
MobiLink Synchronization
User’s Guide

Part number: 38132-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’
1997–2001 Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of
Certicom Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by
U.S. patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual ix
SQL Anywhere Studio documentation x
Documentation conventions . xiii
The CustDB sample database . xv
Finding out more and providing feedback xvi

I Using MobiLink Technology 1

1 Introducing MobiLink Synchronization 3
The MobiLink synchronization process 4

2 Synchronization Basics 7
Parts of the synchronization system 8
Consolidated database . 10
The MobiLink synchronization server 16
MobiLink clients . 19
The synchronization process . 21
Upload-only and download-only synchronization 30
Options for writing synchronization logic 31
Security . 35

3 Writing Synchronization Scripts 37
Introduction to synchronization scripts 38
Scripts and the synchronization process 44
Script types . 46
Script parameters . 48
Script versions . 49
Adding and deleting scripts in your consolidated database 51
Writing scripts to upload rows . 54
Writing scripts to download rows . 56
Writing scripts to handle errors . 62
Testing script syntax . 64
DBMS-dependent scripts . 65

4 Synchronization Techniques 69
Introduction . 70
Development tips . 71
Timestamp-based synchronization 72

iii

Snapshot synchronization . 74
Partitioning rows among remote databases 77
Maintaining unique primary keys . 81
Handling conflicts . 90
Data entry . 94
Handling deletes . 95
Handling failed downloads . 96
Downloading a result set from a stored procedure call 97
Schema changes in remote databases 100

5 Authenticating MobiLink Users 103
About MobiLink users . 104
Choosing a user authentication mechanism 107
User authentication architecture . 108
Providing initial passwords for users 110
Synchronizations from new users . 111
Prompting end users to enter passwords 112
Changing passwords . 113
Custom user authentication . 114

6 File-Based Downloads 117
Introduction . 118
Setting up file-based downloads . 119
Validation checks . 123
Examples . 127

7 Server-Initiated Synchronization 137
Introduction . 138
Supported platforms . 141
Setting up server-initiated synchronization 142
Push requests . 143
Set up the Notifier . 145
Set up the Listener . 154
Listener Software Development Kit 162
Deployment considerations . 163
Walkthrough of server-initiated synchronization 164
Sample applications . 166

8 Adaptive Server Anywhere Clients 167
Creating a remote database . 168
Publishing data . 171
Creating MobiLink users . 178
Subscribing MobiLink synchronization users 182
Initiating synchronization . 185

iv

Using ActiveSync synchronization . 189
Temporarily stopping synchronization of deletes 193
Customizing the client synchronization process 194
Scheduling synchronization . 198
Adaptive Server Anywhere version 7 MobiLink clients 200

9 UltraLite Clients 207
Introduction to synchronization streams 208
Synchronizing UltraLite databases on the Palm Computing Platform 209
Synchronizing UltraLite databases on Windows CE 223

10 Writing Synchronization Scripts in Java 227
Introduction . 228
Setting up Java synchronization logic 229
Running Java synchronization logic 231
Writing Java synchronization logic . 232
Java synchronization example . 240
MobiLink Java API Reference . 246

11 Writing Synchronization Scripts in .NET 251
Introduction . 252
Setting up .NET synchronization logic 253
Running .NET synchronization logic 255
Writing .NET synchronization logic 260
.NET synchronization example . 266
MobiLink .NET API Reference . 269

12 MobiLink Performance 285
Performance tips . 286
Key factors influencing MobiLink performance 290
Monitoring MobiLink performance . 295

13 MobiLink Monitor 297
Introduction . 298
Starting the MobiLink Monitor . 299
Using the MobiLink Monitor . 302
Saving Monitor data . 307
Customizing your statistics . 308
MobiLink statistical properties . 310

14 Synchronizing Through a Web Server 313
Introduction . 314
Setting up the Redirector . 315
Configuring MobiLink clients and servers for the Redirector 316

v

Configuring Redirector properties (all versions) 318
Configuring an NSAPI Redirector for Netscape web servers 320
Configuring an ISAPI Redirector for Microsoft web servers 323
Configuring the servlet Redirector . 325

