
UltraLite™ Database User’s
Guide

Part number: 37121-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’ 1997–2001
Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom
Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S.
patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions . xi
The CustDB sample database . xiii
Finding out more and providing feedback xiv

I UltraLite Databases 1

1 Welcome to UltraLite 3
Introduction . 4
Developing UltraLite applications . 8
Data access in UltraLite . 11

2 Tutorial: Walking Through a Sample UltraLite Application 13
Introduction . 14
Lesson 1: Start the MobiLink synchronization server 18
Lesson 2: Start the sample application and synchronize 19
Lesson 3: Add an order . 20
Lesson 4: Act on some existing orders 22
Lesson 5: Synchronize your changes 23
Lesson 6: Confirm the synchronization at the consolidated database 24
Lesson 7: Browse the consolidated database 25

3 UltraLite Databases 27
Databases and schema files . 28
Information storage in UltraLite databases 33
Backup, recovery, and transaction processing 35
Encrypting UltraLite databases . 36
User authentication . 38
Character sets in UltraLite . 40
UltraLite database limitations . 44
The UltraLite runtime library . 47

4 Connection Parameters 49
Overview . 50
Database identification parameters 54
User authentication parameters . 58
Database schema parameters . 61

iii

Additional connection parameters . 65

5 Utility Programs 71
Introduction to UltraLite utilities . 72
The UltraLite Schema Painter . 73
The UltraLite initialization utility . 86
The ULXML utility . 89
The HotSync conduit installation utility 91
The SQL preprocessor . 92
The UltraLite generator . 96
The UltraLite segment utility . 102
The UltraLite Palm utility . 103

II UltraLite SQL 105

6 SQL Language Elements 107
Overview of SQL support in UltraLite 108
Data types in UltraLite . 111
UltraLite SQL functions . 114

7 Dynamic SQL 125
Introduction to dynamic SQL . 126
Dynamic SQL language elements . 128
Dynamic SQL statements . 134
Optimization of SELECT statements 139

III Synchronizing UltraLite Applications 141

8 Synchronization for UltraLite Applications 143
Introduction . 144
Designing synchronization for your UltraLite database 150
Synchronization parameters reference 162
Stream parameters reference . 179

IV Static Programming Interfaces 193

9 Using UltraLite Static Interfaces 195
Overview . 196
Choosing an UltraLite static interface 199
Preparing a reference database . 200
Defining SQL statements for your application 204
Generating the UltraLite data access code 209

iv

Configuring development tools for static UltraLite development 210

10 Static Development Model Reference 211
Reference database stored procedures 212
Macros and compiler directives for UltraLite C/C++ applications . . . 215

Index 221

v

About This Manual

Subject This manual introduces the UltraLite database system for small devices.

Audience This manual is intended for all developers who wish to take advantage of the
performance, resource efficiency, robustness, and security of an UltraLite
relational database for data storage and synchronization.

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

viii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

ix

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

x

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xiii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xiv

PART I

ULTRA L ITE DATABASES

This part introduces the UltraLite relational database system for handheld
devices and describes general features of the UltraLite database..

CHAPTER 1

Welcome to UltraLite

About this chapter This chapter introduces you to UltraLite features, platforms, architecture,
and functionality.

Contents Topic: page

Introduction 4

Developing UltraLite applications 8

Data access in UltraLite 11

3

Introduction
UltraLite is a relational database and synchronization technology for small,
mobile, and embedded devices. You can build UltraLite applications using a
variety of interfaces. Each interface uses the same underlying database
engine.

♦ UltraLite components UltraLite components provide users of rapid
application development with database and synchronization features.
They provide a familiar interface for each supported development tool.
UltraLite components provide a simple table-based data access interface
and also dynamic SQL for more complex queries.

The following components are available:
• UltraLite for AppForge MobileVB Development using the

AppForge MobileVB extension to Microsoft Visual Basic.
☞ See “Introduction”[UltraLite for MobileVB User’s Guide,page 1].

• UltraLite ActiveX Development using eMbedded Visual Basic or
JScript with Pocket IE.
☞ See “Introduction”[UltraLite ActiveX User’s Guide,page 1].

• Native UltraLite for Java Development using a supported JDK. The
UltraLite component itself contains native (C++) methods for
improved performance.
☞ See “Introduction to Native UltraLite for Java”[Native UltraLite for
Java User’s Guide,page 1]

• UltraLite.NET Development using Visual Studio .NET.
☞ See “Introduction to UltraLite.NET”[UltraLite.NET User’s Guide,
page 1]

• UltraLite for C++ Development using a C++ interface.
☞ See “Introduction to UltraLite for C++”[UltraLite C++ User’s
Guide,page 1]

♦ Static interfaces Static interfaces provide a rich SQL interface for
C/C++ and Java developers comfortable with a preprocessor-based
interface. All SQL statements used in the application must be defined at
compile time.

The following static interfaces are available:
• UltraLite for Embedded SQL Development using C/C++ with

embedded SQL statements.
☞ See “Introduction”[UltraLite Embedded SQL User’s Guide,page 1].

• UltraLite static C++ Development in C++ using an
application-specific generated C++ API.
☞ See “Introduction”[UltraLite Static C++ User’s Guide,page 1].

4

Chapter 1. Welcome to UltraLite

• UltraLite static Java Development in pure Java using a JDBC
interface.
☞ See “Introduction”[UltraLite Static Java User’s Guide,page 6].

UltraLite benefits

UltraLite provides the following benefits to application developers:

♦ Robust data management Data held on small devices is as important
as data in enterprise databases. UltraLite brings transaction processing,
referential integrity, and other benefits of relational databases to small
devices.

☞ For more information about UltraLite database features, see
“UltraLite databases” on page 5.

♦ Powerful synchronization An information system is only as robust as
its weakest link. UltraLite gives you the ability to synchronize data with a
central database-management system when used with SQL Anywhere
Studio.

UltraLite uses MobiLink synchronization technology, included in
SQL Anywhere Studio, to synchronize with industry-standard
database-management systems. MobiLink synchronization works with
ODBC-compliant data sources such as Sybase Adaptive Server
Anywhere, Sybase Adaptive Server Enterprise, IBM DB2, Microsoft
SQL Server, and Oracle. It provides flexible, programmable, and scalable
synchronization that can manage thousands of UltraLite databases.

☞ For more information, see“Synchronization for UltraLite
Applications” on page 143.

♦ Straightforward development UltraLite components provide an
object-based programming interface for straightforward access to data.
Integration into popular development tools such as eMbedded Visual
Basic, AppForge MobileVB, and Borland JBuilder makes developers
productive. A graphical tool enables you to design and modify UltraLite
databases rapidly.

♦ Multi-platform availability You can develop and deploy UltraLite
database applications for Windows CE, Palm OS, and Java-based devices.

☞ For more information, see“System requirements and supported
platforms” on page??.

UltraLite databases

UltraLite databases are transaction-processing relational databases, and
provide you with the following features:

5

♦ Tables A single UltraLite database can hold many tables. The number
and type of columns in a relational database table is fixed at design time,
but each table can have any number of rows (up to 64 K). Each row has a
single entry for each column. The special NULL entry is used when there
is no value for the entry.

When designing your database, each table should represent a separate
type of item, such as Customers, Employees, and so on.

♦ Data types UltraLite databases can manage a full range of data types,
as well as default values and NULL values.

♦ Indexes The rows in a relational database table are not ordered. You
can create indexes to access the rows in order and to provide fast access
to data. Indexes are commonly associated with a single column, but
UltraLite also provides multi-column indexes.

♦ Keys Each table has a special index called theprimary key . Entries in
the primary key column or columns must be unique.

Foreign keysrelate the data in one table to that in another. Each entry in
the foreign key column must correspond to an entry in the primary key of
another table.

Between them, primary keys and foreign keys ensure that the database
hasreferential integrity . Referential integrity is enforced in UltraLite
databases, so that you cannot, for example, enter an order for a customer
unless that customer exists in the database.

By enforcing referential integrity, UltraLite ensures that the data in your
UltraLite database is correct, in the same manner that data elsewhere in
the enterprise is correct.

♦ Publications If you wish to synchronize the data in your UltraLite
database with other databases you must have a valid SQL Anywhere
Studio license. SQL Anywhere Studio includes MobiLink
synchronization technology to synchronize UltraLite databases with
desktop, workgroup or enterprise databases.

Publications define sets of data to be synchronized. It is often desirable to
synchronize all the data in an UltraLite database, but publications provide
extra flexibility and control. They allow you to perform priority
synchronizations, which means you can specify that only certain tables or
groups of tables should be synchronized.

♦ Transactions and recovery UltraLite has commit and rollback
features, together with automatic recovery in the event of device failure,
to guarantee that transactions are executed completely or not at all.

6

Chapter 1. Welcome to UltraLite

♦ Security UltraLite provides user authentication and database
encryption, as well as encryption on the device and during
synchronization, to build secure applications.

♦ Performance and small footprint UltraLite target devices tend to have
relatively slow processors. UltraLite employs algorithms and data
structures that provide high performance and low memory use. For
example, UltraLite provides a caching algorithm designed specifically for
small devices.

♦ Multi-threaded applications You can develop multi-threaded
UltraLite applications on those platforms that support it (Windows and
Windows CE).

☞ For more information about UltraLite databases, see“UltraLite
Databases” on page 27.

Using the UltraLite documentation

Once you have selected which UltraLite interface to use, you can find the
information you need in the following books, all of which are included in the
SQL Anywhere online books:

♦ UltraLite Database User’s Guide (this book) This book presents
information that is useful for all UltraLite interfaces, including
information about the UltraLite database management, SQL, and
synchronization.

♦ Interface book Each UltraLite interface has a separate book, which
contains all you need for developing applications using that interface.

♦ MobiLink books If your application includes synchronization, The
MobiLink Synchronization User’s Guideand theMobiLink
Synchronization Referenceprovide a complete guide to the
synchronization system.

7

Developing UltraLite applications
UltraLite application development is carried out using either an UltraLite
component or a static interface. An UltraLite component is provided for
each development tool. Each component exposes a set of objects for data
manipulation in the form of an API tailored to suit the expectations of users
of a particular tool or language.

All UltraLite components and the UltraLite runtime library used by the static
interfaces are built on the same underlying database engine.

UltraLite
runtime

UltraLite
programming
interfaces

Application development tools

Applications that you create with an UltraLite Component will consist of the
following:

♦ Your application code

♦ The UltraLite component or runtime library

♦ An UltraLite database

Developing applications with UltraLite components

To develop an application using an UltraLite component you follow the
following basic sequence of steps.

1. Design your database.

A databaseschemais the database definition, including all tables,
indexes, and so on. You create a database schema using the UltraLite
Schema Painter or writing an XML file. Users of SQL Anywhere Studio
can generate an UltraLite database schema from an Adaptive Server
Anywhere database.

8

Chapter 1. Welcome to UltraLite

UltraLite holds the database schema in a schema file. The UltraLite
components use the information in this file to create a database when an
application is first run.

☞ For more information on the UltraLite Schema Painter, see“The
UltraLite Schema Painter” on page 73.

☞ For more information on the UltraLite utilityulinit, see“UltraLite
initialization utility” on page 86.

2. Set up your development environment.

In each component, you are required to develop your application on a
specific development platform, and to deploy to a specific target device.
To achieve this end, you need to set up your development environment in
tandem with the target environment. Tutorials in the companion books
show you how you can accomplish this setup.

☞ For more information on creating a project architecture for UltraLite
ActiveX, see “Adding the UltraLite component to the design
environment”[UltraLite ActiveX User’s Guide,page 60].

☞ For more information on creating a project architecture for UltraLite
for MobileVB, see the tutorial “Lesson 1: Create a project architecture”
[UltraLite for MobileVB User’s Guide,page 9].

☞ For more information on creating a project architecture for Native
UltraLite for Java, see “Understanding UltraLite Development”[Native
UltraLite for Java User’s Guide,page 35].

3. Write your application code.

Create forms for your application and write code that includes:
♦ Code to create, open and connect to a database

♦ Code to access and modify data

♦ Code for synchronization, if required for your application.

4. Deploy your application to the device.

You can run the application in the development environment to confirm
functionality, and you can configure application settings or synchronize
your data to an enterprise database.

Each of these processes is outlined in detail in each interface book.

Developing applications with UltraLite static interfaces

For the static interfaces, the SQL statements to be used in an application
must be specified at compile time. This is in contrast to the UltraLite
components, which support a dynamic interface.

9

The overall development process for each static interface is similar, but the
details are different. For more information, see the following:

♦ “Developing static C++ applications”[UltraLite Static C++ User’s Guide,
page 3]

♦ “Developing embedded SQL applications”[UltraLite Embedded SQL User’s
Guide,page 3]

♦ “Introduction to Native UltraLite for Java”[Native UltraLite for Java User’s
Guide,page 1]

10

Chapter 1. Welcome to UltraLite

Data access in UltraLite
UltraLite provides the following data access methods:

♦ Static SQL The static interfaces (embedded SQL, static C++, and static
Java) use structured query language (SQL) to access data. The SQL they
use isstatic, meaning that the statements are all specified at the time the
application is built.

♦ Dynamic SQL The UltraLite components can usedynamic SQL, which
permits SQL statements to be constructed at runtime.

♦ Table-based API Both the UltraLite components and static C++
interface provide a table-based API that accesses rows one at a time.

Static SQL The distinguishing features of static SQL are as follows:

♦ The full richness of the SQL language supported by Adaptive Server
Anywhere can be used. An application will, however, use a limited
number of these features, and so the supporting database engine can be
quite small. By contrast, there must be support for every feature that
could be used in a dynamic SQL implementation.

☞ For more information about Adaptive Server Anywhere SQL
support, see “SQL Statements”[ASA SQL Reference,page 213].

♦ Since all SQL requirements are known at the time the application is built,
the SQL statements themselves can be compiled into an executable form.
They will tend to execute faster than an equivalent dynamic SQL
implementation (which must be interpreted).

♦ More extensive optimization of how to execute a query is possible since
this happens when the application is built.

Dynamic SQL The distinguishing features of dynamic SQL are as follows:

♦ The ability to define SQL statements at runtime provides additional
flexibility.

♦ There is no need for the analysis step during application development.

♦ The data structures used to execute SQL statements can be built as
required. This contrasts with static SQL in which these data structures are
built when the application is built. Dynamic SQL applications are
therefore larger than the corresponding static SQL implementations
unless a large number (probably greater than 100) of statements are
present in the application.

11

♦ While the development model for static interfaces ensures that the data
addressed by queries in the application is included in the UltraLite
database, dynamic SQL shifts that responsibility to the application
developer.

Table-based API The distinguishing features of the table-based API are as follows:

♦ You can develop applications without learning SQL.

♦ The interface is simpler. However, you can access data in only one table
at a time.

12

CHAPTER 2

Tutorial: Walking Through a Sample
UltraLite Application

About this chapter This chapter illustrates some key features of UltraLite by walking through a
sample application. The sample application is a simple sales-status
application built around a database named CustDB (Customer Database).

The chapter includes information on how to run the sample application, and
a brief description of how the application works.

Before you begin To get the most from this chapter, you should be able to run the sample
application as you read.

This chapter assumes that you have read the chapter“Welcome to UltraLite”
on page 3. Much of the material in this chapter is explained in a more
general manner elsewhere in the book. Cross references to these places are
provided.

Contents Topic: page

Introduction 14

Lesson 1: Start the MobiLink synchronization server 18

Lesson 2: Start the sample application and synchronize 19

Lesson 3: Add an order 20

Lesson 4: Act on some existing orders 22

Lesson 5: Synchronize your changes 23

Lesson 6: Confirm the synchronization at the consolidated database24

Lesson 7: Browse the consolidated database 25

13

Introduction
CustDB is a sample application included with UltraLite. It is a simple
sales-status application that you can run against any of the supported
databases, and on any of the supported target operating systems.

By working with the CustDB sample application, this chapter demonstrates
the following core features of UltraLite.

♦ UltraLite database applications run on small devices using very limited
resources.

♦ UltraLite applications include a relational database engine.

♦ UltraLite applications share data with a central, consolidated database in
a two-way synchronization scheme. The UltraLite databases are also
calledremotedatabases.

♦ Each remote database contains a subset of the data in the consolidated
database.

♦ The MobiLink synchronization server carries out data synchronization
between the consolidated database and each UltraLite installation.

♦ SQL scripts stored in the consolidated database implement the
synchronization logic.

♦ You can use Sybase Central to browse and edit the synchronization
scripts.

A separate version of the CustDB application is provided for each UltraLite
programming interface. Each version has similar features, although
sometimes variations are made to conform to the expectations of a particular
platform. The CustDB sample code for each interface provides a source for
your own application development, as it covers many common UltraLite
development tasks.

This chapter walks through a desktop version of the application to illustrate
the features included in the applcation.

The CustDB sample application

Versions of the CustDB application are supplied for each supported
interface, including complete source control. This tutorial uses the compiled
version of the application for Windows NT/2000/XP.

When running the sample application, you are acting as an order taker or
sales manager. The application allows you to view outstanding orders,
approve or deny orders, and add new orders.

14

Chapter 2. Tutorial: Walking Through a Sample UltraLite Application

You can carry out the following tasks with the sample application.

♦ View lists of customers and products.

♦ Add new customers.

♦ Add or delete orders.

♦ Scroll through the list of outstanding orders.

♦ Accept or deny orders.

♦ Synchronize changes with the consolidated database.

When you run the CustDB UltraLite application, you are working on a
single remote database, and synchronizing your changes with a consolidated
database.

In a typical UltraLite installation, there will be many remote databases, each
running on a handheld device, and each containing a small subset of the data
from the consolidated database.

File locations for the sample application

Your UltraLite installation includes the files needed to run the sample
application, and the source code used to develop it. Studying the sample
application source code is a good way to learn more about UltraLite.

When you install SQL Anywhere Studio, the UltraLite sample files are
installed into a directory namedSamples\Ultraliteunder your installation
directory.

Runtime file location

To run the CustDB sample application, you need the following components:

♦ The consolidated database An Adaptive Server Anywhere version of
the customer database is installed as the filecustdb.dbin the
Samples\UltraLite\Custdbsubdirectory of your SQL Anywhere directory.

This database serves as a consolidated database. It contains the following
information:

• MobiLink system tables that hold the synchronization metadata.

• The CustDB data, stored in rows in base tables.

• The synchronization scripts.

During the installation process, an ODBC data source named
UltraLite 9.0 Sample is created for this database.

15

♦ The MobiLink synchronization server The MobiLink synchronization
server is in thewin32 subdirectory of your SQL Anywhere directory.

♦ The UltraLite application executable A version of the sample is
supplied for each interface and operating system. For the static
programming interfaces (embedded SQL, static C++ API, and static Java
API) the executable and source code is held in a subdirectory of your
Samples\Ultralitedirectory. Each UltraLite component has a separate
directory immediately under theSamplesdirectory.

Source file locations

Source code is provided for both the consolidated database and the UltraLite
application in theSamples\UltraLite\CustDBand
Samples\MobiLink\CustDBsubdirectories of your SQL Anywhere
directory.

♦ Consolidated database source In this chapter we use the Adaptive
Server Anywhere CustDB database as the consolidated database.

You can also build Sybase Adaptive Server Enterprise, Microsoft
SQL Server, or Oracle consolidated databases and run the application
against those database-management systems.

You can use one of the SQL scripts in theSamples\MobiLink\CustDB
directory to build a consolidated database for a DBMS other than
Adaptive Server Anywhere.

• custase.sql Sybase Adaptive Server Enterprise.

• custdb.sql Sybase Adaptive Server Anywhere.

• custdb2.sql IBM DB2.

• custmss.sql Microsoft SQL Server.

• custora.sql Oracle.

The Adaptive Server Anywhere consolidated database is already built and
installed. You only need the scripts to make a consolidated database
using another relational database product. You do not need the scripts for
this tutorial.

☞ For more information, see “The CustDB Sample Application”
[MobiLink Synchronization User’s Guide,page 429].

♦ Application source For the static programming interfaces (embedded
SQL, static C++ API, and static Java API) the executable and source code
is held in a subdirectory of yourSamples\Ultralitedirectory. Each
UltraLite component has a separate directory immediately under the
Samplesdirectory.

16

Chapter 2. Tutorial: Walking Through a Sample UltraLite Application

Synchronization techniques in the sample application

The sample application demonstrates several useful synchronization
techniques. This chapter provides a glimpse at synchronization, but in order
to understand how to use these techniques in applications, you need to
understand in more detail how the synchronization process works.

Synchronization is carried out using the MobiLink synchronization server,
running on your desktop machine, against the CustDB sample database. For
more information, see “The CustDB Sample Application”[MobiLink
Synchronization User’s Guide,page 429].

For more information ☞ For an overview of the synchronization process, see “The
synchronization process”[MobiLink Synchronization User’s Guide,page 21].

☞ For a description of how to write the synchronization scripts that control
synchronization, see “Writing Synchronization Scripts”[MobiLink
Synchronization User’s Guide,page 37].

☞ For information on the techniques used in the CustDB sample
application, see “The CustDB Sample Application”[MobiLink Synchronization
User’s Guide,page 429].

17

Lesson 1: Start the MobiLink synchronization
server

When you start the sample UltraLite application for the first time, it contains
no data. The application carries out an initial synchronization to download
an initial copy of the data from the consolidated database. You must have the
database server running in order to carry out this initial download, and you
must also have the MobiLink synchronization server running against the
UltraLite sample database.

The SQL Anywhere Studio installation adds some items to the Start menu to
make this step easier.

❖ To start the MobiLink synchronization server against the consol-
idated database
1. Start the consolidated database server, running the CustDB sample

database.

The Adaptive Server Anywhere consolidated database server runs on
your desktop machine. From the Start menu, choose Programs➤ Sybase
SQL Anywhere 9➤ UltraLite ➤ Personal Server Sample for UltraLite.

2. Start the MobiLink synchronization server against the CustDB database.

The MobiLink synchronization server connects to the consolidated
database server through ODBC. It could run from a separate machine
from the database server, but in this example we will run it on the same
machine.

From the Start menu, select Programs➤ SQL Anywhere 9➤ MobiLink
➤ Synchronization Server Sample.

The command executed by this icon connects the MobiLink
synchronization server to the consolidated database server.

18

Chapter 2. Tutorial: Walking Through a Sample UltraLite Application

Lesson 2: Start the sample application and
synchronize

When started for the first time, the sample UltraLite application contains no
data. In this step, you start the sample application, and carry out an initial
synchronization with the consolidated database to obtain an initial set of
data. The particular data you download depends on the user ID you enter
when you start the application.

Start the application

❖ To start and synchronize the sample application

1. Launch the sample application.

From the Start menu, choose Programs➤ SQL Anywhere 9➤ UltraLite
➤ Windows Sample Application.

2. Enter an employee ID.

When running through this section as a tutorial, enter a value of 50 and
pressENTER. The application also allows values of 51, 52, or 53, but
behaves slightly differently in these cases.

The application synchronizes after you enter the employee ID, and a set
of customers, products, and orders are downloaded to the application.

3. Confirm that the data has been synchronized into the application.

Confirm that a company name and a sample order appear on the
application window.

You have now synchronized your data.

☞ For the next step, see“Lesson 3: Add an order” on page 20.

19

Lesson 3: Add an order
In this section, you display the initial data in the sample application and add
a new order. These step are carried out in a similar way in each version of
the application.

The application holds information about a set of orders. For each order, this
data includes the customer, the product, the quantity, the price, and any
applicable discount. Also included are a status field and a notes field, which
you can modify from the application.

Only unapproved orders are downloaded to the application. The sample
application does not receive all the orders listed in the ULOrder table in the
consolidated database. You control which information is sent to your
application using synchronization scripts.

Add an order

❖ To add an order

1. Scroll through the outstanding orders.

Click Next to display the next customer.

2. Open the window to enter a new order.

From the Order menu, choose New.

The Add New Order screen is displayed.

3. Choose a customer.

The UltraLite application holds the complete list of customers from the
consolidated database. To see this list, open the Customer drop-down list.

ChooseBasements R Usfrom the list. The current list of orders does not
have any from this customer.

4. Choose a product.

The UltraLite application holds the complete list of products from the
consolidated database. To see this list, open the Product drop-down list
box.

ChooseScrewmaster Drill from the list. The price of this item is
automatically entered in the Price field.

5. Enter the quantity and discount.

Enter a value of 20 for the quantity, and a value of 5 for the discount.

6. Press Enter to add the new order.

20

Chapter 2. Tutorial: Walking Through a Sample UltraLite Application

7. Click X to close the New Order screen.

You have now modified the data in your local UltraLite database. This data
is not shared with the consolidated database until you synchronize.

☞ For the next step, see“Lesson 4: Act on some existing orders” on
page 22.

21

Lesson 4: Act on some existing orders
In this step, you approve one order and deny another. Approving or denying
orders updates two columns in the local database. No data in the
consolidated database is changed until you synchronize.

The instructions for this step are very similar for all platforms.

❖ To approve, deny, and delete orders

1. Approve the order from Apple Street Builders.

♦ Go to the first order in the list, which is from Apple Street Builders.

♦ Tap or Click Approve to approve the order.

♦ Add a note to your approval, sayingGood Work! .

♦ The order appears with a status of Approved.

2. Deny the order from Art’s Renovations.

♦ Go to the next order in the list, which is from Art’s Renovations.

♦ Tap or click Deny to deny this order.

♦ Add a note statingDiscount too high.

3. Delete the order from Awnings R Us.

♦ Go to the next order in the list, which is from Awnings R Us.

♦ Delete this order by choosing the menu item Options➤ Delete. It
disappears from your local copy of the data.

Having changed these orders, you now need to communicate your changes
to the consolidated database.

☞ For the next step, see“Lesson 5: Synchronize your changes” on page 23.

22

Chapter 2. Tutorial: Walking Through a Sample UltraLite Application

Lesson 5: Synchronize your changes
In this step, you synchronize changes you made on your handheld device to
the consolidated database.

For synchronization to take place, your MobiLink synchronization server
must be running. If you have shut down your MobiLink synchronization
server since the beginning of the tutorial, restart it.

☞ For instructions, see“Lesson 1: Start the MobiLink synchronization
server” on page 18.

Synchronize your changes

❖ To synchronize your changes

1. If you are running on a Windows CE handheld device, place the device in
its cradle, so that it can connect to the machine running the MobiLink
synchronization server.

2. Choose File➤ Synchronize to synchronize your data.

3. Confirm that the synchronization took place.

♦ Confirm that the approved order for Apple Street Builders is no longer
in your application.

♦ The synchronization process for this sample application removes
approved orders from your application.

☞ For the next step, see“Lesson 6: Confirm the synchronization at the
consolidated database” on page 24.

23

Lesson 6: Confirm the synchronization at the
consolidated database

In this step, you use Interactive SQL to connect to the consolidated database
and confirm that the changes made have been synchronized. This step is
independent of the platform on which your UltraLite application is running

❖ To confirm that the changes are synchronized to the consolidated
database
1. Connect to the consolidated database from Interactive SQL.

In the Interactive SQL Connect dialog, choose theUltraLite 9.0 Sample
ODBC data source.

2. Confirm the status change of the approved and denied orders.

To confirm that the approval and denial have been synchronized, issue the
following statement.

SELECT order_id, status
FROM ULOrder
WHERE status IS NOT NULL

The results show that order 5100 is approved, and 5101 is denied.

3. Confirm that the deleted order has been removed.

The deleted order has an order_id of 5102. The following query returns
no rows, demonstrating that the order has been removed from the system.

SELECT *
FROM ULOrder
WHERE order_id = 5102

The tutorial is now complete.

24

Chapter 2. Tutorial: Walking Through a Sample UltraLite Application

Lesson 7: Browse the consolidated database
You can use Sybase Central to manage MobiLink synchronization. The
synchronization logic is held in the consolidated database.

This section describes how to use Sybase Central to browse the scripts in the
CustDB consolidated database.

The CustDB database

The following figure shows the tables in the CustDB consolidated database
and how they relate to each other.

The tables hold the following information.

♦ ULCustomer A list of customers.

♦ ULProduct A list of products.

♦ ULEmployee A list of sales employees. This table is not present in the
UltraLite database.

♦ ULEmpCust A many-to-many relationship between employees and
customers. This table is not present in the UltraLite database.

♦ ULOrder A list of orders, including details of the customer who placed
the order, the employee who took the order, and the product being
ordered.

♦ ULCustomerIDPool A table to maintain unused unique primary key
values on the customer table throughout a deployed UltraLite system.

♦ ULOrderIDPool A table to maintain unused unique primary key values
on the order table throughout a deployed UltraLite system.

25

♦ ULIdentifyEmployee This table holds a list of employee ID numbers.

Connect to the CustDB database from Sybase Central

1. Start the CustDB database:
♦ Select Programs➤ Sybase SQL Anywhere 9➤ UltraLite ➤ Personal

Server Sample for UltraLite.
An Adaptive Server Anywhere database server starts, running the
CustDB UltraLite Sample Database.

2. Start Sybase Central:
♦ From the Start menu, select Programs➤ Sybase SQL Anywhere 9➤

Sybase Central.

3. Connect Sybase Central to the sample database:
♦ In Sybase Central, select Tools➤ Connect. If there is a choice of

connection types, select MobiLink. The MobiLink Connect dialog
appears.

Select ODBC, enterUltraLite 9.0 Sample in the Data Source box.
Click OK to connect.

You are now connected to the CustDB sample database.

Browse the synchronization scripts

From Sybase Central, you can browse through the tables, users,
synchronized tables, and synchronization scripts that are stored in the
consolidated database. Sybase Central is the primary tool for adding these
scripts to the database.

Open the Connection Scripts folder. The right hand pane lists a set of
synchronization scripts and a set of events that these scripts are associated
with. As the MobiLink synchronization server carries out the
synchronization process, it triggers a sequence of events. Any
synchronization script associated with an event is run at that time. By writing
synchronization scripts and assigning them to the synchronization events,
you can control the actions that are carried out during synchronization.

Open the Synchronized Tables folder, and open the ULCustomer table
folder. The right hand pane lists a pair of scripts that are specific to this
table, and their corresponding events. These scripts control the way that data
in the ULCustomer table is synchronized with the remote databases.

This section does not discuss the content of the synchronization scripts.
These are discussed in detail in the chapter “Writing Synchronization
Scripts” [MobiLink Synchronization User’s Guide,page 37]and in “The CustDB
Sample Application”[MobiLink Synchronization User’s Guide,page 429].

26

CHAPTER 3

UltraLite Databases

About this chapter This chapter provides basic information about data storage in UltraLite
databases. It also describes features other than data access features, such as
user authentication and character sets.

Contents Topic: page

Databases and schema files 28

Information storage in UltraLite databases 33

Backup, recovery, and transaction processing 35

Encrypting UltraLite databases 36

User authentication 38

Character sets in UltraLite 40

UltraLite database limitations 44

The UltraLite runtime library 47

27

Databases and schema files
On most platforms, UltraLite databases are held in files. On the Palm OS the
database can also be held in the Palm persistent store.

UltraLite database files contain tables and indexes that represent the data.
They also hold supplementary information to provide transaction processing
features. For more information, see“How UltraLite tracks row states” on
page 33.

Each database has a well-defined collation sequence (character set and sort
order). The collation sequence is defined when the database is created. For
more information, see“Character sets in UltraLite” on page 40.

Most relational database systems include a special set of tables called the
system tables, or catalog. These tables hold the database schema, or
metadata: they hold the definitions of all the other tables and objects in the
database.

UltraLite does not store its database schema in a set of system tables.
Instead, the schema is held in the database file in a compact manner. The
schema definition is built into the database file in one of the following ways:

♦ If you are using an UltraLite component, the schema definition is held in
a separate file called aschema file. The schema file is specified in a
connection parameter, and is applied to the database on the first
connection attempt.

You can upgrade the schema of your database by supplying a new schema
file and applying it to the existing database.

☞ For more information, see“The UltraLite Schema Painter” on
page 73.

♦ If you are using a static UltraLite interface, the schema definition is built
into the application when the database code is generated from the
reference database.

☞ For more information, see“The static UltraLite development
process” on page 197, and“The UltraLite generator” on page 96.

UltraLite database files

The physical storage of the UltraLite database depends on the target
platform.

♦ Palm Computing Platform The database is stored in the Palm
persistent (static) memory using the Data Manager API. For devices
operating Palm OS version 4.0, you can store UltraLite databases in the
file-based storage of expansion cards.

28

Chapter 3. UltraLite Databases

♦ Windows CE The database is stored in the file system. On
Windows CE the default file is\UltraLiteDB\ul.udb. On other versions of
Windows the default file isul_<project>.udb in the working directory of
the application, where<project> is the UltraLite project name used
during the development process.

♦ Static Java The database is either transient, or is stored as a file in the
file system. By default, it is transient.

When creating your database, there are several configuration parameters you
can supply. These control features such as encryption.

For more information ♦ UltraLite for MobileVB See “CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 121].

♦ UltraLite ActiveX See “CreateDatabaseWithParms method”[UltraLite
ActiveX User’s Guide,page 121].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET SeeDatabaseManager classin the UltraLite.NET API
Reference.

♦ UltraLite for C++ SeeUltraLite_DatabaseManager classin the
UltraLite C++ API Reference.

♦ UltraLite for embedded SQL See“Macros and compiler directives for
UltraLite C/C++ applications” on page 215.

♦ UltraLite static C++ See“Macros and compiler directives for UltraLite
C/C++ applications” on page 215.

♦ UltraLite static Java See “UltraLite API reference”[UltraLite Static
Java User’s Guide,page 58].

UltraLite database characteristics

When you create an UltraLite database, you set some database-wide
characteristics. These include the following:

♦ Case sensitivity The case sensitivity of a database affects all string
comparisons. It must be specified when the database is created because
indexes are stored in sorted order, and the order depends on whether the
database is case sensitive or not.

29

♦ Character set The character set of a database also affects sort orders,
and must be specified when the database is created.

☞ For more information, see“Character sets in UltraLite” on page 40.

Altering the schema of UltraLite databases

If you develop a new version of an UltraLite application, you may wish to
alter the schema of the database. You can deploy an upgraded UltraLite
schema and maintain the data in existing end-user databases subject to some
restrictions. This feature is not available to UltraLite applications built using
the static Java API.

The mechanism for deploying an upgraded schema depends on whether you
use an UltraLite component (which requires a new schema file) or whether
you use a static interface (in which case the schema definition is held in the
generated application code).

❖ To deploy a new schema (UltraLite components)

1. Create a new schema file.

You can create your new schema using the Schema Painter or using
ulinit. If you use the schema painter, you can rename columns. If you use
ulinit to create the new schema, you lose any data held in renamed
columns—the schema is interpreted as dropping the old column and
creating a new column.

2. Apply the schema file to the existing database.

The components expose a database schema as a DatabaseSchema or
ULDatabaseSchema object. You obtain a schema object using the
DatabaseSchema property on the Connection or ULConnection object.

Use the ApplyFile method on the ULDatabaseSchema object to apply the
new schema.

❖ To deploy a new schema (embedded SQL and static C++ API)

1. Modify the schema in your reference database.

2. Create the new version of your application.

3. Ensure that your application calls ULEnableGenericSchema().

When a new UltraLite application built with a static interface is deployed
to a device, UltraLite by default re-creates an empty database, losing any
data that was in the database before the new application was deployed. If
you call ULEnableGenericSchema, the existing database is instead
upgraded to the schema of the new application.

30

Chapter 3. UltraLite Databases

☞ See “ULEnableGenericSchema function”[UltraLite Embedded SQL
User’s Guide,page 111].

4. The schema is upgraded automatically when the new application is
applied.

For information on how the schema upgrade happens, see

How the schema upgrade works

Backup before upgrading
It is strongly recommended that you backup your data before attempting
an upgrade, either by copying the database file or by synchronizing.

The schema upgrading process relies on matching names in the old and new
schema. If a row in the database is incompatible with the new schema, that
row is deleted from the database. In general, adding constraints to tables that
have data in them or carrying out unpredictable column conversions may
result in lost rows.

The schema upgrade proceeds as follows:

1. Any tables that were in the old schema but not in the new schema are
dropped.

2. Any tables that are in the new schema but were not in the old are created.

3. For any table that exists in both old and new, but with a different
definition, columns are added and dropped as needed. If a new column is
not nullable and has no default value, it is filled with zeros (numeric data
types), the empty string (character data types) and an empty binary value.

4. Columns whose properties have changed are then modified.

Caution
If an error occurs during conversion for any row, that row is dropped and
the SQL warning SQLE_ROW_DROPPED_DURING_SCHEMA_-
UPGRADE is set.

5. Indexes and constraints are rebuilt. This step may also result in rows
being dropped if, for example, an index is redefined as UNIQUE but has
duplicate values.

Upgrading UltraLite software

For any UltraLite 9.0 database, you can apply a new schema file to your
UltraLite 9.0 database.

31

On Windows operating systems other than Windows CE, if you are using
UltraLite for MobileVB or UltraLite ActiveX, you cannot open an UltraLite
database file created using 8.0.2 software. For more information, see
“UltraLite behavior changes”[What’s New in SQL Anywhere Studio,page 44].

☞ For compatibility of UltraLite database files with previous releases, see
“UltraLite runtime character sets” on page 41.

