
UltraLite™ Embedded SQL™

User’s Guide

Part number: DC50028-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’ 1997–2001
Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom
Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S.
patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions . xi
The CustDB sample database . xiii
Finding out more and providing feedback xiv

1 Introduction to Embedded SQL 1
System requirements and supported platforms 2
Developing embedded SQL applications 3
Benefits and limitations of embedded SQL 4

2 Tutorial: Build an Application Using Embedded SQL 5
Introduction . 6
Lesson 1: Configure eMbedded Visual C++ 7
Lesson 2: Write an embedded SQL source file 8
Lesson 3: Build the sample embedded SQL UltraLite application . . 14
Lesson 4: Add synchronization to your application 15

3 Building Embedded SQL Applications 17
Build procedure for UltraLite embedded SQL applications 18
Single-file build procedure . 21
Configuring development tools for embedded SQL development . . . 24

4 Data Access Using Embedded SQL 27
Introduction . 28
Using host variables . 30
Using indicator variables . 41
Fetching data . 43
The SQL Communication Area . 48

5 Adding Non Data Access Features to UltraLite Applications 51
Adding user authentication to your application 52
Configuring and managing database storage 56
Adding synchronization to your application 62
Developing multi-threaded applications 70

iii

6 Developing UltraLite Applications for the Palm Computing Platform 71
Introduction . 72
Developing UltraLite applications with Metrowerks CodeWarrior . . . 73
Maintaining state in UltraLite applications 77
Building multi-segment applications 78
Adding HotSync synchronization to Palm applications 81
Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications 83
Deploying Palm applications . 84

7 Developing UltraLite Applications for Windows CE 87
Introduction . 88
Building the CustDB sample application 90
Storing persistent data . 92
Deploying Windows CE applications 93
Synchronization on Windows CE . 96

8 Embedded SQL Library Functions 101
db_fini function . 103
db_init function . 104
ULActiveSyncStream function . 105
ULChangeEncryptionKey function . 106
ULClearEncryptionKey function . 107
ULCountUploadRows function . 108
ULDropDatabase function . 109
ULEnableFileDB function . 110
ULEnableGenericSchema function 111
ULEnablePalmRecordDB function . 112
ULEnableStrongEncryption function 113
ULEnableUserAuthentication function 114
ULGetLastDownloadTime function 115
ULGetSynchResult function . 116
ULGlobalAutoincUsage function . 118
ULGrantConnectTo function . 119
ULHTTPSStream function . 120
ULHTTPStream function . 121
ULIsSynchronizeMessage function 122
ULPalmDBStream function (deprecated) 123
ULPalmExit function . 124
ULPalmLaunch function . 125
ULResetLastDownloadTime function 127
ULRetrieveEncryptionKey function 128
ULRevokeConnectFrom function . 129
ULSaveEncryptionKey function . 130
ULSetDatabaseID function . 131

iv

ULSocketStream function . 132
ULStoreDefragFini function . 133
ULStoreDefragInit function . 134
ULStoreDefragStep function . 135
ULSynchronize function . 136

9 Synchronization Parameters Reference 137
Synchronization parameters . 138

Index 153

v

About This Manual

Subject This manual describes how to develop UltraLite database applications for
handheld, mobile, or embedded devices in C/C++ using embedded SQL.

Audience This manual is intended for all application developers writing UltraLite
embedded SQL programs. Familiarity is assumed with the C/C++
programming language, with relational databases in general, and Adaptive
Server Anywhere in particular.

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

viii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

ix

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

x

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xiii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xiv

CHAPTER 1

Introduction to Embedded SQL

About this chapter This chapter introduces the embedded SQL interface to UltraLite databases.
It assumes that you are familiar with the UltraLite database system and the
development models it offers.

☞ For more information, see “Welcome to UltraLite”[UltraLite Database
User’s Guide,page 3].

Contents Topic: page

System requirements and supported platforms 2

Developing embedded SQL applications 3

Benefits and limitations of embedded SQL 4

1

System requirements and supported platforms
Supported target platforms are the Palm Computing Platform and Microsoft
Windows CE. Other Windows operating systems are supported for
development purposes only.

Application development requires a C or C++ compiler running on a
Windows operating system, such as Microsoft eMbedded Visual C++ for
Windows CE development or Metrowerks CodeWarrior for Palm OS
development. You must also have an Adaptive Server Anywhere reference
data base.

☞ For more detailed information, see “UltraLite host platforms”
[Introducing SQL Anywhere Studio,page 126], and “UltraLite target platforms”
[Introducing SQL Anywhere Studio,page 136].

2

Chapter 1. Introduction to Embedded SQL

Developing embedded SQL applications
When developing embedded SQL applications, you mix SQL statements in
with standard C or C++ source code. In order to develop embedded SQL
applications you should be familiar with the C or C++ programming
language.

The development process for embedded SQL applications is as follows:

1. Design your database.

Prepare an Adaptive Server Anywhere reference database that contains
the tables and indexes you wish to include in your UltraLite database.

2. Write your source code in an embedded SQL source file, which typically
has extension.sqc.

When you need data access in your source code, use the SQL statement
you wish to execute, prefixed by the EXEC SQL keywords. For example:

EXEC SQL SELECT price, prod_name
INTO :cost, :pname
FROM ULProduct
WHERE prod_id= :pid;

if((SQLCODE==SQLE_NOTFOUND)||(SQLCODE<0)) {
return(-1);

}

3. Preprocess the.sqcfiles.

SQL Anywhere Studio includes a SQL preprocessor (sqlpp), which reads
the .sqc files, accesses an Adaptive Server Anywhere reference database,
and generates .c or .cpp files. These files hold function calls to the
UltraLite runtime library.

4. Compile your .c or .cpp files.

You can compile the generated .c or .cpp files just as you compile other .c
or .cpp files.

5. Link the .c or .cpp files.

You must link the files against the UltraLite runtime library.

☞ For a full description of the embedded SQL development process, see
“Building Embedded SQL Applications” on page 17.

3

Benefits and limitations of embedded SQL
UltraLite provides several programming interfaces, including both static
development models (of which embedded SQL is one) and UltraLite
components. Many of the benefits and disadvantages of embedded SQL are
shared with the UltraLite static C++ API.

Embedded SQL has the following advantages:

♦ Small footprint database As embedded SQL uses an UltraLite
database engine compiled specifically for each application, the footprint
is generally smaller than when using an UltraLite component, especially
for a small number of tables. For a large number of tables, this benefit is
lost.

♦ High performance Combining the high performance of C and C++
applications with the optimization of the generated code, including data
access plans, makes embedded SQL a good choice for high-performance
application development.

♦ Extensive SQL support With embedded SQL you can use a wide
range of SQL in your applications.

Embedded SQL has the following disadvantages:

♦ Knowledge of C or C++ required If you are not familiar with C or
C++ programming, you may wish to use one of the other UltraLite
interfaces. UltraLite components provide interfaces from several popular
propgramming languages and tools.

♦ Complex development model The use of a reference database to hold
the UltraLite database schema, together with the need to preprocess your
source code files, makes the embedded SQL development process
complex. The UltraLite components provide a much simpler
development process.

♦ SQL must be specified at design time Only SQL statements defined
at compile time can be included in your application. The UltraLite
components allow dynamic use of SQL statements.

The choice of development model is guided by the needs of your particular
project, and by the programming skills and experience available.

4

CHAPTER 2

Tutorial: Build an Application Using
Embedded SQL

About this chapter This chapter provides a tutorial to guide you through the process of
developing an embedded SQL UltraLite application using eMbedded Visual
C++.

☞ For an overview of the development process and background
information on the UltraLite database, see“Developing embedded SQL
applications” on page 3.

☞ For information on developing embedded SQL UltraLite Applications,
see“Data Access Using Embedded SQL” on page 27.

☞ For a description of embedded SQL, see“Embedded SQL Library
Functions” on page 101.

Contents Topic: page

Introduction 6

Lesson 1: Configure eMbedded Visual C++ 7

Lesson 2: Write an embedded SQL source file 8

Lesson 3: Build the sample embedded SQL UltraLite application 14

Lesson 4: Add synchronization to your application 15

5

Introduction
In this tutorial, you create an embedded SQL source file and use it to build a
simple UltraLite application. This UltraLite application can be executed on a
remote device.

This tutorial assumes that you have UltraLite and Microsoft eMbedded
Visual Tools installed on your computer. If you use a different C/C++
development tool, you will have to translate the eMbedded Visual C++
instructions into their equivalent for your development tool.

❖ To prepare for the tutorial

1. Create a directory to hold the files you will create.

The remainder of the tutorial assumes that this directory isc:\tutorial\.

6

Chapter 2. Tutorial: Build an Application Using Embedded SQL

Lesson 1: Configure eMbedded Visual C++
The following procedure configures eMbedded Visual C++ for UltraLite
development. You may need to add additional library and include paths.

❖ To configure eMbedded Visual C++ for UltraLite development

1. Start Microsoft eMbedded Visual C++ 3.0.

From the Start menu, choose Programs➤ Microsoft Visual Tools➤

eMbedded Visual C++ 3.0

2. Configure eMbedded Visual C++ to search the appropriate directories for
embedded SQL header files and UltraLite library files.

(a) Select Tools➤ Options.

The Options dialog is displayed.

(b) Click the Directories tab

(c) For each target platform and CPU combination,

♦ Choose Include Files under the Show Directories For dropdown
menu. Include the following directory, so that the embedded SQL
header files are accessible.

C: \Program Files \Sybase \SQL Anywhere 9 \h
If you have installed SQL Anywhere to a directory other than the
default, substitute the\h subdirectory of your installation.

♦ Choose Library Files under the Show Directories For dropdown
menu. Include the UltraLite\lib directory, located in a
platform-specific directory. For example, for the Pocket PC
emulator, choose the following:

C: \Program Files \Sybase \SQL Anywhere 9 \UltraLite \ce\
emulator30 \lib

(d) Click OK.

7

Lesson 2: Write an embedded SQL source file
The following procedure creates a sample program that establishes a
connection with the UltraLite CustDB sample database and executes a query.

❖ To build the sample embedded SQL UltraLite application

1. Start Microsoft eMbedded Visual C++.

Choose Start➤ Programs➤ Microsoft eMbedded Visual Tools➤
eMbedded Visual C++.

2. Create a new workspace namedUltraLite :

♦ Select File➤ New.

♦ Click the Workspaces tab.

♦ Choose Blank Workspace. Specify a workspace nameUltraLite and
specifyC:\tutorial as the location to save this workspace. Click OK.

TheUltraLite workspace is added to the Workspace window.

3. Create a new project namedesqland add it to theUltraLite workspace.

♦ Select File➤ New.

♦ Click the Projects tab.

♦ Choose WCE Pocket PC 2002 Application. Specify a project name
esqland select Add To Current Workspace. Select the applicable
CPUs. Click OK.

♦ Choose Create An Empty Project and click Finish.

The project is saved in thec:\tutorial\esqlfolder.

4. Create thesample.sqcsource file.

♦ Choose File➤ New.

♦ Click the Files tab.

♦ Select C++ Source File.

♦ Select Add to Project and select esql from the dropdown list.

♦ Name the filesample.sqc. Click OK.

♦ Copy the following source code into the file:

8

Chapter 2. Tutorial: Build an Application Using Embedded SQL

#include <stdio.h>
#include <wingdi.h>
#include <winuser.h>
#include <string.h>
#include "uliface.h"
EXEC SQL INCLUDE SQLCA;
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE

hPrevInstance, LPSTR lpCmdLine, int nShowCmd)
{

/* Declare fields */
EXEC SQL BEGIN DECLARE SECTION;

long pid=1;
long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;
/* Before working with data*/

db_init(&sqlca);
/* Connect to database */
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
/* Fill table with data first */
EXEC SQL INSERT INTO ULProduct(

prod_id, price, prod_name)
VALUES (1, 400, ’4x8 Drywall x100’);

EXEC SQL INSERT INTO ULProduct (
prod_id, price, prod_name)

VALUES (2, 3000, ’8’’2x4 Studs x1000’);
EXEC SQL COMMIT;

/* Fetch row from database */
EXEC SQL SELECT price, prod_name

INTO :cost, :pname
FROM ULProduct
WHERE prod_id= :pid;

/* Error handling. If the row does not exist,
or if an error occurs, -1 is returned */

if((SQLCODE==SQLE_NOTFOUND)||(SQLCODE<0)) {
return(-1);

}

9

/* Print query results */
wchar_t query[100];
wchar_t result[10];
wchar_t wpname[31];
mbstowcs(wpname, pname, 31);
wcscpy(query, L"Product id: ");
_ltow(pid, result, 10);
wcscat(query, result);
wcscat(query, L" Price: ");
_ltow(cost, result, 10);
wcscat(query, result);
wcscat(query, L" Product name: ");
wcscat(query, wpname);
wcscpy(result, L"Result");
MessageBox(NULL, query, result, MB_OK);
/* Preparing to exit:
rollback any outstanding changes and disconnect */
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);

}

♦ Save the file.

5. Configure thesample.sqcsource file settings to invoke the SQL
preprocessor to preprocess the source file:

♦ Right-clicksample.sqcin the Workspace window and select Settings.

The Project Settings dialog appears.

♦ From the Settings For drop down menu, choose All Configurations.

♦ In the Custom Build tab, enter the following statement in the
Commands box. Ensure that the statement is entered all on one line.

The following statement runs the SQL preprocessorsqlppon the
sample.sqcfile, and writes the processed output in a file named
sample.cpp. The SQL preprocessor translates SQL statements in the
source file into C/C++.

"%asany9%\win32 \sqlpp.exe" -q -o WINDOWS -c
"dsn=Ultralite 9.0 Sample" $(InputPath)
sample.cpp

☞ For more information about the SQL preprocessor, see “The SQL
preprocessor”[ASA Programming Guide,page 203].

♦ Specifysample.cppin the Outputs box.

♦ Click OK to submit the changes.

6. Start the Adaptive Server Anywhere personal database server.

By starting the database server, both the SQL preprocessor and the
UltraLite analyzer will have access to your reference database. The

10

Chapter 2. Tutorial: Build an Application Using Embedded SQL

sample application uses the CustDB sample databasecustdb.dbas a
reference database and as consolidated database.

Start the database server at the command line from the
Samples\UltraLite\CusDBdirectory containingcustdb.dbas follows:

dbeng9 custdb.db

Alternatively, you can start the database server by selecting Start➤

Programs➤ SQL Anywhere 9➤ UltraLite ➤ Personal Server Sample for
UltraLite.

7. Preprocess thesample.sqcfile.

Because the sample application consists of only one source file, the
preprocessor automatically runs the UltraLite analyzer as well and
appends extra C/C++ code to the generated source file.

♦ Selectsample.sqcin the Workspace window. Choose Build➤

Compile sample.sqc. Asample.cppfile will be created and saved in
thetutorial\esqlfolder.

8. Add sample.cppto the project:

♦ Right-click the Source Files folder in the Workspace window and
select Add Files to Folder.

♦ Browse toc:\tutorial\esql\sample.cppand click OK.

Thesample.cppfile appears inside the Source Files folder.

Explanation of the sample program

Although the sample program is simple, it contains elements that must be
present in every embedded SQL source file used for database access.

The following list describes the key elements in the sample program. Use
these steps as a guide when creating your own embedded SQL UltraLite
application.

1. Include the appropriate header files.

The sample program uses standard I/O, therefore thestdio.hheader file
has been included.

2. Define the SQL communications area, sqlca.

Use the following command:

EXEC SQL INCLUDE SQLCA;

This definition must be your first embedded SQL statement, so place it at
the end of your include list.

11

Prefix SQL statements
All SQL statements must be prefixed with the keywords EXEC SQL
and must end with a semicolon.

3. Define host variables by creating a declaration section.

Host variables are used to send values to the database server or receive
values from the database server. Create a declaration section as follows:

EXEC SQL BEGIN DECLARE SECTION;
long pid=1;
long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;

☞ For information about host variables, see“Using host variables” on
page 30.

4. Call the embedded SQL library functiondb_init to initialize the UltraLite
runtime library.

Call this function as follows:

db_init(&sqlca);

5. Connect to the database using the CONNECT statement.

To connect to the UltraLite sample database, you must supply the login
user ID and password. Connect as userDBA with passwordSQL as
follows:

EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";

6. Insert data into database tables.

When an application is first started, its database tables are empty. When
you synchronize the remote database with the consolidated database, the
tables are filled with values so that you may execute select, update or
delete commands.

Rather than using synchronization, this sample code directly inserts data
into the tables. Directly inserting data is a useful technique during the
early stages of UltraLite development.

If you use synchronization and your application fails to execute a query, it
can be due to a problem in the synchronization process or due to a
mistake in your program. To locate the source of failure may be difficult.
If you directly fill tables with data in your source code rather than
perform synchronization, then, if your application fails, you will know
automatically that the failure is due to a mistake in your program.

After you have tested that there are no mistakes in your program, remove
the insert statements and replace them with a call to theULSynchronize

12

Chapter 2. Tutorial: Build an Application Using Embedded SQL

function to synchronize the remote database with the consolidated
database.

☞ For information on adding synchronization to an UltraLite
application, see“Adding synchronization to your application” on page 15.

7. Execute your SQL query.

The sample program executes a select query that returns one row of
results. The results are stored in the previously defined host variables
cost andpname.

8. Perform error handling.

The sample program executes a select request that returns an error code,
sqlcode . This code is negative if an error occurs; SQL_NOTFOUND is
returned if there are no query results. The sample program handles these
errors by returning –1.

9. Disconnect from the database.

You should rollback or commit any outstanding changes before
disconnecting.

To disconnect, use the DISCONNECT statement as follows:

EXEC SQL DISCONNECT;

10. End your SQL work with a call to the library functiondb_fini:

db_fini(&sqlca);

13

Lesson 3: Build the sample embedded SQL
UltraLite application

The following procedure uses the source file generated in the previous
lesson,sample.cpp, to create the sample embedded SQL UltraLite
application.

❖ To build the sample embedded SQL UltraLite application

1. Ensure that the Adaptive Server Anywhere personal database server is
still running.

2. Configure the project settings:

♦ Right-clickesqland select Settings.

The Project Settings dialog appears.

♦ Select All Configurations under the Settings For drop down menu.

♦ Click the Link tab and add the following runtime library to the
Object/Library Modules box.

ulimp.lib

♦ Click the C/C++ tab. Select Preprocessor from the Category
drop-down menu. Ensure that the following are included in the
Preprocessor definitions:

__NT__

♦ Click OK to close the dialog.

3. Build the executable:

♦ Select Build➤ Build esql.exe.

Theesqlexecutable is created. Depending on your settings, the
executable may be created in a Debug directory within your tutorial
directory.

4. Run the application:

♦ Select Build➤ Execute esql.exe.

A screen appears and displays the first row of the product table.

14

Chapter 2. Tutorial: Build an Application Using Embedded SQL

Lesson 4: Add synchronization to your application
Once you have tested that your program is functioning properly, you can
replace the code that manually insert data into the ULProduct table with
instructions to synchronize the remote database with the consolidated
database. Synchronization will fill the tables with data and you can
subsequently execute a select query.

Synchronization via TCP/IP

You can synchronize the remote database with the consolidated database
using a TCP/IP socket connection. CallULSynchronize with the
ULSocketStream() stream.

In order to synchronize with the CustDB consolidated database, the
employee ID must be supplied. This ID identifies an instance of an
application to the MobiLink server. You may choose a value of 50, 51, 52, or
53. The MobiLink server uses this value to determine the download content,
to record the synchronization state, and to recover from interruptions during
synchronization.

☞ For more information about the ULSynchronize function, see
“ULSynchronize function” on page 136.

Running the sample application with synchronization

After you have made changes tosample.sqc, you must preprocess
sample.sqcand rebuildesql.exe.

❖ To synchronize your application

1. Ensure that the Adaptive Server Anywhere database server is still
running.

2. Delete the INSERT commands and add the following code. Replace
your-pcwith the name of your computer.

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb 9.0");
synch_info.stream = ULSocketStream();
synch_info.send_column_names = ul_true;
synch_info.stream_parms = UL_TEXT("host= your-pc ;port=2439");
ULSynchronize(&sqlca, &synch_info);

3. Preprocesssample.sqc.

15

Choose Build➤ Compilesample.sqcto recompile the altered file. When
prompted, choose to reloadsample.cpp.

4. Build the executable.

Select Build➤ Build esql.exe to build the sample executable.

5. Start the MobiLink synchronization server.

At a command prompt, execute the following command on a single line:

dbmlsrv9 -c "DSN=UltraLite 9.0 Sample" -o ulsync.mls -vcr -x
tcpip -za

6. Run the application:

♦ Select Build➤ Execute esql.exe to run the sample application.

The remote database will be synchronized with the consolidated
database, filling the tables in the remote database with data. The select
query in the sample application will be processed, and a row of query
results will appear on the screen.

16

CHAPTER 3

Building Embedded SQL Applications

About this chapter This chapter describes how to build embedded SQL UltraLite applications
and how to configure development tools for embedded SQL development.

There are two build processes, depending on whether you have a single
embedded SQL file or multiple embedded SQL files.

Contents Topic: page

Build procedure for UltraLite embedded SQL applications 18

Single-file build procedure 21

Configuring development tools for embedded SQL development 24

17

Build procedure for UltraLite embedded SQL
applications

This section describes a general build procedure for UltraLite embedded
SQL applications. You can use a simpler modification if your application
uses only a single.sqcfile. For more information, see“Single-file build
procedure” on page 21.

☞ This section assumes a familiarity with the overall embedded SQL
development model. For more information, see “Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 195].

Sample code You can find a makefile that uses this process in the
Samples\UltraLite\ESQLSecuritydirectory. You require the
separately-licensable transport-layer security option to build that sample.

☞ For information on obtaining the transport-layer security option, see the
card in your SQL Anywhere package or see
http://www.sybase.com/detail?id=1015780.

Procedure The following diagram depicts the procedure for building an UltraLite
embedded SQL application. In addition to your source files, you need a
reference database that contains the tables and indexes you wish to use in
your application.

Adaptive Server

Anywhere

reference database

❖ To build an UltraLite embedded SQL application

1. Start the Adaptive Server Anywhere personal database server, specifying
your reference database.

2. Run the SQL preprocessor oneachembedded SQL source file.

The SQL preprocessor is the sqlpp command-line utility. It carries out
two functions in an UltraLite development project:

♦ It preprocesses the embedded SQL files, producing C files to be
compiled into your application.

♦ It adds the SQL statements to the reference database, for use by the
UltraLite generator.

18

Chapter 3. Building Embedded SQL Applications

Caution
sqlpp overwrites the output file without regard to its contents. Ensure
that the output file name does not match the name of any of your source
files. By default, sqlpp constructs the output file name by changing the
suffix of your source file to .c. When in doubt, specify the output file
name explicitly, following the name of the source file.

Use the sqlpp-c command-line option to connect to the reference
database and the-p command-line option to specify a project name. Use
the same project name for each embedded SQL file in your project.

