the reference database is case insensitive (the
default) then the UltraLite database is also case insensitive, in cluding user
authentication.

Enabling user authentication

Enabling user authentication requires the application to supply a valid
UltraLite user ID and password when connecting to the UltraLite database.
If you do not explicitly enable user authentication, UltraLite does not
authenticate users.

❖ To enable user authentication (Java)

1. Call theJdbcSupport.enableUserAuthenticationmethod before
creating a new database object: For example:

JdbcSupport.enableUserAuthentication();
java.util.Properties p = new java.util.Properties();
p.put("persist", "file");
SampleDB db = new SampleDB(p);

☞ Once you have enabled user authentication, you must add user
management code to your application. For more information, see“Managing
user IDs and passwords” on page 38.

Managing user IDs and passwords

There is a common sequence of events to managing user IDs and passwords.

38

Chapter 4. Adding Non Data Access Features to UltraLite Applications

1. New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password ofDBA and
SQL, respectively, you must first attempt to connect as this initial user
and implement user management only upon successful connection.

2. You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltraLite database.

3. To change the password for an existing user ID, call the same function as
adding a user ID. This function isJdbcDatabase.grant.

User authentication example

The following code fragment performs user management and authentication
for an UltraLite Java application.

A complete sample can be found in theSamples\UltraLite\javaauth
subdirectory of your SQL Anywhere directory. The code below is based on
that inSamples\UltraLite\javaauth\Sample.java.

JdbcSupport.enableUserAuthentication();
// Create database environment
java.util.Properties p = new java.util.Properties();
p.put("persist", "file");
SampleDB db = new SampleDB(p);

// Get new user ID and password
try{

conn = db.connect("dba", "sql");
// Set user ID and password
// a real application would prompt the user.
uid = "50";
pwd = "pwd50";

db.grant(uid, pwd);
db.revoke("dba");
conn.close();

}
catch(SQLException e){

// dba connection failed - prompt for user ID and password
uid = "50";
pwd = "pwd50";

}

// Connect
conn = db.connect(uid, pwd);

The code carries out the following tasks:

1. Opening the database object.

2. Attempt to connect using the default user ID and password.

39

3. If the connection attempt is successful, add a new user.

4. Delete the default user from the UltraLite database.

5. Disconnect. An updated user ID and password is now added to the
database.

6. Connect using the updated user ID and password.

☞ For more information, see “GrantConnectTo method”[UltraLite Static
C++ User’s Guide,page 81], and“RevokeConnectFrom method” on page??.

Sharing MobiLink and UltraLite user IDs

Although UltraLite and MobiLink user authentication mechanisms are
separate, you may wish to provide your end users with a single user ID and
password that provides both MobiLink and UltraLite user authentication. To
share user IDs and passwords, store them in variables and use the same
variable in the UltraLite user authentication calls and the synchronization
call.

You can design your application so that, if passwords are reset at a
MobiLink consolidated site, your application prompts for the new password.

❖ To prompt for a new MobiLink or UltraLite password

1. Save the user ID and password in variables.

2. Synchronize.

3. If synchronization fails because the user was not authenticated, prompt
the user for a new password.

4. Update the UltraLite user’s password using the appropriate function or
method:

♦ JdbcDatabase.grantmethod

5. Update the UlSynchOptions object and synchronize again.

☞ For information on MobiLink user authentication, see “Authenticating
MobiLink Users” [MobiLink Synchronization User’s Guide,page 103].

40

Chapter 4. Adding Non Data Access Features to UltraLite Applications

Configuring and managing database storage
You can configure the following aspects of UltraLite persistent storage:

♦ The amount of memory used as a cache by the UltraLite database engine.

♦ Database encryption.

♦ Preallocation of file-system space.

♦ The file name for the database.

♦ The database page size.

This configuration is controlled by the UL_STORE_PARMS macro, which
is placed in the header of your application source code so that it is visible to
all db_init() or ULPalmLaunch calls. The encryption key and page size
can be used on any supported C/C++ platform, while the other keys cannot
be used on the Palm Computing Platform.

☞ For more information, see “UL_STORE_PARMS macro”[UltraLite
Database User’s Guide,page 216].

Encrypting UltraLite databases

By default, UltraLite databases are unencrypted on disk and in permanent
memory. Text and binary columns are plainly readable within the database
store when using a viewing tool such as a hex editor. Two options are
provided for greater security:

♦ Obfuscation Obfuscating databases provides security against
straightforward attempts to view data in the database directly using a
viewing tool. It is not proof against skilled and determined attempts to
gain access to the data. Obfuscation has little or no performance impact.

☞ For more information, see“Obfuscating an UltraLite database” on
page 42.

♦ Strong encryption UltraLite database files can be strongly encrypted
using the AES 128-bit algorithm, which is the same algorithm used to
encrypt Adaptive Server Anywhere databases. Use of strong encryption
does provide security against skilled and determined attempts to gain
access to the data, but has a significant performance impact.

Caution
If the encryption key for a strongly encrypted database is lost or forgot-
ten, there is no way to access the database. Under these circumstances,
technical support cannot gain access to the database for you. It must be
discarded and you must create a new database.

41

☞ For more information, see“Encrypting an UltraLite database” on
page 42, and“Changing the encryption key for a database” on page 43.

Obfuscating an UltraLite database

❖ To obfuscate an UltraLite database

1. Add the following line to your code before creating the database (that is,
before connecting to the database for the first time):

UlDatabase.setDefaultObfuscation(true);

Encrypting an UltraLite database

UltraLite databases are created on the first connection attempt. To encrypt an
UltraLite database, you supply an encryption key before that connection
attempt. On the first attempt, the supplied key is used to encrypt the
database. On subsequent attempts, the supplied key is checked against the
encryption key, and connection fails unless the key matches.

❖ To strongly encrypt an UltraLite database (Java)

1. Set a property named key before creating a database object for the first
time.

Here is a code fragment that reads the encryption key from the command
line.

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String key = null ;
System.out.print("Enter encryption key:");
key = br.readLine() ;
System.out.println("The key is: " + key);

// (3) Connect to the database
java.util.Properties p = new java.util.Properties();
p.setProperty("persist", "file");
p.setProperty("key", key);
SampleDB db = new SampleDB(p);

Here, SampleDB is the database filename as supplied in the UltraLite
generator-f command-line option.

☞ For more information, see “The UltraLite generator”[UltraLite
Database User’s Guide,page 96], and“Using a Properties object to store
connection information” on page 29.

2. Create the database object using the properties.

42

Chapter 4. Adding Non Data Access Features to UltraLite Applications

For example:

Connection conn = db.connect();

After the first connection attempt, subsequent attempts to access the
database produce anIncorrect or missing encryption key

SQLException if the wrong key is supplied.

You can find a sample Java application demonstrating encryption in the
directory\Samples\UltraLite\JavaSecurity. The encryption code is held in
\Samples\UltraLite\JavaSecurity\Sample.java.

Here is a code snippet from the sample:

// Obtain the encryption key
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String key = null ;
System.out.print("Enter encryption key:");
key = br.readLine() ;
System.out.println("The key is: " + key);

java.util.Properties p = new java.util.Properties();
p.setProperty("persist", "file");
p.setProperty("key", key);
SampleDB db = new SampleDB(p);
Connection conn = db.connect();

Changing the encryption key for a database

You can change the encryption key for a database. The application must
already be connected to the database using the existing key before the
change can be made.

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is unrecov-
erable. If the application is interrupted part-way through, the database is
invalid and cannot be accessed. A new one must be created.

❖ To change the encryption key on an UltraLite database

1. Call changeEncryptionKeyon the database object, supplying the new
key as an argument.

db.changeEncryptionKey("new key");

☞ For more information, see“changeEncryptionKey method” on
page 64.

43

Defragmenting UltraLite databases

The UltraLite store is designed to efficiently reuse free space, so explicit
defragmentation is not required under normal circumstances. This section
describes a technique to explicitly defragment UltraLite databases, for use
by applications with extremely strict space requirements.

UltraLite provides a defragmentation step function, which defragments a
small part of the database. To defragment the entire database at once, call the
defragmentation step function in a loop until it returnsul_true. This can be
an expensive operation, and SQLCODE must also be checked to detect
errors (an error here usually indicates a file I/O error).

Explicit defragmentation occurs incrementally under application control
during idle time. Each step is a small operation.

☞ For more information, see“Class JdbcDefragIterator” on page 66.

❖ To defragment an UltraLite database

1. Cast aConnectionto aJdbcConnectionobject. For example,
...
Connection conn = db.connect();
JdbcConnection jconn = (JdbcConnection)conn ;

UltraLite provides a defragmentation step function, which defragments a
small part of the database. To defragment the entire database at once, call
the defragmentation step function in a loop until it returnsul_true. This
can be an expensive operation, and SQLCODE must also be checked to
detect errors (an error here usually indicates a file I/O error).