32

Chapter 3. UltraLite Databases

Information storage in UltraLite databases
UltraLite stores the rows of data in each table. It also stores state
information about each row, and stores indexes to efficiently access the rows.

UltraLite compresses variable length strings, integers, numerical values, and
date/time data in the database. It does not compress columns containing
character or binary data, except on Windows CE where Unicode strings are
compressed by storing in a UTF-8 representation.

How UltraLite tracks row states

Each row in an UltraLite database has a one-byte marker to keep track of the
state of the row. The row states are used to control transaction processing,
recovery, and synchronization.

When a delete is issued, the state of each affected row is changed to reflect
the fact that it was deleted. Rolling back a delete is as simple as restoring the
original state of the row.

When a delete is committed, the affected rows are not always removed from
memory. If the row has never been synchronized, then it is removed. If the
row has been synchronized, then it is not removed until the next
synchronization confirms the delete with the consolidated database. After
the next synchronization, the row is removed from memory.

Similarly, when a row is updated in an UltraLite database, a new version of
the row is created. The states of the old and new rows are set so the old row
is no longer visible and the new row is visible. When an update is
synchronized, both the old and new versions of the row are needed to allow
conflict detection and resolution.

The old version of the row is deleted after synchronization. If a row is
updated many times between synchronizations, only the oldest version of the
row and the most recent version of the row are kept.

Indexes in UltraLite databases

UltraLite indexes are B+ trees with very small index entries.

Except for pure Java databases, each index entry is exactly two bytes, and
each index page contains 256 entries. Since index pages are rarely 100% full
and each index has some fixed overhead, the memory used by an UltraLite
index is more than two bytes per row in the table. The overhead for each
index is just over 1 kb per index. Typically, UltraLite index pages on larger
tables will be least 85% full.

33

No similar consistent rule can be given for the memory requirements of
UltraLite Java databases.

34

Chapter 3. UltraLite Databases

Backup, recovery, and transaction processing
The best way of making a backup of an UltraLite application is to
synchronize with a consolidated database. To restore an UltraLite database,
start with an empty database and populate it from the consolidated database
through synchronization.

UltraLite provides protection against system failures, but not against media
failures. If the UltraLite data store itself is corrupted, the only way to protect
is through synchronization.

UltraLite provides transaction processing. If an application using an
UltraLite database stops running unexpectedly, the UltraLite database
automatically recovers to a consistent state when the application is restarted.
All transactions committed prior to the unexpected failure are present in the
UltraLite database. All transactions not committed at the time of the failure
are rolled back.

UltraLite does not use a transaction log to perform recovery. Instead,
UltraLite uses the state byte for every row to determine the fate of a row
when recovering. When a row is inserted, updated, or deleted in an UltraLite
database, the state of the row is modified to reflect the operation and the
connection that performed the operations. When a transaction is committed,
the states of all rows affected by the transaction are modified to reflect the
commit. If an unexpected failure occurs during a commit, the entire
transaction is rolled back on recovery.

☞ For more information on state bytes, see“How UltraLite tracks row
states” on page 33.

35

Encrypting UltraLite databases
By default, UltraLite databases are unencrypted on disk and in permanent
memory. Text and binary columns are plainly readable within the database
store when using a viewing tool such as a hex editor. Two options are
provided for greater security:

♦ Obfuscation This option provides protection against casual attempts to
access data in the database. It does not provide as much security as strong
encryption. Obfuscation has minimal performance impact.

♦ Strong encryption UltraLite database files can be strongly encrypted
using the AES 128-bit algorithm, which is the same algorithm used to
encrypt Adaptive Server Anywhere databases. Use of strong encryption
provides security against skilled and determined attempts to gain access
to the data, but has a significant performance impact.

Caution
If the encryption key for a strongly encrypted database is lost or forgot-
ten, there is no way to access the database. Under these circumstances,
technical support cannot gain access to the database for you. It must be
discarded and you must create a new database.

Encrypting an UltraLite database

To encrypt an UltraLite database, you supply an encryption key when you
create the database (that is, on the first connection attempt). The supplied
key is used to encrypt the database. On subsequent attempts, the supplied
key is checked against the encryption key, and connection fails unless the
key matches.

For more information ♦ UltraLite for MobileVB See “Encryption and obfuscation”[UltraLite for
MobileVB User’s Guide,page 57].

♦ UltraLite ActiveX See “Encryption and obfuscation”[UltraLite ActiveX
User’s Guide,page 73].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.ConnectionParmsin the API Reference.

♦ UltraLite.NET See ConnectionParms class in the UltraLite.NET API
Reference.

♦ UltraLite for C++ SeeUltraLite_Connection_iface in the UltraLite
for C++ API Reference.

36

Chapter 3. UltraLite Databases

♦ UltraLite for embedded SQL See “Encrypting UltraLite databases”
[UltraLite Embedded SQL User’s Guide,page 56].

♦ UltraLite static C++ See “Encrypting UltraLite databases”[UltraLite
Static C++ User’s Guide,page 31].

♦ UltraLite static Java See “Encrypting UltraLite databases”[UltraLite
Static Java User’s Guide,page 41].

37

User authentication
UltraLite provides optional database user IDs and passwords for user
authentication. Unlike Adaptive Server Anywhere and other multi-user
database systems, UltraLite user IDs are used for authentication only, not for
permission checking or object ownership within a database. By default,
UltraLite databases have no user authentication.

UltraLite provides a built-in scheme to authenticate users before allowing
them to connect to the UltraLite database.

When an UltraLite database is created, it has an initial user ID of DBA, with
a password of SQL. These are also default values on connection parameters.
You can avoid user authentication by not supplyinguid or pwd connection
parameters when connecting.

UltraLite permits up to four different users to be defined at a time, with both
user ID and password being less than 16 characters long.

Each user has full access to the database once successfully authenticated.
The user authentication scheme does not provide the permissions features
implemented in multi-user database systems and in MobiLink
synchronization.

If the database is case insensitive (the default) then the user ID and password
are case insensitive. If the database is case sensitive, then the password is
case sensitive.

UltraLite user IDs are separate from MobiLink user names and from user
IDs in any reference database or consolidated databases you use during
development and after deployment. In many cases you may wish to provide
code so that the values used for each are the same, but they do remain
distinct concepts. For example, in the CustDB sample application, you are
prompted for an employee number when starting the application. This
employee number identifies the database for the purposes of MobiLink
synchronization, and is not an UltraLite user ID for connection or data
access purposes.

❖ To add user authentication to your application

1. Connect to the database using the defaultuid andpwd parameters.

New users have to be added from an existing connection.

2. Prompt for a user ID and password.

3. Grant access to this user.

38

Chapter 3. UltraLite Databases

Use the ULConnection.GrantConnectTo method to enable user
authentication and provide access to a specific user ID and password
combination.

4. Optionally, revoke access from the original user ID.

For more information ♦ UltraLite for MobileVB See “User authentication”[UltraLite ActiveX
User’s Guide,page 93].

♦ UltraLite ActiveX See “User authentication”[UltraLite ActiveX User’s
Guide,page 93].

♦ Native UltraLite for Java See “User authentication”[Native UltraLite for
Java User’s Guide,page 53].

♦ UltraLite.NET See “User authentication”[UltraLite.NET User’s Guide,
page 43].

♦ UltraLite for C++ See “User authentication”[UltraLite C++ User’s
Guide,page 37].

♦ UltraLite for embedded SQL See “Adding user authentication to your
application”[UltraLite Embedded SQL User’s Guide,page 52].

♦ UltraLite static C++ See “Adding user authentication to your
application”[UltraLite Static C++ User’s Guide,page 28].

♦ UltraLite static Java See “Adding user authentication to your
application”[UltraLite Static Java User’s Guide,page 38].

39

Character sets in UltraLite
There are several places in UltraLite applications where character set issues
can arise:

♦ The UltraLite schema The database itself has a single collating
sequence (character set and sort order), which is specified when the
database is created. The collating sequence determines the order of
character data in indexes, the results of string comparisons, and so on.

☞ For more information, see“UltraLite database character sets” on
page 40.

♦ The UltraLite runtime library or component The UltraLite
component or runtime library that accesses the database uses a character
set for messages and other interactions with the environment.

The runtime character sets may be Unicode or ANSI. The character set
used determines how the data is stored in the database file. Once a
database is created, you must use a single runtime character set to
manage it.

☞ For more information, see“UltraLite runtime character sets” on
page 41.

♦ Synchronization When data in the UltraLite database is synchronized
with a MobiLink synchronization server, the character set used in the
UltraLite database and that in the consolidated database must be
consistent.

☞ For more information, see“Synchronization and character sets” on
page 43.

UltraLite database character sets

If you create an UltraLite database schema using the schema painter, you
specify the character set and collating sequence as you create the database
schema.

UltraLite applications use the native multi-byte character encoding of the
target platform for reasons of efficiency. When the reference database uses a
different character encoding, the UltraLite application uses the default
collation of the target device.

UltraLite applications use the collating sequence of the reference database if
either of the following conditions is met.

♦ The reference database uses a single-byte character set.

40

Chapter 3. UltraLite Databases

♦ The native character encoding of the target device is multi-byte, the
reference database uses the same multi-byte character encoding, and the
UltraLite analyzer can find a compact representation for the collation
sequence used by the reference database.

For example, if you use a 932JPN reference database to build an UltraLite
application for the Windows CE platform, the application will use Unicode
and the default Unicode collation information. If, instead, you use a 932JPN
reference database to build an application for the Japanese Palm Computing
Platform, then the UltraLite application can inherit the collation information
because the native character encoding is the same as that of the reference
database.

Sort orders If the character set is single byte, or the native character set of the target
device is the same as the character set of the reference database, columns
that are CHAR(n) or VARCHAR(n) compare and sort according to the
collation sequence of the reference database.

☞ For information about creating databases, see“The UltraLite Schema
Painter” on page 73.

Data storage The way that character data is stored depends not only on the collation
sequence used when creating the schema, but also on the character set (ANSI
or Unicode) of the UltraLite runtime library that manages the database.

☞ For more information, see“UltraLite runtime character sets” on page 41.

UltraLite runtime character sets

The character set of the UltraLite runtime library is different depending on
the target operating system. The character set determines how the .

Palm Computing
Platform

Single-byte Palm Computing Platform devices uses a character set based on
code page 1252 (the Windows US code page). The 1252Latin1 code page is
appropriate for developing applications for the Palm Computing Platform.
The 1252Latin1 code page is the default Adaptive Server Anywhere
collation sequence. Japanese Palm Computing Platform devices use 932JPN.

Windows CE The Windows CE operating system uses Unicode. UltraLite running on
Windows CE also uses Unicode to store CHAR(n) and VARCHAR(n)
columns. Adaptive Server Anywhere collating sequences define behavior for
8-bit ASCII character sets.

UltraLite for Windows CE uses the Adaptive Server Anywhere collating
sequence when comparing Unicode characters that have a corresponding
8-bit ASCII character in the collating sequence being used, allowing
accented characters to compare equal and sort with unaccented characters.

41

Unicode characters that have no corresponding 8-bit ASCII character use a
comparison of two Unicode values.

Windows desktop
operating systems

The UltraLite components are all Unicode based.

The runtime library used by UltraLite embedded SQL and static C++
applications on Windows NT/2000/XP and Windows 98 is provided in both
ANSI and UNICODE versions. UltraLite versions before version 9 included
only an ANSI version of the runtime library.

Compatibility of database
files

The runtime or component that is used to create the database determines
how characters are stored within the database. You cannot create an
UltraLite database using an ANSI component or runtime library and then
use that database file with a Unicode component or runtime library.

The following table lists the character set in use by UltraLite components
and runtime libraries. These character sets dictate whether or not you can
use a database file created by one version of UltraLite in another. In
particular, note that you cannot open a database created by version 8.0.2
UltraLite for MobileVB or UltraLite ActiveX on a Windows operating
system (other than Windows CE) in version 9.0 or later software.

Environment 8.0.2 9.0 and later

Windows components ANSI Unicode

Windows CE compo-
nents

Unicode Unicode

Windows (Native Ultra-
Lite for Java)

Unicode Unicode

Windows CE (Native
UltraLite for Java)

Unicode Unicode

Windows 8.0.2 DLL ANSI N/A

Windows (ulrt.lib) N/A ANSI

Windows (ulrtw.lib) N/A Unicode

Windows (ulrtc.lib (en-
gine))

N/A Unicode

Windows CE Unicode Unicode

Static Java The error-handling objectsSQLExceptionandSQLWarning provide the
capability for Java applications to obtain error or warning messages. By
default, these messages are supplied in English.

42

Chapter 3. UltraLite Databases

Localized error and warning messages may be obtained in a non-English
language by setting the Java Locale to the appropriate language.
For example, to obtain French messages, the following code fragment might
be used:

java.util.Locale locale = new java.util.Locale("fr", "");
java.util.Locale.setDefault(locale);

The default Locale should be set at the start of the program. Once a message
is placed in an error-handling object, the language to be used for the
message is established for that execution of the program.

Synchronization and character sets

When you synchronize, the MobiLink synchronization server always
translates characters uploaded from your application database to Unicode
and passes them to your consolidated database server using the Unicode
ODBC API. The consolidated database server, or its ODBC driver, then
performs any translation that may be required to convert them to the
character encoding of your consolidated database. This second translation
will always occur unless your consolidated database uses Unicode.

When information is downloaded, the consolidated database server converts
the characters to Unicode. The MobiLink Synchronization server then
automatically translates the characters, if necessary, to suit the requirements
of your UltraLite application.

When both UltraLite application and consolidated database use the same
character encoding, no translation is necessary. If translation is necessary,
problems can arise when multiple character codes in your UltraLite
application map to a single Unicode value, or vice versa. In this event, the
MobiLink synchronization server translates in a consistent manner, but
behavior is influenced by the translation mechanism within the consolidated
database server.

43

UltraLite database limitations
The following table lists the absolute limitations imposed by data structures
in the software on the size and number of objects in an UltraLite database. In
most cases, the memory, CPU, and storage device of the computer impose
stricter limits.

Item Limitation

Number of connections per database 14

Number of columns per table 65535 but limited by row size1

Number of indexes 65535

Number of rows per database Limited by persistent store

Number of rows per table 65534

Number of tables per database Approximately 10002

Number of tables referenced per transac-
tion

No limit

Row size Approximately 4 kb (com-
pressed). LONG VARCHAR
and LONG BINARY values are
stored separately, and are in
addition to the 4 kb limit.

File-based persistent store 2 Gb file or OS limit on file size

Palm Computing Platform database size 128 Mb (Primary storage)

2 Gb (expansion card file sys-
tem)

☞ For other limitations, see“Overview of SQL support in UltraLite” on
page 108.

Adaptive Server Anywhere features not available in UltraLite databases

The following Adaptive Server Anywhere features are not available in
UltraLite databases:

1Row size is limited to about 4 kb, so the practical limit on the number of columns per table
is much smaller than this: much less than 4000 in most situations.

2If you set the page size to 2 kb, the maximum number of tables is reduced to approximately
500.

44

Chapter 3. UltraLite Databases

♦ Cascading updates and deletes Some applications rely on declarative
referential integrity to implement business rules. These features are not
available in UltraLite databases.

♦ Check constraints You cannot include table or column check
constraints in an UltraLite database.

♦ Computed columns You cannot include computed columns in an
UltraLite database.

♦ Timestamp columns You cannot use Transact-SQL timestamp
columns in UltraLite databases. Transact-SQL timestamp columns are
created with the following default:

DEFAULT TIMESTAMP

You can use columns created as follows:

DEFAULT CURRENT TIMESTAMP

There is a behavior difference between the two: a DEFAULT CURRENT
TIMESTAMP column is not automatically updated when the row is
updated, while a DEFAULT TIMESTAMP column is automatically
updated. You must explicitly update columns created with DEFAULT
CURRENT TIMESTAMP if you wish the column to reflect the latest
update time.

♦ Global temporary tables The temporary aspect of global temporary
tables is not recognized by UltraLite. They are treated as if they were
permanent base tables, which you should use instead.

♦ Declared temporary tables You cannot declare a temporary table
within an UltraLite application.

♦ Stored procedures You cannot call stored procedures or user-defined
functions in an UltraLite application.

♦ System table access There are no system tables in an UltraLite
database.

♦ SAVEPOINT statement UltraLite databases support transactions, but
not savepoints within transactions.

♦ SET OPTION statement You can determine the option settings in an
UltraLite database by setting them in the reference database, but you
cannot use the SET OPTION statement in an UltraLite application to
change option settings.

♦ System functions You cannot use Adaptive Server Anywhere system
functions, including property functions, in UltraLite applications.

45

♦ Functions Not all SQL functions are available for use in UltraLite
applications. For example, the ISDATE and ISNUMERIC functions are
not available for use in UltraLite databases.

Use of an unsupported function gives aFeature not available in

UltraLite error.

♦ Triggers Triggers are not available in UltraLite databases.

♦ Java in the database You cannot include Java methods in your queries
or make any other use of Java in the database.

♦ Schema modification To modify the schema of a UltraLite database,
you must build a new version of your application.

☞ For more information, see “Schema changes in remote databases”
[MobiLink Synchronization User’s Guide,page 100].

♦ Limited dynamic SQL If you are using dynamic SQL in your UltraLite
application, the range of SQL available is less than in Adaptive Server
Anywhere.

☞ For more information, see“Dynamic SQL” on page 125

UltraLite tables must have primary keys

Each table in a static UltraLite application must include a primary key.

The UltraLite generator uses primary keys from your reference database to
generate primary keys in the UltraLite database. If the primary key columns
for any table are not included in the data required in the UltraLite database,
the UltraLite generator looks for a uniqueness constraint on the table, and
promotes the columns with such a constraint to a primary key in the
UltraLite database. If there are no unique columns, the generator reports an
error.

Primary keys are required not only for UltraLite applications, but also during
MobiLink synchronization, to associate rows in the UltraLite database with
rows in the consolidated database.

46

Chapter 3. UltraLite Databases

The UltraLite runtime library
The UltraLite runtime library is the code that manages UltraLite databases
and synchronization. The runtime library is available for Windows,
Windows CE, and the Palm OS. With the exception of the static Java API,
the versions of the runtime library for these distinct target platforms are
based on a single codebase. The runtime library is linked into each of the
UltraLite components.

Development notes ♦ The same query cannot be executed more than once at a time. As a result,
you cannot access more than one instance at a time of a result set for a
given query in an UltraLite application.

Static Java API The runtime library used by the static Java API is entirely separate from the
runtime library

Threading in UltraLite applications

The UltraLite runtime library is threadsafe, so that you can develop
multi-threaded applications for this library as long as the development tool
and the target platform both support multi-threaded applications. The
exceptions are as follows:

♦ You cannot develop multi-threaded applications using UltraLite for
MobileVB, because of limitations in the underlying development tools.

♦ You cannot develop multi-threaded applications using UltraLite ActiveX,
because of limitations in eMbedded Visual Basic and JScript.

♦ You cannot develop multi-threaded applications for the Palm OS, because
of limitations in the operating system.

Multi-threaded UltraLite applications can access UltraLite databases in a
read-only fashion during synchronization. During the download phase of
synchronization, read-write access is permitted. You can disable access to
data during synchronization by setting the

Static Java API The runtime library used by the UltraLite static Java API is is thread-safe.
Users of the Sun Java VM must use version 1.2 or later to run multi-threaded
UltraLite applications. Users of the Jeode VM on Pocket PC and the IBM
Java VM can run multi-threaded UltraLite applications even though these
VMs are based on JDK 1.1.8.

The entire runtime is treated as a single critical section, only allowing one
thread to enter it at a time.

47

CHAPTER 4

Connection Parameters

About this chapter This chapter provides a reference for the parameters that establish and
describe connections from client applications to a database.

Contents Topic: page

Overview 50

Database identification parameters 54

User authentication parameters 58

Database schema parameters 61

Additional connection parameters 65

49

Overview
You must supply connection parameters for an application to connect to an
UltraLite database. The connection parameters must specify the database to
which the connection is to be established, usually by providing a database
filename and path.

As an application may be compiled for more than one platform, a separate
parameter for each target platform is available to identify the database. If
user authentication is enabled, the connection parameters must also specify a
user name and password.

☞ For more information, see“Database identification parameters” on
page 54, and“User authentication parameters” on page 58.

UltraLite databases are typically created on the first connection attempt, at
which time the connection parameters must include a schema file (for
UltraLite components) as well as optional parameters to adjust database
features. If you are using embedded SQL, the static C++ API, or the static
Java API, the database is created from information already stored in the
application and no schema file is needed.

☞ For more information, see“Database schema parameters” on page 61,
and“Additional connection parameters” on page 65.

All connection parameters are case insensitive.

The following table lists the available connection parameters. Connection
parameters used only when creating a database are marked with an asterisk
(*).

Parameter Description

Additional Parms A placeholder for additional connection parameters. See
“Additional Parms connection parameter” on page 65

Cache Size Defines the size of the cache. See“Cache Size connec-
tion parameter” on page 66.

Connection
Name

Specifies a connection name. See“Connection Name
connection parameter” on page 60.

Database On CE The path and filename of the UltraLite database file
to which you want to connect on Windows CE. See
“Database On CE connection parameter” on page 54.

Database On
Desktop

The path and filename of the UltraLite database file to
which you want to connect. See“Database On Desktop
connection parameter” on page 55.

50

Chapter 4. Connection Parameters

Parameter Description

Database On
Palm

An identifier for the UltraLite database on Palm OS. See
“Database On Palm connection parameter” on page 56.

Encryption Key An encryption key for the database. See“Encryption
Key connection parameter” on page 63.

Obfuscate* Apply a simple encryption scheme to the database. See
“Obfuscate connection parameter” on page 67.

Page Size The database page size. See“Page Size connection
parameter” on page 67.

Palm Allow
Backup

Controls HotSync backup behavior on Palm OS devices.
See“Palm Allow Backup parameter” on page 68.

Password A password for the user. See“Password connection
parameter” on page 58.

Reserve Size Defines the reserve size. See“Reserve Size connection
parameter” on page 68.

Schema On CE∗ The path and filename of the UltraLite schema on Win-
dows CE. See“Schema On CE connection parameter”
on page 61.

Schema On
Desktop*

The path and filename of the UltraLite schema. See
“Schema On Desktop connection parameter” on page 62

Schema On
Palm*

The UltraLite schema for the Palm OS. See“Schema On
Palm connection parameter” on page 63.

User ID The user ID with which you connect to the database. See
“User ID connection parameter” on page 59.

VFS On Palm* Identifies the Palm card as using the virtual file system.
See“VFS On Palm parameter” on page 56.

Specifying file paths

Filenames and paths in connection parameters are subject to the following
requirements, depending on the UltraLite Component you are using:

51

Target platform Requirement

Java All backslashes must be escaped. For example,
"file_name=\\UltraLite\\MyFile.udb" .

Windows CE Paths are absolute.

Windows Paths may be absolute or relative.

Specifying connection parameters

Each connection parameter can be specified in the following ways:

♦ As a property of a Connection Parameters object The following
interfaces provide a connection parameters object. This object has
properties that are individual connection parameters.

• UltraLite for MobileVB

• UltraLite ActiveX

• Native UltraLite for Java

• UltraLite.NET

♦ In the AdditionalParms property The interfaces that supply a
connection parameters object include an Additional Parms property. This
property takes a connection string as its value.

♦ As a keyword in a connection string All UltraLite interfaces can
supply a connection string when connecting. The keywords in the
connection string are individual connection parameters.

♦ In the UL_STORE_PARMS macro Embedded SQL and the static C++
API both use the UL_STORE_PARMS macro to hold connection
parameters that affect database file. The parameters are used only on the
initial connection attempt, when the database is created. The
UL_STORE_PARMS macro takes a connection string.

For example, the following definition sets a connection parameter.

#define UL_STORE_PARMS UL_TEXT("reserve_size=2m")

Where possible, it is recommended that you use the Connection Parameters
object. It provides easier checking and a more systematic interface than
using a connection string.

Connection strings and
connection parameters

Some less commonly used parameters can be specified only in a connection
string. Depending on the interface, the connection string can be supplied in
the AdditionalParms property, in the UL_STORE_PARMS macro, or in an
Open method that takes a connection string as argument.

52

Chapter 4. Connection Parameters

If a parameter is specified both in a property and in a connection string, the
value in the property takes precedence.

53

Database identification parameters
The connection parameters in this section are used to identify the UltraLite
database. At least one of these parameters must be specified on each
connection attempt.

For more information ♦ UltraLite for MobileVB See “OpenConnection method”[UltraLite
ActiveX User’s Guide,page 126], and “OpenConnectionWithParms method”
[UltraLite ActiveX User’s Guide,page 126].

♦ UltraLite ActiveX See “OpenConnection method”[UltraLite ActiveX
User’s Guide,page 126], and “OpenConnectionWithParms method”
[UltraLite ActiveX User’s Guide,page 126].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET SeeDatabaseManager classin the UltraLite.NET API
Reference.

♦ UltraLite for C++ SeeUltraLite_DatabaseManager classin the C++
API Reference.

♦ UltraLite for embedded SQL See “Adding user authentication to your
application”[UltraLite Embedded SQL User’s Guide,page 52].

♦ UltraLite static C++ See “Adding user authentication to your
application”[UltraLite Static C++ User’s Guide,page 28].

♦ UltraLite static Java See “Adding user authentication to your
application”[UltraLite Static Java User’s Guide,page 38].

Database On CE connection parameter

Function The path and filename of the UltraLite database file to which you want to
connect on Windows CE.

Syntax

Interface Connection parameter

UltraLite for MobileVB DatabaseOnCE

UltraLite ActiveX DatabaseOnCE

UltraLite.NET DatabaseOnCE

Native UltraLite for Java databaseOnCE

Connection string ce_file

54

Chapter 4. Connection Parameters

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values String

Default \UltraLiteDB\ulstore.udb

Description When creating a database, this parameter names the new database file.

When opening a connection to an existing database, the parameter identifies
the database.

♦ If the filename does not include an extension, the file of extension.udb is
presumed.

♦ The full path of the file must be specified. No substitutions are performed
on this value.

♦ The schema file is not required if a.udb file already exists.

♦ Database On CE is required if you use a database with any name other
than the default.

♦ You must ensure that this directory exists when the connection parameter
is used. UltraLite does not create the directory automatically.

Example To create and connect to the sample database,udemo.udb:

"schema_file=MyOrders.usm;CE_FILE=udemo.udb"

See also “Specifying file paths” on page 51

Database On Desktop connection parameter

Function The database file to which you want to connect in the desktop development
environment.

Syntax

Interface Connection parameter

UltraLite for MobileVB DatabaseOnDesktop

UltraLite ActiveX DatabaseOnDesktop

UltraLite.NET DatabaseOnDesktop

Native UltraLite for Java databaseOnDesktop

Connection string { file_name| DBF }

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

55

Values String

Default ulstore.udb

Description When creating a database, this parameter names the new database file.

When opening a connection to an existing database, the parameter identifies
the database.

If the filename does not include an extension, the file of extension.udb is
assumed.

Example ♦ To create and connect to the sample database,udemo.udb, installed in the
directoryc:\Program Files\Sybase\SQL Anywhere 9, use the following
connection string:

"schema_file=MyOrders.usm;DBF=udemo.udb"

See also “Specifying file paths” on page 51

Database On Palm connection parameter

Function The Palm creator ID of the database to which you want to connect.

Syntax

Interface Connection parameter

UltraLite for MobileVB DatabaseOnPalm

Native UltraLite for Java databaseOnPalm

Connection string palm_db

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values String

Default The creator ID of the application.

Description When creating a database, this parameter names the new database file.

When opening a connection to an existing database, the parameter identifies
the database.

See also “Specifying file paths” on page 51

VFS On Palm parameter

Function Identifies the Palm card as using the virtual file system.

56

Chapter 4. Connection Parameters

This parameter is available only in UltraLite for MobileVB. To use the
virtual file system from an embedded SQL or static C++ API application,
use the EnablePalmFileDB function.

Syntax

Interface Connection parameter

UltraLite for MobileVB VFSOnPalm

Connection string (UltraLite for Mo-
bileVB)

PALM_FS=VFS

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values As a parameter, VFSOnPalm is a boolean value.

In the connection string, the parameter must be specified as follows:

PALM_FS=VFS

Description The palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection if you are using the VFS card for Palm devices and
you want the database stored on the card.

To create, drop or connect to a database on a memory card, the following
connection parameter must be specified in the parameter string:

Palm_fs=vfs

The default database filename isul_udb_YYYY.udb, whereYYYY is the
creator ID of the application. You can control the filename by specifying a
different creator ID in the DatabaseOnPalm parameter. For example, the
following connection string references a database on the card with filename
ul_udb_XXXX.udb:

palm_db=XXXX;palm_fs=vfs

Even when the VSFOnPalm parameter is specified, the palm_db parameter
(Database on Palm) must be set to a valid creator ID.

If the VSF On Palm parameter is not specified, the database is created (or
dropped from or to which you are connecting) on the device and not the card.

57

User authentication parameters
User authentication parameters are used to identify the user as authorized to
use the database.

For more information ♦ UltraLite for MobileVB See “OpenConnection method”[UltraLite
ActiveX User’s Guide,page 126], and “OpenConnectionWithParms method”
[UltraLite ActiveX User’s Guide,page 126].

♦ UltraLite ActiveX See “OpenConnection method”[UltraLite ActiveX
User’s Guide,page 126], and “OpenConnectionWithParms method”
[UltraLite ActiveX User’s Guide,page 126].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET SeeDatabaseManager classin the UltraLite.NET API
Reference.

♦ UltraLite for C++ SeeUltraLite_DatabaseManager classin the C++
API Reference.

♦ UltraLite for embedded SQL See “Adding user authentication to your
application”[UltraLite Embedded SQL User’s Guide,page 52].

♦ UltraLite static C++ See “Adding user authentication to your
application”[UltraLite Static C++ User’s Guide,page 28].

♦ UltraLite static Java See “Adding user authentication to your
application”[UltraLite Static Java User’s Guide,page 38].

Password connection parameter

Function A password for the user. Passwords are case insensitive if the database is
case insensitive and case sensitive if the database is case sensitive.

Syntax

Interface Connection parameter

UltraLite for MobileVB Password

UltraLite ActiveX Password

UltraLite.NET Password

Native UltraLite for Java password

Connection string { password| PWD }

58

Chapter 4. Connection Parameters

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Usage Anywhere

Values String

Default SQL

Description Every user of a database has a password. The password must be supplied for
the user to be allowed to connect to the database.

The Password (PWD) connection parameter is not encrypted.

Example ♦ The following connection string fragment supplies the user ID DBA and
password SQL.

"UID=DBA;PWD=SQL;schema_file=MyOrders.usm"

User ID connection parameter

Function The user ID with which you log on to the database. An authenticated user
for the database. User ID’s are case-insensitive if the database is
case-insensitive and case sensitive if the database is case sensitive.

Databases are created with a single authenticated user DBA whose initial
password is SQL. By default, connections are opened using the UID=DBA
and the PWD=SQL. To disable the default user, use

connection.revokeConnectionFrom.

To add a user or change a user’s password, use

connection.grantConnectTo.

Syntax

Interface Connection parameter

UltraLite for MobileVB UserID

UltraLite ActiveX UserID

UltraLite.NET UserID

Native UltraLite for Java userID

Connection string { userid | UID }

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Usage Anywhere

59

Values String

Default DBA

Description You must always supply a user ID when connecting to a database, unless you
leave the database using the default user ID and password of DBA and SQL.

Example ♦ The following connection string fragment supplies the user ID DBA and
password SQL:

"schema_file=MyOrders.usm;uid=DBA;pwd=SQL"

Connection Name connection parameter

Function Specifies a name for the connection. This is only needed if you create more
than one connection to the database.

Syntax

Interface Connection parameter

UltraLite for MobileVB ConnectionName

UltraLite ActiveX ConnectionName

UltraLite.NET ConnectionName

Native UltraLite for Java connectionName

Connection string con

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

60

Chapter 4. Connection Parameters

Database schema parameters
The following keywords are used to specify a schema for an UltraLite
database. Thus, schema parameters are vital database creation parameters, as
your schema determines which tables and columns exist in your database.
Only one file value is used with the platform specific keyword taking
precedence over the generic keyword.

For more information ♦ UltraLite for MobileVB See “CreateDatabase method”[UltraLite
ActiveX User’s Guide,page 120], and “CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 121].

♦ UltraLite ActiveX See “CreateDatabase method”[UltraLite ActiveX
User’s Guide,page 120], and “CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 121].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET SeeDatabaseManager classin the UltraLite.NET API
Reference.

♦ UltraLite for C++ SeeUltraLite_DatabaseManager classin the C++
API Reference.

♦ UltraLite for embedded SQL See“Macros and compiler directives for
UltraLite C/C++ applications” on page 215.

♦ UltraLite static C++ See“Macros and compiler directives for UltraLite
C/C++ applications” on page 215.

Schema On CE connection parameter

Function To identify the schema filename deployed to Windows CE.

Syntax

Interface Connection parameter

UltraLite for MobileVB SchemaOnCE

UltraLite ActiveX SchemaOnCE

UltraLite.NET SchemaOnCE

Native UltraLite for Java schemaOnCE

Connection string ce_schema

61

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values String

Default The recommended file extension is.usm.

Description Used only when you create a database.

The path and filename of the UltraLite schema file on Windows CE. The
default extension for UltraLite schema files is .usm. This is a required
parameter when using CreateDatabase for CE.

Example ♦ The following connection string fragment supplies the ce_schema and
schema_file parameters.

"CE_SCHEMA=orders.usm;SCHEMA_FILE=MyOrders.usm"

Schema On Desktop connection parameter

Function To identify the schema file in the desktop development environment.

Syntax

Interface Connection parameter

UltraLite for MobileVB SchemaOnDesktop

UltraLite ActiveX SchemaOnDesktop

UltraLite.NET SchemaOnDesktop

Native UltraLite for Java schemaOnDesktop

Connection string schema_file

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values String

Default The recommended file extension is.usm.

Description Used only when you create a database.

The path and filename of the UltraLite schema in the development
environment.

Example ♦ The following connection string fragment supplies the ce_schema and
schema_file parameters.

"CE_SCHEMA=orders.usm;SCHEMA_FILE=MyOrders.usm"

62

Chapter 4. Connection Parameters

Schema On Palm connection parameter

Function To identify the schema file deployed to a Palm OS device.

Syntax

Interface Connection parameter

UltraLite for MobileVB SchemaOnPalm

Native UltraLite for Java schemaOnPalm

Connection string palm_schema

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values String

Default The Palm file extension on the desktop is.pdb.

Description Used only when you create a database.

The filename of the UltraLite schema for Palm.

Although.pdb is the extension on the desktop, do not supply.pdb in your
connection parameter string.

Example ♦ The following connection string fragment supplies the palm_schema and
schema_file parameters.

"PALM_SCHEMA=orders;SCHEMA_FILE=MyOrders.usm"

Encryption Key connection parameter

Function An encryption key for the database. You can define an encryption key for
your UltraLite database when CreateDatabase is called.

Syntax

Interface Connection parameter

UltraLite for MobileVB EncryptionKey

UltraLite ActiveX EncryptionKey

UltraLite.NET EncryptionKey

Native UltraLite for Java encryptionKey

Connection string { key | dbkey }

63

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values String

Default No key is provided.

Description Used only when you create a database.

If a database is created using an encryption key, the database file is strongly
encrypted using the AES 128-bit algorithm, which is the same algorithm
used to encrypt Adaptive Server Anywhere databases. Use of strong
encryption provides security against skilled and determined attempts to gain
access to the data, but may have a significant performance impact.

Example "schema_file=MyOrders.usm;KEY=MyKey"

See also “Encrypting UltraLite databases” on page 36

64

Chapter 4. Connection Parameters

Additional connection parameters
These are optional parameters to configure a database when it is created.
Some of these parameters can influence performance, so it is suggested that
you test these parameters to find the optimal performance for your
application.

For more information ♦ UltraLite for MobileVB See “CreateDatabase method”[UltraLite
ActiveX User’s Guide,page 120], and “CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 121].

♦ UltraLite ActiveX See “CreateDatabase method”[UltraLite ActiveX
User’s Guide,page 120], and “CreateDatabaseWithParms method”
[UltraLite ActiveX User’s Guide,page 121].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.DatabaseManagerin the Native UltraLite
for Java API Reference.

♦ UltraLite.NET SeeDatabaseManager classin the UltraLite.NET API
Reference.

♦ UltraLite for C++ SeeUltraLite_DatabaseManager classin the C++
API Reference.

♦ UltraLite for embedded SQL See“Macros and compiler directives for
UltraLite C/C++ applications” on page 215.

♦ UltraLite static C++ See“Macros and compiler directives for UltraLite
C/C++ applications” on page 215.

Additional Parms connection parameter

Function Permits additional connection parameters to be specified.

Syntax

Interface Connection parameter

UltraLite for MobileVB AdditionalParms

UltraLite ActiveX AdditionalParms

UltraLite.NET AdditionalParms

Native UltraLite for Java additionalParms

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

65

Usage Some less commonly used connection parameters do not have properties
associated with them in the UltraLite components. These parameters can be
specified as a connection string in AdditionalParms.