☞ For detailed information about the SQL preprocessor, see “The SQL
preprocessor”[UltraLite Database User’s Guide,page 92].

☞ For information about projects, see “Creating an UltraLite project”
[UltraLite Database User’s Guide,page 204].

3. Run the UltraLite generator.

The generator analyzes information collected while pre-processing your
embedded SQL files. It prepares extra code and writes out a new C
source file. This step also relies on your reference database.

Enter the following command at a command-prompt:

ulgen -c "connection-string" options

whereoptionsdepend on the specifics of your project.

The UltraLite generator command line customizes its behavior. The
following command-line switches are particularly important:

♦ -c You must supply a connection string, to connect to the reference
database.
☞ For information on Adaptive Server Anywhere connection strings,
see “Connection parameters”[ASA Database Administration Guide,
page 70].

♦ -f Specify the output file name.

♦ -j Specify the UltraLite project name.
☞ For more information on UltraLite generator options, see “The
UltraLite generator”[UltraLite Database User’s Guide,page 96].

4. CompileeachC or C++ source file for the target platform of your choice.
Include

♦ each C files generated by the SQL preprocessor,

♦ the C file made by the UltraLite generator,

♦ any additional C or C++ source files that comprise your application.

5. Link all these object files, together with the UltraLite runtime library.

19

Example

♦ Suppose that your project containstwo embedded SQL source files,
calledstore.sqcanddisplay.sqc. You could give your project the name
salesdband process these two commands using the following commands.
(Each command should be entered on a single line.)

sqlpp -c "uid=dba;pwd=sql" -p salesdb store.sqc
sqlpp -c "uid=dba;pwd=sql" -p salesdb display.sqc

These two commands generate the filesstore.canddisplay.c,
respectively. In addition, they store information in the reference database
for the UltraLite analyzer.

20

Chapter 3. Building Embedded SQL Applications

Single-file build procedure
☞ This section assumes a familiarity with the overall embedded SQL
development model. For more information, see “Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 195].

You can use a simpler single-file build procedure if the following
requirements are also met:

♦ You are not using transport-layer security.

♦ You do not wish to use publications for synchronization.

♦ You do not need to specify an UltraLite project name.

♦ You have more than one embedded SQL source file.

If these requirements are not all met, you must use the general build process.
For instructions, see“Build procedure for UltraLite embedded SQL
applications” on page 18.

The following diagram depicts the single-file build procedure for UltraLite
database applications. In addition to your source files, you need a reference
database that contains the tables and indexes you wish to use in your
application.

21

Adaptive Server

Anywhere

reference database

1

2

3

4

C or C++

Source files

Embedded

SQL source

file

one

generated

C/C++ file

preprocess

each file

with sqlpp

and UltraLite

analyzer

compile

each

C or C++

source file

link all object

files and

database

components

Custom

database

application

UltraLite

library or

imports library

❖ To build an UltraLite application (one embedded SQL file only)

1. Start the Adaptive Server Anywhere personal database server, specifying
your reference database.

2. Preprocess the embedded SQL source file using the SQL preprocessor.

The SQL preprocessor is the sqlpp command-line utility. The SQL
preprocessor runs the UltraLite generator automatically and appends
additional code to the generated C/C++ source file. This step relies on
your reference database and on the database server.

Use the sqlpp-c command-line option to connect to the reference
database. In the single-file build procedure, do not specify a project on
the SQL preprocessor command line.

☞ For a list of the parameters tosqlpp, see “The SQL preprocessor”
[ASA Programming Guide,page 203].

22

Chapter 3. Building Embedded SQL Applications

3. Compile the C or C++ source file for the target platform of your choice.
Include

♦ the C file generated by the SQL preprocessor,

♦ any additional C/C++ source files that comprise your application.

4. Link all these object files, together with the UltraLite runtime library.

Example ♦ Your application contains onlyoneembedded SQL source file, called
store.sqc. You can process this file using the following command. Do not
specify a project name. This command causes the SQL preprocessor to
write the filestore.c.

sqlpp -c "uid=dba;pwd=sql" store.sqc

In addition, the preprocessor automatically runs the UltraLite generator,
which generates more C/C++ code to implement your application
database. This code is automatically appended to the filestore.c.

23

Configuring development tools for embedded SQL
development

Many development tools use a dependency model, sometimes expressed as a
makefile, in which the timestamp on each source file is compared with that
on the target file (object file, in most cases) to decide whether the target file
needs to be regenerated.

With UltraLite development, a change to any SQL statement in a
development project means that the generated code needs to be regenerated.
Changes are not reflected in the timestamp on any individual source file
because the SQL statements are stored in the reference database,.

This section describes how to incorporate UltraLite application
development, specifically the SQL preprocessor and the UltraLite generator,
into a dependency-based build environment. The specific instructions
provided are for Visual C++, and you may need to modify them for your
own development tool.

☞ The UltraLite plug-in for Metrowerks CodeWarrior automatically
provides Palm Computing platform developers with the techniques
described here. For information on this plug-in, see“Developing UltraLite
applications with Metrowerks CodeWarrior” on page 73.

☞ or a tutorial describing details for a very simple project, see“Tutorial:
Build an Application Using Embedded SQL” on page 5.

SQL preprocessing The first set of instructions describes how to add instructions to run the SQL
preprocessor to your development tool.

❖ To add embedded SQL preprocessing into a dependency-based
development tool

1. Add the.sqcfiles to your development project.

Thedevelopment projectis defined in your development tool. It is
separate from the UltraLite project name used by the UltraLite generator.

2. Add a custom build rule for each.sqcfile.

♦ The custom build rule should run the SQL preprocessor. In
Visual C++, the build rule should have the following command
(entered on a single line):

"%asany9%\win32 \sqlpp.exe" -q -o WINNT
-c connection-string -p project-name
$(InputPath) $(InputName).c

whereasany9is an environment variable that points to your

24

Chapter 3. Building Embedded SQL Applications

SQL Anywhere installation directory,connection-stringprovides the
connection to the reference database, andproject-nameis the name of
your UltraLite project.

If you are generating an executable for a non-Windows platform,
choose the appropriate setting instead of WINNT.

☞ For a full description of the SQL preprocessor command line, see
“The SQL preprocessor”[ASA Programming Guide,page 203].

♦ Set the output for the command to$(InputName).c.

3. Compile the.sqcfiles, and add the generated.c files to your development
project.

You need to add the generated files to your project even though they are
not source files, so that you can set up dependencies and build options.

4. For each generated.c file, set the preprocessor definitions.

♦ Under General or Preprocessor, add UL_USE_DLL to the
Preprocessor definitions.

♦ Under Preprocessor, add$(asany9)\hand any other include folders you
require to your include path, as a comma-separated list.

UltraLite code generation The following set of instructions describes how to add UltraLite code
generation to your development tool.

❖ To add UltraLite code generation into a dependency-based devel-
opment environment

1. Add a dummy file to your development project.

Add a file named, for example,uldatabase.ulg, in the same directory as
your generated files.

2. Set the build rules for this file to be the UltraLite generator command line.

In Visual C++, use a command of the following form (which should be
all on one line):

"%asany9%\win32 \ulgen.exe" -q -c "connection-string"
$(InputName) $(InputName).c

whereasany9is an environment variable that points to your
SQL Anywhere installation directory,connection-stringis a connection
to your reference database, andInputNameis the UltraLite project name,
and should match the root of the text file name. The output is
$(InputName).c.

3. Set the dummy file to depend on the output files from the preprocessor.

25

In Visual C++, click Dependencies on the custom build page, and enter
the names of the generated.c files produced by the SQL preprocessor.

This instructs Visual C++ to run the UltraLite generator after all the
necessary embedded SQL files have been preprocessed.

4. Compile your dummy file to generate the.c file that implements the
UltraLite database.

5. Add the generated UltraLite database file to your project and change its
C/C++ settings.

6. Add the UltraLite imports library to your object/libraries modules list.

In Visual C++, go to the project settings, choose the Link tab, and add the
following to the Object/libraries module list for Windows development.

$(asany9) \ultralite \win32 \386\lib \ulimp.lib

For other targets, choose the appropriate import library.

7. When you alter any SQL statements in the reference database, touch the
dummy file, to update its timestamp and force the UltraLite generator to
be run.

26

CHAPTER 4

Data Access Using Embedded SQL

About this chapter This chapter describes how to write data access code for embedded SQL
UltraLite applications.

Before you begin ☞ This chapter assumes an elementary familiarity with the UltraLite
development process. For an overview, see “Using UltraLite Static
Interfaces”[UltraLite Database User’s Guide,page 195].

☞ For reference information, see“Embedded SQL Library Functions” on
page 101.

☞ For detailed information about the SQL preprocessor, see “The SQL
preprocessor”[ASA Programming Guide,page 203].

Contents Topic: page

Introduction 28

Using host variables 30

Using indicator variables 41

Fetching data 43

The SQL Communication Area 48

27

Introduction
The following is a very simple embedded SQL program. It updates the
surname of employee 195 and commits the change.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{

db_init(&sqlca);
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL UPDATE employee

SET emp_lname = ’Plankton’
WHERE emp_id = 195;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);
error:

printf("update unsuccessful: sqlcode = %ld \n",
sqlca.sqlcode);

return(-1);
}

Although too simple to be useful, this example demonstrates the following
aspects common to all embedded SQL applications:

♦ Each SQL statement is prefixed with the keywords EXEC SQL.

♦ Each SQL statement ends with a semicolon.

♦ Some embedded SQL statements are not found in standard SQL.
The INCLUDE SQLCA statement is one example.

♦ Embedded SQL provides library functions to perform some specific
tasks. The functionsdb_init anddb_fini are examples.

Before working with data The above example demonstrates the necessary initialization statements.
You must include these before working with the data in any database.

1. You must define theSQL communications area, sqlca, using the
following command.

EXEC SQL INCLUDE SQLCA;

This definition must be your first embedded SQL statement, so a natural
place for it is the end of your include list.

If you have multiple.sqcfiles in your application, each file must have this
line.

28

Chapter 4. Data Access Using Embedded SQL

2. Your first executable database action must be a call to an embedded SQL
library function nameddb_init . This function initializes the UltraLite
runtime library. Only embedded SQL definition statements can be
executed before this call.

☞ For more information, see“db_init function” on page 104.

3. You must use the CONNECT statement to connect to your database.

Preparing to exit This example also demonstrates the sequence of calls you must make when
preparing to exit.

1. Commit or rollback any outstanding changes.

2. Disconnect from the database.

3. End your SQL work with a call to a library function nameddb_fini.

If you leave changes to the database uncommitted when you exit, any
uncommitted operations are automatically rolled back.

Error handling There is virtually no interaction between the SQL and C code in this
example. The C code only controls flow. The WHENEVER statement is
used for error checking. The error action, GOTO in this example, is executed
after any SQL statement causes an error.

Structure of embedded SQL programs

All embedded SQL statements start with the words EXEC SQL and end with
a semicolon (;). Normal C-language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following
statement before any other embedded SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

The first embedded SQL executable statement executed in any program must
be a CONNECT statement. If you are not including UltraLite user
authentication in your application, this CONNECT statement is ignored.

☞ For information about UltraLite user authentication in embedded SQL
applications, see“Managing user IDs and passwords” on page 53, and “User
authentication”[UltraLite Database User’s Guide,page 38].

Some embedded SQL commands do not generate any executable C code, or
do not involve communication with the database. Only these commands are
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

29

Using host variables
Host variables are C variables that are identified to the SQL preprocessor.
You use host variables to send values to the database server or receive values
from the database server.

Declaring host variables

You can define host variables by placing them within adeclaration section.
Host variables are declared by surrounding the normal C variable
declarations with BEGIN DECLARE SECTION and
END DECLARE SECTION statements.

Whenever you use a host variable in a SQL statement, you must prefix the
variable name with a colon (:) so that the SQL preprocessor can distinguish
it from other identifiers allowed in the statement.

You can use host variables in place of value constants in any SQL statement.
When the database server executes the command, the value of the host
variable is read from or written to each host variable. Host variables cannot
be used in place of table or column names.

The SQL preprocessor does not scan C language code except inside a
declaration section. Initializers for variables are allowed inside a declaration
section, whiletypedef types and structures are not permitted.

Example The following sample code illustrates the use of host variables with an
INSERT command. The variables are filled in by the program and then
inserted into the database:

/* Declare fields for personal data. */
EXEC SQL BEGIN DECLARE SECTION;

long employee_number = 0;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];

EXEC SQL END DECLARE SECTION;
/* Fill variables with appropriate values. */
/* Insert a row in the database. */
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

Data types in embedded SQL

To transfer information between a program and the database server, every
piece of data must have a data type. You can create a host variable with any
one of the supported types.

30

Chapter 4. Data Access Using Embedded SQL

Only a limited number of C data types are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in thesqlca.hheader file can be used to declare a host
variable of type VARCHAR, FIXCHAR, BINARY, DECIMAL, or
SQLDATETIME. These macros are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(10) v_varchar;
DECL_FIXCHAR(10) v_fixchar;
DECL_BINARY(4000) v_binary;
DECL_DECIMAL(10, 2) v_packed_decimal;
DECL_DATETIME v_datetime;

EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following data types are supported by the embedded SQL programming
interface:

♦ 16-bit signed integer.

short int i;
unsigned short int i;

♦ 32-bit signed integer.

long int l;
unsigned long int l;

♦ 4-byte floating point number.

float f;

♦ 8-byte floating point number.

double d;

♦ Packed decimal number.

DECL_DECIMAL(p,s)
typedef struct TYPE_DECIMAL {

char array[1];
} TYPE_DECIMAL;

♦ NULL-terminated blank-padded character string.

char a[n]; /* n > 1 */
char *a; /* n = 2049 */

Because the C-language array must also hold the NULL terminator, a
char a[n] data type maps to aCHAR(n – 1) SQL data type, which can

31

holdn – 1characters.

Pointers to char, WCHAR, TCHAR
The SQL preprocessor assumes that apointer to char points to a
character array of size 2049 bytes and that this array can safely hold
2048 characters, plus the NULL terminator. In other words, a char*
data type maps to a CHAR(2048) SQL type. If that is not the case, your
application may corrupt memory. If you are using a 16-bit compiler,
requiring 2049 bytes can make the program stack overflow. Instead,
use a declared array, even as a parameter to a function, to let the
SQL preprocessor know the size of the array. WCHAR and TCHAR
behave similarly to char.

♦ NULL terminated UNICODE or wide character string.

Each character occupies two bytes of space and so may contain
UNICODE characters.

WCHAR a[n]; /* n > 1 */

♦ NULL terminated system-dependent character string.

A TCHAR is equivalent to a WCHAR for systems that use UNICODE
(for example, Windows CE) for their character set; otherwise, a TCHAR
is equivalent to a char. The TCHAR data type is designed to support
character strings in either kind of system automatically.

TCHAR a[n]; /* n > 1 */

♦ Fixed-length blank padded character string.

char a; /* n = 1 */
DECL_FIXCHAR(n) a; /* n >= 1 */

♦ Variable-length character string with a two-byte length field.

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field (not padded).

DECL_VARCHAR(n) a; /* n >= 1 */
typedef struct VARCHAR {

unsigned short int len;
TCHAR array[1];

} VARCHAR;

♦ Variable-length binary data with a two-byte length field.

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field.

32

Chapter 4. Data Access Using Embedded SQL

DECL_BINARY(n) a; /* n >= 1 */
typedef struct BINARY {

unsigned short int len;
unsigned char array[1];

} BINARY;

♦ SQLDATETIME structure with fields for each part of a timestamp.

DECL_DATETIME a;
typedef struct SQLDATETIME {

unsigned short year; /* e.g., 1999 */
unsigned char month; /* 0-11 */
unsigned char day_of_week; /* 0-6, 0 = Sunday */
unsigned short day_of_year; /* 0-365 */
unsigned char day; /* 1-31 */
unsigned char hour; /* 0-23 */
unsigned char minute; /* 0-59 */
unsigned char second; /* 0-59 */
unsigned long microsecond; /* 0-999999 */

} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a
programmer to manipulate this data. Note that DATE, TIME and
TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp
into the database via, theday_of_year andday_of_week members are
ignored.

☞ For more information, see the DATE_FORMAT, TIME_FORMAT,
TIMESTAMP_FORMAT, and DATE_ORDER database options in
“Database Options”[ASA Database Administration Guide,page 555]. While
these options cannot be set during execution of an UltraLite program,
their values are identical to the settings in the reference database used to
generate the program.

♦ DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

#define DECL_LONGVARCHAR(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size+1]; \

}

The DECL_LONGVARCHAR struct may be used with more than 32K of

33

data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once, or
in pieces by appending to a database variable using the SET statement.
The data is not null terminated.

typedef struct BINARY {
unsigned short int len;
char array[1];

} BINARY;

♦ DT_LONGBINARY Long binary data. The macro defines a structure, as
follows:

#define DECL_LONGBINARY(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size]; \

}

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once, or
in pieces by appending to a database variable using the SET statement.

The structures are defined in thesqlca.hfile. The VARCHAR, BINARY, and
TYPE_DECIMAL types contain a one-character array and are thus not
useful for declaring host variables, but they are useful for allocating
variables dynamically or typecasting other variables.

DATE and TIME
database types

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are fetched
and updated either using the SQLDATETIME structure or using character
strings.

There are no embedded SQL interface data types for LONG VARCHAR and
LONG BINARY database types.

Host variable usage

Host variables can be used in the following circumstances:

♦ In a SELECT, INSERT, UPDATE, or DELETE statement in any place
where a number or string constant is allowed.

♦ In the INTO clause of a SELECT or FETCH statement.

♦ In CONNECT, DISCONNECT, and SET CONNECT statements, a host
variable can be used in place of a user ID, password, connection name, or
database environment name.

34

Chapter 4. Data Access Using Embedded SQL

Host variables canneverbe used in place of a table name or a column name.

The scope of host variables

A host-variable declaration section can appear anywhere that C variables can
normally be declared, including the parameter declaration section of a C
function. The C variables have their normal scope (available within the
block in which they are defined). However, since the SQL preprocessor does
not scan C code, it does not respect C blocks.

The preprocessor
assumes all host
variables are global

As far as the SQL preprocessor is concerned, host variables are globally
known in the source module following their declaration. Two host variables
cannot have the same name. The only exception to this rule is that two host
variables can have the same name if they have identical types (including any
necessary lengths).

The best practice is to give each host variable a unique name.

Examples ♦ Because the SQL preprocessor can not parse C code, it assumes that all
host variables, no matter where they are declared, are known globally
following their declaration.

// Example demonstrating poor coding
EXEC SQL BEGIN DECLARE SECTION;

long emp_id;
EXEC SQL END DECLARE SECTION;
long getManagerID(void)
{

EXEC SQL BEGIN DECLARE SECTION;
long manager_id = 0;

EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT manager_id

INTO :manager_id
FROM employee
WHERE emp_number = :emp_id;

return(manager_number);
}
void setManagerID(long manager_id)
{

EXEC SQL UPDATE employee
SET manager_number = :manager_id
WHERE emp_number = :emp_id;

}

Although it works, the above code is confusing because the
SQL preprocessor relies on the declaration insidegetManagerIDwhen
processing the statement withinsetManagerID. You should rewrite this code
as follows.

35

// Rewritten example
#if 0

// Declarations for the SQL preprocessor
EXEC SQL BEGIN DECLARE SECTION;

long emp_id;
long manager_id;

EXEC SQL END DECLARE SECTION;
#endif
long getManagerID(long emp_id)
{

long manager_id = 0;
EXEC SQL SELECT manager_id

INTO :manager_id
FROM employee
WHERE emp_number = :emp_id;

return(manager_number);
}
void setManagerID(long emp_id, long manager_id)
{

EXEC SQL UPDATE employee
SET manager_number = :manager_id
WHERE emp_number = :emp_id;

}

The SQL preprocessor sees the declaration of the host variables contained
within the #if directive because it ignores these directives. On the other
hand, it ignores the declarations within the procedures because they are not
inside a DECLARE SECTION. Conversely, the C compiler ignores the
declarations within the #if directive and uses those within the procedures.

These declarations work only because variables having the same name are
declared to have exactly the same type.

Using expressions as host variables

Because host variables must be simple names, the SQL preprocessor does
not recognize pointer or reference expressions. For example, the following
statementdoes not workbecause the SQL preprocessor does not understand
the dot operator. The same syntax has a different meaning in SQL.

// Incorrect statement:
EXEC SQL SELECT LAST sales_id INTO :mystruct.mymember;

Although the above syntax is not allowed, you can still use an expression
with the following technique:

♦ Wrap the SQL declaration section in an #if 0 preprocessor directive. The
SQL preprocessor will read the declarations and use them for the rest of
the module because it ignores preprocessor directives.

36

Chapter 4. Data Access Using Embedded SQL

♦ Define a macro with the same name as the host variable. Since the SQL
declaration section is not seen by the C compiler because of the #if
directive, no conflict will arise. Ensure that the macro evaluates to the
same type host variable.

The following code demonstrates this technique to hide thehost_value
expression from the SQL preprocessor.

EXEC SQL INCLUDE SQLCA;
#include <sqlerr.h>
#include <stdio.h>
typedef struct my_struct {

long host_field;
} my_struct;
#if 0

// Because it ignores #if preprocessing directives,
// SQLPP reads the following declaration.
EXEC SQL BEGIN DECLARE SECTION;

long host_value;
EXEC SQL END DECLARE SECTION;

#endif
// Make C/C++ recognize the ’host_value’ identifier
// as a macro that expands to a struct field.
#define host_value my_s.host_field

Since the SQLPP processor ignores directives for conditional compilation,
host_valueis treated as along host variable and will emit that name when it
is subsequently used as a host variable. The C/C++ compiler processes the
emitted file and will substitutemy_s.host_fieldfor all such uses of that
name.

With the above declarations in place, you can proceed to accesshost_fieldas
follows.

37

void main(void)
{

my_struct my_s;
db_init(&sqlca);
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL DECLARE my_table_cursor CURSOR FOR

SELECT int_col FROM my_table order by int_col;
EXEC SQL OPEN my_table_cursor;
for(; ;) {

// :host_value references my_s.host_field
EXEC SQL FETCH NEXT AllRows INTO :host_value;
if(SQLCODE == SQLE_NOTFOUND) {

break;
}
printf("%ld \n", my_s.host_field);

}
EXEC SQL CLOSE my_table_cursor;
EXEC SQL DISCONNECT;
db_fini(&sqlca);

}

You can use the same technique to use other lvalues as host variables.

♦ pointer indirections

*ptr
p_struct->ptr
(*pp_struct)->ptr

♦ array references

my_array[i]

♦ arbitrarily complex lvalues

Using host variables in C++

A similar situation arises when using host variables within C++ classes. It is
frequently convenient to declare your class in a separate header file. This
header file might contain, for example, the following declaration of
my_class.

typedef short a_bool;
#define TRUE ((a_bool)(1==1))
#define FALSE ((a_bool)(0==1))
public class {

long host_member;
my_class(); // Constructor
~my_class(); // Destructor
a_bool FetchNextRow(void);

// Fetch the next row into host_member
} my_class;

38

Chapter 4. Data Access Using Embedded SQL

In this example, each method is implemented in an embedded SQL source
file. Only simple variables can be used as host variables. The technique
introduced in the preceding section can be used to access a data member of a
class.