2. Call getDefragIterator() to obtain aJdbcDefragIterator object.
For example:

JdbcDefragIterator defrag = jconn.getDefragIterator();

3. During idle time, callulStoreDefragStep()to defragment a piece of the
database.

defrag.ulStoreDefragStep();

44

Chapter 4. Adding Non Data Access Features to UltraLite Applications

Adding synchronization to your application
Synchronization is a key feature of many UltraLite applications. This
section describes how to add synchronization to your application.

The synchronization logic that keeps UltraLite applications up to date with
the consolidated database is not held in the application itself.
Synchronization scripts stored in the consolidated database, together with
the MobiLink synchronization server and the UltraLite runtime library,
control how changes are processed when they are uploaded and determines
which changes are to be downloaded.

Overview The specifics of each synchronization is controlled by a set of
synchronization parameters. These parameters are gathered into a structure
(C/C++) or object (Java), which is then supplied as an argument in a
function call to synchronize. The outline of the method is the same in each
development model.

❖ To add synchronization to your application

1. Initialize the structure (C/C++) or object (Java) that holds the
synchronization parameters.

☞ For information, see“Initializing the synchronization parameters” on
page 45.

2. Assign the parameter values for your application.

☞ For information, see“Synchronization stream parameters” on
page??.

3. Call the synchronization function, supplying the structure or object as
argument.

☞ For information, see“Invoking synchronization” on page 47.

You must ensure that there are no uncommitted changes when you
synchronize. For more information, see“Commit all changes before
synchronizing” on page 49.

Synchronization
parameters

Synchronization specifics are controlled through a set of synchronization
parameters. For information on these parameters, see“Synchronization
stream parameters” on page??.

Initializing the synchronization parameters

The synchronization parameters are stored in a C/C++ structure or Java
object.

45

In C/C++ the members of the structure may not be well-defined on
initialization. You must set your parameters to their initial values with a call
to a special function. The synchronization parameters are defined in a
structure declared in the UltraLite header fileulglobal.h.

In Java, the details of any synchronization, including the URL of the
MobiLink synchronization server, the script version to use, the MobiLink
user ID, and so on, are all held in aUlSynchOptionsobject.

☞ For a complete list of synchronization parameters, see “Synchronization
parameters”[UltraLite Database User’s Guide,page 162].

❖ To initialize the synchronization parameters (Java)

1. Create aUlSynchOptionsobject. For example:

UlSynchOptions synch_options = new UlSynchOptions();

2. Set the required parameters.

TheUlSynchOptions()object has a set of methods to set and get its
fields. For a list, see “Synchronization parameters”[UltraLite Database
User’s Guide,page 162]. Use these methods to set the required
synchronization parameters before synchronizing. For example:

opts.setUserName("50");
opts.setScriptVersion("default");
opts.setStream(new UlSocketStream());

Setting synchronization parameters

The synchronization streams for UltraLite Java applications are objects, and
are set by their constructors. The available streams are as follows:

♦ UlSocketStream TCP/IP synchronization

♦ UlSecureSocketStream TCP/IP synchronization with Certicom
elliptic-curve transport-layer security.

♦ UlSecureRSASocketStream TCP/IP synchronization with Certicom
RSA transport-layer security.

♦ UlHTTPStream HTTP synchronization.

♦ UlHTTPSStream HTTPS synchronization.

The following line sets the stream to TCP/IP:

synch_opts.setStream(new UlSocketStream());

46

Chapter 4. Adding Non Data Access Features to UltraLite Applications

☞ For more information, see “Synchronization parameters”[UltraLite
Database User’s Guide,page 162].

Separately-licensable option required
Use of UlHTTPSStream, UlSecureSocketStreamand UlSecur-
eRSASocketStreamrequire Certicom technology, which in turn requires
that you obtain the separately-licensable SQL Anywhere Studio security
option and is subject to export regulations. For more information on this
option, see “Welcome to SQL Anywhere Studio”[Introducing SQL Anywhere
Studio,page 4].

☞ For information on the individual parameters, see“Synchronization
stream parameters” on page??.

Once you have initialized the synchronization parameters, and set them to
the values needed for your application, you can initiate synchronization
using theJdbcConnection.synchronize()method.

The method takes aUlSynchOptionsobject as argument. The set of calls
needed to synchronize is as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setScriptVersion("default");
opts.setStream(new UlSocketStream());
opts.setStreamParms("host=123.45.678.90");
conn.synchronize(opts);

Invoking synchronization

The details of how to invoke synchronization depends on your target
platform and on the synchronization stream.

The synchronization process can only work if the device running the
UltraLite application is able to communicate with the synchronization
server. For some platforms, this means that the device needs to be physically
connected by placing it in its cradle or by attaching it to a server computer
using a cable. You need to add error handling code to your application in
case the synchronization cannot be carried out.

❖ To invoke synchronization (TCP/IP, HTTP, or HTTPS streams)

1. Construct a newULSynchInfo object to initialize the synchronization
parameters, andJdbcConnection.synchronize()to synchronize. See
“Adding synchronization to your application” on page??.

The synchronization call requires a structure that holds a set of parameters
describing the specifics of the synchronization. The particular parameters

47

used depend on the stream.

Using transport-layer security

For additional security during synchronization, you can use transport-layer
security encrypt messages as they pass between UltraLite application and the
consolidated database.

☞ For information about encryption technology, see “Transport-Layer
Security” [MobiLink Synchronization User’s Guide,page 337].

☞ Transport-layer security from UltraLite Java client applications uses a
separate synchronization stream. You must set up your MobiLink
synchronization server as well as your UltraLite client to use this
synchronization stream.

Client changes ☞ At the client, you need to choose theUlSecureSocketStreamor
UlSecureRSASocketStreamsynchronization stream, and supply a set of
stream parameters. The stream parameters include parameters that control
security.

Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setStream(new UlSecureSocketStream());
opts.setStreamParms("host=myserver;"

+ "port=2439;"
+ "certificate_company=Sybase Inc.;"
+ "certificate_unit="MEC;"
+ "certificate_name=Mobilink");

// set other options here
conn.synchronize(opts);

☞ For details on the stream parameters, see“UlSecureSocketStream
synchronization parameters” on page??.

Setting up the MobiLink
server

As the secure synchronization streams for Java applications are separate
streams, you must ensure that the MobiLink synchronization server is
listening for it. To do this, you must supply thejava_certicom_tlsor
java_rsa_tlssynchronization streams, to match your choice on the client.

The following command line is an example:

dbmlsrv9 -x java_certicom_
tls(certificate=mycertificate.crt;port=1234)

The security parameters for thejava_certicom_tlsandjava_rsa_tlsstreams
are as follows:

♦ certificate The name of the certificate file that contains the server’s

48

Chapter 4. Adding Non Data Access Features to UltraLite Applications

identity. This file needs to include the server’s certificate, the certificates
of all the certificate authorities in the certificate signing chain, and the
server’s private key.

The certificate parameter defaults tosample.crtfor java_certicom_tls
andrsaserver.crtfor java_rsa_tls, which is the default identity for
MobiLink. These files are distributed with SQL Anywhere Studio, in the
same directory as the MobiLink server.

♦ certificate_password The password used to encrypt the private key in
the certificate file.

The default is the password for the private key insample.crtand
rsaserver.crt, which istest.

Commit all changes before synchronizing

☞ An UltraLite database cannot have uncommitted changes when it is
synchronized. If you attempt to synchronize an UltraLite database when any
connection has an uncommitted transaction, the synchronization fails, an
exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS
error is set. This error code also appears in the MobiLink synchronization
server log.

☞ For more information on download-only synchronizations, see
“download_only synchronization parameter”[UltraLite Database User’s Guide,
page 165].

Adding initial data to your application

Many UltraLite application need data in order to start working. You can
download data into your application by synchronizing. You may want to add
logic to your application to ensure that, the first time it is run, it downloads
all necessary data before any other actions are carried out.

Development tip
It is easier to locate errors if you develop an application in stages. When
developing a prototype, temporarily code INSERT statements in your
application to provide data for testing and demonstration purposes. Once
your prototype is working correctly, enable synchronization and discard
the temporary INSERT statements.

For more synchronization development tips, see “Development tips”
[MobiLink Synchronization User’s Guide,page 71].

49

Monitoring and canceling synchronization

This section describes how to monitor and cancel synchronization from
UltraLite applications.

♦ An API for monitoring synchronization progress and for canceling
synchronization.

♦ A progress indicator component that implements the interface, which you
can add to your application.

Monitoring
synchronization

To monitor synchronization, write a class that implements the
UlSynchObserverinterface. This interface contains a single method:

void updateSynchronizationStatus(UlSynchStatus status)

♦ Register yourUlSynchObserverobject using theUlSynchOptionsclass.

♦ Call thesynchronize()method to synchronize.

♦ UltraLite calls theupdateSynchronizationStatusmethod of your
observer class whenever the synchronization state changes. The
following section describes the synchronization state.

