
UltraLite™ ActiveX User’s
Guide

Part number: 36293-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’ 1997–2001
Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom
Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S.
patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual v
SQL Anywhere Studio documentation vi
Documentation conventions . ix
The CustDB sample database . xi
Finding out more and providing feedback xii

1 Introduction 1
System requirements and supported platforms 2
UltraLite ActiveX architecture . 3

2 Tutorial: An UltraLite Application for PocketPC 5
Introduction . 6
Lesson 1: Create a project architecture 7
Lesson 2: Create a form interface . 9
Lesson 3: Write the sample code . 12
Lesson 4: Deploy to a device . 20
Summary . 23

3 Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC 25
Introduction . 26
Lesson 1: Create a project architecture 27
Lesson 2: Create a form interface . 29
Lesson 3: Write the eMbedded Visual Basic sample code 31
Lesson 4: Deploy to a device . 38
Summary . 41

4 Tutorial: An UltraLite Application for Pocket IE 43
Introduction . 44
Lesson 1: Install the UltraLite ActiveX package 45
Lesson 2: Deploy to a device . 46
Lesson 3: Create and deploy an UltraLite database schema 47
Lesson 4: Create a form interface . 49
Lesson 5: Write the JScript sample code 51

5 Understanding UltraLite ActiveX Development 59
Preparing to work with UltraLite ActiveX 60
Working with UltraLite databases . 63
Connecting to an UltraLite database 66
Using frames to maintain application state (JScript) 71

iii

Encryption and obfuscation . 73
Accessing and manipulating data using Dynamic SQL 74
Accessing and manipulating data using the table API 81
Accessing schema information . 89
Error handling . 90
User authentication . 93
Synchronizing UltraLite applications 94
Component samples, demonstrations and code fragments 97

6 UltraLite ActiveX API Reference 99
IULColumns collection . 101
IULIndexSchemas collection . 102
IULPublicationSchemas collection 103
ULAuthStatusCode . 104
ULColumn class . 105
ULColumnSchema class . 110
ULConnection class . 111
ULConnectionParms class . 117
ULDatabaseManager class . 120
ULDatabaseSchema class . 128
ULIndexSchema class . 131
ULPreparedStatement class . 132
ULPublicationSchema class . 135
ULResultSet class . 136
ULResultSetSchema class . 141
ULSQLCode enumeration . 142
ULSQLType enumeration . 146
ULStreamErrorCode enumeration . 147
ULStreamErrorContext enumeration 150
ULStreamErrorID enumeration . 151
ULStreamType enumeration . 152
ULSyncParms class . 153
ULSyncResult class . 155
ULSyncState enumeration . 156
ULTable class . 157
ULTableSchema class . 166

Index 167

iv

About This Manual

Subject This manual describes UltraLite ActiveX. With UltraLite ActiveX you can
develop and deploy database applications to handheld, mobile, or embedded
devices running Windows CE.

Audience This manual is intended for eMbedded Visual Basic and JScript application
developers who want to take advantage of the performance, resource
efficiency, robustness, and security of an UltraLite relational database for
data storage and synchronization.

Familiarity with eMbedded Visual Basic or JScript is assumed.

v

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

vi

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

vii

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

viii

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

ix

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

x

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere installation. A complete application
built on this database is also supplied in the following subdirectories of your
SQL Anywhere installation:

♦ JScript Samples\UltraLiteActiveX\pie

♦ eMbedded Visual Basic Samples\UltraLiteActiveX\custdb

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xi

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xii

CHAPTER 1

Introduction

About this chapter This chapter introduces you to UltraLite ActiveX and describes its
architecture and functionality.

This chapter also describes the system requirements and supported platforms
for development and deployment.

☞ For more information about creating applications using UltraLite
ActiveX, see“Understanding UltraLite ActiveX Development” on page 59.

☞ For hands-on tutorials introducing UltraLite ActiveX, see the following
chapters:

♦ “Tutorial: An UltraLite Application for PocketPC” on page 5

♦ “Tutorial: Using Dynamic SQL in an UltraLite Application for
PocketPC” on page 25

♦ “Tutorial: An UltraLite Application for Pocket IE” on page 43

Contents Topic: page

System requirements and supported platforms 2

UltraLite ActiveX architecture 3

1

System requirements and supported platforms
Development platforms To develop applications using UltraLite ActiveX, you require the following:

♦ Microsoft Windows NT/2000/XP.

♦ One of the following:

• eMbedded Visual Basic 3.0, for development using Visual Basic

• Pocket Internet Explorer, for development using JScript

☞ For more information, see “UltraLite host platforms”[Introducing SQL
Anywhere Studio,page 126].

Target platforms UltraLite supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM and MIPS
processors.

☞ For more information, see “UltraLite target platforms”[Introducing SQL
Anywhere Studio,page 136].

SQL Anywhere Studio

You can use SQL Anywhere Studio to add the following capabilities to your
applications:

♦ Synchronization SQL Anywhere users can synchronize the data in
UltraLite applications with a central database.

♦ Reference database SQL Anywhere users can use theulinit utility to
model an UltraLite schema file after an Adaptive Server Anywhere
database.

2

Chapter 1. Introduction

UltraLite ActiveX architecture
UltraLite ActiveX provides a database engine for Windows CE. It provides
an ActiveX control that exposes a set of objects for data manipulation using
an UltraLite database.

ULDatabaseManager

ULConnection ULDatabaseSchema

IULPublicationSchemas

ULPublicationSchema

ULSyncParms

ULSyncResult

ULTable

ULTableSchema

IULIndexSchemas

ULIndexSchemaIULColumns

ULColumn

ULColumnSchema

ULPreparedStatement ULResultSet

Some of the more commonly-used high level objects are:

♦ ULDatabaseManager allows you to open connections and set an active
listener. The ULDatabaseManager is the starting point for your
eMbedded Visual Basic application because it is through this class that
you first open a connection to a database.

☞ For more information about the ULDatabaseManager class, see
“ULDatabaseManager class” on page 120.

♦ ULConnectionParms allows you to add connection parameters as
object properties instead of writing a connection string.

☞ For more information about ULConnectionParms, see
“ConnectionParms” on page 117.

♦ ULConnection represents a database connection, and governs
transactions.

3

☞ For more information about ULConnection, see“ULConnection
class” on page 111.

♦ ULPreparedStatement, ULResultSet, and ULResultSetSchema
Dynamic SQL objects allow you to create Dynamic SQL statements,
make queries and execute INSERT, UPDATE and DELETE statements,
and attain programmatic control over database result sets.

☞ For more information about the ULPreparedStatement, ULResultset,
and ULResultSetSchema objects, see“PreparedStatement” on page 132,
“ResultSet” on page 136, and“ResultSetSchema” on page 141.

♦ ULTable, ULColumn, and ULIndexSchema allow programmatic
control over database tables, columns and indexes.

☞ For more information about the ULTable, ULColumn, and
ULIndexSchema objects, see“ULTable class” on page 157and
“IULColumn” on page 105.

♦ ULSyncParms and ULSyncResult synchronization objects allow you
to control synchronization through the MobiLink synchronization server,
providing you have SQL Anywhere Studio.

☞ For more information about synchronization with MobiLink, see the
MobiLink Synchronization User’s Guide.

4

CHAPTER 2

Tutorial: An UltraLite Application for
PocketPC

About this chapter This chapter provides a tutorial to guide you through the process of building
an UltraLite ActiveX application using eMbedded Visual Basic.

☞ For a sample UltraLite ActiveX application using JScript, see“Tutorial:
An UltraLite Application for Pocket IE” on page 43.

Contents Topic: page

Introduction 6

Lesson 1: Create a project architecture 7

Lesson 2: Create a form interface 9

Lesson 3: Write the sample code 12

Lesson 4: Deploy to a device 20

Summary 23

5

Introduction
This tutorial guides you through the process of building an UltraLite
ActiveX application using the table API. At the end of the tutorial you will
have an application and small database on your Windows CE device that
synchronizes with a central database.

Timing The tutorial takes about 30 minutes if you copy and paste the code. If you
enter the code yourself, it takes significantly longer.

Competencies and
experience

This tutorial assumes:

♦ you have Microsoft eMbedded Visual Tools installed on your computer

♦ you know how to create an UltraLite schema using the UltraLite Schema
Painter.

Note
You can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

The synchronization section of this tutorial requires that you can use
command line options and parameters.

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite application.

6

Chapter 2. Tutorial: An UltraLite Application for PocketPC

Lesson 1: Create a project architecture
The first procedure describes how to create an UltraLite database schema.
The database schema is a description of the database. It describes the tables,
indexes, keys, and publications within the database, and all the relationships
between them.

☞ For more information about database schemas, see“Creating UltraLite
database schema files” on page 64.

❖ To create an UltraLite database schema

1. Create a directory for this tutorial.

This tutorial assumes the directory isc:\tutorial\evb. If you create a
directory with a different name, use that directory instead of
c:\tutorial\evbthroughout the tutorial.

2. Create a database schema using the UltraLite Schema Painter.

♦ Schema filename tutcustomer.usm

♦ Table name customer

♦ Columns in customer

Column

Name

Data Type

(Size)

Column allows

NULL values?

Default value

id integer No autoincrement

fname char(15) No None

lname char(20) No None

city char(20) Yes None

phone char(12) Yes 555-1234

♦ Primary key ascending id

☞ For more information about creating a database schema, see the
“UltraLite Schema Painter Tutorial”[UltraLite Database User’s Guide,page 83].

Create an eMbedded Visual Basic project

The UltraLite component for eMbedded Visual Basic development is
UltraLite ActiveX. The following procedure creates an eMbedded Visual
Basic project for your application and adds a reference to the UltraLite
ActiveX control.

7

❖ To create a reference to UltraLite ActiveX

1. Start eMbedded Visual Basic.

Choose Start➤ Programs➤ Microsoft eMbedded Visual Tools➤
eMbedded Visual Basic 3.0.

The New Project window appears.

2. Choose a target and click OK.

The remainder of the tutorial assumes that you have chosen Windows CE
for the Pocket PC project.

3. Create a reference to UltraLite ActiveX.

♦ Choose Project➤ References.

♦ If this is the first time you have run eMbedded Visual Basic with
UltraLite, add the control to the list of available references.

• Browse to theUltraLite\UltraLiteActiveX\win32\subdirectory of
your SQL Anywhere installation.

• Selectuldo9.dll and click OK.

iAnywhere Solutions, ActiveX for UltraLite is added to the list of
available references.

♦ Select iAnywhere Solutions, ActiveX for UltraLite and click OK to
add the control to your project.

Your eMbedded Visual Basic environment is now capable of
supporting UltraLite ActiveX.

4. Save the Project.

♦ Choose File➤ Save Project.

♦ Save the form asc:\tutorial\evb\Form1.ebf.

♦ Save the project asc:\tutorial\evb\Form1.ebp.

8

Chapter 2. Tutorial: An UltraLite Application for PocketPC

Lesson 2: Create a form interface
After completing the steps in“Lesson 1: Create a project architecture” on
page 7, the project should have a single form displayed.

❖ To add controls to your project

1. Add the controls and properties given in the table below to your form:

Type Name Caption or text

TextBox txtfname

TextBox txtlname

TextBox txtcity

TextBox txtphone

Label lblID

Button btnInsert Insert

Button btnUpdate Update

Button btnDelete Delete

Button btnNext Next

Button btnPrevious Previous

Button btnSync Synchronize

Button btnDone End

2. Check the application.

♦ Choose Run➤ Execute.

The application appears in the Windows CE emulator.

At this stage there is no UltraLite dependence in your application. If
you have problems at this stage, check your eMbedded Tools setup.

♦ Click OK at the top right corner of the form to end the application.

Your form should look something like this:

9

Configure the emulator to support UltraLite ActiveX

Once you add UltraLite objects to your application, you must add the
UltraLite ActiveX control to the emulator in order to debug and test your
application.

❖ To add the UltraLite ActiveX control to the emulator

1. Start the Control Manager.
♦ In eMbedded Visual Basic, select Tools➤ Remote Tools➤ Control

Manager.

2. Select the target emulator.
♦ In the left pane, open Pocket PC and select Pocket PC Emulation.

3. Add the UltraLite control.
♦ Choose Control➤ Add New Control.

♦ Browse toultralite\UltraLiteActiveX\ce\emulator30\uldo9.dll, located
in your SQL Anywhere directory.

♦ Click OK.
Note thatuldo9.dll is an ActiveX file, not a control, so it will not
appear in the list of controls on the device.

Deploy the database schema

In addition to the UltraLite control, you must deploy the database schema to
the emulator. The following procedure ensures that when your application
first connects to a database, it uses the schema to create a database file.

10

Chapter 2. Tutorial: An UltraLite Application for PocketPC

❖ To deploy the database schema file to the emulator

1. Start the Windows CE File Viewer.

♦ From eMbedded Visual Basic, choose Tools➤ Remote Tools➤ File
Viewer.

♦ If the File Viewer does not automatically connect to the emulator,
choose Connection➤ Add Connection and select Pocket PC
Emulation.

2. Create a folder to hold your application.

♦ Open the Program Files folder.

♦ In File Viewer, choose File➤ New Folder.

♦ Create a folder namedtutorial. This folder is used to hold your
application files.

♦ Click tutorial to navigate to that folder.

3. Deploy the schema file to the emulator.

♦ Choose File➤ Export File.

♦ Browse toc:\tutorial\evband double-clicktutcustomer.usm.

11

Lesson 3: Write the sample code
This lesson guides you through the process of writing eMbedded Visual
Basic code to connect to a database, navigate within the database, and
manipulate the data in the database.

This lesson includes instructions for synchronizing your application with an
Adaptive Server Anywhere database. This portion of the lesson is optional,
and requires SQL Anywhere Studio.

Write code to connect to your database

In this application, you connect to the database during the Form_Load event.
You can also connect to a database using the general module.

This example uses a connection string to connect to the database. For an
example using a ULConnectionParms object, see“Lesson 3: Write the
eMbedded Visual Basic sample code” on page 31.

❖ Write code to connect to the UltraLite database

1. Double-click the form to open the Code window.

2. Declare the required UltraLite objects.

Enter the following code in the General area of your form.

Dim DatabaseMgr As ULDatabaseManager
Dim Connection As ULConnection
Dim CustomerTable As ULTable
Dim colID, colFirstName, colLastName As ULColumn

3. Add code to connect to the database in the Form_Load event.

In the code below,CreateObject is used to create the initial database
manager object. The database manager then tries to open a connection to
the database specified by the connection string. If the database does not
exist, it creates a new database using the given schema.

12

Chapter 2. Tutorial: An UltraLite Application for PocketPC

Sub Form_Load()
Dim conn_parms As String
Dim open_parms As String
Dim schema_parms As String
On Error Resume Next
conn_parms = "uid=DBA;pwd=SQL"
open_parms = conn_parms & ";ce_file= \Program Files \

tutorial \tutCustomer.udb"
schema_parms = open_parms & ";ce_schema= \Program Files \

tutorial \tutCustomer.usm"
Set DatabaseMgr =

CreateObject("UltraLite.ULDatabaseManager")
Set Connection = DatabaseMgr.OpenConnection(open_parms)
If Err.Number = UlSQLCode.ulSQLE_NOERROR Then

MsgBox "Connected to an existing database."
ElseIf Err.Number = UlSQLCode.ulSQLE_DATABASE_NOT_FOUND

Then
Err.Clear
Set Connection = DatabaseMgr.CreateDatabase(schema_

parms)
If Err.Number <> 0 Then

MsgBox Err.Description
Else
MsgBox "Connected to a new database"
End If

End If
End Sub

4. Run the application.
♦ Choose Run➤ Execute.

♦ After an initial message box, the form loads.

♦ Click OK in the top right corner to terminate the application.

5. Use the File Viewer to check that a database file namedtutcustomer.udb
has been created on the emulator.

Write code for navigation and data manipulation

The following procedures implement data manipulation and navigation.

❖ To open the table

1. Write code to initialize the table and move to the first row.

This code assigns the customer table in the database to the
CustomerTable variable. The call to Open opens the table so that the
table data can be read or manipulated. It also positions the application
before the first row in the table.

Add the following code to the Form_Load event, just before the End Sub
instruction:

13

Set CustomerTable = Connection.GetTable("customer")
CustomerTable.Open

2. Create a new procedure called DisplayCurrentRow and implement it as
shown below.

If the table has no rows, the following procedure causes the application to
display empty controls. Otherwise, it displays the values stored in each of
the columns of the current row of the database.

Private Sub DisplayCurrentRow()
If CustomerTable.RowCount = 0 Then

txtFname.Text = ""
txtLname.Text = ""
txtCity.Text = ""
txtPhone.Text = ""
lblID.Caption = ""

Else
lblID.Caption = CustomerTable.Columns("ID").Value
txtFname.Text = CustomerTable.Columns("Fname").Value
txtLname.Text = CustomerTable.Columns("Lname").Value
txtCity.Text = CustomerTable.Columns("City").Value
txtPhone.Text = CustomerTable.Columns("Phone").Value

End If
End Sub

3. Call DisplayCurrentRow from the Form_Activate procedure. This call
ensures that the fields get updated when the application starts.

Private Sub Form_Activate()
DisplayCurrentRow

End Sub

At this stage you may want to run the application to check that you have
entered the code correctly. As there are no rows in the table, the controls
are all empty.

14

Chapter 2. Tutorial: An UltraLite Application for PocketPC

❖ To insert rows into the table

1. Write code to implement the Insert button.

Add the following procedure to the form:

Private Sub btnInsert_Click()
Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String
fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text
CustomerTable.InsertBegin
CustomerTable.Columns("Fname").Value = fname
CustomerTable.Columns("Lname").Value = lname
If Len(city) > 0 Then

CustomerTable.Columns("City").Value = city
End If
If Len(phone) > 0 Then

CustomerTable.Columns("Phone").Value = phone
End If
CustomerTable.Insert
CustomerTable.MoveLast
DisplayCurrentRow

End Sub

The call to InsertBegin puts the application into insert mode and sets all
the values in the row to their defaults. For example, the ID column
receives the next autoincrement value. The column values are set and
then the new row is inserted.

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the database.

♦ Enter a first name of Jane in the first text box and a last name of Doe in
the second. Click Insert.

A row is added to the table with these values. The application moves to
the last row of the table and displays the row. The label displays the
automatically incremented value of the ID column that UltraLite
assigned to the row.

♦ Enter a first name of John in the first text box and a last name of Smith
in the second. Click Insert.

4. Click OK to end the program.

15

❖ To move through the rows of the table

1. Write code to implement the Next and Previous buttons.

Add the following procedures to the form:

Private Sub btnNext_Click()
If Not CustomerTable.MoveNext Then

CustomerTable.MoveLast
End If
DisplayCurrentRow

End Sub
Private Sub btnPrevious_Click()

If Not CustomerTable.MovePrevious Then
CustomerTable.MoveFirst

End If
DisplayCurrentRow

End Sub

2. Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

❖ To update and delete rows in the table

1. Write code to implement the Update button.

In the code below, the call to UpdateBegin puts the application into
update mode. The column values are updated and then the row itself is
updated with a call to Update.

Add the following procedure to the form:

16

Chapter 2. Tutorial: An UltraLite Application for PocketPC

Private Sub btnUpdate_Click()
Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String

fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text
CustomerTable.UpdateBegin
CustomerTable.Columns("Fname").Value = _

fname
CustomerTable.Columns("Lname").Value = _

lname
If Len(city) > 0 Then

CustomerTable.Columns("City").Value = _
city

End If
If Len(phone) > 0 Then

CustomerTable.Columns("Phone").Value = _
phone

End If
CustomerTable.Update
DisplayCurrentRow
Exit Sub

End Sub

2. Write code to implement the Delete button.

In the code below, the call to Delete deletes the current row on which the
application is positioned.

Add the following procedure to the form:

Private Sub btnDelete_Click()
If CustomerTable.RowCount = 0 Then

Exit Sub
End If
CustomerTable.Delete
CustomerTable.MoveRelative 0
DisplayCurrentRow

End Sub

3. Run the application.

Note
You can now run this application as a standalone application without
SQL Anywhere Studio. To synchronize your UltraLite database with an
Adaptive Server Anywhere database, you can complete the remainder of
this lesson.

17

Write code to synchronize

The following procedure implements synchronization. Synchronization
requires SQL Anywhere Studio.

❖ To write code for the synchronize button

1. Write code to implement the Synchronize button.

In the code below, the ULSyncParms object contains the synchronization
parameters. For example, the ULSyncParms.UserName property
specifies that when MobiLink is started, it will add a new user. The
ULSyncParms.SendColumnNames property specifies that the column
names will be sent to MobiLink so it can generate upload and download
scripts.

Add the following procedure to the form:

Private Sub btnSync_Click()
Dim parms As ULSyncParms
Dim result As ULSyncResult
On Error Resume Next
Set parms = Connection.SyncParms
Set result = Connection.SyncResult
parms.UserName = "ULevbUser"
parms.Stream = ULStreamType.ulTCPIP
parms.Version = "ul_default"
parms.SendColumnNames = True
Connection.Synchronize (False)
If Err.Number <> UlSQLCode.ulSQLE_NOERROR Then

MsgBox result.StreamErrorCode
End If

End Sub

Synchronize your application

The ASA 9.0 Sample database has a Customer table with columns matching
those in thecustomertable in your UltraLite database. The following
procedure synchronizes your database with the ASA 9.0 Sample database.

❖ To synchronize your application

1. From a command prompt, start the MobiLink synchronization server by
running the following command line:

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -v+ -zu+ -za

The-zu+ and-za command line options provide automatic addition of
users and generation of synchronization scripts. For more information

18

Chapter 2. Tutorial: An UltraLite Application for PocketPC

about these options, see “MobiLink Synchronization Server Options”
[MobiLink Synchronization Reference,page 3].

2. Start the UltraLite application.

3. Delete all the rows in your table.

Any rows in the table would be uploaded to the Customer table in the
ASA 9.0 Sample database.

4. Synchronize your application.

Click Synchronize.

The MobiLink synchronization server window displays the
synchronization progress.

5. When the synchronization is complete, click Next and Previous to move
through the rows of the table.

19

Lesson 4: Deploy to a device
You can deploy your application to a device manually, or using the
Application Install Wizard. The following sections describe both procedures.

Deploy to a remote device manually

The following procedures deploy your application to a Windows CE device
manually.

❖ To add the UltraLite ActiveX control to your device

1. Start the Windows CE Control manager.

Select Tools➤ Remote Tools➤ Control Manager.

2. In the left pane, double-click your device type and select your device.
Your device must be connected.

The right pane shows the controls available on the selected device.

3. Choose Control➤ Add New Control.

4. Browse to the appropriate version of the UltraLite ActiveX control,
located in one of the following platform-specific subdirectories of your
SQL Anywhere installation:

♦ ARM ultralite\UltraLiteActiveX\ce\arm\uldo9.dll

♦ MIPS ultralite\UltraLiteActiveX\ce\mips\uldo9.dll

5. Click OK.

Alternatively, you can copy the DLL to the\Windowsdirectory on the
device and register it usingregsvrce.exe.

❖ To deploy the database schema file to your device

1. Start the Windows CE File Viewer.

From eMbedded Visual Basic, choose Tools➤ Remote Tools➤ File
Viewer.

2. If the File Viewer does not automatically connect to your device, choose
Connection➤ Add Connection and select your device.

3. Create a folder to hold your application.

♦ In the File Viewer, open the Program Files folder.

♦ Choose File➤ New Folder.

20

Chapter 2. Tutorial: An UltraLite Application for PocketPC

♦ Create a folder namedtutorial. This folder is used to hold your
application files.

♦ Click tutorial to navigate to that folder.

4. Deploy the schema file to your device.

♦ Choose File➤ Export File.

♦ Browse toc:\tutorial\evband double-clicktutcustomer.usm.

❖ To deploy your application to a remote device

1. Select File➤ Make.

2. Browse toc:\tutorial\evb. Name your project Form1. Click OK.

3. Deploy the.vb file to your device.

♦ In the File Viewer, browse toProgram Files\tutorial.

♦ Choose File➤ Export File.

♦ Browse toc:\tutorial\evband double-clickForm1.vb.

You can now launch the sample application on your remote device by
browsing toProgram Files\tutorialand launchingForm1.vb.

Deploy to a remote device using the Application Install Wizard

The following procedure deploys your application to a mobile device using
the Application Install Wizard. The Application Install Wizard creates an
executable file and a cabinet (.cab) file that contains the files necessary for
deployment.

❖ To deploy using the Application Install Wizard

1. Before using the Application Install Wizard, you must complete your
project and execute it to ensure that it does not generate run-time errors.

2. Select File➤ Make.

3. Browse toc:\tutorial\evb. Name your project Form1. Click OK.

4. Select Tools➤ Remote Tools➤ Application Install Wizard.

The Application Install Wizard appears. Click Next.

5. Browse toc:\tutorial\evb\Form1.ebp. Click Next.

6. Browse toc:\tutorial\evb\Form1.vb. Click Next.

7. Browse toc:\tutorial\evb\. Click Next.

21

8. Select the processors your application will support. If you select more
than one processor, each will be contained in a separate.cabfile. Click
Next.

9. Select iAnywhere Solutions, ActiveX for UltraLite. The UltraLite
ActiveX control will be registered automatically upon installation of your
application. Click Next.

10. Deploy the schema file to your device.

♦ Click Add.

♦ Browse toc:\tutorial\tutcustomer.usm.

♦ Click Open.

♦ If a prompt asks whether it is a system file, click No.

♦ Check Include Device Runtimes in Cab file if you want the device
runtimes to be included in your installation. The device runtimes are
not always required and can make the.cabfile very large if included.
If the application works with the currently installed runtimes, there is
no need to check this option.

♦ Click Next.

11. Entertutorial in each of the fields. Click Next.

12. Click Create Install to create the.cabfiles and setup executable.

The wizard creates a folder,CD1, in the directory you specified to store
the output files.CD1 contains all the files you need to distribute your
application.

13. Click Finish.

14. Runc:\tutorial\evb\CD1\setup.exeon your desktop computer to install
your application to the device attached to it.

You can now launch your application on your device by browsing to
Program Files\tutorialand launchingForm1.vb.