Values A connection string.

Default None.

See also “Specifying connection parameters” on page 52

Cache Size connection parameter

Function Defines the size of the database cache.

Syntax

Interface Connection parameter

Connection string cache_size

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Usage Used when you configure a database. Use k or K, m or M to denote
kilobytes or megabytes, respectively.

Values The minimum cache size is 4K.

Default The default is 16 x page_size. Actual value used is rounded down to the
nearest multiple of page_size.

Description Defines the size of the cache. You can specify the size in units of bytes. Use
the suffix k or K to indicate units of kilobytes and use the suffix M or m to
indicate megabytes

The default cache size is sixteen pages. Using the default page size of 4 K,
the default cache size is therefore 64 K. The minimum cache size is platform
dependent.

The default cache size is conservative. If your testing shows the need for
better performance, you should increase the cache size.

Increasing the cache size beyond the size of the database itself provides no
performance improvement. Also, large cache sizes may interfere with the
number of other applications you can use.

On the Palm Computing Platform, the parameter applies only to virtual file
system (VFS) databases. The cache itself resides in record storage, not VFS
storage.

Example For example, the following string sets the cache size to 128 K.

66

Chapter 4. Connection Parameters

"cache_size=128k"

Obfuscate connection parameter

Function Obfuscates the database. Obfuscation is a form of simple encryption.

Syntax

Interface Connection parameter

Connection string obfuscate

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Values 0 or 1. A value of 1 indicates that the database should be obfuscated.

Usage Used only when you create a database.

Embedded SQL and static C++ API developers can also use the
UL_ENABLE_OBFUSCATION macro to obfuscate a database. See
“UL_ENABLE_OBFUSCATION macro” on page 215.

Default By default, databases are not obfuscated.

See also “Encrypting UltraLite databases” on page 36

Page Size connection parameter

Function Defines the database page size.

Syntax

Interface Connection parameter

Connection string page_size

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Usage Used only when you create a database.

Used when you configure a database. Use k or K to denote kilobytes.

Default The default page size for UltraLite databases is 4 K. The range of size is 2 K
to 4 K.

Description UltraLite databases are stored in pages. I/O operations are carried out a page
at a time. It can be used on any target platform. Setting a page size of 2 K
reduces the maximum number of tables to approximately 500.

67

This parameter is ignored when starting an existing database.

Example You can specify 2 kb pages using the following storage parameters string:

"schema_file=MyOrders.usm;PAGE_SIZE=2K"

Palm Allow Backup parameter

Function Control backup behavior over HotSync on Palm devices.

Syntax

Interface Connection parameter

Connection string palm_allow_backup

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Usage Used when you configure a database.

Values yesor no.

Description If the backup bit is set on the UltraLite database, and if this parameter is set
to yes, the entire Palm database is backed up every time the device is
synchronized using HotSync. If this parameter is not set, UltraLite ensures
that the backup bit is cleared. In most applications, data is backed up by
synchronization, so there is no need to set this parameter.

The backup bit is set when a database file is deployed by HotSync, and can
also be set by the ULUtil utility. For more information, see“The UltraLite
Palm utility” on page 103.

Example The following string sets the parameter.

#define UL_STORE_PARMS UL_TEXT("palm_allow_backup=yes")

Reserve Size connection parameter

Function Reserves file system space for storage of UltraLite persistent data.

Syntax

Interface Connection parameter

Connection string reserve_size

☞ For information about using the connection parameter, see“Specifying
connection parameters” on page 52.

Usage Use k or K, m or M to denote kilobytes or megabytes, respectively.

68

Chapter 4. Connection Parameters

Values Values can be expressed in kb or mb.

Description The reserve_size parameter allows you to pre-allocate the file system space
required for your UltraLite database without actually inserting any data.
Reserving file system space can improve performance slightly and also
prevent out of memory failures. By default, the persistent storage file only
grows when required as the application updates the database.

Reserve_size reserves file system space, which includes the metadata in the
persistent store file, and not just the raw data. The metadata overhead as well
as data compression must be considered when deriving the required file
system space from the amount of database data. Running the database with
test data and observing the persistent store file size is recommended.

The reserve_size parameter reserves space by growing the persistent store
file to the given reserve size on startup, regardless of whether the file
previously existed. The file is never truncated.

This parameter does not apply to the Palm Computing Platform unless the
application uses the Virtual File System (VFS).

Example Use the reserve_size parameter to pre-allocate space as follows:

"CE_SCHEMA=orders;RESERVE_SIZE=128K"

This example ensures that the persistent store file is at least 128 K upon
startup.

69

CHAPTER 5

Utility Programs

About this chapter This chapter provides reference information about UltraLite utility
programs.

Contents Topic: page

Introduction to UltraLite utilities 72

The UltraLite Schema Painter 73

The UltraLite initialization utility 86

The ULXML utility 89

The HotSync conduit installation utility 91

The SQL preprocessor 92

The UltraLite generator 96

The UltraLite segment utility 102

The UltraLite Palm utility 103

71

Introduction to UltraLite utilities
The databaseschemais the database without the data. It is the collection of
tables, indexes, and so on within the database, and all the relationships
between them. Theschema filestores schema information. You do not alter
the schema of an UltraLite database directly. Instead, you modify a schema
file (which typically has the extension.usm) and upgrade the database
schema from that file using a built-in UltraLite function in your application.

You can create an UltraLite schema file in the following ways:

♦ Generate the schema from an Adaptive Server Anywhere database
If you have the Adaptive Server Anywhere database management system,
you can generate an UltraLite schema file using theulinit command line
utility.

♦ UltraLite Schema Painter The UltraLite Schema Painter is a graphical
utility for creating and editing UltraLite schema files.

To start the Schema Painter, choose Start➤ Programs➤
SQL Anywhere 9➤ UltraLite ➤ UltraLite Schema Painter, or
double-click a schema file (with extensionusm) in Windows Explorer.

♦ The ulxml command line utility The ulxml command line utility allows
you to openusmfiles and save them to XML format, open XML files and
save them asusmfiles, and to export XML files to a format suitable for
Palm. For more information, see“The ULXML utility” on page 89.

72

Chapter 5. Utility Programs

The UltraLite Schema Painter
Applies to UltraLite components.

Function The UltraLite Schema Painter allows you to create a new UltraLite schema
file or edit an existing one. Thus, even if you do not have Adaptive Server
Anywhere installed you can:

♦ Create a new schema, or edit an existing schema

♦ Add, edit, or delete a new table by double-clicking Add Table

♦ Add, edit, and delete publications, columns, foreign keys, and indexes

♦ Export the schema as a.pdb file suitable for Palm OS devices

♦ Save as a.usmfile or Open a.usmfile for Pocket PC devices

Starting the UltraLite Schema Painter

❖ To start the UltraLite Schema Painter

1. Start the UltraLite Schema Painter:

Choose Start➤ Programs➤ SQL Anywhere 9➤ UltraLite Schema
Painter.

Create, save and export schema files

❖ To create a new schema file

1. Open the Tools folder and double-click Create UltraLite Schema.

2. In the New Schema dialog, type in a file name.

3. Click OK to create the schema.

❖ To save a file

1. Choose File➤ Save to save the file.

2. You can select to Save in.xml or .usmformat.

73

❖ To export a Palm schema file

1. Right-click the schema icon and choose Export Schema for Palm from
the popup menu.

2. Enter a Creator ID.

3. Click OK.

Managing schema files

When you first rename a table or column in your schema UltraLite stores the
original name of the table or column. For example, if you create a table
named cust, and later rename it to customer, cust is saved as the old name. If
you then renamed the table a second time, to customer_info, the old name
remains cust.

The scheme is designed so that a schema file can be used to alter the schema
of an existing database. For example, assume that version one of your
application shipped with a table named cust. As part of the changes for
version two, you modify your version one schema file by renaming the table
to customer. This automatically saves cust as the old name. If you now apply
this schema file to a version one database file, UltraLite looks for a table
named cust, the old name, and rename it customer. The same applies to
columns in a table.

It is therefore important for futue compatibility that you clear the old names
from a schema file after a schema file is deployed.

☞ For more information, see“Altering the schema of UltraLite databases”
on page 30.

❖ To clear all of the old names in the schema file after deployment

1. Open the schema file in the UltraLite Schema Painter

2. Right-click the database

3. Select Clear Upgrade Information

This sets all of the old names for tables and columns to empty values. You
can then safely edit your schema file for the next version of your application.

Manual renaming old
names

Sometimes it may be desirable to manually alter the old names of tables and
columns. For example, you may have versions one and two of your
application deployed and wish to create a single UltraLite schema file that
can upgrade both versions one and two of this database to version three.

74

Chapter 5. Utility Programs

❖ To manually change old names

1. Open your schema in the UltraLite Schema Painter

2. Right-click the database

3. Choose “Prepare Schema for Deployment

You can use this feature to inspect the current old names in your schema. If
you useulxml, you can explicitly set the old name of tables and columns in
the<table> and<column> XML elements.

UltraLite Schema Painter dialogs

The following sections discuss the various dialogs, and the controls on these
dialogs, that are available to you when you use the UltraLite Schema Painter.

UltraLite Schema Painter Options dialog

This dialog provides options for running the UltraLite Schema Painter.

The UltraLite Schema Painter Options dialog has the following components:

♦ Informational messages Select the warnings and messages you wish
to receive.
• Warn before closing an open schema file. Select this option for a

warning when closing a schema file that is in use.

• Show post-deployment info. Select this option for
post-deployment messages.

• Warn when attempting to edit an indexed column. Select this
option for a warning when editing a column already in an index.

• Warn before changing the Nullability of a column being added to a
primary key. Select this option for a warning when adding a column
that allows null values to a primary key.

♦ Recent files options Click Clear Now to delete the list of recently
accessed schema files.

New UltraLite Schema dialog

This dialog provides options for the creation of a new UltraLite schema file.

The New UltraLite Schema dialog has the following components:

♦ What should the new filename for the new UltraLite schema be?
Enter a name for your UltraLite schema or click Browse to select an
existing schema.

If you choose to browse to an existing schema, click Save to open it.

75

♦ What collation sequence should be used for your new UltraLite
schema? Select a collation sequence from the dropdown list. A
collation sequence is a character set and sorting order. For languages
based on the Roman alphabet, such as most European languages, the
default sequence,1252LATIN1 - Code Page 122, Windows Latin 1,
Western, will suffice.

♦ Check this to make your UltraLite database case-sensitive. Select
this option if you want your UltraLite database to be case-sensitive.

New Table dialog

This dialog provides options for the creation of a new table in your UltraLite
database.

The New Table dialog has the following components:

♦ Name Enter a name for the table.

♦ Columns Lists all the columns currently in the table. Select a column
by clicking on its name in the table.

♦ Add Click Add to add a new column to the table.

♦ Edit Click Edit to edit the selected column. This button is only
available when a column is selected from the Columns table. Columns
included in an index or primary key cannot be edited without first
removing them from the index or primary key.

♦ Remove Click Remove to remove the selected column. This button is
only available when a column is selected from the Columns table.
Columns included in an index or primary key cannot be removed without
first removing them from the index or primary key.

♦ Remove All Click Remove All to delete all columns from the table.

♦ Primary Key Click Primary key to designate one or more of the
columns in the table as its primary key or to edit an existing primary key.

♦ Synchronize Select synchronization options for the table.

• Only changed rows (default) Synchronizes only those rows that
have been changed since the last synchronization.

• All rows Synchronizes all rows in the table.

• No rows This table is not synchronized.

76

Chapter 5. Utility Programs

New Column property sheet: General tab

The General tab of the New Column property sheet has the following
components:

♦ Name Enter a name for the column.

♦ Type Select a datatype from the dropdown list.

• Size/Precision Specify the size of the column for binary or char
types, or the precision for numeric types.

• Scale Specify the scale value for a numeric column.

♦ Column allows null values Check this option to allow null values.
Null values are not permitted in primary keys.

♦ Column default Set a default value for the column.

• Default Select a default value for the column from the list, or choose
Specify value... to set a constant value.

• Value Specify the column value. This option is only available when
Specify value is selected as the default value.

• Partition size (optional) Specify the partition size. The partition
size restricts the maximum value that global autoincrement can use.
This option is only available when Global autoincrement is selected as
the default value.

New Column property sheet: Indexes tab

The Indexes tab of the New Column property sheet has the following
components:

♦ Indexes Lists the indexes that contain the selected column.

Set Primary Key dialog

This dialog provides options for the creation and editing of a primary key.

The Set Primary Key dialog has the following components:

♦ Index information Provides information on the index.

• Index name Enter a name for the index. For primary key indexes,
the name is set to primary and cannot be changed.

• Unique index Select Unique index to ensure that values are unique
and not null. For primary key indexes, this option is checked and
cannot be changed.

77

• Unique key Select Unique key to ensure that values are unique.
They may be null. For primary key indexes, this option is checked and
cannot be changed.

♦ Indexed Columns Allows you to add or remove columns from the
primary key index.
• Columns in the table Lists all columns in the table that are not in

the primary key index. Click on a column to select it, or hold down
Control to select more than one column at a time.

• Asc. >> Click Asc.>> to add one or more columns, chosen from
the Columns in table list, to the index in ascending order.

• Desc.>> Click Desc.>> to add one or more columns, chosen from
the Columns in table list, to the index in descending order.

• << Click << to remove one or more columns, chosen from the
Columns in the index list, from the index.

• Columns in the index Lists all columns in the primary key index.
Click on a column to select it, or hold down Control to select more
than one column at a time.

Publication dialog

This dialog provides options for the creation of a new publication for your
UltraLite database. A publication is a database object describing data to be
replicated.

The Publication dialog has the following components:

♦ Publication name Enter a name for the publication.

♦ Available tables Lists all the tables in your database not yet in the
publication. Click on a table to select it, or hold down Control to select
more than one table at a time.

♦ >> Click >> to add one or more tables, chosen from the Available
tables list, to the publication.

♦ << Click << to add one or more tables, chosen from the Tables in the
publication list, to the publication.

♦ Tables in the publication Lists all the tables in the publication. Click
on a table to select it, or hold down Control to select more than one table
at a time.

Database Schema property sheet: General tab

The General tab of the Database Schema property sheet has the following
components:

78

Chapter 5. Utility Programs

♦ Name The name of the schema.

♦ Type The file type (usually UltraLite Schema).

♦ Location The path of the schema file.

♦ Collation sequence The collation sequence used in the file. A
collation sequence is a character set and sorting order.

♦ Case-sensitive Yes if the database is case-sensitive, no if it is not.

♦ Database properties Lists various database properties and the values
they are set to. Select a database property from the list to edit its value.

♦ Edit Click Edit to edit the selected database property.

♦ Set Defaults Click Set Defaults to set all database properties to their
default values.

Database Schema property sheet: Certification tab

The Certification tab of the Database Schema property sheet has the
following components:

♦ Set Trusted Roots Certificate Click Set to browse to a Certicom
encryption certificate.

♦ Clear Trusted Roots Certificate Click Clear to remove the encryption
certificate associated with your schema.

♦ Save/View Trusted Roots Certificate Save and view the certificate
associated with your schema.

Save Certificate dialog

This dialog allows you to save and view the trusted root certificate
associated with your schema.

The Save Certificate dialog has the following components:

♦ What should the filename for the certificate be? Enter a filename
and path or click Browse to select one.

♦ View certificate after saving Select this option to view the certificate
once you have saved it.

Database Property Editor dialog

This dialog allows you to edit the values of database properties.

79

The Database Property Editor dialog has the following components:

♦ Please enter a new value for the database option Enter a new value
for the selected database property. Most database properties are very
specific about the formatting of their values. If a database property is
incorrectly formatted, an error will appear when trying to apply the
changes in the Database Schema property sheet.

Save Schema to PDB file dialog

This dialog provides options for deploying your schema to a Palm device.

The Save Schema to PDB file dialog has the following components:

♦ Palm Creator ID Enter a Palm Creator ID.

A Palm creator ID is assigned to you by Palm. You can useSyb3as your
creator ID when you make sample applications for your own learning.
However, when you create your commercial application, you should use
your own creator ID.

♦ What should the filename for the PDB be? Enter a filename and path
for your Palm database file, or click Browse to select a path and filename.

Schema Deployment dialog

This dialog provides options for modifying your database upon deployment.

The Schema Deployment dialog has the following components:

♦ Tables in this schema Lists the tables in the schema.

The current table names are listed in the New Name column; the original
table names are in the Old Name column. If a table name has been
changed more than once, Old Name will record the name originally given
to the table upon creation.

To edit a table’s old name, select the table from the list by clicking on it
and then click on its old name.

♦ Columns for table Lists all the columns in a selected table.

The current column names are listed in the New Name column; the
original column names are in the Old Name column. If a column name
has been changed more than once, Old Name will record the name
originally given to the column upon creation.

To edit a column’s old name, select the column from the list by clicking
on it and then click on its old name.

80

Chapter 5. Utility Programs

Set Index dialog

This dialog provides options for the creation of a new index.

The Set Index dialog has the following components:

♦ Index information Provides information on the index.

• Index name Enter a name for the index.

• Unique index Select Unique index to ensure that values are unique
and not null.

• Unique key Select Unique key to ensure that values are unique.
They may be null.

♦ Indexed Columns Allows you to add or remove columns from the
index.

• Columns in the table Lists all columns in the table that are not in
the index. Click on a column to select it, or hold down Control to
select more than one column at a time.

• Asc. >> Click Asc.>> to add one or more columns, chosen from
the Columns in table list, to the index in ascending order.

• Desc.>> Click Desc.>> to add one or more columns, chosen from
the Columns in table list, to the index in descending order.

• << Click << to remove one or more columns, chosen from the
Columns in the index list, from the index.

• Columns in the index Lists all columns in the index. Click on a
column to select it, or hold down Control to select more than one
column at a time.

Index property sheet: General tab

The General tab of the Index property sheet has the following components:

♦ Index name The name of the index.

♦ Table The name of the table containing the index.

♦ Unique If yes, values in the index must be unique and not null.

♦ Unique key If yes, values in the index must be unique, but they may be
null.

♦ This index includes the following columns: Lists the columns
contained in the index and their directions.

81

Create Foreign Key dialog

This dialog provides options for the creation of a foreign key.

The Create Foreign Key dialog has the following components:

♦ Foreign key name Enter a name for the foreign key.

♦ Primary table Select the primary table from the list of tables in your
database.

♦ Eligible indexes Select an index from the list of indexes in your
primary table.

♦ Only check values on commit Select this option to check values at
commit, rather than upon insertion.

♦ Allow Null in the foreign key columns Allows null values in the
columns of your foreign key.

♦ Map Click Map to map a column in your primary table, selected from
the table above, to a column in your current table, selected in a
subsequent dialog.

Map Primary Column dialog

This dialog provides options for the mapping of a column in your primary
table to a column in your current table.

The Map Primary Column dialog has the following components:

♦ Name The name of your primary column.

♦ Type The data type of your primary column.

♦ Default The default value for your primary column.

♦ Direction Select ascending to sort your column in ascending order or
descending to sort your column in descending order.

♦ Foreign column Select a column in your current table from the
dropdown list to which to map the selected column in your primary table.

♦ Properties Displays the properties of the selected foreign column.

Foreign Key property sheet: General tab

The General tab of the Foreign Key property sheet has the following
components:

♦ Foreign key name The name of the foreign key.

82

Chapter 5. Utility Programs

♦ Table The table that contains the foreign key.

♦ Referenced table The table referenced by the foreign key.

♦ Referenced index The index referenced by the foreign key.

♦ Check on commit If yes, checks values at commit, rather than upon
insertion.

♦ Nullable If yes, allows null values in the columns of the foreign key.

♦ This foreign key contains the following columns: Lists columns in
the foreign key and the columns they map to in the primary table.

Table property sheet: General tab

The General tab of the Table property sheet has the following components:

♦ Table The name of the referecing table.

♦ Synchronization The synchronization scheme of the referencing table,
one of Only changed rows, All rows, or No rows.

♦ Columns Lists the names, types, and inclusion in the primary key for
all the columns in the referencing table.

UltraLite Schema Painter Tutorial

In this tutorial, you build a single-table database schema and export it to
Palm.

☞ For more information on UltraLite schemas, see“Databases and schema
files” on page 28.

When creating UltraLite schemas for a Palm device, the following
information is necessary:

♦ A way to identify the database so an application can connect to it. This is
done with the Palm creator ID.

♦ A way to identify the schema on the development machine so it can be
copied to the device.

♦ A way to identify the schema on the device.

To complete this tutorial you need a directory to hold the files you create.
This directory is assumed to beC:\tutorial\. If you create your tutorial
directory elsewhere, supply the path to your location instead ofc:\tutorial\
throughout.

83

❖ To create a schema file using the UltraLite Schema Painter

1. Start the UltraLite Schema Painter:

Click Start➤ Programs➤ SQL Anywhere 9➤ UltraLite ➤ UltraLite
Schema Painter.

2. Create a new schema file calledtutCustomer.
♦ From the File menus, select New➤ UltraLite Schema...

♦ In the file dialog box, typec:\tutorial\tutCustomer.usm or Browse to
the folder and entertutCustomer.

♦ Click OK to create the schema.

3. Create a table called customer.

♦ Expand thetutCustomeritem in the left pane of the UltraLite Schema
Painter and select the Tables folder.

♦ Open the Tables folder and double-click Add Table. The New Table
dialog appears.

♦ Enter the name customer.

♦ In the New Table dialog, add columns with the following properties.

Column

name

Data type

(Size)

Column Allows

NULL values?

Default value

Id integer No autoincrement

Fname char (15) No None

Lname char (20) No None

City char (20) Yes None

Phone char (12) Yes 555-1234

♦ Set Id as the primary key: click Primary Key and add Id to the index,
marking it as ascending.

♦ Check your work and click OK to complete the table definition and
dismiss the New Table dialog.

4. Click File ➤ Save to save thetutcustomer.usmfile.

5. Export a Palm schema file.

♦ Right click on the database icon and select Export Schema for Palm
from the popup menu.

84

Chapter 5. Utility Programs

♦ Enter a Palm Creator ID ofSyb3.

A note on Palm Creator IDs
A Palm creator ID is assigned to you by Palm. You can use Syb3 as
your creator ID when you make sample applications for your own
learning. However, when you create your commercial application,
you should use your own creator ID.

♦ Leave the filename at its default setting to save the PDB file in your
tutorial directory. Click OK.

♦ Exit the UltraLite Schema Painter.

You have now defined the schema of an UltraLite database. Although this
database contains only a single table, you can use many tables in UltraLite
databases.

85

The UltraLite initialization utility
Applies to UltraLite components.

Function Theulinit utility lets you create a.usmfile for use with any UltraLite
component. The utility connects to an Adaptive Server Anywhere database.
Consequently, SQL Anywhere Studio (version 8.0.2 or later) is required in
order to use it.

Syntax ulinit -f schema_file -n pub_name [options]

Option Description

-c ”connection_string” Supply database connection parameters
in the formkeyword=value, separated by
semi-colons. You supply these so you may
connect to an Adaptive Server Anywhere
database.

-f schema_file Specify the name of the output file. This
option is required.

-m version Specify the version string for generated
MobiLink scripts.

-n pubname Add tables to the UltraLite database
schema.

pubnamespecifies a publication in the ref-
erence database. Tables in the publication
are added to the UltraLite database schema.
Specify the option multiple times to add
multiple publications in to the UltraLite
database schema.

To add all tables in the reference database
to the UltraLite schema, specify-n* .

This option is required.

-o ”keyword=value;. . .” Supply schema creation options.

-palm id Create a schema file compatible with Pal-
mOS. Id is the four digit Palm creator id
that identifies the database.

-q Quiet operation — only report errors and
warnings.

86

Chapter 5. Utility Programs

Option Description

-s pubname Specify a publication for synchronization.
pubnamespecifies a publication in the
reference database that is added as a named
publication to the UltraLite database.

If -s is not supplied, the UltraLite schema
has no named publications.

This option can be used multiple times.

-t file Specify the file containing the trusted root
certificates.

-w Do not display warnings.

-z ordering Specify table ordering (for example,-z
table1,table2).

Remarks The-n and-s options both take publication names in the reference database
as arguments, but serve different purposes:

♦ The-n option defines the tables to be included in the UltraLite database
schema. It does not create named publications in the UltraLite database,
and is not used for synchronization.

♦ The-s option defines named publications in the UltraLite database.
These named publications are used for synchronization. The -s option
does not define which tables are included in the UltraLite database
schema.

Examples The following example creates a file calledcustomer.usmthat contains the
tables in TestPublication:

ulinit -c "uid=dba;pwd=sql" -f customer.usm -n TestPublication

The following example creates a schema with two distinct publications:

ulinit -c "dsn= dsn-name " -f schema.usm -n Pub1 -n Pub2 -s Pub1 -
s Pub2

For example, one of the publications may contain a small subset of data for
priority synchronization, while the other would contain the bulk of the data.

Synchronization of publications is managed with a bitmask in the UltraLite
schema. For more information, see“Designing sets of data to synchronize
separately” on page 156.

When creating an UltraLite schema for Palm withulinit, use the-palm

option. This generates a.pdb file.

87

ulinit -c "uid=dba;pwd=sql;dsn=ASA 9.0 Sample"
-f tutcustomer.usm -n TutCustomersPub -palm Syb3

Note
Syb3 is the four digit Palm registered creator ID that matches the creator
ID of your application. For MobileVB developers, this must be set in your
MobileVB project settings.

The PDB file generated byulinit must be loaded to the Palm device. When
an UltraLite application needs to connect to the database, it should include
the creator ID in the parameters of the call to Open. For example:

DatabaseManager.OpenConnection("palm_db=Syb3")

88

Chapter 5. Utility Programs

The ULXML utility
Applies to UltraLite components.

Function Theulxml utility lets you convert data file formats. For example, you can
create a .usmfile based on an XML file. It can be used with any UltraLite
component.

Syntax ulxml [options] input-file output-file

Option Description

-y Overwrite output file if it already exists.

-to<type> where
type=xml|usm|pdb

Note: pdb files require a Cre-
atorID.

Converts the file to one of these standard
formats.

Usetoxml to convert an UltraLite schema
to XML.

Use tousm to convert an XML file to an
UltraLite schema

Use topdb to convert an XML file to an
UltraLite schema for Palm.

The return code from ULXML is set to 0 on success and less than 0 on
failure.

You can export your UltraLite schema so that you can work in XML format:

89

You can view and use the documented sample located in
Samples\NativeUltraLiteForJava\sample.xml,
Samples\UltraLiteActiveX\sample.xml, and
Samples\UltraLiteForMobileVB\sample.xml.

Note
The UltraLite Schema Painter by default creates, opens and saves UltraLite
schema files in their native USM file format. However, you are given the
option to create, open and save XML files as well by choosing UltraLite
XML Schema Files in any file type dropdown box.

90

Chapter 5. Utility Programs

The HotSync conduit installation utility
Function The utility installs or removes a HotSync conduit onto the current machine.

Syntax dbcond9 [options] id

Option Description

id The creator ID of the application to use the conduit

-n name The name displayed by the HotSync manager.

-x Remove the conduit for the specified creator ID

Description Install a HotSync conduit onto the current machine. The HotSync manager
must be installed in order for this to be run.

Options id The application user ID who is to use the conduit. If a conduit already
exists for the specifiedcreatorID, it is replaced by the new conduit. This is a
required option.

-n name The name displayed by the HotSync manager. This is also the
name of the subdirectory where the conduit stores data. Do not use this
option together with-x . The default value isMobiLink conduit .

-x Remove the conduit for the namedcreatorID. If -x is not specified, a
conduit is installed.

Examples The following command line installs the conduit for the CustDB sample
application, which has a creator ID of Syb2:

dbcond9 -n CustDB Syb2

91

The SQL preprocessor
Applies to Embedded SQL static development model only.

Function The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler is run.

Syntax sqlpp [options] sql-filename [output-filename]

Option Description

–c “key-
word=value;. . . .”

Supply database connection parameters for your
reference database

-d Generate code that favors small data size

–e level Flag non-conforming SQL syntax as an error

-g Do not display UltraLite warnings

–h line-width Limit the maximum line length of output

-k Include user

-m version Specify the version name for generated synchro-
nization scripts

–n Line numbers

-o operating-sys Target operating system: WIN32, WINNT, NET-
WARE, or UNIX

–p project-name UltraLite project name

–q Quiet mode—do not print banner

–sstring-len Maximum string length for the compiler

–w level Flag non-conforming SQL syntax as a warning

–x Change multi-byte SQL strings to escape se-
quences.

–zsequence Specify collation sequence

See also “Introduction” [ASA Programming Guide,page 136]

Description The SQL preprocessor processes a C or C++ source file that contains
embedded SQL, before the compiler is run. This preprocessor translates the
SQL statements in theinput-file into C/C++. It writes the result to the
output-file. The normal extension for source files containing embedded SQL

92

Chapter 5. Utility Programs

is sqc. The default output filename is theSQL-filenamebase name with an
extension ofc. However, if theSQL-filenamealready has the.c extension,
the default output extension is.cc.

When preprocessing files that are part of an UltraLite application, the SQL
preprocessor requires access to an Adaptive Server Anywhere reference
database. You must supply the connection parameters for the reference
database using the–coption.

If you specifyno project name, the SQL preprocessor also runs the UltraLite
generator and appends additional code to the generated C/C++ source file.
This code contains a C/C++ language description of your database schema
as well as the implementation of the SQL statements in the application.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraLite analyzer invokes them before and
after the analysis process:

♦ sp_hook_ulgen_begin()

♦ sp_hook_ulgen_end()

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ulgen_begin ()
BEGIN
// actions here
END
CREATE PROCEDURE sp_hook_ulgen_end ()
BEGIN
// actions here
END

Options -c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

-d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. This increases code size.

-e This option flags any Embedded SQL that is not part of a specified set of
SQL/92 as an error.

The allowed values oflevel and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

93

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-g Do not display warning specific to UltraLite code generation.

-h num Limits the maximum length of lines output bysqlpp to NUM
characters. The continuation character is a backslash (\), and the minimum
value of NUM is ten.

-k Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization.

-n Generate line number information in the C file. This consists of#line
directives in the appropriate places in the generated C code. If your compiler
supports the#line directive, this option will make the compiler report errors
on line numbers in theSQL-filename, as opposed to reporting errors on line
numbers in the C/C++ output file. Also, the#line directives will indirectly
be used by the source-level debugger so that you can debug while viewing
theSQL-filename.

-o Specify the target operating system. Note that this option must match
the operating system where you will run the program. A reference to a
special symbol will be generated in your program. This symbol is defined in
the interface library. If you use the wrong operating system specification or
the wrong library, an error will be detected by the linker. The supported
operating systems are:

♦ WIN32 Microsoft Windows 95/98/Me and Windows CE

♦ WINNT Microsoft Windows NT/2000/XP

♦ NETWARE Novell NetWare

♦ UNIX UNIX

-p project-name Identifies the UltraLite project to which the embedded
SQL files belong. Applies only when processing files that are part of an
UltraLite application.

-q Operate quietly. Do not print the banner.

94

Chapter 5. Utility Programs

-s string-len Set the maximum size string that the preprocessor will put
into the C file. Strings longer than this value will be initialized using a list of
characters (‘a’ ,‘b’ ,‘c’ , etc). Most C compilers have a limit on the size of
string literal they can handle. This option is used to set that upper limit. The
default value is 500.

-w level This option flags any Embedded SQL that is not part of a specified
set of SQL/92 as a warning.

The allowed values oflevel and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-x Change multi-byte strings to escape sequences so that they can pass
through compilers.

-z sequence This option specifies the collation sequence or filename. For
a listing of recommended collation sequences, typedbinit –l at the
command prompt.

95

The UltraLite generator
Applies to Static interfaces only.

Function The UltraLite generator implements your application database and generates
additional C/C++ or Java source files, which must be compiled and linked
into your application.

Syntax ulgen [options] [project [output-filename]]

Option Description

-a Uppercase SQL string names [Java]

-c “key-
word=value;. . . ”

Supply database connection parameters for your
reference database

-e Replace SQL strings with generated constants [
Java]

-f filename Specify output file name

-g Do not display warnings

-i Generate inner classes [Java]

-j project-name Project name

-l type Log the execution plan for each statement to a file.
The type must be one of the following:

♦ xml

♦ short

♦ long

-m version Specify the version name for generated synchro-
nization scripts

-o table-name,. . . Specify the order in which tables are uploaded
during synchronization

-p package-name Package name for generated classes [Java]

-q Do not print the banner

-r filename The file containing the trusted root certificates

-s filename Generate a list of SQL strings in an interface
definition [Java]

96

Chapter 5. Utility Programs

Option Description

-t target Target language. Must be one of the following:

♦ c

♦ c++

♦ java

-u pub-name The publication to use (C++ API only)

-v pub-name The publication to use for synchronization

-x Generate more and smaller C/C++ files.

Description The UltraLite generator creates code that you compile and make part of an
UltraLite application. Its output is based on the schema of the Adaptive
Server Anywhere reference database and the specific SQL statements or
tables that you use in your embedded SQL source files.

You must ensure that all your statements and tables are defined in the
dbo.ul_statement table before running the generator. You do this as follows:

♦ In embedded SQL, run the SQL preprocessor on each file.

♦ In the C/C++ API and Java, add statements to the database using
ul_add_statement, and/or define publications in the database.

In this table, statements are associated with projects. By specifying a project
name on the generator command line, you determine which statements are
included in your generated database.

You can include multiple projects, and also mix projects with a publication,
on the generator command line. You must run the generator only once for
each generated database.

If you do not specify an output file name, the generated code is written to a
file with a name ofproject. It is recommended that you specify an output file
name using the-f command line option.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraLite analyzer invokes them before and
after the analysis process:

♦ sp_hook_ulgen_begin()

97

♦ sp_hook_ulgen_end()

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ulgen_begin ()
BEGIN
// actions here
END
CREATE PROCEDURE sp_hook_ulgen_end ()
BEGIN
// actions here
END

Options project The project name determines the set of statements that are to be
included in the generated database. For a more precise specification of the
filename, use the-j option.

output-filename The name for the generated file, without extension. For a
more precise specification of the filename, use the-f option.

In Java, this name is also the database name, which you must supply on
connection.

-a If you are developing a Java application, the names of the SQL
statements in the project are used as constants in your application. By
convention, constants are upper case, with underscore characters between
words. The-a option makes the names of SQL statements fit this
convention by uppercasing the characters and inserting an underscore
whenever an uppercase character in the original name is found if not already
preceded by an underscore or an uppercase character. For example, a
statement namedMyStatement becomesMY_STATEMENT, and a statement
namedAStatement becomesASTATEMENT.

The generated names have spaces and non-alphanumeric characters replaced
with an underscore, regardless of whether –a is used.

-c connection-string The connection string must give the generator
permission to read and modify your reference database. This parameter is
required.

-e The SQL strings in the generated database are replaced by smaller,
generated strings. This option is useful when you are trying to reduce the
footprint of a database with a lot of statements.

-f filename This is the recommended way to specify the output file. Do not
specify an extension.

-g Suppress the display of warning messages. Error messages are still
displayed.

98

Chapter 5. Utility Programs

The UltraLite generator provides warnings to indicate that some generated
code may, under some circumstances, cause problems. For example, it
generates a warning for SQL statements that include temporary tables.

-i By default, generated classes are written as top-level non-public classes
except for the main database class. If you use-i , the generated classes are
written as inner classes. If you use this option, you must use a Java compiler
that can correctly compile inner classes.

-j project-name This is the recommended way to specify the project. You
can specify multiple projects using this option as follows:

ulgen -j project1 -j project2 ...

-l type Log the execution plan for queries in the application. These plans
can be viewed in Interactive SQL. The types available are:

♦ xml Description in XML format. Use the Interactive SQL File➤ Open
command to display the plan.

♦ short Brief description of the plan in a file named<statement>.txt.
The content is that generated by the EXPLANATION function

♦ long Detailed description of the plan in a file named<statement>.txt.
The content is that generated by the PLAN function.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization.

-o table-name,. . . Specify the order in which tables are uploaded during
synchronization. This option can be used to avoid referential integrity errors
during upload. Each table to be uploaded must be specified exactly once.
The option cannot be used when there are circular foreign key relationships
among the tables.

-p package-name A package name for generated files when generating
Java output.

-q Do not display output messages.

-r filename The file containing the trusted root certificates used for secure
synchronization using Certicom security software.

The generator embeds these trusted roots into the UltraLite application.
When the application receives a certificate chain from a MobiLink
synchronization server, it checks if its root is among the trusted roots, and
only accepts a connection if it is.

99

The generator checks the expiry dates of all the certificates in the trusted root
certificate file and issues the following warning for any certificate that
expires in less than 6 months (180 days):

Warning: Certificate will expire in %1 days"

The generator issues aCertificate has expired error for any
certificate that has already expired.

☞ For more information, see“Synchronization parameters reference” on
page 162, and “Transport-Layer Security”[MobiLink Synchronization User’s
Guide,page 337].