Here is a typical sequence of instructions for synchronization. In this
example, the classMyObserver implements theUlSynchObserver
interface:

UlSynchObserver observer = new MyObserver ();
UlSynchOptions opts = new UlSynchOptions();
// set options
opts.setUserName("mluser");
opts.setPassword("mlpwd");
opts.setStream(new UlSocketStream());
opts.setStreamParms("localhost");
opts.setObserver(observer);
opts.setUserData(myDataObject);
// synchronize
conn.synchronize(opts);

Handling synchronization status information

The class that implementsUlSynchObserver, theUlSynchStatusobject
holds synchronization status information. This object is filled by UltraLite
with synchronization status information each time your
updateSynchronizationStatusmethod is called.

TheUlSynchStatusobject has the following methods:

50

Chapter 4. Adding Non Data Access Features to UltraLite Applications

int getState()
int getTableCount()
int getTableIndex()
Object getUserData()
UlSynchOptions getSynchOptions()
UlSqlStmt getStatement()
int getErrorCode()
boolean isOKToContinue()
void cancelSynchronization()

♦ getState One of the following states:

• STARTING No synchronization actions have yet been taken.

• CONNECTING The synchronization stream has been built, but not
yet opened.

• SENDING_HEADER The synchronization stream has been opened,
and the header is about to be sent.

• SENDING_TABLE A table is being sent.

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being sent.

• UL_SYNCH_STATE_FINISHING_UPLOAD The upload stage is
completed and a commit is being carried out.

• RECEIVING_UPLOAD_ACK An acknowledgement that the upload
is complete is being received.

• RECEIVING_TABLE A table is being received.

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being received.

• UL_SYNCH_STATE_COMMITTING_DOWNLOAD The download
stage is completed and a commit is being carried out.

• SENDING_DOWNLOAD_ACK An acknowledgement that download
is complete is being sent.

• DISCONNECTING The synchronization stream is about to be closed.

• DONE Synchronization has completed successfully.

• ERROR Synchronization has completed, but with an error.

☞ For a description of the synchronization process, see “The
synchronization process”[MobiLink Synchronization User’s Guide,
page 21].

♦ getTableCount Returns the number of tables being synchronized. For
each table there is a sending and receiving phase, so this number may be
more than the number of tables being synchronized.

51

♦ getTableIndex The current table which is being uploaded or
downloaded, starting at 0. This number may skip values when not all
tables are being synchronized.

♦ getSynchOptions Returns theUlSynchOptionsobject.

♦ sent.inserts The number of inserted rows that have been uploaded so
far.

♦ sent.updates The number of updated rows that have been uploaded so
far.

♦ sent.deletes The number of deleted rows that have been uploaded so
far.

♦ sent.bytes The number of bytes that have been uploaded so far.

♦ received.inserts The number of inserted rows that have been
downloaded so far.

♦ received.updates The number of updated rows that have been
downloaded so far.

♦ received.deletes The number of deleted rows that have been
downloaded so far.

♦ received.bytes The number of bytes that have been downloaded so far.

♦ cancelSynchronization Set this member to true to interrupt the
synchronization. The SQL exception SQLE_INTERRUPTED is set, and
the synchronization stops as if a communications error had occurred. The
observer isalwayscalled with either the DONE or ERROR state so that it
can do proper cleanup.

♦ getUserData Returns the user data object.

♦ getStatement Returns the statement that called the synchronization.
The statement is an internal UltraLite statement, and this method is
unlikely to be of practical use, but is included for completion.

♦ getErrorCode When the synchronization state is set to ERROR, this
method returns a diagnostic error code.

♦ isOKToContinue This is set tofalsewhencancelSynchronizationis
called. Otherwise, it istrue.

52

Chapter 4. Adding Non Data Access Features to UltraLite Applications

Example The following code illustrates a very simple observer function:

void updateSynchronizationStatus(UlSynchStatus status)
{

int state = status.getState();
System.out.println("Sync status: " + state);
if(state == UlSynchStatus.SENDING_TABLE ||

state == UlSynchStatus.RECEIVING_TABLE){
System.out.println("send/receive table " +
(status.getTableIndex() + 1) +

" of " + status.getTableCount());
}

}

CustDB example An example of an observer function is included in the CustDB sample
application. The implementation in CustDB provides a dialog that displays
synchronization progress and allows the user to cancel synchronization. The
user-interface component makes the observer function platform specific.

The CustDB sample code is in theSamples\UltraLite\CustDBsubdirectory
of your SQL Anywhere directory. The observer function is contained in the
platform-specific subdirectories of theCustDBdirectory.

Using the progress viewer

The UltraLite runtime library includes two progress viewer classes, which
provide an implementation of synchronization monitoring, together with the
ability for end users to cancel synchronization. The progress viewer classes
are as follows:

♦ ianywhere.ultralite.ui.SynchProgressViewer A heavyweight AWT
version.

♦ ianywhere.ultralite.ui.SynchProgressViewer A Swing version of the
viewer that respects the Swing threading model.

The two classes are used identically. The viewer displays a modal or
modeless dialog, which shows a series of messages and a progress bar. Both
the messages and the bar are updated during synchronization. The viewer
also provides a Cancel button. If the user clicks the Cancel button,
synchronization stops and the SQL exception SQLE_INTERRUPTED is
thrown.

Threading issues In a Java application, all events occur on a single thread called theevent

53

thread. Also, all user interface objects are created on the event thread, even
if the application is on a different thread at the time. There is only one event
thread in an application.

The event thread must never block. Consequently, you should not perform
long operations on the event thread, as this leads to painting aberrations.
Even calling theshow()method on a modal dialog suspends execution of the
event thread. You must therefore avoid calling thesynchronize()method on
the event thread.

Displaying a modal
viewer

The following code snippet illustrates how to invoke a modal instance of the
viewer. Theimport statement uses the AWT version:

import ianywhere.ultralite.ui.SynchProgressViewer;
// create a frame to display a dialog
java.awt.Frame frame = ...;
// get UltraLite connection
Connection conn = ...;
// set synchronization options
UlSynchOptions options = new UlSynchOptions();
options.setUserName("my_user");
...
// create the viewer
SynchProgressViewer viewer = new SynchProgressViewer(frame);
viewer.synchronize(frame, options);
// execution stops here until synchronization is complete

When invoked in this manner, the viewer carries out the following
operations:

1. registers itself as a synchronization observer,

2. spawns a thread to do the synchronization,

3. displays itself, blocking the current thread.

4. When synchronization finishes, the observer callback disposes of the
dialog, which lets the thread continue.

Displaying a modeless
viewer

The following code snippet illustrates how to invoke a modeless instance of
the viewer:

SynchProgressViewer viewer = new SynchProgressViewer(frame,
false);

options.setObserver(viewer);
conn.synchronize(options);

In this case, you must ensure that the synchronization occurs on a thread
other than the event thread, so that the viewer is not blocked.

Notes ♦ All messages come from theSynchProgressViewerResourcesresource
bundle.

54

Chapter 4. Adding Non Data Access Features to UltraLite Applications

♦ The viewer implements theUlSynchObserverinterface so it can hook
into the synchronization process.

♦ The CustDB sample application includes a progress viewer. The CustDB
sample code is in theUltraLite\samples\CustDB\javasubdirectory of
your SQL Anywhere directory.

55

Developing multi-threaded applications
The UltraLite Java runtime library is thread-safe. Users of the Sun Java VM
must use version 1.2 or later to run multi-threaded UltraLite applications.
Users of the Jeode VM on Pocket PC and the IBM Java VM can run
multi-threaded UltraLite applications even though these VMs are based on
JDK 1.1.8.

The entire runtime is treated as a single critical section, only allowing one
thread to enter it at a time.

☞ For more information, see“Using the UltraLite JdbcDatabase.connect
method” on page 26.

56

CHAPTER 5

UltraLite Static Java API Reference

About this chapter This chapter describes the API for developing pure Java UltraLite
applications using the static Java API.

Only those parts that differ from JDBC are explicitly documented.

Contents Topic: page

UltraLite API reference 58

57

UltraLite API reference
This section describes extensions to the JDBC interface provided by
UltraLite, and also describes JDBC features unsupported in UltraLite.

JDBC features in UltraLite

The following are features and limitations specific to the development of
JDBC UltraLite applications.

The UltraLite static Java API is modeled on JDBC 1.2, with the addition of
the followingResultSetmethods from JDBC 2.0:

♦ absolute(),

♦ afterLast(),

♦ beforeFirst(),

♦ first(),

♦ isAfterLast(),

♦ isBeforeFirst(),

♦ isFirst(),

♦ isLast(),

♦ last(),

♦ previous(),

♦ relative()

The following features are incompatible with the UltraLite development
model and are not supported by UltraLite.

♦ There is only limited support for metadata access (system table access).
Therefore, you cannot use theDatabaseMetaDataInterface. Metadata
access is limited to the number and type of columns.

♦ Java objects cannot be stored in the database

♦ There is no support for stored procedures or stored functions.

♦ Only static SQL statements are supported and they must be added to the
database so that the UltraLite generator can generate them.

58

Chapter 5. UltraLite Static Java API Reference

Unsupported JDBC methods

UltraLite does not support the following JDBC 1.2 methods. An attempt to
use any of the following methods results in aSQLExceptionwith a vendor
code indicating that the feature is not supported in UltraLite.