EXEC SQL INCLUDE SQLCA;
#include "my_class.hpp"
#if 0

// Because it ignores #if preprocessing directives,
// SQLPP reads the following declaration.
EXEC SQL BEGIN DECLARE SECTION;

long this_host_member;
EXEC SQL END DECLARE SECTION;

#endif
// Macro used by the C++ compiler only.
#define this_host_member this->host_member
my_class::my_class()
{

EXEC SQL DECLARE my_table_cursor CURSOR FOR
SELECT int_col FROM my_table order by int_col;

EXEC SQL OPEN my_table_cursor;
}
my_class::~my_class()
{

EXEC SQL CLOSE my_table_cursor;
}
a_bool my_class::FetchNextRow(void)
{

// :this_host_member references this->host_member
EXEC SQL FETCH NEXT AllRows INTO :this_host_member;
return(SQLCODE != SQLE_NOTFOUND);

}
void main(void)
{

db_init(&sqlca);
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
{

my_class mc; // Created after connecting.
while(mc.FetchNextRow()) {

printf("%ld \n", mc.host_member);
}

}
EXEC SQL DISCONNECT;
db_fini(&sqlca);

}

The above example declaresthis_host_member for the SQL
preprocessor, but the macro causes C++ to convert it to
this- >host_member . The preprocessor would otherwise not know the
type of this variable. Many C/C++ compilers do not tolerate duplicate
declarations. The#if directive hides the second declaration from the
compiler, but leaves it visible to the SQL preprocessor.

39

While multiple declarations can be useful, you must ensure that each
declaration assigns the same variable name to the same type. The
preprocessor assumes that each host variable is globally known following its
declaration because it can not fully parse the C language.

40

Chapter 4. Data Access Using Embedded SQL

Using indicator variables
An indicator variable is a C variable that holds supplementary information
about a particular host variable. You can use a host variable when fetching or
putting data. Use indicator variables to handle NULL values.

An indicator variable is a host variable of typeshort int . To detect or specify
a NULL value, place the indicator variable immediately following a regular
host variable in a SQL statement.

Example ♦ For example, in the following INSERT statement,:ind_phone is an
indicator variable.

EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

Indicator variable values The following table provides a summary of indicator variable usage.

Indicator

Value

Supplying Value

to database

Receiving value from database

0 Host variable value Fetched a non-NULL value.

–1 NULL value Fetched a NULL value

Using indicator variables to handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of
the same name. In the SQL language, NULL represents either an unknown
attribute or inapplicable information. The C-language constant represents a
pointer value which does not point to a memory location.

When NULL is used in the Adaptive Server Anywhere documentation, it
refers to the SQL database meaning given above. The C language constant is
referred to as thenull pointer (lower case).

NULL is not the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
you require something beyond regular host variables.Indicator variables
serve this purpose.

Using indicator variables
when inserting NULL

An INSERT statement can include an indicator variable as follows:

41

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
short int ind_phone;
EXEC SQL END DECLARE SECTION;
/* set values of empnum, empname,

initials, and homephone */
if(/* phone number is known */) {

ind_phone = 0;
} else {

ind_phone = -1; /* NULL */
}
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of –1, a NULL is written. If it has a
value of 0, the actual value ofemployee_phoneis written.

Using indicator variables
when fetching NULL

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, the SQLE_NO_INDICATOR error is generated.

☞ Errors and warnings are returned in the SQLCA structure, as described
in “The SQL Communication Area” on page 48.

42

Chapter 4. Data Access Using Embedded SQL

Fetching data
Fetching data in embedded SQL is done using the SELECT statement.
There are two cases:

1. The SELECT statement returns at most one row.

2. The SELECT statement may return multiple rows.

Fetching one row

A single row query retrieves at most one row from the database. A
single-row query SELECT statement may have an INTO clause following
the select list and before the FROM clause. The INTO clause contains a list
of host variables to receive the value for each select list item. There must be
the same number of host variables as there are select list items. The host
variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables.

♦ If the query selects more than one row, the database server returns the
SQLE_TOO_MANY_RECORDS error.

♦ If the query selects no rows, the SQLE_NOTFOUND warning is
returned.

☞ Errors and warnings are returned in the SQLCA structure, as described
in “The SQL Communication Area” on page 48.

Example For example, the following code fragment returns 1 if a row from the
employee table is successfully fetched, 0 if the row doesn’t exist, and –1 if
an error occurs.

43

EXEC SQL BEGIN DECLARE SECTION;
long int emp_id;
char name[41];
char sex;
char birthdate[15];
short int ind_birthdate;

EXEC SQL END DECLARE SECTION;
int find_employee(long employee)
{

emp_id = employee;
EXEC SQL SELECT emp_fname || ’ ’ || emp_lname,

sex, birth_date
INTO :name, :sex, birthdate:ind_birthdate
FROM "DBA".employee
WHERE emp_id = :emp_id;

if(SQLCODE == SQLE_NOTFOUND) {
return(0); /* employee not found */

} else if(SQLCODE < 0) {
return(-1); /* error */

} else {
return(1); /* found */

}
}

Fetching multiple rows

You use acursor to retrieve rows from a query that has multiple rows in its
result set. A cursor is a handle or an identifier for the SQL query result set
and a position within that result set.

☞ For an introduction to cursors, see “Working with cursors”[ASA
Programming Guide,page 21].

❖ To manage a cursor in embedded SQL

1. Declare a cursor for a particular SELECT statement, using the
DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Retrieve rows from the cursor one at a time using the FETCH statement.
♦ Fetch rows until the SQLE_NOTFOUND warning is returned.

☞ Error and warning codes are returned in the variable SQLCODE,
defined in the SQL communications area structure.

4. Close the cursor, using the CLOSE statement.

Cursors in UltraLite applications are always opened using the WITH HOLD
option. They are never closed automatically. You must close each cursor
explicitly using the CLOSE statement.

44

Chapter 4. Data Access Using Embedded SQL

The following is a simple example of cursor usage:

void print_employees(void)
{

int status;
EXEC SQL BEGIN DECLARE SECTION;
char name[50];
char sex;
char birthdate[15];
short int ind_birthdate;
EXEC SQL END DECLARE SECTION;
/* 1. Declare the cursor. */
EXEC SQL DECLARE C1 CURSOR FOR

SELECT emp_fname || ’ ’ || emp_lname,
sex, birth_date

FROM "DBA".employee
ORDER BY emp_fname, emp_lname;

/* 2. Open the cursor. */
EXEC SQL OPEN C1;
/* 3. Fetch each row from the cursor. */
for(;;) {

EXEC SQL FETCH C1 INTO :name, :sex,
:birthdate:ind_birthdate;

if(SQLCODE == SQLE_NOTFOUND) {
break; /* no more rows */

} else if(SQLCODE < 0) {
break; /* the FETCH caused an error */

}
if(ind_birthdate < 0) {

strcpy(birthdate, "UNKNOWN");
}
printf("Name: %s Sex: %c Birthdate:

%s\n",name, sex, birthdate);
}
/* 4. Close the cursor. */
EXEC SQL CLOSE C1;

}

☞ For details of the FETCH statement, see “FETCH statement [ESQL]
[SP]” [ASA SQL Reference,page 436].

Cursor positioning A cursor is positioned in one of three places:

♦ On a row

♦ Before the first row

♦ After the last row

45

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0
After last row

Before first row

Absolute row

from start

Absolute row

from end

Order of the rows in a
cursor

You control the order of rows in a cursor by including an ORDER BY clause
in the SELECT statements that defines that cursor. If you omit this clause,
the order of the rows is unpredictable.

If you don’t explicitly define an order, your only guarantee is that fetching
repeatedly will return each row in the result set once and only once before
SQLE_NOTFOUND is returned.

Order of rows in a cursor
If the cursor must have a specific order, include an ORDER BY clause in
the SELECT statement in the cursor definition. Without this clause, the
ordering is unpredictable and can vary from one time to the next.

Repositioning a cursor When you open a cursor, it is positioned before the first row. The FETCH
statement automatically advances the cursor position. An attempt to FETCH
beyond the last row results in an SQLE_NOTFOUND error, which can be
used as a convenient signal to complete sequential processing of the rows.

You can also reposition the cursor to an absolute position relative to the start
or the end of the query results, or move it relative to the current cursor

46

Chapter 4. Data Access Using Embedded SQL

position. There are specialpositionedversions of the UPDATE and
DELETE statements that can be used to update or delete the row at the
current position of the cursor. If the cursor is positioned before the first row
or after the last row, an SQLE_NOTFOUND error is returned.

To avoid unpredictable results when using explicit positioning, you can
include an ORDER BY clause in the SELECT statement that defines the
cursor.

You can use the PUT statement to insert a row into a cursor.

Cursor positioning after
updates

After updating any information that is being accessed by an open cursor, it is
best to fetch and display the rows again. If the cursor is being used to display
a single row, FETCH RELATIVE 0 will re-fetch the current row. When the
current row has been deleted, the next row will be fetched from the cursor
(or SQLE_NOTFOUND is returned if there are no more rows).

When a temporary table is used for the cursor, inserted rows in the
underlying tables do not appear at all until that cursor is closed and
reopened. It is difficult for most programmers to detect whether or not a
temporary table is involved in a SELECT statement without examining the
code generated by the SQL preprocessor or by becoming knowledgeable
about the conditions under which temporary tables are used. Temporary
tables can usually be avoided by having an index on the columns used in the
ORDER BY clause.

☞ For more information about temporary tables, see “Use of work tables in
query processing”[ASA SQL User’s Guide,page 185].

Inserts, updates and deletes to non-temporary tables may affect the cursor
positioning. Because UltraLite materializes cursor rows one at a time (when
temporary tables are not used), the data from a freshly inserted row (or the
absence of data from a freshly deleted row) may affect subsequent FETCH
operations. In the simple case where (parts of) rows are being selected from
a single table, an inserted or updated row will appear in the result set for the
cursor when it satisfies the selection criteria of the SELECT statement.
Similarly, a freshly deleted row that previously contributed to the result set
will no longer be within it.

47

The SQL Communication Area
TheSQL Communication Area (SQLCA) is an area of memory that is
used for communicating statistics and errors from the application to the
database and back to the application. The SQLCA is used as a handle for the
application-to-database communication link. It is passed explicitly to all
database library functions that communicate with the database. It is
implicitly passed in all embedded SQL statements.

A global SQLCA variable is defined in the generated code. The preprocessor
generates an external reference for the global SQLCA variable. The external
reference is namedsqlcaand is of type SQLCA. The actual global variable
is declared in the imports library.

The SQLCA type is defined by thesqlca.hheader file, which is located in
theh subdirectory of your installation directory.

SQLCA provides error
codes

You reference the SQLCA to test for a particular error code. Thesqlcode
field contains an error code when a database request causes an error (see
below). Some C macros are defined for referencing thesqlcodefield and
some other fields.

SQLCA fields

The fields in the SQLCA have the following meanings:

♦ sqlcaid An 8-byte character field that contains the stringSQLCA as an
identification of the SQLCA structure. This field helps in debugging
when you are looking at memory contents.

♦ sqlcabc A long integer that contains the length of the SQLCA structure
(136 bytes).

♦ sqlcode A long integer that specifies the error code when the database
detects an error on a request. Definitions for the error codes can be found
in the header filesqlerr.h. The error code is 0 (zero) for a successful
operation, positive for a warning and negative for an error.

You can access this field directly using theSQLCODE macro.

☞ For a list of error codes, see “Database Error Messages”[ASA Error
Messages,page 1].

♦ sqlerrml The length of the information in thesqlerrmc field.

UltraLite applications do not use this field.

♦ sqlerrmc May contain one or more character strings to be inserted into
an error message. Some error messages contain a placeholder string (%1)
which is replaced with the text in this field.

48

Chapter 4. Data Access Using Embedded SQL

UltraLite applications do not use this field.

♦ sqlerrp Reserved.

♦ sqlerrd A utility array of long integers.

♦ sqlwarn Reserved.

UltraLite applications do not use this field.

♦ sqlstate The SQLSTATE status value.

UltraLite applications do not use this field.

Using multiple SQLCAs

❖ To manage multiple SQLCAs in your application

1. Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with a call todb_fini.

☞ For more information, see“db_init function” on page 104.

2. The embedded SQL statement SET SQLCA is used to tell the
SQL preprocessor to use a different SQLCA for database requests.
Usually, a statement such as the following:

EXEC SQL SET SQLCA ’task_data->sqlca’;

is used at the top of your program or in a header file to set the SQLCA
reference to point at task specific data. This statement does not generate
any code and thus has no performance impact. It changes the state within
the preprocessor so that any reference to the SQLCA will use the given
string.

☞ For information about creating SQLCAs, see “SET SQLCA
statement [ESQL]”[ASA SQL Reference,page 562].

Connection management with multiple SQLCAs

You do not need to use multiple SQLCAs to have more than one connection
to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an
active or current connection. All operations on a given database connection
must use the same SQLCA that was used when the connection was
established.

☞ For more information, see “SET CONNECTION statement [Interactive
SQL] [ESQL]” [ASA SQL Reference,page 553].

49

CHAPTER 5

Adding Non Data Access Features to
UltraLite Applications

About this chapter This chapter describes features in addition to data access you can add to
UltraLite applications.

☞ For information about data access features, see“Data Access Using
Embedded SQL” on page 27.

Contents Topic: page

Adding user authentication to your application 52

Configuring and managing database storage 56

Adding synchronization to your application 62

Developing multi-threaded applications 70

51

Adding user authentication to your application
UltraLite provides an optional built-in user authentication scheme. You can
take advantage of this scheme to authenticate users before allowing them to
connect to the UltraLite database. By default, UltraLite databases have no
user userauthentication mechanism.

The UltraLite user authentication scheme does not provide the permissions
features implemented in multi-user database systems and in MobiLink.

☞ For a general description of UltraLite user authentication, see “User
authentication”[UltraLite Database User’s Guide,page 38].

☞ When you create an UltraLite database with user authentication enabled,
one authenticated user is created, with user IDDBA and passwordSQL.
UltraLite permits up to four different users to be defined at a time, with both
user ID and password being less than 16 characters long. Each user has full
access to the database once successfully authenticated.

☞ The case sensitivity of the UltraLite user ID and password is determined
by the reference database. If the reference database is case insensitive (the
default) then the UltraLite database is also case insensitive, in cluding user
authentication.

Enabling user authentication

Enabling user authentication requires the application to supply a valid
UltraLite user ID and password when connecting to the UltraLite database.
If you do not explicitly enable user authentication, UltraLite does not
authenticate users.

❖ To enable user authentication (embedded SQL)

1. Call ULEnableUserAuthentication before callingdb_init . For example:

app(){
...
ULEnableUserAuthentication(&sqlca);
db_init(&sqlca);
...

The call todb_init precedes all other database activity in the application.

☞ Once you have enabled user authentication, you must add user
management code to your application. For more information, see“Managing
user IDs and passwords” on page 53.

52

Chapter 5. Adding Non Data Access Features to UltraLite Applications

Managing user IDs and passwords

There is a common sequence of events to managing user IDs and passwords.

1. New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password ofDBA and
SQL, respectively, you must first attempt to connect as this initial user
and implement user management only upon successful connection.

2. You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltraLite database.

3. To change the password for an existing user ID, call the same function as
adding a user ID. This function isULGrantConnectTo.

Palm Computing
Platform

Applications on the Palm Computing Platform do not terminate. If you wish
to authenticate users whenever they return to an application from some other
application, you must include the prompt for user and password information
in yourPilotMain routine.

User authentication example

The following code fragment performs user management and authentication
for an embedded SQL UltraLite application.

A complete sample can be found in theSamples\UltraLite\esqlauth
subdirectory of your SQL Anywhere directory. The code below is taken
from Samples\UltraLite\esqlauth\sample.sqc.

53

app() {
...

/* Declare fields */
EXEC SQL BEGIN DECLARE SECTION;

char uid[31];
char pwd[31];

EXEC SQL END DECLARE SECTION;
ULEnableUserAuthentication(&sqlca);
db_init(&sqlca);
...
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
if(SQLCODE == SQLE_NOERROR) {

printf("Enter new user ID and password \n");
scanf("%s %s", uid, pwd);
ULGrantConnectTo(&sqlca,

UL_TEXT(uid), UL_TEXT(pwd));
if(SQLCODE == SQLE_NOERROR) {

// new user added: remove DBA
ULRevokeConnectFrom(&sqlca, UL_TEXT("DBA"));

}
EXEC SQL DISCONNECT;

}
// Prompt for password

printf("Enter user ID and password \n");
scanf("%s %s", uid, pwd);
EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

The code carries out the following tasks:

1. Enable user authentication by callingULEnableUserAuthentication.

2. Initiate database functionality by callingdb_init .

3. Attempt to connect using the default user ID and password.

4. If the connection attempt is successful, add a new user.

5. If the new user is successfully added, delete the DBA user from the
UltraLite database.

6. Disconnect. An updated user ID and password is now added to the
database.

7. Connect using the updated user ID and password.

☞ For more information, see“ULGrantConnectTo function” on page 119,
and“ULRevokeConnectFrom function” on page 129.

Sharing MobiLink and UltraLite user IDs

Although UltraLite and MobiLink user authentication mechanisms are
separate, you may wish to provide your end users with a single user ID and

54

Chapter 5. Adding Non Data Access Features to UltraLite Applications

password that provides both MobiLink and UltraLite user authentication. To
share user IDs and passwords, store them in variables and use the same
variable in the UltraLite user authentication calls and the synchronization
call.

You can design your application so that, if passwords are reset at a
MobiLink consolidated site, your application prompts for the new password.

❖ To prompt for a new MobiLink or UltraLite password

1. Save the user ID and password in variables.

2. Synchronize.

3. If synchronization fails because the user was not authenticated, prompt
the user for a new password.

4. Update the UltraLite user’s password using the appropriate function or
method:

♦ ULGrantConnectTo

5. Update the synch_info structure and synchronize again.

☞ For information on MobiLink user authentication, see “Authenticating
MobiLink Users” [MobiLink Synchronization User’s Guide,page 103].

55

Configuring and managing database storage
You can configure the following aspects of UltraLite persistent storage:

♦ The amount of memory used as a cache by the UltraLite database engine.

♦ Database encryption.

♦ Preallocation of file-system space.

♦ The file name for the database.

♦ The database page size.

This configuration is controlled by the UL_STORE_PARMS macro, which
is placed in the header of your application source code so that it is visible to
all db_init() or ULPalmLaunch calls. The encryption key and page size
can be used on any supported C/C++ platform, while the other keys cannot
be used on the Palm Computing Platform.

☞ For more information, see “UL_STORE_PARMS macro”[UltraLite
Database User’s Guide,page 216].

Encrypting UltraLite databases

By default, UltraLite databases are unencrypted on disk and in permanent
memory. Text and binary columns are plainly readable within the database
store when using a viewing tool such as a hex editor. Two options are
provided for greater security:

♦ Obfuscation Obfuscating databases provides security against
straightforward attempts to view data in the database directly using a
viewing tool. It is not proof against skilled and determined attempts to
gain access to the data. Obfuscation has little or no performance impact.

☞ For more information, see“Obfuscating an UltraLite database” on
page 57.

♦ Strong encryption UltraLite database files can be strongly encrypted
using the AES 128-bit algorithm, which is the same algorithm used to
encrypt Adaptive Server Anywhere databases. Use of strong encryption
does provide security against skilled and determined attempts to gain
access to the data, but has a significant performance impact.

Caution
If the encryption key for a strongly encrypted database is lost or forgot-
ten, there is no way to access the database. Under these circumstances,
technical support cannot gain access to the database for you. It must be
discarded and you must create a new database.

56

Chapter 5. Adding Non Data Access Features to UltraLite Applications

☞ For more information, see“Encrypting an UltraLite database” on
page 57, and“Changing the encryption key for a database” on page 58.

Obfuscating an UltraLite database

❖ To obfuscate an UltraLite database

1. Define the UL_ENABLE_OBFUSCATION compiler directive when
compiling the generated database.

☞ For more information, see “UL_ENABLE_OBFUSCATION macro”
[UltraLite Database User’s Guide,page 215].

Encrypting an UltraLite database

UltraLite databases are created on the first connection attempt. To encrypt an
UltraLite database, you supply an encryption key before that connection
attempt. On the first attempt, the supplied key is used to encrypt the
database. On subsequent attempts, the supplied key is checked against the
encryption key, and connection fails unless the key matches.

❖ To strongly encrypt an UltraLite database

1. Load the encryption module.

Call ULEnableStrongEncryption before opening the database.

You open a database by callingdb_init .

On the Palm Computing Platform, you open a database by calling
ULPalmLaunch .

2. Specify the encryption key.

Define the UL_STORE_PARMS macro with the parameter namekey.

#define UL_STORE_PARMS "key=a secret key"

As with most passwords, it is best to choose a key value that cannot be
easily guessed. The key can be of arbitrary length, but generally the
longer the key, the better because a shorter key is easier to guess than a
longer one. As well, including a combination of numbers, letters, and
special characters decreases the chances of someone guessing the key.

Do not include semicolons in your key. Do not put the key itself in
quotes, or the quotes will be considered part of the key.

You must supply this key each time you want to start the database. Lost
or forgotten keys result in completely inaccessible databases.

☞ For more information on UL_STORE_PARMS, see
“UL_STORE_PARMS macro”[UltraLite Database User’s Guide,page 216].

57

3. Handle attempts to open an encrypted database with the wrong key.

If an attempt is made to open an encrypted database and the wrong key is
passed in,db_init returnsul_falseand SQLCODE -840 is set.

You can find a sample embedded SQL application demonstrating encryption
in the directorySamples\UltraLite\ESQLSecurity. The encryption code is
held inSamples\UltraLite\ESQLSecurity\sample.sqc.

Here is code from the sample:

static void initStoreParms(){
char enteredKey[15];
strcpy(storeParms, "key=");
// The key is used to encrypt the database on the first

attempt.
// On subsequent connections, the correct key is needed to
// access the database.
printf("Enter encryption key: ");
scanf("%s", encryptionKey);
strcat(storeParms, encryptionKey);

}

#undef UL_STORE_PARMS
#define UL_STORE_PARMS (initStoreParms(), storeParms)

int main(int argc, char * argv[])
{

/* Declare fields */
EXEC SQL BEGIN DECLARE SECTION;

long pid=1;
long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;

/* Encryption must be enabled before working with data*/
ULEnableStrongEncryption(&sqlca);
db_init(&sqlca);
if(SQLCODE == -840){ // bad encryption key

printf("Error: encryption key incorrect.");
return(1);

}

EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";

Changing the encryption key for a database

You can change the encryption key for a database. The application must
already be connected to the database using the existing key before the
change can be made.