-s filename Generate an interface that contains the SQL statements as
constants. This option is for use with Java only. The interface file has a
format similar to the following example:

package com.sybase.test;
public interface EmpTestSQL {

String EMPLOYEE = "select emp_fname, emp_lname
from employee where emp_id = ?";

String UPDATE_EMPLOYEE = "update employee
set emp_fname = ?, emp_lname = ?
where emp_id = ?";

}

Do not supply the.javaextension infilename. The-a option controls the
case of the statement names.

-t target Specifies the kind and extension of the generated file.

♦ If you are using Java, you must use atargetof java. If you are using
embedded SQL or the C++ API, you can use atargetof eitherc or c++.
Which one you choose decides the extension of the file name, and has
nothing to do with whether you are using the C++ API or embedded SQL.

♦ If you specifyc++, the following files are generated:

• filename.cpp The code for the generated API.

• filename.h A header file. You do not need to look at this file.

• filename.hpp The C++ API definition for your application.

♦ If you specify atargetof c, filename.cis generated.

-u pub-name If you are generating a C++ API for a publication, specify
the publication name with the -u option.

-v pub-name Specifies a publication to synchronize. If you do not use
publications to define which changes are to be synchronized, all changes are
synchronized.

100

Chapter 5. Utility Programs

If columns or tables specified in publications are not referenced by SQL
statements in your application, they are not included in the UltraLite
database.

To specify multiple publications, repeat the-v option. For example:

ulgen -v pub1 -v pub2 ...

The maximum number of publications is 32.

☞ For more information, see“Synchronization for UltraLite Applications”
on page 143.

-x This option is intended for use in situations where the file containing the
generated code is too large for the C/C++ compiler to compile.

This option causes the UltraLite generator to produce more and smaller files.
When-x is used, the UltraLite generater writes out one C/C++ file for the
database and one for each SQL statement.

This option has no effect when generating Java code.

101

The UltraLite segment utility
Applies to Embedded SQL and C++ API static development models together with the

GCC PRC-Tools chain for the Palm Computing Platform.

Function The UltraLite segment utility writes a set of segment identifiers in a
definition file as required by the GCC PRC-Tools chain.

Syntax dbulseg generated-source-file definition-file app-name creator-id

Option Description

generated-source-file The name of the source code file written by the
UltraLite generator.

definition-file The name of the definition file to be written out. It
should end in the extension.def.

app-name The name of the application.

creator-id The application creator ID

Description The GCC PRC-Tools suite requires a set of segment identifiers in a
definition file. Thedbulsegutility reads the UltraLite generated code (in file
generated-source-file) and writes out the definition filedefinition-file.

The segment definition file also includes the Palm application name and
application creator ID. These Palm-specific identifiers must be supplied in
the command line.

Example The command line included in thebuild.batfile that compiles the UltraLite
CustDB sample application is as follows:

dbulseg custdb.c custdb.def CustDB Syb2

The resulting output file is as follows:

application { "CustDB" Syb2 }
multiple code { ULRT1 ULRT2 ULRT3 ULRT4 ULRT5 ULRT6
ULRT7 ULRT8 ULRT9 ULRT10 ULRT11 ULRT12 ULRT13 ULRT14
ULRT15 ULRT16 ULRT17 ULG512 ULG513 ULG514 ULG515 ULG516
ULG517 ULG518 ULG519 ULG520 ULG521 ULG522 ULG523 ULG524
ULG525 ULG526 ULG527 ULG528 ULG529 ULG530 ULG531 ULG532
ULG131 }

The file contents are on two lines: the second line is wrapped for display
purposes.

102

Chapter 5. Utility Programs

The UltraLite Palm utility
Function The UltraLite Palm utility is a Palm Computing Platform application that

deletes all of the data stored in an UltraLite application’s remote database.

Description The UltraLite Palm utility is installed as the following file:

%ASANY9%\UltraLite \Palm\68k \ULUtil.prc

ULUtil is useful in deployments where devices are shared between different
users. When a different user gets a device, they may want to clear out the
previous user’s data, to save storage space. Also, the previous user might
want to clear out their data because it is confidential. WithoutULUtil , the
only way to clear out an application’s data would be to delete and re-install
the application.

You can setULUtil to back up the Palm store to the PC on subsequent
synchronization. You can use this feature to perform an initial
synchronization and then backup the store which can be deployed on other
devices so they do not need to perform an initial synchronization. The
backup option is automatically turned off by the UltraLite runtime to prevent
subsequent backups. If you explicitly want to require the database to be
backed up on every synchronization, you must add the palm_allow_backup
parameter in UL_STORE_PARMS.

☞ For more information, see“UL_STORE_PARMS macro” on page 216.

OnceULUtil is installed on the device, you can delete an UltraLite
application’s data as follows:

1. Switch toULUtil .

2. Select an application from the list of UltraLite Applications.

3. Tap the Delete button.

On devices with expansion cards, ULUtil provides access to both file-based
and record-based stores.

103

104

PART II

ULTRA L ITE SQL

This part describes the range of SQL available to UltraLite applications.

UltraLite components can construct queries and other SQL statements at
runtime (dynamic SQL).

The static interfaces support a wider range of SQL, but the statements used
in the application must be specified at compile time.

CHAPTER 6

SQL Language Elements

About this chapter This chapter describes the building blocks of SQL statements and data
management in UltraLite databases. These building blocks are common to
all UltraLite databases.

Contents Topic: page

Overview of SQL support in UltraLite 108

Data types in UltraLite 111

UltraLite SQL functions 114

107

Overview of SQL support in UltraLite
In UltraLite, both the data types available to represent data and the SQL
features available to access that data depend on the development model you
adopt.

If you use a static interface (embedded SQL, static C++ API, or static Java
API), the range of SQL available is wider, but all statements used by the
application must be specified at compile time. If you develop your
application using an UltraLite component, dynamic SQL provides a
narrower range of SQL, but the SQL statements can be constructed at
runtime.

When an UltraLite program attempts to use a SQL statement or feature that
is not supported in UltraLite, the SQL error messageFeature not

available in UltraLite is reported. Dynamic SQL may also return
syntax errors.

♦ Data types UltraLite supports a subset of the data types available in
Adaptive Server Anywhere.

If you create a database from an Adaptive Server Anywhere reference
database, you can use a wide range of data types. Those Adaptive Server
Anywhere data types not supported in UltraLite are converted by the
UltraLite generator into a smaller set of base types. If you create an
UltraLite database using the Schema Painter, you are restricted to the
smaller set of base types.

For a listing of the UltraLite base types, see“Data types in UltraLite” on
page 111.

☞ For a complete listing of Adaptive Server Anywhere data types, see
“SQL Data Types”[ASA SQL Reference,page 51].

♦ Identifiers Identifiers are the names of database objects, such as
columns and tables. UltraLite supports the same rules for identifiers as
Adaptive Server Anywhere.

For information about identifiers, see “Identifiers”[ASA SQL Reference,
page 7].

♦ Strings Strings are used to hold character data in the database.
UltraLite supports the same rules for strings as Adaptive Server
Anywhere.

If you create an UltraLite database from an Adaptive Server Anywhere
reference database, the rules for strings are determined by the database
options in effect in the reference database when the UltraLite generator is
run. The QUOTED_IDENTIFIER option is particularly important in

108

Chapter 6. SQL Language Elements

setting rules for strings. Dynamic SQL alwaus operates as if this option is
ON (the default in Adaptive Server Anywhere).

☞ For information about strings, see “Strings”[ASA SQL Reference,
page 8].

The results of comparisons on strings, and the sort order of strings,
depends on both the case sensitivity of the database and the character set.
These properties are set when the database is created.

For more information, see“UltraLite database characteristics” on
page 29.

♦ Functions UltraLite supports the same range of functions as Adaptive
Server Anywhere, with a few minor exceptions. The functions supported
are the same for static interfaces such as embedded SQL as they are for
dynamic SQL.

For a list of supported functions, see“UltraLite SQL functions” on
page 114.

♦ Expressions Expressions are formed by combining data, often in the
form of column references, with operators or functions.

Adaptive Server Anywhere provides a wide range of operators that it uses
to form expressions. These operators are available if you develop your
UltraLite application using a static interface (embedded SQL, static C++
API, or static Java API). One exception is that in Adaptive Server
Anywhere you can use SQL variables to form expressions. You cannot
use SQL variables (including global variables) in UltraLite applications.
The @@identity global variable is an exception, and can be used within
UltraLite applications.

☞ For information about expressions in Adaptive Server Anywhere, see
“Expressions”[ASA SQL Reference,page 15].

Dynamic SQL is more limited in the range of expressions it supports than
is static SQL. For example, dynamic SQL does not support subqueries.

☞ For information about the expressions available in dynamic SQL, see
“Dynamic SQL language elements” on page 128.

♦ Search conditions Search conditions or predicates are used in the
WHERE clause, the HAVING clause, and the ON clause of SELECT
statements.

Dynamic SQL is more limited in the range of conditions that it supports
than is static SQL. For example, dynamic SQL does not support EXISTS
conditions.

☞ For information about search conditions available in dynamic SQL,
see“Search conditions” on page 132.

109

Static interfaces have the entire range of conditions supported in
Adaptive Server Anywhere available.

☞ For information about search conditions in Adaptive Server
Anywhere, see “Search conditions”[ASA SQL Reference,page 22].

♦ Statements SQL statements are constructed from the building blocks
listed above.

For a list of SQL statements available in dynamic SQL, see“Dynamic
SQL statements” on page 134.

The following SQL statements can be used in static UltraLite
applications:

• Data Manipulation Language SELECT, INSERT, UPDATE, and
DELETE statements can be included. You can use placeholders in
these statements that are filled in at runtime.

For more information, see“Writing UltraLite SQL statements” on
page 207.

• TRUNCATE TABLE statement You can use this statement to rapidly
delete entire tables.

• Transaction control You can use COMMIT and ROLLBACK
statements to provide transaction control within your UltraLite
application.

• START/STOP SYNCHRONIZATION DELETE statements These
statements are used to temporarily suspend synchronization of delete
operations.

For more information, see “Temporarily stopping synchronization of
deletes”[MobiLink Synchronization User’s Guide,page 193].

☞ For information on other UltraLite limitations, see“UltraLite database
limitations” on page 44.

110

Chapter 6. SQL Language Elements

Data types in UltraLite
The following are the SQL data types supported in UltraLite databases.

If you create an UltraLite database from an Adaptive Server Anywhere
reference database, you can use other data types, including user-defined data
types, in the reference database. The UltraLite generator casts those data
types into a data type supported in UltraLite databases. You cannot use
user-defined data types that include DEFAULT values or CHECK
constraints.

If you use dynamic SQL, or if you design an UltraLite database using the
Schema Painter, you are limited to the use of the types listed here.

☞ For data types in Adaptive Server Anywhere, see “SQL Data Types”
[ASA SQL Reference,page 51].

Data type Remarks

{ CHAR| CHARACTER}
[(max-length)]

Character data of maximum lengthmax-length
characters. The maximum length is 2048 bytes.
See “CHAR data type [Character]” [ASA SQL
Reference,page 53]

{ VARCHAR
| CHARACTER

VARYING}
[(max-length)]

In UltraLite, VARCHAR is implemented identi-
cally to CHAR. In other databases, VARCHAR
is used for variable-length character data of max-
imum lengthmax-length. See “CHARACTER
VARYING (VARCHAR) data type [Character]”
[ASA SQL Reference,page 53]

[UNSIGNED]
BIGINT

An integer requiring 8 bytes of storage. See “BIG-
INT data type [Numeric]” [ASA SQL Reference,
page 56]

{ DECIMAL | DEC}
[(precision

[, scale])]

A decimal number withprecisiontotal digits and
with scaleof the digits after the decimal point.
See “DECIMAL data type [Numeric]” [ASA SQL
Reference,page 57]

NUMERIC
[(precision

[, scale])]

Same as DECIMAL. See “NUMERIC data type
[Numeric]” [ASA SQL Reference,page 60]

DOUBLE
[PRECISION]

A double-precision floating-point number. See
“DOUBLE data type [Numeric]” [ASA SQL
Reference,page 58]

111

Data type Remarks

FLOAT
[(precision)]

A floating point number, which may be single
or double precision. See “FLOAT data type
[Numeric]” [ASA SQL Reference,page 58]

[UNSIGNED]
{ INT | INTEGER}

An integer requiring 4 bytes of storage. See “INT
or INTEGER data type [Numeric]” [ASA SQL
Reference,page 59]

REAL A single-precision floating-point number stored in
4 bytes. See “REAL data type [Numeric]” [ASA
SQL Reference,page 61]

[UNSIGNED]
SMALLINT

An integer requiring 2 bytes of storage. See
“SMALLINT data type [Numeric]” [ASA SQL
Reference,page 61]

[UNSIGNED]
TINYINT

An integer requiring 1 byte of storage. See
“TINYINT data type [Numeric]” [ASA SQL
Reference,page 62]

DATE A calendar date, such as a year, month and day.
See “DATE data type [Date and Time]” [ASA SQL
Reference,page 69]

TIME The time of day, containing hour, minute, second
and fraction of a second. See “TIME data type
[Date and Time]” [ASA SQL Reference,page 70]

DATETIME Identical to TIMESTAMP. See “DATETIME data
type [Date and Time]” [ASA SQL Reference,
page 70]

TIMESTAMP The point in time, containing year, month, day,
hour, minute, second and fraction of a second. See
“TIMESTAMP data type [Date and Time]” [ASA
SQL Reference,page 71]

BINARY
[(max-length)]

Binary data of maximum lengthmax-lengthbytes.
The maximum length is 2048 bytes. See “BI-
NARY data type [Binary]” [ASA SQL Reference,
page 72]

VARBINARY
[(max-length)]

Identical to BINARY. See “VARBINARY data
type [BINARY]” [ASA SQL Reference,page 73]

112

Chapter 6. SQL Language Elements

Data type Remarks

LONG VARCHAR Arbitrary length character data. Conditions in
SQL statements (such as in the WHERE clause)
cannot operate on LONG VARCHAR columns.
The only operations allowed on LONG VAR-
CHAR columns are to insert, update, or delete
them, or to include them in theselect-listof a
query.

The maximum size of LONG VARCHAR val-
ues is 64 kb. See “LONG BINARY data type
[BINARY]” [ASA SQL Reference,page 72]

LONG BINARY Arbitrary length binary data. Conditions in SQL
statements (such as in the WHERE clause) cannot
operate on LONG VARCHAR columns. The
only operations allowed on LONG VARCHAR
columns are to insert, update, or delete them, or to
include them in theselect-listof a query.

The maximum size of LONG BINARY values
is 64 kb. See “LONG BINARY data type [BI-
NARY]” [ASA SQL Reference,page 72]

113

UltraLite SQL functions
The following is a convenient reference for finding functions in dynamic
SQL. Each function is listed, and the function type (numeric, character, and
so on) is indicated next to it.

☞ For information about functions in Adaptive Server Anywhere, see
“SQL Functions”[ASA SQL Reference,page 83].

Function Remarks

ABS (
numeric-expression)

See “ABS function [Numeric]” [ASA SQL
Reference,page 97]

ACOS (
numeric-expression)

See “ACOS function [Numeric]” [ASA SQL
Reference,page 97]

ARGN (
integer-expression ,
expression [, ...])

See “ARGN function [Miscellaneous]”
[ASA SQL Reference,page 98]

ASCII (
string-expression)

See “ASCII function [String]” [ASA SQL
Reference,page 98]

ASIN (
numeric-expression)

See “ASIN function [Numeric]” [ASA SQL
Reference,page 99]

ATAN (
numeric-expression)

See “ATAN function [Numeric]” [ASA SQL
Reference,page 99]

{ ATN2 | ATAN2 } (
numeric-expression1 ,
numeric-expression2)

See “ATN2 function [Numeric]” [ASA SQL
Reference,page 100]

AVG (
numeric-expression
| DISTINCT column-name)

DISTINCT column-namecannot be used
from dynamic SQL.

See “AVG function [Aggregate]” [ASA SQL
Reference,page 100]

BYTE_LENGTH (
string-expression)

See “BYTE_LENGTH function [String]”
[ASA SQL Reference,page 101]

BYTE_SUBSTR (
string-expression ,
start [, length])

See “BYTE_SUBSTR function [String]”
[ASA SQL Reference,page 101]

114

Chapter 6. SQL Language Elements

Function Remarks

CAST (
expression AS data type)

See “CAST function [Data type conver-
sion]” [ASA SQL Reference,page 102]

CEILING (
numeric-expression)

See “CEILING function [Numeric]” [ASA
SQL Reference,page 103]

CHAR (
integer-expression)

See “CHAR function [String]” [ASA SQL
Reference,page 103]

CHARINDEX (
string-expression1 ,
string-expression2)

See “CHARINDEX function [String]”
[ASA SQL Reference,page 104]

CHAR_LENGTH (
string-expression)

See “CHAR_LENGTH function [String]”
[ASA SQL Reference,page 104]

COALESCE (
expression ,
expression [, ...])

See “COALESCE function [Miscella-
neous]” [ASA SQL Reference,page 105]

CONVERT (
data-type ,
expression
[, format-style])

See “CONVERT function [Data type con-
version]” [ASA SQL Reference,page 107]

COS (
numeric-expression)

See “COS function [Numeric]” [ASA SQL
Reference,page 109]

COT (
numeric-expression)

See “COS function [Numeric]” [ASA SQL
Reference,page 109]

COUNT (
* | expression

| DISTINCT
{ expression

column-name })

DISTINCT column-namecannot be used
from dynamic SQL.

See “COUNT function [Aggregate]” [ASA
SQL Reference,page 110]

DATALENGTH (
expression)

See “DATALENGTH function [System]”
[ASA SQL Reference,page 113]

DATE (
expression)

See “DATE function [Date and time]” [ASA
SQL Reference,page 113]

115

Function Remarks

DATEADD (
date-part ,
numeric-expression ,
date-expression)

See “DATEADD function [Date and time]”
[ASA SQL Reference,page 114]

DATEDIFF (
date-part ,
date-expression1 ,
date-expression2)

See “DATEDIFF function [Date and time]”
[ASA SQL Reference,page 114]

DATEFORMAT (
datetime-expression ,
string-expression)

See “DATEFORMAT function [Date and
time]” [ASA SQL Reference,page 116]

DATENAME (
date-part ,
date-expression)

See “DATENAME function [Date and
time]” [ASA SQL Reference,page 117]

DATEPART (
date-part ,
date-expression)

See “DATEPART function [Date and time]”
[ASA SQL Reference,page 117]

DATETIME (
expression)

See “DATETIME function [Date and time]”
[ASA SQL Reference,page 118]

DAY (
date-expression)

See “DAY function [Date and time]” [ASA
SQL Reference,page 118]

DAYNAME(
date-expression)

See “DAYNAME function [Date and time]”
[ASA SQL Reference,page 118]

DAYS (
[datetime-expression ,]
datetime-expression)

See “DAYS function [Date and time]” [ASA
SQL Reference,page 119]

DAYS (
datetime-expression ,
integer-expression)

See “DAYS function [Date and time]” [ASA
SQL Reference,page 119]

DEGREES (
numeric-expression)

See “DEGREES function [Numeric]” [ASA
SQL Reference,page 123]

116

Chapter 6. SQL Language Elements

Function Remarks

DIFFERENCE (
string-expression-1 ,
string-expression-2)

See “DIFFERENCE function [String]”
[ASA SQL Reference,page 123]

DOW (
date-expression)

See “DOW function [Date and time]” [ASA
SQL Reference,page 123]

EXP (
numeric-expression)

See “EXP function [Numeric]” [ASA SQL
Reference,page 131]

FLOOR (
numeric-expression)

See “FLOOR function [Numeric]” [ASA
SQL Reference,page 133]

GETDATE () See “GETDATE function [Date and time]”
[ASA SQL Reference,page 135]

GREATER (
expression1 ,
expression2)

See “GREATER function [Miscellaneous]”
[ASA SQL Reference,page 138]

HEXTOINT (
hexadecimal-string)

See “HEXTOINT function [Data type con-
version]” [ASA SQL Reference,page 139]

HOUR (
datetime-expression)

See “HOUR function [Date and time]”
[ASA SQL Reference,page 139]

HOURS (
[datetime-expression ,]
datetime-expression)

See “HOUR function [Date and time]”
[ASA SQL Reference,page 139]See
“HOURS function [Date and time]” [ASA
SQL Reference,page 140]

HOURS (
datetime-expression ,
integer-expression)

See “HOUR function [Date and time]”
[ASA SQL Reference,page 139]See
“HOURS function [Date and time]” [ASA
SQL Reference,page 140]

IFNULL (
expression-1 ,
expression-2
[, expression-3])

See “IFNULL function [Miscellaneous]”
[ASA SQL Reference,page 142]

INSERTSTR (
integer-expression ,
string-expression-1 ,
string-expression-2)

See “INSERTSTR function [String]” [ASA
SQL Reference,page 143]

117

Function Remarks

INTTOHEX (
integer-expression)

See “INTTOHEX function [Data type con-
version]” [ASA SQL Reference,page 144]

ISDATE (
string)

See “ISDATE function [Data type conver-
sion]” [ASA SQL Reference,page 144]

ISNULL (
expression ,
expression [, ...])

See “ISDATE function [Data type conver-
sion]” [ASA SQL Reference,page 144]

LCASE (
string-expression)

See “LCASE function [String]” [ASA SQL
Reference,page 146]

LEFT (
string-expression ,
para-expression

See “LEFT function [String]” [ASA SQL
Reference,page 147]

LENGTH (
string-expression)

See “LENGTH function [String]” [ASA
SQL Reference,page 147]

LESSER (
expression1 ,
expression2)

See “LESSER function [Miscellaneous]”
[ASA SQL Reference,page 148]

LIST (
{ string-expression

| DISTINCT column-name }
[, delimiter-string]
[ORDER BY

order-by-expression])

DISTINCT column-namecannot be used
from dynamic SQL.

See “LIST function [Aggregate]” [ASA SQL
Reference,page 148]

LOCATE (
string-expression-1 ,
string-expression-2
[, integer-expression])

See “LOCATE function [String]” [ASA
SQL Reference,page 150]

LOG (
numeric-expression)

See “LOG function [Numeric]” [ASA SQL
Reference,page 151]

LOG10 (
numeric-expression)

See “LOG10 function [Numeric]” [ASA
SQL Reference,page 152]

LOWER (
string-expression)

See “LOWER function [String]” [ASA SQL
Reference,page 153]

118

Chapter 6. SQL Language Elements

Function Remarks

LTRIM (
string-expression)

See “LOWER function [String]” [ASA SQL
Reference,page 153]

MAX (
expression
| DISTINCT column name)

See “MAX function [Aggregate]” [ASA
SQL Reference,page 154]

MIN (
expression
| DISTINCT column name)

See “MIN function [Aggregate]” [ASA SQL
Reference,page 154]

MINUTE (
datetime-expression)

See “MINUTE function [Date and time]”
[ASA SQL Reference,page 155]

MINUTES (
[datetime-expression ,]
datetime-expression)

See “MINUTES function [Date and time]”
[ASA SQL Reference,page 155]

MINUTES (
datetime-expression ,
integer-expression)

See “MINUTES function [Date and time]”
[ASA SQL Reference,page 155]

MOD (
dividend ,
divisor)

See “MOD function [Numeric]” [ASA SQL
Reference,page 157]

MONTH (
date-expression)

See “MONTH function [Date and time]”
[ASA SQL Reference,page 157]

MONTHNAME (
date-expression)

See “MONTHNAME function [Date and
time]” [ASA SQL Reference,page 157]

MONTHS (
[datetime-expression ,]
datetime-expression)

See “MONTHNAME function [Date and
time]” [ASA SQL Reference,page 157]

MONTHS (
datetime-expression ,
integer-expression)

See “MONTHNAME function [Date and
time]” [ASA SQL Reference,page 157]

NEWID() This function is not supported by the Ultra-
Lite static Java API.

See “NEWID function [Miscellaneous]”
[ASA SQL Reference,page 159]

119

Function Remarks

NOW (*) See “NOW function [Date and time]” [ASA
SQL Reference,page 163]

NULLIF (
expression-1 ,
expression-2)

See “NULLIF function [Miscellaneous]”
[ASA SQL Reference,page 163]

PATINDEX (
’%pattern %’ ,
string_expression)

See “PATINDEX function [String]” [ASA
SQL Reference,page 168]

PI (*) See “PI function [Numeric]” [ASA SQL
Reference,page 169]

POWER (
numeric-expression-1 ,
numeric-expression-2)

See “POWER function [Numeric]” [ASA
SQL Reference,page 171]

QUARTER (
date-expression)

See “QUARTER function [Date and time]”
[ASA SQL Reference,page 173]

RADIANS (
numeric-expression)

See “RADIANS function [Numeric]” [ASA
SQL Reference,page 174]

REMAINDER (
dividend ,
divisor)

See “REMAINDER function [Numeric]”
[ASA SQL Reference,page 175]

REPEAT (
string-expression ,
integer-expression)

See “REPEAT function [String]” [ASA SQL
Reference,page 175]

REPLACE (
original-string ,
search-string ,
replace-string)

See “REPLACE function [String]” [ASA
SQL Reference,page 176]

REPLICATE (
string-expression ,
integer-expression)

See “REPLICATE function [String]” [ASA
SQL Reference,page 176]

RIGHT (
string-expression ,
integer-expression)

See “RIGHT function [String]” [ASA SQL
Reference,page 179]

120

Chapter 6. SQL Language Elements

Function Remarks

ROUND (
numeric-expression ,
integer-expression)

See “ROUND function [Numeric]” [ASA
SQL Reference,page 179]

RTRIM (
string-expression)

See “RTRIM function [String]” [ASA SQL
Reference,page 180]

SECOND (
datetime-expression)

See “SECOND function [Date and time]”
[ASA SQL Reference,page 180]

SECONDS (
[datetime-expression ,]
datetime-expression)

See “SECONDS function [Date and time]”
[ASA SQL Reference,page 180]

SECONDS (
datetime-expression ,
integer-expression)

See “SECONDS function [Date and time]”
[ASA SQL Reference,page 180]

SIGN (
numeric-expression)

See “SIGN function [Numeric]” [ASA SQL
Reference,page 182]

SIMILAR (
string-expression-1 ,
string-expression-2)

See “SIMILAR function [String]” [ASA
SQL Reference,page 183]

SIN (
numeric-expression)

See “SIN function [Numeric]” [ASA SQL
Reference,page 183]

SOUNDEX (
string-expression)

See “SOUNDEX function [String]” [ASA
SQL Reference,page 187]

SPACE (
integer-expression)

See “SPACE function [String]” [ASA SQL
Reference,page 188]

SQRT (
numeric-expression)

See “SQRT function [Numeric]” [ASA SQL
Reference,page 189]

STR (
numeric-expression
[, length

[, decimal]])

See “STR function [String]” [ASA SQL
Reference,page 191]

121

Function Remarks

STRING (
string-expression
[, ...])

See “STRING function [String]” [ASA SQL
Reference,page 192]

STRTOUUID (
string-expression)

This function is not supported by the Ultra-
Lite static Java API.

See “STRTOUUID function [STRING]”
[ASA SQL Reference,page 192]

STUFF (
string-expression1 ,
start ,
length ,
string-expression2)

See “STUFF function [String]” [ASA SQL
Reference,page 193]

{ SUBSTRING | SUBSTR } (
string-expression ,

start
[, length])

See “SUBSTRING function [String]” [ASA
SQL Reference,page 193]

SUM (
expression
| DISTINCT column-name)

DISTINCT column-namecannot be used
from dynamic SQL.

See “SUM function [Aggregate]” [ASA
SQL Reference,page 194]

TAN (
numeric-expression)

See “TAN function [Numeric]” [ASA SQL
Reference,page 195]

TODAY (*) See “TODAY function [Date and time]”
[ASA SQL Reference,page 196]

TRIM (
string-expression)

See “TRIM function [String]” [ASA SQL
Reference,page 197]

" TRUNCATE" (
numeric-expression ,
integer-expression)

See “TRUNCATE function [Numeric]”
[ASA SQL Reference,page 197]

TRUNCNUM (
numeric-expression ,
integer-expression)

See “TRUNCNUM function [Numeric]”
[ASA SQL Reference,page 198]

UCASE (
string-expression)

See “UCASE function [String]” [ASA SQL
Reference,page 199]

122

Chapter 6. SQL Language Elements

Function Remarks

UPPER (
string-expression)

See “UPPER function [String]” [ASA SQL
Reference,page 199]

UUIDTOSTR(
uuid-expression)

This function is not supported by the Ultra-
Lite static Java API.

See “UUIDTOSTR function [STRING]”
[ASA SQL Reference,page 200]

WEEKS (
[datetime-expression ,]
datetime-expression)

See “WEEKS function [Date and time]”
[ASA SQL Reference,page 204]

WEEKS (
datetime-expression ,
integer-expression)

See “WEEKS function [Date and time]”
[ASA SQL Reference,page 204]

YEAR (
[datetime-expression ,]
datetime-expression)

See “YEARS function [Date and time]”
[ASA SQL Reference,page 210]

YEARS (
datetime-expression ,
integer-expression)

See “YEARS function [Date and time]”
[ASA SQL Reference,page 210]

YMD (
integer-expression ,
integer-expression ,
integer-expression)

See “YMD function [Date and time]” [ASA
SQL Reference,page 211]

123

CHAPTER 7

Dynamic SQL

About this chapter Dynamic SQL is the version of SQL available to UltraLite components. This
chapter describes the features of the dynamic SQL in UltraLite.

Dynamic SQL statements can be constructed at run time. This is in contrast
to the static SQL available to embedded SQL, static C++ API, and static
Java API applications, which must have all SQL statements specified at
compile time.

Contents Topic: page

Introduction to dynamic SQL 126

Dynamic SQL language elements 128

Dynamic SQL statements 134

Optimization of SELECT statements 139

125

Introduction to dynamic SQL
Structured Query Language (SQL) can be used by an application to perform
a database task, such as retrieving information using a query or inserting a
new row into a table. SQL is a relational database language standardized by
the ANSI and ISO standards bodies. UltraLite dynamic SQL is a variant
designed for use on small-footprint devices.

SQL statements are supplied as strings in function calls from the
programming language you are using. UltraLite components provide
functions for building and generating SQL statements. The programming
interface delivers the SQL statement to the database. The database receives
the statement and executes it, returning the required information (such as
query results) back to the application.

Queries are one form of Data Manipulation Language used in SQL. In fact,
the “Q” in “SQL” stands for query. You query, or retrieve, data from a
database with a SELECT statement. A query produces a result set, which is
a collection of rows that satisfy the query. The basic query operations in a
relational system are projection, restriction, and join. The SELECT
statement implements all of them.

A projection is a subset of the columns in a table. A restriction, also called
selection, is a subset of the rows in a table, based on some conditions. For
example, the following SELECT statement retrieves the names and prices of
all products that cost more than $15:

SELECT name, unit_price
FROM product
WHERE unit_price > 15

This query uses both a projection, as shown in the SELECT clause, and a
restriction, given in the WHERE clause.

You can do more with dynamic SQL than just query. It also includes
statements that modify tables, the INSERT, UPDATE, and DELETE
statements.

Availability Dynamic SQL is the varant of SQL available for UltraLite components.
UltraLite static interfaces use a different variant of SQL. The UltraLite
components can use a table-based interface as well as dynamic SQL.

☞ For a comparison of these data access methods, see“Data access in
UltraLite” on page 11.

Using dynamic SQL

Dynamic SQL can be used from UltraLite components, but not from static

126

Chapter 7. Dynamic SQL

development models. The steps in executing dynamic SQL statements are
common to all components:

1. Prepare the statement using a prepared statement method on the
connection object. The name of the method varies slightly with the
interface.

Preparing a statement causes the character string representing the
statement to be parsed and optimized (prepared) and returns an object
representing the prepared statement. The optimization is necessarily less
involved than that in Adaptive Server Anywhere.

2. Set the value of any parameters.

Optionally, when the statement has input parameters (specified as âĂŸ?’
in the statements), then your application can call methods on the prepared
statement object to set the value of these parameters. Any parameters for
which values are not set are set to NULL.

3. Execute the statement.

If the statement is an INSERT, UPDATE, or DELETE, use the
ExecuteStatement method. This method returns the number of rows
modified by the statement.

It the statement is a SELECT statement, use the ExecuteQuery method.
This method returns an object that holds the query result set.

4. For queries, navigate the result set and access the values in the result set.

♦ You can use methods on the result set object to set the position to
different rows in the result set. Some examples are Next, Previous,
First, Last, Relative, BeforeFirst, and AfterLast.

♦ When the current position is at a row of the result set, the values of
columns in the result set can be obtained by methods that get values.
The names of the methods depend on the interface. The methods
convert data to application data types automatically. For example, an
integer result expression can automatically converted to a string if the
result is assigned to a string variable.

5. For repeated execution of a prepared statement, repeat steps 2 through 4.

The values for input variables persist after a prepared statement is
executed. If you use a different value, you must reset the value of the
parameter.

127

Dynamic SQL language elements
This section lists the expressions, operators, and search conditions supported
by UltraLite dynamic SQL. These elements form the building blocks of the
SQL statements listed in“Dynamic SQL statements” on page 134.

☞ For more information about SQL language elements in UltraLite, see
“Overview of SQL support in UltraLite” on page 108.

Expressions

Expressions in UltraLite dynamic SQL are built from column names,
constants, and operators. Expressions evaluate to a value, and so have data
types associated with them.

Syntax expression :
constant

| column-name
| - expression
| expression operator expression
| (expression)
| function-name (expression, . . .)

See also “SQL functions” on page 114

“Operators” on page 128

Aggregate expressions An aggregate expression calculates a single value from a range of rows. For
example, the following query computes the total payroll for employees in the
employee table. In this query,SUM(salary) is an aggregate expression:

SELECT sum(salary)
FROM employee

An aggregate expression is one in which either an aggregate function is
used, or in which one or more of the operands is an aggregate expression.

When a SELECT statement does not have a GROUP BY clause, the
expressions in theselect-listmust be either all aggregate expressions or none
of the expressions can be an aggregate expression. When a SELECT
statement does have a GROUP BY clause, any non-aggregate expression in
the select-list must appear in the GROUP BY list.

Operators

Operators are used to compare, combine, or modify expressions. Dynamic
SQL supports the operators listed in this section. UltraLite static interfaces
have access to all of the Adaptive Server Anywhere operators.

128

Chapter 7. Dynamic SQL

☞ For information about operators in Adaptive Server Anywhere, see
“Operators”[ASA SQL Reference,page 10].

Binary comparison operators

The syntax for binary comparison conditions is as follows:

expression compare expression

wherecompareis a comparison operator. The following comparison
operators are available:

Operator Description

= Equal to

[NOT] LIKE A text comparison, possibly using regular expres-
sions

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

<> Not equal to

!> Not greater than

!< Not less than

♦ Case sensitivity Comparisons are carried out with the same attention
to case as the database on which they are operating. By default, UltraLite
databases are created as case insensitive.

♦ NULL operators Comparisons involving NULL expressions follow
these rules:

Two null values compare as equals. When exactly one of the operands
being compared is NULL, the result is UNKNOWN. Thus, SQL
comparisons produce one of three results (TRUE, FALSE, and
UNKNOWN). Similarly, logical expressions (AND, OR, NOT) can also
produce these results.

129

Arithmetic operators

expression + expression Addition. If either expression is NULL, the
result is NULL.

expression – expression Subtraction. If either expression is NULL, the
result is NULL.

–expression Negation. If the expression is NULL, the result is NULL.

expression * expression Multiplication. If either expression is NULL, the
result is NULL.

expression / expression Division. If either expression is NULL or if the
second expression is 0, the result is NULL.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because
21 divided by 11 equals 1 with a remainder of 10.

String operators

expression || expression String concatenation (two vertical bars). If
either string is NULL, it is treated as the empty string for concatenation.

expression + expression Alternative string concatenation. When using
the + concatenation operator, you must ensure the operands are explicitly set
to character data types rather than relying on implicit data conversion.

For example, the following query returns the integer value579:

SELECT 123 + 456

whereas the following query returns the character string123456:

SELECT ’123’ + ’456’

You can use the CAST or CONVERT function to explicitly convert data
types.

Bitwise operators

The following operators can be used on integer data types in UltraLite.

130

Chapter 7. Dynamic SQL

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, | and ~ are not interchangeable with the logical
operators AND, OR, and NOT. The bitwise operators operate on integer
values using the bit representation of the values.

Example For example, the following statement selects rows in which the correct bits
are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0

Operator precedence

The precedence of operators in expressions is as follows. The operators at
the top of the list are evaluated before those at the bottom of the list.

1. Names, functions, constants

2. ()

3. unary operators (operators that require a single operand): +, -

4. ~

5. & , | , ^ ,

6. * , /, %

7. +, -

8. ||

9. Comparisons:>, <, <>, !=, <=, >=, [NOT] BETWEEN, [NOT] IN, [
NOT] LIKE

10. Comparisons: IS [NOT] TRUE, FALSE, UNKNOWN

11. NOT

12. AND

13. OR

131

When you use more than one operator in an expression, it is recommended
that you make the order of operation explicit using parentheses rather than
relying on an identical operator precedence in UltraLite.

Search conditions

Search conditions appear in the WHERE clause or the ON phrase in SQL
queries. The following search conditions are supported in dynamic SQL.