Connection interface ♦ getCatalog

♦ getMetaData

♦ getTransactionIsolation

♦ setCatalog

♦ setTransactionIsolation

ResultSet interface ♦ getMetaData

Statement interface ♦ cancel

♦ getMaxFieldSize

♦ getMaxRows

♦ setMaxFieldSize

♦ setMaxRows

Class JdbcConnection

Package ianywhere.ultralite.jdbc

Description Represents an UltraLite database connection. Most methods are inherited
from the JDBC Connection class. Unsupported methods throw an
unsupported feature exception.

countUploadRows method

Prototype long countUploadRows(int mask , long threshold)

Description Returns the number of rows that need to be uploaded when the next
synchronization takes place.

You can use this function to determine if a synchronization is needed.

Parameters mask A set of publications to check. A value of 0 corresponds to the entire
database. The set is supplied as a mask. For example, the following mask
corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

59

☞ For more information on publication masks, see“publication
synchronization parameter” on page 77.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

Returns The number of rows to be uploaded.

Throws java.sql.SQLException

getDefragIterator method

Prototype JdbcDefragIterator getDefragIterator()

Description Initializes and returns a defragmentation iterator.

Parameters user_name The MobiLink user name. See“user_name synchronization
parameter” on page 85.

password The password associated with user_name. See“password
synchronization parameter” on page 75.

script_version The script version. See“version synchronization
parameter” on page 85.

stream_defn The stream to use for synchronization. See“stream
synchronization parameter” on page 80.

parms Any user-supplied parameters used for the synchronization.

☞ See“stream_parms synchronization parameter” on page 83.

Returns The defragmentation iterator.

Throws java.sql.SQLException

See also “Defragmenting UltraLite databases” on page 44

getLastDownloadTimeDate method

Prototype java.util.Date getLastDownloadTimeDate(int mask)

Description Returns the last time changes to the result set of a given statement were
downloaded.

Parameters mask A set of publications for which the last download time is retrieved.
A value of 0 corresponds to the entire database. The set is supplied as a
mask. For example, the following mask corresponds to publications PUB1
and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

60

Chapter 5. UltraLite Static Java API Reference

☞ For more information on publication masks, see“publication
synchronization parameter” on page 77.

Returns ♦ The last time the statement was downloaded.

getLastDownloadTimeLong method

Prototype long getLastDownloadTimeLong(int mask)

Description Returns the last time changes to the result set of a given statement were
downloaded.

Parameters mask A set of publications for which the last download time is retrieved.
A value of 0 corresponds to the entire database. The set is supplied as a
mask. For example, the following mask corresponds to publications PUB1
and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“publication
synchronization parameter” on page 77.

Returns ♦ The last time the statement was downloaded.

getLastIdentity method

Prototype long getLastIdentity()

Description Returns the most recent identity value used. This function is equivalent to
the following SQL statement:

SELECT @@identity

The function is particularly useful in the context of global autoincrement
columns.

Returns The last identity value.

See also “Determining the most recently assigned value”[UltraLite Database User’s
Guide,page 154]

“Setting the global database identifier”[UltraLite Database User’s Guide,
page 152]

globalAutoincUsage method

Prototype short globalAutoincUsage()

Description Returns the maximum global autoincrement counter percentage of all tables
in the database. The value is useful when deciding whether to set a database
ID.

61

Returns The percentage of global autoincrement values that have been used.

Throws java.sql.SQLException

See also “Declaring default global autoincrement columns”[UltraLite Database User’s
Guide,page 151]

“setDatabaseID method” on page 62

grant method

Prototype void grant(String user , String password)

Description Grants a user name and password permission to connect to an UltraLite
database. To take effect, this method requires that user authentication has
been enabled withJdbcSupport.enableUserAuthentication.

The grant method is supplied on JdbcConnection for applications that do not
have an explicit JdbcDatabase object.

Parameters user A string that must be entered as a user name when connecting.

password A string that must be entered as a password when connecting.

Returns void.

Throws java.sql.SQLException

revoke method

Prototype void revoke(String user)

Description Revokes permission to connect to an UltraLite database from a user name.
To take effect, this method requires that user authentication has been enabled
with JdbcSupport.enableUserAuthentication.

The grant method is supplied on JdbcConnection for applications that do not
have an explicit JdbcDatabase object.

Parameters user The user name that can no longer connect to the database.

Returns void.

Throws java.sql.SQLException

setDatabaseID method

Prototype void setDatabaseID(int value)

Description Sets the

Parameters value The integer value to use as the global database identifier.

62

Chapter 5. UltraLite Static Java API Reference

Throws java.sql.SQLException

See also “globalAutoincUsage method” on page 61

synchronize method

Prototype void synchronize(
java.lang.String user_name,
java.lang.String password ,
java.lang.String script_version,
UlStream stream_defn,
java.lang.String parms)

Description Synchronizes data with a MobiLink synchronization server.

Parameters user_name The MobiLink user name. See“user_name synchronization
parameter” on page 85.

password The password associated with user_name. See“password
synchronization parameter” on page 75.

script_version The script version. See“version synchronization
parameter” on page 85.

stream_defn The stream to use for synchronization. See“stream
synchronization parameter” on page 80.

parms Any user-supplied parameters used for the synchronization.

☞ See“stream_parms synchronization parameter” on page 83.

Throws java.sql.SQLException

startSynchronizationDelete method

Prototype void startSynchronizationDelete()

Description Restart logging of deletes for MobiLink synchronization

Throws java.sql.SQLException

See also “START SYNCHRONIZATION DELETE statement [MobiLink]”[ASA SQL
Reference,page 573]

stopSynchronizationDelete method

Prototype void stopSynchronizationDelete()

Description Prevent logging of deletes for MobiLink synchronization.

Throws java.sql.SQLException

63

See also “STOP SYNCHRONIZATION DELETE statement [MobiLink]”[ASA SQL
Reference,page 580]

Class JdbcDatabase

Package ianywhere.ultralite.jdbc

Description TheJdbcDatabaseis used directly only for obfuscating databases. The
generated database class extendsJdbcDatabaseand provides an object that
represents the UltraLite database. Most JdbcDatabase methods are used
from the generated database class.

☞ For more information, see“The generated database class” on page 66.

changeEncryptionKey method

Prototype Connection changeEncryptionKey()

Description Changes the encryption key for an UltraLite database.

Returns A JDBC Connection object.

Throws java.sql.SQLException

See also “Encrypting UltraLite databases” on page 41

close method

Prototype void close()

Description Closes all connections to an UltraLite database. This method must be
executed before an UltraLite database can be deleted.

Returns void

Throws java.sql.SQLException

connect method

Prototype Connection connect()

Connection connect(String user , String password)

Connection connect(String user , String password , Properties info)

Description Connects to an UltraLite database. The user name and password are checked
only when user authentication has been enabled with
JdbcSupport.enableUserAuthentication.

Parameters user A user name that can connect to the database.

64

Chapter 5. UltraLite Static Java API Reference

password A string that must be entered as a password when connecting.

info A Propertiesobject holding the user name and password.

Returns A JDBC Connection object.

Throws java.sql.SQLException

drop method

Prototype void drop()

Description Deletes an UltraLite database file. This method should be used with care,
and can be executed only after the JdbcDatabase.close() method has been
called.

Returns void

Throws java.sql.SQLException

See also “close method” on page 64

grant method

Prototype void grant(String user , String password)

Description Grants a user name and password permission to connect to an UltraLite
database. To take effect, this method requires that user authentication has
been enabled withJdbcSupport.enableUserAuthentication.

Parameters user A string that must be entered as a user name when connecting.

password A string that must be entered as a password when connecting.

Returns void.

Throws java.sql.SQLException

revoke method

Prototype void revoke(String user)

Description Revokes permission to connect to an UltraLite database from a user name.
To take effect, this method requires that user authentication has been enabled
with JdbcSupport.enableUserAuthentication.

Parameters user The user name that can no longer connect to the database.

Returns void.

Throws java.sql.SQLException

65

setDefaultObfuscation method

Prototype setDefaultObfuscation (true | false)

Description Obfuscates the database

See also “Obfuscating an UltraLite database” on page 42

The generated database class

Description The generated database class extendsJdbcDatabase. It provides an object
that represents the UltraLite database. JdbcDatabase methods are typically
used on the generated database class.

Constructor new database-name(Properties props)

wheredatabase-nameis the name of the generated database class. You can
specify the class name using the UltraLite generator-f command-line
option.

☞ For more information, see “The UltraLite generator”[UltraLite Database
User’s Guide,page 96].

Parameters props A Properties object containing some or all of the following items:

♦ persist

♦ persistfile

♦ key

☞ For more information, see“Using a Properties object to store connection
information” on page 29.

Class JdbcDefragIterator

Package ianywhere.ultralite.jdbc

Description Provides an object used for explicit defragmentation of the database store.

ulStoreDefragStep method

Prototype boolean ulStoreDefragStep(UlConnection conn)

Description Defragments a portion of an UltraLite database.

Parameters conn The current connection, as a JdbcConnection object.

Returns true if successful.

66

Chapter 5. UltraLite Static Java API Reference

false in unsuccessful.