58

Chapter 5. Adding Non Data Access Features to UltraLite Applications

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is unrecov-
erable. If the application is interrupted part-way through, the database is
invalid and cannot be accessed. A new one must be created.

❖ To change the encryption key on an UltraLite database

1. Call theULChangeEncryptionKey function, supplying the new key as
an argument.

The application must already be connected to the database using the old
key before this function is called.

☞ For more information, see“ULChangeEncryptionKey function” on
page 106.

Using the encryption key on the Palm Computing Platform

If you encrypt an UltraLite database on the Palm Computing Platform, you
are prompted to re-enter the key each time you launch the application. This
section describes how to add code that circumvents the re-entering of the
key.

You can save the encryption key in dynamic memory as a Palmfeature, and
retrieve the key when you launch the application rather than prompting the
user. Features are indexed by creator and a feature number. Users can pass in
their creator ID or NULL, along with the feature number or NULL, to save
and retrieve the encryption key.

The encryption key is not backed up and is cleared on any reset of the
device. The retrieval of the key then fails, and the user is prompted to
re-enter the key.

The following sample code illustrates how to save and retrieve the
encryption key:

59

#define UL_STORE_PARMS StoreParms
static ul_char StoreParms[STORE_PARMS_MAX];
...
startupRoutine() {

ul_char buffer[MAX_PWD];

if(!ULRetrieveEncryptionKey(
buffer, MAX_PWD, NULL, NULL)){

// prompt user for key
userPrompt(buffer, MAX_PWD);
if(!ULSaveEncryptionKey(buffer, NULL, NULL)) {

// inform user save failed
}

}
// build store parms
StrCopy(StoreParms, "key=");
StrCat(StoreParms, buffer);
ULPalmLaunch(&sqlca, UL_NULL);

}

The following sample code illustrates how to use a menu item to secure the
device by clearing the encryption key:

case MenuItemClear
ULClearEncryptionKey(NULL, NULL);
break;

☞ For more information, see“ULClearEncryptionKey function” on
page 107, “ULRetrieveEncryptionKey function” on page 128, and
“ULSaveEncryptionKey function” on page 130.

Defragmenting UltraLite databases

The UltraLite store is designed to efficiently reuse free space, so explicit
defragmentation is not required under normal circumstances. This section
describes a technique to explicitly defragment UltraLite databases, for use
by applications with extremely strict space requirements.

UltraLite provides a defragmentation step function, which defragments a
small part of the database. To defragment the entire database at once, call the
defragmentation step function in a loop until it returnsul_true. This can be
an expensive operation, and SQLCODE must also be checked to detect
errors (an error here usually indicates a file I/O error).

Explicit defragmentation occurs incrementally under application control
during idle time. Each step is a small operation.

☞ For more information, see“ULStoreDefragFini function” on page 133,
“ULStoreDefragInit function” on page 134, and“ULStoreDefragStep
function” on page 135.

60

Chapter 5. Adding Non Data Access Features to UltraLite Applications

❖ To defragment an UltraLite database

1. Obtain a p_ul_store_defrag_info information block. For example,

p_ul_store_defrag_info DefragInfo;
//...
db_init(&sqlca);
DefragInfo = ULStoreDefragInit(&sqlca);

2. During idle time, call UlStoreDefragStep to defragment a piece of the
database. For example,

ULStoreDefragStep(&sqlca, DefragInfo);

3. When complete, dispose of the defragmentation block. For example,

ULStoreDefragFini(&sqlca, DefragInfo);

Example In this embedded SQL sample, defragmentation occurs incrementally under
application control during idle time. Each defragmentation step is a small
operation.

p_ul_store_defrag_info DefragInfo;

idle()
{

for(i = 0; i < DEFRAG_IDLE_STEPS; i++){
ULStoreDefragStep(&sqlca, DefragInfo);
if(SQLCODE != SQLE_NOERROR) break;

}
}

main()
{

db_init(&sqlca);
DefragInfo = ULStoreDefragInit(&sqlca);
//
// main application code,
// calls idle() when appropriate...
//
ULStoreDefragFini(&sqlca, DefragInfo);
db_fini(&sqlca);

}

To defragment the entire store at once, you can callULStoreDefragStepin a
loop until it returnsul_true. This can be an expensive operation, and you
must check SQLCODE to detect errors such as file I/O errors.

61

Adding synchronization to your application
Synchronization is a key feature of many UltraLite applications. This
section describes how to add synchronization to your application.

The synchronization logic that keeps UltraLite applications up to date with
the consolidated database is not held in the application itself.
Synchronization scripts stored in the consolidated database, together with
the MobiLink synchronization server and the UltraLite runtime library,
control how changes are processed when they are uploaded and determines
which changes are to be downloaded.

Overview The specifics of each synchronization is controlled by a set of
synchronization parameters. These parameters are gathered into a structure
(C/C++) or object (Java), which is then supplied as an argument in a
function call to synchronize. The outline of the method is the same in each
development model.

❖ To add synchronization to your application

1. Initialize the structure (C/C++) or object (Java) that holds the
synchronization parameters.

☞ For information, see“Initializing the synchronization parameters” on
page 62.

2. Assign the parameter values for your application.

☞ For information, see“Synchronization stream parameters” on
page??.

3. Call the synchronization function, supplying the structure or object as
argument.

☞ For information, see“Invoking synchronization” on page 64.

You must ensure that there are no uncommitted changes when you
synchronize. For more information, see“Commit all changes before
synchronizing” on page 64.

Synchronization
parameters

Synchronization specifics are controlled through a set of synchronization
parameters. For information on these parameters, see“Synchronization
stream parameters” on page??.

Initializing the synchronization parameters

The synchronization parameters are stored in a C/C++ structure or Java
object.

62

Chapter 5. Adding Non Data Access Features to UltraLite Applications

In C/C++ the members of the structure may not be well-defined on
initialization. You must set your parameters to their initial values with a call
to a special function. The synchronization parameters are defined in a
structure declared in the UltraLite header fileulglobal.h.

In Java, the details of any synchronization, including the URL of the
MobiLink synchronization server, the script version to use, the MobiLink
user ID, and so on, are all held in aUlSynchOptionsobject.

☞ For a complete list of synchronization parameters, see “Synchronization
parameters”[UltraLite Database User’s Guide,page 162].

❖ To initialize the synchronization parameters (embedded SQL)

1. Call theULInitSynchInfo function. For example:

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);

Setting synchronization parameters

The following code initiates TCP/IP synchronization. The MobiLink user
name isBetty Best , with passwordTwentyFour , the script version is
default , and the MobiLink synchronization server is running on the host
machinetest.internal , on port2439 :

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("Betty Best");
synch_info.password = UL_TEXT("TwentyFour");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=test.internal;port=2439");
ULSynchronize(&sqlca, &synch_info);

The following code for an application on the Palm Computing Platform is
called when the user exits the application. It allows HotSync
synchronization to take place, with a MobiLink user name of50, an empty
password, a script version ofcustdb . The HotSync conduit communicates
over TCP/IP with a MobiLink synchronization server running on the same
machine as the conduit (localhost), on the default port (2439):

63

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.name = UL_TEXT("Betty Best");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULConduitStream();
synch_info.stream_parms =

UL_TEXT("stream=tcpip;host=localhost");
ULPalmExit(&sqlca, &synch_info);

Invoking synchronization

The details of how to invoke synchronization depends on your target
platform and on the synchronization stream.

The synchronization process can only work if the device running the
UltraLite application is able to communicate with the synchronization
server. For some platforms, this means that the device needs to be physically
connected by placing it in its cradle or by attaching it to a server computer
using a cable. You need to add error handling code to your application in
case the synchronization cannot be carried out.

❖ To invoke synchronization (TCP/IP, HTTP, or HTTPS streams)

1. Call ULInitSynchInfo to initialize the synchronization parameters, and
call ULSynchronize to synchronize.

❖ To invoke synchronization (HotSync)

1. Call ULInitSynchInfo to initialize the synchronization parameters, and
call ULPalmExit andULPalmLaunch functions to manage
synchronization.

☞ For more information, see“ULPalmExit function” on page 124, and
“ULPalmLaunch function” on page 125.

The synchronization call requires a structure that holds a set of parameters
describing the specifics of the synchronization. The particular parameters
used depend on the stream.

Commit all changes before synchronizing

☞ An UltraLite database cannot have uncommitted changes when it is
synchronized. If you attempt to synchronize an UltraLite database when any
connection has an uncommitted transaction, the synchronization fails, an
exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS
error is set. This error code also appears in the MobiLink synchronization
server log.

64

Chapter 5. Adding Non Data Access Features to UltraLite Applications

☞ For more information on download-only synchronizations, see
“download_only synchronization parameter”[UltraLite Database User’s Guide,
page 165].

Adding initial data to your application

Many UltraLite application need data in order to start working. You can
download data into your application by synchronizing. You may want to add
logic to your application to ensure that, the first time it is run, it downloads
all necessary data before any other actions are carried out.

Development tip
It is easier to locate errors if you develop an application in stages. When
developing a prototype, temporarily code INSERT statements in your
application to provide data for testing and demonstration purposes. Once
your prototype is working correctly, enable synchronization and discard
the temporary INSERT statements.

For more synchronization development tips, see “Development tips”
[MobiLink Synchronization User’s Guide,page 71].

Monitoring and canceling synchronization

This section describes how to monitor and cancel synchronization from
UltraLite applications.

♦ An API for monitoring synchronization progress and for canceling
synchronization.

♦ A progress indicator component that implements the interface, which you
can add to your application.

Monitoring
synchronization

♦ Specify the name of your callback function in theobservermember of
the synchronization structure (ul_synch_info).

♦ Call the synchronization function or method to start synchronization.

♦ UltraLite calls your callback function called whenever the
synchronization state changes. The following section describes the
synchronization state.

The following code shows how this sequence of tasks can be implemented in
an embedded SQL application:

65

ULInitSynchInfo(&info);
info.user_name = m_EmpIDStr;
...
//The info parameter of ULSynchronization() contains
// a pointer to the observer function
info.observer = ObserverFunc;
ULSynchronize(&sqlca, &info);

Handling synchronization status information

The callback function that monitors synchronization takes a
ul_synch_statusstructure as parameter.

Theul_synch_statusstructure has the following members:

ul_synch_state state;
ul_u_short tableCount;
ul_u_short tableIndex;

struct {
ul_u_long bytes;
ul_u_short inserts;
ul_u_short updates;
ul_u_short deletes;

} sent;
struct {

ul_u_long bytes;
ul_u_short inserts;
ul_u_short updates;
ul_u_short deletes;

} received;
p_ul_synch_info info;
ul_bool stop;

♦ state One of the following states:

• UL_SYNCH_STATE_STARTING No synchronization actions have
yet been taken.

• UL_SYNCH_STATE_CONNECTING The synchronization stream
has been built, but not yet opened.

• UL_SYNCH_STATE_SENDING_HEADER The synchronization
stream has been opened, and the header is about to be sent.

• UL_SYNCH_STATE_SENDING_TABLE A table is being sent.

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being sent.

• UL_SYNCH_STATE_FINISHING_UPLOAD The upload stage is
completed and a commit is being carried out.

• UL_SYNCH_STATE_RECEIVING_UPLOAD_ACK An
acknowledgement that the upload is complete is being received.

66

Chapter 5. Adding Non Data Access Features to UltraLite Applications

• UL_SYNCH_STATE_RECEIVING_TABLE A table is being received.

• UL_SYNCH_STATE_SENDING_DATA Schema information or data
is being received.

• UL_SYNCH_STATE_COMMITTING_DOWNLOAD The download
stage is completed and a commit is being carried out.

• UL_SYNCH_STATE_SENDING_DOWNLOAD_ACK An
acknowledgement that download is complete is being sent.

• UL_SYNCH_STATE_DISCONNECTING The synchronization stream
is about to be closed.

• UL_SYNCH_STATE_DONE Synchronization has completed
successfully.

• UL_SYNCH_STATE_ERROR Synchronization has completed, but
with an error.
☞ For a description of the synchronization process, see “The
synchronization process”[MobiLink Synchronization User’s Guide,
page 21].

♦ tableCount Returns the number of tables being synchronized. For each
table there is a sending and receiving phase, so this number may be more
than the number of tables being synchronized.

♦ tableIndex The current table which is being uploaded or downloaded,
starting at 0. This number may skip values when not all tables are being
synchronized.

♦ info A pointer to theul_synch_infostructure.

♦ sent.inserts The number of inserted rows that have been uploaded so
far.

♦ sent.updates The number of updated rows that have been uploaded so
far.

♦ sent.deletes The number of deleted rows that have been uploaded so
far.

♦ sent.bytes The number of bytes that have been uploaded so far.

♦ received.inserts The number of inserted rows that have been
downloaded so far.

♦ received.updates The number of updated rows that have been
downloaded so far.

♦ received.deletes The number of deleted rows that have been
downloaded so far.

67

♦ received.bytes The number of bytes that have been downloaded so far.

♦ stop Set this member to true to interrupt the synchronization. The SQL
exception SQLE_INTERRUPTED is set, and the synchronization stops
as if a communications error had occurred. The observer isalwayscalled
with either the DONE or ERROR state so that it can do proper cleanup.

♦ getUserData Returns the user data object.

♦ getStatement Returns the statement that called the synchronization.
The statement is an internal UltraLite statement, and this method is
unlikely to be of practical use, but is included for completion.

♦ getErrorCode When the synchronization state is set to ERROR, this
method returns a diagnostic error code.

♦ isOKToContinue This is set tofalsewhencancelSynchronizationis
called. Otherwise, it istrue.

Example The following code illustrates a very simple observer function:

extern void __stdcall ObserverFunc(
p_ul_synch_status status)

{
printf("UL_SYNCH_STATE is %d: ",

status->state);
switch(status->state) {

case UL_SYNCH_STATE_STARTING:
printf("Starting \n");
break;

case UL_SYNCH_STATE_CONNECTING:
printf("Connecting \n");
break;

case UL_SYNCH_STATE_SENDING_HEADER:
printf("Sending Header \n");
break;

case UL_SYNCH_STATE_SENDING_TABLE:
printf("Sending Table %d of %d \n",

status->tableIndex + 1,
status->tableCount);

break;
...

This observer produces the following output when synchronizing two tables:

68

Chapter 5. Adding Non Data Access Features to UltraLite Applications

UL_SYNCH_STATE is 0: Starting
UL_SYNCH_STATE is 1: Connecting
UL_SYNCH_STATE is 2: Sending Header
UL_SYNCH_STATE is 3: Sending Table 1 of 2
UL_SYNCH_STATE is 3: Sending Table 2 of 2
UL_SYNCH_STATE is 4: Receiving Upload Ack
UL_SYNCH_STATE is 5: Receiving Table 1 of 2
UL_SYNCH_STATE is 5: Receiving Table 2 of 2
UL_SYNCH_STATE is 6: Sending Download Ack
UL_SYNCH_STATE is 7: Disconnecting
UL_SYNCH_STATE is 8: Done

CustDB example An example of an observer function is included in the CustDB sample
application. The implementation in CustDB provides a dialog that displays
synchronization progress and allows the user to cancel synchronization. The
user-interface component makes the observer function platform specific.

The CustDB sample code is in theSamples\UltraLite\CustDBsubdirectory
of your SQL Anywhere directory. The observer function is contained in the
platform-specific subdirectories of theCustDBdirectory.

69

Developing multi-threaded applications
You can develop multi-threaded UltraLite applications for the Windows, and
Windows CE platforms. You cannot develop multi-threaded UltraLite
applications on the Palm Computing Platform, as the platform does not
support such applications.

Each thread of a multi-threaded application must make its own call to
db_init() . A SQLCA cannot be shared among different threads.
Consequently, each thread must have separate connections and separate
transactions from other threads.

☞ For more information, see“db_init function” on page 104.

70

CHAPTER 6

Developing UltraLite Applications for the
Palm Computing Platform

About this chapter This chapter describes details of development, deployment and
synchronization that are specific to developing applications for the Palm
Computing Platform. These instructions assume familiarity with the general
UltraLite development process.

Contents Topic: page

Introduction 72

Developing UltraLite applications with Metrowerks CodeWarrior 73

Maintaining state in UltraLite applications 77

Building multi-segment applications 78

Adding HotSync synchronization to Palm applications 81

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm appli-
cations

83

Deploying Palm applications 84

71

Introduction
This chapter describes features of UltraLite development specific to the
Palm Computing Platform.

Development
environments

You can use one of the following development environments to build
UltraLite Palm applications:

♦ Metrowerks CodeWarrior, version 8 or 9.

☞ See“Developing UltraLite applications with Metrowerks
CodeWarrior” on page 73.

CodeWarrior includes a version of the Palm SDK. Depending on the
particular devices you are targeting, you may want to upgrade your Palm
SDK to a more recent version than that included in the development tool.
Palm SDK versions 3.1, 3.5, and 4.x of the Palm SDK are supported.

♦ AppForge MobileVB, using the UltraLite MobileVB component. This
chapter does not describe development using the MobileVB component.

☞ For general information on development environments for the Palm,
including more information on each of the supported host platforms, see the
Palm Computing Platform Development Zone Web site.

For information on supported development environments, see “UltraLite
host platforms”[Introducing SQL Anywhere Studio,page 126].

Target platforms ☞ For a list of supported target operating systems, see “UltraLite target
platforms” [Introducing SQL Anywhere Studio,page 136].

Palm-specific notes ☞ The information in this chapter concerning Palm development
supplements the general information on UltraLite development provided
“Using Static Development Models”[UltraLite Database User’s Guide,
page 195].

72

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

Developing UltraLite applications with Metrowerks
CodeWarrior

Metrowerks CodeWarrior versions 8 and 9 are supported development
platforms for Palm Computing Platform UltraLite development using the
static C++ API and embedded SQL.

A CodeWarrior plug-in is supplied to make building UltraLite applications
easier. This plug-in is supplied in theUltraLite\Palm\68k\cwplugin
directory.

This section describes how to develop UltraLite applications using
CodeWarrior. It assumes a familiarity with CodeWarrior programming for
the Palm Computing Platform.

Installing the UltraLite plug-in for CodeWarrior

The files for the UltraLite plug-in for CodeWarrior are placed on your disk
during UltraLite installation, but the plug-in is not available for use without
an additional installation step.

❖ To install the UltraLite plug-in for CodeWarrior

1. Ensure that you are running CodeWarrior version 8 or CodeWarrior
version 9. You can obtain patches for CodeWarrior from the Metrowerks
Web site.

2. From a command prompt, change to theUltraLite\palm\68k\cwplugin
subdirectory of your SQL Anywhere directory.

3. Runinstall.batto copy the appropriate files into your CodeWarrior
installation directory: Theinstall.batfile takes two arguments:

♦ Your CodeWarrior directory

♦ Your CodeWarrior version.

For example, the following command (which should be entered on one
line) installs the plug-in for CodeWarrior 9 in the default CodeWarrior
installation directory.

install "c: \Program Files \Metrowerks \CodeWarrior for Palm OS
Platform 9.0" r9

You only need double quotes around the directory if the path has spaces.

Uninstalling the
CodeWarrior plug-in

There is also a fileuninstall.bat, that you can use in the same way as
install.batto uninstall the UltraLite Plug-in from CodeWarrior.

73

Creating UltraLite projects in CodeWarrior

This section describes how to use the UltraLite Plug-in for CodeWarrior.

❖ To create an UltraLite project in CodeWarrior

1. Start CodeWarrior.

2. Create a new project.

From the CodeWarrior menu, choose File➤ New. A tabbed dialog
appears.

On the Projects dialog, choose one of the available choices, and choose a
name and location for the project. Click OK.

3. Choose an UltraLite stationery.

The UltraLite plug-in adds two choices to the stationery list, one for
C++ API applications and one for embedded SQL applications.

Choose the development model you want to use and click OK to create
the project.

This stationery is standard C stationery for embedded SQL, and standard
C++ stationery for the C++ API, and contains almost-empty source files.

4. Configure the target settings for your project.

On your project window (.mcp), choose the Targets tab, and click the
Settings icon on the toolbar. The Project Settings window opens.

In the tree on the left pane, choose Target➤ UltraLite preprocessor. You
can enter the settings for your project, such as which reference database
to use.

When you build an embedded SQL project, the UltraLite project callssqlpp
andulgenutilities to convert any.sqcfiles into.c or .cppfiles and to
generate the database code.

The plugin also adds paths to required UltraLite files, such as headers and
runtime library, to the search paths.

Converting an existing CodeWarrior project to an UltraLite application

If you install the UltraLite plug-in into CodeWarrior, you will be asked to
convert each existing project when you open it. In this conversion,
CodeWarrior sets the default SQL preprocessor settings and saves them in
the project file. This causes no disruption to projects that do not use the SQL

74

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

preprocessor. If you want to further convert a project to invoke the SQL
preprocessor automatically, you need to do the following:

1. Add a file mapping entry for.sqcand.ulg files to the File Mappings
panel of the Target settings.

These files are of file typeTEXT and the Compiler isUltraLite
Preprocessor. All flags for these files should be unchecked.

2. For embedded SQL applications, remove all.cppfiles generated by the
SQL preprocessor from the Files view. These files are automatically
generated and re-added when the.sqcfiles are built.

3. For C++ API applications, mark the.ulg dummy file dirty and remove
the UltraLite Files folder.

Using the UltraLite plug-in for CodeWarrior

The UltraLite plug-in for CodeWarrior integrates the UltraLite preprocessing
steps (running the UltraLite generator and, for embedded SQL applications,
running the SQL preprocessor) into the CodeWarrior compilation model. It
ensures that the SQL preprocessor and UltraLite generator run when
required.

If you change the UltraLite project name, or if you change the generated
database name, you should delete the UltraLite Files folder. This forces
regeneration of the generated files. To avoid filename collisions, do not use a
generated database name that is the same as the.sqcfile name.

If you change a SQL statement in a C++ API UltraLite project, or if you
alter a publication used in a C++ API project, you must manually touch the
dummy.ulg file to prompt the UltraLite generator to run.

☞ For an overview of the tasks the plug-in carries out, see “Configuring
development tools for static UltraLite development”[UltraLite Database
User’s Guide,page 210].

Using prefix files A prefix file is a header file that all source files in a Metrowerks
CodeWarrior project include. You should useulpalmXX.h, whereXX
indicates the version of the Palm SDK you are using, from theh
subdirectory of your SQL Anywhere Studio installation directory as your
prefix file. The CodeWarrior plug-in sets this for you automatically.

If you have your own prefix file, it must includeulpalmXX.h. The
ulpalmXX.h file defines macros required by Palm applications, such as the
UL_PALMOS_SDK macro (which is set to the version of the Palm OS in
use) and the UNDER_PALM_OS macro.

75

Building the CustDB sample application from CodeWarrior

CustDB is a simple sales-status application.

☞ For a diagram of the sample database schema, see“The UltraLite
sample database” on page??.

Files for the application are located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. Generic files are located in
theCustDBdirectory. Files specific to CodeWarrior for the Palm
Computing Platform are in the following locations:

♦ cwcommon Files common to all versions of CodeWarrior.