22

Chapter 2. Tutorial: An UltraLite Application for PocketPC

Summary
Learning
accomplishments

During this tutorial, you:

♦ created a database schema

♦ created an UltraLite application

♦ synchronized a remote database with an Adaptive Server Anywhere
consolidated database

♦ gained competence with the process of developing an UltraLite ActiveX
application

23

CHAPTER 3

Tutorial: Using Dynamic SQL in an
UltraLite Application for PocketPC

About this chapter This chapter provides a tutorial to guide you through the process of building
an UltraLite ActiveX application. This tutorial differs from“Tutorial: An
UltraLite Application for PocketPC” on page 5in that you use dynamic SQL
to access the UltraLite database.

☞ For a sample UltraLite ActiveX application using JScript, see“Tutorial:
An UltraLite Application for Pocket IE” on page 43.

Contents Topic: page

Introduction 26

Lesson 1: Create a project architecture 27

Lesson 2: Create a form interface 29

Lesson 3: Write the eMbedded Visual Basic sample code 31

Lesson 4: Deploy to a device 38

Summary 41

25

Introduction
This tutorial guides you through the process of building an UltraLite
ActiveX application using dynamic SQL for data access. At the end of the
tutorial you will have an application and a small database on your Windows
CE device that synchronizes with a central database.

Timing The tutorial takes about 30 minutes if you copy and paste the code. If you
enter the code yourself, it takes significantly longer.

Competencies and
experience

This tutorial assumes:

♦ you have Microsoft eMbedded Visual Tools installed on your computer

♦ you can program Microsoft eMbedded Visual Basic 3.0

• you can write, test, and troubleshoot an eMbedded Visual Basic
application

• you can add references and components as needed

♦ you know how to create an UltraLite schema using the UltraLite Schema
Painter.

Note
You can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite application using dynamic SQL.

26

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

Lesson 1: Create a project architecture
The following procedure creates an UltraLite database schema. The database
schema is a description of the database. It describes the tables, indexes, keys,
and publications within the database, and all the relationships between them.

☞ For more information about database schemas, see“Creating UltraLite
database schema files” on page 64.

❖ To create an UltraLite database schema

1. Create a directory to hold the files you create in this tutorial.

This tutorial assumes the directory isc:\tutorial\evb. If you create a
directory with a different name, use that directory instead of
c:\tutorial\evbthroughout the tutorial.

2. Create a database schema using the UltraLite Schema Painter.

For more information about creating a database schema using the
UltraLite Schema Painter, see the “UltraLite Schema Painter Tutorial”
[UltraLite Database User’s Guide,page 83].

♦ Schema filename tutorial.usm

♦ Table name names

♦ Columns in names

Column name Data type

(size)

Allow NULL? Default value

id integer No autoincrement

name char(15) No None

♦ Primary key ascending id

Create an eMbedded Visual Basic project

The UltraLite component for eMbedded Visual Basic development is
UltraLite ActiveX. The following procedure creates an eMbedded Visual
Basic project for your application and adds a reference to the UltraLite
ActiveX control.

27

❖ To create a reference to UltraLite ActiveX

1. Start eMbedded Visual Basic.

Choose Start➤ Programs➤ Microsoft eMbedded Visual Tools➤
eMbedded Visual Basic 3.0.

The New Project window appears.

2. Choose a target and click OK.

The remainder of the tutorial assumes that you have chosen Windows CE
for the Pocket PC project.

3. Create a reference to UltraLite ActiveX.

♦ Click Project➤ References.

♦ If this is the first time you have run eMbedded Visual Basic with
UltraLite, add the control to the list of available references.

• Browse to theultralite\UltraLiteActiveX\win32\subdirectory of
your SQL Anywhere installation.

• Selectuldo9.dll and click OK.

iAnywhere Solutions, ActiveX for UltraLite is added to the list of
available references.

♦ Select iAnywhere Solutions, ActiveX for UltraLite and click OK to
add the control to your project.

Your eMbedded Visual Basic environment is now capable of
supporting UltraLite ActiveX.

4. Save the Project.

♦ Choose File➤ Save Project.

♦ Save the form asc:\tutorial\evb\Form2.ebf.

♦ Save the project asc:\tutorial\evb\Form2.ebp.

28

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

Lesson 2: Create a form interface
After completing the steps in“Lesson 1: Create a project architecture” on
page 27, your project should have a single form displayed.

❖ To add a controls to your project

1. Add the controls and properties given in the table below to your form.

Add the text box and label to the left side of the form. Add the buttons
down the right side of the form.

Type Name Caption or text

TextBox txtName

Label lblID

Button btnInsert Insert

Button btnUpdate Update

Button btnDelete Delete

Button btnNext Next

Button btnPrevious Previous

Button btnDone End

2. Check the application.

♦ Choose Run➤ Execute.

The application appears in the Windows CE emulator.

At this stage there is no UltraLite dependence in your application. If
you have problems at this stage, check your Windows CE embedded
tools setup.

♦ Click OK at the top right corner of the form to end the application.

Configure the emulator to support UltraLite ActiveX

Once you add UltraLite objects to your application, you must add the
UltraLite ActiveX control to the emulator in order to debug and test your
application.

29

❖ To add the UltraLite ActiveX control to the emulator

1. Start the Control Manager.

In eMbedded Visual Basic, select Tools➤ Remote Tools➤ Control
Manager.

2. Select the target emulator.

In the left pane, open Pocket PC and select Pocket PC Emulation.

3. Add the UltraLite control.

♦ Click Control➤ Add New Control.

Browse toultralite\UltraLiteActiveX\ce\emulator30\uldo9.dll, located
in SQL Anywhere directory.

♦ Click OK

Note thatuldo9.dll is an ActiveX file, not a control, so it will not
appear in the list of controls on the device.

Deploy the database schema

In addition to the UltraLite control, you must deploy the UltraLite database
schema to the emulator. This ensures that when your application first
connects to a database, it uses the schema to create a database file.

❖ To deploy the database schema file

1. Start the Windows CE File Viewer.

♦ From eMbedded Visual Basic, click Tools➤ Remote Tools➤ File
Viewer.

♦ If the File Viewer does not automatically connect to your device,
choose Connection➤ Add Connection and select Pocket PC
Emulation.

2. Create a folder to hold your application.

♦ Open the Program Files folder.

♦ In File Viewer, choose File➤ New Folder.

♦ Create a folder namedtutorial. This folder is used to hold your
application files.

♦ Click tutorial to navigate to that folder.

3. Deploy the schema file to the emulator.

♦ Choose File➤ Export File.

♦ Browse toc:\tutorial\evbdirectory and double-clicktutorial.usm.

30

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

Lesson 3: Write the eMbedded Visual Basic
sample code

This lesson guides you through the process of writing eMbedded Visual
Basic code to connect to a database, navigate within the database, and
manipulate the data in the database.

This lesson includes instructions for synchronizing your application with an
Adaptive Server Anywhere database. This portion of the lesson is optional,
and requires SQL Anywhere Studio.

Write code to connect to your database

In this application, you connect to the database during the Form_Load event.
You can also connect to a database using the general module.

This example uses a ULConnectionParms object to connect to the database.
For an example using a connection string, see“Lesson 3: Write the
eMbedded Visual Basic sample code” on page 12.

❖ Write code to connect to an UltraLite database

1. Double-click the form to open the Code window.

2. Declare the required UltraLite objects.

Enter the following code in the General area of your form.

Dim DatabaseMgr As ULDatabaseManager
Dim Connection As ULConnection
Dim myPrepStmt As ULPreparedStatement
Dim MyResultSet As ULResultSet

3. Add code to connect to the database in the Form_Load event.

In the code below,CreateObject is used to create the initial database
manager object. It then tries to open a connection to the database
specified by the ULConnectionParms object. If the database does not
exist, it creates a new database using the given schema.

31

Sub Form_Load()
’ Use CreateObject to get an instance of the Database

Manager object
Set DatabaseMgr =

CreateObject("UltraLite.ULDatabaseManager")
’ Create a LoginParms object, using CreateObject
Dim LoginParms As ULConnectionParms
Set LoginParms =

CreateObject("UltraLite.ULConnectionParms")
LoginParms.DatabaseOnCE = " \Program Files \tutorial \

tutorial.udb"
LoginParms.SchemaOnCE = " \Program Files \tutorial \

tutorial.usm"
LoginParms.CacheSize = "128k"
On Error Resume Next
’ Use the "WithParms" calls
Set Connection = _

DatabaseMgr.OpenConnectionWithParms(LoginParms)
If Err.Number = ULSQLCode.ulSQLE_NOERROR Then

MsgBox "Connected to an existing database"
ElseIf Err.Number = _

ULSQLCode.ulSQLE_ULTRALITE_DATABASE_NOT_FOUND Then
Err.Clear
Set Connection = _

DatabaseMgr.CreateDatabaseWithParms(LoginParms)
If Err.Number = ULSQLCode.ulSQLE_NOERROR Then

MsgBox "Connected to a new database"
Else

MsgBox Err.Description
End If

End If
Set MyPrepStmt = _

Connection.PrepareStatement("SELECT id, name FROM
names")

Set MyResultSet = MyPrepStmt.ExecuteQuery
MyResultSet.MoveFirst

End Sub

4. Write the code that ends the application and closes the connection when
the End button is clicked.

Sub btnDone_Click()
Connection.Close

End Sub

5. Run the application.
♦ Choose Run➤ Execute.

♦ After an initial message, the form loads.

♦ Click OK in the top right corner to terminate the application.

6. Use the File Viewer to check that a database file namedtutorial.udbhas
been created on the emulator.

32

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

Write code for navigation and data manipulation

The following procedures implement data manipulation and navigation.

❖ To open the table

1. Create a new function called DisplayCurrentRow that initializes the table
and moves to the first row.

This code creates a ULPreparedStatement, executes the statement on the
database, and moves to the first row of the result set. If the table has no
rows, the application displays empty controls. Otherwise, it displays the
values stored in each of the columns of the current row of the database.

Private Sub DisplayCurrentRow()
If MyResultSet.RowCount <> 0 Then

lblID.Caption = MyResultSet.Value(1)
txtName.Text = MyResultSet.Value(2)

Else
lblID.Caption = ""
txtName.Text = ""

End If
End Sub

2. Call DisplayCurrentRow from the Form_Activate event. This call ensures
that the fields get updated when the application starts.

Private Sub Form_Activate()
DisplayCurrentRow

End Sub

At this stage you may want to run the application to check that you have
entered the code correctly. As there are no rows in the table, the controls
are all empty.

33

❖ To insert rows into the table

1. Write code to implement the Insert button.

Add the following procedure to the form:

Private Sub btnInsert_Click()
Dim PrepStmt As ULPreparedStatement
If txtName.Text <> "" Then

Set PrepStmt = Connection.PrepareStatement("INSERT INTO
names(name) values(?)")

PrepStmt.SetParameter 1, txtName.Text
PrepStmt.ExecuteStatement
MyResultSet.MoveRelative(0)
MyResultSet.MoveLast
DisplayCurrentRow

Else
MsgBox "Enter a name to insert in the database"

End If
End Sub

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the database.
♦ Enter the name Jane in the text box. Click Insert.

♦ A row is added to the table with this values. The application moves to
the last row of the table and displays the row. The label displays the
automatically incremented value of the ID column that UltraLite
assigned to the row.

♦ Enter the name John in the text box. Click Insert.

4. Click OK to end the program.

❖ To move through the rows of the table

1. Write code to implement the Next and Previous buttons.

Add the following procedures to the form:

Private Sub btnPrevious_Click()
If Not MyResultSet.MovePrevious Then

MyResultSet.MoveFirst
End If
DisplayCurrentRow

End Sub
Private Sub btnNext_Click()

If Not MyResultSet.MoveNext Then
MyResultSet.MoveLast

End If
DisplayCurrentRow

End Sub

34

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

2. Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

3. Click Next and Previous to move through the rows of the table.

❖ To update and delete rows in the table

1. Write code to implement the Update button.

Add the following procedure to the form:

Private Sub btnUpdate_Click()
Dim PrepStmt As ULPreparedStatement
Dim ID As Integer
Dim NewName As String
ID = lblID.Caption
NewName = txtName.Text
Set PrepStmt = Connection.PrepareStatement("UPDATE names

SET name = (?) WHERE id = (?)")
PrepStmt.SetParameter 1, NewName
PrepStmt.SetParameter 2, ID
PrepStmt.ExecuteStatement
MyResultSet.MoveRelative(0)
DisplayCurrentRow
MsgBox "Row updated"

End Sub

2. Write code to implement the Delete button.

Add the following procedure to the form:

Private Sub btnDelete_Click()
Dim PrepStmt As ULPreparedStatement
Dim ID As Integer
ID = lblID.Caption
Set PrepStmt = Connection.PrepareStatement("DELETE FROM

names WHERE id = (?)")
PrepStmt.SetParameter 1, ID
PrepStmt.ExecuteStatement
MyResultSet.MoveRelative(0)
Call btnPrevious_Click
MsgBox "Row deleted"

End Sub

3. Run the application.

Note
You can now run this application as a standalone application without
SQL Anywhere Studio. To synchronize your UltraLite database with an
Adaptive Server Anywhere database, you can complete the remainder of
this lesson.

35

Write code to synchronize

The following procedure implements synchronization. Synchronization
requires SQL Anywhere Studio.

❖ To implement synchronization

1. Add a button to your form named btnSync with the caption Synchronize.

2. Write code to implement the Synchronize button.

In the code below, the SyncParms object contains the synchronization
parameters. Setting its SendColumnNames property to true sends the
column names to MobiLink so that it can generate upload and download
scripts.

Add the following procedure to the form:

Private Sub btnSync_Click()
Dim parms As ULSyncParms
Dim result As ULSyncResult
On Error Resume Next
Set parms = Connection.SyncParms
Set result = Connection.SyncResult
parms.UserName = "ULevbUser"
parms.Stream = ULStreamType.ulTCPIP
parms.Version = "ul_default"
parms.SendColumnNames = True
Connection.Synchronize (False)
If Err.Number <> UlSQLCode.ulSQLE_NOERROR Then

MsgBox result.StreamErrorCode
End If

End Sub

Synchronize your application

The following procedure synchronizes the data in your UltraLite database
with an Adaptive Server Anywhere database running on your computer.

❖ To synchronize your application

1. RunSamples\UltraLite\Names\build.batto create the ASAConsolidated
database.

This Adaptive Server Anywhere database has a table with columns
matching those in thenamestable in your UltraLite database.

2. From a command prompt, start the MobiLink synchronization server with
the following command line:

dbmlsrv9 -c "dsn=ASAConsolidated" -v+ -zu+ -za

36

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

The-zu+ and-za command line options provide automatic addition of
users and generation of synchronization scripts. For more information
about these options, see “MobiLink Synchronization Server Options”
[MobiLink Synchronization Reference,page 3].

3. Synchronize your application.

Click Synchronize.

The MobiLink synchronization server window scrolls messages
displaying the synchronization progress.

4. When the synchronization is complete, click Next and Previous to move
through the rows of the table.

37

Lesson 4: Deploy to a device
You can deploy your application to a device manually, or using the
Application Install Wizard. The following sections describe both procedures.

Deploy to a remote device manually

The following procedures deploy your application to a remote device
manually.

❖ To add the UltraLite ActiveX control to your device

1. Start the Windows CE Control Manager.

Choose Tools➤ Remote Tools➤ Control Manager.

2. In the left pane, double-click your device type and select your device.
The target device must be connected to your computer.

The right pane shows the controls available on the selected device.

3. Choose Control➤ Add New Control.

4. Browse to the appropriate version of the UltraLite ActiveX control,
located in one of the following subdirectories of your SQL Anywhere
installation:

♦ ARM ultralite\UltraLiteActiveX\ce\arm\uldo9.dll

♦ MIPS ultralite\UltraLiteActiveX\ce\mips\uldo9.dll

♦ Intel 386 ultralite\UltraLiteActiveX\ce\386\uldo9.dll
Note thatuldo9.dll is an ActiveX file, not a control, so it wil not appear
in the list of controls on the device.

Alternatively, you can copyuldo9.dll to the\Windowsdirectory on the
device and register it usingregsvrce.exe.

❖ To deploy the database schema file your device

1. Start the Windows CE File Viewer.

From eMbedded Visual Basic, choose Tools➤ Remote Tools➤ File
Viewer.

2. If the File Viewer does not automatically connect to your device, choose
Connection➤ Add Connection and select your device.

3. Create a folder to hold your application.

♦ In the File Viewer, open the Program Files folder.

38

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

♦ Choose File➤ New Folder.

♦ Create a folder namedtutorial. This folder is used to hold your
application files.

♦ Click tutorial to navigate to that folder.

4. Deploy the schema file to your device.

♦ Choose File➤ Export File.

♦ Browse toc:\tutorial\evband double-clicktutorial.usm.

❖ To deploy your application to a remote device

1. Select File➤ Make.

2. Browse toc:\tutorial\evb. Name your project Form2. Click OK.

3. Deploy the.vb file to your device.

♦ In the File Viewer, browse toProgram Files\tutorial.

♦ Choose File➤ Export File.

♦ Browse toc:\tutorial\evband double-clickForm2.vb.

You can now launch the sample application on your remote device by
browsing toProgram Files\tutorialand launchingForm2.vb.

Deploy to a remote device using the Application Install Wizard

The following procedure deploys your application to a device using the
Application Install Wizard. The Application Install Wizard creates a cabinet
file (.cab) that contains the files necessary for deployment and an executable
to deploy these files.

❖ To deploy using the Application Install Wizard

1. Before using the Application Install Wizard, you must complete your
project and execute it to ensure that it does not generate run-time errors.

2. Select File➤ Make.

3. Browse toc:\tutorial\evb. Name your project Form2. Click OK.

4. Select Tools➤ Remote Tools➤ Application Install Wizard.

The Application Install Wizard appears.

5. Browse toc:\tutorial\evb\Form2.ebp. Click Next.

6. Browse toc:\tutorial\evb\Form2.vb. Click Next.

39

7. Browse toc:\tutorial\evb\. Click Next.

8. Select the processors your application will support. If you select more
than one processor, each will be contained in a separate.cabfile. Click
Next.

9. Select iAnywhere Solutions, ActiveX for UltraLite. The UltraLite
ActiveX control will be registered automatically upon installation of your
application. Click Next.

10. Deploy the schema file to your device.

♦ Click Add.

♦ Browse toc:\tutorial\tutorial.usm.

♦ Click Open.

♦ If a prompt asks whether it is a system file, click No.

♦ Check Include Device Runtimes in Cab file if you want the device
runtimes to be included in your installation. The device runtimes are
not always required and can make the.cabfile very large if included.
If the application works with the currently installed runtimes, there is
no need to check this option.

♦ Click Next.

11. Entertutorial in each of the fields. Click Next.

12. Click Create Install to create the.cabfiles and setup executable.

The wizard creates a folder,CD1, in the directory you specified to store
the output files.CD1 contains all the files you need to distribute your
application.

13. Click Finish.

14. Runc:\tutorial\evb\CD1\setup.exeon a desktop computer to install your
application to the device attached to it.

40

Chapter 3. Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC

Summary
Learning
accomplishments

During this tutorial, you:

♦ created a database schema

♦ created an UltraLite ActiveX application

♦ synchronized an UltraLite remote database with an Adaptive Server
Anywhere consolidated database

♦ increased your familiarity with UltraLite ActiveX

♦ gained competence with the process of developing an UltraLite
application

41

CHAPTER 4

Tutorial: An UltraLite Application for
Pocket IE

About this chapter This chapter provides a tutorial to guide you through the process of building
an UltraLite ActiveX application for Pocket Internet Explorer. The
application accesses the UltraLite ActiveX package using JScript embedded
on an HTML page.

☞ For a sample UltraLite ActiveX application using eMbedded Visual
Basic, see“Tutorial: An UltraLite Application for PocketPC” on page 5or
“Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC”
on page 25.

Contents Topic: page

Introduction 44

Lesson 1: Install the UltraLite ActiveX package 45

Lesson 2: Deploy to a device 46

Lesson 3: Create and deploy an UltraLite database schema 47

Lesson 4: Create a form interface 49

Lesson 5: Write the JScript sample code 51

43

Introduction
This tutorial guides you through the process of building an UltraLite
ActiveX application. At the end of the tutorial you will have an application
and small database on your Windows CE device that synchronizes with a
database running on your desktop computer.

This tutorial describes the CustDB sample application. This application
demonstrates the capabilities of UltraLite ActiveX used from Pocket Internet
Explorer (Pocket IE). It runs on a Windows CE device.

The CustDB sample is fully-functional customer application. The CustDB
sample application provides you with examples of how to implement many
of the techniques you will need to develop UltraLite ActiveX applications.

The CustDB sample application is written in JScript and HTML. The code
for this application is located in theSamples\UltraLiteActiveX\pie
subdirectory of your SQL Anywhere 9 installation.

Note
This application uses frames and so will only work on versions of Pocket
IE later than 1.1.

Timing The tutorial takes about 50 minutes.

Competencies and
experience

This tutorial assumes:

♦ you are familiar with JScript and Pocket Internet Explorer

• you can write, test, and troubleshoot a JScript application

The synchronization section of this tutorial requires that:

♦ you can use command line options and parameters

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite ActiveX application.

44

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

Lesson 1: Install the UltraLite ActiveX package
The UltraLite component for JScript development is UltraLite ActiveX. The
following procedure registers the UltraLite ActiveX control on a remote
device.

❖ To register the UltraLite ActiveX control

1. Start eMbedded Visual Basic 3.0.

Choose Start➤ Programs➤ Microsoft eMbedded Visual Tools➤
eMbedded Visual Basic 3.0.

The New Project window appears.

2. Click Cancel.

3. Choose Tools➤ Remote Tools➤ Control Manager.

4. In the left pane, open the folder corresponding to your device type. Select
your device.

The Control Manager connects to your device.

5. Choose Control➤ Add New Control.

6. Browse to one of the following platform-specific files in subdirectories of
your SQL Anywhere 9 installation.

♦ ARM UltraLite\UltraLiteActiveX\ce\arm\uldo9.dll

♦ MIPS UltraLite\UltraLiteActiveX\ce\mips\uldo9.dll

♦ Emulator UltraLite\UltraLiteActiveX\ce\emulator30\uldo9.dll

7. Click Open.

The ULConnectionParms class and the ULDatabaseManager class are
added to your device.

Alternatively, you can copy the appropriate DLL for your device to
\Windows\uldo9.dlland register it usingregsvrce.exe. If you do not have
regsvrce.exeon your device, you can copy it to your device from the
Microsoft Windows CE SDK.

45

Lesson 2: Deploy to a device
The following procedure copies the HTML files containing embedded
JScript to your remote device. Alternatively, you can access the files
remotely from your hard drive or server using a web server and an internet
connection.

❖ To copy the HTML files to your device

1. Start the File Viewer.

From eMbedded Visual Basic 3.0, choose Tools➤ Remote Tools➤ File
Viewer.

2. In the left pane, open the folder corresponding to your device type. Select
your device.

The File Viewer connects to your device.

3. Choose File➤ New Folder. Create a folder namedpie in the root of your
device.

4. Choose File➤ Export File.

Copy the contents of theSamples\UltraLiteActiveX\piesubdirectory of
your SQL Anywhere 9 installation to thepie directory on your device.

46

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

Lesson 3: Create and deploy an UltraLite database
schema

The database schema is a description of the database. It describes the tables,
indexes, keys, and publications within the database, and all the relationships
between them.

A database schema may be created using the UltraLite Schema Painter or the
ulinit utility. The following procedure uses ulinit to create a database
schema based on an Adaptive Server Anywhere database.

❖ To create the database schema

1. Create a directory on your computer for this tutorial.

The remainder of the tutorial assumes that this directory isc:\tutorial\pie.
If you create a directory with a different name, use that directory instead
of c:\tutorial\piethroughout the tutorial.

2. Copy the contents of theSamples\UltraLiteActiveX\piesubdirectory of
your SQL Anywhere 9 installation toc:\tutorial\pie.

3. Create the consolidated database.

Open a command prompt and navigate toc:\tutorial\pie. Run the
following command:

dbinit custdbsrv.db

4. Start the MobiLink synchronization server.

Run the following command:

runml.bat

5. Create the UltraLite schema using the ulinit utility.

☞ For more information about the ulinit utility, see “UltraLite
initialization utility” [UltraLite Database User’s Guide,page 86].

Run the following command:

makeschemas.bat

47

❖ To deploy the database schema to your device

1. Start the File Viewer.

From eMbedded Visual Basic 3.0, choose Tools➤ Remote Tools➤ File
Viewer.

2. The File Viewer connects to your device.

♦ Choose Connection➤ Add New Connection.

♦ Open the folder corresponding to your device type.

♦ Select your device.

3. Choose File➤ New Folder. Create a folder namedUltraLiteDB.

4. Choose File➤ Export File.

5. Browse toc:\tutorial\pie\ul_custdb.usm. Click Open to export the file to
your device.

48

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

Lesson 4: Create a form interface
The form interface consists of the visual elements of your application. The
following procedure explains the form interface inmain.htm. You can
optionally create a new text file and create the form interface yourself.

❖ To add controls to your project

1. Openc:\tutorial\pie\main.htmin a text editor.

2. Scroll down to the following lines inmain.htm.

Customer: <INPUT TYPE="text" NAME="txt_Custname" SIZE=15

MAXLENGTH=40>

These lines create the text boxes given in the table below.

Caption INPUT TYPE NAME

Customer: Text txt_Custname

Product: Text txt_Prodname

Quantity: Text txt_Quant

Prince: Text txt_Price

Discount: Text txt_Discount

Status: Text txt_Status

Notes: Text txt_Notes

3. Scroll down to the following lines inmain.htm.

<INPUT NAME="b_Previous" TYPE="BUTTON" VALUE=" <Back "

onClick="MoveBack()">

These lines create the buttons given in the table below.

49

INPUT TYPE NAME VALUE OnClick

Button b_Previous < Back MoveBack()

Button b_Next Next> MoveForward()

Button b_Approve Approve... ApproveOrder()

Button b_Deny Deny... DenyOrder()

Button b_Add Add... addNewOrder()

Button b_Delete Delete deleteOrder()

Button b_Synchronize Synchronize syncData()

50

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

Lesson 5: Write the JScript sample code
This lesson guides you through the process of writing JScript code to
connect to a database, navigate within the database, and manipulate the data
in the database.