Throws java.sql.SQLException

See also “STOP SYNCHRONIZATION DELETE statement [MobiLink]”[ASA SQL
Reference,page 580]

Class JdbcSupport

Package ianywhere.ultralite.jdbc

Description A static class that provides methods to enable UltraLite features.

enableUserAuthentication method

Prototype void enableUserAuthentication()

Description Sets the UltraLite database so that user authentication is required to connect
to it. Must be called before the database object is created.

Parameters None.

Returns Void.

Throws java.sql.SQLException

See also “User authentication example” on page 39

disableUserAuthentication method

Prototype void disableUserAuthentication()

Description Sets the UltraLite database so that user authentication is not required to
connect to it. Must be called before the database object is created.

Parameters None.

Returns Void.

Throws java.sql.SQLException

See also “enableUserAuthentication method” on page 67

67

CHAPTER 6

Synchronization Parameters Reference

About this chapter This chapter provides reference information about synchronization
parameters.

Contents Topic: page

Synchronization parameters 70

69

Synchronization parameters
The synchronization parameters are fields of the
ianywhere.ultralite.runtime.UlSynchOptions object. The fields are private,
and methods are provided to get and set their values. The UlSynchOptions
object is provided as an argument in the call to
ianywhere.ultralite.jdbc.JdbcConnection.synchronize.

Field Access methods See

auth_status getAuthStatus

setAuthStatus

“auth_status member” on page 71

auth_value getAuthValue

setAuthValue

“auth_value synchronization pa-
rameter” on page 72

download_only getDownloadOnly

setDownloadOnly

“download_only synchronization
parameter” on page 73

ignored_rows getIgnoredRows

setIgnoredRows

“ignored_rows synchronization
parameter” on page 74

new_password getNewPassword

setNewPassword

“new_password synchronization
parameter” on page 74

observer getObserver

setObserver

“observer synchronization param-
eter” on page 75

password getPassword

setPassword

“password synchronization param-
eter” on page 75

ping getPing

setPing

“ping synchronization parameter”
on page 76

publications getSynchPublication

setSynchPublication

“publication synchronization pa-
rameter” on page 77

stream getStream

setStream

“stream synchronization parame-
ter” on page 80

stream_parms getStreamParms

setStreamParms

“stream_parms synchronization
parameter” on page 83

upload_ok getUploadOK

setUploadOK

“upload_ok synchronization pa-
rameter” on page 83

70

Chapter 6. Synchronization Parameters Reference

Field Access methods See

upload_only getUploadOnly

setUploadOnly

“upload_only synchronization
parameter” on page 84

user_data getUserData

setUserData

“user_data synchronization pa-
rameter” on page 84

user_name getUserName

setUserName

“user_name synchronization pa-
rameter” on page 85

version getScriptVersion

setScriptVersion

“version synchronization parame-
ter” on page 85

☞ For a description of the role of each synchronization parameter, see
“Synchronization parameters”[UltraLite Database User’s Guide,page 162].

auth_parms parameter

Function Provides parameters to a custom user authentication script.

Access method String[] getAuthParms()

void setAuthParms(String[] auth_parms)

Usage Set the parameters as follows:

params = new String[num_params];
// set params values
UlSynchOptions opts = new UlSynchOptions;
opts.setAuthParms(params);
opts.setAuthParmsNumber(num_params);

See also “num_auth_parms parameter” on page 74

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

“authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

auth_status parameter

Function Reports the status of MobiLink user authentication.

Access method short getAuthStatus()

void setAuthStatus(short auth_status)

71

Usage Access the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
// set options here
conn.synchronize(opts);
returncode = opts.getAuthStatus();

Allowed values After synchronization, the parameter must hold one of the following values.
If a customauthenticate_usersynchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in “authenticate_user connection event”[MobiLink Synchronization
Reference,page 100].

Constant Value Description

UlDefnUL_AUTH_STATUS_-
UNKNOWN

0 Authorization status is un-
known, possibly because the
connection has not yet syn-
chronized.

UlDefnUL_AUTH_STATUS_-
VALID

1000 User ID and password were
valid at the time of synchro-
nization.

UlDefnUL_AUTH_STATUS_-
VALID_BUT_EXPIRES_SOON

2000 User ID and password were
valid at thetime of synchro-
nization but will expire soon.

UlDefnUL_AUTH_STATUS_-
EXPIRED

3000 Authorization failed: user ID
or password have expired.

UlDefnUL_AUTH_STATUS_-
INVALID

4000 Authorization failed: bad user
ID or password.

UlDefnUL_AUTH_STATUS_-
IN_USE

5000 Authorization failed: user ID
is already in use.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

auth_value synchronization parameter

Function Reports return values from custom user authentication synchronization
scripts.

Access methods long getAuthValue()

void setAuthValue(long auth_value)

Default The values set by the default MobiLink user authentication mechanism are

72

Chapter 6. Synchronization Parameters Reference

described in“auth_status synchronization parameter” on page 71.

Usage The parameter is read-only.

Access the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
// set other options here
conn.synchronize(opts);
returncode = opts.getAuthValue();

See also “authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

“authenticate_user_hashed connection event”[MobiLink Synchronization
Reference,page 104]

“auth_status synchronization parameter” on page 71

checkpoint_store synchronization parameter

Function Adds additional checkpoints of the database during synchronization to limit
database growth during the synchronization process.

Access methods This parameter is not available in Java

Default By default, limited checkpointing is done.

Usage Set the parameter as follows:

disable_concurrency synchronization parameter

Function Disallow database access from other threads during synchronization.

Access methods This parameter is not available in Java

Default By default, data access is available. Data access is read-write during the
download phase, and read-only otherwise.

Usage Set the parameter as follows:

See also “Threading in UltraLite applications”[UltraLite Database User’s Guide,
page 47]

download_only synchronization parameter

Function Do not upload any changes from the UltraLite database during this
synchronization.

Access methods boolean getDownloadOnly()

73

void setDownloadOnly(boolean download_only)

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setDownloadOnly(true);

// set other options here
conn.synchronize(opts);

See also “Including read-only tables in an UltraLite database” on page??.

“upload_only synchronization parameter” on page 84

ignored_rows synchronization parameter

Function Reports if any rows were ignored by the MobiLink synchronization server
during synchronization because of absent scripts.

The parameter is read-only.

Access methods boolean getIgnoredRows()

void setIgnoredRows(boolean ignored_rows)

new_password synchronization parameter

Function Sets a new MobiLink password associated with the user name.

Access methods java.lang.String getNewPassword()

void setNewPassword(java.lang.String new_password)

Default There is no default.

Usage Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setPassword("mypassword");
opts.setNewPassword("mynewpassword");
// set other options here
conn.synchronize(opts);

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

num_auth_parms parameter

Function The number of authentication parameter strings passed to a custom

74

Chapter 6. Synchronization Parameters Reference

authentication script.

Access methods byte getAuthParmsNumber()

void setAuthParmsNumber(byte value)

Default No parameters passed to a custom authentication script.

Usage The parameter is used together with auth_parms to supply information to
custom authentication scripts.

☞ For more information, see“auth_parms parameter” on page 71.

See also “auth_parms parameter” on page 71

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

“authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

observer synchronization parameter

Function A pointer to a callback function that monitors synchronization.

Access methods ianywhere.ultralite.runtime.UlSynchObserver getObserver()

void setObserver(ianywhere.ultralite.runtime.UlSynchObserver observer)

See also “Monitoring and canceling synchronization” on page 50

“user_data synchronization parameter” on page 84

password synchronization parameter

Function A string specifying the MobiLink password associated with theuser_name.
This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

Access methods java.lang.String getPassword()

void setPassword(java.lang.String password)

Default There is no default.

Usage Set the parameter as follows:

75

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setPassword("mypassword");
// set other options here
conn.synchronize(opts);

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

ping synchronization parameter

Function Confirm communications between the UltraLite client and the MobiLink
synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist, for a ping request:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

Access methods boolean getPing()

void setPing(boolean ping)

Default The parameter is optional, and is a boolean.

Usage Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setPing(true);
// set other options here
conn.synchronize(opts);

76

Chapter 6. Synchronization Parameters Reference

See also “-pi option” [MobiLink Synchronization Reference,page 76]

publication synchronization parameter

Function Specifies the publications to be synchronized.

Access methods int getSynchPublication()

void setSynchPublication(int publication)

Default If you do not specify a publication, all data is synchronized.

Usage The UltraLite generator identifies the publications specified on theulgen -v

command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option.

For example, the following command line generates a publication identified
by the constant salesproject.UL_PUB_SALES:

ulgen -v sales ...

When synchronizing, set the publication parameter to apublication mask:
an OR’d list of publication constants. For example:

UlSynchOptions opts = new UlSynchOptions;
opts.setSynchPublication(

projectname .UL_PUB_MYPUB1 |
projectname .UL_PUB_MYPUB2);

// set other options here
conn.synchronize(opts);

whereprojectnameis the name of the main project class generated by the
UtraLite generator.

The special publication maskUL_SYNC_ALL describes all the tables in
the database, whether in a publication or not. The mask
UL_SYNC_ALL_PUBS describes all tables in publications in the database.