♦ cw8 Files for CodeWarrior 8.

♦ cw9 Files for CodeWarrior 9.

The instructions in this section describe how to build the CustDB application
using CodeWarrior 9. The process is very similar for CodeWarrior 8.

❖ To build the CustDB sample application using CodeWarrior

1. Start the CodeWarrior IDE.

2. Open the CustDB project file:

♦ Choose File➤ Open.

♦ Open the project fileSamples\UltraLite\custdb\cw9\custdb.mcpunder
your SQL Anywhere directory.

3. To build the target application (custdb.prc), choose Project➤ Make.

You can use the UltraLite plug-in to customize settings for your own
application. For more information, see“Developing UltraLite applications
with Metrowerks CodeWarrior” on page 73.

76

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

Maintaining state in UltraLite applications
This discussion describes how developers can restore positions within tables
so that applications appear to suspend instead of terminate when a user
switches to another application. This is accomplished by providing a value
for the persistent name parameter in the Open method of the ULTable object.

Palm OS applications are single threaded. To maintain the illusion that an
application is running in the background after you close it, the application
must save its internal state when the user switches to another application.
When the application is launched again, it must restore its internal state.
Saving and restoring state in a database application can be challenging, as
the application must re-open previously open result sets and re-position
within those result sets.

This section describes how to handle launching and closing of an UltraLite
Palm application. Two Palm-specific UltraLite functions save and restore
internal state information. These functions also handle synchronization if
you are using the HotSync synchronization streams, but not if you are using
TCP/IP or HTTP streams.

Launching an UltraLite Palm application

Whenever your UltraLite application is launched, your code must call
ULPalmLaunch to restore state.

If your application has never been run before, or was abnormally terminated
the last time it was run, the function returns a value of
LAUNCH_SUCCESS_FIRST. In this case, you must initialize the UltraLite
data store. Otherwise, you mustnot initialize the data store.

☞ For more information, see“ULPalmLaunch function” on
page 125“PalmLaunch method” on page??.

Closing an UltraLite Palm application

Whenever your UltraLite application is closed, and the user switches to
another application, your code must callULPalmExit to save its state. Some
kinds of data cannot be kept open during the time that you move away from
an UltraLite application.

Do not calldb_fini to close the application. Instead, callULPalmExit . All
connections (on a single SQLCA) and cursors remain open.

☞ For more information, see“ULPalmExit function” on page 124, and
“PalmExit method”[UltraLite Static C++ User’s Guide,page 91].

77

Building multi-segment applications
☞ Application code for the Palm Computing Platform must be divided into
segments. For CodeWarrior, these segments are at most 64 kb in size. This
section describes how to manage the assignment of code into segments.

☞ UltraLite applications include the following types of code:

♦ User-defined code Application code, including the.cppfile generated
by the SQL Preprocessor.

♦ Generated code for SQL statements Code generated by the UltraLite
Analyzer to execute SQL statements.

♦ Generated code for the database schema Code generated by the
UltraLite Analyzer to represent the database tables.

♦ Runtime library The UltraLite runtime library is compiled as
multi-segment code. Segment names of the form ULRTn and ULRTnn
are reserved for the UltraLite runtime libraries.

☞ Building multi-segment applications is a general feature of application
development for the Palm Computing Platform, whether or not you are using
UltraLite. Some familiarity with building multi-segment applications using
your development tool is assumed. User-defined code is no different to other
standard Palm applications. For a reminder about assigning user-defined
code to segments, see“Assigning user-defined code to segments” on
page 79.

You can partition generated code into segments in the following ways:

♦ Enable multi-segment code generation, but let the UltraLite Analyzer
assign segments in a default manner.

☞ For more information, see“Enabling multi-segment code generation”
on page 78.

♦ Enable multi-segment code-generation and explicitly assign segments
yourself.

☞ For more information, see“Explicitly assigning segments” on
page 79.

Enabling multi-segment code generation

This section describes how to instruct the UltraLite Analyzer to generate
multi-segment code using its default scheme. If you wish to customize the
assignment of code to segments by explicitly assigning functions to

78

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

segments, you can do so. For more information, see“Explicitly assigning
segments” on page 79.

You enable generated code segments by defining macros.

❖ To enable multi-segment code generation

1. Define a prefix file for your CodeWarrior project with the following
contents:

#define UL_ENABLE_SEGMENTS
#include "ulpalmXX.h"

where XX=30, 31, 35, or 40.

☞ For more information, see “UL_ENABLE_SEGMENTS macro”
[UltraLite Database User’s Guide,page 216].

Notes When multi-segment code generation is enabled, the default behavior of the
UltraLite Analyzer is as follows:

♦ The generated schema code fits into a single segment and is assigned to a
segment named ULSEGDB.

♦ For the C++ API, the generated statement code is assigned to a segment
named ULSEGDEF.

♦ For embedded SQL, the generated statement code is assigned to a
segment with a generated name based on the.sqcfile. All the code for a
single.sqcfile goes into a single segment.

Explicitly assigning segments

This section describes how to explicitly assign the generated code for SQL
statements to segments. You must first enable multi-segment code generation
as described in“Enabling multi-segment code generation” on page 78.

Explicit segment assignment requires a database upgraded to version 8 or
later standards.

❖ To explicitly assign generated statement code to segments

1. Split your.sqcfiles into separate files. The generated code for the
statements in each.sqcfile is placed into a separate segment.

Assigning user-defined code to segments

Assigning user-defined code to segments is a standard part of programming
applications for the Palm Computing Platform. This section is intended as a
reminder for Palm programmers.

79

❖ To assign user-defined code to segments (CodeWarrior)

1. Add the following line at various places in your.sqcfile or .cppfile:

#pragma segment segment-name

wheresegment-nameis a unique name for the segment This forces code
after each#pragma line to be in a separate segment.

The first segment You must ensure thatPilotMain and all functions called inPilotMain are in
the first segment.

If necessary, you can add a line of the following form before your startup
code:

#pragma segment segment-name

wheresegment-nameis the name of your first segment.

For more information on prefix files and segments, see your Palm developer
documentation.

80

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

Adding HotSync synchronization to Palm
applications

If you use HotSync, then you synchronize by callingULPalmLaunch when
your application is launched, andULPalmExit when your application is
closed. Do not useULSynchronize for HotSync synchronization.

To call HotSync synchronization from your application you must add code
for the following steps:

1. Prepare aul_synch_infostructure.

2. Call ULPalmExit function, supplying theul_synch_infostructure as an
argument.

This function is called when the user switches away from the UltraLite
application. You must ensure that all outstanding operations are
committed before callingULPalmExit . Theul_synch_info.stream
parameter is ignored, and so does not need to be set.

For example:

ul_synch_info info;
ULInitSynchInfo(&info);
info.stream_parms =

UL_TEXT("stream=tcpip;host=localhost");
info.user_name = UL_TEXT("50");
info.version = UL_TEXT("custdb");

if(!ULPalmExit(&sqlca, &info)) {
return(false);

}

3. Call ULPalmLaunch.

☞ For more information, see“Launching and closing UltraLite
applications” on page 77, and “Synchronization parameters”[UltraLite
Database User’s Guide,page 162].

A MobiLink HotSync conduit is required for HotSync synchronization of
UltraLite applications. If there are uncommitted transactions when you close
your Palm application, and if you synchronize, the conduit reports that
synchronization fails because of uncommitted changes in the database.

Specifying the stream
parameters

The synchronization stream parameters in theul_synch_infostructure
control communication with the MobiLink synchronization server. For
HotSync synchronization, the UltraLite application does not communicate
directly with a MobiLink synchronization server; it is the HotSync conduit
instead.

81

You can supply synchronization stream parameters to govern the behavior of
the MobiLink conduit in one of the following ways:

♦ Supply the required information in thestream_parmsmember of
ul_synch_infopassed toULPalmExit .

☞ For a list of available values, see “Stream parameters reference”
[UltraLite Database User’s Guide,page 179].

♦ Supply a null value for thestream_parmsmember. The MobiLink
conduit then searches in theClientParmsregistry entry on the machine
where it is running for information on how to connect to the MobiLink
synchronization server.

The stream and stream parameters in the registry entry are specified in
the same format as in theul_synch_infostructurestream_parmsfield.

☞ For more information, see “HotSync configuration overview”
[MobiLink Synchronization User’s Guide,page 211].

See also ☞ For information about configuring HotSync, including a description of
how to set up your MobiLink HotSync conduit, see “Configuring the
MobiLink HotSync conduit”[MobiLink Synchronization User’s Guide,page 214].

82

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

Adding TCP/IP, HTTP, or HTTPS synchronization to
Palm applications

This section describes how to add TCP/IP, HTTP, or HTTPS synchronization
to your Palm application.

☞ For a general description of how to add synchronization to UltraLite
applications, see“Adding synchronization to your application” on page 62.

Transport layer security
on the Palm Computing
Platform

You can use transport-layer security with Palm applications built with
Metrowerks CodeWarrior.

☞ For information on transport-layer security, see “Transport-Layer
Security” [MobiLink Synchronization User’s Guide,page 337].

Palm devices can synchronize using TCP/IP, HTTP, or HTTPS
communication by setting thestreammember of theul_synch_info
structure to the appropriate stream, and callingULSynchronize to carry out
the synchronization.

When using TCP/IP, HTTP, or HTTPS synchronization,ULPalmLaunch
andULPalmExit() save and restore the state of the application on exiting
and activating the application, but do not participate in synchronization.
These functions take theul_synch_infostructure as an argument, but in this
case do not use it. You should set the stream member to NULL (the default)
when callingULPalmExit() or ULPalmLaunch .

When using TCP/IP, HTTP, or HTTPS synchronization from a Palm device,
you must specify an explicit host name or IP number in thestream_parms
member of theul_synch_infostructure. Specifying NULL defaults to
localhost , which represents the device, not the host.

☞ For information on theul_synch_infostructure, see “Stream parameters
reference”[UltraLite Database User’s Guide,page 179].

83

Deploying Palm applications
This section describes the following aspects of deploying Palm applications:

♦ Deploying the application.

☞ See“Deploying applications on the Palm Computing Platform” on
page??.

♦ Deploying the MobiLink synchronization conduit for HotSync.

☞ See “Deploying the MobiLink HotSync conduit”[MobiLink
Synchronization User’s Guide,page 216].

♦ Deploying an initial copy of the UltraLite database.

☞ See“Deploying UltraLite databases on the Palm Computing
Platform” on page??.

Install your UltraLite application on your Palm device as you would any
other Palm Computing Platform application.

❖ To install an application on a Palm device

1. Open the Install Tool, included with your Palm Desktop Organizer
Software.

2. Choose Add and locate your compiled application (.prc file).

3. Close the Install Tool.

4. HotSync to copy the application to your Palm device.

Deploying the MobiLInk
synchronization conduit

For applications using HotSync synchronization, each end user must have
the MobiLink synchronization conduit installed on their desktop.

☞ For more information about installing the MobiLink synchronization
conduit, see “Deploying the MobiLink HotSync conduit”[MobiLink
Synchronization User’s Guide,page 216].

Deploying UltraLite
databases

If you deploy your application without a database, the database is created the
first time it is accessed from the application. The user must then download
an initial copy of data on the first synchronization. You can use theULUtil
utility to back up the UltraLite database to the PC. To deploy many UltraLite
databases with an initial database including data, you can perform an initial
synchronization and then back up the UltraLite database. The database can
be deployed on other devices so they do not need to perform an initial
synchronization.

☞ For more information, see “The UltraLite utility”[UltraLite Database
User’s Guide,page 103].

84

Chapter 6. Developing UltraLite Applications for the Palm Computing Platform

If you are using HotSync synchronization, each of your end users must also
install the synchronization conduit onto their desktop machine.

☞ For information on installing the synchronization conduit, see
“Configuring the MobiLink HotSync conduit”[MobiLink Synchronization
User’s Guide,page 214].

If you deploy a database using HotSync, HotSync sets abackup bit on the
database. When this backup bit is set, the entire database is backed up to the
desktop machine on each synchronization. This behavior is generally not
appropriate for UltraLite databases. When an UltraLite application is
launched, the Palm data store is checked to see if its backup bit is set to true.
If it is set, it is cleared. If it is not set, there is no change.

If you wish the backup bit to remain set to true, you can set the store
parameterpalm_allow_backup in UL_STORE_PARMS.

☞ For more information, see “UL_STORE_PARMS macro”[UltraLite
Database User’s Guide,page 216].

85

CHAPTER 7

Developing UltraLite Applications for
Windows CE

About this chapter This chapter describes details of development, deployment and
synchronization that are specific to Windows CE. These instructions assume
familiarity with the general development process. They assist in building the
CustDB sample application, included with your UltraLite software, on each
of these platforms.

Contents Topic: page

Introduction 88

Building the CustDB sample application 90

Storing persistent data 92

Deploying Windows CE applications 93

Synchronization on Windows CE 96

87

Introduction
This section contains instructions pertaining to building UltraLite
applications for use under Microsoft Windows CE.

☞ For a list of supported host platforms and development tools for
Windows CE development, and for a list of supported target Windows CE
platforms, see“Supported platforms for C/C++ applications” on page??.

You can test your applications under an emulator on most Windows CE
target platforms.

Preparing for
Windows CE
development

The recommended development environment for Windows CE at the time of
writing is Microsoft eMbedded Visual C++ 3.0. This development
environment is available from Microsoft as part of eMbedded Visual Tools.

☞ You can download eMbedded Visual C++ from the Microsoft Developer
Network athttp://www.microsoft.com/mobile/downloads/emvt30.asp.

A first application A sample eMbedded Visual C++ 3.0 project is provided in the
Samples\UltraLite\CEStarterdirectory under your SQL Anywhere directory.
The workspace file isSamples\UltraLite\CEStarter\ul_wceapplication.vcw.

When preparing to use eMbedded Visual C++ for UltraLite applications, you
should make the following changes to the project settings. The CEStarter
application has these changes made.

♦ Compiler settings:

• Add $(ASANY9)\h to the include path.

• Define appropriate compiler directives. For example, the UNDER_CE
macro should be defined for eMbedded Visual C++ projects.

♦ Linker settings:

• Add “$(ASANY9)\ultralite\ce\processor\lib\ulrt.lib”
whereprocessoris the target processor for your application.

• Add winsock.lib.

♦ The.sqcfile:

• Add ul_database.sqcandul_database.cppto the project

• Add the following custom build step for the.sqcfile:

"$(ASANY9) \win32 \sqlpp" -q -c "dsn=UltraLite 9.0 Sample"
$(InputPath) ul_database.cpp

• Set the output file toul_database.cpp.

• Disable the use of precompiled headers forul_database.cpp.

88

Chapter 7. Developing UltraLite Applications for Windows CE

Choosing how to link the runtime library

Windows CE supports dynamic link libraries. At link time, you have the
option of linking your UltraLite application to the runtime DLL using an
imports library, or statically linking your application using the UltraLite
runtime library.

If you have a single UltraLite application on your target device, a statically
linked library uses less memory. If you have multiple UltraLite applications
on your target device, using the DLL may be more economical in memory
use.

If you are repeatedly downloading UltraLite applications to a device, over a
slow link, then you may want to use the DLL in order to minimize the size
of the downloaded executable, after the initial download.

❖ To build and deploy an application using the UltraLite runtime
DLL
1. Preprocess your code, then compile the output with UL_USE_DLL.

2. Link your application using the UltraLite imports library.

3. Copy both your application executable and the UltraLite runtime DLL to
your target device.

89

Building the CustDB sample application
CustDB is a simple sales-status application. It is located in the UltraLite
samplesdirectory of your Adaptive Server Anywhere installation. Generic
files are located in theCustDBdirectory. Files specific to Windows CE are
located in thece subdirectory ofCustDB.

The CustDB application is provided as an eMbedded Visual C++ 3.0 project.

☞ For a diagram of the sample database schema, see“The UltraLite
sample database” on page??.

❖ To build the CustDB sample application

1. Start eMbedded Visual C++.

2. Open the project file that corresponds to your version of eMbedded
Visual C++:

♦ Samples\UltraLite\CustDB\EVC\EVCCustDB.vcpfor eVC 3.0.

♦ Samples\UltraLite\CustDB\EVC40\EVCCustDB.vcpfor eVC 4.0.

3. Choose Build➤ Set Active Platform to set the target platform.
♦ Set a platform of your choice.

4. Choose Build->Set Active Configuration to select the configuration.
♦ Set an active configuration of your choice.

5. If you are building CustDB for the Pocket PC x86em emulator platform
only:

♦ Choose Project➤ Settings. The Project Settings dialog appears.

♦ On the Link tab, in the Object/library modules box, change the
UltraLite runtime library entry to theemulator30directory rather than
theemulatordirectory.

6. Build the application:
♦ Press F7 or select Build➤ Build EVCCustDB.exe to build CustDB.

When eMbedded Visual C++ has finished building the application, it
automatically attempts to upload it to the remote device.

7. Start the synchronization server:
♦ To start the MobiLink synchronization server, select Programs➤

Sybase SQL Anywhere 9➤ MobiLink ➤ Synchronization Server
Sample.

8. Run the CustDB application:

PressCTRL+F5 or select Build➤ Execute CustDB.exe

90

Chapter 7. Developing UltraLite Applications for Windows CE

Folder locations and environment variables
The sample project uses environment variables wherever possible. It may
be necessary to adjust the project in order for the application to build
properly. If you experience problems, try searching for missing files in the
MS VC++ folder and adding the appropriate directory settings.

The build process uses the SQL preprocessor,sqlpp, to preprocess the file
CustDB.sqcinto the fileCustDB.c. This one-step process is useful in
smaller UltraLite applications where all the embedded SQL can be confined
to one source module. In larger UltraLite applications, you need to use
multiplesqlppinvocations followed by oneulgencommand to create the
customized remote database.

☞ For more information, see“Pre-processing your embedded SQL files”
on page??.

91

Storing persistent data
The UltraLite database is stored in the Windows CE file system. The default
file is \UltraLiteDB\ul_<project>.udb, with projectbeing truncated to eight
characters. You can override this choice using thefile_nameparameter
which specifies the full pathname of the file-based persistent store.

The UltraLite runtime carries out no substitutions on thefile_name
parameter. If a directory has to be created in order for the file name to be
valid, the application must ensure that any directories are created before
callingdb_init .

As an example, you could make use of a flash memory storage card by
scanning for storage cards and prefixing a name by the appropriate directory
name for the storage card. For example,

file_name = " \\Storage Card \\My Documents \\flash.udb"

Example The following sample embedded SQL code sets thefile_nameparameter:

#undef UL_STORE_PARMS
#define UL_STORE_PARMS UL_TEXT(

"file_name= \\uldb \\my own name.udb;cache_size=128k")
...
db_init(&sqlca);

92

Chapter 7. Developing UltraLite Applications for Windows CE

Deploying Windows CE applications
When compiling UltraLite applications for Windows CE, you can link the
UltraLite runtime library either statically or dynamically. If you link it
dynamically, you must copy the UltraLite runtime library for your platform
to the target device.

❖ To build and deploy an application using the UltraLite runtime
DLL
1. Preprocess your code, then compile the output with UL_USE_DLL.

2. Link your application using the UltraLite imports library.

3. Copy both your application executable and the UltraLite runtime DLL to
your target device.

The UltraLite runtime DLL is in chip-specific directories under the
UltraLite\cesubdirectory of your SQL Anywhere directory.

To deploy the UltraLite runtime DLL for the Windows CE emulator, place
the DLL in the appropriate subdirectory of your Windows CE tools directory.
The following directory is the default setting for the Pocket PC emulator:

C: \Program Files \Windows CE Tools \wce300\MS Pocket PC\
emulation \palm300 \windows

Deploying applications that use ActiveSync

Applications that use ActiveSync synchronization must be registered with
ActiveSync and copied to the device. The MobiLink provider for
ActiveSync must also be installed.

☞ For more information, see “Deploying applications that use ActiveSync”
[MobiLink Synchronization User’s Guide,page 225], “Installing the MobiLink
provider for ActiveSync”[MobiLink Synchronization User’s Guide,page 223]
and “Registering applications for use with ActiveSync”[MobiLink
Synchronization User’s Guide,page 224].

Assigning class names for applications

When registering applications for use with ActiveSync you must supply a
window class name. Assigning class names is carried out at development
time and your application development tool documentation is the primary
source of information on the topic.

Microsoft Foundation Classes (MFC) dialog boxes are given a generic class
name ofDialog, which is shared by all dialogs in the system. This section

93

describes how to assign a distinct class name for your application if you are
using MFC and eMbedded Visual C++.

❖ To assign a window class name for MFC applications using eM-
bedded Visual C++
1. Create and register a custom window class for dialog boxes, based on the

default class.

Add the following code to your application’s startup code. The code must
be executed before any dialogs get created:

WNDCLASS wc;
if(! GetClassInfo(NULL, L"Dialog", &wc)) {

AfxMessageBox(L"Error getting class info");
}
wc.lpszClassName = L"MY_APP_CLASS";
if(! AfxRegisterClass(&wc)) {

AfxMessageBox(L"Error registering class");
}

whereMY_APP_CLASSis the unique class name for your application.

2. Determine which dialog is the main dialog for your application.

If your project was created with the MFC Application Wizard, this is
likely to be a dialog namedCMyAppDlg .

3. Find and record the resource ID for the main dialog.

The resource ID is a constant of the same general form as
IDD_MYAPP_DIALOG.

4. Ensure that the main dialog remains open any time your application is
running.

Add the following line to your application’sInitInstance function. The
line ensures that if the main dialogdlg is closed, the application also
closes.

m_pMainWnd = &dlg;

For more information see the Microsoft documentation for
CWinThread::m_pMainWnd .

If the dialog does not remain open for the duration of your application,
you must change the window class of other dialogs as well.

5. Save your changes.

If eMbedded Visual C++ is open, save your changes and close your
project and workspace.

6. Modify the resource file for your project.

94

Chapter 7. Developing UltraLite Applications for Windows CE

♦ Open your resource file (which has an extension of.rc) in a text editor
such as notepad.

Locate the resource ID of your main dialog.

♦ Change the main dialog’s definition to use the new window class as in
the following example. Theonly change that you should make is the
addition of theCLASS line:

IDD_MYAPP_DIALOG DIALOG DISCARDABLE 0, 0, 139, 103
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION
EXSTYLE WS_EX_APPWINDOW | WS_EX_CAPTIONOKBTN
CAPTION "MyApp"
FONT 8, "System"
CLASS "MY_APP_CLASS"
BEGIN

LTEXT "TODO: Place dialog controls here.",IDC_
STATIC,13,33,112,17

END

whereMY_APP_CLASSis the name of the window class you used
earlier.

♦ Save the.rc file.

7. Reopen eMbedded Visual C++ and load your project.

8. Add code to catch the synchronization message.

☞ For information, see“Adding ActiveSync synchronization (MFC)”
on page 97.