The synchronization portion of this lesson require SQL Anywhere Studio.

Write code to connect to an UltraLite database

In Pocket IE, UltraLite ActiveX is accessed using JScript embedded on an
HTML page. When a page containing a connection script is loaded, a new
database connection is created. When the browser moves to another page, all
of the objects created on the previous page are discarded. The database
connection is thus lost when the page is unloaded.

Losing application state, including database connections, whenever a form
changes, is slow and expensive. To avoid this, it is recommended that Pocket
IE applications use HTML frames to maintain application state. The
database connection can be kept by the frameset document. Pocket IE
requires at least two frames within a frameset, and draws a three (3) pixel
border between the frames.

In the CustDB sample, the minimal frame defined intopline.htmis a
placeholder that displays the application name at the top of the screen. The
rest of the screen is used to display the other pages of the application.

To swap forms in and out of the frameset, a JScript function can use the
document.location.replacemethod. For example, the following code
fragment closes the current connection and returns to the connect form.

<SCRIPT>
function exitApp() {

if (top.Connection != null) {
top.Connection.Close();

}
document.location.replace("connect.htm");

}
</SCRIPT>
<INPUT NAME="b_Done" TYPE="BUTTON" VALUE="Done"

onClick="exitApp()">

The following procedure connects to an UltraLite database. For more
information about connecting to an UltraLite database, see“Connecting to
an UltraLite database” on page 66.

51

❖ To connect to the UltraLite database

1. Start Pocket Internet Explorer.

2. Openlogin.htm.

3. Tap the hyperlink.

The hyperlink links toframes.htm.

The code inframes.htmcreates a new database manager object and uses
it to open a connection to the database specified by a connection string. If
the database does not exist, it creates a new one.

☞ For more information, see“Connecting to an UltraLite database” on
page 66.

<SCRIPT LANGUAGE="JScript">
var Connection; // UltraLite Connection
var DatabaseMgr; // UltraLite Database Manager
var CS; // Current State object

// Initialize connection. Create database if not already
present.

function initDatabase() {
var udb, usm;
udb = "file_name= \\UltraLiteDB \\ul_custapi.udb";
usm = ";schema_file= \\UltraLiteDB \\ul_custdb.usm";
CS = new CurrState(0);
DatabaseMgr = new ActiveXObject(

"UltraLite.ULDatabaseManager");
var bval = DatabaseMgr.ErrorResume;
DatabaseMgr.ErrorResume = true;
Connection = DatabaseMgr.OpenConnection(udb);
if (DatabaseMgr.LastErrorCode != 0) {

Connection = DatabaseMgr.CreateDatabase(udb + usm);
}

}
// Initialize the database.
initDatabase();
</SCRIPT>

4. A script prompts you to enter an employee ID. Accept the default value
of 50.

Write code to synchronize the database

You must synchronize the database in order to obtain the list of products
(which cannot be modified at the remote database) and an initial list of
orders.

The following procedure synchronizes the database.

52

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

❖ To synchronize the sample database

1. Tap Synchronize.

The code below runs.

The ULConnection.Synchronize method takes a single parameter,
show-progress. In JScript applications,show-progressis set to false
because Pocket Internet Explorer does not allow messages to be
displayed.

☞ For more information about synchronizing an UltraLite database, see
“Synchronizing UltraLite applications” on page 94.

function syncData() {
var conn = top.Connection;
var parms = conn.SyncParms;
// Set Sync Params
parms.Stream = 2; // ulTCPIP = 2, ulHTTP = 1, ulHTTPS =

3
parms.StreamParams = "";
parms.UserName = "50"; // m_EmpIDStr;
parms.Version = "custdb 9.0";
conn.ErrorResume = true;
conn.Synchronize(false);
conn.ErrorResume = false;
if (conn.LastErrorCode != 0) {

SetStatus("Sync failed: " + conn.LastErrorDescription
);

return;
}
conn.Commit(); // Save updates.
SetStatus("Synchronized");
SkipToValidOrder();
SetOrderData();

}

2. When synchronization is complete, the word Synchronized appears at the
bottom of the screen.

Write code to display order information

Whenmain.htmloads, the following functions run to obtain and display the
order information.

☞ For more information about the GetTable method, see“GetTable
method” on page 114.

53

function OpenGetOrder() {
var conn = top.Connection;
var cs = top.CS;
var empid;
if (conn == null) {

alert("Not yet connected!");
return;

}
conn.AutoCommit = false;
var table = conn.GetTable("ULIdentifyEmployee_nosync");
table.Open();
if (table.RowCount == 0) {

empid = window.prompt("Enter employee ID #: ", "50");
table.InsertBegin();
table.Columns("emp_id").value = empid;
table.Insert();
conn.Commit();

}
table.MoveFirst();
cs.SetEmployeeID(table.Columns("emp_id").value);
table.Close();
ProductList = conn.GetTable("ULProduct");
ProductList.Open();
CustomerList = conn.GetTable("ULCustomer");
CustomerList.Open();
OrderList = conn.GetTable("ULOrder");
OrderList.Open();
SetOrderData();
SkipToValidOrder();

}

54

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

function UpdateForm() {
var cs = top.CS;
if (cs.GetNoOrder()) {

txt_Custname.value = "";
txt_Prodname.value = "";
txt_Quant.value = "";
txt_Price.value = "";
txt_Discount.value = "";
txt_Status.value = "";
txt_Notes.value = "";

return;
}
txt_Custname.value = cs.GetCustName();
txt_Prodname.value = cs.GetProdName();
txt_Quant.value = cs.GetQuantity();
txt_Price.value = cs.GetPrice();
txt_Discount.value = cs.GetDiscount();
txt_Status.value = cs.GetStatus();
txt_Notes.value = cs.GetNotes();
if (cs.FirstOrder() == cs.GetOrderID()) {

SetStatus("First Order");
} else if (cs.LastOrder() == cs.GetOrderID()) {

SetStatus("Last Order");
}

}

Write code for navigation and data manipulation

The following procedures implement data manipulation and navigation.

❖ To scroll through the list of orders

1. Tap Back or Next.

One of the following functions runs:

function MoveBack() {
var cs = top.CS;
var posn = cs.GetBookmark();
if (MoveOrder(-1)) {

cs.SetBookmark(posn - 1);
UpdateForm();

}
}
function MoveNext() {

var cs = top.CS;
var posn = cs.GetBookmark();
if (MoveOrder(1)) {

cs.SetBookmark(posn + 1);
UpdateForm();

}
}

55

❖ To add an order to the database

1. Tap Add.

The following script runs, replacingmain.htmwith add.htmin the frame.

function addNewOrder() {
document.location.replace("add.htm");

}

2. Fill in the form with the desired values. Click OK.

The following script runs:

☞ For more information about inserting rows, see“Inserting, updating,
and deleting rows” on page 84.

function addCustomer() {
var custName = window.prompt("Enter new customer name: ",

"");
if (custName == "") return;
var conn = top.Connection;
var custlist = conn.GetTable("ULCustomer")
custlist.Open("ULCustomerName");
custlist.FindBegin();
custlist.Columns("cust_name").value = custName;
if (custlist.FindFirst()) { // already present. Done.

custlist.Close();
return;

}
var custid = NextCustomerID();
if (custid == -1) {

alert("No more customer IDs, cannot add. Replenish
ULCustomerIDPool");

custlist.Close();
return;

}
custlist.InsertBegin();
custlist.Columns("cust_id").value = custid;
custlist.Columns("cust_name").Value = custName;
custlist.Insert();
custlist.Close();
conn.Commit();
// Only way to show new customer is to reload this form!
document.location.reload();

}

56

Chapter 4. Tutorial: An UltraLite Application for Pocket IE

❖ To approve or deny an order

1. Click Approve or Deny.

One of the following scripts runs, loadingapprove.htmor deny.htmin the
frame.

function ApproveOrder() {
var cs = top.CS;
document.location.replace("approve.htm");

}
function DenyOrder() {

document.location.replace("deny.htm");
}

2. Enter a note and click OK.

If you are approving an order, the following code runs. If you are denying
an order, the code is the same but the status is instead set to Denied.

☞ For more information about updating rows, see“Inserting, updating,
and deleting rows” on page 84.

function OK_Approve() {
var cs = top.CS;
var conn = top.Connection;
var notes = txt_Notes.value;
var order = conn.GetTable("ULOrder");
order.Open();
order.FindBegin();
order.Columns("order_id").value = cs.GetOrderID();
if (order.FindFirst()) {

order.UpdateBegin();
order.Columns("status").value = "Approved";
order.Columns("notes").value = notes;
order.Update();
if (conn.LastErrorCode != 0) {

alert("Failed: " + conn.LastErrorDescription);
}
conn.Commit();

} else {
alert("Cannot find order " + cs.GetOrderID());

}
order.Close();
document.location.replace("main.htm");

}

57

CHAPTER 5

Understanding UltraLite ActiveX
Development

About this chapter This chapter explains how to develop applications using UltraLite ActiveX.

☞ For hands-on tutorials using UltraLite ActiveX, see the following
chapters:

♦ “Tutorial: An UltraLite Application for PocketPC” on page 5

♦ “Tutorial: Using Dynamic SQL in an UltraLite Application for
PocketPC” on page 25

♦ “Tutorial: An UltraLite Application for Pocket IE” on page 43

Contents Topic: page

Preparing to work with UltraLite ActiveX 60

Working with UltraLite databases 63

Connecting to an UltraLite database 66

Using frames to maintain application state (JScript) 71

Encryption and obfuscation 73

Accessing and manipulating data using Dynamic SQL 74

Accessing and manipulating data using the table API 81

Accessing schema information 89

Error handling 90

User authentication 93

Synchronizing UltraLite applications 94

Component samples, demonstrations and code fragments 97

59

Preparing to work with UltraLite ActiveX
There are several steps you must take before you can build an application
using UltraLite ActiveX.

Adding UltraLite ActiveX to the design environment

To access UltraLite ActiveX controls from your eMbedded Visual Basic
project, you must add UltraLite ActiveX to the design environment.

The following procedure applies only to eMbedded Visual Basic.

❖ To add a reference to UltraLite ActiveX

1. From the eMbedded Visual Basic menu, choose Project➤ References.

2. If iAnywhere Solutions, ActiveX for UltraLite 9.0 is included in the list
of available references, select it and click OK.

If iAnywhere Solutions, ActiveX for UltraLite 9.0 is does not appear in
the list of available references:

♦ Browse to theUltraLite\UltraLiteActiveX\win32subdirectory of your
SQL Anywhere 9.0 installation. Openuldo9.dll.

♦ Select iAnywhere Solutions, ActiveX for UltraLite 9.0 control and
click OK.

Adding UltraLite ActiveX to a Windows CE device

To debug applications using the emulator, you must add the UltraLite
ActiveX control to the emulator. To deploy applications to your Windows
CE device, you must add the UltraLite ActiveX control to the device. Both
of these tasks can be carried out using the Windows CE Control Manager.

The following procedure applies to both JScript and eMbedded Visual Basic
development. If you do not have eMbedded Visual Basic installed on your
computer, you can copy the appropriate DLL to the\Windowsdirectory on
your device and register it usingregsvrce.exe. If you do not have
regsvrce.exeon your device, you can copy it to your device from the
Microsoft Windows CE SDK.

60

Chapter 5. Understanding UltraLite ActiveX Development

❖ To add the UltraLite ActiveX control to a Windows CE device or
emulator
1. From the eMbedded Visual Basic menu, choose Tools➤ Remote Tools➤

Control Manager.

2. In the left pane, open the device you are developing for, such as Pocket
PC.

3. Open the device to which you are deploying, such as Pocket PC
Emulation.

4. Choose Control➤ Add New Control.

5. Browse to one of the following platform-specific files, located in
subdirectories of your SQL Anywhere installation:

♦ ARM UltraLite\UltraLiteActiveX\ce\arm\uldo9.dll

♦ MIPS UltraLite\UltraLiteActiveX\ce\mips\uldo9.dll

♦ Emulator UltraLite\UltraLiteActiveX\ce\emulator30\uldo9.dll

♦ Intel 386 UltraLite\UltraLiteActiveX\ce\386\uldo9.dll

6. Click Open.

Deploying an UltraLite schema file to a Windows CE device

A schema file is used in the initial creation of an UltraLite database to
specify the structure of the database. The following procedure deploys an
UltraLite schema file to a Windows CE device.

☞ For information about creating an UltraLite schema file, see“Creating
UltraLite database schema files” on page 64.

❖ To deploy a schema file to a Windows CE device or emulator

1. From the eMbedded Visual Basic menu, choose Tools➤ Remote Tools➤
File Viewer.

2. If your device does not appear in the left pane, connect to the device:

♦ Choose Connection➤ Add Connection.

♦ Select your device from the list and click OK to establish a connection.

3. Copy the schema file to the device

♦ Select a destination directory on the device.

♦ Choose File➤ Export File.

♦ Locate the schema (.usm) file.

61

♦ Click OK to export the file to the device.

Working with JScript

The following sections describe how to set up your HTML page in order to
optimize the performance of UltraLite ActiveX.

Cached pages

To prevent Pocket IE from using locally cached pages and to ensure all
contact is dynamically recalculated, the page expiry should be set to 0. This
will cause Pocket IE to always reload the page. Use the following as the first
line of your HTML document.

<META HTTP-EQUIV="Expires" CONTENT="0">

Script execution order

To force scripts to run before the page is loaded, for example, to get a
database connection which results in dynamic HTML content, place those
scripts in the HTML head:

<head> <script>... </script></head>

Pocket IE limitations

The JScript language supported by Pocket IE is incompatible with that of
Internet Explorer 4 and up, in the following ways:

♦ Pocket IE JScript is case insensitive. Scripts written for Pocket IE may
not work on IE unless the proper case is used.

♦ The BUTTON tag is not supported, but a button can be created using
<INPUT TYPE=“BUTTON”>.

♦ HTML tag names are in the same namespace as JScript functions. Ensure
that the name of an HTML element does not conflict with any function
names in the current document.

For example, pressing this button will cause an error:

<SCRIPT>
function b_Done() { ... }
</SCRIPT>
<INPUT NAME="b_Done" TYPE="BUTTON" VALUE="Done" onClick="b_

Done()">

♦ Dynamic HTML is not supported by Pocket IE. To get dynamic content,
you can emit HTML withdocument.write, or by setting DIV contents.

62

Chapter 5. Understanding UltraLite ActiveX Development

Working with UltraLite databases
UltraLite databases (.udb files) are relational databases. They contain the
following objects:

♦ Tables A single UltraLite database can hold many tables. Relational
database tables have a fixed number of columns, but can have any number
of rows (up to a limit determined by the operating system). Each row has
a single entry for each column. A NULL entry is used when there is no
value for the entry. When designing your database, each table should
represent a separate type of item, such as customers or employees.

☞ For more information, see“ULTable class” on page 157.

♦ Indexes The rows in a relational database table are not ordered. You
can create indexes to access the rows in order. Indexes are commonly
associated with a single column, but may also be associated with multiple
columns.

☞ For more information, see“ULIndexSchema class” on page 131.

♦ Keys Each table has a special index called the primary key. Entries in
the primary key column or columns must be unique.

Foreign keys relate the data in one table to that in another. Each entry in
the foreign key column must correspond to an entry in the primary key of
another table.

Primary keys and foreign keys ensure that the database has referential
integrity. Referential integrity is enforced in UltraLite databases. For
example, you cannot enter an order for a customer unless that customer
exists in the database.

♦ Publications A publications defines a set of data to be synchronized.

You must have a valid SQL Anywhere Studio license to synchronize the
data in your UltraLite database with other databases. SQL Anywhere
Studio includes MobiLink synchronization technology to synchronize
UltraLite databases with desktop, workgroup, or enterprise databases.

☞ For more information, see“ULPublicationSchema class” on
page 135.

The schema and schema
file

The database schema is a description of the database. It is the collection of
tables, indexes, keys, and publications within the database, and all the
relationships between them.

You do not alter the schema of an UltraLite database directly. Instead, you
create a schema (.usm) file and upgrade the database schema from that file
by calling a built-in UltraLite function in your application.

63

A schema file is also used in the initial creation of a database to specify the
structure of the database.

Creating UltraLite database schema files

You can create an UltraLite schema file using the UltraLite Schema Painter
or the ulinit utility.

♦ UltraLiteSchema Painter The UltraLite Schema Painter is a graphical
utility for creating and editing UltraLite schema files.

To start the Schema painter, choose Start➤ Programs➤
SQL Anywhere 9➤ UltraLite ➤ UltraLite Schema Painter, or
double-click a schema (.usm) file in Windows Explorer.

♦ The ulinit utility If you have the Adaptive Server Anywhere database
management system, you can generate an UltraLite schema file using the
ulinit command line utility.

You apply the schema file to the database from the UltraLite application,
either when you create a new database or using the ApplyFile method.

☞ For more information about creating a new database, see“Connecting to
an UltraLite database” on page 66.

Upgrading your database schema

To modify your existing database structure, use the ApplyFile or
ApplyFileWithParms method. In most cases there will be no data loss, but
data loss can occur if columns are deleted or if the data type for a column is
changed to an incompatible type.

☞ For more information about these methods, see“ApplyFile method” on
page 129and“ApplyFileWithParms method” on page 129.

The following code fragment connects to a database and applies a new
schema file using the ApplyFile method.

☞ For more information about connecting to a database, see“Connecting
to an UltraLite database” on page 66.

’ eMbedded Visual Basic
Dim db As ULDatabaseManager
Dim conn As ULConnection
Set db = CreateObject("UltraLite.ULDatabaseManager")
Set conn = db.OpenConnection("dbf = \My Documents \mydb.udb")
if (conn.Schema.TableCount = 0) then

conn.Schema.ApplyFile(" \My Documents \myschema.usm")
end if

64

Chapter 5. Understanding UltraLite ActiveX Development

// JScript
var db;
var conn;
db = new ActiveXObject("UltraLite.ULDatabaseManager");
conn = db.OpenConnection("dbf = \\My Documents \\mydb.udb");
if (conn.Schema.TableCount == 0) {

conn.Schema.ApplyFile(" \\My Documents \\myschema.usm");
}

65

Connecting to an UltraLite database
Your UltraLite application must connect to a database before it can carry out
operations on the data in the database.

Using the ULConnection
object

The following properties of the ULConnection object govern global
application behavior.

☞ For more information about the ULConnection object, see
“ULConnection class” on page 111.

♦ Commit behavior By default, UltraLite applications are in
AutoCommit mode. Each insert, update, or delete statement is committed
to the database immediately. Set ULConnection.AutoCommit to false to
build transactions into your application. Turning AutoCommit off and
performing commits directly can improve the performance of your
application.

☞ For more information, see“Commit method” on page 113.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using the
GrantConnectTo and RevokeConnectFrom methods.

☞ For more information, see“User authentication” on page 93.

♦ Synchronization A set of objects governing synchronization are
accessed from the ULConnection object.

☞ For more information, see“Synchronizing UltraLite applications” on
page 94.

♦ Tables UltraLite tables are accessed using the ULConnection.GetTable
method.

Connecting to a
database

You can connect to a database using either a ULConnectionParms object or a
connection string. Methods that use a ULConnectionParms object allow you
to manipulate connection parameters with ease and accuracy. Methods that
use a connection string require that you successfully create a connections
string.

The following sections describe both methods.

Using ULConnectionParms to connect to a database

The following procedure uses a ULConnectionParms object to connect to an
UltraLite database.

66

Chapter 5. Understanding UltraLite ActiveX Development

☞ For more information about connecting to an UltraLite database using a
ULConnectionParms object, see“CreateDatabaseWithParms method” on
page 121and“OpenConnectionWithParms method” on page 126.

❖ To connect to an UltraLite database using ULConnectionParms

1. Create a ULDatabaseManager object.

You should create only one DatabaseManager object per application.
This object is at the root of the object hierarchy. For this reason, it is often
best to declare the DatabaseManager object global to the application.

’ eMbedded Visual Basic
Dim DatabaseMgr As ULDatabaseManager
Set DatabaseMgr =

CreateObject("UltraLite.ULDatabaseManager")

// JScript
var DatabaseMgr;
DatabaseMgr = new ActiveXObject(

"UltraLite.ULDatabaseManager");

2. Declare a ULConnection object.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the ULConnection object global to the application.

’ eMbedded Visual Basic
Dim Connection As ULConnection

// JScript
var Connection;

3. Create a ULConnectionParms object.

’ eMbedded Visual Basic
Dim LoginParms As ULConnectionParms
Set LoginParms = CreateObject("UltraLite.ULConnectionParms")

// JScript
var LoginParms;
LoginParms = new

ActiveXObject("UltraLite.ULConnectionParms");

4. Set the required properties of the ULConnectionParms object. For
example, the following code specifies the location of the database on the
Windows CE device as\tutorial\tutorial.udb.

’ eMbedded Visual Basic
LoginParms.DatabaseOnCE = " \tutorial \tutorial.udb"

// JScript
LoginParms.DatabaseOnCE = " \\tutorial \\tutorial.udb";

67

Using the following properties, you must specify a schema file for
CreateDatabaseWithParms or a database file for
OpenConnectionWithParms. For information about additional properties,
see“Properties” on page 117.

Keyword Description

SchemaOnDesktop The path and filename of the UltraLite schema.
SchemaOnDesktop is required when using Create-
DatabaseWithParms on Windows desktop operat-
ing systems. SchemaOnCE has precedence over
SchemaOnDesktop.

SchemaOnCE The path and filename of the UltraLite schema on
Windows CE. This is a required parameter when
using CreateDatabaseWithParms for CE.

DatabaseOnDesktop The path and filename of the UltraLite database.
This is a required parameter when using OpenCon-
nectionWithParms on Windows desktop operating
systems. DatabaseOnCE has precedence over
DatabaseOnDesktop.

DatabaseOnCE The path and filename of the UltraLite database on
Windows CE. This is a required parameter when
using OpenConnectionWithParms for CE.

5. Open a connection to the database.

CreateDatabaseWithParms and OpenConnectionWithParms return an
open connection as a ULConnection object. Each method takes a single
ULConnectionParms object as its argument.

The following code fragment attempts to connect to an existing database.
If the database does not exist, the OpenConnectionWithParms method
returns an error. This causes CreateDatabaseWithParms to create a
database using the specified schema file.

’ eMbedded Visual Basic
On Error Resume Next
Set Connection =

DatabaseMgr.OpenConnectionWithParms(LoginParms)
if Err.Number <> 0 then
Set Connection =

DatabaseMgr.CreateDatabaseWithParms(LoginParms)
End If

68

Chapter 5. Understanding UltraLite ActiveX Development

// JScript
DatabaseMgr.ErrorResume = true;
Connection =

DatabaseMgr.OpenConnectionWithParms(LoginParms);
if (DatabaseMgr.LastErrorCode != 0) {

Connection =
DatabaseMgr.CreateDatabaseWithParms(LoginParms);

}

Using a connection string to connect to a database

The following procedure connects to a database using the functions
OpenConnection and CreateDatabase. These methods accept connection
information as a connection string.

☞ For more information about connecting to an UltraLite database using a
connection string, see“CreateDatabase method” on page 120and
“OpenConnection method” on page 126.

❖ To connect to an UltraLite database

1. Create a ULDatabaseManager object.

You should create only one DatabaseManager object per application.
This object is at the root of the object hierarchy. For this reason, it is often
best to declare the DatabaseManager object global to the application.

’ eMbedded Visual Basic
Dim DatabaseMgr As ULDatabaseMgr
Set DatabaseMgr =

CreateObject("UltraLite.ULDatabaseManager")

// JScript
var DatabaseMgr;
DatabaseMgr = new ActiveXObject(

"UltraLite.ULDatabaseManager");

2. Declare a ULConnection object.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the ULConnection object global to the application.

’eMbedded Visual Basic
Dim Connection As ULConnection

// JScript
var Connection;

3. Open a connection to the database.
♦ The ULDatabaseManager.CreateDatabase and

ULDatabaseManager.OpenConnection methods return an open

69

connection as a ULConnection object. Each method takes a single
string string as its argument. The string is composed of a set of
keyword=value pairs.

The following code generates a connection string that specifies the
required parameters.

☞ For more information about connection parameters, see
“Connection Parameters”[UltraLite Database User’s Guide,page 49].

’ eMbedded Visual Basic
Dim open_parms, schema_parms As String
open_parms = "ce_file= \tutorial.udb"
schema_parms = open_parms & ";" & "ce_schema= \

tutorial.usm"

// JScript
var open_parms, schema_parms;
open_parms = ";file_name= \\UltraLiteDB \\ul_custapi.udb";
schema_parms = open_parms + ";schema_file= \\UltraLiteDB \

\ul_custdb.usm";

♦ The following code fragment tries to connect to an existing database. If
the database does not exist, the OpenConnection method returns an
error. This causes CreateDatabase to create a new database and return
a connection to it.

’ eMbedded Visual Basic
On Error Resume Next
Set Connection = DatabaseMgr.OpenConnection(schema_

parms)
If Err.Number <> 0 Then

Set Connection = DatabaseMgr.CreateDatabase(schema_
parms)

End If

// JScript
var bval = DatabaseMgr.ErrorResume;
DatabaseMgr.ErrorResume = true;
Connection = DatabaseMgr.OpenConnection(schema_parms);
if (DatabaseMgr.LastErrorCode != 0) {

Connection = DatabaseMgr.CreateDatabase(schema_parms
);

}

70

Chapter 5. Understanding UltraLite ActiveX Development

Using frames to maintain application state
(JScript)

In Pocket IE, UltraLite ActiveX is accessed using JScript embedded on an
HTML page.

In the following code fragment, a ULDatabaseManager object is created.
When a page containing this script is loaded, a new ULDatabaseManager
object is created. When the browser moves to another page, that object is
discarded. If a database connection was obtained on one page, it is lost when
that page is unloaded.