Syntax search-condition:
expression compare expression

| expression IS [NOT] { NULL | TRUE | FALSE | UNKNOWN }
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE expression
| expression [NOT] IN (expression, ...)
| NOT search-condition
| search-condition AND search-condition
| search-condition OR search-condition
| (search-condition)

Logical operators

Logical operators compare conditions (AND, OR, and NOT) or test the truth
or NULL value nature of expressions (IS)

Conditions are combined using AND as follows:

condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:

condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if
both conditions are FALSE, and UNKNOWN otherwise.

The syntax for the NOT operator is as follows:

NOT condition

The NOT condition is TRUE ifcondition is FALSE, FALSE ifcondition
is TRUE, and UNKNOWN ifcondition is UNKNOWN.

The IS operator provides a means to test a logical value. The syntax for the
IS operator is as follows:

expression IS [NOT] { truth-value | NULL }

132

Chapter 7. Dynamic SQL

The condition is TRUE if theexpressionevaluates to the supplied
truth-value, which must be one of TRUE, FALSE, UNKNOWN, or NULL.
Otherwise, the value is FALSE.

133

Dynamic SQL statements
The following are dynamic SQL statements you can use in UltraLite.

SELECT statement

Description Use this statement to retrieve information from the database.

Syntax SELECT [DISTINCT] [FIRST | TOP n] select-list
[FROM table-expression]
[WHERE search-condition]
[GROUP BY group-by-expression,...group-by-expression]
[ORDER BY order-by-expression,...order-by-expression]

table-expression :
table-name [[AS] correlation-name]
| table-expression { join-operator table-expression [ON join-condition]

,... }
| (table-expression, . . .)

join-operator :
, (ON condition not allowed)

| CROSS JOIN (ON condition not allowed)
| INNER JOIN
| JOIN (requires ON phrase)
| LEFT OUTER JOIN

order-by-expression :
{ integer | expression } [ASC | DESC]

Parameters DISTINCT All (the default) returns all rows that satisfy the clauses of the
SELECT statement. If DISTINCT is specified, duplicate output rows are
eliminated. Many statements take significantly longer to execute when
DISTINCT is specified, so you should reserve DISTINCT for cases where it
is necessary.

FIRST or TOP You can explicitly retrieve only the first row of a query or
the firstn rows of a query. These keywords are principally for use with
ORDER BY queries.

select-list Theselect-listis a list of expressions, separated by commas,
specifying what will be retrieved from the database. An asterisk (*) means
select all columns of all tables in the FROM clause. Subqueries are not
allowed in theselect-list.

An alias name can be specified following an expression in theselect-listto
represent that expression. The alias name can then be used elsewhere in the

134

Chapter 7. Dynamic SQL

query, such as in the WHERE clause or ORDER BY clause.

FROM clause Rows are retrieved from the tables and views specified in
thetable-expression.

ON condition The ON condition is specified for a single join operation and
indicates how the join is to create rows in the result set. A WHERE clause is
used to restrict the rows in the result set, after potential rows have been
created by a join. For INNER joins restricting with an ON or WHERE is
equivalent. For OUTER joins, they are not equivalent.

WHERE clause This clause limits the rows that are selected from the
tables named in the FROM clause. It can be used to restrict rows between
multiple tables.

Although both the ON phrase (which is part of the FROM clause) and the
WHERE clause restrict the rows in the result set, they differ in that the
WHERE clause is applied at a later stage of query execution. The ON phrase
is part of the join operation between tables, while the WHERE clause is
applied after the join is complete. In some queries, a condition can be
specified in a WHERE clause or in the ON phrase with the same net result,
but in other cases the results differ. For example, for outer joins, a condition
specified in a WHERE clause gives different results from the same condition
specified in the ON phrase.

GROUP BY clause You can group by columns, alias names, or functions.
The result of the query contains one row for each distinct set of values in the
named columns, aliases, or functions. All NULL-containing rows are treated
as a single set. The resulting rows are often referred to as groups since there
is one row in the result for each group of rows from the table list. Aggregate
functions can then be applied to these groups to get meaningful results.

A group-by-expris a (non-aggregate) expression written exactly the same as
one of the expressions in theselect-list.

When GROUP BY is used, theselect-listand ORDER BY expressions must
not reference any identifier that is not named in the GROUP BY clause. The
exception is that theselect-listmay contain aggregate functions.

ORDER BY clause This clause sorts the results of a query. Each item in
the ORDER BY list can be labeled as ASC for ascending order (the default)
or DESC for descending order. If the expression is an integern, then the
query results will be sorted by thenth item in the select list.

The only way to ensure that rows are returned in a particular order is to use
ORDER BY. In the absence of an ORDER BY clause, UltraLite returns rows
in whatever order is most efficient. This means that the appearance of result
sets may vary depending on when you last accessed the row and other

135

factors.

Usage The SELECT statement is used for retrieving results from the database.

See also “SELECT statement”[ASA SQL Reference,page 541]

Example How many employees are there?

SELECT count(*)
FROM employee

INSERT statement

Description Use this statement to insert a single row into a table (Syntax 1) or to insert
the results from a SELECT statement into the table (Syntax 2).

Syntax 1 INSERT [INTO] table-name [(column-name, . . .)]
VALUES (expression, . . .)

Syntax 2 INSERT [INTO] table-name [(column-name, . . .)]
SELECT statement

Usage The INSERT statement is used to add new rows to a database table.

Insert a single row with the specified expression values. If the optional list of
column names is given, the values are inserted one for one into the specified
columns. If the list of column names is not specified, the values are inserted
into the table columns in the order they were created (the same order as
retrieved with SELECT *). The row is inserted into the table at an arbitrary
position.

If you specify column names, the columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the
order in which the columns were created.

Character strings inserted into tables are always stored in the same case as
they are entered, regardless of whether the database is case sensitive or not.
Thus a stringValue inserted into a table is always held in the database with
an upper-case V and the remainder of the letters lower case. SELECT
statements return the string asValue. If the database is not case sensitive,
however, all comparisons makeValue the same asvalue, VALUE , and so
on. Further, if a single-column primary key already contains an entryValue,
an INSERT ofvalue is rejected, as it would make the primary key not
unique.

Side effects None.

Examples Add an Eastern Sales department to the database.

136

Chapter 7. Dynamic SQL

INSERT
INTO department (dept_id, dept_name)
VALUES (230, ’Eastern Sales’)

UPDATE statement

Description Use this statement to modify existing rows in database tables.

Syntax UPDATE table-name
SET set-item, . . .
[WHERE search-condition]

Parameters UPDATE clause The UPDATE clause specifies the name of the table to be
updated.

SET clause Each named column is set to the value of the expression on the
right hand side of the equal sign. There are no restrictions on theexpression.
If the expression is acolumn-name, the old value is used.

WHERE clause If a WHERE clause is specified, only rows satisfying the
search condition are updated. If no WHERE clause is specified, every row is
updated.

Case sensitivity Character strings inserted into tables are always stored in
the same case as they are entered, regardless of whether the database is case
sensitive or not. A CHAR data type column updated with a stringValue is
always held in the database with an upper case V and the remainder of the
letters lower case. SELECT statements return the string asValue. If the
database is not case sensitive, however, all comparisons makeValue the
same asvalue, VALUE , and so on. Further, if a single-column primary key
already contains an entryValue, an INSERT ofvalue is rejected, as it would
make the primary key not unique.

Usage The UPDATE statement modifies values in a table.

Side effects None.

See also “INSERT statement” on page 136

“DELETE statement” on page 138

Example Transfer employee Philip Chin (employee 129) from the sales department to
the marketing department.

UPDATE employee
SET dept_id = 400
WHERE emp_id = 129

137

DELETE statement

Description Use this statement to delete rows from the database.

Syntax DELETE
[FROM] table-name
[WHERE search-condition]

Usage The DELETE statement deletes all the rows that satisfy the search condition
from the named table. If no WHERE clause is specified, all rows from the
named table are deleted.

Side effects None.

Example Remove employee 105 from the database.

DELETE
FROM employee
WHERE emp_id = 105

Remove all data prior to 2000 from the fin_data table.

DELETE
FROM fin_data
WHERE year < 2000

138

Chapter 7. Dynamic SQL

Optimization of SELECT statements
The primary goal of optimization is choose indexes so that data can be
accessed in a convenient order (GROUP BY and ORDER BY) thus
avoiding temporary tables or to access only the pertinent subset of a table
when joining two tables. As a development aid, you can use the GetPlan
method to obtain a character string (usually called a plan) that summarizes
how a prepared statement is to be executed. Thus, the statement

SELECT I.inv_no, I.name, T.quantity, T.prod_no
FROM Invoice I, Transactions T
WHERE I.inv_no = T.inv_no

produces a plan

join[scan(Invoice,0),index-scan(Transactions,1)]

The plan indicates that the join operation will be accomplished by reading
all rows from the Invoice table (following index[0]) and then using the
index[1] from the Transaction table to read only the row whose inv_no
column matches.

In order to be usable on small devices, the optimization is not as extensive as
that carried out in Adaptive Server Anywhere. The optimizer attempts to
find sub-expressions in which a column (occurring by itself) is compared
with expressions that involve only constants or columns from tables that
occurred earlier in the FROM clause. Sometimes, you can rewrite a
SELECT statement into a form that is equivalent but which executes more
quickly. Often, this is known as syntax-directed optimization.

139

140

PART III

SYNCHRONIZING

ULTRA L ITE APPLICATIONS

This part describes how UltraLite databases can synchronize information
with other databases, and how to add synchronization to an UltraLite

application.

CHAPTER 8

Synchronization for UltraLite Applications

About this chapter This chapter introduces MobiLink synchronization for users of UltraLite
applications. It provides information on designing UltraLite databases to
make the most of synchronization. This chapter is intended for users who
have SQL Anywhere Studio.

Contents Topic: page

Introduction 144

Designing synchronization for your UltraLite database 150

Synchronization parameters reference 162

Stream parameters reference 179

143

Introduction
UltraLite developers who also have SQL Anywhere Studio can synchronize
the data in UltraLite databases with a central consolidated database. This
database may be a desktop database for personal applications, or a
multi-user database for shared enterprise data. Synchronization requires the
MobiLink synchronization software included with SQL Anywhere Studio.

This chapter describes general aspects of synchronization. Particulars of
implementing synchronization can be found in the individual book for each
component or static development model. For a full description of
synchronization, see theMobiLink Synchronization User’s Guide.

You can also find a working example of synchronization in the CustDB
sample application.

MobiLink synchronization features

Many mobile and embedded computing applications are integrated into an
information infrastructure. They require data to be uploaded to and
downloaded from aconsolidated database. This bi-directional sharing of
information issynchronization.

MobiLink synchronization technology, included in SQL Anywhere Studio
along with UltraLite, is designed to work with industry standard SQL
database-management systems from Sybase and other vendors. UltraLite
automatically keeps track of changes made to the UltraLite database
between each synchronization with the consolidated database. When the
UltraLite database is synchronized, all changes since the previous
synchronization are uploaded.

Subset of the
consolidated database

Mobile and embedded databases generally cannot contain all the data that
exists in the consolidated database. In practice, however, the only data you
need locally is that used by the particular application you wish to make
mobile. UltraLite provides the ability to take such a piece of a database, and
keep it synchronized with the consolidated database.

The tables in each UltraLite database can have a subset of the rows and
columns in the central database. For example, a customer table might
contain over 100 columns and 100 000 rows in the consolidated database,
but the UltraLite database may only require 4 columns and 1000 rows.
MobiLink allows you to define the exact subset to be downloaded to each
remote database.

Flexibility MobiLink synchronization is flexible. You define the subset of data using
the native SQL dialect of the consolidated database-management system,
Java, or a .NET programming language. Tables in the UltraLite database can

144

Chapter 8. Synchronization for UltraLite Applications

correspond to tables in the consolidated database, but you can also populate
an UltraLite table from a consolidated table with a different name, or from a
join of one or more tables.

Conflict resolution Mobile and embedded databases frequently share common data. They also
must allow updates to the same data. When two or more remote databases
simultaneously update the same row, the conflict cannot be prevented. It
must be detected and resolved when the changes are uploaded to the central
database. MobiLink synchronization automatically detects these conflicts.
The conflict resolution logic is defined in the native SQL dialect of the
consolidated database, in Java, or in a .NET programming language.

The MobiLink
synchronization server

An UltraLite application synchronizes with a central, consolidated database
through theMobiLink synchronization server . This server provides an
interface between the UltraLite application and the database server.

You control the synchronization process usingsynchronization scripts.
These scripts may be SQL statements or procedures written in the native
language of the consolidated DBMS, or they may be Java classes. For
example, you can use a SELECT statement to identify the columns and
tables in the consolidated database that correspond to each column of a row
to be downloaded to a table in your UltraLite application. Each script
controls a particular event during the synchronization process.

Synchronization streams UltraLite databases can synchronize with a MobiLink synchronization
server over one of a set of synchronization streams, including TCP/IP,
HTTP, and HTTPS. ActiveSync synchronization is available for
Windows CE applications under some development models. HotSync is
available for Palm OS applications.

Each synchronization stream has a set of appropriate stream parameters.
These parameters set required values for the stream, such as the location of
the MobiLink synchronization server, and network-specific control
parameters.

Supported synchronization streams

The following synchronization streams are supported:

Component TCP/IP HTTP HTTPS ActiveSync (Win-

dows CE only)

HotSync

(Palm OS

only)

UltraLite ActiveX ✔ ✔ ✔

UltraLite for MobileVB ✔ ✔ ✔1 ✔
1Must be separately ordered

145

Component TCP/IP HTTP HTTPS ActiveSync (Win-

dows CE only)

HotSync

(Palm OS

only)

Native UltraLite for Java ✔ ✔ ✔ ✔

UltraLite.NET ✔ ✔ ✔ ✔

UltraLite C++ ✔ ✔ ✔ ✔ ✔

Embedded SQL ✔ ✔ ✔ ✔ ✔

Static C++ API ✔ ✔ ✔ ✔ ✔

Static Java API ✔2 ✔ ✔

Secure synchronization To synchronize using encrypted synchronization (HTTPS) or to use
encryption over TCP/IP you must obtain the separately-licensable security
option. To order this option, see the card in your SQL Anywhere Studio
package or seehttp://www.sybase.com/detail?id=1015780.

Adding synchronization to your UltraLite application

❖ To add synchronization to an UltraLite application

1. Prepare the synchronization stream.

Select a synchronization stream and set other synchronization parameters
as required for that stream.

☞ For more information, see“Selecting a synchronization stream” on
page 147.

2. Call the synchronization function.

The synchronization function depends on the development model you are
using and the synchronization stream the application is using.

☞ For more information, see“Calling the synchronization function” on
page 148.

Secure synchronization To synchronize using encrypted synchronization (HTTPS) you must obtain
the separately-licensable security option. To order this option, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

2Use separate streams for secure synchronization

146

Chapter 8. Synchronization for UltraLite Applications

Selecting a synchronization stream

Each synchronization stream has a set of parameters that govern its behavior.
You should set these synchronization stream parameters when you select a
synchronization stream.

The way to select a synchronization stream and its associated
synchronization stream parameters depends on the particular UltraLite
development model you are using.

♦ For UltraLite for MobileVB and UltraLite ActiveX, the synchronization
stream is one of the synchonization parameters set in the Stream property
of the ULSyncParms object. The stream parameters are provided as a set
of keyword-value pairs in the StreamParms property.

☞ For more information, see “SyncParms”[UltraLite for MobileVB User’s
Guide,page 135], and “SyncParms”[UltraLite ActiveX User’s Guide,
page 153].

♦ For Native UltraLite for Java applications, the synchronization stream is
set by thesetStreammethod of theSyncParmsobject.

☞ For more information, seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ For embedded SQL and static C++ API applications, the synchronization
stream is set in the stream member of the ul_synch_info structure. The
synchronization stream parameters are supplied in the stream_parms
member of the ul_synch_info structure, as a string. The following code is
an example for TCP/IP synchronization:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.stream_parms = UL_TEXT("host=myserver");

☞ For more information, see the following:

• “stream synchronization parameter”[UltraLite Embedded SQL User’s
Guide,page 146]

• “stream_parms synchronization parameter”[UltraLite Embedded SQL
User’s Guide,page 149]

• “stream synchronization parameter”[UltraLite Static C++ User’s Guide,
page 132]

• “stream_parms synchronization parameter”[UltraLite Static C++ User’s
Guide,page 135]

147

♦ For static Java applications, the synchronization stream parameters are
supplied using thesetStreamParmsmethod. The following example
illustrates how to call the method:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=myserver;port=2439");

☞ For more information, see “stream synchronization parameter”
[UltraLite Static Java User’s Guide,page 80]and “stream_parms
synchronization parameter”[UltraLite Static Java User’s Guide,page 83].

Calling the synchronization function

In order to synchronize data with a MobiLink synchronization server,
UltraLite applications call a synchronization function. The particular
function depends on the development model you are using and on the
synchronization stream you have selected.

It is helpful to distinguish the following kinds of synchronization streams:

♦ Externally-initiated synchronization streams ActiveSync and
HotSync synchronization are initiated by an external application.

For information about calling HotSync synchronization, see the
following:

• MobileVB See “Synchronization”[UltraLite for MobileVB User’s
Guide,page 72].

• Embedded SQL See “Adding HotSync synchronization to Palm
applications”[UltraLite Embedded SQL User’s Guide,page 81].

• Static C++ API See “Adding HotSync synchronization to Palm
applications”[UltraLite Static C++ User’s Guide,page 54].

♦ Direct synchronization streams TCP/IP, HTTP, and HTTPS
synchronization streams are initiated directly from the UltraLite.

For information about calling the synchronization function for these
streams, see the following:

• UltraLite for MobileVB See “Synchronize method”[UltraLite for
MobileVB User’s Guide,page 96].

• UltraLite ActiveX See “Synchronize method”[UltraLite ActiveX
User’s Guide,page 116].

• Native UltraLite for Java See
ianywhere.native_ultralite.Connection.synchronizein the API
Reference.

• UltraLite.NET See Synchronize in the UltraLite.NET API Reference.

148

Chapter 8. Synchronization for UltraLite Applications

• Embedded SQL See “ULSynchronize function”[UltraLite Embedded
SQL User’s Guide,page 136].

• Static C++ API See “Synchronize method”[UltraLite Static C++
User’s Guide,page 87].

• Static Java API See “synchronize method”[UltraLite Static Java
User’s Guide,page 63].

149

Designing synchronization for your UltraLite
database

UltraLite applications use MobiLink synchronization technology to share
data with a consolidated database and integrate into an enterprise
information system.

By default, when you add synchronization to your database, all data is
synchronized. This section describes how to maintain unique primary keys
across multiple databases, as well as advanced aspects of UltraLite
synchronization design, including non-synchronizing tables, separate data
sets for synchronization such as high-priority synchronization, and read-only
tables.

See also This section describes how certain features of MobiLink affect the design
decisions you make for UltraLite applications. For a full description of
MobiLink synchronization, see theMobiLink Synchronization User’s
Guide. In particular:

♦ For more information on synchronization, see “Introducing MobiLink
Synchronization”[MobiLink Synchronization User’s Guide,page 3].

♦ For an introduction to synchronization concepts, see “Synchronization
Basics”[MobiLink Synchronization User’s Guide,page 7].

♦ For information about synchronization techniques, see “Synchronization
Techniques”[MobiLink Synchronization User’s Guide,page 69].

Adding synchronization Adding MobiLink synchronization to an UltraLite application is a matter of
supplying arguments to a function call. The details of the call, and the
synchronization options available to your application, depend on your target
platform.

☞ For more information, see“Synchronization for UltraLite Applications”
on page 143.

Maintaining primary key uniqueness

You can declare the default value of a column in a reference database to be
of type GLOBAL AUTOINCREMENT. You can use this default for any
column in which you want to maintain unique values, but it is particularly
useful for primary keys. This feature simplifies the task of generating unique
values in setups where data is being replicated among multiple databases,
typically by MobiLink synchronization.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contains the same number of

150

Chapter 8. Synchronization for UltraLite Applications

values. For example, if you set the partition size for an integer column in a
database to 1000, one partition extends from 1001 to 2000, the next from
2001 to 3000, and so on.

☞ For information on declaring columns as global autoincrement in your
reference database, see“Declaring default global autoincrement columns”
on page 151.

To use global autoincrement columns in your UltraLite database, you must
first assign each copy of the database a unique global database identification
number. UltraLite then supplies default values for the column only from the
partition uniquely identified by that database’s number. For example, if you
assigned a database in the above example the identity number 1, the default
values in that database would be chosen in the range 1001–2000. Another
copy of the database, assigned the identification number 2, would supply
default value for the same column in the range 2001–3000.

☞ For information on assigning global database identification numbers, see
“Setting the global database identifier” on page 152.

☞ For information on using global autoincrement values in Adaptive
Server Anywhere remote databases, see “Maintaining unique primary keys
using global autoincrement”[MobiLink Synchronization User’s Guide,page 82].

Declaring default global autoincrement columns

You declare default column values in the Adaptive Server Anywhere
reference database. When you build your UltraLite application, your
UltraLite database inherits the default column value. You can set default
values in your reference database by selecting the column properties in
Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a TABLE or ALTER TABLE statement.

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is
216 = 65536; for columns of other types the default partition size is 232 =
4294967296. Since these defaults may be inappropriate it is best to specify
the partition size explicitly.

For example, the following statement creates a simple reference table with
two columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

151

CREATE TABLE customer (
id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
name VARCHAR(128) NOT NULL,
PRIMARY KEY (id)

)

In the above example, the chosen partition size is 5000.

Default partition sizes for some data types are different in UltraLite
applications than in Adaptive Server Anywhere databases. Declare the
partition size explicitly if you wish the reference database to behave in the
same manner as your UltraLite application.

☞ For more information on GLOBAL AUTOINCREMENT, see
“CREATE TABLE statement”[ASA SQL Reference,page 361].

Setting the global database identifier

When deploying an application, you must assign a different identification
number to each database. You can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

The method of setting this identification number varies according to the
programming interface you are using.

♦ UltraLite for MobileVB See “Properties”[UltraLite for MobileVB User’s
Guide,page 89].

♦ UltraLite ActiveX See “Properties”[UltraLite ActiveX User’s Guide,
page 111].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.Connection.databaseIDin the API
Reference.

♦ UltraLite.NET See Connection in the UltraLite.NET API Reference.

♦ Embedded SQL See “ULSetDatabaseID function”[UltraLite Embedded
SQL User’s Guide,page 131].

♦ Static C++ API See “SetDatabaseID method”[UltraLite Static C++
User’s Guide,page 86].

♦ Static Java API See “setDatabaseID method”[UltraLite Static Java
User’s Guide,page 62].

152

Chapter 8. Synchronization for UltraLite Applications

How default values are chosen

The global database identifier in each deployed UltraLite application must
be set to a unique, non-negative integer before default values can be
assigned. These identification numbers uniquely identify the databases.

☞ For information, see“Setting the global database identifier” on
page 152.

The range of default values for a particular database ispn + 1 top(n + 1),
wherep is the partition size andn is the global database identification
number. For example, if the partition size is 1000 and the global database
identification number is set to 3, then the range is from 3001 to 4000.

UltraLite applications choose default values by applying the following rules:

♦ If the column contains no values in the current partition, the first default
value ispn + 1.

♦ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

♦ Default column values are not affect by values in the column outside of
the current partition; that is, by numbers less thanpn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

Caution
Column values downloaded via MobiLink synchronization do not update
the default value counter. Thus, an error can occur should one MobiLink
client insert a value into another client’s partition. To avoid this problem,
ensure that each copy of your UltraLite application inserts values only in
its own partition.

If the global database identification number is set to the default value of
2147483647, a NULL value is inserted into the column. Should NULL
values not be permitted, the attempt to insert the row causes an error. This
situation arises, for example, if the column is contained in the table’s
primary key.

Because the global database identification number cannot be set to negative
values, the values chosen are always positive. The maximum identification
number is restricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new global database

153

identification number should be assigned to the database to allow default
values to be chosen from another partition. Attempting to insert the NULL
value causes an error if the column does not permit nulls.

Should the values in a particular partition become exhausted, you can assign
a new database identification number to that database. You can assign new
database id numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database id values. This pool is
maintained in the same manner as a pool of primary keys.

☞ For information on determining whether the range of default values is
becoming exhausted, see“Detecting the number of available default values”
on page 154.

☞ For information on maintaining primary key uniqueness using explicit
primary key pools, see “Maintaining unique primary keys”[MobiLink
Synchronization User’s Guide,page 81].

Determining the most recently assigned value

You can retrieve the value that was chosen during the most recently insert
operation. Since these values are often used for primary keys, knowing the
generated value may let you more easily insert rows that reference the
primary key of the first row.

From embedded SQL, you can obtain the most recently assigned global
autoincrement default value using the following statement.

select @@identity

From the C++ API, the value is available using theGetLastIdentity()
method on theULConnection object

The returned value is an unsigned 64-bit integer, database data type
UNSIGNED BIGINT. Since this statement only allows you to determine the
most recently assigned default value, you should retrieve this value soon
after executing the insert statement to avoid spurious results.

Occasionally, a single insert statement may include more than one column of
type global autoincrement. In this case, the return value is one of the
generated default values, but there is no reliable means to determine which
one. For this reason, you should design your database and write your insert
statements so as to avoid this situation.

Detecting the number of available default values

Default values are chosen from the partition identified by the global database
identification number until the maximum value is reached. When this state

154

Chapter 8. Synchronization for UltraLite Applications

has been reached or is imminent, you must assign the database a new
identification number.

The programming interfaces provide means of obtaining the proportion of
numbers that have been used. The return value is a short in the range 0–100
that represents the percent of values used thus far. For example, a value of
99 indicates that very few unused values remain and the database should be
assigned a new identification number.

The method of setting this identification number varies according to the
programming interface you are using.

♦ UltraLite for MobileVB See “Properties”[UltraLite for MobileVB User’s
Guide,page 89].

♦ UltraLite ActiveX See “Properties”[UltraLite ActiveX User’s Guide,
page 111].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.Connection.databaseIDin the API
Reference.

♦ UltraLite.NET See Connection in the UltraLite.NET API Reference.

♦ Embedded SQL See “ULGlobalAutoincUsage function”[UltraLite
Embedded SQL User’s Guide,page 118].

♦ Static C++ API See “GlobalAutoincUsage method”[UltraLite Static
C++ User’s Guide,page 80].

♦ Static Java API See “globalAutoincUsage method”[UltraLite Static
Java User’s Guide,page 61].

Including non-synchronizing tables in UltraLite databases

By default, all tables in an UltraLite database are synchronized to the
consolidated database. You can include tables in your UltraLite database that
are excluded from synchronization, but you must explicitly identify these
tables when you create your reference database.

Tables with names ending in nosync are excluded from synchronization. You
can use these tables for persistent data that is not related to the consolidated
database. Other than being excluded from synchronization, you can use
these tables in exactly the same way as other tables in the UltraLite database.

You can alternatively use publications to achieve the same effect. For more
information, see“Designing sets of data to synchronize separately” on
page 156.

155

Designing sets of data to synchronize separately

The schema of an UltraLite database is defined by the queries included in the
application. You can add publications to the reference database to define sets
of data that can be synchronized separately. If you do not use publications to
define which changes are to be synchronized, all changes are synchronized.

Publications are used for several purposes in SQL Anywhere. A publication
consists of a set of articles. In general, each article can be a whole table, or
can define a subset of the data in a table.

Articles defined for UltraLite applications can use row subsets by supplying
a WHERE clause, but cannot use column subsets or the SUBSCRIBE BY
clause. Articles in UltraLite publications governing HotSync
synchronization cannot use a WHERE clause.

❖ To synchronize subsets of data from an UltraLite database

1. Create publications representing the data you wish to synchronize.

☞ For more information, see“Creating publications for UltraLite
databases” on page 157.

2. Run the UltraLite generator, specifying the publications on the -v
command-line option.

☞ For more information, see“The UltraLite generator” on page 96.

3. When calling the synchronization function, specify the publication.

If you specify no publication, all changes to the database are
synchronized. If you specify one or more publications, only changes that
fall within one or more of the listed publications are synchronized.

☞ For more information, see the following:
♦ MobileVB See “SyncParms”[UltraLite for MobileVB User’s Guide,

page 135].

♦ ActiveX See “SyncParms”[UltraLite ActiveX User’s Guide,page 153].

♦ Native UltraLite for Java See
ianywhere.native_ultralite.SyncParmsin the API Reference.

♦ Embedded SQL See “publication synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 144].

♦ Static C++ API See “publication synchronization parameter”
[UltraLite Static C++ User’s Guide,page 130].

♦ Static Java API See “publication synchronization parameter”
[UltraLite Static Java User’s Guide,page 77].

156

Chapter 8. Synchronization for UltraLite Applications

Creating publications for UltraLite databases

Components Publications can be added to the UltraLite database using the schema
painter, the ULXML utility, or from a reference database.

❖ To publish data from an UltraLite database (Schema Painter)

1. Connect to the UltraLite database.

2. In the left pane, open the Synchronization folder.

3. Double-click Add Publication.

4. Specify a set of tables to include in the publication.

5. Click OK to save the changes.

Reference database For UltraLite synchronization, each article in a publication may include
either a complete table or may include a WHERE clause.

❖ To publish data from an UltraLite reference database (Sybase
Central)

1. Connect to the database as a user with DBA authority.

2. Open the Publications folder and double-click Add Publication.

3. Type a name for the new publication. Click Next.

4. On the Tables tab, select a table from the list of Matching Tables.
Click Add. The table appears in the list of Selected Tables on the right.

5. Add additional tables as required. The order of the tables is not important.

6. If necessary, click the Where tab to specify the rows to be included in the
publication. You cannot specify column subsets. If you are using
HotSync synchronization, do not specify a WHERE clause.

7. Click Finish.

157

❖ To publish data from an UltraLite reference database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of
the new publication and the table you want to publish.

☞ For more information, see “CREATE PUBLICATION statement”
[ASA SQL Reference,page 334].

Synchronizing high-priority changes

Publications permit the synchronization of specific portions of your
UltraLite database. You can combine publications with upload-only or
download-only synchronization to synchronize high-priority changes
efficiently. Both upload-only and download-only synchronization are less
time-consuming than two-way synchronization.

☞ For more information, see“Creating publications for UltraLite
databases” on page 157, and the following:

♦ MobileVB See “SyncParms”[UltraLite for MobileVB User’s Guide,
page 135].

♦ ActiveX See “SyncParms”[UltraLite ActiveX User’s Guide,page 153].

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ Embedded SQL See “upload_only synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 150].

♦ Static C++ API See “upload_only synchronization parameter”
[UltraLite Static C++ User’s Guide,page 136].

♦ Static Java API See “upload_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 84].

Including read-only tables in an UltraLite database

Some applications include tables in the UltraLite database that are not
updated locally. Price lists and company policies are two examples. You can
synchronize these tables efficiently by including them in a publication, and
synchronizing the publication using download-only synchronization.
Download-only synchronization is less time-consuming than a two-way
synchronization, as no data is uploaded.

158

Chapter 8. Synchronization for UltraLite Applications

To use download-only synchronization, you must ensure that the data is not
changed locally. If any data is changed locally, synchronization fails with a
SQLE_DOWNLOAD_CONFLICT error.

Unlike for two-way synchronization, you do not have to commit all changes
to the UltraLite database before download-only synchronization.
Uncommitted changes to tables not involved in synchronization are not
uploaded, and so there incomplete transactions do not cause problems.

☞ For information on download-only synchronization, see the following:

♦ MobileVB See “SyncParms”[UltraLite for MobileVB User’s Guide,
page 135].

♦ ActiveX See “SyncParms”[UltraLite ActiveX User’s Guide,page 153].

♦ Native UltraLite for Java Seeianywhere.native_ultralite.SyncParms
in the API Reference.

♦ Embedded SQL See “download_only synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 141].

♦ Static C++ API See “download_only synchronization parameter”
[UltraLite Static C++ User’s Guide,page 127].

♦ Static Java API See “download_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 73].

Using client-specific data to control synchronization

Some UltraLite applications require client-specific data that control
synchronization, but which are not needed on the consolidated database. For
example, you may wish your UltraLite applications to indicate which of a
number of channels or topics they are interested in, and use this information
to download the appropriate rows.

If you create a table in your UltraLite database with a name ending in
allsync, all rows of that table are synchronized at each synchronization,
whether or not they have been changed since the last synchronization.

You can store user-specific or client-specific data in allsync tables. If you
upload the data in the table to a temporary table in the consolidated database
on synchronization, you can use the data to control synchronization by your
other scripts without having to be maintained in the consolidated database.

Foreign key cycles

This section describes a specific limitation in UltraLite synchronization that

159

results from a series of tables linked together by foreign keys so that a cycle
is formed.

MobiLink synchronization from an UltraLite remote database requires that
all changes be committed to the consolidated database in one transaction. To
facilitate this single transaction for multiple tables, the inserts, updates, and
deletes for each table must be ordered so that operations for a primary table
come before the associated foreign table. This ensures that the insert in the
foreign table will have its foreign key referential integrity constraint satisfied
(likewise for other operations like delete).

The UltraLite analyzer automatically orders all the tables in the remote
database so those primary tables are uploaded before foreign tables based on
the schema in the reference database. The ordering is always possible as
long as there are no foreign key cycles in the schema.

The figure illustrates a simple foreign key cycle between two tables.

If a foreign key cycle is detected by the UltraLite analyzer, the cycle must be
broken for the analyzer to successfully complete without any errors. The
foreign key cycle must be broken on both the reference database and the
consolidated database in order for synchronization transactions to be
successfully applied.

For an Adaptive Server Anywhere consolidated and reference database, one
of the foreign keys can be made tocheck on commitso that foreign key
referential integrity is checked during the commit phase rather than when the
operation is initiated. Other database vendors may have similar methods but
if not, the schema must be redesigned to eliminate the foreign key cycle.

Example

160

Chapter 8. Synchronization for UltraLite Applications

create table c (
id integer not null primary key,
c_pk integer not null

);
create table p (

pk integer not null primary key,
c_id integer not null,
foreign key p_to_c (c_id) references c(id)

);
alter table c
add foreign key c_to_p (c_pk)
references p(pk)
check on commit;

161

Synchronization parameters reference
Synchronization parameters control the synchronization between an
UltraLite database and the MobiLink synchronization server. The way you
set the parameters depends on the specific UltraLite interface you are using.
This section describes the effects of the parameters, and provides links to
other locations for information on how to set them.

Authentication Parameters synchronization parameter

Function Supplies parameters to the authentication_parameters script.

Usage Use this parameter to supply any values required by your
authentication_parameters script. These may be a user name and password,
for example.

If you use this parameter, you must also supply the number of parameters.
See“Number of Authentication Parameters parameter” on page 166.

Allowed values An array of strings. Null is not allowed as a value for any of the strings, but
you can supply an empty string.

See also “Number of Authentication Parameters parameter” on page 166

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “auth_parms parameter”[UltraLite Embedded SQL
User’s Guide,page 139].

♦ Static C++ API See “auth_parms parameter”[UltraLite Static C++
User’s Guide,page 125].

♦ Static Java API See “auth_parms parameter”[UltraLite Static Java
User’s Guide,page 71].

Authentication Status synchronization parameter

Function Reports the status of MobiLink user authentication. The MobiLink
synchronization server provides this information to the client.

Usage If you are implementing a custom authentication scheme, the
authenticate_user or authenticate_user_hashed synchronization script must
return one of the allowed values of this parameter.

162

Chapter 8. Synchronization for UltraLite Applications

The parameter is set by the MobiLink synchronization server, and so is
read-only.

Allowed values The allowed values are held in an interface-specific enumeration.

If a customauthenticate_usersynchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in “authenticate_user connection event”[MobiLink Synchronization
Reference,page 100].

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

Interfaces ♦ MobileVB “SyncResult”[UltraLite for MobileVB User’s Guide,page 138]

♦ ActiveX “SyncResult”[UltraLite ActiveX User’s Guide,page 155]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

♦ Embedded SQL See “auth_status parameter”[UltraLite Embedded SQL
User’s Guide,page 139].

♦ Static C++ API See “auth_status parameter”[UltraLite Static C++ User’s
Guide,page 125].

♦ Static Java API See “auth_status parameter”[UltraLite Static Java User’s
Guide,page 71].

Authentication Value synchronization parameter

Function Reports results of a custom MobiLink user authentication script. The
MobiLink synchronization server provides this information to the client.

Default The values set by the default MobiLink user authentication mechanism are
described in“Authentication Status synchronization parameter” on page 162.

Usage The parameter is set by the MobiLink synchronization server, and so is
read-only.

See also “authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

“authenticate_user_hashed connection event”[MobiLink Synchronization
Reference,page 104]

“Authentication Status synchronization parameter” on page 162

Interfaces ♦ MobileVB “SyncResult”[UltraLite for MobileVB User’s Guide,page 138]

♦ ActiveX “SyncResult”[UltraLite ActiveX User’s Guide,page 155]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

163

♦ Embedded SQL See “auth_value synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 140].