95

Synchronization on Windows CE
UltraLite applications on Windows CE can synchronize through the
following streams:

♦ ActiveSync See“Adding ActiveSync synchronization to your
application” on page 96

♦ TCP/IP See“TCP/IP, HTTP, or HTTPS synchronization from
Windows CE” on page 99.

♦ HTTP See“TCP/IP, HTTP, or HTTPS synchronization from
Windows CE” on page 99.

Theuser_nameandstream_parmsparameters must be surrounded by the
UL_TEXT() macro for Windows CE when initializing, since the
compilation environment is Unicode wide characters.

☞ For information on adding synchronization to your application, see
“Adding synchronization” on page??. For detailed information on
synchronization parameters, see“Synchronization stream parameters” on
page??.

Adding ActiveSync synchronization to your application

ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. UltraLite supports ActiveSync versions 3.1 and 3.5.

This section describes how to add ActiveSync to your application, and how
to register your application for use with ActiveSync on your end users’
machines.

If you use ActiveSync, synchronization can be initiated only by ActiveSync
itself. ActiveSync automatically initiates a synchronization when the device
is placed in the cradle or when the Synchronization command is selected
from the ActiveSync window. The MobiLink provider starts the application,
if it is not already running, and sends a message to the application.

☞ For information on setting up ActiveSync synchronization, see
“Deploying applications that use ActiveSync” on page 93.

The ActiveSync provider uses thewParam parameter. AwParam value of
1 indicates that the MobiLink provider for ActiveSync launched the
application. The application must then shut itself down after it has finished
synchronizing. If the application was already running when called by the
MobiLink provider for ActiveSync,wParam is 0. The application can
ignore thewParam parameter if it wants to keep running.

96

Chapter 7. Developing UltraLite Applications for Windows CE

☞ Adding synchronization depends on whether you are addressing the
Windows API directly or whether you are using the Microsoft Foundation
Classes. Both development models are described here.

Adding ActiveSync synchronization (Windows API)

If you are programming directly to the Windows API, you must handle the
message from the MobiLink provider in your application’sWindowProc
function, using theULIsSynchronizeMessagefunction to determine if it
has received the message.

Here is an example of how to handle the message:

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
if(ULIsSynchronizeMessage(uMsg)) {

DoSync();
if(wParam == 1) DestroyWindow(hWnd);
return 0;

}
switch(uMsg) {
// code to handle other windows messages
default:

return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return 0;

}

whereDoSyncis the function that actually calls ULSynchronize.

☞ For more information, see“ULIsSynchronizeMessage function” on
page 122.

Adding ActiveSync synchronization (MFC)

If you are using Microsoft Foundation Classes to develop your application,
you can catch the synchronization message in the main dialog class or in
your application class. Both methods are described here.

☞ Your application must create and register a custom window class name
for notification. See“Assigning class names for applications” on page 93.

97

❖ To add ActiveSync synchronization in the main dialog class

1. Add a registered message and declare a message handler.

Find the message map in the source file for your main dialog (the name
is of the same form asCMyAppDlg.cpp). Add a registered message
using thestatic and declare a message handler using
ON_REGISTERED_MESSAGEas in the following example:

static UINT WM_ULTRALITE_SYNC_MESSAGE =
::RegisterWindowMessage(UL_AS_SYNCHRONIZE);

BEGIN_MESSAGE_MAP(CMyAppDlg, CDialog)
//{{AFX_MSG_MAP(CMyAppDlg)
//}}AFX_MSG_MAP

ON_REGISTERED_MESSAGE(WM_ULTRALITE_SYNC_MESSAGE,
OnDoUltraLiteSync)

END_MESSAGE_MAP()

2. Implement the message handler.

Add a method to the main dialog class with the following signature. This
method is automatically executed any time the MobiLink provider for
ActiveSync requests that your application synchronize. The method
should callULSynchronize.

LRESULT CMyAppDlg::OnDoUltraLiteSync(
WPARAM wParam,
LPARAM lParam

);

The return value of this function should be 0.

☞ For information on handling the synchronization message, see
“ULIsSynchronizeMessage function” on page 122.

98

Chapter 7. Developing UltraLite Applications for Windows CE

❖ To add ActiveSync synchronization in the Application class

1. Open up the Class Wizard for the application class.

2. In the Messages list, highlight PreTranslateMessage and then click the
Add Function button.

3. Click the Edit Code button. The PreTranslateMessage function appears.
Change it to read as follows:

BOOL CMyApp::PreTranslateMessage(MSG* pMsg)
{

if(ULIsSynchronizeMessage(pMsg->message)) {
DoSync();
// close application if launched by provider
if(pMsg->wParam == 1) {

ASSERT(AfxGetMainWnd() != NULL);
AfxGetMainWnd()->SendMessage(WM_CLOSE);

}
return TRUE; // message has been processed

}
return CWinApp::PreTranslateMessage(pMsg);

}

whereDoSyncis the function that actually calls ULSynchronize.

☞ For information on handling the synchronization message, see
“ULIsSynchronizeMessage function” on page 122.

TCP/IP, HTTP, or HTTPS synchronization from Windows CE

For TCP/IP, HTTP, or HTTPS synchronization, the application controls
when synchronization occurs. Your application will usually provide a menu
item or user interface control so that the user can request synchronization.

☞ For more information, see“Adding synchronization to your application”
on page 62.

99

CHAPTER 8

Embedded SQL Library Functions

About this chapter This chapter lists functions that can be used in UltraLite embedded SQL
applications. Use the EXEC SQL INCLUDE SQLCA command to include
prototypes for the functions in this chapter.

Contents Topic: page

db_fini function 103

db_init function 104

ULActiveSyncStream function 105

ULChangeEncryptionKey function 106

ULClearEncryptionKey function 107

ULCountUploadRows function 108

ULDropDatabase function 109

ULEnableFileDB function 110

ULEnableGenericSchema function 111

ULEnablePalmRecordDB function 112

ULEnableStrongEncryption function 113

ULEnableUserAuthentication function 114

ULGetLastDownloadTime function 115

ULGetSynchResult function 116

ULGlobalAutoincUsage function 118

ULGrantConnectTo function 119

ULHTTPSStream function 120

ULHTTPStream function 121

ULIsSynchronizeMessage function 122

ULPalmDBStream function (deprecated) 123

101

Topic: page

ULPalmExit function 124

ULPalmLaunch function 125

ULResetLastDownloadTime function 127

ULRetrieveEncryptionKey function 128

ULRevokeConnectFrom function 129

ULSaveEncryptionKey function 130

ULSetDatabaseID function 131

ULSocketStream function 132

ULStoreDefragFini function 133

ULStoreDefragInit function 134

ULStoreDefragStep function 135

ULSynchronize function 136

102

Chapter 8. Embedded SQL Library Functions

db_fini function
Prototype unsigned short db_fini(SQLCA * sqlca);

Description Frees resources used by the UltraLite runtime library.

You must not make any other library calls or execute any embedded SQL
commands afterdb_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0.If there are no errors, a
non-zero value is returned.

You need to calldb_fini once for each SQLCA being used.

Palm Computing Platform
Do not calldb_fini on the Palm Computing Platform. The database must
be kept open when you leave the application. UseULPalmExit to save the
state of the application between sessions instead of callingdb_fini.

See also “db_init function” on page 104

103

db_init function
Prototype unsigned short db_init(SQLCA * sqlca) ;

Description Initializes the UltraLite runtime library and creates a new UltraLite database,
if one does not exist.

This function must be called before any other library call is made, and
before any embedded SQL command is executed. Exceptions to this rule are
as follows:

♦ On the Palm Computing Platform, theULPalmLaunch function can be
called beforedb_init . The resources that this library requires for your
program are allocated and initialized on this call.

On the Palm Computing Platform, calldb_init whenever
ULPalmLaunch returns LAUNCH_SUCCESS_FIRST. For more
information, see“ULPalmLaunch function” on page 125.

♦ Functions that configure database storage can be called. These functions
have names starting withULEnable.

If there are any errors during processing (for example, during initialization
of the persistent store), they are returned in the SQLCA and 0 is returned. If
there are no errors, a non-zero value is returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the globalsqlcavariable defined in thesqlca.hheader file). If you have
multiple execution paths in your application, you can use more than one
db_init call, as long as each one has a separatesqlcapointer. This separate
SQLCA pointer can be a user-defined one, or could be a global SQLCA that
has been freed usingdb_fini.

In multi-threaded applications, each thread must calldb_init to obtain a
separate SQLCA. Subsequent connections and transactions that use this
SQLCA must be carried out on a single thread.

See also “db_fini function” on page 103

“ULPalmLaunch function” on page 125

“Developing multi-threaded applications” on page 70

104

Chapter 8. Embedded SQL Library Functions

ULActiveSyncStream function
Prototype ul_stream_defn ULActiveSyncStream(void);

Description Defines an ActiveSync stream suitable for synchronization.

The ActiveSync stream is available only on Windows CE devices.

Synchronization using ULActiveSyncStream must be initiated from the
ActiveSync software. The application receives a message, which must be
handled in itsWindowProc function. You can use
ULIsSynchronizeMessageto identify the message as an instruction to
synchronize.

See also “ULIsSynchronizeMessage function” on page 122

“ULSynchronize function” on page 136

“Synchronize method”[UltraLite Static C++ User’s Guide,page 87]

“ActiveSync synchronization stream parameters”[UltraLite Database User’s
Guide,page 179]

105

ULChangeEncryptionKey function
Prototype ul_bool ULChangeEncryptionKey(SQLCA *sqlca, ul_char *new_key);

Description Changes the encryption key for an UltraLite database.

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is unrecov-
erable. If the application is interrupted part-way through, the database is
invalid and cannot be accessed. A new one must be created.

See also “Changing the encryption key for a database” on page 58

106

Chapter 8. Embedded SQL Library Functions

ULClearEncryptionKey function
Prototype ul_bool ULClearEncryptionKey(

ul_u_long * creator ,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palmfeature. Features are indexed by creator and a feature
number.

This function clears the encryption key.

Parameters creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

See also “ULRetrieveEncryptionKey function” on page 128

“ULSaveEncryptionKey function” on page 130

“Using the encryption key on the Palm Computing Platform” on page 59

107

ULCountUploadRows function
Prototype ul_u_long ULCountUploadRows (

SQLCA * sqlca,
ul_publication_mask publication-mask ,
ul_u_long threshold);

Description Returns the number of rows that need to be synchronized, either in a set of
publications or in the whole database.

One use of the function is to prompt users to synchronize.

Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications to check. A value of 0 corresponds
to the entire database. The set is supplied as a mask. For example, the
following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see “Designing sets of data
to synchronize separately”[UltraLite Database User’s Guide,page 156].

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

Example The following call checks the entire database for the number of rows to be
synchronized:

count = ULCountUploadRows(sqlca, 0, 0);

The following call checks publications PUB1 and PUB2 for a maximum of
1000 rows:

count = ULCountUploadRows(sqlca,
UL_PUB_PUB1 | UL_PUB_PUB2, 1000);

The following call checks to see if any rows need to be synchronized:

count = ULCountUploadRows(sqlca, UL_SYNC_ALL, 1);

108

Chapter 8. Embedded SQL Library Functions

ULDropDatabase function
Prototype ul_bool ULDropDatabase (SQLCA * sqlca, ul_char * store-parms);

Description Delete the UltraLite database file.

Caution
This function deletes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only beforedb_init or afterdb_fini.

On the Palm OS, call this function only afterULPalmExit or before
ULPalmLaunch (but after anyULEnable functions have been called)

Parameters sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name to
delete as a keyword-value pair of the formfile_name=file.udb. It is often
convenient to use the UL_STORE_PARMS macro as this argument. A value
of UL_NULL deletes the default database filename.

☞ For more information, see “UL_STORE_PARMS macro”[UltraLite
Database User’s Guide,page 216].

Returns ♦ ul_true Indicates that database files was successfully deleted.

♦ ul_false The detailed error message is defined by the sqlcode field in
the SQLCA. The usual reason for failure is that an incorrect filename was
supplied or that access to the file was denied, perhaps because it is
opened by an application.

Example The following call deletes the UltraLite database filemyfile.udb.

#define UL_STORE_PARMS UL_TEXT("file_name=myfile.udb")
if(ULDropDatabase(&sqlca;, UL_STORE_PARMS)){

// success
};

109

ULEnableFileDB function
Prototype void ULEnableFileDB(SQLCA * sqlca);

Description Use a file-based data store on a device operating the Palm Computing
Platform version 4.0 or later. To use the file-based data store on a Palm
expansion card, an UltraLite application must callULEnableFileDB to load
the persistent storage file-I/O modules before callingULPalmLaunch.

This function can be used by C++ API applications as well as embedded
SQL applications.

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

Examples The following code sample illustrates the use of theULEnableFileDB
function, which is called beforeULPalmLaunch.

ULEnableFileDB(&sqlca);
switch(ULPalmLaunch(&sqlca, &sync_info) ({
case LAUNCH_SUCCESS_FIRST:

// do init
break;

case LAUNCH_SUCCESS:
// do something
break;

case LAUNCH_FAIL:
// handle error
break;

}

See also “ULEnablePalmRecordDB function” on page 112

110

Chapter 8. Embedded SQL Library Functions

ULEnableGenericSchema function
Prototype void ULEnableGenericSchema(SQLCA * sqlca);

Description When a new UltraLite application is deployed to a device, UltraLite by
default re-creates an empty database, losing any data that was in the database
before the new application was deployed. If you call
ULEnableGenericSchema, the existing database is instead upgraded to the
schema of the new application.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called beforedbinit or ULData.Open(). An
exception is the Palm Computing Platform, where there is no need to close
all cursors before upgrading. Immediately following an upgrade on the Palm
Computing Platform the LAUNCH_SUCCESS_FIRST launch code is
returned.

Backup before upgrading
It is strongly recommended that you backup your data before attempting
an upgrade, either by copying the database file or by synchronizing.

For more information about the schema upgrade process, see “How the
schema upgrade works”[UltraLite Database User’s Guide,page 31].

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

111

ULEnablePalmRecordDB function
Prototype void ULEnablePalmRecordDB(SQLCA * sqlca);

Description Use a standard record-based data store on a device operating the Palm
Computing Platform. You must callULEnablePalmRecordDBor
ULEnableFileDB before callingULPalmLaunch.

This function can be used by C++ API applications as well as embedded
SQL applications.

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

Examples The following code sample illustrates the use of the
ULEnablePalmRecordDBfunction, which is called before
ULPalmLaunch.

ULEnablePalmRecordDB(&sqlca);
switch(ULPalmLaunch(&sqlca, &sync_info) ({
case LAUNCH_SUCCESS_FIRST:

// do init
break;

case LAUNCH_SUCCESS:
// do something
break;

case LAUNCH_FAIL:
// handle error
break;

}

See also “ULEnableFileDB function” on page 110

112

Chapter 8. Embedded SQL Library Functions

ULEnableStrongEncryption function
Prototype void ULEnableStrongEncryption(SQLCA * sqlca)

Description Strongly encrypt an UltraLite database.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called beforedbinit() or ULData.Open().

Parameters sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

See also “Encrypting UltraLite databases” on page 56

“Changing the encryption key for a database” on page 58

113

ULEnableUserAuthentication function
Prototype void ULEnableUserAuthentication(SQLCA * sqlca);

Description Enable user authentication in the UltraLite application.

If you do not call this function, no user ID or password is required to access
an UltraLite database. With this function, your application must supply a
valid user ID and password. UltraLite databases are created with a single
authenticated user IDDBA which has initial passwordSQL.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called beforedbinit() or ULData.Open().

See also “User authentication”[UltraLite Database User’s Guide,page 38]

“Adding user authentication to your application” on page 52

114

Chapter 8. Embedded SQL Library Functions

ULGetLastDownloadTime function
Prototype ul_bool ULGetLastDownloadTime(

SQLCA * sqlca,
ul_publication_mask publication-mask ,
DECL_DATETIME * value);

Description Obtains the last time a specified publication was downloaded.

Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications for which the last download time
is retrieved. A value of 0 corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see “Designing sets of data
to synchronize separately”[UltraLite Database User’s Guide,page 156].

value A pointer to the DECL_DATETIME structure to be populated.

A value ofJanuary 1, 1990indicates that the publication has yet to be
synchronized.

Returns ♦ true Indicates thatvalueis successfully populated by the last download
time of the publication specified bypublication-mask.

♦ false Indicates thatpublication-maskspecifies more than one
publication or that the publication is undefined. If the return value is
false, the contents ofvalueare not meaningful.

Examples The following call populates thedt structure with the date and time that
publication UL_PUB_PUB1 was downloaded:

DECL_DATETIME dt;
ret = ULGetLastDownloadTime(&sqlca, UL_PUB_PUB1, &dt);

The following call populates thedt structure with the date and time that the
entire database was last downloaded. It uses the special UL_SYNC_ALL
publication mask.

ret = ULGetLastDownloadTime(&sqlca, UL_SYNC_ALL, &dt);

See also “UL_SYNC_ALL macro” [UltraLite Database User’s Guide,page 217]

“UL_SYNC_ALL_PUBS macro”[UltraLite Database User’s Guide,page 217]

115

ULGetSynchResult function
Prototype ul_bool ULGetSynchResult(ul_synch_result * synch-result);

Description Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:

The application must allocate aul_synch_resultobject before passing it to
ULGetSynchResult. The function fills theul_synch_resultwith the result
of the last synchronization. These results are stored persistently in the
database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes
place outside the application itself. The SQLCODE value set in the call to
ULPalmLaunch reflects theULPalmLaunch operation itself. The
synchronization status and results are written to the HotSync log only. To
obtain extended synchronization result information, call
ULGetSynchResultafter a successfulULPalmLaunch.

Parameters synch-result A structure to hold the synchronization result. It is defined in
ulglobal.has follows:.

typedef struct {
an_sql_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;
} ul_synch_result, * p_ul_synch_result;

where the individual members have the following meanings:

♦ sql_code The SQL code from the last synchronization. For a list of
SQL codes, see “Error messages indexed by Adaptive Server Anywhere
SQLCODE” [ASA Error Messages,page 2].

♦ stream_error The communication stream error code from the last
synchronization. For a listing, see “Database Error Messages”[ASA Error
Messages,page 1].

♦ upload_ok Set totrue if the upload was successful;falseotherwise.

♦ ignored_rows Set totrue if uploaded rows were ignored;false
otherwise.

116

Chapter 8. Embedded SQL Library Functions

♦ auth_status The synchronization authentication status. For more
information, see“auth_status parameter” on page 139.

♦ auth_value The value used by the MobiLink synchronization server to
determine theauth_statusresult. For more information, see“auth_value
synchronization parameter” on page 140.

♦ timestamp The time and date of the last synchronization.

♦ status The status information used by the observer function. For more
information, see“observer synchronization parameter” on page 142.

Returns The function returns a Boolean value.

true Success.

false Failure.

Examples The following code checks for success of the previous synchronization.

ul_synch_result synch_result;
memset(&synch_result, 0, sizeof(ul_synch_result));
db_init(&sqlca);
EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";
if(!ULGetSynchResult(&sqlca, &synch_result)) {

prMsg("ULGetSynchResult failed");
}

See also “ULPalmLaunch function” on page 125

117

ULGlobalAutoincUsage function
Prototype short ULGlobalAutoincUsage(SQLCA * sqlca);

Description Obtains the percent of the default values used in all the columns having
global autoincrement defaults. If the database contains more than one
column with this default, this value is calculated for all columns and the
maximum is returned. For example, a return value of 99 indicates that very
few default values remain for at least one of the columns.

Returns The function returns a value of type short in the range 0–100.

See also “ULSetDatabaseID function” on page 131

118

Chapter 8. Embedded SQL Library Functions

ULGrantConnectTo function
Prototype void ULGrantConnectTo(

SQLCA * sqlca,
ul_char * userid ,
ul_char * password);

Description Grant access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

Parameters sqlca A pointer to the SQLCA.

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password foruserid. The maximum
length is 16 characters.

See also “User authentication”[UltraLite Database User’s Guide,page 38]

“Adding user authentication to your application” on page 52

“ULRevokeConnectFrom function” on page 129

119

ULHTTPSStream function
Prototype ul_stream_defn ULHTTPSStream(void);

Description Defines an UltraLite HTTPS stream suitable for synchronization via HTTP.

The HTTPS stream uses TCP/IP as its underlying transport. UltraLite
applications act as Web browsers and MobiLink acts as a web server.

See also “ULSynchronize function” on page 136

“Synchronize method”[UltraLite Static C++ User’s Guide,page 87]

“stream synchronization parameter” on page 146

“HTTPS stream parameters”[UltraLite Database User’s Guide,page 186]

120

Chapter 8. Embedded SQL Library Functions

ULHTTPStream function
Prototype ul_stream_defn ULHTTPStream(void);

Description Defines an UltraLite HTTP stream suitable for synchronization via HTTP.

The HTTP stream uses TCP/IP as its underlying transport. UltraLite
applications act as Web browsers and MobiLink acts as a web server.
UltraLite applications send POST requests to send data to the server and
GET requests to read data from the server.

See also “ULSynchronize function” on page 136

“Synchronize method”[UltraLite Static C++ User’s Guide,page 87]

“stream synchronization parameter” on page 146

“HTTP stream parameters”[UltraLite Database User’s Guide,page 184]

121

ULIsSynchronizeMessage function
Prototype ul_bool ULIsSynchronizeMessage(ul_u_long uMsg);

Description On Windows CE, this function checks a message to see if it is a
synchronization message from the MobiLink provider for ActiveSync, so
that code to handle such a message can be called.

This function should be included in theWindowProc function of your
application.

Example The following code snippet illustrates how to use ULIsSynchronizeMessage
to handle a synchronization message.

LRESULT CALLBACK WindowProc(HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
if(ULIsSynchronizeMessage(uMsg)) {

// execute synchronization code
if(wParam == 1) DestroyWindow(hWnd);
return 0;

}

switch(uMsg) {

// code to handle other windows messages

default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}
return 0;

}

See also “Adding ActiveSync synchronization to your application” on page 96

122

Chapter 8. Embedded SQL Library Functions

ULPalmDBStream function (deprecated)
Prototype ul_stream_defn ULPalmDBStream(void);

Description Defines a stream under the Palm Computing Platform suitable for HotSync
and Scout Sync.

This function is deprecated. Thestreamparameter is not needed for
HotSync synchronization, and may be UL_NULL.

See also “ULPalmExit function” on page 124

“ULPalmLaunch function” on page 125

“HotSync synchronization stream parameters”[UltraLite Database User’s
Guide,page 181]

“Synchronize method”[UltraLite Static C++ User’s Guide,page 87]

123

ULPalmExit function
Prototype ul_bool ULPalmExit(SQLCA * sqlca, ul_synch_info * synch_info);

Description Saves application state for UltraLite applications on the Palm Computing
Platform, and writes out an upload stream for HotSync synchronization.
This function is required by all UltraLite Palm applications.

Call this function just before your application is closed, to save the state of
the application.