See also “The UltraLite generator” on page??

“Designing sets of data to synchronize separately” on page??

security synchronization parameter

Function Set the UltraLite client to use Certicom encryption technology when
exchanging messages with the MobiLink synchronization server.

77

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to ex-
port regulations. For more information on this option, see “Welcome to
SQL Anywhere Studio”[Introducing SQL Anywhere Studio,page 4].

Access methods This parameter is not used in Java.

To use secure synchronization from UltraLite Java applications, choose a
separate stream. For more information, see“Initializing the synchronization
options” on page??.

Default The Security parameter is null by default, corresponding to no
transport-layer security.

Usage The security stream is specified in addition to the synchronization stream.
Allowed values are as follows:

♦ ULSecureCerticomTLSStream() Elliptic-curve transport-layer security
provided by Certicom.

♦ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom.

See also “Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337].

security_parms synchronization parameter

Function Sets the parameters required when using transport-layer security. This
parameter must be used together with thesecurity parameter.

☞ For more information, see“security synchronization parameter” on
page 77.

Access methods This parameter is not used in Java.

To use secure synchronization from UltraLite Java applications, choose a
separate stream. For more information, see“Initializing the synchronization
options” on page??.

Usage The ULSecureCerticomTLSStream() and ULSecureRSATLSStream()
security parameters take a string composed of the following optional
parameters, supplied in an semicolon-separated string.

♦ certificate_company The UltraLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches this

78

Chapter 6. Synchronization Parameters Reference

value. By default, this field is not checked.

♦ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, this field is not checked.

For example:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureCerticomTLSStream();
info.security_parms =

UL_TEXT("certificate_company=Sybase")
UL_TEXT(";")
UL_TEXT("certificate_unit=Sales");

Thesecurity_parmsparameter is a string, and by default is null.

If you use secure synchronization, you must also use the-r command-line
option on the UltraLite generator. For more information, see“The UltraLite
generator” on page??.

send_column_names synchronization parameter

Function Whensend_column_namesis set toul_true UltraLite sends each column
name to the MobiLink synchronization server. By default UltraLite does not
send column names.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

Access methods This parameter is not available for UltraLite Java applications.

See also “-za option” [MobiLink Synchronization Reference,page 28]

send_download_ack synchronization parameter

Function Set this boolean parameter tofalseto instruct the MobiLink synchronization
server that the client will not provide a download acknowledgement.

If the client does send download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

Access methods This parameter is not available for UltraLite Java applications.

79

stream synchronization parameter

Function Set the MobiLink synchronization stream to use for synchronization.

☞ For more information, see“stream_parms synchronization parameter”
on page 83.

Access methods ianywhere.ultralite.runtime.UlStream getStream()

void setStream(ianywhere.ultralite.runtime.UlStream stream)

Default The parameter has no default value, and must be explicitly set.

Usage
UlSynchOptions opts = new UlSynchOptions;
opts.setStream(new UlSocketStream());
opts.setStreamParms("host=myserver;port=2439");
// set other options here
conn.synchronize(opts);

When the type of stream requires a parameter, pass that parameter using the
stream_parmsparameter; otherwise, set thestream_parmsparameter to
null.

The following stream functions are available, but not all are available on all
target platforms:

Stream Description

ActiveSync (not available
for static Java)

ActiveSync synchronization (Windows CE only).

☞ For a list of stream parameters, see “Ac-
tiveSync parameters” [UltraLite Database User’s
Guide,page 179].

UlHTTPStream() Synchronize via HTTP.

The HTTP stream uses TCP/IP as its underly-
ing transport. UltraLite applications act as Web
browsers and the MobiLink synchronization
server acts as a Web server. UltraLite applica-
tions send POST requests to send data to the
server and GET requests to read data from the
server.

☞ For a list of stream parameters, see “HTTP
stream parameters” [UltraLite Database User’s
Guide,page 184].

80

Chapter 6. Synchronization Parameters Reference

Stream Description

UlHTTPSStream() Synchronize via the HTTPS synchronization
stream.

The HTTPS stream uses SSL or TLS as its
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS stream requires the use of tech-
nology supplied by Certicom. Use of Certi-
com technology requires that you obtain the
separately-licensable SQL Anywhere Studio se-
curity option and is subject to export regulations.
For more information on this option, see “Wel-
come to SQL Anywhere Studio” [Introducing
SQL Anywhere Studio,page 4].

☞ For a list of stream parameters, see “HTTPS
stream parameters” [UltraLite Database User’s
Guide,page 186].

UlSocketStream() Synchronize via TCP/IP.

☞ For a list of stream parameters, see “TCP/IP
stream parameters” [UltraLite Database User’s
Guide,page 182].

UlSecureSocketStream() TCP/IP or HTTP synchronization with transport-
layer security using elliptic curve encryption.

☞ For a list of stream parameters, see “UlSe-
cureSocketStream synchronization parameters”
[UltraLite Database User’s Guide,page 189].

UlSecureRSASocket-
Stream()

TCP/IP or HTTP synchronization with transport-
layer security using RSA encryption.

☞ For a list of stream parameters, see “UlSe-
cureRSASocketStream synchronization pa-
rameters” [UltraLite Database User’s Guide,
page 188]..

☞ For information on Java synchronization streams, see“Initializing the
synchronization options” on page??.

stream_error synchronization parameter

Function Sets a structure to hold communications error reporting information.

Access methods Thie feature is not available to Java applications.

81

Default The parameter has no default value, and must be explicitly set.

Description Thestream_error field is a structure of typeul_stream_error.

typedef struct ss_error {
ss_stream_id stream_id;
ss_stream_context stream_context;
ss_error_code stream_error_code;
asa_uint32 system_error_code;
rp_char *error_string;
asa_uint32 error_string_length;

} ss_error, *p_ss_error;

The structure is defined insserror.h, in theh subdirectory of your
SQL Anywhere directory.

Theul_stream_error fields are as follows:

♦ stream_id The network layer reporting the error. This enumeration has
the following constants:

STREAM_ID_TCPIP
STREAM_ID_HTTP
STREAM_ID_CERTICOM_TLS
STREAM_ID_PALM_CONDUIT
STREAM_ID_ACTIVESYNC

♦ stream_context The basic network operation being performed, such as
open, read, or write. For details, seesserror.h.

♦ stream_error_code The error reported by the stream itself. The
stream_error_codeis of typess_error_code. The stream error codes
are all prefixed with STREAM_ERROR_. A write error, for example, is
STREAM_ERROR_WRITE.

☞ For a listing of error numbers, see “MobiLink Communication Error
Messages”[MobiLink Synchronization Reference,page 347]. For the error
code suffixes, seesserror.h.

In this version, to find the constant associated with each number you must
count down the number of lines prefixed by DO_STREAM_Error in
sserror.h. For example, to find the constant for error number 10, you use
the tenth DO_STREAM_ERROR entry insserror.h, which is as follows:

DO_STREAM_ERROR(WRITE)

The constant associated with this error is therefore
STREAM_ERROR_WRITE.

♦ stream_error The network operation being performed (the context) and
the error itself as an enumeration constant.

♦ system_error_code A system-specific error code.

82

Chapter 6. Synchronization Parameters Reference

♦ error_string An application-provided error message

Usage Check for SQLE_COMMUNICATIONS_ERROR as follows:

This feature is not available for Java applications.

stream_parms synchronization parameter

Function Sets parameters to configure the synchronization stream.

A semi-colon separated list of parameter assignments. Each assignment is of
the formkeyword=value, where the allowed sets of keywords depends on
the synchronization stream.

For a list of available parameters for each stream, see the following sections:

♦ “HTTP stream parameters”[UltraLite Database User’s Guide,page 184]

♦ “HTTPS stream parameters”[UltraLite Database User’s Guide,page 186]

♦ “TCP/IP stream parameters”[UltraLite Database User’s Guide,page 182]

♦ “UlSecureRSASocketStream synchronization parameters”[UltraLite
Database User’s Guide,page 188]

Access methods java.lang.String getStreamParms()

void setStreamParms(java.lang.String stream_parms)

Default The parameter is optional, is a string, and by default is null.

Usage Set the parameter as follows:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=myserver;port=2439");

See also “Synchronization stream parameters” on page??.

upload_ok synchronization parameter

Function Reports the status of MobiLink uploads. The MobiLink synchronization
server provides this information to the client.

The parameter is read-only.

Access methods boolean getUploadOK()

void setUploadOK(boolean upload_ok)

Usage After synchronization, theupload_okparameter holdstrue if the upload
was successful, andfalseotherwise.

83

Access the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
// set options here
conn.synchronize(opts);
returncode = opts.getUploadOK();

upload_only synchronization parameter

Function Indicates that there should be no downloads in the current synchronization,
which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

Access methods boolean getUploadOnly()

void setUploadOnly(boolean upload_only)

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter to true as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setUploadOnly(true);

See also “Synchronizing high-priority changes” on page??

“download_only synchronization parameter” on page 73

user_data synchronization parameter

Function Make application-specific information available to the synchronization
observer.