♦ Static C++ API See “auth_value synchronization parameter”[UltraLite
Static C++ User’s Guide,page 126].

♦ Static Java API See “auth_value synchronization parameter”[UltraLite
Static Java User’s Guide,page 72].

Checkpoint Store synchronization parameter

Function Adds additional checkpoints of the database during synchronization to limit
database growth during the synchronization process.

The checkpoint operation adds I/O operations for the application and for the
Palm conduit and so slows synchronization. The option is most useful for
large downloads with many updates. Devices with slow flash memory may
not want to pay the performance penalty.

Default By default, only required checkpointing is done.

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “checkpoint_store synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 141].

♦ Static C++ API See “checkpoint_store synchronization parameter”
[UltraLite Static C++ User’s Guide,page 127].

♦ Static Java API Not available.

Disable Concurrency synchronization parameter

Function Disallow database access from other threads during synchronization.

Default The parameter is a Boolean value, and by default is false (allowing
concurrent database access). Data access is read-write during the download
phase, and read-only otherwise.

See also “Threading in UltraLite applications” on page 47

Interfaces ♦ MobileVB Not available

♦ ActiveX Not available

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

164

Chapter 8. Synchronization for UltraLite Applications

♦ Embedded SQL See “disable_concurrency synchronization
parameter”[UltraLite Embedded SQL User’s Guide,page 141].

♦ Static C++ API See “disable_concurrency synchronization parameter”
[UltraLite Static C++ User’s Guide,page 127].

♦ Static Java API See “disable_concurrency synchronization parameter”
[UltraLite Static Java User’s Guide,page 73].

Download Only synchronization parameter

Function Do not upload any changes from the UltraLite database during this
synchronization.

Default The parameter is a Boolean value, and by default is false.

See also “Including read-only tables in an UltraLite database” on page 158.

“Upload Only synchronization parameter” on page 176

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “download_only synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 141].

♦ Static C++ API See “download_only synchronization parameter”
[UltraLite Static C++ User’s Guide,page 127].

♦ Static Java API See “download_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 73].

Ignored Rows synchronization parameter

Function This boolean parameter is set totrue if any rows were ignored by the
MobiLink synchronization server during synchronization because of absent
scripts.

The parameter is read-only.

Interfaces ♦ MobileVB “SyncResult”[UltraLite for MobileVB User’s Guide,page 138]

♦ ActiveX “SyncResult”[UltraLite ActiveX User’s Guide,page 155]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

♦ Embedded SQL See “ignored_rows synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 141].

165

♦ Static C++ API See “ignored_rows synchronization parameter”
[UltraLite Static C++ User’s Guide,page 127].

♦ Static Java API See “ignored_rows synchronization parameter”
[UltraLite Static Java User’s Guide,page 74].

New Password synchronization parameter

Function Sets a new MobiLink password associated with the user name.

Default The parameter is optional, and is a string.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “new_password synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 142].

♦ Static C++ API See “new_password synchronization parameter”
[UltraLite Static C++ User’s Guide,page 128].

♦ Static Java API See “new_password synchronization parameter”
[UltraLite Static Java User’s Guide,page 74].

Number of Authentication Parameters parameter

Function Supply the number of authentication parameters being passed to the
authentication_parameters script.

Default No parameters supplied.

See also “Authentication Parameters synchronization parameter” on page 162

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “num_auth_parms parameter”[UltraLite
Embedded SQL User’s Guide,page 142].

166

Chapter 8. Synchronization for UltraLite Applications

♦ Static C++ API See “num_auth_parms parameter”[UltraLite Static C++
User’s Guide,page 128].

♦ Static Java API See “num_auth_parms parameter”[UltraLite Static Java
User’s Guide,page 74].

Observer synchronization parameter

Function A pointer to a callback function that monitors synchronization.

See also “User Data synchronization parameter” on page 177

Interfaces ♦ MobileVB Declare the connection object With Events. See
“Connection”[UltraLite for MobileVB User’s Guide,page 89]

♦ ActiveX Use CreateObjectWithEvents when opening the
DatabaseManager object. See “DatabaseManager”[UltraLite ActiveX
User’s Guide,page 120]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

♦ Embedded SQL See “observer synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 142].

♦ Static C++ API See “observer synchronization parameter”[UltraLite
Static C++ User’s Guide,page 128].

♦ Static Java API See “observer synchronization parameter”[UltraLite
Static Java User’s Guide,page 75].

Password synchronization parameter

Function A string specifying the MobiLink password associated with the user name.
This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

Default The parameter is optional, and is a string.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “password synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 142].

167

♦ Static C++ API See “password synchronization parameter”[UltraLite
Static C++ User’s Guide,page 128].

♦ Static Java API See “password synchronization parameter”[UltraLite
Static Java User’s Guide,page 75].

Ping synchronization parameter

Function Confirm communications between the UltraLite client and the MobiLink
synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist, for a ping request:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

Default The parameter is optional, and is a boolean.

See also “-pi option” [MobiLink Synchronization Reference,page 76]

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “ping synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 143].

♦ Static C++ API See “ping synchronization parameter”[UltraLite Static
C++ User’s Guide,page 129].

168

Chapter 8. Synchronization for UltraLite Applications

♦ Static Java API See “ping synchronization parameter”[UltraLite Static
Java User’s Guide,page 76].

Publication synchronization parameter

Function Specifies the publications to be synchronized.

Default If you do not specify a publication, all data is synchronized.

Usage When synchronizing, set the publication parameter to apublication mask:
an OR’d list of publication constants.

See also “The UltraLite generator” on page 96

“Designing sets of data to synchronize separately” on page 156

Interfaces ♦ MobileVB “PublicationSchema”[UltraLite for MobileVB User’s Guide,
page 116]

♦ ActiveX “PublicationSchema”[UltraLite ActiveX User’s Guide,page 135]

♦ UltraLite.NET See ianywhere.UltraLite.PublicationSchema.

♦ Embedded SQL See “publication synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 144].

♦ Static C++ API See “publication synchronization parameter”[UltraLite
Static C++ User’s Guide,page 130].

♦ Static Java API See “publication synchronization parameter”[UltraLite
Static Java User’s Guide,page 77].

Security synchronization parameter

Function Set the UltraLite client to use Certicom encryption technology when
exchanging messages with the MobiLink synchronization server.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see “Welcome to SQL
Anywhere Studio”[Introducing SQL Anywhere Studio,page 4].

This parameter is not used in the static Java API.

To use secure synchronization from UltraLite Java applications, choose a
separate stream. For more information, see“UlSecureRSASocketStream
synchronization parameters” on page 188and“UlSecureSocketStream
synchronization parameters” on page 189.

169

Default The parameter is null by default, corresponding to no transport-layer
security.

Usage The security stream is specified in addition to the synchronization stream.
Allowed values are as follows:

♦ ULSecureCerticomTLSStream() Elliptic-curve transport-layer security
provided by Certicom.

♦ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom.

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULRSATLSStream();

See also “Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337]

Interfaces ♦ Embedded SQL See “security synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 144].

♦ Static C++ API See “security synchronization parameter”[UltraLite
Static C++ User’s Guide,page 130].

♦ Static Java API Use a separate synchronization stream. See
“UlSecureRSASocketStream synchronization parameters” on page 188,
and“UlSecureSocketStream synchronization parameters” on page 189.

Security Parameters synchronization parameter

Function Sets the parameters required when using transport-layer security. This
parameter must be used together with thesecurity parameter.

☞ For more information, see“Security synchronization parameter” on
page 169.

This parameter is not required in static Java applications. To use secure
synchronization from UltraLite static Java applications, choose a separate
stream. For more information, see“UlSecureRSASocketStream
synchronization parameters” on page 188and“UlSecureSocketStream
synchronization parameters” on page 189.

Usage The ULSecureCerticomTLSStream() and ULSecureRSATLSStream()
security parameters take a string composed of the following optional
parameters, supplied in an semicolon-separated string.

♦ certificate_company The UltraLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, this field is not checked.

170

Chapter 8. Synchronization for UltraLite Applications

♦ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, this field is not checked.

For example:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureCerticomTLSStream();
info.security_parms =

UL_TEXT("certificate_company=Sybase")
UL_TEXT(";")
UL_TEXT("certificate_unit=Sales");

Thesecurity_parmsparameter is a string, and by default is null.

If you use secure synchronization, you must also use the-r command-line
option on the UltraLite generator. For more information, see“The UltraLite
generator” on page 96.

Interfaces ♦ Embedded SQL See “security_parms synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 145].

♦ Static C++ API See “security_parms synchronization parameter”
[UltraLite Static C++ User’s Guide,page 131].

♦ Static Java API Use a separate synchronization sream.

Send Column Names synchronization parameter

Function When set to true, UltraLite sends each column name to the MobiLink
synchronization server. By default UltraLite does not send column names.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

This parameter is not available for UltraLite static Java applications.

See also “-za option” [MobiLink Synchronization Reference,page 28]

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

171

♦ Embedded SQL See “send_column_names synchronization
parameter”[UltraLite Embedded SQL User’s Guide,page 146].

♦ Static C++ API See “send_column_names synchronization parameter”
[UltraLite Static C++ User’s Guide,page 132].

♦ Static Java API See “send_column_names synchronization parameter”
[UltraLite Static Java User’s Guide,page 79].

Send Download Acknowledgement synchronization parameter

Function Set this boolean parameter to false to instruct the MobiLink synchronization
server that the client will not provide a download acknowledgement.

If the client does send a download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “send_download_ack synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 146].

♦ Static C++ API See “security_parms synchronization parameter”
[UltraLite Static C++ User’s Guide,page 131].

♦ Static Java API This parameter is not available for static Java
applications.

Stream Error synchronization parameter

Function Set a structure to hold communications error reporting information.

This feature is not available for UltraLite static Java applications.

Default The parameter is set by the MobiLink synchronization server, and so is
read-only. It is set only if a communication error occurs during
synchronization.

Interfaces ♦ MobileVB “SyncResult”[UltraLite for MobileVB User’s Guide,page 138]

♦ ActiveX “SyncResult”[UltraLite ActiveX User’s Guide,page 155]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

172

Chapter 8. Synchronization for UltraLite Applications

♦ Embedded SQL See “stream_error synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 147].

♦ Static C++ API See “stream_error synchronization parameter”
[UltraLite Static C++ User’s Guide,page 133].

♦ Static Java API This feature is not available in static Java.

Stream Type synchronization parameter

Function Set the MobiLink synchronization stream to use for synchronization.

Most synchronization streams require parameters to identify the MobiLink
synchronization server address and other behavior. These parameters are
supplied in thestream_parmsparameter.

☞ For more information, see“Stream Parameters synchronization
parameter” on page 175.

Default The parameter has no default value, and must be explicitly set.

When the type of stream requires a parameter, pass that parameter using the
Stream Parameters parameter; otherwise, set the Stream Parameters
parameter to null.

The following stream functions are available, but not all are available on all
target platforms:

Stream Description

ActiveSync ActiveSync synchronization (Windows CE only).

☞ For a list of stream parameters, see“Ac-
tiveSync synchronization stream parameters” on
page 179.

HTTP Synchronize via HTTP.

The HTTP stream uses TCP/IP as its underly-
ing transport. UltraLite applications act as Web
browsers and the MobiLink synchronization
server acts as a Web server. UltraLite applica-
tions send POST requests to send data to the
server and GET requests to read data from the
server.

☞ For a list of stream parameters, see“HTTP
stream parameters” on page 184.

173

Stream Description

HTTPS Synchronize via the HTTPS synchronization
stream.

The HTTPS stream uses SSL or TLS as its
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS stream requires the use of tech-
nology supplied by Certicom. Use of Certi-
com technology requires that you obtain the
separately-licensable SQL Anywhere Studio se-
curity option and is subject to export regulations.
For more information on this option, see “Wel-
come to SQL Anywhere Studio” [Introducing
SQL Anywhere Studio,page 4].

☞ For a list of stream parameters, see“HTTPS
stream parameters” on page 186.

TCP/IP Synchronize via TCP/IP.

☞ For a list of stream parameters, see“TCP/IP
stream parameters” on page 182.

UlSecureSocketStream() TCP/IP or HTTP synchronization with transport-
layer security using elliptic curve encryption.
This stream is available for static Java applica-
tions only.

☞ For a list of stream parameters, see“UlSe-
cureSocketStream synchronization parameters”
on page 189.

UlSecureRSASocket-
Stream()

TCP/IP or HTTP synchronization with transport-
layer security using RSA encryption. This stream
is available for static Java applications only.

☞ For a list of stream parameters, see“UlSe-
cureSocketStream synchronization parameters”
on page 189.

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “stream synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 146].

174

Chapter 8. Synchronization for UltraLite Applications

♦ Static C++ API See “stream synchronization parameter”[UltraLite
Static C++ User’s Guide,page 132].

♦ Static Java API See “stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 80].

Stream Parameters synchronization parameter

Function Sets parameters to configure the synchronization stream.

A semi-colon separated list of parameter assignments. Each assignment is of
the formkeyword=value, where the allowed sets of keywords depends on
the synchronization stream.

For a list of available parameters for each stream, see the following sections:

♦ “ActiveSync synchronization stream parameters” on page 179

♦ “HotSync synchronization stream parameters” on page 181

♦ “HTTP stream parameters” on page 184

♦ “HTTPS stream parameters” on page 186

♦ “TCP/IP stream parameters” on page 182

♦ “UlSecureRSASocketStream synchronization parameters” on page 188

♦ “UlSecureSocketStream synchronization parameters” on page 189

Default The parameter is optional, is a string, and by default is null.

See also “Stream parameters reference” on page 179.

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “stream_parms synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 149].

♦ Static C++ API See “stream_parms synchronization parameter”
[UltraLite Static C++ User’s Guide,page 135].

♦ Static Java API See “stream_parms synchronization parameter”
[UltraLite Static Java User’s Guide,page 83].

175

Upload OK synchronization parameter

Function Reports the status of data uploaded to the MobiLink synchronization server.

Usage The MobiLink synchronization server sets this parameter, and so it is
read-only.

After synchronization, the parameter holdstrue if the upload was
successful, andfalseotherwise. You can check this parameter if there was a
synchronization error, to know whether data was successfully uploaded
before the error occurred.

Interfaces ♦ MobileVB “SyncResult”[UltraLite for MobileVB User’s Guide,page 138]

♦ ActiveX “SyncResult”[UltraLite ActiveX User’s Guide,page 155]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

♦ Embedded SQL See “upload_ok synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 149].

♦ Static C++ API See “upload_ok synchronization parameter”[UltraLite
Static C++ User’s Guide,page 135].

♦ Static Java API See “upload_ok synchronization parameter”[UltraLite
Static Java User’s Guide,page 83].

Upload Only synchronization parameter

Function Indicates that there should be no downloads in the current synchronization,
which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

Default The parameter is an optional Boolean value, and by default is false.

See also “Synchronizing high-priority changes” on page 158

“Download Only synchronization parameter” on page 165

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “upload_only synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 150].

176

Chapter 8. Synchronization for UltraLite Applications

♦ Static C++ API See “upload_only synchronization parameter”
[UltraLite Static C++ User’s Guide,page 136].

♦ Static Java API See “upload_only synchronization parameter”
[UltraLite Static Java User’s Guide,page 84].

User Data synchronization parameter

Function Make application-specific information available to the synchronization
observer.

Usage When implementing the synchronization observer callback function , you
can make application-specific information available by providing
information using the User Data parameter.

See also “Observer synchronization parameter” on page 167

Interfaces ♦ MobileVB “Connection”[UltraLite for MobileVB User’s Guide,page 89]

♦ ActiveX “DatabaseManager”[UltraLite ActiveX User’s Guide,page 120]

♦ UltraLite.NET See ianywhere.UltraLite.SyncResult.

♦ Embedded SQL See “user_data synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 150].

♦ Static C++ API See “user_data synchronization parameter”[UltraLite
Static C++ User’s Guide,page 136].

♦ Static Java API See “user_data synchronization parameter”[UltraLite
Static Java User’s Guide,page 84].

User Name synchronization parameter

Function A string specifying the user name that uniquely identifies the MobiLink
client to the MobiLink synchronization server. MobiLink uses this value to
determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

Default The parameter is required, and is a string.

Usage The user name is required unless the MobiLink synchronization server is
being run with user authentication turned off. For more information, see
“-zu option” [MobiLink Synchronization Reference,page 31].

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103].

“MobiLink users” [MobiLink Synchronization User’s Guide,page 20].

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

177

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “user_name synchronization parameter”
[UltraLite Embedded SQL User’s Guide,page 150].

♦ Static C++ API See “user_name synchronization parameter”[UltraLite
Static C++ User’s Guide,page 136].

♦ Static Java API See “user_name synchronization parameter”[UltraLite
Static Java User’s Guide,page 85].

Version synchronization parameter

Function Each synchronization script in the consolidated database is marked with a
version string. For example, there may be two differentdownload_cursor
scripts, identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

Default The parameter is a string, and by default is the MobiLink default version
string.

See also “Script versions”[MobiLink Synchronization User’s Guide,page 49].

Interfaces ♦ MobileVB “SyncParms”[UltraLite for MobileVB User’s Guide,page 135]

♦ ActiveX “SyncParms”[UltraLite ActiveX User’s Guide,page 153]

♦ UltraLite.NET See ianywhere.UltraLite.SyncParms.

♦ Embedded SQL See “version synchronization parameter”[UltraLite
Embedded SQL User’s Guide,page 151].

♦ Static C++ API See “version synchronization parameter”[UltraLite
Static C++ User’s Guide,page 137].

♦ Static Java API See “version synchronization parameter”[UltraLite
Static Java User’s Guide,page 85].

178

Chapter 8. Synchronization for UltraLite Applications

Stream parameters reference
This section lists the stream parameters for each synchronization stream.
The stream parameters provide information such as addressing information
(host and port) and protocol-specific information to ensure that the client can
locate and properly communicate with the MobiLink synchronization server.

ActiveSync synchronization stream parameters

The ActiveSync synchronization stream is accessible only from Native
UltraLite for Java, embedded SQL, and static C++ API applications running
on Windows CE.

To choose ActiveSync synchronization:

♦ In Native UltraLite for Java, supply StreamType.ACTIVE_SYNC as the
argument to the syncParms.setStream method. For example:

_conn.syncParms.setStream(StreamType.ACTIVE_SYNC);

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL and the static C++ API, supply ULActiveSyncStream()
as the stream synchronization parameter. For example:

ul_synch_info info;
...
info.stream = ULActiveSyncStream();

☞ For more information, see “ULActiveSyncStream function”
[UltraLite Embedded SQL User’s Guide,page 105].

Meaning of
synchronization stream
parameters

The stream parameters control the connection from the MobiLink
ActiveSync provider, running on the desktop machine, to the MobiLink
synchronization server.

The stream parameters take the following form:

stream= stream_name ; provider_stream_parameters

wherestream_nameindicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

179

♦ https

and whereprovider_stream_parametersis a set of stream parameters for use
by the ActiveSync provider, and has the same form as the stream parameters
for the protocol in use. For the given stream, the
provider_stream_parametersadopts the same defaults as the stream
parameters for the protocol. The default value for thestream_nameis tcpip.

For example, the following static C++ code uses an HTTP synchronization
stream:

ULInitSynchInfo(&info);
info.stream = ULActiveSyncStream();
info.stream_parms = "stream=http";
ULSynchronize(&sqlca, &info);

☞ For more information onprovider_stream_parameters, see“TCP/IP
stream parameters” on page 182, “HTTP stream parameters” on page 184,
and“HTTPS stream parameters” on page 186.

Adding encryption to
ActiveSync
synchronization

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in thesecurity
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients . The
format is:

security= cipher { keyword=value;. . . }

whereciphermust be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

For example, a static C++ application may use a line such as the following:

info.stream_parms = "stream=tcpip;security=ecc_tls(trusted_
certificates=trusted.crt)";

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 351].

180

Chapter 8. Synchronization for UltraLite Applications

HotSync synchronization stream parameters

The HotSync synchronization stream is accessible only from UltraLite for
MobileVB applications, embedded SQL applications, and static C++ API
applications running on the Palm Computing Platform. Unlike HTTP or
TCP/IP synchronization, HotSync synchronization is initiated externally by
the HotSync Manager, rather than by a synchronization function within the
UltraLite applcation.

To choose HotSync synchronization:

♦ In UltraLite for MobileVB, choose ulPalmConduit from the
ULStreamType enumeration as the ULSyncParms.Stream.

☞ For more information, see “SyncParms”[UltraLite for MobileVB User’s
Guide,page 135].

♦ In embedded SQL or the static C++ API, supply the ul_synch_info
structure to the ULPalmExit or ULData::PalmExit method of your
application. The stream parameter is ignored and may be set to
UL_NULL.

☞ For more information, see “ULPalmExit function”[UltraLite
Embedded SQL User’s Guide,page 124].

Meaning of
synchronization stream
parameters

For HotSync synchronization, the stream parameters donot control the
connection from the device to the HotSync Manager or HotSync Server.
Instead, they specify the connection from the MobiLink conduit, running at
the HotSync manager or server, to the MobiLink synchronization server.

The argument has the following form:

stream=stream_name; conduit_stream_parameters

wherestream_nameindicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

♦ https

and whereconduit_stream_parametersis a set of stream parameters for use
by the conduit, and has the same form as thestream_parmsargument for
the protocol in use. For the given stream, theconduit_stream_parameters
adopts the same defaults as thestream_parmsargument for the protocol.
The default value for thestream_nameis tcpip.

181

For example, the following embedded SQL code uses an HTTP
synchronization stream:

ULInitSynchInfo(&info);
info.stream_parms = "stream=http";

☞ For more information onconduit_stream_parameters, see“TCP/IP
stream parameters” on page 182, “HTTP stream parameters” on page 184,
and“HTTPS stream parameters” on page 186.

Null value and default
settings

If you use HotSync synchronization, and do not supply stream parameters,
the conduit searches in the registry for the stream name and stream
parameters. If it finds no valid stream, the default stream and stream
parameters is used. This default stream parameter setting is:

stream=tcpip;host=localhost

Adding encryption to
HotSync synchronization

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in thesecurity
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients . The
format is:

security= cipher { keyword=value;. . . }

whereciphermust be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

For example, in a static C++ application:

info.stream_parms = "stream=tcpip;security=ecc_tls(trusted_
certificates=trusted.crt)";

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 351].

TCP/IP stream parameters

The TCP/IP synchronization stream is accessible from all UltraLite
interfaces.

182

Chapter 8. Synchronization for UltraLite Applications

Selecting the TCP/IP
synchronization stream

To select TCP/IP as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite ActiveX, choose ulTCPIP from
the ULStreamType enumeration as the ULSyncParms.Stream.

☞ For more information, see “SyncParms”[UltraLite for MobileVB User’s
Guide,page 135]and “SyncParms”[UltraLite ActiveX User’s Guide,
page 153].

♦ In Native UltraLite for Java, supply StreamType.TCPIP as the argument
for SyncParms.setStream().

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL or the static C++ API, supply ULSocketStream() as
the stream synchronization parameter.

☞ For more information, see “ULSocketStream function”[UltraLite
Embedded SQL User’s Guide,page 132].

♦ In the static Java API,

For more information, see “stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 80].

Stream parameters Synchronization stream parameters for the TCP/IP stream are chosen from
the following table:

Parameter Description

client_port=nnnnn

client_port=nnnnn-
mmmmm

A range of client ports for communication. If only
one value is specified, the end of the range is 100
greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall
communicating with a MobiLink synchronization
server outside the firewall.

183

Parameter Description

host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is run-
ning. The default value islocalhost, except on
Windows CE.

For Windows CE, the default setting corresponds to
the desktop machine where the CE device’s cradle is
connected, which is stored as theipaddrentry in the
registry folderComm\Tcpip\Hosts\ppp_peer. Do
not uselocalhost, which refers to the device itself,
on Windows CE.

For the Palm Computing Platform, the default value
of localhost refers to the device itself. You should
supply an explicit host name or IP address to connect
to a desktop machine.

liveness_timeout=n The amount of time, in seconds, after a client
stops communicating before MobiLink recovers the
connection. A value of 0 means that there is no
timeout. This option is only effective if download
acknowledgement if set to off. The default is 120
seconds.

port=portnumber The socket port number on the host machine. The
port number must be a decimal number that matches
the port the MobiLink synchronization server is
setup to monitor. The default value for the port
parameter is 2439, which is the IANA registered
port number for the MobiLink synchronization
server.

HTTP stream parameters

The HTTP synchronization stream is accessible from all UltraLite
components.

Selecting the HTTP
synchronization stream

To select HTTP as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for ActiveX, choose ulHTTP
from the ULStreamType enumeration as the ULSyncParms.Stream.

☞ For more information, see “SyncParms”[UltraLite for MobileVB User’s
Guide,page 135].

♦ In Native UltraLite for Java, supply StreamType.HTTP as the argument

184

Chapter 8. Synchronization for UltraLite Applications

for SyncParms.setStream().

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

♦ In embedded SQL or the static C++ API, supply ULHTTPStream() as the
stream synchronization parameter.

☞ For more information, see “ULHTTPStream function”[UltraLite
Embedded SQL User’s Guide,page 121].

Stream parameters Synchronization stream parameters for the HTTP stream are chosen from
the following table:

Parameter Description

buffer_size=nnnn The amount of memory allocated for sending
content. The default is 1 K.

client_port=nnnnn

client_port=nnnnn-
mmmmm

A range of client ports for communication.
If only one value is specified, the end of the
range is 100 greater than the initial value, for
a total of 101 ports.

The option can be useful for clients inside
a firewall communicating with a MobiLink
synchronization server outside the firewall.

version= versionnumber A string specifying the version of HTTP to
use. You have a choice of1.0 or 1.1. The
default value is1.1.

host=hostname The host name or IP number for the machine
on which the MobiLink synchronization server
is running. The default value islocalhost.

For Windows CE, the default value is
the value ofipaddr in the registry folder
Comm\Tcpip\Hosts\ppp_peer.This allows
a CE device to connect to a MobiLink syn-
chronization server executing on the desktop
machine where the CE device’s cradle is con-
nected.

For the Palm Computing Platform, the default
value of localhost refers to the device. It is
recommended that an explicit host name or IP
address be specified.

185

Parameter Description

persistent={ 0 | 1 } If this is set to 1 the client uses the same
TCP connection for all HTTP requests in a
synchronization. The default value is 1 on the
Palm OS, and 0 elsewhere.

port=portnumber The socket port number. The port number
must be a decimal number that matches the
port the MobiLink synchronization server is
setup to monitor. The default value for the
port parameter is 2439, which is the IANA
registered port number for the MobiLink
synchronization server.

proxy_host= proxy_-
hostname

The host name of the proxy server.

proxy_port= proxy_-
portnumber

The port number of the proxy server. The
default value is 80.

url_suffix=suffix The suffix to add to the URL on the first line
of each HTTP request. When synchroniz-
ing through a proxy server, the suffix may
be necessary in order to find the MobiLink
synchronization server. The default value is
MobiLink .

HTTPS stream parameters

The HTTPS synchronization stream is accessible from all UltraLite
components.

Selecting the HTTPS
synchronization stream

To select HTTPS as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for eMbedded Visual Basic,
choose ulHTTPS from the ULStreamType enumeration as the
ULSyncParms.Stream.

☞ For more information, see “SyncParms”[UltraLite for MobileVB User’s
Guide,page 135].

♦ In Native UltraLite for Java, supply StreamType.HTTPS as the argument
for SyncParms.setStream().

☞ For more information, seeianywhere.native_ultralite.StreamType
andianywhere.native_ultralite.SyncParmsin the Native UltraLite for
Java API Reference.

186

Chapter 8. Synchronization for UltraLite Applications

♦ In embedded SQL or the static C++ API, supply ULHTTPSStream() as
the stream synchronization parameter.

☞ For more information, see “ULHTTPSStream function”[UltraLite
Embedded SQL User’s Guide,page 120].

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to ex-
port regulations. For more information on this option, see “Welcome to
SQL Anywhere Studio” in the bookIntroducing SQL Anywhere Studio.

Stream parameters Synchronization stream parameters for the HTTPS stream are chosen from
the following table:

Parameter Description

buffer_size=nnnn The amount of memory allocated for sending
content. The default is 1 K.

client_port=nnnnn

client_port=nnnnn-
mmmmm

A range of client ports for communication.
If only one value is specified, the end of the
range is 100 greater than the initial value, for
a total of 101 ports.

The option can be useful for clients inside
a firewall communicating with a MobiLink
synchronization server outside the firewall.

host=hostname The host name or IP number for the machine
on which the MobiLink synchronization server
is running. The default value islocalhost.

For Windows CE, the default value is
the value ofipaddr in the registry folder
Comm\Tcpip\Hosts\ppp_peer.This allows
a CE device to connect to a MobiLink syn-
chronization server executing on the desktop
machine where the CE device’s cradle is con-
nected.

For the Palm Computing Platform, the default
value of localhost refers to the device. It is
recommended that an explicit host name or IP
address be specified.

persistent={ 0 | 1 } If this is set to 1 the client uses the same
TCP connection for all HTTP requests in a
synchronization. The default value is 1 on the
Palm OS, and 0 elsewhere.

187

Parameter Description

port=portnumber The socket port number. The port number
must be a decimal number that matches the
port the MobiLink synchronization server is
setup to monitor. The default value for the
port parameter is 2439, which is the IANA
registered port number for the MobiLink
synchronization server.

proxy_host= proxy_-
hostname

The host name of the proxy server.

proxy_port= proxy_-
portnumber

The port number of the proxy server. The
default value is 80.

certificate_company The UltraLite application only accepts server
certificates when the organization field on the
certificate matches this value. By default, this
field is not checked.

certificate_name The UltraLite application only accepts server
certificates when the common name field on
the certificate matches this value. By default,
this field is not checked.

certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on
the certificate matches this value. By default,
this field is not checked.

url_suffix=suffix The suffix to add to the URL on the first line
of each HTTP request. When synchroniz-
ing through a proxy server, the suffix may
be necessary in order to find the MobiLink
synchronization server. The default value is
MobiLink .

version= versionnumber A string specifying the version of HTTP to
use. You have a choice of1.0 or 1.1. The
default value is1.1.

UlSecureRSASocketStream synchronization parameters

Transport-layer security using Certicom RSA encryption is accessed from
static Java applications as a separate stream, accessed using the

188

Chapter 8. Synchronization for UltraLite Applications

UlSecureRSASocketStream object. This is different behavior from other
UltraLite applications, where a separate parameter is supplied to the
synchronization structure.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see “Welcome to SQL
Anywhere Studio”[Introducing SQL Anywhere Studio,page 4].

Stream parameters The synchronization parameters for UlSecureRSASocketStream are
identical to those for UlSecureSocketStream. For a complete listing, see
“UlSecureSocketStream synchronization parameters” on page 189.

☞ For more information, see “stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 80], and “Using transport-layer security”
[UltraLite Static Java User’s Guide,page 48].

UlSecureSocketStream synchronization parameters

Transport-layer security using Certicom elliptic-curve encryption is accessed
from static Java applications as a separate stream, accessed using the
UlSecureSocketStream object.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see “Welcome to SQL
Anywhere Studio”[Introducing SQL Anywhere Studio,page 4].

☞ For more information, see “stream synchronization parameter”[UltraLite
Static Java User’s Guide,page 80], and “Using transport-layer security”
[UltraLite Static Java User’s Guide,page 48].

Stream parameters The parameters for the UlSecureSocketStream are supplied in an
semicolon-separated string. These parameters are chosen from the following
table:

Parameter Description

certificate_company The UltraLite application only ac-
cepts server certificates when the
organization field on the certificate
matches this value. By default, this
field is not checked.

189

Parameter Description

certificate_unit The UltraLite application only ac-
cepts server certificates when the
organization unit field on the certifi-
cate matches this value. By default,
this field is not checked.

certificate_name The UltraLite application only ac-
cepts server certificates when the
common name field on the certificate
matches this value. By default, this
field is not checked.

client_port=nnnnn

client_port=nnnnn-mmmmm

A range of client ports for com-
munication. If only one value is
specified, the end of the range is 100
greater than the initial value, for a
total of 101 ports. The option can
be useful for clients inside a firewall
communicating with a MobiLink
synchronization server outside the
firewall.

host=hostname The host name or IP number for the
machine on which the MobiLink
synchronization server is running.
The default value is localhost, except
on Windows CE.

For Windows CE, the default set-
ting corresponds to the desktop ma-
chine where the CE device’s cradle
is connected, which is stored as the
ipaddr entry in the registry folder
Comm\Tcpip\Hosts\ppp_peer. Do
not use localhost, which refers to the
device itself, on Windows CE.

For the Palm Computing Platform,
the default value of localhost refers to
the device itself. You should supply
an explicit host name or IP address to
connect to a desktop machine.

190

Chapter 8. Synchronization for UltraLite Applications

Parameter Description

port=portnumber The socket port number on the host
machine. The port number must be a
decimal number that matches the port
the MobiLink synchronization server
is setup to monitor. The default value
for the port parameter is 2439, which
is the IANA registered port number
for the MobiLink synchronization
server.

191

192

PART IV

STATIC PROGRAMMING

INTERFACES

This part describes the embedded SQL, C++ API, and Java static
programming interfaces.

When using a static interface, all queries must be specified at compile time.

CHAPTER 9

Using UltraLite Static Interfaces

About this chapter This chapter presents an overview of the UltraLite static programming
interfaces.

When using static interfaces, the SQL statements to be used in an
application must be specified at compile time. In a dynamic model, SQL
statements can be specified at run time. The static interfaces are embedded
SQL, the static C++ API, and the static Java API which uses JDBC. This
chapter describes aspects common to all static UltraLite interfaces.

Contents Topic: page

Overview 196

Choosing an UltraLite static interface 199

Preparing a reference database 200

Defining SQL statements for your application 204

Generating the UltraLite data access code 209

Configuring development tools for static UltraLite development 210

195

Overview
This section describes the development environment and process for
UltraLite static interfaces.

The development environment for static UltraLite applications

Developing UltraLite applications using a static interface requires the
following tools.

♦ A reference database A reference database is an Adaptive Server
Anywhere database that serves as a model of the UltraLite database you
want to create. You create this database yourself, using tools such as
Sybase Central.

Your UltraLite database is a subset of the columns, tables, and indexes, in
your reference database. The arrangement of tables and of the foreign
key relationships between them is called the databaseschema.

In addition to modeling the UltraLite database, you need to add the SQL
statements that are to be included in your UltraLite application to the
reference database.

☞ For more information, see“Preparing a reference database” on
page 200.

♦ A supported development tool You use a standard development tool
to develop UltraLite applications. For the non-UltraLite specific portions
of your application, such as the user interface, use your development tool
in the usual way. For the UltraLite-specific data-access portions, you also
need to use the UltraLite development tools.

It can be convenient to separate the data access code from the user
interface and internal logic of your application.

☞ For information about supported application development tools, see
“UltraLite host platforms”[Introducing SQL Anywhere Studio,page 126].

♦ UltraLite development tools UltraLite includes several tools for
development using the static interfaces.
• The UltraLite generator This application generates source code that

implements the underlying query execution, data storage, and
synchronization features of your application. The generator is required
for all kinds of UltraLite development using static SQL.

• The SQL preprocessor This application is needed only if you are
developing an UltraLite application using embedded SQL. It reads
your embedded SQL source files and generates standard C/C++ files.
As it scans the embedded SQL source files, it also stores information in
the reference database that is used by the generator.

196

Chapter 9. Using UltraLite Static Interfaces

♦ UltraLite runtime libraries UltraLite includes a runtime library for each
target platform. On some platforms, this is a static library that becomes
part of your application executable; on other platforms it is a dynamic
link library. For Java, the runtime library is a jar file. UltraLite includes
all the header files and import files needed to use the runtime libraries.

The static UltraLite development process

The basic features of the development process are common to all static
interfaces. The following diagram summarizes the key features.

Reference
Database

UltraLite
Generator

Database
schemaDatabase

schemaDatabase
schema

Compiler

Application
Source files

SQL
statements

Generated
Source files

UltraLite
application

♦ Create a reference database, which contains a superset of the tables to be
included in your application. It may also contain representative data for
your application. This reference database is needed only as part of the
development process, and is not required by your final application.

♦ Add the SQL statements into a special table in the reference database.
The way this is accomplished is dependent on the interface you choose:

• If you are using the C++ API or Java, these statements are added to
your database using Sybase Central or a stored procedure.

• If you are using embedded SQL, the SQL preprocessor adds the
statements to the reference database for you.

♦ Run the UltraLite generator, which produces source files that include
code needed to execute your SQL statements, and code needed to define

197

the database schema for your UltraLite application. This generated code
includes function calls into the UltraLite runtime library.

♦ Create application source files. If you are using embedded SQL, the SQL
preprocessor reads your.sqcfiles and inserts the SQL statements into the
reference database for you.

♦ Compile your application source files together with the generated source
files to produce your UltraLite application.

Adding synchronization

Most UltraLite applications include synchronization to integrate their data
with data on a consolidated database.

☞ For more information about synchronization, and the kinds of
synchronization available, see“Synchronization for UltraLite Applications”
on page 143.