<SCRIPT LANGUAGE="JScript">
var DatabaseMgr;
DatabaseMgr = new ActiveXObject("UltraLite.ULDatabaseManager"

);
</SCRIPT>

Losing application state, including database connections, whenever a form
changes, is slow and expensive. To avoid this, Pocket IE applications can use
HTML frames to maintain application state. The database connection can be
kept by the frameset document. Pocket IE requires at least two frames within
a frameset, and draws a three-pixel border between the frames.

Note
Support for frames is not included in versions of Pocket IE prior to 1.1.

The following code fragment defines two frames.

// JScript
<frameset rows="5%,*" BORDER=0>
<frame SRC="topline.htm" NAME="TopLine" MARGINWIDTH=0

MARGINHEIGHT=0>
<frame SRC="connect.htm" NAME="Connect" MARGINWIDTH=0

MARGINHEIGHT=0>
</frameset>
<SCRIPT LANGUAGE="JScript">
var Connection; // UltraLite Connection
var DatabaseMgr; // UltraLite Database Manager
</SCRIPT>

In the CustDB example, the minimal frame defined intopline.htmis a
placeholder that displays the application name at the top of the screen. The
rest of the screen is used to display the other pages of the application. The
HTML and JScript inconnect.htmprovide the initial form for the
application. Since all these forms will be swapped into the same frameset,
they can access their parent frameset objects usingwindow.topwindow.

71

The following code fragment creates a new variable, conn, and assigns the
connection created in the top frame to it. If you are intop, referencing the
connection astop.Connectionis optional.

// JScript
<SCRIPT>
function usingConnection() {

if (top.Connection == null) {
return; // not yet connected..

}
var conn = top.Connection;
...

}
</SCRIPT>

To swap forms in and out of the frameset, a JScript function can use the
document.location.replacemethod. The following code fragment closes
the current connection and returns to the connect form.

// JScript
<SCRIPT>
function exitApp() {

if (top.Connection != null) {
top.Connection.Close();

}
document.location.replace("connect.htm");

}
</SCRIPT>
<INPUT NAME="b_Done" TYPE="BUTTON" VALUE="Done"

onClick="exitApp()">

72

Chapter 5. Understanding UltraLite ActiveX Development

Encryption and obfuscation
You can encrypt or obfuscate your UltraLite database using UltraLite
ActiveX.

To create a database with encryption, set the
ULConnectionParms.EncryptionKey property. When you call
CreateDatabaseWithParms and pass in the ConnectionParms object, the
database created and encrypted with the specified key.

☞ For more information about the EncryptionKey property, see
“ULConnectionParms class” on page 117and“ChangeEncryptionKey
method” on page 112.

You can change the encryption key is by specifying the new encryption key
on the Connection object. In this example, “apricot” is the encryption key.

Connection.ChangeEncryptionKey("apricot")

After the database is encrypted, connections to the database must specify the
correct encryption key. Otherwise, the connection fails.

To obfuscate the database, specify obfuscate=1 as a creation parameter.

☞ For more information about database encryption, see “Encrypting
UltraLite databases”[UltraLite Database User’s Guide,page 36].

73

Accessing and manipulating data using Dynamic
SQL

UltraLite applications can access data in an Ultralite database using
Dynamic SQL or the table API.

☞ For information about the table API, see“Accessing and manipulating
data using the table API” on page 81.

The following section explains how to perform the following tasks using
Dynamic SQL.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Locating rows in a table.

♦ Inserting, deleting, and updating rows.

Data manipulation: INSERT, UPDATE and DELETE

With UltraLite, you can perform INSERT, UPDATE and DELETE
operations. These operations are performed using the ExecuteStatement
method, a member of the ULPreparedStatement class.

☞ For more information the ULPreparedStatement class, see
“ULPreparedStatement class” on page 132.

UltraLite handles variable values using the ? character.

Using (?) in your prepared statements
For any INSERT, UPDATE or DELETE, each (?) is referenced according
to its ordinal position in the prepared statement. For example, the first (?)
is referred to as 1, and the second as 2.

❖ To INSERT a row

1. Declare a ULPreparedStatement object.

’ eMbedded Visual Basic
Dim PS As ULPreparedStatement

// JScript
var PS;

2. Assign an INSERT statement to your prepared statement object. In the
following code fragment, TableName and ColumnName are the names of
a table and column.

74

Chapter 5. Understanding UltraLite ActiveX Development

’ eMbedded Visual Basic
Set PS = Connection.PrepareStatement("INSERT into

TableName(ColumnName) values (?)")

// JScript
PS = Connection.PrepareStatement("INSERT into

TableName(ColumnName) values (?)");

3. Assign values for (?) to the statement.

’ eMbedded Visual Basic
Dim NewValue as String
NewValue = "Bob"
PS.SetStringParameter 1, NewValue

// JScript
var NewValue;
NewValue = "Bob";
PS.SetStringParameter(1, NewValue);

4. Execute the statement.

’ eMbedded Visual Basic
PS.ExecuteStatement

// JScript
PS.ExecuteStatement();

❖ To UPDATE a row

1. Declare a ULPreparedStatement object.

’ eMbedded Visual Basic
Dim PS As ULPreparedStatement

// JScript
var PS;

2. Assign an UPDATE statement to your prepared statement object. In the
following code fragment, TableName and ColumnName are the names of
a table and column.

’ eMbedded Visual Basic
Set PS = Connection.PrepareStatement("UPDATE TableName SET

ColumnName = (?) WHERE ID = (?)")

// JScript
PS = Connection.PrepareStatement("UPDATE TableName SET

ColumnName = (?) WHERE ID = (?)");

3. Assign values for (?) to the statement.

’ eMbedded Visual Basic
Dim NewValue as String
NewValue = "Bob"
PS.SetParameter 1, NewValue
PS.SetParameter 2, "6"

75

// JScript
var NewValue;
NewValue = "Bob";
PS.SetParameter(1, NewValue);
PS.SetParameter(2, "6");

4. Execute the statement

’ eMbedded Visual Basic
PS.ExecuteStatement

// JScript
PS.ExecuteStatement();

❖ To DELETE a row

1. Declare a ULPreparedStatement object.

’ eMbedded Visual Basic
Dim PS As ULPreparedStatement

// JScript
var PS;

2. Assign a DELETE statement to your prepared statement object.

’ eMbedded Visual Basic
Set PS = Connection.PrepareStatement("DELETE FROM customer

WHERE ID = (?)")

// JScript
PS = Connection.PrepareStatement("DELETE FROM customer WHERE

ID = (?)");

3. Assign values for (?) to the statement.

’ eMbedded Visual Basic
Dim IDValue as String
IDValue = "6"
PS.SetParameter 1, IDValue

// JScript
var IDValue;
IDValue = "6";
PS.SetParameter(1, IDValue);

4. Execute the statement.

’eMbedded Visual Basic
PS.ExecuteStatement

// JScript
PS.ExecuteStatement();

76

Chapter 5. Understanding UltraLite ActiveX Development

Data retrieval: SELECT

When you execute a SELECT statement, the
ULPreparedStatement.ExecuteQuery method returns a ULResultSet object.

The ULResultSet class contains methods for navigting within a result set.
The values are then accessed using the ULResultSet.Value property.

☞ For more information about ULResultSet objects, see“ULResultSet
class” on page 136.

In the following code fragment, the results of a SELECT query are accessed
through a ULResultSet. When first assigned, the ULResultSet is positioned
before the first row. The ULResultSet.MoveFirst method is then called to
navigate to the first record in the result set.

☞ For more information about navigating a result set, see“Navigation with
Dynamic SQL” on page 79.

’ eMbedded Visual Basic
Dim MyResultSet as ULResultSet
Dim x as ULPreparedStatement
Set x = Connection.PrepareStatement("SELECT ID, Name FROM

customer")
Set MyResultSet = x.ExecuteQuery
MyResultSet.MoveFirst

// JScript
var MyResultSet;
var x;
x = Connection.PrepareStatement("SELECT ID, Name FROM

customer");
MyResultSet = x.ExecuteQuery();
MyResultSet.MoveFirst();

The code fragment below demonstrates how to use the Value property to
obtain the column values for the current row. The Value property uses the
following syntax: MyResultSetName.Value(Index) where Index is the
ordinal position of the column name in your SELECT statement.

This example uses the Value property access both Integer and String values.
UltraLite ActiveX uses a variant data type to achieve this flexibility.

’ eMbedded Visual Basic
If MyResultSet.RowCount = 0 Then

lblID.Text = ""
txtName.Text = ""

Else
lblID.Caption = MyResultSet.Value(1)
txtName.Text = MyResultSet.Value(2)

End If

77

// JScript
If (MyResultSet.RowCount == 0) {

lblID.Text = "";
txtName.Text = "";

} Else {
lblID.Caption = MyResultSet.Value(1);
lblID.Text = MyResultSet.Value(2);

}

The following procedure uses a SELECT statement to retrieve information
from the database. The results of the query are assigned to a ULResultSet
object.

❖ To perform a SELECT statement

1. Declare a ULPreparedStatement object.

’ eMbedded Visual Basic
Dim PS As ULPreparedStatement

// JScript
var PS;

2. Assign a prepared statement to your ULPreparedStatement object. In the
following code fragment, TableName and ColumnName are the names of
a table and column.

’ eMbedded Visual Basic
Set PS = Connection.PrepareStatement("SELECT ColumnName FROM

TableName")

// JScript
PS = Connection.PrepareStatement("SELECT ColumnName FROM

TableName")

3. Execute the statement.

In the eMbedded Visual Basic code below, a listbox captures the result of
the SELECT query.

’ eMbedded Visual Basic
Dim y As ULResultSet
Set y = PS.ExecuteQuery
While y.MoveNext

listbox1.AddItem y.Value(1)
Wend

In the JScript code below, an string captures the result of the SELECT
query as an HTML table.

78

Chapter 5. Understanding UltraLite ActiveX Development

// JScript
var y;
var resultTable;
y = PS.ExecuteQuery();
var ncols = y.Schema.ColumnCount;
var fld, line, nrows;
resultTable = "<html><table cellpadding=0

cellspacing=0><tr>";
resultTable = resultTable + "<th>" + "ColumnName" + "</th>";
resultTable = resultTable + "</tr><tr>";
nrows = 0;
while (y.MoveNext()) {

line = "<tr>";
nrows++;

if (y.IsNull(1)) {
fld = "(null)";

} else {
fld = y.Value(1);

}
line = line + "<td>" + fld + "</td>";

resultTable = resultTable + line + "</tr>";
}
resultTable = resultTable + "</table>#Rows=" + nrows +

"</html>";

Navigation with Dynamic SQL

You can navigate a result set using methods associated with the ULResultSet
object.

Moving through a result set

UltraLite ActiveX provides you with a number of methods to navigate a
result set in order to perform a wide range of navigation tasks.

The following methods allow you to navigate your result set:

♦ MoveAfterLast moves to a position after the last row.

♦ MoveBeforeFirst moves to a position before the first row.

♦ MoveFirst moves to the first row.

♦ MoveLast moves to the last row.

♦ MoveNext moves to the next row.

♦ MovePrevious moves to the previous row.

♦ MoveRelative moves a certain number of rows relative to the current
row. Positive index values move forward in the result set, negative index

79

values move backward in the result set, and zero does not move the
cursor. Zero is useful if you want to repopulate a row buffer.

The following code fragment demonstrates how to use the MoveFirst
method to navigate within a result set.

’ eMbedded Visual Basic
Set x = Connection.PrepareStatement("SELECT ID, Name FROM

customer")
Set MyResultSet = x.ExecuteQuery
MyResultSet.MoveFirst

// JScript
x = Connection.PrepareStatement("SELECT ID, Name FROM

customer");
MyResultSet = x.ExecuteQuery();
MyResultSet.MoveFirst();

The same technique is used for all of the Move methods. For more
information about these navigational methods, see“ULResultSet class” on
page 136.

ULResultSet schema property

The ULResultSet.Schema property allows you to retrieve information about
the columns in the query. The properties of this ULResultSetSchema object
include ColumnName, ColumnCount, ColumnPrecision, ColumnScale,
ColumnSize, and ColumnSQLType.

The following example demonstrates how to use ULResultSet.Schema to
capture schema information.

’ eMbedded Visual Basic
Dim i As Integer
Dim MySchema as ULResultSetSchema
Set MySchema = MyResultSet.Schema
For i = 1 To MySchema.ColumnCount

cn = MySchema.ColumnName(i)
ct = MySchema.ColumnSQLType(i)
MsgBox cn, ct

Next i

// JScript
var i;
var MySchema;
For (i = 1; i <= MySchema.ColumnCount; i++) {

cn = MySchema.ColumnName(i);
ct = MySchema.ColumnSQLType(i);
alert (cn + " " + ct);

}

80

Chapter 5. Understanding UltraLite ActiveX Development

Accessing and manipulating data using the table
API

UltraLite applications can access data in an Ultralite database using
Dynamic SQL or the table API.

☞ For information about Dynamic SQL, see“Accessing and manipulating
data using Dynamic SQL” on page 74.

UltraLite access table data in a row-by-row fashion. The following sections
explain how to perform the following tasks using the table API:

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Scrolling through the rows of a table

The following code opens the customer table and scrolls through its rows. It
then displays a message box with last name of each customer.

’ eMbedded Visual Basic
Dim tCustomer as ULTable
Set tCustomer = Connection.GetTable("customer")
tCustomer.Open
’ the third column contains the last name of the customer
Set colLastName = tCustomer.Columns.Item(3)
tCustomer.MoveBeforeFirst
While tCustomer.MoveNext

MsgBox colLastName.Value
Wend

// JScript
var tCustomer;
tCustomer = Connection.GetTable("customer");
tCustomer.Open();
// the third column contains the last name of the customer
colLastName = tCustomer.Columns.Item(3);
tCustomer.MoveBeforeFirst();
While (tCustomer.MoveNext()) {

alert(colLastNmae.Value);
}

The columns of a table are contained in a Columns collection. You can
address columns by index number (the order in which they were created in
the schema file) or by name. For example, the following code accesses the
LastName column:

81

’ eMbedded Visual Basic
Set colLastName = tCustomer.Columns.(LastName)

// JScript
colLastName = tCustomer.Columns.(LastName);

You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order. The
following code moves to the first row of the customer table as ordered by the
ix_name index.

’ eMbedded Visual Basic
Set tCustomer = Connection.GetTable("customer")
tCustomer.Open "ix_name"
tCustomer.MoveFirst

// JScript
tCustomer = Connection.GetTable("customer");
tCustomer.Open("ix_name");
tCustomer.MoveFirst();

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following positions:

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use the
ULColumn.Value property to get the value of that column for the current
row. For example, the following code retrieves the value of three columns
from the tCustomer ULTable object, and displays them in text boxes.

’ eMbedded Visual Basic
Dim colID, colFirstName, colLastName As ULColumn
Set colID = tCustomer.Columns.Item(1)
Set colFirstName = tCustomer.Columns.Item(2)
Set colLastName = tCustomer.Columns.Item(3)
txtID.Text = colID.Value
txtFirstName.Text = colFirstName.Value
txtLastName.Text = colLastName.Value

// JScript
var colID, colFirstName, colLastName;
colID = tCustomer.Columns.Item(1);
colFirstName = tCustomer.Columns.Item(2);
colLastName = tCustomer.Columns.Item(3);
txtID.Text = colID.Value;
txtFirstName.value = colFirstName.Value;
txtLastName.value = colLastName.Value;

82

Chapter 5. Understanding UltraLite ActiveX Development

You can also use the Value property to set values. For example:

’ eMbedded Visual Basic
colLastName.Value = "Kaminski"

// JScript
colLastName.Value = "Kaminski";

By assigning values to these properties you do not alter the value of the data
in the database. You can assign values to the properties even if you are
before the first row or after the last row of the table, but it is an error to try to
access data when the current row is in one of these positions. For example,
the following code fragment generates an error.

’ This eMbedded Viusal Basic code is incorrect
tCustomer.MoveBeforeFirst
id = colID.Value

Casting values As the Value method returns a variant, you can use it to access columns of
any data type.

Searching for rows with find and lookup

UltraLite has several modes of operation when working with data. Two of
these modes, the find and lookup modes, are used for searching. The
ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns searched using Find and Lookup methods must be in the
index used to open the table.

♦ Find methods move to the first row that exactly matches a specified
search value, under the sort order specified when the ULTable object was
opened.

☞ For more information about find methods, see“FindBegin method”
on page 158.

♦ Lookup methods move to the first row that matches or is greater than a
specified search value, under the sort order specified when the ULTable
object was opened.

☞ For more information about lookup methods, see“LookupBackward
method” on page 161.

83

❖ To search for a row

1. Enter find or lookup mode.

Call the FindBegin or LookupBegin method. For example, the following
code fragment calls ULTable.FindBegin.

’ eMbedded Visual Basic
tCustomer.FindBegin

// JScript
tCustomer.FindBegin();

2. Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer, not the database. For example, the following code
fragment sets the last name column in the buffer to Kaminski.

’ eMbedded Visual Basic
ColLastName.Value = "Kaminski"

// JScript
ColLastName.Value = "Kaminski";

For multi-column indexes, a value for the first column is required, but
you can omit the other columns.

3. Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index.

’ eMbedded Visual Basic
tCustomer.FindFirst

// JScript
tCustomer.FindFirst();

Inserting, updating, and deleting rows

UltraLite exposes the rows in a table to your application one at a time. The
ULTable object has a current position, which may be on a row, before the
first row, or after the last row of the table.

When your application changes its row, UltraLite makes a copy of the row in
a buffer. Any operations to get or set values affect only the copy of data in
this buffer. They do not affect the data in the database. For example, the
following statement changes the value of the ID column in the buffer to 3.

’ eMbedded Visual Basic
colID.Value = 3

84

Chapter 5. Understanding UltraLite ActiveX Development

// JScript
colID.Value = 3;

Using UltraLite modes UltraLite uses the values in the buffer for a different purpose, depending on
the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to the default mode.

♦ Insert mode The data in the buffer is added to the table as a new row
when the ULTable.Insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
ULTable.Update method is called.

♦ Find mode The data in the buffer is used to locate rows when one of the
ULTable.Find methods is called.

♦ Lookup mode The data in the buffer is used to locate rows when one of
the ULTable.Lookup methods is called.

❖ To update a row

1. Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching
using Find and Lookup methods.

2. Enter Update mode.

For example, the following instruction enters Update mode on the table
tCustomer.

’ eMbedded Visual Basic
tCustomer.UpdateBegin

// JScript
tCustomer.UpdateBegin();

3. Set the new values for the row to be updated.

For example, the following instruction sets the new value to Elizabeth.

’ eMbedded Visual Basic
ColFirstName.Value = "Elizabeth"

// JScript
ColFirstName.Value = "Elizabeth";

4. Execute the Update.

’eMbedded Visual Basic
tCustomer.Update

// JScript
tCustomer.Update();

85

After the update operation, the current row is the row that was just updated.
If you changed the value of a column in the index specified when the
ULTable object was opened, there are some subtleties to the positioning.

By default, UltraLite operates in AutoCommit mode, so that the update is
immediately applied to the row in permanent storage. If you have disabled
AutoCommit mode, the update is not applied until you execute a commit
operation. For more information, see“Transaction processing in UltraLite”
on page 88.

Caution
Do not update the primary key of a row: delete the row and add a new row
instead.

Inserting rows The steps to insert a row are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the insert operation. Rows are automatically sorted by the index
specified when opening the table.

❖ To insert a row

1. Enter Insert mode.

For example, the following instruction enters Insert mode on the table
CustomerTable.

’ eMbedded Visual Basic
CustomerTable.InsertBegin

// JScript
CustomerTable.InsertBegin();

2. Set the values for the new row.

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, NULL is
used. If the column does not allow NULL, the following defaults are
used:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL explicitly, use the setNull method.

’ eMbedded Visual Basic
CustomerTable.Columns("Fname").Value = fname
CustomerTable.Columns("Lname").Value = lname

// JScript
CustomerTable.Columns("Fname").Value = fname;
CustomerTable.Columns("Lname").Value = lname;

86

Chapter 5. Understanding UltraLite ActiveX Development

3. Execute the insertion.

The inserted row is permanently saved to the database when a Commit is
carried out. In AutoCommit mode, a Commit is carried out as part of the
Insert method.

’eMbedded Visual Basic
CustomerTable.Insert

// JScript
CustomerTable.Insert();

Deleting rows There is no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

❖ To delete a row

1. Move to the row you wish to delete.

2. Execute the deletion.

’eMbedded Visual Basic
tCustomer.Delete

// JScript
tCustomer.Delete();

Working with BLOB data

The following code fragment demonstrates how to use the
ULColumn.GetByteChunk method to get BLOB data.

☞ For more information, see“GetByteChunk method” on page 106.

’ eMbedded Visual Basic
Dim offset As Integer
Dim nBytes As Integer
Dim chunk(1024) As Byte
ll = col.GetByteChunk(0, chunk, 1024)
If nBytes <> 1024 Then

’ only got nBytes bytes, expected 1024
Else

’ have 1024 bytes
End if

// JScript
var offset;
var nBytes;
var chunk = new Array();
nBytes = col.GetByteChunk(0, chunk, 1024);
if (nBytes != 1024) {

// only got nBytes bytes, expected 1024
} else {

// have 1024 bytes
}

87

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the integrity of the data
in your database. A transaction is a logical unit of work: either the entire
transaction is executed, or none of it is executed.

By default, UltraLite operates in AutoCommit mode. In AutoCommit mode,
each insert, update, or delete is executed as a separate transaction. Once the
operation is completed, the change is made to the database.

If you set the ULConnection.AutoCommit property to false, you can use
multi-statement transactions. For example, if your application transfers
money between two accounts, the deduction from the source account and the
addition to the destination account constitute a single transaction.

If AutoCommit is set to false, you must execute a ULConnection.Commit
statement to complete a transaction and make changes to your database
permanent, or you must execute a ULConnection. Rollback statement to
cancel all the operations of a transaction.

Note
Synchronization causes an AutoCommit even if you have AutoCommit set
to False.

Turning AutoCommit off improves performance.

88

Chapter 5. Understanding UltraLite ActiveX Development

Accessing schema information
Each ULConnection, ULTable, and ULColumn object contains a schema
property. These schema objects provide information about the tables,
columns, indexes, and publications in a database.

Note
You cannot modify the schema through the API. You can only retrieve
information about the schema.

☞ For information about modifying the schema, see“Creating UltraLite
database schema files” on page 64.

♦ ULDatabaseSchema The number and names of the tables in the
database, as well as global properties such as the format of dates and
times.

To obtain a ULDatabaseSchema object, access the
ULConnection.Schema property.

♦ ULTableSchema The number and names of columns in the table, as
well as the Indexes collections for the table.

To obtain a ULTableSchema object, access the ULTable.Schema property.

♦ ULColumnSchema Information about an individual column, including
its default value, name, and whether it is autoincrement.

To obtain a ULColumnSchema object, access the ULColumn.Schema
property.

♦ ULIndexSchema Information about the column, or columns, in the
index. As an index has no data directly associated with it, there is no
separate ULIndex object, only a ULIndexSchema object.

The ULIndexSchema objects are available as part of the
ULTableSchema.Indexes collection.

♦ ULPublicationSchema The numbers and names of tables and columns
contained in a publication. Publications are also comprised of schema
only, so there is a ULPublicationSchema object but no ULPublication
object.

The ULPublicationSchema objects are available as part of the
ULDatabaseSchema.Publications collection.

89

Error handling
In normal operation, UltraLite ActiveX can throw errors that are intended to
be caught and handled in the script environment. Errors are expressed as
SQLCODE values, negative numbers indicating the particular kind of error.

☞ For a list of error codes thrown by UltraLite ActiveX, see“ULSQLCode
enumeration” on page 142.

UltraLite ActiveX throws errors from only the ULDatabaseManager and
ULConnection objects. The following methods of ULDatabaseManager can
throw errors.

♦ CreateDatabase

♦ CreateDatabaseWithParms

♦ DropDatabase

♦ DropDatabaseWithParms

♦ OpenConnection

♦ OpenConnectionWithParms

All other errors and exceptions within UltraLite ActiveX are routed through
the ULConnection object.

☞ For more information about accessing error numbers from
ULDatabaseManager and ULConnection objects, see“ULConnection class”
on page 111and“ULDatabaseManager class” on page 120.

The following sections explain how to implement error handling in
eMbedded Visual Basic and JScript.

Error handling in eMbedded Visual Basic

You can use the standard eMbedded Visual Basic error-handling features to
handle errors. To enable error handling, use the On Error Resume Next
statement. On Error Goto 0 causes errors to halt execution of your code.

The Err.Number property holds the SQLCODE value for an error. You can
also get the last error using the ULConnection.LastErrorCode property.

One common area where errors need to be caught is in handling missing
database files. In the following example, On Error Resume Next is in effect,
so control flows to the next statement following the one causing the error. If
the specified database does not exist, the Err object is loaded with the error
number and description.

90

Chapter 5. Understanding UltraLite ActiveX Development

’ eMbedded Visual Basic
On Error Resume Next
Err.Clear ’ Clear any previous errors
Set Connection = DBMgr.OpenConnection(udb)
If Err.Number <> 0 Then ’ Connection failed, no database?

Err.Clear
Set Connection = DBMgr.CreateDatabase(udb & usm)
If Err.Number <> 0 Then

MsgBox "Connect with " & udb & usm & " failed: " &
Err.Description

App.End
End If

End If

Error handling in JScript

There is no error handling in the version of JScript supported by Pocket IE.
The default Pocket IE settings cause script errors to be ignored and the script
to be silently terminated. When developing new JScript, this is unacceptable.

Set ShowScriptErrors
registry key

Using a remote registry editor, such as the one that comes with eMbedded
Visual Basic, you should create this key on your CE device:

[HKEY_CURRENT_USER\Software \Microsoft \Internet Explorer \
Main]ShowScriptErrors=dword:00000001

With this key set, Pocket Internet Explorer will provide error notification
messages for JScript code that fails. Note that the line number reported may
not be reliable.

Set ErrorResume
property

To suppress UltraLite ActiveX errors, the ULDatabaseManager and
ULConnection objects provide the following two properties.

♦ ErrorResume is set to True to disable throwing subsequent errors.

♦ LastErrorCode returns the error code set by the last operation.