Access methods java.lang.Object getUserData()

void setUserData(java.lang.Object user_data)

Usage When implementing the synchronization observer interface
UlSynchObserver, you may can make application-specific information to
the synchronization observer class by providing an object in the
setUserDatamethod.

See also “observer synchronization parameter” on page 75

“Monitoring and canceling synchronization” on page??

84

Chapter 6. Synchronization Parameters Reference

user_name synchronization parameter

Function A string specifying the user name that uniquely identifies the MobiLink
client to the MobiLink synchronization server. MobiLink uses this value to
determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

Access methods java.lang.String getUserName()

void setUserName(java.lang.String user_name)

Default The parameter is required, and is a string.

Usage Set the parameter as follows:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setUserName("mluser");

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

“The MobiLink user” [MobiLink Synchronization User’s Guide,page 20].

version synchronization parameter

Function Each synchronization script in the consolidated database is marked with a
version string. For example, there may be two differentdownload_cursor
scripts, identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

Access methods java.lang.String getScriptVersion()

void setScriptVersion(java.lang.String version)

Default The parameter is a string, and by default is the MobiLink default version
string.

Usage Set the parameter as follows:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setVersion("default");

See also “Script versions”[MobiLink Synchronization User’s Guide,page 49].

85

86

Index

A
absolute method

UltraLite Java JDBC support 58
AES encryption algorithm

UltraLite databases 41
afterLast method

UltraLite Java JDBC support 58
applets

running the UltraLite Java sample 21
UltraLite 33

applications
building 15
deploying 36
writing in Java 6, 20

B
beforeFirst method

UltraLite Java JDBC support 58
benefits

UltraLite static Java API 4
building

Java applications 15
sample application 22

C
cache_size persistent storage parameter

41
case sensitivity

UltraLite user authentication 38
certificate option

MobiLink synchronization server -x 48
certificate_password option

MobiLink synchronization server -x 48
changeEncryptionKey method 43

JdbcDatabase class 43, 64
checkpoint_store synchronization

parameter
MobiLink synchronization 73

Class.forName method 27
ClassNotFoundException 27
close method

JdbcDatabase class 64
compiling

UltraLite Java 35
connect method

JdbcDatabase class 59, 64
connecting

multiple UltraLite Java databases 30
Properties object and UltraLite Java 29
UltraLite databases 38
UltraLite Java databases 26, 27

Connection object 27
conventions

documentation viii
creating

UltraLite Java databases 66

D
database files

changing the encryption key 43
defragmenting UltraLite databases 44
encrypting 42
obfuscating 41
setting the file name 41

databases
connections from UltraLite Java 26
generating UltraLite Java 34
multiple UltraLite Java 30
UltraLite Java 30

definitions
persistent storage parameters 41

defragmenting
UltraLite databases 44

deploying
UltraLite Java applications 36

disable_concurrency synchronization
parameter

MobiLink synchronization 73
disableUserAuthentication method

JdbcSupport class 67
documentation

conventions viii
SQL Anywhere Studio vi

87

Index

download-only synchronization
getDownloadOnly method (static Java

API) 73
getNewPassword method (static Java

API) 74
setDownloadOnly method (static Java

API) 73
Driver class 27
DriverManager class 27
DriverManager.getConnection() method

27
drop method

JdbcDatabase class 65

E
enableUserAuthentication method

JdbcSupport class 67
encryption

changing UltraLite encryption keys 43
UltraLite databases 41, 42

encryption keys
guidelines 42

error handling
UltraLite applications 26
UltraLite JDBC 27

F
feedback

documentation xii
providing xii

file_name persistent storage parameter 41
first method

UltraLite Java JDBC support 58
first time

synchronization 49

G
generated database class

UltraLite Java databases 66
generating

database 34
generator

about 34
getAuthParms method

about (static Java API) 71
getAuthParmsNumber method

about (static Java API) 74
getAuthStatus method

about (static Java API) 71
getAuthValue method

about (static Java API) 72
getDefragIterator method

JdbcConnection class 60
getDownloadOnly method

about (static Java API) 73
getDriver method 27
getLastDownloadTimeDate method

JdbcConnection class 60
getLastDownloadTimeLong method

JdbcConnection class 61
getLastIdentity method

JdbcConnection class 61
getNewPassword method

about (static Java API) 74
getPassword method

about (static Java API) 75
getScriptVersion method

about (static Java API) 85
getStream method

about (static Java API) 80
getUploadOK method

about (static Java API) 83
getUploadOnly method

about (static Java API) 84
getUserName method

about (static Java API) 85
global autoincrement

UltraLite Java getLastIdentity method
61

UltraLite Java globalAutoincUsage
method 61

UltraLite Java setDatabaseID method
62

global database identifier
UltraLite Java 62

globalAutoincUsage method
JdbcConnection class 61

grant method
JdbcDatabase class 62, 65

I
icons

used in manuals x

88

Index

ignored rows
synchronization 74

ignored_rows synchronization parameter
MobiLink synchronization 74

isAfterLast method
UltraLite Java JDBC support 58

isBeforeFirst method
UltraLite Java JDBC support 58

isFirst method
UltraLite Java JDBC support 58

isLast method
UltraLite Java JDBC support 58

J
Java

sample program 6
UltraLite limitations 58
UltraLite tutorial 6

Java API
UltraLite 4

Java applets
UltraLite 33

java_certicom_tls stream
MobiLink synchronization server 48

java_rsa_tls stream
MobiLink synchronization server 48

JDBC
about 6
database parameter in UltraLite URL

28
loading drivers 27
registering drivers 27
UltraLite Java SQL statements 32
UltraLite limitations 58
URLs 28

JDBC drivers
loading multiple drivers 27
loading UltraLite 27
registering UltraLite 27
UltraLite 27

JdbcConnection class
about 59
getDefragIterator method 60
getLastIdentity method 61
globalAutoincUsage method 61
setDatabaseID method 62
startSynchronizationDelete method 63

stopSynchronizationDelete method 63
synchronize method 63

JdbcConnection.synchronize method
about 16, 47

JdbcDatabase class
about 26, 64, 66
close method 64
connect method 26, 59, 64
drop method 65
grant method 62, 65
revoke method 62, 65

JdbcDefragIterator class
about 66
ulStoreDefragStep method 66

JdbcSupport class
about 67
disableUserAuthentication method 67
enableUserAuthentication method 67

JSynchProgressViewer class
about 53

K
key property

UltraLite Java databases 29

L
last method

UltraLite Java JDBC support 58
limitations

JDBC UltraLite 59
loading

JDBC driver 27

M
monitoring synchronization

setObserver method (static Java API)
75

multi-threaded applications
UltraLite applications 56

N
new_password synchronization

parameter
about 74

newsgroups
technical support xii

89

Index

O
obfuscating

UltraLite databases 41
UltraLite Java databases 66

obfuscation
UltraLite databases 41

observer
synchronization example 53

P
Palm Computing Platform

user authentication 39
passwords

MobiLink synchronization 74
Palm Computing Platform 39
UltraLite case sensitivity 38
UltraLite databases 38
UltraLite Java 29

persist property
UltraLite Java databases 29

persistent storage
parameters 41
UltraLite databases 26, 30

persistfile property
UltraLite Java databases 29

previous method
UltraLite Java JDBC support 58

progress viewer
synchronization 53

projects
Java 34

Properties object
UltraLite Java connections 29, 30

publications
setSynchPublication method (static

Java API) 77

R
registering

JDBC driver 27
relative method

UltraLite Java JDBC support 58
revokemethod

JdbcDatabase class 62, 65
running

sample application 23

S
sample application

building UltraLite Java 22
running UltraLite Java 23
UltraLite Java 21–23

script versions
getScriptVersion method (static Java

API) 85
setScriptVersion method (static Java

API) 85
security

changing the encryption key 43
database encryption 42
database obfuscation 41
UltraLite Java transport-layer security

48
setAuthParms method

about (static Java API) 71
setAuthParmsNumber method

about (static Java API) 74
setDatabaseID method

JdbcConnection class 62
setDefaultObfuscation method

JdbcDatabase class 66
UlDatabase class 42

setDownloadOnly method
about (static Java API) 73

setNewPassword method
about (static Java API) 74

setObserver method
about (static Java API) 75

setPassword method
about (static Java API) 75

setPing method
about (static Java API) 76

setScriptVersion method
about (static Java API) 85

setStream method
about (static Java API) 80

setStreamParms method
about (static Java API) 83

setSynchPublication method
about (static Java API) 77

setting
persistent storage parameters 41

setUploadOnly method
about (static Java API) 84

90

Index

setUserData method
about (static Java API) 84

setUserName method
about (static Java API) 85

SQL Anywhere Studio
documentation vi

SQL statements
UltraLite Java 32

SQLException
UltraLite applications 26

startSynchronizationDelete method
JdbcConnection class 63

static Java API
UltraLite benefits 4

stopSynchronizationDelete method
JdbcConnection class 63

storage parameters 41
strong encryption

UltraLite databases 41
support

newsgroups xii
Sybase Central

adding SQL statements to an UltraLite
project 8

SynchProgressViewer class
about 53

synchronization
about 45
adding to UltraLite applications 45
applets 33
canceling 50
checkpoint_store 73
commit before 49
disable_concurrency 73
ignored rows 74
initial copy 49
invoking 47
Java application 16
Java applications 47
JdbcConnection.synchronize method