This function saves the application state when the application is deactivated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of writing an upload stream. When the user uses HotSync
or Scout Sync to synchronize data between their Palm device and a PC, the
upload stream is read by the MobiLink HotSync conduit or the MobiLink
Scout conduit respectively.

The MobiLink HotSync conduit synchronizes with the MobiLink
synchronization server through a TCP/IP or HTTP stream using stream
parameters. Specify the stream and stream parameters in
synch_info.stream_parms. Alternatively, you may specify the stream and
stream parameters via theClientParmsregistry entry. If theClientParms
registry entry does not exist, a default setting of
{stream=tcpip;host=localhost} is used.

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL
instead of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to
ULSynchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of thestreamparameter is ignored, and
may be UL_NULL.

☞ For information on the members of thesynch_infostructure, see
“Synchronization Parameters Reference” on page 137.

Returns The function returns a Boolean value.

true Success.

false Failure.

124

Chapter 8. Embedded SQL Library Functions

ULPalmLaunch function
Prototype UL_PALM_LAUNCH_RET ULPalmLaunch(

SQLCA * sqlca,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST ,
LAUNCH_SUCCESS ,
LAUNCH_FAIL
} UL_PALM_LAUNCH_RET;

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see“Synchronization parameters” on page 138.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL as
synch_info.

Description This function restores application state for UltraLite applications on the
Palm Computing Platform. This function is required by all UltraLite Palm
applications.

Your application must callULEnablePalmDB or ULEnableFileDB before
callingULPalmLaunch.

All UltraLite Palm applications need to use this function to handle the
launch code in your application’sPilotMain .

This function restores the application state when the application is activated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of processing the download stream prepared by the
MobiLink HotSync conduit or MobiLink Scout conduit.

If you are using TCP/IP or HTTP synchronization, supply a null value for
the stream parameter in theul_synch_infosynchronization structure. This
information is supplied instead in the call toULSynchronize.

Returns A member of theUL_PALM_LAUNCH_RET enumeration. The return
values have the following meanings:

♦ LAUNCH_SUCCESS_FIRST This value is returned the first time the
application is successfully launched and at any subsequent time the
internal state of the UltraLite database needs to be re-established. In
general, the state of the database needs to be re-established only after
severe failures.

In embedded SQL applications you should calldb_init immediately after
this return code is detected; in C++ API applications, you should open a

125

database object.

♦ LAUNCH_SUCCESS This value is returned when an application is
successfully launched, after the Palm user has been using other
applications.

♦ LAUNCH_FAIL This value is returned when the launch fails.

Examples A typical embedded SQL example is

ULEnablePalmRecordDB(&sqlca);
switch(ULPalmLaunch(&sqlca, &synch_info)){
case LAUNCH_SUCCESS_FIRST:

if(!db_init(&sqlca)){
// db_init failed: add error handling here
break;

}
// fall through

case LAUNCH_SUCCESS:
// do work here
break;

case LAUNCH_FAIL:
// error
break;

}

See also “Launching an UltraLite Palm application” on page 77

“ULEnableFileDB function” on page 110

“ULEnablePalmRecordDB function” on page 112

126

Chapter 8. Embedded SQL Library Functions

ULResetLastDownloadTime function
Prototype void ULResetLastDownloadTime(

SQLCA * sqlca,
ul_publication_mask publication-mask);

Description This function can be used to repopulate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications to check. A value of 0 corresponds
to the entire database. The set is supplied as a mask. For example, the
following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

☞ For more information on publication masks, see“publication
synchronization parameter” on page 144.

Example The following function call resets the last download time for all tables:

ULResetLastDownloadTime(&sqlca, UL_SYNC_ALL);

See also “ULGetLastDownloadTime function” on page 115

“Timestamp-based synchronization”[MobiLink Synchronization User’s Guide,
page 72]

127

ULRetrieveEncryptionKey function
Prototype ul_bool ULRetrieveEncryptionKey(

ul_char * key ,
ul_u_short len,
ul_u_long * creator ,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palmfeature. Features are indexed by creator and a feature
number.

This function retrieves the encryption key from memory.

Parameters key A pointer to a buffer in which to hold the retrieved encryption key.

len The length of the buffer that holds the encryption key with a
terminating null character.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

Returns ♦ true if the operation is successful.

♦ false if the operation is unsuccessful. This occurs if the feature was not
found or if the supplied buffer length is insufficient to hold the key plus a
terminating null character.

See also “ULClearEncryptionKey function” on page 107

“ULSaveEncryptionKey function” on page 130

“Using the encryption key on the Palm Computing Platform” on page 59

128

Chapter 8. Embedded SQL Library Functions

ULRevokeConnectFrom function
Prototype void ULRevokeConnectFrom(SQLCA * sqlca, ul_char * userid);

Description Revoke access from an UltraLite database for a user ID.

Parameters sqlca A pointer to the SQLCA.

userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

See also “User authentication”[UltraLite Database User’s Guide,page 38]

“Adding user authentication to your application” on page 52

“ULGrantConnectTo function” on page 119

129

ULSaveEncryptionKey function
Prototype ul_bool ULSaveEncryptionKey(

ul_char * key ,
ul_u_long * creator ,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palmfeature. Features are indexed by creator and a feature
number. They are not backed up and are cleared on any reset of the device.

This function saves the encryption key in Palm dynamic memory.

Parameters key A pointer to the encryption key.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

Returns ♦ true if the operation is successful.

♦ false if the operation is unsuccessful.

See also “ULClearEncryptionKey function” on page 107

“ULRetrieveEncryptionKey function” on page 128

“Using the encryption key on the Palm Computing Platform” on page 59

130

Chapter 8. Embedded SQL Library Functions

ULSetDatabaseID function
Prototype void ULSetDatabaseID(SQLCA * sqlca, ul_u_long id);

Description Sets the database identification number.

Parameters sqlca A pointer to the SQLCA.

id A positive integer that uniquely identifies a particular database in a
replication or synchronization setup.

See also “ULGlobalAutoincUsage function” on page 118

131

ULSocketStream function
Prototype ul_stream_defn ULSocketStream(void);

Description Defines an UltraLite socket stream suitable for synchronization via TCP/IP.

See also “ULSynchronize function” on page 136

“Synchronize method”[UltraLite Static C++ User’s Guide,page 87]

132

Chapter 8. Embedded SQL Library Functions

ULStoreDefragFini function
Prototype ul_ret_void ULStoreDefragFini(

SQLCA * sqlca,
p_ul_store_defrag_info dfi);

Description This function disposes of the defragmentation information block returned by
ULStoreDefragInit .

Parameters sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

See also “Defragmenting UltraLite databases” on page 60

“ULStoreDefragInit function” on page 134

133

ULStoreDefragInit function
Prototype p_ul_store_defrag_info ULStoreDefragInit(SQLCA * sqlca);

Description This function initializes and returns a defragmentation information block to
maintain the defragmentation state of the database.

Parameters sqlca A pointer to the SQLCA.

Returns If successful, returns a defragmentation information block
p_ul_store_defrag_info. If unsuccessful, for example if there is not enough
memory, returnsUL_NULL .

See also “Defragmenting UltraLite databases” on page 60

“ULStoreDefragFini function” on page 133

134

Chapter 8. Embedded SQL Library Functions

ULStoreDefragStep function
Prototype ul_bool ULStoreDefragStep(

SQLCA * sqlca
p_ul_store_defrag_info dfi);

Description This function defragments a piece of the database.

Parameters sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

Returns If the entire store has been defragmented, returnsul_true.

If the entire store is not defragmented, returnsul_false.

If an error occurs, SQLCODE is set.

See also “Defragmenting UltraLite databases” on page 60

“ULStoreDefragFini function” on page 133

“ULStoreDefragInit function” on page 134

135

ULSynchronize function
Prototype void ULSynchronize(

SQLCA * sqlca,
ul_synch_info * synch_info);

Description Initiates synchronization in an UltraLite application.

For TCP/IP or HTTP synchronization, theULSynchronize function initiates
synchronization. Errors during synchronization that are not handled by the
handle_error script are reported as SQL errors. Your application should test
the SQLCODE return value of this function.

Parameters sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see“Synchronization parameters” on page 138.

See also “MobiLink Synchronization Server Options”[MobiLink Synchronization
Reference,page 3]

“START SYNCHRONIZATION DELETE statement [MobiLink]”[MobiLink
Synchronization Reference,page 258]

136

CHAPTER 9

Synchronization Parameters Reference

About this chapter This chapter provides reference information about synchronization
parameters.

Contents Topic: page

Synchronization parameters 138

137

Synchronization parameters
The synchronization parameters are members of a structure that is provided
as an argument in the call to synchronize. Theul_synch_infostructure that
holds the synchronization parameters is defined inulglobal.has follows:

struct ul_synch_info {
ul_char * user_name;
ul_char * password;
ul_char * new_password;
ul_char * version;
p_ul_stream_defn stream;
ul_char * stream_parms;
p_ul_stream_defn security;
ul_char * security_parms;
ul_synch_observer_fn observer;
ul_void * user_data;
ul_publication_mask publication;
ul_bool upload_only;
ul_bool download_only;
ul_bool send_download_ack;
ul_bool send_column_names;
ul_bool ping;
ul_bool checkpoint_store;
ul_bool disable_concurrency;
ul_byte num_auth_params;
ul_char * * auth_parms;

// fields set on output
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;

p_ul_synch_info init_verify;
};

The init_verify field is reserved for internal use.

Use UL_TEXT around constant strings
TheUL_TEXT macro allows constant strings to be compiled as single-byte
strings or wide-character strings. Use this macro to enclose all constant
strings supplied as members of theul_synch_info structure so that the
compiler handles these parameters correctly.

☞ For a description of the role of each synchronization parameter, see
“Synchronization parameters”[UltraLite Database User’s Guide,page 162].

138

Chapter 9. Synchronization Parameters Reference

auth_parms parameter

Function Provides parameters to a custom user authentication script.

Usage Set the parameters as follows:

ul_char * Params[3] = { UL_TEXT("parm1"),
UL_TEXT("parm2"),
UL_TEXT("parm3") };

// ...
info.num_auth_parms = 3;
info.auth_parms = Params;

See also “num_auth_parms parameter” on page 142

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

“authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

auth_status parameter

Function Reports the status of MobiLink user authentication.

Usage Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_status;

Allowed values After synchronization, the parameter must hold one of the following values.
If a customauthenticate_usersynchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in “authenticate_user connection event”[MobiLink Synchronization
Reference,page 100].

139

Constant Value Description

UL_AUTH_STATUS_-
UNKNOWN

0 Authorization status is un-
known, possibly because the
connection has not yet syn-
chronized.

UL_AUTH_STATUS_VALID 1000 User ID and password were
valid at the time of synchro-
nization.

UL_AUTH_STATUS_VALID_-
BUT_EXPIRES_SOON

2000 User ID and password were
valid at thetime of synchro-
nization but will expire soon.

UL_AUTH_STATUS_EXPIRED 3000 Authorization failed: user ID
or password have expired.

UL_AUTH_STATUS_INVALID 4000 Authorization failed: bad user
ID or password.

UL_AUTH_STATUS_IN_USE 5000 Authorization failed: user ID
is already in use.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

auth_value synchronization parameter

Function Reports return values from custom user authentication synchronization
scripts.

Default The values set by the default MobiLink user authentication mechanism are
described in“auth_status synchronization parameter” on page 139.

Usage The parameter is read-only.

Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_value;

See also “authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

“authenticate_user_hashed connection event”[MobiLink Synchronization
Reference,page 104]

“auth_status synchronization parameter” on page 139

140

Chapter 9. Synchronization Parameters Reference

checkpoint_store synchronization parameter

Function Adds additional checkpoints of the database during synchronization to limit
database growth during the synchronization process.

Default By default, limited checkpointing is done.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.checkpoint_store = ul_true ;

disable_concurrency synchronization parameter

Function Disallow database access from other threads during synchronization.

Default By default, data access is available. Data access is read-write during the
download phase, and read-only otherwise.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.disable_concurrency = ul_false ;

See also “Threading in UltraLite applications”[UltraLite Database User’s Guide,
page 47]

download_only synchronization parameter

Function Do not upload any changes from the UltraLite database during this
synchronization.

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.download_only = ul_true;

See also “Including read-only tables in an UltraLite database” on page??.

“upload_only synchronization parameter” on page 150

ignored_rows synchronization parameter

Function Reports if any rows were ignored by the MobiLink synchronization server
during synchronization because of absent scripts.

141

The parameter is read-only.

Access methods

new_password synchronization parameter

Function Sets a new MobiLink password associated with the user name.

Default There is no default.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("myoldpassword");
info.new_password = UL_TEXT("mynewpassword");

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

num_auth_parms parameter

Function The number of authentication parameter strings passed to a custom
authentication script.

Default No parameters passed to a custom authentication script.

Usage The parameter is used together with auth_parms to supply information to
custom authentication scripts.

☞ For more information, see“auth_parms parameter” on page 139.

See also “auth_parms parameter” on page 139

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

“authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

observer synchronization parameter

Function A pointer to a callback function that monitors synchronization.

See also “Monitoring and canceling synchronization” on page 65

“user_data synchronization parameter” on page 150

password synchronization parameter

Function A string specifying the MobiLink password associated with theuser_name.

142

Chapter 9. Synchronization Parameters Reference

This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

Default There is no default.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("mypassword");

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

ping synchronization parameter

Function Confirm communications between the UltraLite client and the MobiLink
synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist, for a ping request:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

Default The parameter is optional, and is a boolean.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.ping = ul_true;

See also “-pi option” [MobiLink Synchronization Reference,page 76]

143

publication synchronization parameter

Function Specifies the publications to be synchronized.

Default If you do not specify a publication, all data is synchronized.

Usage The UltraLite generator identifies the publications specified on theulgen -v

command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option.

For example, the following command line generates a publication identified
by the constant UL_PUB_SALES:

ulgen -v sales ...

When synchronizing, set the publication parameter to apublication mask:
an OR’d list of publication constants. For example:

ul_synch_info info;
// ...
info.publication = UL_PUB_MYPUB1 | UL_PUB_MYPUB2 ;

The special publication maskUL_SYNC_ALL describes all the tables in
the database, whether in a publication or not. The mask
UL_SYNC_ALL_PUBS describes all tables in publications in the database.

See also “The UltraLite generator” on page??

“Designing sets of data to synchronize separately” on page??

security synchronization parameter

Function Set the UltraLite client to use Certicom encryption technology when
exchanging messages with the MobiLink synchronization server.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to ex-
port regulations. For more information on this option, see “Welcome to
SQL Anywhere Studio”[Introducing SQL Anywhere Studio,page 4].

Default The Security parameter is null by default, corresponding to no
transport-layer security.

Usage The security stream is specified in addition to the synchronization stream.
Allowed values are as follows:

♦ ULSecureCerticomTLSStream() Elliptic-curve transport-layer security
provided by Certicom.

144

Chapter 9. Synchronization Parameters Reference

♦ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom.

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULRSATLSStream();

See also “Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337].

security_parms synchronization parameter

Function Sets the parameters required when using transport-layer security. This
parameter must be used together with thesecurity parameter.

☞ For more information, see“security synchronization parameter” on
page 144.

Usage The ULSecureCerticomTLSStream() and ULSecureRSATLSStream()
security parameters take a string composed of the following optional
parameters, supplied in an semicolon-separated string.

♦ certificate_company The UltraLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, this field is not checked.

For example:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureCerticomTLSStream();
info.security_parms =

UL_TEXT("certificate_company=Sybase")
UL_TEXT(";")
UL_TEXT("certificate_unit=Sales");

Thesecurity_parmsparameter is a string, and by default is null.

If you use secure synchronization, you must also use the-r command-line
option on the UltraLite generator. For more information, see“The UltraLite
generator” on page??.

145

send_column_names synchronization parameter

Function Whensend_column_namesis set toul_true UltraLite sends each column
name to the MobiLink synchronization server. By default UltraLite does not
send column names.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

See also “-za option” [MobiLink Synchronization Reference,page 28]

send_download_ack synchronization parameter

Function Set this boolean parameter tofalseto instruct the MobiLink synchronization
server that the client will not provide a download acknowledgement.

If the client does send download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

stream synchronization parameter

Function Set the MobiLink synchronization stream to use for synchronization.

☞ For more information, see“stream_parms synchronization parameter”
on page 149.

Default The parameter has no default value, and must be explicitly set.

Usage ul_synch_info info;
...
info.stream = ULSocketStream();

When the type of stream requires a parameter, pass that parameter using the
stream_parmsparameter; otherwise, set thestream_parmsparameter to
null.

The following stream functions are available, but not all are available on all
target platforms:

146

Chapter 9. Synchronization Parameters Reference

Stream Description

ULActiveSyncStream() ActiveSync synchronization (Windows CE only).

☞ For a list of stream parameters, see “Ac-
tiveSync parameters” [UltraLite Database User’s
Guide,page 179].

ULHTTPStream() Synchronize via HTTP.

The HTTP stream uses TCP/IP as its underly-
ing transport. UltraLite applications act as Web
browsers and the MobiLink synchronization
server acts as a Web server. UltraLite applica-
tions send POST requests to send data to the
server and GET requests to read data from the
server.

☞ For a list of stream parameters, see “HTTP
stream parameters” [UltraLite Database User’s
Guide,page 184].

ULHTTPSStream() Synchronize via the HTTPS synchronization
stream.

The HTTPS stream uses SSL or TLS as its
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS stream requires the use of tech-
nology supplied by Certicom. Use of Certi-
com technology requires that you obtain the
separately-licensable SQL Anywhere Studio se-
curity option and is subject to export regulations.
For more information on this option, see “Wel-
come to SQL Anywhere Studio” [Introducing
SQL Anywhere Studio,page 4].

☞ For a list of stream parameters, see “HTTPS
stream parameters” [UltraLite Database User’s
Guide,page 186].

ULSocketStream() Synchronize via TCP/IP.

☞ For a list of stream parameters, see “TCP/IP
stream parameters” [UltraLite Database User’s
Guide,page 182].

stream_error synchronization parameter

Function Sets a structure to hold communications error reporting information.

147

Default The parameter has no default value, and must be explicitly set.

Description Thestream_error field is a structure of typeul_stream_error.

typedef struct ss_error {
ss_stream_id stream_id;
ss_stream_context stream_context;
ss_error_code stream_error_code;
asa_uint32 system_error_code;
rp_char *error_string;
asa_uint32 error_string_length;

} ss_error, *p_ss_error;

The structure is defined insserror.h, in theh subdirectory of your
SQL Anywhere directory.

Theul_stream_error fields are as follows:

♦ stream_id The network layer reporting the error. This enumeration has
the following constants:

STREAM_ID_TCPIP
STREAM_ID_HTTP
STREAM_ID_CERTICOM_TLS
STREAM_ID_PALM_CONDUIT
STREAM_ID_ACTIVESYNC

♦ stream_context The basic network operation being performed, such as
open, read, or write. For details, seesserror.h.

♦ stream_error_code The error reported by the stream itself. The
stream_error_codeis of typess_error_code. The stream error codes
are all prefixed with STREAM_ERROR_. A write error, for example, is
STREAM_ERROR_WRITE.

☞ For a listing of error numbers, see “MobiLink Communication Error
Messages”[MobiLink Synchronization Reference,page 347]. For the error
code suffixes, seesserror.h.

In this version, to find the constant associated with each number you must
count down the number of lines prefixed by DO_STREAM_Error in
sserror.h. For example, to find the constant for error number 10, you use
the tenth DO_STREAM_ERROR entry insserror.h, which is as follows:

DO_STREAM_ERROR(WRITE)

The constant associated with this error is therefore
STREAM_ERROR_WRITE.

♦ stream_error The network operation being performed (the context) and
the error itself as an enumeration constant.

♦ system_error_code A system-specific error code.

148

Chapter 9. Synchronization Parameters Reference

♦ error_string An application-provided error message

Usage Check for SQLE_COMMUNICATIONS_ERROR as follows:

ul_char error_buff[100];
ul_synch_info info;
...
ULInitSynchInfo(&info);
info.stream_error.error_string = error_buff;
info.stream_error.error_string_length =

sizeof(error_buff);
...
ULSynchronize(&sqlca, &info)
if(SQLCODE == SQLE_COMMUNICATIONS_ERROR){

printf(error_buff);
...// more error handling here

stream_parms synchronization parameter

Function Sets parameters to configure the synchronization stream.

A semi-colon separated list of parameter assignments. Each assignment is of
the formkeyword=value, where the allowed sets of keywords depends on
the synchronization stream.

For a list of available parameters for each stream, see the following sections:

♦ “ActiveSync parameters”[UltraLite Database User’s Guide,page 179]

♦ “HotSync parameters”[UltraLite Database User’s Guide,page 181]

♦ “HTTP stream parameters”[UltraLite Database User’s Guide,page 184]

♦ “HTTPS stream parameters”[UltraLite Database User’s Guide,page 186]

♦ “TCP/IP stream parameters”[UltraLite Database User’s Guide,page 182]

Default The parameter is optional, is a string, and by default is null.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.stream_parms= UL_TEXT("host=myserver;port=2439");

See also “Synchronization stream parameters” on page??.

upload_ok synchronization parameter

Function Reports the status of MobiLink uploads. The MobiLink synchronization
server provides this information to the client.

149

The parameter is read-only.

Usage After synchronization, theupload_okparameter holdstrue if the upload
was successful, andfalseotherwise.

Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.upload_ok;

upload_only synchronization parameter

Function Indicates that there should be no downloads in the current synchronization,
which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

Default The parameter is an optional Boolean value, and by default is false.

Usage Set the parameter to true as follows:

ul_synch_info info;
// ...
info.upload_only = ul_true;

See also “Synchronizing high-priority changes” on page??

“download_only synchronization parameter” on page 141

user_data synchronization parameter

Function Make application-specific information available to the synchronization
observer.

Usage When implementing the synchronization observer callback function
observer, you can make application-specific information available by
providing information usinguser_data.

See also “observer synchronization parameter” on page 142

“Monitoring and canceling synchronization” on page??

user_name synchronization parameter

Function A string specifying the user name that uniquely identifies the MobiLink
client to the MobiLink synchronization server. MobiLink uses this value to
determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

150

Chapter 9. Synchronization Parameters Reference

Default The parameter is required, and is a string.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.user_name= UL_TEXT("mluser");

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

“The MobiLink user” [MobiLink Synchronization User’s Guide,page 20].

version synchronization parameter

Function Each synchronization script in the consolidated database is marked with a
version string. For example, there may be two differentdownload_cursor
scripts, identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

Default The parameter is a string, and by default is the MobiLink default version
string.

Usage Set the parameter as follows:

ul_synch_info info;
// ...
info.version = UL_TEXT("default");

See also “Script versions”[MobiLink Synchronization User’s Guide,page 49].