One common area where errors need to be caught is in handling missing
database files, which are to be created from a schema. In the following
example, the ULDatabaseManager.ErrorResume property is True, so control
flows to the next statement following the one causing the error. If the
specified database does not exist, the LastErrorCode property is loaded with
the error number.

91

// JScript
DBMgr.ErrorResume = true; // Do not throw errors
Connection = DBMgr.OpenConnection(udb);
if (DBMgr.LastErrorCode != 0) {

Connection = DBMgr.CreateDatabase(udb + usm);
if (DBMgr.LastErrorCode != 0) {

alert("Connect with " + udb + usm + failed: " +
DBMgr.LastErrorCode);

}
}

92

Chapter 5. Understanding UltraLite ActiveX Development

User authentication
New users have to be added from an existing connection. As all UltraLite
databases are created with a default user ID and password of DBA and SQL,
respectively, you must first connect as this initial user.

You cannot change a user ID: you add a user and delete an existing user. A
maximum of four user IDs are permitted for each UltraLite database.

☞ For more information about granting or revoking connection authority,
see“GrantConnectTo method” on page 114and“RevokeConnectFrom
method” on page 115.

❖ To add a user or change the password for an existing user

1. Connect to the database as a user with DBA authority.

2. Grant the user connection authority with the desired password.

’eMbedded Visual Basic
conn.GrantConnectTo("Robert", "newPassword")

// JScript
conn.GrantConnectTo("Robert", "newPassword");

❖ To delet an existing user

1. Connect to the database as a user with DBA authority.

2. Revoke the user’s connection authority as follows.

’eMbedded Visual Basic
conn.RevokeConnectFrom("Robert")

// JScript
conn.RevokeConnectFrom("Robert");

93

Synchronizing UltraLite applications
Users of SQL Anywhere Studio 9.0 can synchronize UltraLite applications
with a central database. Synchronization requires the MobiLink
synchronization software included with SQL Anywhere Studio.

This section provides a brief introduction to synchronization and describes
some features of particular interest to users of UltraLite ActiveX.
Synchronization details can be found in the MobiLink Synchronization
User’s Guide and the UltraLite Database User’s Guide.

You can also find a working example of synchronization in the CustDB
sample application. For eMbedded Visual Basic, this sample is described in
“Tutorial: An UltraLite Application for PocketPC” on page 5. For JScript,
the sample is described in“Tutorial: An UltraLite Application for Pocket
IE” on page 43.

UltraLite ActiveX supports TCP/IP, HTTP, and HTTPS synchronization.
Synchronization is initiated by the UltraLite application. In all cases, you
use methods and properties of the ULConnection object to control
synchronization.

Note
To synchronize using encrypted synchronization (HTTPS) or to use en-
cryption over TCP/IP you must obtain the separately-licensable security
option. To order this option, see the card in your SQL Anywhere Studio
package or seehttp://www.sybase.com/detail?id=1015780.

☞ For more information, see “Welcome to SQL Anywhere Studio”
[Introducing SQL Anywhere Studio,page 4].

☞ For more information, see“ULConnection class” on page 111.

❖ To synchronize over TCP/IP or HTTP

1. Prepare the synchronization information.

Assign values to the required properties of the ULConnection.SyncParms
object.

☞ For information about the properties and the values that you should
set, see “Synchronization”[UltraLite Database User’s Guide,page 143].

2. Synchronize.

Call the ULConnection.Synchronize method.

94

Chapter 5. Understanding UltraLite ActiveX Development

Monitoring synchronization progress

This section applies only to eMbedded Visual Basic. You cannot monitor
synchronization progress using JScript.

To monitor synchronization progress, you add a synchronization dialog to
your project and code accordingly.

The following procedure causes the dialog inULSyncStatus.ebfto show
status messages.

❖ To add a synchronization status dialog to your project

1. Browse to theSamples\UltraLiteActiveX\dbview.evbsubdirectory of
your SQL Anywhere installation.

2. Copy and addULSyncStatus.basandULSyncStatus.ebfto your project.

3. Add code to your UltraLite ActiveX project.
♦ Instead of using CreateObject to instantiate your ULDatabase

Manager, use the following instruction:

Set DBMgr =
CreateObjectWithEvents("UltraLite.ULDatabaseMan
ager", "UL_")

♦ Ensure that your synchronization call accepts callbacks as follows.

connection.Synchronize(True)

♦ Write code that captures event notifications in the Synchronization
Progress Dialog.
The following method shows users insert, update, and delete data when
data is sent to the consolidated database.

Private Sub UL_OnSend(ByVal nBytes As Long, ByVal _
nInserts As Long, ByVal nUpdates As Long, ByVal nDeletes

As Long)_
prLine "OnSend " & nBytes & " bytes, " & nInserts &_

" inserts, " & nUpdates & " updates, " &
nDeletes & " deletes"_

End Sub

The following method shows users insert, update, and delete data when
data is received at the consolidated database.

Private Sub UL_OnReceive(ByVal nBytes As Long, ByVal _
nInserts As Long, ByVal nUpdates As Long, ByVal nDeletes

As Long)_
prLine "OnReceive " & nBytes & " bytes, " & nInserts &

" inserts, " & nUpdates & " updates, " &
nDeletes & " deletes"

End Sub

95

The following method shows users when synchronization states are
changed.

Private Sub UL_OnStateChange(ByVal newState As Long, _
ByVal oldState As Long)

prLine "OnStateChange new:" & newState & ", old: " &
oldState

End Sub

The following method shows users when the currently synchronized
table changes.

Private Sub UL_OnTableChange(ByVal newTableIndex As _
Long, ByVal numTables As Long)

prLine "OnTableChange index:" & newTableIndex & ",
#tables=" & numTables

End Sub

96

Chapter 5. Understanding UltraLite ActiveX Development

Component samples, demonstrations and code
fragments

This section describes the tutorials and other samples available to guide you
through the process of building an application using UltraLite ActiveX.

♦ eMbedded Visual Basic The following two tutorials demonstrate the
use of UltraLite ActiveX with eMbedded Visual Basic.

• “Tutorial: An UltraLite Application for PocketPC” on page 5builds an
UltraLite ActiveX application using the table API.

• “Tutorial: Using Dynamic SQL in an UltraLite Application for
PocketPC” on page 25builds an UltraLite ActiveX application using
Dynamic SQL.

♦ JScript The following tutorial demonstrates the use of UltraLite
ActiveX with JScript.

• “Tutorial: An UltraLite Application for Pocket IE” on page 43builds
an UltraLite ActiveX application using the table API.

97

CHAPTER 6

UltraLite ActiveX API Reference

About this chapter This chapter describes the UltraLite ActiveX API, a set of classes and
methods that allow you to write eMbedded Visual Basic or JScript code for
applications that use UltraLite databases. Each topic contains information
about a specific class, method, constant, or enum. The reference is organized
by class, with associated methods beneath.

Contents Topic: page

IULColumns collection 101

IULIndexSchemas collection 102

IULPublicationSchemas collection 103

ULAuthStatusCode 104

ULColumn class 105

ULColumnSchema class 110

ULConnection class 111

ULConnectionParms class 117

ULDatabaseManager class 120

ULDatabaseSchema class 128

ULIndexSchema class 131

ULPreparedStatement class 132

ULPublicationSchema class 135

ULResultSet class 136

ULResultSetSchema class 141

ULSQLCode enumeration 142

ULSQLType enumeration 146

ULStreamErrorCode enumeration 147

ULStreamErrorContext enumeration 150

99

Topic: page

ULStreamErrorID enumeration 151

ULStreamType enumeration 152

ULSyncParms class 153

ULSyncResult class 155

ULSyncState enumeration 156

ULTable class 157

ULTableSchema class 166

100

Chapter 6. UltraLite ActiveX API Reference

IULColumns collection
A collection of ULColumn objects that provides you with metadata about
the column.

Properties

Prototype Description

Count as long (read-only) Gets the number of columns in the
collection.

Item (Index) as ULColumn (read-only) Gets a value from the collection.
Index can be a number from 1 to
count, or the name of a column.

Example You can enumerate the columns in a IULColumns collection using the For
Each statement in eMbedded Visual Basic or the for ... in statement in
JScript.

’ eMbedded Visual Basic
Dim col As ULColumn
For Each col In table.Columns

If col.IsNull Then
MsgBox col.Schema.Name & "is null"
End If

Next

// JScript
var col : UltraLite.ULColumn;
var collection = table.Columns;
for (col in collection) {

if (col.IsNull) {
alert (col.Schema.Name + "is null");

}
}

101

IULIndexSchemas collection
A collection of ULIndexSchema objects that provides you with
ULIndexSchema information.

Properties

Prototype Description

Count as long (read-only) Gets the number of indexes in the collection.

Item (Index) as ULIn-
dexSchema (read-only)

Gets an index from the collection. Items are
indexed using 1-origin indexing. Index can
be a number from 1 to count.

Example You can enumerate the indexes on a table using the For Each statement in
eMbedded Visual Basic or the for ... in statement in JScript.

’ eMbedded Visual Basic
Dim index As ULIndexSchema
For Each index In TableSchema.Indexes

’use index
Next

// JScript
var index : UltraLite.ULIndexSchema;
var collection = TableSchema.Indexes;
for (index in collection) {

’ use index
}

102

Chapter 6. UltraLite ActiveX API Reference

IULPublicationSchemas collection
A collection of ULPublicationSchema objects that provides you with
information about ULPublicationSchema.

Properties

Prototype Description

Count as long (read-only) Gets the number of publications in
the collection.

Item (Index) as ULPublicationSchema
(read-only)

Gets a publication from the collec-
tion.

Example You can enumerate all the publications using the For Each statement in
eMbedded Visual Basic or the for ... in statement in JScript.

’ eMbedded Visual Basic
Dim pub As ULPublicationSchema
For Each pub In connection.schema.publications

’use pub
Next

// JScript
var ps : UltraLite.ULPublicationSchema;
var collection = connection.schema.publications;
for (pub in collection) {

’ use pub
}

103

ULAuthStatusCode
The ULAuthStatusCode is the auth_status synchronization parameter used
in the ULSyncResult object.

Constant Value

ulAuthUnknown 0

ulAuthValid 1000

ulAuthValidButExpiresSoon 2000

ulAuthExpired 3000

ulAuthInvalid 4000

ulAuthInUse 5000

104

Chapter 6. UltraLite ActiveX API Reference

ULColumn class
The ULColumn object allows you to get and set values from a table in a
database. Each column object represents a particular value in a table; the
row is determined by the ULTable object.

A note on converting from UltraLite database types to Visual Basic
types.
UltraLite attempts to convert from the database column data type to the
Visual Basic data type. If a conversion cannot be successfully done, then a
ulSQLE_CONVERSION_ERROR is raised.

☞ For information about the table object, see“ULTable class” on page 157.

Properties

Prototype Description

IsNull As Boolean (read
only)

Indicates whether the column value is NULL.

Schema As ULColumn-
Schema (read only)

Gets the object representing the schema of the
column.

Value As Variant Gets or sets the data value of this column in the
current row as Variant.

AppendByteChunk method

Prototype AppendByteChunk(_
byteArray , _
[chunkSize] _

) As Boolean
Member of UltraliteActiveX.ULColumn

Description Appends the buffer of bytes to the row’s column if the type is
ulTypeLongBinary or TypeBinary.

Parameters byteArray The array of bytes to be appended.

chunkSize The number of bytes to be appended. If not provided, the
length of byteArray is used.

Returns True if successful.

Falseif unsuccessful.

105

Errors set

Error Description

ulSQLE_CONVERSION_ERROR The error occurs if the column data
type is not LONG BINARY or
BINARY

Example In the following example, 512 bytes of data are appended to the edata
column.

’ eMbedded Visual Basic
Dim data (512) As Byte
’ ...
table.Columns("edata").AppendByteChunk(data)

// JScript
var data = new Array();
// ...
table.Columns("edata").AppendByteChunk(data);

AppendStringChunk method

Prototype AppendStringChunk(chunk)
Member of UltraLiteActiveX.ULColumn

Description Appends the string to the column if the type is TypeLongString or
TypeString.

Parameters data A string to append to the existing string in a table.

Errors set

Error Description

ulSQLE_CONVERSION_ERROR The error occurs if the column data
type is not VARCHAR.

GetByteChunk method

Prototype GetByteChunk (_
offset As Long, _
pByteArray , _
[chunkSize] _

) As Long
Member of UltraliteActiveX.ULColumn

Description Fills the buffer passed in, which should be an array, with the binary data in
the column. Suitable for BLOBS.

Parameters offset The offset into the underlying array of bytes. The source offset must

106

Chapter 6. UltraLite ActiveX API Reference

be greater than or equal to 0, otherwise a
ulSQLE_INVALID_PARAMETER error will be raised.

pByteArray A variant. Array data is passed by reference as array.

chunkSize An optional parameter representing an array of bytes expressed
as Long type.

Returns The number of bytes read.

Errors set

Error Description

ulSQLE_CONVERSION_-
ERROR

The error occurs if the column data type
isn’t BINARY or LONG BINARY.

ulSQLE_INVALID_-
PARAMETER

The error occurs if the column data type
is BINARY and the offset is not 0 or 1,
or, the data length is less than 0.

The error also occurs if the column data
type is LONG BINARY and the offset
is less than 1 or, the data length is less
than 0.

Example In the following example, edata is a column name.

’ eMbedded Visual Basic
Dim data (512) As Byte
’ ...
table.Columns.Item("edata").GetByteChunk(0,data)

// JScript
var data = new Array();
// ...
table.Columns.Item("edata").GetByteChunk(0, data);

GetStringChunk method

Prototype GetStringChunk(_
offset As Long, _
pStringObj , _
[chunkSize] _

) As Long
Member of UltraliteActiveX.ULColumn

Description Fills the string passed in with the binary data from the column. Suitable for
LONG VARCHAR columns.

Parameters offset The character offset into the underlying data from which you start
getting the String.

107

pStringObj The string array you want filled. This variant is passed by
reference.

chunkSize An optional parameter representing the number of characters to
retrieve.

Returns The number of characters copied. Room is left for a null termination
character and the length does not include that character.

Errors

Error Description

ulSQLE_CONVERSION_-
ERROR

The error occurs if the column data type
isn’t TypeString or TypeLongString.

ulSQLE_INVALID_-
PARAMETER

The error occurs if the column data type
is CHAR and the src_offset is greater
than 64K.

ulSQLE_INVALID_-
PARAMETER

The error occurs if src_offset is less
than 1 or string length is less than 0.

Example ’ eMbedded Visual Basic
Dim cd As ULColumn
Dim S As Strong
Dim l, offset As Long
S=String(512, vbNulChar)
offset=0
Do

l=cd.GetStringChunk(offset, S, 512)
If l=0 then Exit Do
’use string ins

Loop

// JScript
var cd;
var s;
var l, offset;
l = 0;
While (!l) {

l = cd.GetStringChunk(offset, s, 512);
}

SetByteChunk method

Prototype SetByteChunk (_
ByteArray , _
[length] _

) As Boolean
Member of UltraliteActiveX.ULColumn

108

Chapter 6. UltraLite ActiveX API Reference

Description Sets the value of the column in the database to the array of bytes in the data
field.

Parameters ByteArray An array of bytes of type Variant.

length The length of the array.

Returns True if successful.

Falseif unsuccessful.

Errors set

Error Description

ulSQLE_CONVERSION_ERROR The error occurs if the column data
type is not BINARY or LONG
BINARY.

ulSQLE_INVALID_PARAMETER The error occurs if the data length
is less than 0.

ulSQLE_INVALID_PARAMETER The error occurs if the data length
is greater than 64K.

Example In the following example, edata is a column name and the first 232 bytes of
the data variable are stored in the database.

’ eMbedded Visual Basic
Dim data (1 to 512) As Byte
’ ...
table.Columns.Item("edata").SetByteChunk(data,232)

// JScript
var data = new Array();
// ...
table.Columns.Item("edata").SetByteChunk(data,232);

SetToDefault method

Prototype SetToDefault()
Member of UltraliteActiveX.IColumn

Description Sets the current column to its default value as defined by the database
schema. For example, an autoincrement column will be assigned the next
available value.

109

ULColumnSchema class
The ULColumnSchema object allows you to obtain metadata, the attributes
of a column, in a table. The attributes are independent of the data in the
table.

Properties

Prototype Description

AutoIncrement As Boolean
(read-only)

Indicates whether this column defaults to an
autoincrement value. True if AutoIncrement.

DefaultValue As String
(read-only)

Gets the value used if one was not provided
when a row was inserted.

GlobalAutoIncrement As
Boolean (read-only)

Indicates whether this column defaults to a
global autoincrement value.

ID As Long(read-only) Gets the ID of the column.

Name As String (read-
only)

Gets the column name.

Nullable As Boolean (read-
only)

Indicates whether the column permits NULLs.

OptimalIndex As ULIn-
dexSchema (read-only)

Gets the index with this column as its first
column.

Precision As Integer (read-
only)

Gets the precision value for the column if it is
of type ulTypeNumeric.

Scale As Long (read-only) Gets the scale value for the column .

Size As Long (read-only) Gets the column size for binary, numeric, and
character data types.

SQLType As ULSQLType
(read-only)

Gets the SQL type assigned to the column when
it was created.

110

Chapter 6. UltraLite ActiveX API Reference

ULConnection class
The ULConnection object represents an UltraLite database connection. It
provides methods to get database objects like tables, and to synchronize.

Example

Properties The

following are properties of ULConnection:

Prototype Description

AutoCommit As Boolean Indicates the AutoCommit value. If true,
all data changes are committed immediately
after they are made. Otherwise, changes are
not committed to the database until Commit
is called. By default, this property is True.

DatabaseID As Long (write-
only)

Sets the identification number for the con-
nected database. When you write the
DatabaseID, you set the database ID value to
be used for global autoincrement columns.

DatabaseManager As UL-
DatabaseManager (read-only)

Gets the owning database manager object.

DatabaseNew As Boolean
(read-only)

Indicates whether there is no database
schema loaded. In this case, your applica-
tion must load a new schema.

ErrorResume As Boolean Indicates the error handling method.

GlobalAutoIncrementUsage
As Long (read-only)

Gets the percentage of available global
autoincrement values that have been used.

LastErrorCode As SQLCode-
Constants

Gets the last error number, and allows you
to clear the previous error code.

LastErrorDescription As
String (read-only)

Gets the last error description.

LastIdentity As Long (read-
only)

Gets the most recent value inserted into a
column with a default of autoincrement or
global autoincrement.

OpenParms As String (read-
only)

Gets the string used to open the connection
to the database.

111

Prototype Description

Schema As ULDatabas-
eSchema (read-only)

Gets the ULDatabaseSchema object which
represents the definition of the database.

SQLErrorOffset As Integer
(read-only)

If PrepareStatement raises an error, indi-
cates the 1-based offset in the SQL state-
ment where the error was noted. If this
value is less than or equal to 0, no offset
information is available.

SyncParms As ULSyncParms
(read-only)

Gets the synchronization parameters object.

SyncResult As ULSyncResult
(read-only)

Gets the results of the most recent synchro-
nization.

CancelSynchronize method

Prototype CancelSynchronize()
Member of UltraliteActiveX.ULConnection

Description When called during synchronization, the method cancels the
synchronization. The user can only call this method during one of the
synchronization events.

ChangeEncryptionKey method

Prototype ChangeEncryptionKey(newkeyAs String)
Member of UltraliteActiveX.ULConnection

Description Encrypt the database with the specified key.

Parameters newkey The new encryption key value for the database.

Example When you call CreateDatabaseWithParms and pass in the parms object, with
a value in place for EncryptionKey, the database is created with encryption.
Another way to change the encryption key is by specifying the new
encryption key on the ULConnection object. In this example, “apricot” is
the key.

Connection.ChangeEncryptionKey("apricot")

Connections to the database, such as OpenConnectionWithParms, must,
after the database is encrypted, specifyapricotas the EncryptionKey
property too. Otherwise, the connection will fail.

112

Chapter 6. UltraLite ActiveX API Reference

Close method

Prototype Close()
Member of UltraliteActiveX.ULConnection

Description Closes the connection to the database. No methods on the ULConnection
object or any other database object for this connection should be called after
this method is called. If a connection is not explicitly closed, it will be
implicitly closed when the application terminates.

Commit method

Prototype Commit()
Member of UltraliteActiveX.ULConnection

Description Commits outstanding changes to the database. This is only useful if
AutoCommit is false.

For more information, see Autocommit under ULConnection “Properties.”
[UltraLite for MobileVB User’s Guide,page 89]

CountUploadRows method

Prototype CountUploadRows(
[mask As Long = 0], _
[threshold As Long = -1] _

) As Long
Member of UltraliteActiveX.ULConnection

Description Returns the number of rows that need to be uploaded when synchronization
next takes place.

Parameters mask An optional, unique identifier that refers to the publications to check.
Use 0 for all publications. If not specified, then the value is zero.

threshold An optional parameter representing the maximum number of
rows to count. Use -1 to indicate no maximum. If not specified, this value
is -1.

Returns Returns the number of rows that need to be uploaded in next
synchronization.

GetNewUUID method

Prototype GetNewUUID() As String
Member of UltraliteActiveX.ULConnection

Description Returns a new universally unique identifier in a string format. This string is
of the formxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

113

Returns Each call returns a new UUID.

GetTable method

Prototype GetTable(name As String) As ULTable
Member of UltraliteActiveX.ULConnection

Description Returns theULTable object for the specified table. You must then open the
table before data can be read from it.

Parameters name The name of the table sought.

Returns Returns the ULTable object.

GrantConnectTo method

Prototype GrantConnectTo(
userid As String, _
password As String _

)
Member of UltraliteActiveX.ULConnection

Description Grants the specified user permission to connect to the database with the
given password.

Parameters userid The user ID being granted authority to connect.

password The password the user ID must specify for connecting.

LastDownloadTime method

Prototype LastDownloadTime([mask As Long = 0] As Date
Member of UltraliteActiveX.ULConnection

Description Returns the time of last download for the publication(s).

Parameters mask An optional, unique identifier that refers to the publications to check.
Use 0 for all publications. If this parameter is omitted, 0 is used.

Returns The last download time in the form of a date.

PrepareStatement method

Prototype PrepareStatement(sqlStatement As String) As ULPreparedStatement
Member of UltraliteActiveX.ULConnection

Description Prepares a SQL statement for execution.

Parameters sqlStatement The SQL statement to prepare.

Returns Returns a ULPreparedStatement. If there was a problem preparing the
statement, an error will be raised. The offset into the statement where the

114

Chapter 6. UltraLite ActiveX API Reference

error occurred can be determined from the SQLErrorOffset property.

ResetLastDownloadTime method

Prototype ResetLastDownloadTime([mask As Long])
Member of UltraliteActiveX.ULConnection

Description Resets the time of the most recent download for the publications specified in
the mask.

Parameters mask The mask of the publications to reset. The default is 0, specifying all
publications.

RevokeConnectFrom method

Prototype RevokeConnectFrom(userID As String)
Member of UltraliteActiveX.ULConnection

Description Revokes the specified user’s ability to connect to the database.

Parameters userid The user ID for the user to be revoked.

Rollback method

Prototype Rollback()
Member of UltraliteActiveX.ULConnection

Description Rolls back outstanding changes to the database. This is only useful if
AutoCommit is false.

StartSynchronizationDelete method

Prototype StartSynchronizationDelete()
Member of UltraliteActiveX.ULConnection

Description Once StartSynchronizationDelete is called, all delete operations are again
synchronized.

StopSynchronizationDelete method

Prototype StopSynchronizationDelete()
Member of UltraliteActiveX.ULConnection

Description Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

115

StringToUUID method

Prototype StringToUUID(s_uuid As String)
Member of UltraliteActiveX.ULConnection

Description Converts the universally unique identifier represented as a String in the form
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx to a Byte array of 16 bytes.

Parameters s_uuid A Universally Unique Identifier passed in as a string. You can
obtain a new string UUID using GetNewUUID.

Example The following example will convert the string form of the UUID
0a141e28-323c-4650-5a64-6e78828c96a0 to a binary array:

’ eMbedded Visual Basic
Dim buff(1 to 16) As Byte
conn.StringToUUID("0a141e28-323c-4650-5a64-6e78828c96a0",

VarPtr(buff(1)))

Synchronize method

Prototype Synchronize([show-progress As Boolean])
Member of UltraliteActiveX.ULConnection

Description Synchronizes a consolidated database using MobiLink. This function does
not return until synchronization is complete, but you can be notified of
events if the connection was declared WithEvents.

Parameters show-progress An optional parameter whose value may be true or false.
Set this to true to show the progress of synchronization as it happens.
Default is false.

UUIDToString method

Prototype UUIDToString(buffer_16_bytes) As String
Member of UltraliteActiveX.ULConnection

Description Expects a VarPtr to a buffer of 16 bytes. Converts this buffer to a string in
the formxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. The buffer must be
declared (1 to 16) As Byte (that is, an array of 16 bytes). Visual Basic is
unable to check the bounds for this buffer so if it is not big enough, the
application could overwrite memory.

Parameters buffer_16_bytes An array of 16 bytes containing a UUID.

Returns Each call returns a string of the form
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

116

Chapter 6. UltraLite ActiveX API Reference

ULConnectionParms class
The ULConnectionParms object allows you to set userID, password, schema
file, file on your desktop, and numerous other parameters that specify your
connection.

Properties

The ULConnectionParms class specifies parameters for opening a
connection to an UltraLite database.

In UltraLite ActiveX, you can use the ULConnectionParms object and set
your connection properties in your code. You use the ULConnectionParms
object in conjunction with the
ULDatabaseManager.CreateDatabaseWithParmsand
ULDatabaseManager.OpenConnectionWithParmsmethods.

Note
Databases are created with a single authenticated user, DBA, whose initial
password is SQL. By default, connections are opened using the user ID
DBA and password SQL.

☞ For more information about the meaning of these parameters, see
“Connection Parameters”[UltraLite Database User’s Guide,page 49].

Prototype Description

AdditionalParms As String
(read-write)

Additional parameters specified asname=value
pairs separated with semi-colons.

☞ See “Additional Parms connection pa-
rameter” [UltraLite Database User’s Guide,
page 65].