198

Chapter 9. Using UltraLite Static Interfaces

Choosing an UltraLite static interface
There are three static interfaces for developing UltraLite applications:

♦ C++ API Development using C or C++ with data access features using a
result-set based API.

♦ Embedded SQL Development using C or C++ with data access
features using embedded SQL statements.

♦ Static Java API Development using the Java programming language.

The decision whether to use Java or C/C++ development will be determined
primarily by your target platform.

Here are some considerations when choosing between embedded SQL and
the C++ API:

♦ Embedded SQL is an industry standard programming method, while the
C++ API is a proprietary API.

♦ Embedded SQL gives more control in designing your application. If you
are experienced with embedded SQL development, you can design a
more efficient application using this method.

♦ Many programmers are more familiar with API-based programming. The
C++ API requires less learning for these developers.

♦ The C++ API generates classes and associated methods for manipulating
the database. It enforces standardized function names and so can be a
quicker approach in terms of development time.

199

Preparing a reference database
To implement the UltraLite database engine for your application, the
UltraLite generator must have access to an Adaptive Server Anywhere
reference database. This database must contain the following information:

♦ Database schema The database objects used in your UltraLite
application, including tables and any indexes on those tables you wish to
use in your application.

☞ For more information, see“Using an existing database as a reference
database” on page 202.

♦ Data (Optional) You can fill your reference database with data that is
similar in quantity and distribution to the data you expect your UltraLite
database to hold. The UltraLite analyzer automatically uses this
information to optimize the performance of your application.

☞ For more information, see“Using an existing database as a reference
database” on page 202.

♦ Queries The UltraLite system tables must contain any SQL statements
you wish to use in your application.

☞ For more information, see“Defining SQL statements for your
application” on page 204.

♦ Publications If you wish to add multiple synchronization options to
your application, you can do so using publications. You also add
publications to your database if you wish to develop a C++ API
application without defining queries.

☞ For information on multiple synchronization options, see“Designing
sets of data to synchronize separately” on page 156.

♦ Database options Database options such as date formats and govern
some aspects of database behavior that can make applications behave
differently. The UltraLite database is generated with the same option
settings as those in the reference database.

For many purposes, you can leave all database options at their default
settings.

☞ For more information, see“Setting database options in the reference
database” on page 201.

Creating a reference database

The analyzer uses the reference database as a template when constructing
your UltraLite application.

200

Chapter 9. Using UltraLite Static Interfaces

❖ To create a reference database

1. Start with an existing Adaptive Server Anywhere database or create a
new database using thedbinit command.

☞ For more information on upgrading a database, see“Using an
existing database as a reference database” on page 202.

2. Add the tables and foreign key relationships that you need within your
application. You can use any convenient tool, such as Sybase Central or
Sybase PowerDesigner Physical Architect (included with SQL Anywhere
Studio), or a more powerful database design tool such as the complete
Sybase PowerDesigner package.

Performance tip
You do not need to include any data in your reference database. However,
if you populate your database tables with data representative of the data
you expect to be stored by a typical user of your application, the UltraLite
analyzer automatically uses this data to optimize the performance of your
application.

☞ For information about designing a database and creating a schema, see
“Designing Your Database”[ASA SQL User’s Guide,page 3].

Example 1. Create a database.

From a command prompt, execute the following statement:

dbinit path \dbname.db

2. Use Sybase Central to add tables for your UltraLite application, based on
your own needs.

3. Add your sample data. Interactive SQL includes an Import menu item
that allows several common file formats to be imported.

☞ For more information, see “Importing data”[ASA SQL User’s Guide,
page 529].

Setting database options in the reference database

UltraLite does not support the getting or setting of option values.

When the UltraLite application is generated, certain option values in the
reference database affect the behavior of the generated code. The following
options have an effect:

♦ Date_format

♦ Date_order

201

♦ Nearest_century

♦ Precision

♦ Scale

♦ Time_format

♦ Timestamp_format

By setting these options in the reference database, you can control the
behavior of your UltraLite database. The option setting in your reference
database is used when generating your UltraLite application.

Using an existing database as a reference database

Many UltraLite applications synchronize data via MobiLink with a central,
master store of data called theconsolidated database. Do not confuse a
reference database with a consolidated database. The reference database for
the UltraLite application is generally a different database from the
consolidated database.

Only an Adaptive Server Anywhere consolidated database can also be used
as a reference database. If your consolidated database is of another type, you
must create an Adaptive Server Anywhere reference database. Even if your
consolidated database is Adaptive Server Anywhere, you must create a
separate reference database if you wish to have a different schema or use
different settings in your UltraLite application.

You can choose any of the supported ODBC-compliant database
management products to create and manage the consolidated database,
including Adaptive Server Enterprise, Adaptive Server Anywhere, Oracle,
Microsoft SQL Server, and IBM DB2.

If you have an existing Adaptive Server Anywhere database that you will be
using as a consolidated database, you could make a copy of it for your
reference database.

❖ To create a reference database from a non-Adaptive Server Any-
where database
1. Create a new Adaptive Server Anywhere database.

You can use thedbinit command or use Sybase Central.

2. Add the tables and foreign-key relationships that you need within your
application using your consolidated database as a guide.

You can use a tool such as Sybase Physical Data Architect to re-engineer
the consolidated database.

202

Chapter 9. Using UltraLite Static Interfaces

3. Populate your database tables with representative data from your
consolidated database.

You need not transfer all the information in your consolidated database,
only a representative sample. In the early stages of development, you do
not need sample data at all. For production applications, you may want to
use representative data because access plans of UltraLite queries are
based on the distribution of data in the reference database.

☞ For more information on creating reference databases from
non-Adaptive Server Anywhere databases, see “Migrating databases to
Adaptive Server Anywhere”[ASA SQL User’s Guide,page 548].

Optimizing query execution

You can improve the performance of your static UltraLite applications using
the following techniques.

♦ add an index If you frequently retrieve information in a particular
order, consider adding an index to your reference database. Primary keys
are automatically indexed, but other columns are not. Particularly on
slow devices, an index can improve performance dramatically.

♦ add representative data The Adaptive Server Anywhere optimizer
automatically optimizes the performance of your queries. It chooses
access plans using the information present in your reference database. To
improve application performance, fill your reference database with data
that is representative in size and distribution of the data you expect your
application will hold once it is deployed.

203

Defining SQL statements for your application
All the data access instructions for your application are defined by adding
SQL statements to the reference database.

If you use the C++ API, you can also use publications to define data access
methods. For information on using publications, see “Defining UltraLite
tables”[UltraLite Static C++ User’s Guide,page 21].

If you are using embedded SQL, the SQL preprocessor carries out the tasks
in this section for you.

Creating an UltraLite project

When you add SQL statements to a reference database, you assign them to
an UltraLiteproject. By grouping them this way, you can develop multiple
applications using the same reference database.

When the UltraLite generator runs against a reference database to generate
the database source code files, it takes a project name as an argument and
generates the code for the SQL statements in that project.

You can define an UltraLite project using Sybase Central or by directly
calling a system stored procedure.

If you are using embedded SQL, the SQL preprocessor defines the UltraLite
project for you and you do not need to create it explicitly.

❖ To create an UltraLite project (Sybase Central)

1. In Sybase Central, connect to your database if you are not already
connected.

2. In the left pane, open the database container.

3. In the left pane, open the UltraLite Projects folder.

4. From the File menu, choose New➤ UltraLite Project.

The UltraLite Project Creation wizard appears.

5. Enter an UltraLite project name and click Finish to create the project in
the database.

☞ For information on UltraLite project naming rules, see
“ul_add_project system procedure” on page 212.

204

Chapter 9. Using UltraLite Static Interfaces

❖ To create an UltraLite project (SQL)

1. From Interactive SQL or another application, enter the following
command:

call ul_add_project(’project-name’)

whereproject-nameis the name of the project.

☞ For more information, see“ul_add_project system procedure” on
page 212.

❖ To create an UltraLite project (embedded SQL)

1. If you are using the embedded SQL interface, specify the UltraLite
project name on the SQL Preprocessor command line, and the
preprocessor adds the project to the database for you.

☞ For more information, see “Building Embedded SQL Applications”
[UltraLite Embedded SQL User’s Guide,page 17].

Notes UltraLite project names must conform to the rules for database identifiers. If
you include spaces in the project name, do not enclose the name in double
quotes, as these are added for you by Sybase Central or the stored procedure.

☞ For more information, see “Identifiers”[ASA SQL Reference,page 7].

Adding SQL statements to an UltraLite project

Each UltraLite application carries out a set of data access requests. These
requests are implemented differently in each interface, but the data access
requests are defined in the same way for each model.

You define the data access requests that an UltraLite application can carry
out by adding a set of SQL statements to the UltraLite project for that
application in your reference database. The UltraLite generator then creates
the code for a database engine that can execute the set of SQL statements.

In the C++ API, you can also use publications to define data access methods.
For information on using publications, see “Defining UltraLite tables”
[UltraLite Static C++ User’s Guide,page 21].

You can add SQL statements to an UltraLite project using Sybase Central, or
by directly calling a system stored procedure. If you are using embedded
SQL, the SQL preprocessor adds the SQL statements in your embedded
SQL source files to the reference database for you.

205

❖ To add a SQL statement to an UltraLite project (Sybase Central)

1. In Sybase Central, connect to your database if you are not already
connected.

2. In the left pane, open the database container.

3. In the left pane, open the UltraLite Projects folder.

4. Open the project for your application.

5. From the File menu, choose New➤ UltraLite statement.

The UltraLite Statement Creation wizard appears.

6. Enter a short, descriptive name for the statement, and click Next

7. Enter the statement itself, and click Finish to add the statement to the
project.

You can test the SQL statements against the database by right-clicking
the statement and choosing Execute From Interactive SQL from the
popup menu.

☞ For information on what kinds of statement you can use, see
“Writing UltraLite SQL statements” on page 207.

❖ To add a SQL statement to an UltraLite project (SQL)

1. From Interactive SQL or another application, enter the following
command:

call ul_add_statement(’ project-name ’,
’ statement-name ’,
’ sql-statement ’)

whereproject-nameis the name of the project,statement-nameis a short
descriptive name, andsql-statementis the actual SQL statement.

☞ For more information, see“ul_add_statement system procedure” on
page 212.

206

Chapter 9. Using UltraLite Static Interfaces

❖ To add a SQL statement to an UltraLite project (embedded SQL)

1. If you are using the embedded SQL interface, specify the UltraLite
project name on the SQL Preprocessor command line.

No statement name is used in embedded SQL development.

☞ For more information, see “Building Embedded SQL Applications”
[UltraLite Embedded SQL User’s Guide,page 17].

Notes Statement names should be short and descriptive. They are used by the
UltraLite generator to identify the statement for use in Java or in the
C++ API. For example, a statement namedProductQuery generates a
C++ API class namedProductQuery and a Java constant named
PRODUCT_QUERY. Names should be valid SQL identifiers.

The SQL statement syntax is checked when you add the statement to the
database, and syntax errors give an error message to help you identify
mistakes.

You can use Sybase Central or ul_add_statement to update a statement in a
project, in just the same way as you add a statement. If a statement already
exists, it is overwritten with the new syntax. You must regenerate the
UltraLite code whenever you modify a statement.

Writing UltraLite SQL statements

This section describes what SQL statements you can add to an UltraLite
project, and describes how to use placeholders in your SQL statements.

☞ For information on the range of SQL that you can use, see“Overview of
SQL support in UltraLite” on page 108.

How to supply double
quotes

The SQL statement that you enter, whether into Sybase Central or as an
argument toul_add_statement, is added to the reference database as a
string. It must therefore conform to the rules for SQL strings.

You must escape some characters in your SQL statements using the
backslash character.

☞ For information on SQL strings, see “Strings”[ASA SQL Reference,
page 8].

Using variables with
statements

For most insert or update statements, you do not know the new values ahead
of time. You can use question marks as placeholders for variables, and
supply values at run time:

207

call ul_add_statement(
’ProductApp’,
’AddCap’,
’INSERT INTO \"DBA\".product (id, name, price)

VALUES(?, ?, ?)’
)

Placeholders can also be used in the WHERE clause of queries:

call ul_add_statement(
’ProductApp’,
’ProductQuery’,
’SELECT id, name, price

FROM\"DBA\".product
WHERE price > ?’

)

The backslash characters are used to escape the double quotes.

In embedded SQL, you usehost variablesas placeholders. For more
information, see “Using host variables”[UltraLite Embedded SQL User’s Guide,
page 30].

For SQL statements containing placeholders, an extra parameter on the
Openor Executemethod of the generated C++ class is defined for each
parameter. For Java applications, you use the JDBC set methods to assign
values for the parameters.

208

Chapter 9. Using UltraLite Static Interfaces

Generating the UltraLite data access code
To generate the code for storing and accessing the UltraLite database, the
UltraLite generator analyzes your reference database and the SQL
statements you use in your application. The UltraLite generator is a
command-line application. It takes a set of command-line options to
customize the behavior for each project. For example, it can generate either
C/C++ or Java code, depending on the command-line options you supply.

The data storage code includes only those tables and columns of the
reference database that you use in your application. Additionally, the
UltraLite generator includes indexes present in your reference database
whenever they improve the efficiency of your application.

The data access code includes only those SQL statements that you have
added to the project in the reference database.

The result is a custom database engine tailored to your application. The
engine is much smaller than a general-purpose database engine because the
UltraLite generator includes only the features your application uses.

☞ For more information about the UltraLite generator, see“The UltraLite
generator” on page 96.

209

Configuring development tools for static UltraLite
development

Most development tools use a dependency model, sometimes expressed as a
makefile, in which the timestamp on each source file is compared with that
on the target file (object file, in most cases) to decide whether the target file
needs to be regenerated.

With UltraLite development, a change to any SQL statement in a
development project means that the generated code needs to be regenerated.
Changes are not reflected in the timestamp on any individual source file
because the SQL statements are stored in the reference database.

☞ For specific instructions on adding UltraLite projects to a
dependency-based development environment, see “Configuring development
tools for embedded SQL development”[UltraLite Embedded SQL User’s Guide,
page 24].

210

CHAPTER 10

Static Development Model Reference

About this chapter This chapter provides reference information about for static development
models.

Contents Topic: page

Reference database stored procedures 212

Macros and compiler directives for UltraLite C/C++ applications 215

211

Reference database stored procedures
This section describes system stored procedures in the Adaptive Server
Anywhere reference database, which can be used to add SQL statements to a
project.

For each SQL statement added in this way, the UltraLite generator defines a
C++ or Java class.

These system procedures are owned by the built-in user IDdbo.

ul_add_statement system procedure

Function Adds a SQL statement to an UltraLite project.

Syntax ul_add_statement (in @project char(128),
in @name char(128),
in @statement text)

Permissions DBA authority required

Side effects None

See also “ul_add_project system procedure” on page 212

“ul_delete_statement system procedure” on page 213

Description Adds or modifies a statement to an UltraLite project.

project The UltraLite project to which the statement should be added. The
UltraLite generator defines classes for all statements in a project at one time.

name The name of the statement. This name is used in the generated
classes.

statement A string containing the SQL statement.

If a statement of the same name in the same project exists, it is updated with
the new syntax. Ifprojectdoes not exist, it is created.

Examples The following call adds a statement to the TestSQL project:

call ul_add_statement(
’TestSQL’, ’TestQuery’,
’select prod_id, price, prod_name from ulproduct where price <

?’)

ul_add_project system procedure

Function Creates an UltraLite project.

212

Chapter 10. Static Development Model Reference

Syntax ul_add_project (in @project char(128))

Permissions DBA authority required

Side effects None

See also “ul_delete_statement system procedure” on page 213

Description Adds an UltraLite project to the database. The project acts as a container for
the SQL statements in an application, and the project name is supplied on
the UltraLite generator command line so that it can define classes for all
statements in the project.

project The UltraLite project name.

Examples The following call adds a project namedProduct to the database:

call ul_add_project(’Product’)

ul_delete_project system procedure

Function Removes an UltraLite project from a database.

Syntax ul_delete_project (in @project char(128))

Permissions DBA authority required

Side effects None

See also “ul_add_project system procedure” on page 212

“ul_delete_statement system procedure” on page 213

Description Removes an UltraLite project from the database.

project The UltraLite project to be deleted from the database.

Examples The following call deletes theProduct project:

call ul_delete_project(’Product’)

ul_delete_statement system procedure

Function Removes a SQL statement from an UltraLite project.

Syntax ul_delete_statement (in @project char(128),
in @name char(128))

Permissions DBA authority required

Side effects None

213

See also “ul_add_project system procedure” on page 212

“ul_add_statement system procedure” on page 212

Description Removes a statement from an UltraLite project.

project The UltraLite project from which the statement should be removed.

name The name of the statement. This name is used in the generated
classes.

Examples The following call removes a statement from theProduct project:

call ul_delete_statement(’Product’, ’AddProd’)

ul_set_codesegment system procedure

Function For Palm Computing Platform development using the C++ API, assigns a
SQL statement from an UltraLite project to a particular segment.

Syntax ul_set_codesegment (in @project char(128),
in @name char(128), in @segment_name char(8))

Side effects None

See also “ul_add_statement system procedure” on page 212

“Explicitly assigning segments”[UltraLite Static C++ User’s Guide,page 52]

Description Explicitly assigns the generated code for a C++ API SQL statement to a
named Palm segment.

project The UltraLite project to which the statement applies.

name The name of the statement as defined in“ul_add_statement system
procedure” on page 212..

segment_name The name of the segment to which the statement is
assigned.

Examples The following call assigns the statementmystmt in projectmyproject to
segmentMYSEG1.

call ul_set_codesegment(
’myproject’, ’mystmt’, ’MYSEG1’)

214

Chapter 10. Static Development Model Reference

Macros and compiler directives for UltraLite C/C++
applications

This section describes compiler directives to supply for UltraLite C/C++
applications. Unless stated otherwise, directives apply to both embedded
SQL and C++ API applications.

Compiler directives can be supplied on your compiler command line or in
the compiler settings dialog box of your user interface. Alternatively, they
can be defined in source code.

On the compiler command line, a compiler directive is commonly set by
using the /D command-line option. For example, to compile an UltraLite
application with user authentication, a makefile for the Microsoft Visual
C++ compiler may look as follows:

CompileOptions=/c /DPRWIN32 /Od /Zi /DWIN32
/D__NT__ /DUL_USE_DLL /DULB_USE_BIGINT_TYPES
/DULB_USE_FLOAT_TYPES /DUL_ENABLE_USER_AUTH

IncludeFolders= \
/I"$(VCDIR) \include" \
/I"$(ASANY9) \h"

sample.obj: sample.cpp
cl $(CompileOptions) $(IncludeFolders) sample.cpp

whereVCDIR is your Visual C++ directory andASANY9 is your
SQL Anywhere directory.

In source code, directives are supplied using the#define statement.

UL_AS_SYNCHRONIZE macro

Function Provides the name of the callback message used to indicate an ActiveSync
synchronization.

Applies to Windows CE applications using ActiveSync only.

See also “Adding ActiveSync synchronization to your application”[UltraLite
Embedded SQL User’s Guide,page 96]

“Adding ActiveSync synchronization to your application”[UltraLite Static
C++ User’s Guide,page 68]

UL_ENABLE_OBFUSCATION macro

Function By default, obfuscation is disabled. To enable obfuscation, define
UL_ENABLE_OBFUSCATION when compiling the generated database.

215

Applies to The generated database code.

See also “Encrypting UltraLite databases” on page 36

UL_ENABLE_USER_AUTH macro

Function For C++ API applications only, define this directive to enable user
authentication. Without this directive, there is no user authentication on
C++ API UltraLite applications.

Applies to Theulapi.cppfile.

See also “Adding user authentication to your application”[UltraLite Static C++ User’s
Guide,page 28]

UL_ENABLE_SEGMENTS macro

Function Instructs the compiler to generate multi-segment code for Palm Computing
Platform applications.

Applies to The generated database code.

See also “Enabling multi-segment code generation”[UltraLite Embedded SQL User’s
Guide,page 78]

“Enabling multi-segment code generation”[UltraLite Static C++ User’s Guide,
page 51]

UL_STORE_PARMS macro

Function Supply a set of keyword-value pairs to configure database storage.

Syntax #define UL_STORE_PARMS UL_TEXT(" keyword=value;. . . ")

All spaces in the keyword-value list are significant, except spaces at the start
of the string and any spaces that immediately follow a semicolon.

Usage Define the UL_STORE_PARMS macro in the header of your application
source code so that it is visible to alldb_init() calls.

Parameters Keywords are case insensitive. The case sensitivity of the values depends on
the application interpreting it. For example, the case sensitivity of the
filename depends on the operating system.

☞ For a list of available parameters, see“Database schema parameters” on
page 61, and“Additional connection parameters” on page 65.

Examples The following statements set the cache size to 128 kb.

216

Chapter 10. Static Development Model Reference

#undef UL_STORE_PARMS
#define UL_STORE_PARMS UL_TEXT("cache_size=128k")

. . .
db_init(&sqlca);

You can set UL_STORE_PARMS to a string, then set the value of that string
programmatically before callingdb_init , as in the following example. The
UL_TEXT macro and the_stprintf function are used to achieve proper
character encoding.

char store_parms[32];
#undef UL_STORE_PARMS
#define UL_STORE_PARMS store_parms
...

/* Set cache_size to the correct number of bytes. */
...
_stprintf(store_parms, UL_TEXT("cache_size=%lu"),

cache_size);
db_init(&sqlca);

See also “Database schema parameters” on page 61

“Additional connection parameters” on page 65

“Configuring and managing database storage”[UltraLite Embedded SQL User’s
Guide,page 56]

“Encrypting UltraLite databases” on page 36

UL_SYNC_ALL macro

Function Provides a publication mask that refers to all tables in the database,
including those not in publications.

See also “Publication synchronization parameter” on page 169

“ULGetLastDownloadTime function”[UltraLite Embedded SQL User’s Guide,
page 115]

“ULCountUploadRows function”[UltraLite Embedded SQL User’s Guide,
page 108]

“UL_SYNC_ALL_PUBS macro” on page 217

UL_SYNC_ALL_PUBS macro

Function Provides a publication mask that refers to all tables in the database that are
in publications.

See also “Publication synchronization parameter” on page 169

217

“ULGetLastDownloadTime function”[UltraLite Embedded SQL User’s Guide,
page 115]

“ULCountUploadRows function”[UltraLite Embedded SQL User’s Guide,
page 108]

“UL_SYNC_ALL macro” on page 217

UL_TEXT macro

Function Prepares constant strings to be compiled as single-byte strings or
wide-character strings. In embedded SQL and C++ API applications, use
this macro to enclose all constant strings so that the compiler handles these
parameters correctly.

UL_USE_DLL macro

Function For Windows CE and Windows applications only, define this directive to use
the runtime library DLL, rather than a static runtime library.

Applies to The generated database code.

UNDER_NT macro

Function Use this macro when compiling UltraLite code for Windows NT/2000/XP
only.

By default, this macro is defined in all new Visual C++ projects that target
Windows NT/2000/XP.

UNDER_CE macro

Function Use this macro when compiling UltraLite applications for Windows CE only.

By default, this macro is defined in all new eMbedded Visual C++ projects.

See also “Developing UltraLite Applications for Windows CE”[UltraLite Embedded
SQL User’s Guide,page 87].

UNDER_PALM_OS macro

Function Use this macro when compiling UltraLite applications for Palm OS only.

This macro is defined in theulpalmXX.h header file included in UltraLite
Palm OS applications by the UltraLite plugin. For more information, see
“Using the UltraLite plug-in for CodeWarrior”[UltraLite Embedded SQL
User’s Guide,page 75].

See also “Developing UltraLite Applications for the Palm Computing Platform”

218

Chapter 10. Static Development Model Reference

[UltraLite Embedded SQL User’s Guide,page 71].

219

220

Index

Symbols
-za option

dbmlsrv9 and UltraLite applications
171

-ze option
dbmlsrv9 and UltraLite applications

171
#define

UltraLite applications 215
% operator

modulo function 114
&

bitwise operator 130
^

bitwise operator 130
~

bitwise operator 130
|

bitwise operator 130

A
ABS function

UltraLite SQL syntax 114
ACOS function

UltraLite SQL syntax 114
ActiveSync

configuring 179
transport-layer security 180
UltraLite message 215

AdditionalParms connection parameter
UltraLite 65

AdditionalParms property
connection strings 52

AES encryption algorithm
UltraLite databases 36

aggregate expressions
UltraLite 128

aliases
columns 134
DELETE statement 138

allsync tables

UltraLite databases 159
altering

UltraLite databases 30
AND

bitwise operators 130
logical operators description 132

ANSI character sets
UltraLite databases 42

applications
writing 196

Architecture
UltraLite Component Suite 8

ARGN function
UltraLite SQL syntax 114

arithmetic
operators and dynamic SQL syntax130

articles
UltraLite databases 156
UltraLite restrictions 156

ASCII
function and UltraLite SQL syntax 114

ASIN function
UltraLite SQL syntax 114

ATAN function
UltraLite SQL syntax 114

ATAN2 function
UltraLite SQL syntax 114

ATN2 function
UltraLite SQL syntax 114

authentication parameters
number of 166
synchronization parameter 162

Authentication Value synchronization
parameter

about 163
automating scripts

MobiLink synchronization 171
AVG function

UltraLite SQL syntax 114

B
backups

221

Index

UltraLite databases 35
UltraLite databases on Palm 103

BIGINT data type
UltraLite 111

BINARY data type
UltraLite 111

bitwise operators
dynamic SQL syntax 130

browsing
Sybase Central 25

buffer_size stream parameter
HTTP synchronization 184
HTTPS synchronization 186

BYTE_LENGTH function
UltraLite SQL syntax 114

BYTE_SUBSTR function
UltraLite SQL syntax 114

C
cache_size connection parameter

UltraLite 66
cache_size persistent storage parameter

about 216
CacheSize connection parameter

about UltraLite 66
CASE expression

NULLIF function 114
case sensitivity

comparison operators 129
UltraLite databases 29
UltraLite strings 109

CAST function
UltraLite SQL syntax 114

ce_file connection parameter
about UltraLite 54

ce_schema connection parameter
UltraLite 61

CEILING function
UltraLite SQL syntax 114

Certicom
security 99
transport-layer security 169, 170

CHAR data type
UltraLite 111

CHAR function
UltraLite SQL syntax 114

CHAR_LENGTH function

UltraLite SQL syntax 114
character sets

synchronization 40, 43
UltraLite 40
UltraLite databases 40
UltraLite Java 42
UltraLite on Palm Computing

Platform 41
UltraLite on Windows 42
UltraLite on Windows CE 41
UltraLite strings 109

character strings 94
CHARINDEX function

UltraLite SQL syntax 114
check constraints

UltraLite limitations 45
checkpoint_store synchronization

parameter
MobiLink synchronization 164

client_port stream parameter
HTTP synchronization 184
HTTPS synchronization 186
TCP/IP synchronization 182

COALESCE function
UltraLite SQL syntax 114

code generation
UltraLite 209

code pages
synchronization 40

collation sequences
UltraLite databases 40

columns
aliases 134

comma-separated lists
LIST function syntax 114

commits
UltraLite databases 33

comparison operators
about 129
dynamic SQL syntax 129

compatibility
about 129
UltraLite databases 42

compiler directives
UltraLite applications 215
UNDER_CE 218
UNDER_NT 218

222

Index

UNDER_PALM_OS 218
compression

UltraLite databases 33
computed columns

UltraLite limitations 45
con connection parameter

UltraLite 60
concatenating strings

string operators 130
concurrent synchronization

Disable Concurrency synchronization
parameter 164

conduit
installing 91
installing for CustDB 91

configuring
development tools 210

connecting
UltraLite databases 38

connection parameters
about UltraLite 52
CacheSize 66
ce_file 54
ConnectionName 60
DatabaseOnCE 54
DatabaseOnDesktop 55
EncryptionKey 63
PageSize 67
precedence 52
SchemaOnCE 61
SchemaOnDesktop 62
SchemaOnPalm 63
specifying UltraLite 52
UltraLite 49
UltraLite AdditionalParms 65
UltraLite cache_size 66
UltraLite ce_schema 61
UltraLite ConnectionName 60
UltraLite DatabaseOnPalm 56
UltraLite file_name 55
UltraLite key 63
UltraLite obfuscate 67
UltraLite overview 50
UltraLite page_size 67
UltraLite palm_db 56
UltraLite palm_fs 56
UltraLite palm_schema 63

UltraLite password 58
UltraLite reserve_size 68
UltraLite schema_file 62
UltraLite userid 59
UserID 59
VFSOnPalm 56

connection strings
about UltraLite 52

ConnectionName connection parameter
about UltraLite 60

connections
UltraLite limitations 44

consolidated databases
creating reference databases 202
Sybase Central 25

conventions
documentation x

CONVERT function
UltraLite SQL syntax 114

COS function
UltraLite SQL syntax 114

COT function
UltraLite SQL syntax 114

COUNT function
UltraLite SQL syntax 114

creating
reference databases 200
UltraLite publications 157

CURRENT TIMESTAMP
SQL special value 45

cursors
updatability set in SELECT statement

136
custase.sql

location 16
CustDB application

about 13
features 14
file locations 15
installing conduit 91
introduction 14
source code 16
starting 19
synchronization 17

CustDB database
about 25
location 15

223

Index

custdb.db
location 15

custdb.sqc
location 16

custdb.sql
location 16

custmss.sql
location 16

custora.sql
location 16

D
data

selecting rows 134
data access

UltraLite 11
Data Manager

UltraLite database storage 28
data types

retrieving 114
UltraLite 111
UltraLite SQL 108

data types in UltraLite
BIGINT 111
BINARY 111
CHAR 111
DATE 111
DECIMAL 111
DOUBLE 111
FLOAT 111
INT 111
INTEGER 111
LONG BINARY 111
LONG VARCHAR 111
NUMERIC 111
REAL 111
SMALLINT 111
TIME 111
TIMESTAMP 111
TINYINT 111
VARBINARY 111
VARCHAR 111

database creation parameters
UltraLite 65

database file
UltraLite connection parameters 51

database files

encrypting 36, 63
obfuscating 215

database identification parameters
UltraLite 54

database options
reference databases 201

database property editor 79
database schema

UltraLite 28
database schema property sheet

general tab 78, 79
DatabaseOnCE connection parameter

about UltraLite 54
DatabaseOnDesktop connection

parameter
about UltraLite 55

DatabaseOnPalm connection parameter
about UltraLite 56

databases
collation sequences 40
deleting UltraLite 103
introduction to UltraLite 5
reference 200
schema 72
UltraLite database storage 28
UltraLite introduction 28
UltraLite limitations 44

DATALENGTH function
UltraLite SQL syntax 114

DATE data type
UltraLite 111

DATE function
UltraLite SQL syntax 114

DATE_FORMAT option
UltraLite databases 201

DATE_ORDER option
UltraLite databases 201

DATEADD function
UltraLite SQL syntax 114

DATEDIFF function
UltraLite SQL syntax 114

DATEFORMAT function
UltraLite SQL syntax 114

DATENAME function
UltraLite SQL syntax 114

DATEPART function
UltraLite SQL syntax 114

224

Index

dates
UltraLite databases 201

DATETIME function
UltraLite SQL syntax 114

DAY function
UltraLite SQL syntax 114

DAYNAME function
UltraLite SQL syntax 114

DAYS function
UltraLite SQL syntax 114

dbcond9 utility
command-line arguments 91

DBF connection parameter
UltraLite 55

dbulseg utility
syntax 102

DECIMAL data type
UltraLite 111

DEGREES function
UltraLite SQL syntax 114

DELETE statement
UltraLite SQL syntax 138

deletes
UltraLite databases 33

deleting
UltraLite utility to delete databases103

development
UltraLite 197

development tools
configuring for UltraLite 210
preprocessing 210

DIFFERENCE function
UltraLite SQL syntax 114

directives
UltraLite applications 215

Disable Concurrency synchronization
parameter

about 164
DISTINCT keyword

UltraLite 134
documentation

conventions x
SQL Anywhere Studio viii
UltraLite 7

DOUBLE data type
UltraLite 111

DOW function

UltraLite SQL syntax 114
download acknolwedgements

send_download_ack synchronization
parameter 172

Download Only synchronization
Download Only synchronization

parameter 165
Download Only synchronization

parameter
about 165

download-only synchronization
getNewPassword method 166
UltraLite databases 158, 165

dynamic SQL
about 125
about UltraLite 126
comparison operators 129
UltraLite 126
UltraLite data access 11
UltraLite limitations 110

dynamic SQL syntax
arithmetic operators 130
bitwise operators 130
comparison operators 129
logical operators 132
operator precedence 131
operators 128
string operators 130

E
embedded SQL

authorization 94
character strings 94
line numbers 94
preprocessor 92

encryption
security 146
UltraLite databases 36, 63
UltraLite encryption keys 63

encryption keys
guidelines 36

EncryptionKey connection parameter
about UltraLite 63

exclusive OR
bitwise operator 130

EXP function
UltraLite SQL syntax 114

225

Index

expressions
aggregate 128
data types of 114
SQL operator precedence 131
UltraLite SQL 109

EXPRTYPE function
UltraLite SQL syntax 114

F
features

UltraLite Component Suite 5
feedback

documentation xiv
providing xiv

file_name connection parameter
UltraLite 55

filenames
UltraLite connection parameters 51

files
CustDB sample application 15

FIRST clause
UltraLite SELECT statement 134

FLOAT data type
UltraLite 111

FLOOR function
UltraLite SQL syntax 114

FOR clause
SELECT statement 136

foreign key cycles
UltraLite 159

foreign keys
UltraLite 5

FROM clause
SELECT statement for UltraLite 135

functions
ABS function UltraLite SQL syntax

114
ACOS function UltraLite SQL syntax

114
ARGN function UltraLite SQL syntax

114
ASCII function UltraLite SQL syntax

114
ASIN function UltraLite SQL syntax

114
ATAN function UltraLite SQL syntax

114

ATAN2 function UltraLite SQL syntax
114

ATN2 function UltraLite SQL syntax
114

AVG function UltraLite SQL syntax
114

BYTE_LENGTH function UltraLite
SQL syntax 114

BYTE_SUBSTR function UltraLite
SQL syntax 114

CAST function UltraLite SQL syntax
114

CEILING function UltraLite SQL
syntax 114

CHAR function UltraLite SQL syntax
114

CHAR_LENGTH function UltraLite
SQL syntax 114

CHARINDEX function UltraLite SQL
syntax 114

COALESCE function UltraLite SQL
syntax 114

CONVERT function UltraLite SQL
syntax 114

COS function UltraLite SQL syntax
114

COT function UltraLite SQL syntax
114

COUNT function UltraLite SQL
syntax 114

DATALENGTH function UltraLite
SQL syntax 114

DATE function UltraLite SQL syntax
114

DATEADD function UltraLite SQL
syntax 114

DATEDIFF function UltraLite SQL
syntax 114

DATEFORMAT function UltraLite
SQL syntax 114

DATENAME function UltraLite SQL
syntax 114

DATEPART function UltraLite SQL
syntax 114

DATETIME function UltraLite SQL
syntax 114

DAY function UltraLite SQL syntax

226

Index

114
DAYNAME function UltraLite SQL

syntax 114
DAYS function UltraLite SQL syntax

114
DEGREES function UltraLite SQL

syntax 114
DIFFERENCE function UltraLite

SQL syntax 114
DOW function UltraLite SQL syntax

114
EXP function UltraLite SQL syntax

114
EXPRTYPE function UltraLite SQL

syntax 114
FLOOR function UltraLite SQL

syntax 114
GETDATE function UltraLite SQL

syntax 114
GREATER function UltraLite SQL

syntax 114
HEXTOINT function UltraLite SQL

syntax 114
HOUR function UltraLite SQL syntax

114
HOURS function UltraLite SQL

syntax 114
IFNULL function UltraLite SQL

syntax 114
INSERTSTR function UltraLite SQL

syntax 114
INTTOHEX function UltraLite SQL

syntax 114
ISDATE function UltraLite SQL

syntax 114
ISNULL function UltraLite SQL

syntax 114
LCASE function UltraLite SQL

syntax 114
LEFT function UltraLite SQL syntax

114
LENGTH function UltraLite SQL

syntax 114
LESSER function UltraLite SQL

syntax 114
LIST function UltraLite SQL syntax

114

LOCATE function UltraLite SQL
syntax 114

LOG function UltraLite SQL syntax
114

LOG10 function UltraLite SQL syntax
114

LOWER function UltraLite SQL
syntax 114

LTRIM function UltraLite SQL syntax
114

MAX function UltraLite SQL syntax
114

MIN function UltraLite SQL syntax
114

MINUTE function UltraLite SQL
syntax 114

MINUTES function UltraLite SQL
syntax 114

MOD function UltraLite SQL syntax
114

MONTH function UltraLite SQL
syntax 114

MONTHNAME function UltraLite
SQL syntax 114

MONTHS function UltraLite SQL
syntax 114

NEWID function UltraLite SQL
syntax 114

NOW function UltraLite SQL syntax
114

NULLIF function UltraLite SQL
syntax 114

PATINDEX function UltraLite SQL
syntax 114

PI function UltraLite SQL syntax 114
POWER function UltraLite SQL

syntax 114
QUARTER function UltraLite SQL

syntax 114
RADIANS function UltraLite SQL

syntax 114
REMAINDER function UltraLite SQL

syntax 114
REPEAT function UltraLite SQL

syntax 114
REPLACE function UltraLite SQL

syntax 114

227

Index

REPLICATE function UltraLite SQL
syntax 114

RIGHT function UltraLite SQL syntax
114

ROUND function UltraLite SQL
syntax 114

RTRIM function UltraLite SQL syntax
114

SECOND function UltraLite SQL
syntax 114

SECONDS function UltraLite SQL
syntax 114

SIGN function UltraLite SQL syntax
114

SIMILAR function UltraLite SQL
syntax 114

SIN function UltraLite SQL syntax114
SOUNDEX function UltraLite SQL

syntax 114
SPACE function UltraLite SQL syntax

114
SQRT function UltraLite SQL syntax

114
STR function UltraLite SQL syntax

114
STRING function UltraLite SQL

syntax 114
STRTOUUID function UltraLite SQL

syntax 114
STUFF function UltraLite SQL syntax

114
SUBSTR function UltraLite SQL

syntax 114
SUBSTRING function UltraLite SQL

syntax 114
TAN function UltraLite SQL syntax

114
TODAY function UltraLite SQL

syntax 114
TRIM function UltraLite SQL syntax

114
TRUNCATE function UltraLite SQL

syntax 114
TRUNCNUM function UltraLite SQL

syntax 114
UCASE function UltraLite SQL

syntax 114

UltraLite SQL 109
UPPER function UltraLite SQL syntax

114
UUIDTOSTR function UltraLite SQL

syntax 114
WEEKS function UltraLite SQL

syntax 114
YMD function UltraLite SQL syntax

114
functions, aggregate

AVG 114
COUNT 114
LIST 114
MAX 114
MIN 114

functions, data type conversion
CAST 114
CONVERT 114
HEXTOINT 114
INTTOHEX 114
ISDATE 114
ISNULL 114

functions, date and time
DATE 114
DATEADD 114
DATEDIFF 114
DATEFORMAT 114
DATENAME 114
DATEPART 114
DATETIME 114
DAY 114
DAYNAME 114
DAYS 114
DOW 114
GETDATE 114
HOUR 114
HOURS 114
MINUTE 114
MINUTES 114
MONTH 114
MONTHNAME 114
MONTHS 114
NOW 114
QUARTER 114
SECOND 114
SECONDS 114
TODAY 114