16, 47
monitoring 50
progress viewer 53
UltraLite Java 47

synchronization parameters
getAuthParms method (static Java

API) 71

getAuthParmsNumber method (static
Java API) 74

getAuthStatus method (static Java
API) 71

getAuthValue method (static Java API)
72

getDownloadOnly method (static Java
API) 73

getNewPassword method (static Java
API) 74

getPassword method (static Java API)
75

getScriptVersion method (static Java
API) 85

getStream method (static Java API) 80
getUploadOK method (static Java

API) 83
getUploadOnly method (static Java

API) 84
getUserName method (static Java API)

85
new_password 74
setAuthParms method (static Java

API) 71
setAuthParmsNumber method (static

Java API) 74
setDownloadOnly method (static Java

API) 73
setNewPassword method (static Java

API) 74
setObserver method (static Java API)

75
setPassword method (static Java API)

75
setPing method (static Java API) 76
setScriptVersion method (static Java

API) 85
setStream method (static Java API) 80
setStreamParms method (static Java

API) 83
setSynchPublication method (static

Java API) 77
setUploadOnly method (static Java

API) 84
setUserData method (static Java API)

84
setUserName method (static Java API)

91

Index

85
synchronization streams

getStream method (static Java API) 80
setStream method (static Java API) 80
setStreamParms method (static Java

API) 83
UlHTTPSStream 46
UlHTTPSStream (static Java API) 80
UlHTTPStream 46
UlHTTPStream (static Java API) 80
UlSecureRSASocketStream 46
UlSecureSocketStream 46, 48
UlSecureSocketStream (static Java

API) 80
UlSocketStream 46
UlSocketStream (static Java API) 80

synchronize method
JdbcConnection class 63
JdbcConnection object 47

T
technical support

newsgroups xii
threads

Java synchronization 53
synchronization monitoring 53
UltraLite applications 56
UltraLite Java 56

tips
UltraLite development 49

transient databases
UltraLite 26, 30

transport-layer security
java_certicom_tls stream 48
java_rsa_tls stream 48
UltraLite Java applications 48
UltraLite Java clients 46

troubleshooting
commit all changes before

synchronizing 49
getUploadOK method (static Java

API) 83
setPing method (static Java API) 76
UltraLite development 49

tutorials
UltraLite Java 6

U
UL_STORE_PARMS macro

using 41
UL_SYNC_ALL macro

publication mask 77
UL_SYNC_ALL_PUBS macro

publication mask 77
ULChangeEncryptionKey function

using 43
UlDatabase class

obfuscating databases 42
UlDefnUL_AUTH_STATUS_EXPIRED

auth_status value
about 71

UlDefnUL_AUTH_STATUS_IN_USE
auth_status value

about 71
UlDefnUL_AUTH_STATUS_INVALID

auth_status value
about 71

UlDefnUL_AUTH_STATUS_-
UNKNOWN auth_status
value

about 71
UlDefnUL_AUTH_STATUS_VALID

auth_status value
about 71

UlDefnUL_AUTH_STATUS_VALID_-
BUT_EXPIRES_SOON
auth_status value

about 71
ULEnableUserAuthentication function

about 39
using 38

ulgen utility
about 34

UlHTTPSStream object
Java synchronization stream 46
Java synchronization stream (static

Java API) 80
UlHTTPStream object

Java synchronization stream 46
Java synchronization stream (static

Java API) 80
ULSecureCerticomTLSStream function

security (static Java API) 78
UlSecureRSASocketStream object

92

Index

about 48
Java synchronization stream 46

ULSecureRSATLSStream function
security (static Java API) 78

UlSecureSocketStream object
about 48
Java synchronization stream 46
Java synchronization stream (static

Java API) 80
UlSocketStream object

Java synchronization stream 46
Java synchronization stream (static

Java API) 80
ulStoreDefragStep method

JdbcDefragIterator class 66
UlSynchObserver interface

implementing 50
UlSynchOptions object

members (static Java API) 70
UltraLite

JDBC driver 27
UltraLite databases

encrypting 41
multiple Java 30
user IDs 38

UltraLite Java
threads 56

UltraLite passwords
about 38
maximum length 38

UltraLite project creation wizard
using 8

UltraLite statement creation wizard
using 8

UltraLite user IDs
about 38
limit 38
maximum length 38

unsupported features
UltraLite limitations 58

unsupported JDBC methods
UltraLite limitations 59

upload only synchronization
getUploadOnly method (static Java

API) 84
setUploadOnly method (static Java

API) 84

URL
UltraLite Java database 27, 28

user authentication
embedded SQL UltraLite applications

39
getAuthStatus method (static Java

API) 71
getAuthValue method (static Java API)

72
getPassword method (static Java API)

75
getUserName method (static Java API)

85
MobiLink and UltraLite 40
setNewPassword method (static Java

API) 74
setPassword method (static Java API)

75
setUserName method (static Java API)

85
UltraLite case sensitivity 38
UltraLite databases 38

user IDs
Palm Computing Platform 39
UltraLite case sensitivity 38
UltraLite databases 38
UltraLite Java 29

W
wizards

UltraLite project creation 8
UltraLite statement creation 8

writing applications in Java 6, 20

93

	UltraLite Static Java User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction to the Static Java API
	System requirements and supported platforms
	Developing static Java applications
	Benefits and limitations of the static Java API

	Tutorial: Build an Application Using Java
	Introduction
	Overview
	Create a directory to hold your files

	Lesson 1: Add SQL statements to your reference database
	Lesson 2: Run the UltraLite generator
	Lesson 3: Write the application code
	Lesson 4: Build and run the application
	Lesson 5: Add synchronization to your application
	Lesson 6: Undo the changes you have made

	Data Access Using Pure Java
	Introduction
	The UltraLite Java sample application
	The UltraLite Java sample files
	Building the UltraLite Java sample
	Running the UltraLite Java sample

	Connecting to and configuring your UltraLite database
	Using the UltraLite JdbcDatabase.connect method
	Loading and registering the JDBC driver
	Connecting to the database using JDBC
	UltraLite JDBC URLs
	Using a Properties object to store connection information
	Connecting to multiple databases
	Configuring the UltraLite Java database

	Including SQL statements in UltraLite Java applications
	UltraLite Java development notes
	Creating UltraLite Java applets

	Building UltraLite Java applications
	Generating UltraLite Java classes
	Compiling UltraLite Java applications
	Deploying Java applications

	Adding Non Data Access Features to UltraLite Applications
	Adding user authentication to your application
	Enabling user authentication
	Managing user IDs and passwords
	User authentication example

	Sharing MobiLink and UltraLite user IDs

	Configuring and managing database storage
	Encrypting UltraLite databases
	Obfuscating an UltraLite database
	Encrypting an UltraLite database
	Changing the encryption key for a database

	Defragmenting UltraLite databases

	Adding synchronization to your application
	Initializing the synchronization parameters
	Setting synchronization parameters
	Invoking synchronization
	Using transport-layer security
	Commit all changes before synchronizing
	Adding initial data to your application
	Monitoring and canceling synchronization
	Handling synchronization status information
	Using the progress viewer

	Developing multi-threaded applications

	UltraLite Static Java API Reference
	UltraLite API reference
	JDBC features in UltraLite
	Unsupported JDBC methods
	Class JdbcConnection
	countUploadRows method
	getDefragIterator method
	getLastDownloadTimeDate method
	getLastDownloadTimeLong method
	getLastIdentity method
	globalAutoincUsage method
	grant method
	revoke method
	setDatabaseID method
	synchronize method
	startSynchronizationDelete method
	stopSynchronizationDelete method

	Class JdbcDatabase
	changeEncryptionKey method
	close method
	connect method
	drop method
	grant method
	revoke method
	setDefaultObfuscation method

	The generated database class
	Class JdbcDefragIterator
	ulStoreDefragStep method

	Class JdbcSupport
	enableUserAuthentication method
	disableUserAuthentication method

	Synchronization Parameters Reference
	Synchronization parameters
	auth_parms parameter
	auth_status parameter
	auth_value synchronization parameter
	checkpoint_store synchronization parameter
	disable_concurrency synchronization parameter
	download_only synchronization parameter
	ignored_rows synchronization parameter
	new_password synchronization parameter
	num_auth_parms parameter
	observer synchronization parameter
	password synchronization parameter
	ping synchronization parameter
	publication synchronization parameter
	security synchronization parameter
	security_parms synchronization parameter
	send_column_names synchronization parameter
	send_download_ack synchronization parameter
	stream synchronization parameter
	stream_error synchronization parameter
	stream_parms synchronization parameter
	upload_ok synchronization parameter
	upload_only synchronization parameter
	user_data synchronization parameter
	user_name synchronization parameter
	version synchronization parameter

	Index