CacheSize As String (read-
write)

The size of the cache. CacheSize values are
specified in bytes. Use the suffix k or K
for kilobytes and use the suffix m or M for
megabytes. The default cache size is sixteen
pages. Given a default page size of 4 KB, the
default cache size is 64 KB.

☞ See “Cache Size connection parameter”
[UltraLite Database User’s Guide,page 66].

117

Prototype Description

ConnectionName As String
(read-write)

A name for the connection. This is needed only
if you create more than one connection to the
database.

☞ See “Connection Name connection pa-
rameter” [UltraLite Database User’s Guide,
page 60].

DatabaseOnCE As String
(read-write)

The filename of the database deployed to
PocketPC.

☞ See “Database On CE connection pa-
rameter” [UltraLite Database User’s Guide,
page 54].

DatabaseOnDesktop As
String (read-write)

The filename of the database during develop-
ment.

☞ See “Database On Desktop connection
parameter” [UltraLite Database User’s Guide,
page 55].

EncryptionKey As String
(read-write)

A key for encrypting the database. OpenCon-
nection and OpenConnectionWithParms must
use the same key as specified during database
creation. Suggestions for keys are:

1. Select an arbitrary, lengthy string

2. Select strings with a variety of numbers, let-
ters and special characters, so as to decrease
the chances of key penetration.

☞ See “Encryption Key connection pa-
rameter” [UltraLite Database User’s Guide,
page 63].

ParmsUsed As String (read-
only)

The parameters used by the ULDatabaseMan-
ager. Useful for debugging purposes.

Password As String (read-
write)

The password for an authenticated user.
Databases are initially created with one au-
thenticated user passwordSQL. Passwords
are case-insensitive if the database is case-
insensitive and case-sensitive if the database is
case-sensitive. The default value isSQL.

☞ See “Password connection parameter”
[UltraLite Database User’s Guide,page 58].

118

Chapter 6. UltraLite ActiveX API Reference

Prototype Description

ReserveSize As Integer
(read-write)

The amount of file system space to reserve for
storage of UltraLite persistent data.

☞ See “Reserve Size connection parameter”
[UltraLite Database User’s Guide,page 68].

SchemaOnCE As String
(read-write)

The schema filename deployed to PocketPC.

☞ See “Schema On CE connection pa-
rameter” [UltraLite Database User’s Guide,
page 61].

SchemaOnDesktop As
String (read-write)

The schema filename during development.

☞ See “Schema On Desktop connection
parameter” [UltraLite Database User’s Guide,
page 62].

UserID As String (read-
write)

The authenticated user for the database.
Databases are initially created with one au-
thenticated user DBA. The UserID is case-
insensitive if the database is case-insensitive
and case-sensitive if the database is case-
sensitive. The default value isDBA.

☞ See “User ID connection parameter”
[UltraLite Database User’s Guide,page 59].

119

ULDatabaseManager class
The ULDatabaseManager class is used to manage connections and
databases. Your application should only have one instance of this object.
Creating a database and establishing a connection to it is a necessary first
step in using UltraLite. It is suggested that you use
CreateDatabaseWithParms, OpenConnectionWithParms and
DropDatabaseWithParms, and include checks in your code to ensure that
you are connected properly before attempting any DML with the database.

Parms or no parms?
Two types of methods exist for creating, opening and dropping connections
to your database: Methods WithParms and methods that do not use the
ULConnectionParms object. Methods WithParms allow you to use a
ULConnectionParms object to manipulate connection parameters with ease
and accuracy. Methods that do not use the ULConnectionParms object
require that you can successfully create a connections string and use that
connection string in a CreateDatabase, OpenConnection or DropDatabase
method.

Properties

The following are properties of ULDatabaseManager:

Prototype Description

ErrorResume As
Boolean

The error handling method. The default is false. If set
to true, an error will not be raised when ULDatabase-
Manager methods fail.

LastErrorCode As
SQLCodeCon-
stants

Gets the last error number, and allows you to clear the
previous error code.

Version As String
(read-only)

Gets the version string of the UltraLite component.

CreateDatabase method

CreateDatabase creates a new database and returns a connection to it.

Prototype CreateDatabase(parms As String) As ULConnection
Member of UltraliteActiveX.ULDatabaseManager

Description Creates a new database and returns a connection to it. It fails if the specified
database already exists. A valid schema file must be specified to successfully

120

Chapter 6. UltraLite ActiveX API Reference

create a database. To alter the schema of an existing database, use the
ULDatabaseSchema ApplyFile method.

Caution
Only one database may be active at a given time. Attempts to create a
different database while other connections are open will result in an error.

☞ For more information about ApplyFile, see“ULDatabaseSchema class”
on page 128and“ApplyFile method” on page 129.

Parameters parms A semicolon-separated list of database creation parameters.

☞ For information about connection parameters, see “Connection
Parameters”[UltraLite Database User’s Guide,page 49].

Returns Returns a connection to a newly created UltraLite database.

Examples The example below uses CreateObject to create and open a new database.

’ eMbedded Visual Basic
open_parms = "file_name= \tutCustomer.udb"
schema_parms = open_parms & ";" & "schema_name= \tutCustomer.usm"
Set DatabaseMgr = CreateObject("UltraLite.ULDatabaseManager")
Set Connection = DatabaseMgr.CreateDatabase(schema_parms)

// JScript
open_parms = "file_name= \\tutCustomer.udb";
schema parms = open_parms + ";" + "schema_name= \\

tutCustomer.usm"
DatabaseMgr = new ActiveXObject("UltraLite.ULDatabaseManager")
Set Connection = DatabaseMgr.CreateDatabase(schema_parms);

The example below shows how you can create a ULDatabaseManager with
events. This tactic is used for showing synchronization progress.

This functionality is only available with eMbedded Visual Basic.

☞ For more information about showing synchronization progress, see
“Monitoring synchronization progress” on page 95.

’eMbedded Visual Basic
Set DBMgr =

CreateObjectWithEvents("UltraLite.ULDatabaseManager",
"_")

☞ For information about connection parameters, see “OpenConnection
method”[UltraLite for MobileVB User’s Guide,page 103].

CreateDatabaseWithParms method

CreateDatabaseWithParms creates a new database using a connection
parameter object, and returns a connection to it.

121

Prototype CreateDatabaseWithParms(parms As ULConnection-
Parms) As ULConnection
Member of UltraliteActiveX.ULDatabaseManager

Description Creates a new database and returns a connection to it. It fails if the specified
database already exists. A valid schema file must be specified to successfully
create a database. To alter the schema of an existing database, use the
ULDatabaseSchema.ApplyFileWithParmsmethod.

Caution
Only one database may be active at a given time. Attempts to create a
different database while other connections are open will result in an error.

Parameters parms A ULConnectionParms object that holds a set of connection
parameters.

Returns Returns a connection to a newly created UltraLite database. Fails if the
specified database already exists.

Examples The following example assumes you have placed the ULConnectionParms
object on your form, named itLoginParms and have specified the database
locations and schema locations in the Connection parms properties window.

The example below uses CreateDatabaseWithParms to create and open a
new database.

’ eMbedded Visual Basic
’ Use CreateObject in to get an instance of the

ULDatabaseManager object
Set DatabaseMgr = CreateObject("UltraLite.ULDatabaseManager")
’ Use CreateObject to get an instance of the ULConnectionParms

object
Dim LoginParms As ULConnectionParms
Set LoginParms = CreateObject("UltraLite.ULConnectionParms")
LoginParms.DatabaseOnCE = "/tutorial/tutorial.udb"
LoginParms.SchemaOnCE = "/tutorial/tutorial.usm"
’ Drop the existing database and create a new database
Call DatabaseMgr.DropDatabaseWithParms(LoginParms)
Set Connection = DatabaseMgr.CreateDatabaseWithParms(LoginParms)

// JScript
’ get an instance of the ULDatabaseManager object
DatabaseMgr = new ActiveXObject("UltraLite.ULDatabaseManager");
var LoginParms;
LoginParms = new ActiveXObject("UltraLite.ULConnectionParms");
LoginParms.DatabaseOnCE = "//tutorial//tutorial.udb";
LoginParms.SchemaOnCE = "//tutorial//tutorial.usm";
’ Drop the existing database and create a new database
DatabaseMgr.DropDatabaseWithParms(LoginParms);
Connection = DatabaseMgr.CreateDatabaseWithParms(LoginParms);

122

Chapter 6. UltraLite ActiveX API Reference

DropDatabase method

The DropDatabase method deletes a database file.

Prototype DropDatabase(parms As String)
Member of UltraliteActiveX.ULDatabaseManager

Description Deletes the database file. All information in the database file is lost. Fails if
the specified database does not exist, or if there exist open connections at the
time of DropDatabase is executed.

Parameters parms The filename for the database.

Example The following example drops a database:

’ eMbedded Visual Basic
open_parms = "ce_file= \tutCustomer.udb"
DropDatabase(open_parms)

// JScript
open_parms = "ce_file= \\tutCustomer.udb";
DropDatabase(open_parms);

DropDatabaseWithParms method

The DropDatabaseWithParms method deletes a database file.

Prototype DropDatabaseWithParms(parms As ULConnectionParms)
Member of UltraliteActiveX.ULDatabaseManager

Description Deletes the database file. All information in the database file is lost.

Parameters parms The ULConnectionParms object containing vital connection
parameters .

Example The following example assumes you have declared and instantiated a
ULConnectionParms object namedLoginParms and used it to specify the
database location.

’ eMbedded Visual Basic
Call DatabaseMgr.DropDatabaseWithParms(LoginParms)

// JScript
DatabaseMgr.DropDatabseWithParms(LoginParms);

123

OnReceive event

Prototype OnReceive(
nBytes As Long, _
nInserts As Long, _
nUpdates As Long, _
nDeletes As Long _

)
Member of UltraliteActiveX.ULDatabaseManager

Description Reports download information to the application from the consolidated
database via MobiLink. This event may be called several times.

Parameters nBytes Cumulative count of bytes received.

nInserts Cumulative count of inserts received at the remote application
from the consolidated database.

nUpdates Cumulative count of updates received at the remote application
from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application
from the consolidated database.

Example ’eMbedded Visual Basic
Private Sub OnReceive(ByVal nBytes As Long, ByVal nInserts As

Long, ByVal nUpdates As Long, ByVal nDeletes As Long)
prLine "OnReceive " & nBytes & " bytes, " & Inserts & "

inserts, " & nUpdates & " updates, " & nDeletes & "
deletes"

End Sub

OnSend event

Prototype OnSend(
nBytes As Long,
nInserts As Long,
nUpdates As Long,
nDeletes As Long

)
Member of UltraliteActiveX.ULDatabaseManager

Description Reports upload information from the remote database via MobiLink to the
consolidated database. This event may be called several times.

Parameters nBytes Cumulative count of bytes sent by the remote application to the
consolidated database via MobiLink.

nInserts Cumulative count of inserts sent by the remote application to the
consolidated database via MobiLink.

124

Chapter 6. UltraLite ActiveX API Reference

nUpdates Cumulative count of updates sent by the remote application to
the consolidated database via MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the
consolidated database via MobiLink.

Example ’ eMbedded Visual Basic
Private Sub Connection_OnSend(ByVal nBytes As Long, _

ByVal nInserts As Long, ByVal nUpdates As Long, _
ByVal nDeletes As Long)

send_count = send_count + nBytes
DisplaySyncStatus

End Sub

OnStateChange event

Prototype OnStateChange(
newState As ULSyncState, _
oldState As ULSyncState _

)
Member of UltraliteActiveX.ULDatabaseManager

Description This event is called whenever the state of the synchronization changes.

Parameters newState The state that the synchronization process is about to enter.

oldState The state that the synchronization process just completed.

Example ’ eMbedded Visual Basic
Private Sub _OnStateChange(ByVal newState As Long, ByVal

oldState As Long)
prLine "OnStateChange new:" & newState & ", old: " &

oldState
End Sub

OnTableChange event

Prototype OnTableChange(
newTableIndex As Long, _
numTables As Long _

)
Member of UltraliteActiveX.ULDatabaseManager

Description This event is called whenever the synchronization process begins
synchronizing another table.

Parameters newTableIndex The index number of the table currently being
synchronized. This number is not the same as the table ID, and so it cannot
be used with the ULDatabaseSchema.GetTableName method.

125

numTables The number of tables eligible to be synchronized.

Example ’ eMbedded Visual Basic
Private Sub _OnTableChange(ByVal newTableIndex As Long, ByVal

numTables As Long)
prLine "OnTableChange index:" & newTableIndex & ", #tables="

& numTables
End Sub

OpenConnection method

Prototype OpenConnection(connparms As string) As ULConnection
Member of UltraliteActiveX.ULDatabaseManager

Description If a database exists, use this method to connect to the database. If a database
does not exist, or the connection parameters are invalid, the call will fail.
Use the error object to determine why the call failed.

The function returns a ULConnection object which provides an open
connection to a specified UltraLite database. The database filename is
specified using the connparms string. Parameters are specified using a
sequence ofname=valuepairs. If no user ID or password is given, the
default is used.

Parameters connparms The parameter used to establish a connection to a database.
Parameters are specified as a semicolon separated list ofkeyword=value
pairs. If no user ID or password is given, the default is used.

Returns The ULConnection object is returned if the connection was successful.

Example The example below shows how to use connection parameters in the
OpenConnection method.

’ eMbedded Visual Basic
open_parms = "ce_file = \tutCustomer.udb"
Set DatabaseMgr = CreateObject("UltraLite.ULDatabaseManager")
Set Connection = DatabaseMgr.OpenConnection(open_parms)

// JScript
open_parms = "ce_file = \\tutCustomer.udb";
DatabaseMgr = new ActiveXObject("UltraLite.ULDatabaseManager");
Connection = DatabaseMgr.OpenConnection(open_parms);

OpenConnectionWithParms method

Prototype OpenConnectionWithParms(connparms As ULConnection-
Parms) As ULConnection
Member of UltraliteActiveX.ULDatabaseManager

Description If a database exists, use this method to receive a connection. If a database

126

Chapter 6. UltraLite ActiveX API Reference

does not exist, or the connection parameters are invalid, the call will fail.
Use the error object to determine why the call failed.

The function returns a ULConnection object which provides an open
connection to a specified UltraLite database. The database filename is
specified using the connparms object. Parameters are specified using a
sequence ofname=valuepairs. If no user ID or password is given, the
default is used.

Parameters connparms The parameters defining this connection.

Returns The ULConnection object is returned if the connection was successful.

Example The following example assumes you have created a ULConnectionParms
objectLoginParms and have specified the database locations and schema
locations.

’ eMbedded Visual Basic
Set DatabaseMgr = CreateObject("UltraLite.ULDatabaseManager")
Set Connection = DatabaseMgr.OpenConnection(LoginParms)

// JScript
DatabaseMgr = new ActiveXObject("UltraLite.ULDatabaseManager");
Connection = DatabaseMgr.OpenConnection(LoginParms);

127

ULDatabaseSchema class
The ULDatabaseSchema object allows you to obtain the attributes of the
database to which you are connected.

Properties

The following are properties of ULDatabaseSchema:

Prototype Description

DateFormat As String (read-only) Gets the format for dates retrieved from
the database; ‘YYYY-MM-DD’ is the
default. The format of the date retrieved
depends on the format used when you
created the schema file.

DateOrder As String (read-only) Indicates the interpretation of date for-
mats; valid values are ‘MDY’, ‘YMD’,
or ‘DMY’.

NearestCentury As String (read-
only)

Indicates the interpretation of two-digit
years in string-to-date conversions. This
is a numeric value that acts as a rollover
point. Two digit years less than the
value are converted to 20yy, while years
greater than or equal to the value are
converted to 19yy. The default is 50.

Precision As String (read-only) Gets the maximum number of digits in
the result of any decimal arithmetic.

Publications As
IPublicationSchemas(read-only)

Gets a collection of publication schema
objects.

Scale (read-only) Gets the database numeric scale.

Signature As Variant (read-only) Gets the database signature, an inter-
nal identifier representing the database
schema.

TableCount As Long (read-only) Gets the number of tables in the con-
nected database.

TimeFormat As String (read-only) Gets the format for times retrieved from
the database.

128

Chapter 6. UltraLite ActiveX API Reference

Prototype Description

TimestampFormat As String
(read-only)

Gets the format for timestamps retrieved
from the database.

TimestampIncrement (read-only) Gets the database timestamp increment.

ApplyFile method

Prototype ApplyFile(parms As String) As Boolean
Member of UltraliteActiveX.ULDatabaseSchema

Description Changes the schema of this database.Parmspoints to the schema file(s) you
are applying to the database. This method is only useful on those occasions
where you want to modify your existing database structure.

Caution
ApplyFile is very safe in the hands of an informed programmer. Do not
delete columns unthinkingly unless you are willing to accept data loss,
as data loss can occur under a number of circumstances including (1) if
columns are deleted, or (2) if the data type for a column is changed to an
incompatible type or (3) if you upgrade an 8.0.2 database using ApplyFile
in UltraLite 9.0.

Parameters parms The files containing the changes you wish to make to your database
schema.

Returns True if successful.

Falseif unsuccessful.

Example DatabaseSchema.ApplyFile(_
"schema_file=MySchemaFile.usm;palm_schema=MySchema")

ApplyFileWithParms method

Prototype ApplyFileWithParms(parms As ULConnectionParms) As Boolean
Member of UltraliteActiveX.ULDatabaseSchema

Description Upgrades the schema of this database using the parameter objectParms,
which points to the schema file(s) you are applying to the database. This
method is only useful on those occasions where you want to modify your
existing database structure.

129

Caution
ApplyFileWithParms is very safe in the hands of an informed programmer.
Do not delete columns unthinkingly unless you are willing to accept data
loss, as data loss can occur under a number of circumstances including (1)
if columns are deleted, or (2) if the data type for a column is changed to an
incompatible type or (3) if you upgrade an 8.0.2 database using ApplyFile
in UltraLite 9.0.

Parameters parms The object identifying the schema file to apply.

Returns True if successful.

Falseif unsuccessful.

130

Chapter 6. UltraLite ActiveX API Reference

ULIndexSchema class
The ULIndexSchema object allows you to obtain the attributes of an index.
An index is an ordered set of columns by which data in a table will be
sorted. The primary use of an index is to order the data in a table by one or
more columns.

An index can be a foreign key, which is used to maintain referential integrity
in a database.

Properties

Prototype Description

ColumnCount As Long (read-only) Gets the number of columns in the
index

ColumnName(position As Long) As
String (read-only)

Gets the column name in position
of index.

ForeignKey As Boolean (read-only) Indicates whether this is a foreign
key.

IsColumnDescending(position As
Long) As Boolean (read-only)

Indicates whether a column is
sorted descending. False if as-
cending.

Name As String (read-only) Gets the name of the index

PrimaryKey As Boolean (read-only) Gets whether this is the primary
key for this table.

ReferencedIndexName As String
(read-only)

Gets the name of the index refer-
enced by this index if it is a foreign
key

ReferencedTableName As String
(read-only)

Gets the name of the table refer-
enced by this index if it is a foreign
key

UniqueIndex As Boolean (read-only) Indicates whether values in the
index must be unique.

UniqueKey As Boolean (read-only) Indicates whether the index is a
unique constraint on a table. If
True, the columns in the index are
unique and do not permit NL values

131

ULPreparedStatement class
The ULPreparedStatement represents a pre-compiled SQL statement ready
for execution. You can use Prepared Statement to run a SQL query. You can
also use the ULPreparedStatement to execute the same statement multiple
times using numerous input parameters. Since the prepared statement is
precompiled, any further additions beyond the first execution take very little
extra processing. Use ULPreparedStatement and Dynamic SQL when you
want relatively fast DML over multiple rows.

Properties

Prototype Description

HasResultSet As Boolean
(read-only)

Indicates whether the prepared statement
generates a result set.

True if the statement has a result set, other-
wise, false.

If true, ExecuteQuery should be called
instead of ExecuteStatement.

Schema As ULResult-
SetSchema (read-only)

Gets the schema describing results of state-
ment.

AppendByteChunk method

Prototype AppendByteChunk(_
parameter_id As Long, _
Array , _
[chunkSize] _

) As Boolean
Member of UltraliteActiveX.ULPreparedStatement

Description Appends the buffer of bytes to the row’s column if the type is
ulTypeLongBinary.

Parameters parameter_id The 1-based parameter number to set.

data The array of bytes to be appended.

chunkSize The number of bytes to be appended. If not provided, the
length of byteArray is used.

Returns True if successful.

132

Chapter 6. UltraLite ActiveX API Reference

Falseif unsuccessful.

Errors set

Error Description

ulSQLE_CONVERSION_ERROR The error occurs if the column data
type is not LONG BINARY

or BINARY

AppendStringChunk method

Prototype AppendStringChunk(
parameter_id As Long ,
chunk)

Member of UltraLiteActiveX.ULPreparedStatement

Description Appends the string to the column if the type is ulTypeLongString.

Parameters parameter_id The 1-based parameter number to set.

chunk A string to append to the existing string in a table.

Errors set

Error Description

ulSQLE_CONVERSION_ERROR The error occurs if the column data
type is not VARCHAR.

Close method

Prototype Close()
Member of UltraLiteActiveX.ULPreparedStatement

Description Frees resources associated with the ULPreparedStatement.

ExecuteQuery method

Prototype ExecuteQuery() As ULResultSet
Member of UltraliteActiveX.ULPreparedStatement

Description Executes the query and returns a result set.

Returns A ULResultSet object. The ULResultSet is the data you requested in your
SELECT statement. To describe the product of your query, see
“ULResultSetSchema.”[UltraLite for MobileVB User’s Guide,page 123]

133

ExecuteStatement method

Prototype ExecuteStatement() As Long
Member of UltraliteActiveX.ULPreparedStatement

Description Executes the statement.

Returns The number of rows updated.

SetNullParameter method

Prototype SetNullParameter(parameter_id As Long)
Member of UltraliteActiveX.ULPreparedStatement

Description Set the parameter to NL.

Parameters parameter_id The 1-based parameter number to set.

SetParameter method

Prototype SetParameter(
parameter_id As Long
val

)
Member of UltraliteActiveX.ULPreparedStatement

Description Set execution parameter to the value passed in.

Parameters parameter_id The 1-based parameter number to set.

val The value you want for the execution parameter.

134

Chapter 6. UltraLite ActiveX API Reference

ULPublicationSchema class
The ULPublicationSchema object allows you to obtain the attributes of a
publication.

Properties

Prototype Description

Mask As Long (read-only) Gets the mask for the publication

Name As String (read-
only)

Gets the name of the publication

135

ULResultSet class
The ULResultSet object moves over rows returned by a SQL query. Since
the ULResultSet object contains the data returned by a query, you must
refresh any query resultset after you have performed DML operations such
as INSERT, UPDATE or DELETE. To do this, you should perform
ExecuteQuery after you perform ExecuteStatement.

Properties

Prototype Description

BOF As Boolean (read-only) Indicates whether the current row position
is before the first row. Returns True if the
current row position is before the first row,
otherwise false.

EOF As Boolean (read-only) Indicates whether the current row position
is after the last row. EOF is true if beyond
the last row, otherwise false.

IsNull(columnID As Long) As
Boolean (read-only)

Indicates whether the value from the spec-
ified column is SQL NULL. True if the
column is null, else, IsNull is false.

RowCount As Long (read-
only)

The number of rows in the result set.

Schema As ULResult-
SetSchema (read-only)

The schema description for this result set.

Value(columnID As Long)
(read-only)

The value of the given column

Close method

Prototype Close()
Member of UltraliteActiveX.ULResultSet

Description Frees all resources associated with this object.

136

Chapter 6. UltraLite ActiveX API Reference

GetByteChunk method

Prototype GetByteChunk(
index As Long, _
offset As Long, _
data, _
[data_len As Long] _

) As Long
Member of UltraliteActiveX.ULResultSet

Description Fills the buffer passed in (which should be an array) with the binary data in
the column. Suitable for BLOBS.

Parameters index The 1-based ordinal of the column containing the binary data.

offset The offset into the underlying array of bytes. The source offset must
be greater than or equal to 0, otherwise a SQLE_INVALID_PARAMETER
error will be raised. A buffer bigger than 64K is also permissible.

data A pointer to an array of bytes.

data_len The length of the buffer, or array. The data_len must be greater
than or equal to 0.

Returns The number of bytes read.

Errors set

Error Description

ulSQLE_-
CONVERSION_-
ERROR

The error occurs if the column data type is not
BINARY or LONG BINARY

ulSQLE_INVALID_-
PARAMETER

The error occurs if the column data type is BINARY
and the offset is not 0 or 1, or, the data length is less
than 0.

The error also occurs if the column data type is
LONG BINARY and the offset is less than 1.

Example In the following example, edata is a column name.

’ eMbedded Visual Basic
Dim data (512) As Byte
...
table.Columns.Item("edata").GetByteChunk(0,data)

// JScript
var data = new Array();
// ...
table.Columns.Item("edata").GetByteChunk(0,data);

137

GetStringChunk method

Prototype GetStringChunk(
index As Long, _
offset As Long, _
pStringObj , _
[chunkSize]) As Long

Member of UltraliteActiveX.ULResultSet

Description Fills the string passed in with the binary data in the column. Suitable for
Long Varchars.

Parameters index The 1-based column ID of the target column.

offset The character offset into the underlying data from which you start
getting the string.

pStringObj The string you want returned. This variant is passed by
reference.

chunkSize An optional parameter representing the number of characters to
retrieve.

Returns The number of characters copied. Room is left for a null termination
character and the length does not include that character.

Gets BLOB data from a binary or long binary column.

Errors set

Error Description

ulSQLE_-
CONVERSION_-
ERROR

The error occurs if the column data type is not CHAR
or LONG VARCHAR

ulSQLE_INVALID_-
PARAMETER

The error occurs if the column data type is CHAR
and the src_offset is greater than 64K

ulSQLE_INVALID_-
PARAMETER

The error occurs if offset is less than 1 or string
length is less than 0

MoveAfterLast method

Prototype MoveAfterLast()
Member of UltraliteActiveX.ULResultSet

Description Moves to a position after the last row of the ULResultSet.

Returns True if successful.