228

Index

WEEKS 114
YMD 114

functions, miscellaneous
ARGN 114
COALESCE 114
GREATER 114
IFNULL 114
LESSER 114
NEWID 114
NULLIF 114

functions, numeric
ABS 114
ACOS 114
ASIN 114
ATAN 114
ATAN2 114
ATN2 114
CEILING 114
COS 114
COT 114
DEGREES 114
FLOOR 114
LOG 114
LOG10 114
MOD 114
PI 114
POWER 114
RADIANS 114
REMAINDER 114
ROUND 114
SIGN 114
SIN 114
SQRT 114
TAN 114
TRUNCATE 114
TRUNCNUM 114

functions, string
ASCII 114
BYTE_LENGTH 114
BYTE_SUBSTR 114
CHAR 114
CHAR_LENGTH 114
CHARINDEX 114
DIFFERENCE 114
INSERTSTR 114
LCASE 114
LEFT 114

LENGTH 114
LOCATE 114
LOWER 114
LTRIM 114
PATINDEX 114
REPEAT 114
REPLACE 114
REPLICATE 114
RIGHT 114
RTRIM 114
SIMILAR 114
SOUNDEX 114
SPACE 114
STR 114
STRING 114
STRTOUUID 114
STUFF 114
SUBSTRING 114
TRIM 114
UCASE 114
UPPER 114
UUIDTOSTR 114

functions, system
DATALENGTH 114

G
generator

database options 202
GETDATE function

UltraLite SQL syntax 114
GetLastIdentity method

using 154
getNewPassword method

about 166
getPassword method

about 167
getScriptVersion method

about 178
getStream method

about 173
getUploadOK method

about 176
getUploadOnly method

about 176
getUserName method

about 177
global autoincrement

229

Index

exhausted range 154
setting default in UltraLite 151
setting in UltraLite 152
using in UltraLite 150

global database identifier
setting 152

GLOBAL_DATABASE_ID option
setting in UltraLite 152

globally unique identifiers
UltraLite SQL syntax for NEWID

function 114
GREATER function

UltraLite SQL syntax 114
GROUP BY clause

SELECT statement 135
GUIDs

UltraLite SQL syntax for NEWID
function 114

UltraLite SQL syntax for
STRTOUUID function 114

UltraLite SQL syntax for
UUIDTOSTR function 114

H
HAVING clause

SELECT statement 135
HEXTOINT function

UltraLite SQL syntax 114
high-priority changes

synchronization 158
hooks

sqlpp customization 93
ulgen customization 97

host name
ULSynchronize arguments 175

host platforms
UltraLite development 196

host stream parameter
HTTP synchronization 184
HTTPS synchronization 186
TCP/IP synchronization 182

HotSync conduit
installing 91
installing for CustDB 91

HotSync synchronization
configuring 181
transport-layer security 182

HOUR function
UltraLite SQL syntax 114

HOURS function
UltraLite SQL syntax 114

HTTP
synchronization 184

http stream parameter
HTTP synchronization 184
HTTPS synchronization 186

HTTPS
synchronization 186

HTTPS synchronization
separately licensable 146

I
icons

used in manuals xii
identifiers

UltraLite SQL 108
IFNULL function

UltraLite SQL syntax 114
ignored rows

synchronization 165
ignored_rows synchronization parameter

MobiLink synchronization 165
indexes

UltraLite 5
UltraLite databases 33
UltraLite static interfaces 203

INSERT statement
UltraLite SQL syntax 136

inserting
rows into tables 136

INSERTSTR function
UltraLite SQL syntax 114

INT data type
UltraLite 111

INTEGER data type
UltraLite 111

INTO clause
SELECT statement for UltraLite 135

INTTOHEX function
UltraLite SQL syntax 114

IS
logical operators description 132

ISDATE function
UltraLite SQL syntax 114

230

Index

ISNULL function
UltraLite SQL syntax 114

J
Java

UltraLite character sets 42
joins

ANSI equivalency 114
Julian day 114

K
key connection parameter

UltraLite 63

L
large files

UltraLite generator 101
LCASE function

UltraLite SQL syntax 114
LEFT function

UltraLite SQL syntax 114
LENGTH function

UltraLite SQL syntax 114
LESSER function

UltraLite SQL syntax 114
limitations

UltraLite 44
UltraLite data types 111
UltraLite SQL 110

line length
sqlpp output 94

line numbers 94
LIST function

UltraLite SQL syntax 114
lists

LIST function syntax 114
liveness_timeout stream parameter

TCP/IP synchronization 182
LOCATE function

UltraLite SQL syntax 114
LOG function

UltraLite SQL syntax 114
LOG10 function

UltraLite SQL syntax 114
logical operators

dynamic SQL syntax 132

LONG BINARY data type
UltraLite 111

LONG VARCHAR data type
UltraLite 111

LOWER function
UltraLite SQL syntax 114

LTRIM function
UltraLite SQL syntax 114

M
macros

UL_ENABLE_OBFUSCATION 215
UL_ENABLE_SEGMENTS 216
UL_ENABLE_USER_AUTH 216
UL_STORE_PARMS 216
UL_SYNC_ALL 217
UL_SYNC_ALL_PUBS 217
UL_TEXT 218
UL_USE_DLL 218
UltraLite applications 215

managing schemas
UltraLite Schema Painter 74

mathematical expressions
arithmetic operators 130

MAX function
UltraLite SQL syntax 114

maximum
columns per table 44
connections per database 44
rows per table 44
tables per database 44

media failures
UltraLite databases 35

memory usage
UltraLite database storage 28
UltraLite indexes 33
UltraLite row states 33

MIN function
UltraLite SQL syntax 114

MINUTE function
UltraLite SQL syntax 114

MINUTES function
UltraLite SQL syntax 114

MobiLink conduit
installing 91

MobiLink synchronization
about 144

231

Index

UltraLite Component Suite
Foundations 144

MOD function
UltraLite SQL syntax 114

monitoring synchronization
observer synchronization parameter

167
setObserver method 167

MONTH function
UltraLite SQL syntax 114

MONTHNAME function
UltraLite SQL syntax 114

MONTHS function
UltraLite SQL syntax 114

multi-threaded applications
UltraLite 47
UltraLite thread-safe 196

N
NEAREST_CENTURY option

UltraLite databases 201
new column property sheet

general tab 77
indexes tab 77

new table dialog 76
new UltraLite schema dialog 75
new_password synchronization

parameter
about 166

NEWID function
UltraLite SQL syntax 114

newsgroups
technical support xiv

nosync suffix
non-synchronizing tables 155

NOT
bitwise operators 130
logical operators description 132

NOW function
UltraLite SQL syntax 114

NULL
ISNULL function 114

NULLIF function
about 114

NUMERIC data type
UltraLite 111

O
obfuscate connection parameter

UltraLite 67
obfuscating

compiler directive 215
UltraLite databases 215

obfuscation
UltraLite databases 36, 67

observer synchronization parameter
about 167

operator precedence
dynamic SQL syntax 131

operators
about 128
arithmetic operators 130
bitwise operators 130
comparison operators 129
logical operators description 132
precedence of operators 131
string operators 130

optimization
UltraLite dynamic SQL 139

options
reference databases 201

OR
bitwise operators 130
logical operators description 132

ORDER BY clause 135
order of operations

SQL operator precedence 131

P
page size

UltraLite databases 67
page_size connection parameter

UltraLite 67
PageSize connection parameter

about UltraLite 67
Palm Computing Platform

code pages 40
collation sequences 40
publication restrictions 156
UltraLite character sets 41

palm_allow_backup parameter
persistent storage 68

palm_db connection parameter

232

Index

UltraLite 56
palm_fs connection parameter

UltraLite 56
palm_schema connection parameter

UltraLite 63
password connection parameter

about UltraLite 58
password synchronization parameter

about 167
passwords

MobiLink synchronization 166, 167
PASSWORD UltraLite connection

parameter 58
UltraLite databases 38

paths
UltraLite connection parameters 51

PATINDEX function
UltraLite SQL syntax 114

pattern matching
PATINDEX function 114
wildcards 114

performance
download-only synchronization 165
UltraLite cache_size parameter 216
UltraLite database cache 66
UltraLite static interfaces 203
upload only synchronization 176

persistent memory
UltraLite database storage 28

persistent storage
cache_size parameter 216
file_name parameter 55
palm_allow_backup parameter 68

persistent stream parameter
HTTP synchronization 184
HTTPS synchronization 186

physical limitations
UltraLite 44

PI function
UltraLite SQL syntax 114

ping synchronization parameter
about 168

port number
ULSynchronize arguments 175

port stream parameter
HTTP synchronization 184
HTTPS synchronization 186

TCP/IP synchronization 182
POWER function

UltraLite SQL syntax 114
precedence

SQL operator precedence 131
PRECISION option

UltraLite databases 201
predicates

comparison operators 129
preprocessor

database options 202
primary key pools

generating unique values using in
UltraLite 150

primary keys
generating unique values 114
generating unique values using UUIDs

114
UltraLite 5
UltraLite requirements 46
UUIDs and GUIDs 114

procedures
UltraLite limitations 45

projects
UltraLite 204, 205

proxy_host stream parameter
HTTP synchronization 184
HTTPS synchronization 186

proxy_port stream parameter
HTTP synchronization 184
HTTPS synchronization 186

publication creation wizard
creating UltraLite publications 157

publication dialog 78
publication masks

about 169
publication synchronization parameter

about 169
publications

MobiLink synchronization 169
publication synchronization parameter

169
setSynchPublication method 169
UltraLite databases 156, 157

publishing
whole table 157

PWD connection parameter

233

Index

about UltraLite 58

Q
QUARTER function

UltraLite SQL syntax 114
query optimization

UltraLite dynamic SQL 139
UltraLite static interfaces 203

quotes
static UltraLite SQL statements 207

R
RADIANS function

UltraLite SQL syntax 114
read-only tables

UltraLite databases 158
REAL data type

UltraLite 111
recovery

UltraLite databases 33, 35
reference database

performance 203
reference databases

creating 200
creating from existing databases 202
options 201

REMAINDER function
UltraLite SQL syntax 114

remote databases
defined 14
deleting data 103

renaming schemas
UltraLite Schema Painter 74

REPEAT function
UltraLite SQL syntax 114

REPLACE function
UltraLite SQL syntax 114

REPLICATE function
UltraLite SQL syntax 114

reserve_size connection parameter
UltraLite 68

restoring
UltraLite databases 35

RIGHT function
UltraLite SQL syntax 114

rollbacks
UltraLite databases 33

ROUND function
UltraLite SQL syntax 114

rows
inserting into tables 136
selecting UltraLite 134
updating 137

RTRIM function
UltraLite SQL syntax 114

runtime library
UltraLite 47
Windows CE 218

S
sample application

about CustDB 13
CustDB database 25
CustDB features 14
CustDB file locations 15
CustDB synchronization 17
introduction to CustDB 14
starting CustDB 19

sample database
schema for CustDB 25

save schema to PDB file dialog 80
SCALE option

UltraLite databases 201
schema

UltraLite databases 28, 196
schema changes

UltraLite databases 30, 31
schema deployment dialog 80
schema files

about 72
creating 72
introduction 28

Schema Painter
starting 72

schema parameters
about 61

schema_file connection parameter
UltraLite 62

SchemaOnCE connection parameter
about UltraLite 61

SchemaOnDesktop connection parameter
about UltraLite 62

SchemaOnPalm connection parameter
about UltraLite 63

234

Index

script versions
getScriptVersion method 178
setScriptVersion method 178
version synchronization parameter 178

scripts
browsing with Sybase Central 25

SECOND function
UltraLite SQL syntax 114

SECONDS function
UltraLite SQL syntax 114

security
Certicom 99, 169, 170
database encryption 36
database obfuscation 215
MobiLink synchronization 169, 170
security synchronization parameter169
security_parms synchronization

parameter 170
send_column_names synchronization

parameter 171
synchronization 146
synchronization parameters 169
UltraLite applications 169, 170
UltraLite generator 99

security synchronization parameter
about 169

security_parms
synchronization parameters 170

security_parms synchronization
parameter

about 170
segments

assigning statements 214
Palm Computing Platform 214, 216

SELECT statement
UltraLite SQL syntax 134

selecting
rows UltraLite 134

send_column_names synchronization
parameter

about 171
send_download_ack synchronization

parameter
about 172

set index dialog 81–83
SET OPTION statement

UltraLite limitations 45

set primary key dialog 77
setNewPassword method

about 166
setObserver method

about 167
setPassword method

about 167
setPing method

about 168
setScriptVersion method

about 178
setStream method

about 173
setStreamParms method

about 175
setSynchPublication method

about 169
setUploadOnly method

about 176
setUserData method

about 177
setUserName method

about 177
SIGN function

UltraLite SQL syntax 114
SIMILAR function

UltraLite SQL syntax 114
SIN function

UltraLite SQL syntax 114
SMALLINT data type

UltraLite 111
SOUNDEX function

UltraLite SQL syntax 114
sp_hook_ulgen_begin

sqlpp 93
ulgen hook 97

sp_hook_ulgen_end
sqlpp 93
ulgen hook 97

SPACE function
UltraLite SQL syntax 114

SQL
UltraLite data access 11

SQL Anywhere Studio
documentation viii

SQL in UltraLite
overview 108

235

Index

SQL preprocessor
about 92
syntax for UltraLite 92

SQL statements
DELETE UltraLite syntax 138
INSERT syntax 136
UltraLite 207
UltraLite SELECT syntax 134
UltraLite SQL 110
UPDATE syntax 137

sqlpp utility
syntax for UltraLite 92

SQRT function
UltraLite SQL syntax 114

START SYNCHRONIZATION DELETE
statement

UltraLite SQL 110
state bytes

UltraLite databases 33
statements

DELETE UltraLite syntax 138
INSERT syntax 136
UltraLite SELECT syntax 134
UPDATE syntax 137

static interfaces
UltraLite 196

static SQL
UltraLite data access 11

STOP SYNCHRONIZATION DELETE
statement

UltraLite SQL 110
stored procedures

UltraLite limitations 45
STR function

UltraLite SQL syntax 114
stream synchronization parameter

about 173
stream_error synchronization parameter

about 172
ul_stream_error structure 172

stream_parms synchronization parameter
about 145, 175
configuring 181

STRING function
UltraLite SQL syntax 114

string operators 130
dynamic SQL syntax 130

strings
replacing 114
static UltraLite SQL statements 207
UL_TEXT macro 218
UltraLite case sensitivity 109
UltraLite SQL 108

strong encryption
UltraLite databases 36

STRTOUUID function
UltraLite SQL syntax 114

STUFF function
UltraLite SQL syntax 114

SUBSCRIBE BY clause
UltraLite restrictions 156

SUBSTR function
UltraLite SQL syntax 114

SUBSTRING function
UltraLite SQL syntax 114

substrings
about 114
replacing 114

support
newsgroups xiv

supported platforms
MobiLink synchronization 145

Sybase Central
adding SQL statements to an UltraLite

project 205
connecting 26
creating UltraLite projects 204
creating UltraLite publications 157
CustDB sample application 26
MobiLink synchronization 25

synchronization
adding to an UltraLite application 146
canceling 167
character sets 40
checkpoint_store 164
client-specific data 159
concurrency 164
CustDB application 17
CustDB sample application 17
download only 165
excluding tables 155
high-priority changes 158
ignored rows 165
introduction 144

236

Index

monitoring 167
protocols 146
publications 156
stopping 167
Sybase Central 25
UltraLite applications 150
UltraLite character sets 43
upload only 176

synchronization parameters
about 162
Authentication Value 163
Disable Concurrency 164
Download Only 165
getNewPassword method 166
getPassword method 167
getScriptVersion method 178
getStream method 173
getUploadOK method 176
getUploadOnly method 176
getUserName method 177
new_password 166
observer 167
password 167
ping 168
publication 169
security 169
security_parms 170
send_column_names 171
send_download_ack 172
setNewPassword method 166
setObserver method 167
setPassword method 167
setPing method 168
setScriptVersion method 178
setStream method 173
setStreamParms method 175
setSynchPublication method 169
setUploadOnly method 176
setUserData method 177
setUserName method 177
stream 173
stream_error 172
stream_parms 175
upload_ok 176
upload_only 176
user_data 177
user_name 177

version 178
synchronization scripts

browsing with Sybase Central 25
synchronization streams

getStream method 173
parameters 145
setStream method 173
setStreamParms method 175
setting 173
stream synchronization parameter 173
stream_error synchronization

parameter 172
stream_parms synchronization

parameter 175
ULActiveSyncStream 173
UlHTTPSStream 173
ULHTTPStream 173
UlHTTPStream 173
UlSecureSocketStream 173
ULSocketStream 173
UlSocketStream 173
UltraLite applications 147
UltraLite support 145

synchronizing UltraLite applications
about 144
UltraLite Component Suite

Foundations 144
syntax

arithmetic operators 130
bitwise operators 130
comparison operators 129
dynamic SQL operators 128
logical operators 132
SQL operator precedence 131
string operators 130

system failures
UltraLite databases 35

system functions
UltraLite limitations 45

system procedures
ul_add_project 212
ul_add_statement 212
ul_delete_project 213
ul_delete_statement 213
ul_set_codesegment 214

system tables
UltraLite limitations 45

237

Index

T
table-based API

UltraLite data access 11
tables

inserting rows into 136
publishing 157
UltraLite 5
UltraLite limitations 44
UltraLite requirements 46

TAN function
UltraLite SQL syntax 114

target platforms
synchronization support 145
UltraLite development 196

TCP/IP synchronization
paremeters 182

technical support
newsgroups xiv

temporary tables
synchronization using client-specific

data 159
UltraLite limitations 45

The UltraLite Schema Painter
about 73
UltraLite Component Suite

Foundations 73
The ULXML command line utility

about 89
UltraLite Component Suite

Foundations 89
threads

UltraLite applications 47, 196
TIME data type

UltraLite 111
TIME_FORMAT option

UltraLite databases 201
times

UltraLite databases 201
timestamp columns

UltraLite limitations 45
TIMESTAMP data type

UltraLite 111
TIMESTAMP_FORMAT option

UltraLite databases 201
TINYINT data type

UltraLite 111
TODAY function

UltraLite SQL syntax 114
TOP clause

UltraLite SELECT statement 134
Transact-SQL

ANSI equivalency 114
transactions

UltraLite databases 33, 35
transport-layer security

ActiveSync synchronization 180
HotSync synchronization 182
UltraLite Java applications 188

triggers
UltraLite limitations 46

TRIM function
UltraLite SQL syntax 114

troubleshooting
getUploadOK method 176
ping synchronization parameter 168
setPing method 168
synchronization of UltraLite

applications 172
UltraLite compilation problems 101
upload_ok synchronization parameter

176
TRUNCATE function

UltraLite SQL syntax 114
TRUNCATE TABLE statement

UltraLite SQL 110
TRUNCNUM function

UltraLite SQL syntax 114
tutorials

UltraLite sample application 13

U
UCASE function

UltraLite SQL syntax 114
UID connection parameter

UltraLite 59
ul_add_project system procedure

about 212
ul_add_statement system procedure

about 212
UL_AS_SYNCHRONIZE macro

ActiveSync UltraLite messages 215
ul_delete_project system procedure

about 213
ul_delete_statement procedure

238

Index

about 213
ul_delete_statement system procedure

about 213
UL_ENABLE_OBFUSCATION macro

about 215
UL_ENABLE_SEGMENTS macro

about 216
UL_ENABLE_USER_AUTH macro

about 216
ul_set_codesegment procedure

about 214
ul_set_codesegment system procedure

about 214
UL_STORE_PARMS macro

about 216
connection parameters 52

ul_stream_error structure
about 172

UL_SYNC_ALL macro
about 217
publication mask 169

UL_SYNC_ALL_PUBS macro
about 217
publication mask 169

UL_TEXT macro
about 218

UL_USE_DLL macro
about 218

ULActiveSyncStream function
setting synchronization stream 173

ULConduitStream function
setting synchronization stream 173

ulgen utility
syntax 96

ULHTTPSStream function
setting synchronization stream 173

UlHTTPSStream object
Java synchronization stream 173

ULHTTPStream function
setting synchronization stream 173

UlHTTPStream object
Java synchronization stream 173

ULSecureCerticomTLSStream
about 169

ULSecureCerticomTLSStream function
security 170

UlSecureRSASocketStream object

parameters 188
ULSecureRSATLSStream

about 169
ULSecureRSATLSStream function

security 170
UlSecureSocketStream object

Java synchronization stream 173
ULSocketStream function

setting synchronization stream 173
UlSocketStream object

Java synchronization stream 173
UltraLite

about 3, 4, 71
code generation 209
database identification parameters 54
development overview 197
directory 15
SQL support 108
upgrading 31

UltraLite Component Suite
architecture 8
features 5

UltraLite Component Suite Foundations
MobiLink synchronization 144
Synchronizing UltraLite applications

144
The UltraLite Schema Painter 73
The ULXML command line utility 89
user authentication 38

UltraLite components
about 4
development process 8

UltraLite connection parameters
about 52

UltraLite databases
encrypting 36
introduction 5, 28
schema 72
storage 28
user IDs 38

UltraLite directory
defined 15

UltraLite documentation
using 7

UltraLite generator
defined 209
introduction 209

239

Index

syntax 96
UltraLite initialization utility

about 86
UltraLite Component Suite

Foundations 86
UltraLite passwords

about 38
UltraLite project creation wizard

using 204
UltraLite projects

about 204
adding statements to 205

UltraLite runtime library
about 47

UltraLite Schema Painter
managing schemas 74

UltraLite segment utility
syntax 102

UltraLite SQL functions
ABS function syntax 114
ACOS function syntax 114
ARGN function syntax 114
ASCII function syntax 114
ASIN function syntax 114
ATAN function syntax 114
ATAN2 function syntax 114
ATN2 function syntax 114
AVG function syntax 114
BYTE_LENGTH function syntax 114
BYTE_SUBSTR function syntax 114
CAST function syntax 114
CEILING function syntax 114
CHAR function syntax 114
CHAR_LENGTH function syntax 114
CHARINDEX function syntax 114
COALESCE function syntax 114
CONVERT function syntax 114
COS function syntax 114
COT function syntax 114
COUNT function syntax 114
DATALENGTH function syntax 114
DATE function syntax 114
DATEADD function syntax 114
DATEDIFF function syntax 114
DATEFORMAT function syntax 114
DATENAME function syntax 114
DATEPART function syntax 114

DATETIME function syntax 114
DAY function syntax 114
DAYNAME function syntax 114
DAYS function syntax 114
DEGREES function syntax 114
DIFFERENCE function syntax 114
DOW function syntax 114
EXP function syntax 114
EXPRTYPE syntax 114
FLOOR function syntax 114
GETDATE function syntax 114
GREATER function syntax 114
HEXTOINT function syntax 114
HOUR function syntax 114
HOURS function syntax 114
IFNULL function syntax 114
INSERTSTR function syntax 114
INTTOHEX function syntax 114
ISDATE function syntax 114
ISNULL function syntax 114
LCASE function syntax 114
LEFT function syntax 114
LENGTH function syntax 114
LESSER function syntax 114
LIST function syntax 114
LOCATE function syntax 114
LOG function syntax 114
LOG10 function syntax 114
LOWER function syntax 114
LTRIM function syntax 114
MAX function syntax 114
MIN function syntax 114
MINUTE function syntax 114
MINUTES function syntax 114
MOD function syntax 114
MONTH function syntax 114
MONTHNAME function syntax 114
MONTHS function syntax 114
NEWID function syntax 114
NOW function syntax 114
NULLIF function syntax 114
PATINDEX function syntax 114
PI function syntax 114
POWER function syntax 114
QUARTER function syntax 114
RADIANS function syntax 114
REMAINDER function syntax 114

240

Index

REPEAT function syntax 114
REPLACE function syntax 114
REPLICATE function syntax 114
RIGHT function syntax 114
ROUND function syntax 114
RTRIM function syntax 114
SECOND function syntax 114
SECONDS function syntax 114
SIGN function syntax 114
SIMILAR function syntax 114
SIN function syntax 114
SOUNDEX function syntax 114
SPACE function syntax 114
SQRT function syntax 114
STR function syntax 114
STRING function syntax 114
STRTOUUID function syntax 114
STUFF function syntax 114
SUBSTR function syntax 114
SUBSTRING function syntax 114
TAN function syntax 114
TODAY function syntax 114
TRIM function syntax 114
TRUNCATE function syntax 114
TRUNCNUM function syntax 114
UCASE function syntax 114
UPPER function syntax 114
UUIDTOSTR function syntax 114
WEEKS function syntax 114
YMD function syntax 114

UltraLite statement creation wizard
using 205

UltraLite user IDs
about 38

ULUtil
about 103

ulxml command line utility
features 89

UNDER_CE compiler directive
about 218

UNDER_NT compiler directive
about 218

UNDER_PALM_OS compiler directive
about 218

Unicode
UltraLite databases 42

unique values

using default global autoincrement in
UltraLite 150

universally unique identifiers
UltraLite SQL syntax for NEWID

function 114
UPDATE statement

UltraLite SQL syntax 137
updates

UltraLite databases 33
updating

rows 137
upgrading

UltraLite database schema 30, 31
UltraLite database schemas 74
UltraLite software 31

upgrading databases
creating reference databases 202

upload only synchronization
getUploadOnly method 176
setUploadOnly method 176
UltraLite databases 176
upload_only synchronization

parameter 176
upload-only synchronization

UltraLite databases 158
upload_ok synchronization parameter

about 176
upload_only synchronization parameter

about 176
UPPER function

UltraLite SQL syntax 114
url_suffix stream parameter

HTTP synchronization 184
HTTPS synchronization 186

use_cookies stream parameter
HTTPS synchronization 186

user authentication
about 38
Authentication Value synchronization

parameter 163
compiler directive 216
custom MobiLink 162, 166
getPassword method 167
getUserName method 177
new_password synchronization

parameter 166
password synchronization parameter

241

Index

167
PASSWORD UltraLite connection

parameter 58
reporting 162
setNewPassword method 166
setPassword method 167
setUserName method 177
status 162
UltraLite Component Suite

Foundations 38
UltraLite databases 38
user_name synchronization parameter

177
user authentication parameters

about UltraLite 58
user IDs

UltraLite databases 38
user-defined data types

unsupported in UltraLite 111
user_data synchronization parameter

about 177
user_name synchronization parameter

about 177
UserID connection parameter

about UltraLite 59
userid connection parameter

UltraLite 59
usm files

about 72
creating 72

utilities
SQL preprocessor 92
UltraLite generator 96
UltraLite Palm utility 103
UltraLite segment utility 102

UUIDs
UltraLite SQL syntax for NEWID

function 114
UltraLite SQL syntax for

STRTOUUID function 114
UltraLite SQL syntax for

UUIDTOSTR function 114
UUIDTOSTR function

UltraLite SQL syntax 114

V
VARBINARY data type

UltraLite 111
VARCHAR data type

UltraLite 111
variables

UltraLite limitations 46
UltraLite SQL 109

version synchronization parameter
about 178

VFSOnPalm connection parameter
about UltraLite 56

virtual file system
Palm OS 56

W
warnings

UltraLite generator 98
WEEKS function

UltraLite SQL syntax 114
WHERE clause

SELECT statement for UltraLite 135
whole tables

publishing in UltraLite 157
wildcards

pattern matching 114
Windows

UltraLite character sets 42
Windows CE

collation sequences 40
Windows CE

UltraLite character sets 41
wizards

publication creation 157
UltraLite project creation 204
UltraLite statement creation 205

writing applications 196

Y
year 2000

NEAREST_CENTURY option 201
YMD function

UltraLite SQL syntax 114

242

	UltraLite Database User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	UltraLite Databases
	Welcome to UltraLite
	Introduction
	UltraLite benefits
	UltraLite databases
	Using the UltraLite documentation

	Developing UltraLite applications
	 Developing applications with UltraLite components
	Developing applications with UltraLite static interfaces

	Data access in UltraLite

	Tutorial: Walking Through a Sample UltraLite Application
	Introduction
	The CustDB sample application
	File locations for the sample application
	Runtime file location
	Source file locations

	Synchronization techniques in the sample application

	Lesson 1: Start the MobiLink synchronization server
	Lesson 2: Start the sample application and synchronize
	Start the application

	Lesson 3: Add an order
	Add an order

	Lesson 4: Act on some existing orders
	Lesson 5: Synchronize your changes
	Synchronize your changes

	Lesson 6: Confirm the synchronization at the consolidated database
	Lesson 7: Browse the consolidated database
	The CustDB database
	Connect to the CustDB database from Sybase Central
	Browse the synchronization scripts

	UltraLite Databases
	Databases and schema files
	UltraLite database files
	UltraLite database characteristics
	Altering the schema of UltraLite databases
	How the schema upgrade works

	Upgrading UltraLite software

	Information storage in UltraLite databases
	How UltraLite tracks row states
	Indexes in UltraLite databases

	Backup, recovery, and transaction processing
	Encrypting UltraLite databases
	Encrypting an UltraLite database

	User authentication
	Character sets in UltraLite
	UltraLite database character sets
	UltraLite runtime character sets
	Synchronization and character sets

	UltraLite database limitations
	Adaptive Server Anywhere features not available in UltraLite databases
	UltraLite tables must have primary keys

	The UltraLite runtime library
	Threading in UltraLite applications

	Connection Parameters
	Overview
	Specifying file paths
	Specifying connection parameters

	Database identification parameters
	Database On CE connection parameter
	Database On Desktop connection parameter
	Database On Palm connection parameter
	VFS On Palm parameter

	User authentication parameters
	Password connection parameter
	User ID connection parameter
	Connection Name connection parameter

	Database schema parameters
	Schema On CE connection parameter
	Schema On Desktop connection parameter
	Schema On Palm connection parameter
	Encryption Key connection parameter

	Additional connection parameters
	Additional Parms connection parameter
	Cache Size connection parameter
	Obfuscate connection parameter
	Page Size connection parameter
	Palm Allow Backup parameter
	Reserve Size connection parameter

	Utility Programs
	Introduction to UltraLite utilities
	The UltraLite Schema Painter
	Starting the UltraLite Schema Painter
	Create, save and export schema files
	Managing schema files
	UltraLite Schema Painter dialogs
	UltraLite Schema Painter Options dialog
	New UltraLite Schema dialog
	New Table dialog
	New Column property sheet: General tab
	New Column property sheet: Indexes tab
	Set Primary Key dialog
	Publication dialog
	Database Schema property sheet: General tab
	Database Schema property sheet: Certification tab
	Save Certificate dialog
	Database Property Editor dialog
	Save Schema to PDB file dialog
	Schema Deployment dialog
	Set Index dialog
	Index property sheet: General tab
	Create Foreign Key dialog
	Map Primary Column dialog
	Foreign Key property sheet: General tab
	Table property sheet: General tab

	UltraLite Schema Painter Tutorial

	The UltraLite initialization utility
	The ULXML utility
	The HotSync conduit installation utility
	The SQL preprocessor
	The UltraLite generator
	The UltraLite segment utility
	The UltraLite Palm utility

	UltraLite SQL
	SQL Language Elements
	Overview of SQL support in UltraLite
	Data types in UltraLite
	UltraLite SQL functions

	Dynamic SQL
	Introduction to dynamic SQL
	Using dynamic SQL

	Dynamic SQL language elements
	Expressions
	Operators
	Binary comparison operators
	Arithmetic operators
	String operators
	Bitwise operators
	Operator precedence

	Search conditions
	Logical operators

	Dynamic SQL statements
	SELECT statement
	INSERT statement
	UPDATE statement
	DELETE statement

	Optimization of SELECT statements

	Synchronizing UltraLite Applications
	 Synchronization for UltraLite Applications
	Introduction
	MobiLink synchronization features
	Supported synchronization streams
	Adding synchronization to your UltraLite application
	Selecting a synchronization stream
	Calling the synchronization function

	Designing synchronization for your UltraLite database
	Maintaining primary key uniqueness
	Declaring default global autoincrement columns
	Setting the global database identifier
	How default values are chosen
	Determining the most recently assigned value
	Detecting the number of available default values

	Including non-synchronizing tables in UltraLite databases
	Designing sets of data to synchronize separately
	 Creating publications for UltraLite databases

	Synchronizing high-priority changes
	Including read-only tables in an UltraLite database
	Using client-specific data to control synchronization
	Foreign key cycles

	Synchronization parameters reference
	Authentication Parameters synchronization parameter
	Authentication Status synchronization parameter
	Authentication Value synchronization parameter
	Checkpoint Store synchronization parameter
	Disable Concurrency synchronization parameter
	Download Only synchronization parameter
	Ignored Rows synchronization parameter
	New Password synchronization parameter
	Number of Authentication Parameters parameter
	Observer synchronization parameter
	Password synchronization parameter
	Ping synchronization parameter
	Publication synchronization parameter
	Security synchronization parameter
	Security Parameters synchronization parameter
	Send Column Names synchronization parameter
	Send Download Acknowledgement synchronization parameter
	Stream Error synchronization parameter
	Stream Type synchronization parameter
	Stream Parameters synchronization parameter
	Upload OK synchronization parameter
	Upload Only synchronization parameter
	User Data synchronization parameter
	User Name synchronization parameter
	Version synchronization parameter

	Stream parameters reference
	ActiveSync synchronization stream parameters
	HotSync synchronization stream parameters
	TCP/IP stream parameters
	HTTP stream parameters
	HTTPS stream parameters
	UlSecureRSASocketStream synchronization parameters
	UlSecureSocketStream synchronization parameters

	Static Programming Interfaces
	Using UltraLite Static Interfaces
	Overview
	The development environment for static UltraLite applications
	The static UltraLite development process
	Adding synchronization

	Choosing an UltraLite static interface
	Preparing a reference database
	Creating a reference database
	Setting database options in the reference database
	Using an existing database as a reference database
	Optimizing query execution

	Defining SQL statements for your application
	Creating an UltraLite project
	Adding SQL statements to an UltraLite project
	Writing UltraLite SQL statements

	Generating the UltraLite data access code
	Configuring development tools for static UltraLite development

	Static Development Model Reference
	Reference database stored procedures
	ul_add_statement system procedure
	ul_add_project system procedure
	ul_delete_project system procedure
	ul_delete_statement system procedure
	ul_set_codesegment system procedure

	Macros and compiler directives for UltraLite C/C++ applications
	UL_AS_SYNCHRONIZE macro
	UL_ENABLE_OBFUSCATION macro
	UL_ENABLE_USER_AUTH macro
	UL_ENABLE_SEGMENTS macro
	UL_STORE_PARMS macro
	UL_SYNC_ALL macro
	UL_SYNC_ALL_PUBS macro
	UL_TEXT macro
	UL_USE_DLL macro
	UNDER_NT macro
	UNDER_CE macro
	UNDER_PALM_OS macro

	Index