151

152

Index

Symbols
16-bit signed integer embedded SQL data

type 31
32-bit signed integer embedded SQL data

type 31
4-byte floating point embedded SQL data

type 31
8-byte floating point embedded SQL data

type 31

A
ActiveSync

about 96
adding to UltraLite applications 96
class names 93
MFC UltraLite applications 97
supported versions 96
ULIsSynchronizeMessage function

122
WindowProc function 97

AES encryption algorithm
UltraLite databases 56

applications
building 18
building the sample embedded SQL

application 14
compiling 18
deploying on Palm Computing

Platform 84
preprocessing 18
writing in embedded SQL 8, 27

auth_parms synchronization parameter
about (embedded SQL) 139

auth_status synchronization parameter
about (embedded SQL) 139

auth_value synchronization parameter
about (embedded SQL) 140

B
benefits

UltraLite embedded SQL 4

binary embedded SQL data type 32
build processes

single-file embedded SQL applications
21

UltraLite embedded SQL applications
18

building
embedded SQL applications 18
sample embedded SQL application 14

C
C++ API

Palm Computing Platform 77
Reopen methods 77

cache_size persistent storage parameter
56

case sensitivity
UltraLite user authentication 52

Certicom
unavailable on Power PC 83

changeEncryptionKey method 58
JdbcDatabase class 58

character string embedded SQL data type
fixed length 32
variable length 32

checkpoint_store synchronization
parameter

MobiLink synchronization 141
class names

ActiveSync synchronization 93
CLOSE statement

about 44
closing

Palm applications 77
CodeWarrior

converting projects 74
creating UltraLite projects 74
installing UltraLite plug-in 73
UltraLite development 73
using UltraLite plug-in 75

compilers
Palm Computing Platform 72

153

Index

Windows CE 88
compiling

UltraLite applications 18
UltraLite embedded SQL applications

18
configuring

development tools for UltraLite
embedded SQL 24

connecting
UltraLite databases 52

conventions
documentation x

cursors
embedded SQL 44

CustDB application
building for Palm Computing Platform

76
building for Windows CE 90

D
data types

embedded SQL 30
database files

changing the encryption key 58
defragmenting UltraLite databases 60
encrypting 57
obfuscating 56
setting the file name 56
UltraLite Windows CE 92

db_fini function
do not use on the Palm Computing

Platform 103
UltraLite usage 103

db_init function
multi-threaded UltraLite applications

70
UltraLite usage 104

decimal embedded SQL data type,
packed 31

DECL_BINARY macro
about 31

DECL_DATETIME macro
about 31

DECL_DECIMAL macro
about 31

DECL_FIXCHAR macro
about 31

DECL_VARCHAR macro
about 31

declaration section
about 30

DECLARE statement
about 44

declaring
host variables 30

definitions
persistent storage parameters 56

defragmenting
UltraLite databases 60

dependencies
UltraLite embedded SQL 24

deploying
applications on Palm Computing

Platform 84
Palm Computing Platform 84
UltraLite databases 111
UltraLite databases on Palm 84
UltraLite Windows CE applications 93

development tools
configuring for UltraLite 24
preprocessing 24
UltraLite embedded SQL 24

disable_concurrency synchronization
parameter

MobiLink synchronization 141
documentation

conventions x
SQL Anywhere Studio viii

download acknolwedgements
send_download_ack synchronization

parameter (embedded SQL) 146
download-only synchronization

download_only synchronization
parameter (embedded SQL) 141

download_only synchronization
parameter

about (embedded SQL) 141
DT_BINARY embedded SQL data type

34
DT_LONGVARCHAR embedded SQL

data type 34

E
embedded SQL

154

Index

about 8, 27, 101
cursors 44
fetching data 43
functions 101
host variables 30
sample program 8
UltraLite benefits 4
UltraLite tutorial 6

embedded SQL library functions
ULActiveSyncStream 105
ULChangeEncryptionKey 106
ULClearEncryptionKey 107
ULCountUploadRows 108
ULDropDatabase 109
ULEnableFileDB 110
ULEnableGenericSchema 111
ULEnablePalmRecordDB 112
ULEnableStrongEncryption 113
ULEnableUserAuthentication 114
ULGetLastDownloadTime 115
ULGetSynchResult 116
ULGlobalAutoincUsage 118
ULGrantConnectTo 119
ULHTTPSStream 120
ULHTTPStream 121
ULPalmDBStream 123
ULResetLastDownloadTime 127
ULRetrieveEncryptionKey 128
ULRevokeConnectFrom 129
ULSaveEncryptionKey 130
ULSetDatabaseID 131
ULSocketStream 132
ULStoreDefragFini 133
ULStoreDefragInit 134
ULStoreDefragStep 135
ULSynchronize 136

eMbedded Visual C++
obtaining 88

emulator
Windows CE 93

encryption
changing UltraLite encryption keys 58,

106
Palm Computing Platform 59
storing the encryption key 59
UltraLite databases 56, 57, 113

encryption keys

guidelines 57
errors

codes 48
SQLCODE 48
sqlcode SQLCA field 48

EXEC SQL
embedded SQL development 29

F
feedback

documentation xiv
providing xiv

FETCH statement
about 43, 44

fetching
embedded SQL 43

file_name persistent storage parameter 56
first time

synchronization 65
functions

embedded SQL 101

G
generated database

naming 75
generating multi-segment code

about 78
global autoincrement

ULGlobalAutoincUsage function 118
ULSetDatabaseID function 131

global database identifier
UltraLite embedded SQL 131

H
host variables

about 30
declaring 30
usage 34

HotSync synchronization
Palm Computing Platform 81

HTTP synchronization
Palm Computing Platform 83

HTTPS synchronization
Palm Computing Platform 83

155

Index

I
icons

used in manuals xii
ignored rows

synchronization 141
ignored_rows synchronization parameter

MobiLink synchronization 141
INCLUDE statement

SQLCA 48
indicator variables

about 41
NULL 41

installing
Palm Computing Platform 84
UltraLite plug-in for CodeWarrior 73
Windows CE development 88

L
last download timestamp

resetting in UltraLite databases 127
ULGetLastDownloadTime function

115
LAUNCH_SUCCESS_FIRST

embedded SQL 125
UltraLite Palm applications 77

launching
Palm applications 77

library functions
embedded SQL 101
ULActiveSyncStream 105
ULChangeEncryptionKey 106
ULClearEncryptionKey 107
ULCountUploadRows 108
ULDropDatabase 109
ULEnableFileDB 110
ULEnableGenericSchema 111
ULEnablePalmRecordDB 112
ULEnableStrongEncryption 113
ULEnableUserAuthentication 114
ULGetLastDownloadTime 115
ULGetSynchResult 116
ULGlobalAutoincUsage 118
ULGrantConnectTo 119
ULHTTPSStream 120
ULHTTPStream 121
ULIsSynchronizeMessage 122

ULPalmDBStream 123
ULResetLastDownloadTime 127
ULRetrieveEncryptionKey 128
ULRevokeConnectFrom 129
ULSaveEncryptionKey 130
ULSetDatabaseID 131
ULSocketStream 132
ULStoreDefragFini 133
ULStoreDefragInit 134
ULStoreDefragStep 135
ULSynchronize 136

linking
UltraLite applications 89

M
makefiles

UltraLite embedded SQL 24
MFC

ActiveSync for UltraLite 97
monitoring synchronization

observer synchronization parameter
(embedded SQL) 142

multi-row queries
cursors 44

multi-segment code
generating 78

multi-threaded applications
embedded SQL 49
UltraLite applications 70

N
new_password synchronization

parameter
about 142
about (embedded SQL) 142

newsgroups
technical support xiv

NULL
indicator variables 41

NULL-terminated string embedded SQL
data type 31

NULL-terminated TCHAR character
string SQL data type 32

NULL-terminated UNICODE character
string SQL data type 32

NULL-terminated WCHAR character
string SQL data type 32

156

Index

NULL-terminated wide character string
SQL data type 32

num_auth_parms synchronization
parameter

num_auth_parms (embedded SQL)142

O
obfuscating

UltraLite databases 56
obfuscation

UltraLite databases 56
observer

synchronization example 68
observer synchronization parameter

about (embedded SQL) 142
OPEN statement

about 44

P
packed decimal embedded SQL data type

31
Palm Computing Platform

development for 72
file-based data store 110
HotSync synchronization 81
HTTP synchronization 83
installing UltraLite applications 84
platform requirements 72
record-based data store 112
security 83
segments 78, 79
TCP/IP synchronization 83
user authentication 53
version 4.0 110, 112

PalmExit method
about 77

PalmLaunch method
about 77

password synchronization parameter
about (embedded SQL) 142

passwords
MobiLink synchronization 142
Palm Computing Platform 53
UltraLite case sensitivity 52
UltraLite databases 52, 53

PATH environment variable
HotSync 72

permissions
embedded SQL 29

persistent storage
parameters 56
Windows CE 92

PilotMain function
UltraLite applications 77, 81

ping synchronization parameter
about (embedded SQL) 143

prefix files
about 75
CodeWarrior 79

preprocessing
development tool settings 24
UltraLite applications 18

program structure
embedded SQL 29

publication synchronization parameter
about (embedded SQL) 144

publications
publication synchronization parameter

(embedded SQL) 144

Q
queries

single-row 43

R
registry

ClientParms registry entry 82
Reopen method

C++ API 77
runtime library

Windows CE 89

S
sample application

building for Palm Computing Platform
76

building for Windows CE 90
schema upgrades

UltraLite databases 111
script versions

version synchronization parameter
(embedded SQL) 151

security

157

Index

changing the encryption key 58
database encryption 57
database obfuscation 56
encryption on Palm 59
security synchronization parameter

(embedded SQL) 144
security_parms synchronization

parameter (embedded SQL) 145
send_column_names synchronization

parameter (embedded SQL) 146
UltraLite applications 83
unavailable on Power PC 83

security synchronization parameter
about (embedded SQL) 144

security_parms synchronization
parameter

about (embedded SQL) 145
segments

about 78, 79
explicitly assigning 79
generating multi-segment code 78
Palm Computing Platform 78, 79
user-defined code 79

SELECT statement
single row 43

send_column_names synchronization
parameter

about (embedded SQL) 146
send_download_ack synchronization

parameter
about (embedded SQL) 146

setDefaultObfuscation method
UlDatabase class 57

setting
persistent storage parameters 56

SQL Anywhere Studio
documentation viii

SQL Communications Area
about 48

SQL preprocessor
UltraLite embedded SQL applications

18
UltraLite example 20

sqlaid SQLCA field
about 48

SQLCA
about 48

fields 48
multiple 49

sqlcabc SQLCA field
about 48

sqlcode SQLCA field
about 48

sqlerrd SQLCA field
about 49

sqlerrmc SQLCA field
about 48

sqlerrml SQLCA field
about 48

sqlerrp SQLCA field
about 49

sqlpp utility
UltraLite embedded SQL applications

18
sqlstate SQLCA field

about 49
sqlwarn SQLCA field

about 49
static SQL

authorization 29
storage parameters 56
stream definition functions

ULActiveSyncStream 105
ULGetSynchResult 116
ULGlobalAutoincUsage 118
ULHTTPSStream 120
ULHTTPStream 121
ULPalmDBStream 123
ULSetDatabaseID 131
ULSocketStream 132

stream synchronization parameter
about (embedded SQL) 146

stream_error synchronization parameter
about (embedded SQL) 147
ul_stream_error structure (embedded

SQL) 147
stream_parms synchronization parameter

about (embedded SQL) 149
string embedded SQL data type

fixed length 32
NULL-terminated 31
variable length 32

strong encryption
UltraLite databases 56, 113

158

Index

support
newsgroups xiv

synchronization
about 62
adding to UltraLite applications 62
canceling 65
checkpoint_store 141
commit before 64
disable_concurrency 141
embedded SQL function 15
example 63
HotSync Palm Computing Platform 81
HTTP Palm Computing Platform 83
ignored rows 141
initial copy 65
invoking 64
monitoring 65
TCP/IP Palm Computing Platform 83
troubleshooting 116
ULSynchronize function 15
Windows CE 96

synchronization library functions
ULSynchronize 136

synchronization parameters
auth_parms (embedded SQL) 139
auth_status (embedded SQL) 139
auth_value (embedded SQL) 140
download_only (embedded SQL) 141
new_password 142
new_password (embedded SQL) 142
num_auth_parms (embedded SQL)142
observer (embedded SQL) 142
password (embedded SQL) 142
ping (embedded SQL) 143
publication (embedded SQL) 144
security (embedded SQL) 144
security_parms (embedded SQL) 145
send_column_names (embedded SQL)

146
send_download_ack (embedded SQL)

146
stream (embedded SQL) 146
stream_error (embedded SQL) 147
stream_parms (embedded SQL) 149
upload_ok (embedded SQL) 149
upload_only (embedded SQL) 150
user_data (embedded SQL) 150

user_name (embedded SQL) 150
version (embedded SQL) 151

synchronization status
ULGetSynchResult function 116

synchronization streams
stream synchronization parameter

(embedded SQL) 146
stream_error synchronization

parameter (embedded SQL) 147
stream_parms synchronization

parameter (embedded SQL) 149
ULActiveSyncStream (embedded

SQL) 146
ULHTTPStream (embedded SQL) 146
ULSocketStream (embedded SQL)146

sysAppLaunchCmdNormalLaunch
UltraLite applications 77, 81

T
TCP/IP synchronization

Palm Computing Platform 83
technical support

newsgroups xiv
threads

embedded SQL 49
UltraLite applications 70

timestamp structure embedded SQL data
type 33

tips
UltraLite development 65

transport-layer security
unavailable on Power PC 83

troubleshooting
commit all changes before

synchronizing 64
ping synchronization parameter

(embedded SQL) 143
previous synchronization 116
UltraLite development 65
upload_ok synchronization parameter

(embedded SQL) 149
truncation

on FETCH 42
tutorials

UltraLite embedded SQL 6

159

Index

U
UL_AUTH_STATUS_EXPIRED

auth_status value
about 139

UL_AUTH_STATUS_IN_USE
auth_status value

about 139
UL_AUTH_STATUS_INVALID

auth_status value
about 139

UL_AUTH_STATUS_UNKNOWN
auth_status value

about 139
UL_AUTH_STATUS_VALID

auth_status value
about 139

UL_AUTH_STATUS_VALID_BUT_-
EXPIRES_SOON auth_status
value

about 139
UL_STORE_PARMS macro

using 56
ul_stream_error structure

about (embedded SQL) 147
UL_SYNC_ALL macro

publication mask 144
UL_SYNC_ALL_PUBS macro

publication mask 144
ul_synch_info structure

about 63
embedded SQL 138

ul_synch_status structure
about 66

ULActiveSyncStream function
about 105
setting synchronization stream

(embedded SQL) 146
Windows CE 96

ULChangeEncryptionKey function
about 106
using 58

ULClearEncryptionKey function 107
using 59

ULConduitStream function
setting synchronization stream

(embedded SQL) 146
ULCountUploadRows function 108

UlDatabase class
obfuscating databases 57

ULDropDatabase function 109
ULEnableFileDB function

about 110
ULEnableGenericSchema function

about 111
ULEnablePalmRecordDB function

about 112
ULEnableStrongEncryption function

about 113
ULEnableUserAuthentication function

about 53, 114
using 52

ULGetLastDownloadTime function
about 115

ULGetSynchResult function
about 116

ulglobal.h
ul_synch_info structure (embedded

SQL) 138
ULGlobalAutoincUsage function

about 118
ULGrantConnectTo function

about 119
ULHTTPSStream function

about 120
setting synchronization stream

(embedded SQL) 146
Windows CE 99

ULHTTPStream function
about 121
setting synchronization stream

(embedded SQL) 146
Windows CE 99

ULInitSynchInfo function
about 63

ULIsSynchronizeMessage function
about 122
ActiveSync 96

ULPalmDBStream function 123
ULPalmExit function

about 77, 83, 124
using 81

ULPalmLaunch function
about 77, 83, 125
using 81

160

Index

ULResetLastDownloadTime function
about 127

ULRetrieveEncryptionKey function 128
using 59

ULRevokeConnectFrom function
about 129

ULSaveEncryptionKey function 130
using 59

ULSecureCerticomTLSStream
about (embedded SQL) 144

ULSecureRSATLSStream
about (embedded SQL) 144

ULSetDatabaseID function
about 131

ULSocketStream function
about 132
setting synchronization stream

(embedded SQL) 146
Windows CE 99

ULStoreDefragFini function
about 133

ULStoreDefragInit function
about 134

ULStoreDefragStep function
about 135

ULSynchronize function
about 136
serial port on Palm Computing

Platform 83
ULSynchronize library function

about 15
UltraLite databases

deploying on Palm Computing
Platform 84

encrypting 56
user IDs 52, 53
Windows CE 92

UltraLite passwords
about 52
maximum length 52

UltraLite plug-in for CodeWarrior
converting projects 74
installing 73
using 75

UltraLite projects
CodeWarrior 74

UltraLite runtime library

deploying 93
UltraLite user IDs

about 52
limit 52
maximum length 52

upgrading
UltraLite databases 111

upload only synchronization
upload_only synchronization

parameter (embedded SQL) 150
upload_ok synchronization parameter

about (embedded SQL) 149
upload_only synchronization parameter

about (embedded SQL) 150
user authentication

auth_parms synchronization parameter
(embedded SQL) 139

auth_status synchronization parameter
(embedded SQL) 139

auth_value synchronization parameter
(embedded SQL) 140

embedded SQL UltraLite applications
53, 114, 119, 129

MobiLink and UltraLite 54
new_password synchronization

parameter (embedded SQL) 142
password synchronization parameter

(embedded SQL) 142
UltraLite case sensitivity 52
UltraLite databases 52, 53, 114, 119,

129
user_name synchronization parameter

(embedded SQL) 150
user IDs

Palm Computing Platform 53
UltraLite case sensitivity 52
UltraLite databases 52, 53

user_data synchronization parameter
about (embedded SQL) 150

user_name synchronization parameter
about (embedded SQL) 150

V
version synchronization parameter

about (embedded SQL) 151
versions

synchronization scripts 136

161

Index

Visual C++
Windows CE development 88

W
WindowProc function

ActiveSync 97, 122
Windows CE

development for 88
platform requirements 88
synchronization on 96

winsock.lib
Windows CE applications 88

writing applications in embedded SQL 8,
27

162

	UltraLite Embedded SQL User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction to Embedded SQL
	System requirements and supported platforms
	Developing embedded SQL applications
	Benefits and limitations of embedded SQL

	Tutorial: Build an Application Using Embedded SQL
	Introduction
	Lesson 1: Configure eMbedded Visual C++
	Lesson 2: Write an embedded SQL source file
	Explanation of the sample program

	Lesson 3: Build the sample embedded SQL UltraLite application
	Lesson 4: Add synchronization to your application
	Synchronization via TCP/IP
	Running the sample application with synchronization

	Building Embedded SQL Applications
	Build procedure for UltraLite embedded SQL applications
	Single-file build procedure
	Configuring development tools for embedded SQL development

	Data Access Using Embedded SQL
	Introduction
	Structure of embedded SQL programs

	Using host variables
	Declaring host variables
	Data types in embedded SQL
	Host variable usage
	The scope of host variables
	Using expressions as host variables
	Using host variables in C++

	Using indicator variables
	Using indicator variables to handle NULL

	Fetching data
	Fetching one row
	Fetching multiple rows

	The SQL Communication Area
	SQLCA fields
	Using multiple SQLCAs
	Connection management with multiple SQLCAs

	Adding Non Data Access Features to UltraLite Applications
	Adding user authentication to your application
	Enabling user authentication
	Managing user IDs and passwords
	User authentication example

	Sharing MobiLink and UltraLite user IDs

	Configuring and managing database storage
	Encrypting UltraLite databases
	Obfuscating an UltraLite database
	Encrypting an UltraLite database
	Changing the encryption key for a database
	Using the encryption key on the Palm Computing Platform

	Defragmenting UltraLite databases

	Adding synchronization to your application
	Initializing the synchronization parameters
	Setting synchronization parameters
	Invoking synchronization
	Commit all changes before synchronizing
	Adding initial data to your application
	Monitoring and canceling synchronization
	Handling synchronization status information

	Developing multi-threaded applications

	Developing UltraLite Applications for the Palm Computing Platform
	Introduction
	Developing UltraLite applications with Metrowerks CodeWarrior
	Installing the UltraLite plug-in for CodeWarrior
	Creating UltraLite projects in CodeWarrior
	Converting an existing CodeWarrior project to an UltraLite application
	Using the UltraLite plug-in for CodeWarrior
	Building the CustDB sample application from CodeWarrior

	Maintaining state in UltraLite applications
	Launching an UltraLite Palm application
	Closing an UltraLite Palm application

	Building multi-segment applications
	Enabling multi-segment code generation
	Explicitly assigning segments
	Assigning user-defined code to segments

	Adding HotSync synchronization to Palm applications
	Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications
	Deploying Palm applications

	Developing UltraLite Applications for Windows CE
	Introduction
	Choosing how to link the runtime library

	Building the CustDB sample application
	Storing persistent data
	Deploying Windows CE applications
	Deploying applications that use ActiveSync
	Assigning class names for applications

	Synchronization on Windows CE
	Adding ActiveSync synchronization to your application
	Adding ActiveSync synchronization (Windows API)
	Adding ActiveSync synchronization (MFC)

	TCP/IP, HTTP, or HTTPS synchronization from Windows CE

	Embedded SQL Library Functions
	db_fini function
	db_init function
	ULActiveSyncStream function
	ULChangeEncryptionKey function
	ULClearEncryptionKey function
	ULCountUploadRows function
	ULDropDatabase function
	ULEnableFileDB function
	ULEnableGenericSchema function
	ULEnablePalmRecordDB function
	ULEnableStrongEncryption function
	ULEnableUserAuthentication function
	ULGetLastDownloadTime function
	ULGetSynchResult function
	ULGlobalAutoincUsage function
	ULGrantConnectTo function
	ULHTTPSStream function
	ULHTTPStream function
	ULIsSynchronizeMessage function
	ULPalmDBStream function (deprecated)
	ULPalmExit function
	ULPalmLaunch function
	ULResetLastDownloadTime function
	ULRetrieveEncryptionKey function
	ULRevokeConnectFrom function
	ULSaveEncryptionKey function
	ULSetDatabaseID function
	ULSocketStream function
	ULStoreDefragFini function
	ULStoreDefragInit function
	ULStoreDefragStep function
	ULSynchronize function

	Synchronization Parameters Reference
	Synchronization parameters
	auth_parms parameter
	auth_status parameter
	auth_value synchronization parameter
	checkpoint_store synchronization parameter
	disable_concurrency synchronization parameter
	download_only synchronization parameter
	ignored_rows synchronization parameter
	new_password synchronization parameter
	num_auth_parms parameter
	observer synchronization parameter
	password synchronization parameter
	ping synchronization parameter
	publication synchronization parameter
	security synchronization parameter
	security_parms synchronization parameter
	send_column_names synchronization parameter
	send_download_ack synchronization parameter
	stream synchronization parameter
	stream_error synchronization parameter
	stream_parms synchronization parameter
	upload_ok synchronization parameter
	upload_only synchronization parameter
	user_data synchronization parameter
	user_name synchronization parameter
	version synchronization parameter

	Index