138

Chapter 6. UltraLite ActiveX API Reference

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveBeforeFirst method

Prototype MoveBeforeFirst()
Member of UltraliteActiveX.ULResultSet

Description Moves to a position before the first row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveFirst method

Prototype MoveFirst() As Boolean
Member of UltraliteActiveX.ULResultSet

Description Moves to the first row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveLast method

Prototype MoveLast()
Member of UltraliteActiveX.ULResultSet

Description Moves to the last row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveNext method

Prototype MoveNext() As Boolean
Member of UltraliteActiveX.ULResultSet

Description Moves to the next row.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MovePrevious method

Prototype MovePrevious() As Boolean
Member of UltraliteActiveX.ULResultSet

Description Moves to the previous row.

139

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

MoveRelative method

Prototype MoveRelative(index As Long) As Boolean
Member of UltraliteActiveX.ULResultSet

Description Moves a certain number of rows relative to the current row. Relative to the
current position of the cursor in the resultset, positive index values move
forward in the resultset, negative index values move backward in the
resultset and zero does not move the cursor.

Parameters index The number of rows to move. The value can be positive, negative, or
zero.

Returns True if successful.

Falseif unsuccessful. The method fails, for example, if there are no rows.

IsNull method

Prototype IsNull(index As Integer) As Boolean
Member of UltraliteActiveX.ULResultSet

Description Indicates whether this column contains a null value.

Parameters index The column index value.

Returns True if the value is Null.

140

Chapter 6. UltraLite ActiveX API Reference

ULResultSetSchema class
The ULResultSetSchema provides information about the schema of the
result set.

Properties

Prototype Description

ColumnCount As Long(read-
only)

Gets the number of columns in the result set

ColumnName As String
(read-only)

Gets the name of the column in the result
set.

ColumnPrecision As Integer
(read-only)

Gets the precision of the datatype for the
column if it is numeric.

ColumnScale As Integer
(read-only)

Gets the scale of the datatype for the column
if it is numeric.

ColumnSize As Integer (read-
only)

Gets the size of the datatype for the column.

ColumnSQLType As ULSQL-
Type (read-only)

Gets the ULSQLType of the column.

Name (column_id As Long)
as String (read-only)

Gets the name of the publicationgiven the
column name from the ordinal ID

Precision(columnID As Long)
As Long (read-only)

Gets the numeric precision of the column.

GetColumnID method

Prototype GetColumnID(col_name As String) As Long
Member of UltraliteActiveX.ULResultSetSchema

Description Get the column id for a named column.

Parameters col_name The column name for which an id is sought.

Returns GetColumnID returns the column ID for the named column.

141

ULSQLCode enumeration
The ULSQLCode constants identify SQL codes that may be reported by
UltraLite.

For a description of the errors, see theAdaptive Server Anywhere Error
Messagesbook.

Constant Value

ulSQLE_AGGREGATES_NOT_ALLOWED -150

ulSQLE_ALIAS_NOT_UNIQUE -830

ulSQLE_ALIAS_NOT_YET_DEFINED -831

ulSQLE_BAD_ENCRYPTION_KEY -840

ulSQLE_BAD_PARAM_INDEX -689

ulSQLE_CANNOT_ACCESS_FILE -602

ulSQLE_CANNOT_CHANGE_USER_NAME -867

ulSQLE_CANNOT_MODIFY -191

ulSQLE_CANNOT_EXECUTE_STMT -111

ulSQLE_COLUMN_AMBIGUOUS -144

ulSQLE_COLUMN_CANNOT_BE_NL -195

ulSQLE_COLUMN_IN_INDEX -127

ulSQLE_COLUMN_NOT_FOUND -143

ulSQLE_COMMUNICATIONS_ERROR -85

ulSQLE_CONNECTION_NOT_FOUND -108

ulSQLE_CONVERSION_ERROR -157

ulSQLE_CURSOROP_NOT_ALLOWED -187

ulSQLE_CURSOR_ALREADY_OPEN -172

ulSQLE_CURSOR_NOT_OPEN -180

ulSQLE_DATABASE_ERROR -301

ulSQLE_DATABASE_NEW 123

ulSQLE_DATABASE_NOT_CREATED -645

ulSQLE_DATABASE_NOT_FOUND -83

142

Chapter 6. UltraLite ActiveX API Reference

Constant Value

ulSQLE_DATABASE_UPGRADE_FAILED -672

ulSQLE_DATABASE_UPGRADE_NOT_-
POSSIBLE

-673

ulSQLE_DATATYPE_NOT_ALLOWED -624

ulSQLE_DBSPACE_FL -604

ulSQLE_DIV_ZERO_ERROR -628

ulSQLE_DOWNLOAD_CONFLICT -839

ulSQLE_DROP_DATABASE_FAILED -651

ulSQLE_DYNAMIC_MEMORY_EXHAUSTED -78

ulSQLE_ENGINE_ALREADY_RUNNING -96

ulSQLE_ENGINE_NOT_MTIUSER -89

ulSQLE_ERROR -300

ulSQLE_ERROR_CALLING_FUNCTION -622

ulSQLE_EXPRESSION_ERROR -156

ulSQLE_IDENTIFIER_TOO_LONG -250

ulSQLE_INDEX_NOT_FOUND -183

ulSQLE_INDEX_NOT_UNIQUE -196

ulSQLE_INTERRUPTED -299

ulSQLE_INVALID_AGGREGATE_-
PLACEMENT

-862

ulSQLE_INVALID_FOREIGN_KEY -194

ulSQLE_INVALID_FOREIGN_KEY_DEF -113

ulSQLE_INVALID_GROUP_SELECT -149

ulSQLE_INVALID_LOGON -103

ulSQLE_INVALID_OPTION_SETTING -201

ulSQLE_INVALID_ORDER -152

ulSQLE_INVALID_ORDERBY_COLUMN -854

ulSQLE_INVALID_PARAMETER -735

143

Constant Value

ulSQLE_INVALID_SQL_IDENTIFIER -760

ulSQLE_INVALID_STATEMENT -130

ulSQLE_LOCKED -210,

ulSQLE_MEMORY_ERROR -309

ulSQLE_METHOD_CANNOT_BE_CALLED -669

ulSQLE_NAME_NOT_UNIQUE -110

ulSQLE_NOERR 0

ulSQLE_NOTFOUND 100

ulSQLE_NOT_IMPLEMENTED -134

ulSQLE_NO_CURRENT_ROW -197

ulSQLE_NO_INDICATOR -181

ulSQLE_OVERFLOW_ERROR -158

ulSQLE_PERMISSION_DENIED -121

ulSQLE_PRIMARY_KEY_NOT_UNIQUE -193

ulSQLE_PRIMARY_KEY_VALUE_REF -198

ulSQLE_PUBLICATION_NOT_FOUND -280

ulSQLE_RESOURCE_GOVERNOR_-
EXCEEDED

-685

ulSQLE_ROW_DROPPED_DURING_-
SCHEMA_UPGRADE

130

ulSQLE_SERVER_SYNCHRONIZATION_-
ERROR

-857

ulSQLE_START_STOP_DATABASE_DENIED -75

ulSQLE_STATEMENT_ERROR -132

ulSQLE_SYNTAX_ERROR -131

ulSQLE_STRING_RIGHT_TRUNCATION -638

ulSQLE_TABLE_HAS_PUBLICATIONS -281

ulSQLE_TABLE_IN_USE -214

ulSQLE_TABLE_NOT_FOUND -141

144

Chapter 6. UltraLite ActiveX API Reference

Constant Value

ulSQLE_TOO_MANY_CONNECTIONS -102

ulSQLE_TRALITE_OBJ_CLOSED -908

ulSQLE_UNABLE_TO_CONNECT_OR_START -764

ulSQLE_UNABLE_TO_START_DATABASE -82

ulSQLE_UNCOMMITTED_TRANSACTIONS -755

ulSQLE_UNKNOWN_FUNC -148

ulSQLE_UNKNOWN_USERID -140

ulSQLE_UNSUPPORTED_CHARACTER_SET_-
ERROR

-869

ulSQLE_UPLOAD_FAILED_AT_SERVER -794

ulSQLE_WRONG_PARAMETER_COUNT -154

145

ULSQLType enumeration
ULSQLType lists the available UltraLite SQL database types used as table
column types.

Constant UltraLite Database

Type

Value

ulTypeLong Integer 1

ulTypeUnsignedLong SmallInt 2

ulTypeShort UnsignedInteger 3

ulTypeUnsignedShort UnsignedSmallInt 4

ulTypeBig Big 5

ulTypeUnsignedBig UnsignedBig 6

ulTypeByte Byte 7

ulTypeBit Bit 8

ulTypeDateTime Time 9

ulTypeDate Date 10

ulTypeTime Timestamp 11

ulTypeDouble Double 12

ulTypeReal Real 13

ulTypeNumeric (Var)Binary 14

ulTypeBinary LongBinary 15

ulTypeString (Var)Char 16

ulTypeLongString LongVarchar 17

ulTypeLongBinary Numeric 18

146

Chapter 6. UltraLite ActiveX API Reference

ULStreamErrorCode enumeration
The ULStreamErrorCode constants identify constants you can use to specify
the ULStreamErrorCode.

Constant Value

ulStreamErrorCodeNone 0

ulStreamErrorCodeParameter 1

ulStreamErrorCodeParameterNotUint32 2

ulStreamErrorCodeParameterNotUint32Range 3

ulStreamErrorCodeParameterNotBoolean 4

ulStreamErrorCodeParameterNotHex 5

ulStreamErrorCodeMemoryAllocation 6

ulStreamErrorCodeParse 7

ulStreamErrorCodeRead 8

ulStreamErrorCodeWrite 9

ulStreamErrorCodeEndWrite 10

ulStreamErrorCodeEndRead 11

ulStreamErrorCodeNotImplemented 12

ulStreamErrorCodeWouldBlock 13

ulStreamErrorCodeGenerateRandom 14

ulStreamErrorCodeInitRandom 15

ulStreamErrorCodeSeedRandom 16

ulStreamErrorCodeCreateRandomObject 17

ulStreamErrorCodeShuttingDown 18

ulStreamErrorCodeDequeuingConnection 19

ulStreamErrorCodeSecureCertificateRoot 20

ulStreamErrorCodeSecureCertificateCompanyName 21

ulStreamErrorCodeSecureCertificateChainLength 22

ulStreamErrorCodeSecureCertificateRef 23

ulStreamErrorCodeSecureCertificateNotTrusted 24

147

Constant Value

ulStreamErrorCodeSecureDuplicateContext 25

ulStreamErrorCodeSecureSetIo 26

ulStreamErrorCodeSecureSetIoSemantics 27

ulStreamErrorCodeSecureCertificateChainFunc 28

ulStreamErrorCodeSecureCertificateChainRef 29

ulStreamErrorCodeSecureEnableNonBlocking 30

ulStreamErrorCodeSecureSetCipherSuites 31

ulStreamErrorCodeSecureSetChainNumber 32

ulStreamErrorCodeSecureCertificateFileNotFound 33

ulStreamErrorCodeSecureReadCertificate 34

ulStreamErrorCodeSecureReadPrivateKey 35

ulStreamErrorCodeSecureSetPrivateKey 36

ulStreamErrorCodeSecureCertificateExpiryDate 37

ulStreamErrorCodeSecureExportCertificate 38

ulStreamErrorCodeSecureAddCertificate 39

ulStreamErrorCodeSecureTrustedCertificateFileNotFound40

ulStreamErrorCodeSecureTrustedCertificateRead 41

ulStreamErrorCodeSecureCertificateCount 42

ulStreamErrorCodeSecureCreateCertificate 43

ulStreamErrorCodeSecureImportCertificate 44

ulStreamErrorCodeSecureSetRandomRef 45

ulStreamErrorCodeSecureSetRandomFunc 46

ulStreamErrorCodeSecureSetProtocolSide 47

ulStreamErrorCodeSecureAddTrustedCertificate 48

ulStreamErrorCodeSecureCreatePrivateKeyObject 49

ulStreamErrorCodeSecureCertificateExpired 50

ulStreamErrorCodeSecureCertificateCompanyUnit 51

ulStreamErrorCodeSecureCertificateCommonName 52

148

Chapter 6. UltraLite ActiveX API Reference

Constant Value

ulStreamErrorCodeSecureHandshake 53

ulStreamErrorCodeHttpVersion 54

ulStreamErrorCodeSecureSetReadFunc 55

ulStreamErrorCodeSecureSetWriteFunc 56

ulStreamErrorCodeSocketHostNameNotFound 57

ulStreamErrorCodeSocketGetHostByAddr 58

ulStreamErrorCodeSocketLocalhostNameNotFound 59

ulStreamErrorCodeSocketCreateTcpip 60

ulStreamErrorCodeSocketCreateUdp 61

ulStreamErrorCodeSocketBind 62

ulStreamErrorCodeSocketCleanup 63

ulStreamErrorCodeSocketClose 64

ulStreamErrorCodeSocketConnect 65

ulStreamErrorCodeSocketGetName 66

ulStreamErrorCodeSocketGetOption 67

ulStreamErrorCodeSocketSetOption 68

ulStreamErrorCodeSocketListen 69

ulStreamErrorCodeSocketShutdown 70

ulStreamErrorCodeSocketSelect 71

ulStreamErrorCodeSocketStartup 72

ulStreamErrorCodeSocketPortOutOfRange 73

ulStreamErrorCodeLoadNetworkLibrary 74

ulStreamErrorCodeActsyncNoPort 75

ulStreamErrorCodeHttpExpectedPost 89

149

ULStreamErrorContext enumeration
The ULStreamErrorContext constants identify constants you can use to
specify ULStreamErrorContext. The ULStreamErrorContext is the network
operation performed when the stream error happens.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

150

Chapter 6. UltraLite ActiveX API Reference

ULStreamErrorID enumeration
The ULStreamErrorID is an enumeration of the possible network layers that
caused an error in an unsuccessful synchronization.

Constant Value

ulStreamErrorIDTcpip 0

ulStreamErrorIDSerial 1

ulStreamErrorIDFake 2

ulStreamErrorIDNettech 5

ulStreamErrorIDRimbb 6

ulStreamErrorIDHttp 7

ulStreamErrorIDHttps 8

ulStreamErrorIDDhCast 9

ulStreamErrorIDSecure 10

ulStreamErrorIDCerticom 11

ulStreamErrorIDJavaCerticom 12

ulStreamErrorIDCerticomSsl 13

ulStreamErrorIDCerticomTls 14

ulStreamErrorIDWirestrm 15

ulStreamErrorIDWireless 16

ulStreamErrorIDReplay 17

ulStreamErrorIDStrm 18

ulStreamErrorIDUdp 19

ulStreamErrorIDEmail 20

ulStreamErrorIDFile 21

ulStreamErrorIDActivesync 22

ulStreamErrorIDRsaTls 23

ulStreamErrorIDJavaRsa 24

151

ULStreamType enumeration
The ULStreamType constants identify constants you can use to specify
stream type. These represent the types of MobiLink synchronization streams
you can use for synchronization.

Constant Value Description

ulTCPIP 1 TCP/IP stream

ulHTTP 2 HTTP stream

ulHTTPS 3 HTTPS synchronization

152

Chapter 6. UltraLite ActiveX API Reference

ULSyncParms class
The attributes set for the ULSyncParms object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read-only reflect the status of the last synchronization.

Properties

The following are properties of ULSyncParms:

Prototype Description

CheckpointStore As Boolean If true, adds checkpoints of the database
during synchronization to limit database
growth during the synchronization pro-
cess. This is most useful for large
downloads with many updates.

See “Checkpoint Store synchronization
parameter” [UltraLite Database User’s
Guide,page 164].

DownloadOnly As Boolean Indicates if a synchronization only
downloads data.

See

NewPassword As String Change a user password to this new
password string on the next synchro-
nization.

Password As String The password corresponding to a given
user name.

PublicationMask As Long Specify the publications to synchronize.
The default is to synchronize alll data.

SendColumnNames As Boolean If SendColumnNames is true, column
names are sent to the MobiLink synchro-
nization server. Column names must be
sent to the MobiLink synchronization
server for automatic script generation.

SendDownloadAck As Boolean If SendDownloadAck is true, a down-
load acknowledgement is sent during
synchronization.

Stream As ULStreamType con-
stants

Set the type of stream to use during
synchronization.

153

Prototype Description

StreamParms As String Set extra parameters for the given stream
type.

UploadOnly As Boolean Indicates whether a synchronization
only uploads data.

UserName As String The MobiLink user name for synchro-
nization.

Version As String The synchronization script version to
run.

AddAuthenticationParm method

Prototype AddAuthenticationParm(BSTR parm)
Member of UltraliteActiveX.ULSyncParms

Description Adds a parameter to be passed to the authenticate_parms MobiLink
synchronization script.

Parameters parm The parameter being added.

Returns No return value.

See also “Authentication Parameters synchronization parameter”[UltraLite Database
User’s Guide,page 162]

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

ClearAuthenticationParms method

Prototype ClearAuthenticationParms()
Member of UltraliteActiveX.ULSyncParms

Description Clears all parameters that were to be passed to the authenticate_parms
MobiLink synchronization script.

Returns No return value.

See also “Authentication Parameters synchronization parameter”[UltraLite Database
User’s Guide,page 162]

“authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

154

Chapter 6. UltraLite ActiveX API Reference

ULSyncResult class
The attributes of the ULSyncResult object store the results of the last
synchronization.

Properties

The following are properties of ULSyncResult:

Prototype Description

AuthStatus As AuthStatusCode
(read-only)

Gets the authorization status code for
the last synchronization.

AuthValue As Long (read-only) Gets the MobiLink authentication value.

IgnoredRows As Boolean (read-
only)

Indicates whether rows were ignored
during the last synchronization.

StreamErrorCode As ULStream-
ErrorCode (read-only)

Gets the error code reported by the
synchronization stream.

StreamErrorContext As UL-
StreamErrorContext (read-only)

Gets the basic network operation per-
formed.

StreamErrorID As ULStreamEr-
rorID (read-only)

Gets the network layer reporting the
error.

StreamErrorSystem As Long
(read-only)

Gets the stream error system-specific
code.

Timestamp as Variant (read-only) Gets the timestamp of the last synchro-
nization.

UploadOK As Boolean (read-
only)

Indicates whether data was uploaded
successfully in the last synchronization.

155

ULSyncState enumeration

Constant Value

ulSyncStateStarting 0

ulSyncStateConnecting 1

ulSyncStateSendingHeader 2

ulSyncStateSendingTable 3

ulSyncStateSendingData 4

ulSyncStateFinishingUpload 5

ulSyncStateReceivingUploadAck 6

ulSyncStateReceivingTable 7

ulSyncStateReceivingData 8

ulSyncStateCommittingDownload 9

ulSyncStateSendingDownloadAck 10

ulSyncStateDisconnecting 11

ulSyncStateDone 12

ulSyncStateError 13

ulSyncStateCancelled 99

156

Chapter 6. UltraLite ActiveX API Reference

ULTable class
The ULTable class is used to store, remove, update, and read data from a
table.

Before you can work with table data, you must call the Open method.
ULTable uses table modes for table operations:

Mode Description

FindBegin Begins find mode

InsertBegin Begins insert mode

LookupBegin Begins lookup mode

UpdateBegin Begins update mode

Properties

Prototype Description

BOF As Boolean (read-only) Indicates whether the current row
position is before the first row.
Returns True if the current row
position is before the first row,
otherwise false.

Columns As IColumns (read-only) Gets a collection of column objects

EOF As Boolean (read-only) Indicates whether the current row
position is after the last row. Re-
turns True if the current row posi-
tion is before the first row, other-
wise false.

IsOpen As Boolean (read-only) Indicates whether or not the table is
currently open.

RowCount As Long (read-only) Gets the number of rows in the
table.

Schema As ULTableSchema (read-
only)

Gets information about the table
schema.

Close method

Prototype Close()
Member of UltraliteActiveX.ULTable

157

Description Frees resources associated with the table. This method should be called after
all processing involving the table is complete.

Delete method

Prototype Delete()
Member of UltraliteActiveX.ULTable

Description Deletes the current row from the table.

DeleteAllRows method

Prototype DeleteAllRows()
Member of UltraliteActiveX.ULTable

Description Deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using theULConnection.StopSynchronizationDeletemethod or calling
Truncate instead ofDeleteAllRows.

FindBegin method

Prototype FindBegin()
Member of UltraliteActiveX.ULTable

Description Prepares a table for a find.

FindFirst method

Prototype FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraliteActiveX.ULTable

Description Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is after the last row (EOF).

Note : Requires that FindBegin be called prior to using this method.

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindFirst. For example, if 2 is passed, the first two columns

158

Chapter 6. UltraLite ActiveX API Reference

are used for the FindFirst. If num_columns exceeds the number of columns
indexed, all columns are used in FindFirst.

Returns True if successful.

Falseif unsuccessful.

FindLast method

Prototype FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraliteActiveX.ULTable

Description Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

The current index is used to specify the sort order of the table. It is specified
when your application calls theOpenmethod. The default index is the
primary key.

☞ For more information, see“Open method” on page 164.

To specify the value to search for, set the column value for each column in
the index for which you want to find the value. The cursor is left on the last
row found that exactly matches the index value. On failure the cursor
position is before the first row (BOF).

Note
Requires that FindBegin be called prior to using this method.

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindLast. For example, if 2 is passed, the first two columns
are used for the FindLast. If num_columns exceeds the number of columns
indexed, all columns are used in FindLast.

Returns True if successful.

Falseif unsuccessful.

FindNext method

Prototype FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraliteActiveX.ULTable

Description Move forwards through the table from the current position, looking for the
next row that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 164.

159

The cursor is left on the first row found that exactly matches the index value.
On failure, the cursor position is after the last row (EOF).

Note : Must be preceded by FindFirst or FindLast.

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindNext. For example, if 2 is passed, the first two columns
are used for the FindNext. If num_columns exceeds the number of columns
indexed, all columns are used in FindNext.

Returns True if successful.

Falseif unsuccessful (EOF).

FindPrevious method

Prototype FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraliteActiveX.ULTable

Description Move backwards through the table from the current position, looking for the
previous row that exactly matches a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 164.

On failure it is positioned before the first row (BOF).

Parameters num_columns An optional parameter referring to the number of columns
to be used in the FindPrevious. For example, if 2 is passed, the first two
columns are used for the FindPrevious. If num_columns exceeds the number
of columns indexed, all columns are used in FindPrevious.

Returns True if successful.

Falseif unsuccessful (BOF).

Insert method

Prototype Insert() As Boolean
Member of UltraliteActiveX.ULTable

Description Inserts a row in the table with values specified in previousSetmethods.
Must be preceded byInsertBegin. Set for each ULColumn object.

Returns True if successful.

Falseif unsuccessful (BOF).

160

Chapter 6. UltraLite ActiveX API Reference

InsertBegin method

Prototype InsertBegin()
Member of UltraliteActiveX.ULTable

Description Prepares a table for inserting a new row, setting column values to their
defaults.

Examples In this example, InsertBegin sets insert mode to allow you to begin assigning
data values to CustomerTable columns.

’ eMbedded Visual Basic
CustomerTable.InsertBegin
CustomerTable.Columns("Fname").Value = fname
CustomerTable.Columns("Lname").Value = lname
If Len(city) > 0 Then

CustomerTable.Columns("City").Value = city
End If
If Len(phone) > 0 Then

CustomerTable.Columns("phone").Value = phone
End If
CustomerTable.Insert

// JScript
CustomerTable.InsertBegin();
CustomerTable.Columns("Fname").Value = fname;
CustomerTable.Columns("Lname").Value = lname;
If (Len(city) > 0) {

CustomerTable.Columns("City").Value = city;
}
If (Len(phone) > 0) {

CustomerTable.Columns("phone").Value = phone;
}
CustomerTable.Insert();

See also “UpdateBegin method” on page 165

LookupBackward method

Prototype LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraliteActiveX.ULTable

Description Move backwards through the table starting from the end, looking for the first
row that matches or is less than a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 164.

To specify the value to search for, set the column value for each column in

161

the index. The cursor is left on the last row that matches or is less than the
index value. On failure (that is, if no row is less than the value being looked
for), the cursor position is before the first row (BOF).

Parameters num_columns An optional parameter referring to the number of columns.

Returns True if successful.

Falseif unsuccessful.

LookupBegin method

Prototype LookupBegin()
Member of UltraliteActiveX.ULTable

Description Prepares a table for a lookup.

LookupForward method

Prototype LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraliteActiveX.ULTable

Description Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls theOpenmethod. The default index is
the primary key.

☞ For more information, see“Open method” on page 164.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is after the last row (EOF).

Parameters num_columns An optional parameter referring to the number of columns.

Returns True if successful.

Falseif unsuccessful.

MoveAfterLast method

Prototype MoveAfterLast() As Boolean
Member of UltraliteActiveX.ULTable

Description Moves to a position after the last row.

Returns True if successful.

162

Chapter 6. UltraLite ActiveX API Reference

Falseif the operation fails.

MoveBeforeFirst method

Prototype MoveBeforeFirst() As Boolean
Member of UltraliteActiveX.ULTable

Description Moves to a position before the first row.

Returns True if successful.

Falseif the operation fails.

MoveFirst method

Prototype MoveFirst() As Boolean
Member of UltraliteActiveX.ULTable

Description Moves to the first row.

Returns True if successful.

Falseif there is no data in the table.

MoveLast method

Prototype MoveLast() As Boolean
Member of UltraliteActiveX.ULTable

Description Moves to the last row.

Returns True if successful.

Falseif there is no data in the table.

MoveNext method

Prototype MoveNext() As Boolean
Member of UltraliteActiveX.ULTable

Description Moves to the next row.

Returns True if successful.

Falseif there is no more data in the table. For example, MoveNext fails if
there are no more rows.

MovePrevious method

Prototype MovePrevious() As Boolean
Member of UltraliteActiveX.ULTable

Description Moves to the previous row.

163

Returns True if successful.

Falseif there is no more data in the table. For example, MovePrevious fails
if there are no rows.

MoveRelative method

Prototype MoveRelative(index As Long) As Boolean
Member of UltraliteActiveX.ULTable

Description Moves a certain number of rows relative to the current row.

Parameters index The number of rows to move. The value can be positive, negative, or
zero. Zero is useful if you want to repopulate a row buffer.

Returns True if successful.

Falseif the move failed, as may happen, for example, if the cursor is
positioned beyond the first or last row.

Open method

Prototype Open(
[index_id], _)

Member of UltraliteActiveX.ULTable

Description Opens the table so it can be read or manipulated. By default, the rows are
ordered by primary key. By supplying an index , the rows can be ordered in
other ways.

The cursor is positioned before the first row in the table.

Parameters indexID An optional parameter referring to the ID of the index.

Truncate method

Prototype Truncate()
Member of UltraliteActiveX.ULTable

Description Removes all data from this table. The changes are not synchronized, so that
on synchronization, it does not affect the data in the consolidated database.

☞ For more information, see“StopSynchronizationDelete method” on
page 115.

Update method

Prototype Update()
Member of UltraliteActiveX.ULTable

Description Updates a row in the table with values specified inULColumn methods.

164

Chapter 6. UltraLite ActiveX API Reference

Note : Must be preceded by a call to UpdateBegin.

UpdateBegin method

Prototype UpdateBegin()
Member of UltraliteActiveX.ULTable

Description Prepares a table for modifying the contents of the current row.

Example
’ eMbedded Visual Basic
Table.UpdateBegin
Table.Columns("ColName").Value = "New Value"
Table.Update

// JScript
Table.UpdateBegin();
Table.Columns("ColName").Values = "NewValue";
Table.Update();

165

ULTableSchema class
The ULTableSchema object allows you to obtain the attributes of a table.

Properties

The ULTableSchema represents metadata about the table. The following are
properties of the ULTableSchema class:

Prototype Description

ColumnCount As Integer (read-
only)

The number of columns in this table

Indexes As IIndexSchemas The number of indexes on this table

Name As String (read-only) This table’s name

NeverSynchronized As Boolean
(read-only)

Indicates if the table is always excluded
from synchronization.

PrimaryKey As ULIndexSchema
(read-only)

The primary key for this table.

UploadUnchangedRows As
Boolean (read-only)

Indicates if all rows in the table should
be uploaded on synchronization, rather
than just the rows changed since the
last synchronization.

InPublication method

Prototype InPublication(publicationName) As Boolean
Member of UltraliteActiveX.ULTableSchema

Description Indicates whether this table is part of the specified publication.

Parameters publicationName The name of the publication you are checking.

Returns True if the table is part of the publication.

Falseif the table is not part of the publication.

166

Index

Symbols
?

using 74

A
accessing and manipulating data

about 81
UltraLite ActiveX 81

Accessing schema information
about 89
UltraLite ActiveX 89

AddAuthenticationParm method
(ULSyncParms class)

UltraLite ActiveX 154
AppendByteChunk method (ULColumn

class)
UltraLite ActiveX 105

AppendByteChunk method
(ULPreparedStatement class)

UltraLite ActiveX 132
AppendStringChunk method (ULColumn

class)
UltraLite ActiveX 106
UltraLite ActiveXAPI 133

ApplyFile method (ULDatabaseSchema
class)

UltraLite ActiveX 129
ApplyFileWithParms method

(ULDatabaseSchema class)
UltraLite ActiveX 129

Architecture
UltraLite ActiveX 3

AuthStatus property (ULSyncResult
class)

UltraLite ActiveX 155
AutoCommit mode

about 88
AutoCommit property (ULConnection

class)
UltraLite ActiveX 111

AutoIncrement property
(ULColumnSchema class)

UltraLite ActiveX 110
AutoIncrement property

(ULConnectionParms class)
UltraLite ActiveX 117

B
BLOB data

about 87
GetByteChunk 87

BOF property (ULTable class)
UltraLite ActiveX 157

BooleanValue property (ULColumn
class)

UltraLite ActiveX 105
ByteValue property (ULColumn class)

UltraLite ActiveX 105

C
CancelSynchronize method

(ULConnection class)
UltraLite ActiveX 112

casting
data types 83

ChangeEncryptionKey method
(ULConnection class)

UltraLite ActiveX 112
CheckpointStore property

(ULSyncParms class)
UltraLite ActiveX 153

ClearAuthenticationParms method
(ULSyncParms class)

UltraLite ActiveX 154
Close method (ULConnection class)

UltraLite C++ActiveX 113
Close method (ULPreparedStatement

class)
UltraLite 133

Close method (ULResultSet class)
UltraLite ActiveX 136

Close method (ULTable class)
UltraLite ActiveX 157

167

Index

ColumnCount property (ULIndexSchema
class)

UltraLite ActiveX 131
ColumnCount property (ULTableSchema

class)
UltraLite ActiveX 166

columns
accessing schema information 89

Columns collection
introduction 81

Commit method
about 88

Commit method (ULConnection class)
UltraLite ActiveX 113

commits
about 88

connecting
UltraLite databases 66

connecting to an UltraLite database
about 66
UltraLite ActiveX 66

connection parameters
databases 66

conventions
documentation viii

Count property (IULColumns collection)
UltraLite ActiveX 101

Count property (IULIndexSchemas
collection)

UltraLite ActiveX 102
Count property (IULPublicationSchemas

collection)
UltraLite ActiveX 103

CountUploadRows method
(ULConnection class)

UltraLite ActiveX 113
CreateDatabase method

(ULDatabaseManager class)
UltraLite ActiveX 120

CreateDatabaseWithParms method
(ULDatabaseManager class)

UltraLite ActiveX 121
CustDB sample

UltraLite 41

D
data manipulation

about 74, 81
Dynamic SQL 74

Data Manipulation Language
about 74

data types
accessing 82
casting 83

database schema
accessing 89

DatabaseID property (ULConnection
class)

UltraLite ActiveX 111
databases

accessing schema information 89
connecting to 66
schema 63
working with 63

DateFormat property
(ULDatabaseSchema class)

UltraLite ActiveX 128
DateOrder property (ULDatabaseSchema

class)
UltraLite ActiveX 128

DatetimeValue property (ULColumn
class)

UltraLite ActiveX 105
DefaultValue property

(ULColumnSchema class)
UltraLite ActiveX 110

Delete method (ULTable class)
UltraLite ActiveX 158

DeleteAllRows method (ULTable class)
UltraLite ActiveX 158

deleting rows
about 84

development platforms
supported 2

DML operations
about 74

documentation
conventions viii
SQL Anywhere Studio vi

DoubleValue property (ULColumn class)
UltraLite ActiveX 105

DownloadOnly property (ULSyncParms
class)

UltraLite ActiveX 153

168

Index

DropDatabase method
(ULDatabaseManager class) UltraLite

ActiveX 123
DropDatabaseWithParms method

(ULDatabaseManager class) UltraLite
ActiveX 123

E
EOF property (ULTable class)

UltraLite ActiveX 157
error handling

about 90
UltraLite ActiveX 90

errors
handling 90

ExecuteQuery method
(ULPreparedStatement class)

UltraLite ActiveX 133
ExecuteStatement method

(ULPreparedStatement class)
UltraLite ActiveX 134

F
feedback

documentation xii
providing xii

find methods
about 83

find mode
about 85

FindBegin method (ULTable class)
UltraLite ActiveX 158

FindFirst method (ULTable class)
UltraLite ActiveX 158

FindLast method (ULTable class)
UltraLite ActiveX 159

FindNext method (ULTable class)
UltraLite ActiveX 159

FindPrevious method (ULTable class)
UltraLite ActiveX 160

ForeignKey property (ULIndexSchema
class)

UltraLite ActiveX 131

G
GetByteChunk method

BLOB datat 87
GetByteChunk method (ULColumn

class)
UltraLite ActiveX 106, 137

GetColumnID method
(ULResultSetSchema class)

UltraLite ActiveX 141
GetNewUUID method (ULConnection

class)
UltraLite ActiveX 113

GetStringChunk method (ULColumn
class)

UltraLite ActiveX 107, 138
GetTable function (ULConnection class)

UltraLite ActiveX 114
GlobalAutoIncrement property

(ULColumnSchema class)
UltraLite ActiveX 110

GlobalAutoIncrementUsage property
(ULConnection class)

UltraLite ActiveX 111
grantConnectTo method

introduction 93
GrantConnectTo method (ULConnection

class)
UltraLite ActiveX 114

I
icons

used in manuals x
ID property (ULColumnSchema class)

UltraLite ActiveX 110
IgnoredRows property (ULSyncResult

class)
UltraLite ActiveX 155

IndexCount property (ULTableSchema
class)

UltraLite ActiveX 166
indexes

accessing schema information 89
InPublication method (ULTableSchema

class)
UltraLite for ActiveX 166

Insert method (ULTable class)
UltraLite ActiveX 160

insert mode
about 85

169

Index

InsertBegin method (ULTable class)
UltraLite ActiveX 161

inserting rows
about 84

IntegerValue property (ULColumn class)
UltraLite ActiveX 105

internals
data manipulation 74

IsNull method (ULResultSet class)
UltraLite ActiveX 140

IsNull property (ULColumn class)
UltraLite ActiveX 105

IsOpen property (ULTable class)
UltraLite ActiveX 157

Item property (IULColumns collection)
UltraLite ActiveX 101

Item property (IULIndexSchemas
collection)

UltraLite ActiveX 102
Item property (IULPublicationSchemas

collection)
UltraLite ActiveX 103

IULColumns collection
about 101
properties 101
UltraLite ActiveX 101

IULIndexSchemas collection
about 102
properties 102
UltraLite ActiveX 102

IULPublicationSchemas class
properties 103

IULPublicationSchemas collection
about 103
UltraLite ActiveX 103

L
LastDownloadTime method

(ULConnection class)
UltraLite ActiveX 114

LastIdentity property (ULConnection
class)

UltraLite ActiveX 111
LongValue property (ULColumn class)

UltraLite ActiveX 105
lookup methods

about 83

lookup mode
about 85

LookupBackward method (ULTable
class)

UltraLite ActiveX 161
LookupBegin method (ULTable class)

UltraLite ActiveX 162
LookupForward method (ULTable class)

UltraLite ActiveX 162

M
Mask property (ULPublicationSchema

class)
UltraLite ActiveX 135

Mask property (ULResultSet class)
UltraLite ActiveX 136

Mask property (ULResultSetSchema
class)

UltraLite ActiveX 141
Microsoft Visual Basic

supported versions 2
modes

about 85
MoveAfterLast method (ULResultSet

class)
UltraLite ActiveX 138

MoveAfterLast method (ULTable class)
UltraLite ActiveX 162

MoveBeforeFirst method (ULResultSet
class)

UltraLite ActiveX 139
MoveBeforeFirst method (ULTable class)

UltraLite ActiveX 163
MoveFirst method

introduction 77, 81
MoveFirst method (ULResultSet class)

UltraLite ActiveX 139
MoveFirst method (ULTable class)

UltraLite ActiveX 163
MoveLast method (ULResultSet class)

UltraLite ActiveX 139
MoveLast method (ULTable class)

UltraLite ActiveX 163
MoveNext method

introduction 77, 81
MoveNext method (ULResultSet class)

UltraLite ActiveX 139

170

Index

MoveNext method (ULTable class)
UltraLite ActiveX 163

MovePrevious method (ULResultSet
class)

UltraLite ActiveX 139
MovePrevious method (ULTable class)

UltraLite ActiveX 163
MoveRelative method (ULResultSet

class)
UltraLite ActiveX 140

MoveRelative method (ULTable class)
UltraLite ActiveX 164

N
Name property (ULColumnSchema

class)
UltraLite ActiveX 110

Name property (ULIndexSchema class)
UltraLite ActiveX 131

Name property (ULPublicationSchema
class)

UltraLite ActiveX 135
Name property (ULResultSet class)

UltraLite ActiveX 136
Name property (ULResultSetSchema

class)
UltraLite ActiveX 141

Name property (ULTableSchema class)
UltraLite ActiveX 166

NearestCentury property
(ULDatabaseSchema class)

UltraLite ActiveX 128
NeverSynchronized property

(ULTableSchema class)
UltraLite ActiveX 166

NewPassword property (ULSyncParms
class)

UltraLite ActiveX 153
newsgroups

technical support xii
Nullable property (ULColumnSchema

class)
UltraLite ActiveX 110

O
object hierarchy

UltraLite ActiveX 3

OnReceive event (ULDatabaseManager
class)

UltraLite forActiveX 124
OnSend event (ULDatabaseManager

class)
UltraLite forActiveX 124

OnStateChange event
(ULDatabaseManager class)

UltraLite forActiveX 125
OnTableChange event

(ULDatabaseManager class)
UltraLite forActiveX 125

Open method
ULTable object 77, 81

Open method (ULTable class)
UltraLite ActiveX 164

OpenByIndex method
ULTable object 77

OpenConnection method
(ULDatabaseManager class)

UltraLite ActiveX 126
OpenConnectionWithparms method

(ULDatabaseManager class)
UltraLite ActiveX 126

OpenParms property (ULConnection
class)

UltraLite ActiveX 111
OptimalIndex property

(ULColumnSchema class)
UltraLite ActiveX 110

P
Password property (ULSyncParms class)

UltraLite ActiveX 153
passwords

authentication 93
PingOnly property (ULSyncParms class)

UltraLite ActiveX 153
platforms

supported 2
Precision property (ULColumnSchema

class)
UltraLite ActiveX 110

Precision property (ULDatabaseSchema
class)

UltraLite ActiveX 128
prepared statements

171

Index

about 74
PrepareStatement method

(ULConnection class)
UltraLite ActiveX 114

preparing to work with ActiveX
about 60
UltraLite ActiveX 60

PrimaryKey property (ULIndexSchema
class)

UltraLite ActiveX 131
PrimaryKey property (ULTableSchema

class)
UltraLite ActiveX 166

projects
creating UltraLite for MobileVB

projects 27
PublicationCount property

(ULDatabaseSchema class)
UltraLite ActiveX 128

PublicationMask property
(ULSyncParms class)

UltraLite ActiveX 153
publications

accessing schema information 89

R
RealValue property (ULColumn class)

UltraLite ActiveX 105
ReferencedIndexName property

(ULIndexSchema class)
UltraLite ActiveX 131

ReferencedTableName property
(ULIndexSchema class)

UltraLite ActiveX 131
ResetLastDownloadTime method

(ULConnection class)
UltraLite ActiveX 115

RevokeConnectFrom method
(ULConnection class)

UltraLite ActiveX 115
revokeConnectionFrom method

introduction 93
Rollback method

about 88
Rollback method (ULConnection class)

UltraLite ActiveX 115
rollbacks

about 88
RowCount property (ULTable class)

UltraLite ActiveX 157
rows

accessing current row 82

S
samples

UltraLite 41
Scale property (ULColumnSchema class)

UltraLite ActiveX 110
schema

accessing 89
schema files

about 63
creating 64

Schema painter
starting 64

Schema property (ULColumn class)
UltraLite ActiveX 105

Schema property (ULConnection class)
UltraLite ActiveX 111

Schema property (ULTable class)
UltraLite ActiveX 157

scrolling
through rows 81

searching
rows 83

SELECT
about 77

SendColumnNames property
(ULSyncParms class)

UltraLite ActiveX 153
SendDownloadAck property

(ULSyncParms class)
UltraLite ActiveX 153

SetByteChunk method (ULColumn class)
UltraLite ActiveX 108

SetNullParameter method
(ULPreparedStatement class)

UltraLite ActiveX 134
SetParameter method

(ULPreparedStatement class)
UltraLite ActiveX 134

SetToDefault method (ULColumn class)
UltraLite ActiveX 109

172

Index

Signature property (ULDatabaseSchema
class)

UltraLite ActiveX 128
Size property (ULColumnSchema class)

UltraLite ActiveX 110
SQL Anywhere Studio

documentation vi
SQLType property (ULColumnSchema

class)
UltraLite ActiveX 110

SQL Anywhere Studio
additional features 2

StartSynchronizationDelete method
(ULConnection class)

UltraLite ActiveX 115
StopSynchronizationDelete method

(ULConnection class)
UltraLite ActiveX 115

Stream property (ULSyncParms class)
UltraLite ActiveX 153

StreamErrorContext property
(ULSyncResult class)

UltraLite ActiveX 155
StreamErrorID property (ULSyncResult

class)
UltraLite ActiveX 155

StreamErrorSystem property
(ULSyncResult class)

UltraLite ActiveX 155
StreamParms property (ULSyncParms

class)
UltraLite ActiveX 153

StringToUUID method (ULConnection
class)

UltraLite ActiveX 116
StringValue property (ULColumn class)

UltraLite ActiveX 105
support

newsgroups xii
supported platforms 2
synchronization

HTTP 94
introduction 94
TCP/IP 94

Synchronize method (ULConnection
class)

UltraLite ActiveX 116

synchronizing UltraLite applications
about 94
UltraLite ActiveX 94

T
TableCount property

(ULDatabaseSchema class)
UltraLite ActiveX 128

tables
accessing schema information 89

target platforms
supported 2

technical support
newsgroups xii

TimeFormat property
(ULDatabaseSchema class)

UltraLite ActiveX 128
transaction processing

about 88
transactions

about 88
Truncate method (ULTable class)

UltraLite ActiveX 164
tutorial for CE

UltraLite Component Suite 25
tutorials

UltraLite ActiveX (eMbedded Visual
Basic) 5

U
udb files

UltraLite databases 63
ULAuthStatusCode constants

about 104
UltraLite ActiveX 104

ULColumn class
about 105
properties 105
UltraLite ActiveX 105

ULColumnSchema class
about 110
properties 110
UltraLite ActiveX 110

ULColumnSchema object
introduction 89

ULConnection class
about 111

173

Index

properties 111
UltraLite ActiveX 111

ULConnection object
introduction 66

ULConnectionParms class
about 117
properties 117
UltraLite ActiveX 117

ULConnectionParms object
introduction 66

ULDatabaseManager class
about 120
properties 120
UltraLite ActiveX 120

ULDatabaseManager object
introduction 66

ULDatabaseSchema class
about 128
properties 128
UltraLite ActiveX 128

ULDatabaseSchema object
introduction 89

ULIndexSchema class
about 131
properties 131
UltraLite ActiveX 131

ULIndexSchema object
introduction 89

ULPreparedStatement
about 74

ULPreparedStatement class
about 132
properties 132
UltraLite ActiveX 132

ULPublicationSchema class
about 135
properties 135
UltraLite ActiveX 135

ULPublicationSchema object
introduction 89

ULResultSet class
about 136
properties 136
UltraLite ActiveX 136

ULResultSetSchema class
about 141
properties 141

UltraLite ActiveX 141
ULSQLCode constants

about 142
UltraLite ActiveX 142

ULSQLType constants
about 146
UltraLite ActiveX 146

ULStreamErrorCode constants
about 147
UltraLite ActiveX 147

ULStreamErrorCode property
(ULSyncResult class)

UltraLite ActiveX 155
ULStreamErrorContext constants

about 150
UltraLite ActiveX 150

ULStreamErrorID constants
about 151
UltraLite ActiveX 151

ULStreamType
about 152
UltraLite ActiveX 152

ULSyncParms class
about 153
properties 153
UltraLite ActiveX 153

ULSyncResult class
about 155
properties 155
UltraLite ActiveX 155

ULSyncState enum
about 156
UltraLite ActiveX 156

ULTable class
about 157
properties 157
UltraLite ActiveX 157

ULTable object
introduction 77, 81

ULTableSchema class
about 166
properties 166
UltraLite ActiveX 166

ULTableSchema object
introduction 89

UltraLite
about 1

174

Index

UltraLite ActiveX
Accessing and manipulating data 81
Accessing schema information 89
architecture 3
Connecting to an UltraLite database 66
Error handling 90
object hierarchy 3
Preparing to work with ActiveX 60
Synchronizing UltraLite applications

94
ULColumnSchema class 110
ULConnection class 111
ULConnectionParms class 117
ULDatabaseManager class 120
ULDatabaseSchema class 128
ULIndexSchema class 131
ULPreparedStatement class 132
ULPublicationSchema class 135
ULResultSet class 136
ULResultSetSchema class 141
ULSQLCode constants 142
ULSQLType constants 146
ULStreamErrorCode constants 147
ULStreamErrorContext constants 150
ULStreamErrorID constants 151
ULStreamType 152
ULSyncParms class 153
ULSyncResult class 155
ULSyncState enum 156
ULTable class 157
ULTableSchema class 166
User authentication 93

UltraLite ActiveX API
IULColumns collection 101
IULIndexSchemas collection 102
IULPublicationSchemas collection 103
ULAuthStatusCode constant 104
ULColumn class 105
ULConnection class 111

UltraLite ActiveX architecture
about 3

UltraLite databases
about 63
features 63
schema 63

UltraLite for MobileVB projects
creating 27

UniqueIndex property (ULIndexSchema
class)

UltraLite ActiveX 131
UniqueKey property (ULIndexSchema

class)
UltraLite ActiveX 131

Update method (ULTable class)
UltraLite ActiveX 164

update mode
about 85

UpdateBegin method (ULTable class)
UltraLite ActiveX 165

updating rows
about 84

UploadOK property (ULSyncResult
class)

UltraLite ActiveX 155
UploadOnly property (ULSyncParms

class)
UltraLite ActiveX 153

user authentication
about 93
UltraLite ActiveX 93

UserName property (ULSyncParms
class)

UltraLite ActiveX 153
users

authentication 93
usm files

about 63
creating 64

UUIDs
getting as string 113
StringToUUID method 116
UUIDToString method 116

UUIDToString method (ULConnection
class)

UltraLite ActiveX 116
UUIDValue property (ULColumn class)

UltraLite ActiveX 105

V
values

accessing 82
Version property (ULDatabaseManager

class)
UltraLite ActiveX 120

175

Index

Version property (ULSyncParms class)
UltraLite ActiveX 153

Visual Basic
supported versions 2

W
Windows CE

supported versions 2

176

	UltraLite ActiveX User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Introduction
	System requirements and supported platforms
	SQL Anywhere Studio

	UltraLite ActiveX architecture

	Tutorial: An UltraLite Application for PocketPC
	Introduction
	Lesson 1: Create a project architecture
	Create an eMbedded Visual Basic project

	Lesson 2: Create a form interface
	Configure the emulator to support UltraLite ActiveX
	Deploy the database schema

	Lesson 3: Write the sample code
	Write code to connect to your database
	Write code for navigation and data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 4: Deploy to a device
	Deploy to a remote device manually
	Deploy to a remote device using the Application Install Wizard

	Summary

	Tutorial: Using Dynamic SQL in an UltraLite Application for PocketPC
	Introduction
	Lesson 1: Create a project architecture
	Create an eMbedded Visual Basic project

	Lesson 2: Create a form interface
	Configure the emulator to support UltraLite ActiveX
	Deploy the database schema

	Lesson 3: Write the eMbedded Visual Basic sample code
	Write code to connect to your database
	Write code for navigation and data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 4: Deploy to a device
	Deploy to a remote device manually
	Deploy to a remote device using the Application Install Wizard

	Summary

	Tutorial: An UltraLite Application for Pocket IE
	Introduction
	Lesson 1: Install the UltraLite ActiveX package
	Lesson 2: Deploy to a device
	Lesson 3: Create and deploy an UltraLite database schema
	Lesson 4: Create a form interface
	Lesson 5: Write the JScript sample code
	Write code to connect to an UltraLite database
	Write code to synchronize the database
	Write code to display order information
	Write code for navigation and data manipulation

	Understanding UltraLite ActiveX Development
	Preparing to work with UltraLite ActiveX
	Adding UltraLite ActiveX to the design environment
	Adding UltraLite ActiveX to a Windows CE device
	Deploying an UltraLite schema file to a Windows CE device
	Working with JScript
	Cached pages
	Script execution order
	Pocket IE limitations

	Working with UltraLite databases
	Creating UltraLite database schema files
	Upgrading your database schema

	Connecting to an UltraLite database
	Using ULConnectionParms to connect to a database
	Using a connection string to connect to a database

	Using frames to maintain application state (JScript)
	Encryption and obfuscation
	Accessing and manipulating data using Dynamic SQL
	Data manipulation: INSERT, UPDATE and DELETE
	Data retrieval: SELECT
	Navigation with Dynamic SQL
	Moving through a result set

	 ULResultSet schema property

	Accessing and manipulating data using the table API
	Scrolling through the rows of a table
	Accessing the values of the current row
	Searching for rows with find and lookup
	Inserting, updating, and deleting rows
	Working with BLOB data
	Transaction processing in UltraLite

	Accessing schema information
	Error handling
	Error handling in eMbedded Visual Basic
	Error handling in JScript

	User authentication
	Synchronizing UltraLite applications
	Monitoring synchronization progress

	Component samples, demonstrations and code fragments

	UltraLite ActiveX API Reference
	IULColumns collection
	Properties

	IULIndexSchemas collection
	Properties

	IULPublicationSchemas collection
	Properties

	ULAuthStatusCode
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	ChangeEncryptionKey method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	PrepareStatement method
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULConnectionParms class
	Properties

	ULDatabaseManager class
	Properties
	CreateDatabase method
	CreateDatabaseWithParms method
	DropDatabase method
	DropDatabaseWithParms method
	OnReceive event
	OnSend event
	OnStateChange event
	OnTableChange event
	OpenConnection method
	OpenConnectionWithParms method

	ULDatabaseSchema class
	Properties
	ApplyFile method
	ApplyFileWithParms method

	ULIndexSchema class
	Properties

	ULPreparedStatement class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	Close method
	ExecuteQuery method
	ExecuteStatement method
	SetNullParameter method
	SetParameter method

	ULPublicationSchema class
	Properties

	ULResultSet class
	Properties
	Close method
	GetByteChunk method
	GetStringChunk method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	IsNull method

	ULResultSetSchema class
	Properties
	GetColumnID method

	ULSQLCode enumeration
	ULSQLType enumeration
	ULStreamErrorCode enumeration
	ULStreamErrorContext enumeration
	ULStreamErrorID enumeration
	ULStreamType enumeration
	ULSyncParms class
	Properties
	AddAuthenticationParm method
	ClearAuthenticationParms method

	ULSyncResult class
	Properties

	ULSyncState enumeration
	ULTable class
	Properties
	Close method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Truncate method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	InPublication method

	Index