15 Running MobiLink Outside the Current Session 329
Running the UNIX MobiLink server as a daemon 330
Running the Windows MobiLink server as a service 331
Troubleshooting MobiLink server startup 336

16 Transport-Layer Security 337
About transport-layer security . 338
Invoking transport-layer security . 346
Certificate authorities . 351
Certificate chains . 352
Enterprise root certificates . 353
Globally signed certificates . 358
Obtaining server-authentication certificates 360
Verifying certificate fields . 363

II MobiLink Tutorials 367

17 Tutorial: Synchronizing Adaptive Server Anywhere Databases 369
Introduction . 370
Lesson 1: Creating and populating your databases 371
Lesson 2: Running the MobiLink synchronization server 375
Lesson 3: Running the MobiLink synchronization client 377
Tutorial cleanup . 379
Summary . 380
Further reading . 381

18 Tutorial: Writing SQL Scripts Using Sybase Central 383
Introduction . 384
Lesson 1: Creating your databases 385
Lesson 2: Creating scripts for your synchronization 389
Lesson 3: Running the MobiLink synchronization server 392
Lesson 4: Running the MobiLink synchronization client 394
Lesson 5: Monitoring your MobiLink synchronization using log files . 396
Tutorial cleanup . 398
Further reading . 399

19 Tutorial: Using MobiLink with an Oracle 8i Consolidated Database 401
Introduction . 402

vi

Lesson 1: Create your databases . 403
Lesson 2: Starting the MobiLink synchronization server 409
Lesson 3: Running the MobiLink synchronization client 410
Summary . 411
Further reading . 412

20 The Contact Sample Application 413
Introduction . 414
Setup . 415
Tables in the Contact databases . 417
Users in the Contact sample . 420
Synchronization . 421
Monitoring statistics and errors in the Contact sample 428

21 The CustDB Sample Application 429
Introduction . 430
Setup . 432
Tables in the CustDB databases . 440
Users in the CustDB sample . 443
Synchronization . 444
Maintaining the customer and order primary key pools 448
Further reading . 450

Index 451

vii

About This Manual

Subject This manual describes MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication
and is well suited to mobile computing environments.

Audience This manual is for users of Adaptive Server Anywhere and other relational
database systems who wish to add synchronization or replication to their
information systems.

Before you begin ☞ For a comparison of MobiLink with other synchronization and
replication technologies, see “Replication Technologies”[Introducing SQL
Anywhere Studio,page 19].

ix

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

x

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

xi

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

xii

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xiii

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xiv

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xv

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xvi

PART I

USING MOBIL INK

TECHNOLOGY

This part introduces MobiLink synchronization technology and describes
how to use it to replicate data between two or more databases.

CHAPTER 1

Introducing MobiLink Synchronization

About this chapter This chapter introduces you to MobiLink synchronization technology. It
describes the purpose and characteristics of MobiLink.

☞ For hands-on tutorials introducing MobiLink, see

♦ “Tutorial: Synchronizing Adaptive Server Anywhere Databases” on
page 369

♦ “Tutorial: Writing SQL Scripts Using Sybase Central” on page 383

♦ “Tutorial: Using MobiLink with an Oracle 8i Consolidated Database” on
page 401

♦ “The Contact Sample Application” on page 413

♦ “The CustDB Sample Application” on page 429

☞ For a more detailed introduction to MobiLink technology, see
“Synchronization Basics” on page 7.

Contents Topic: page

The MobiLink synchronization process 4

3

The MobiLink synchronization process
MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated database,
and many remote databases. The consolidated database, which can be one of
several ODBC-compliant databases, holds the master copy of all the data.
Remote databases can be either Adaptive Server Anywhere or UltraLite
databases.

Synchronization typically begins when a MobiLink remote site opens a
connection to a MobiLink synchronization server. During synchronization,
the MobiLink client at the remote site uploads database changes that were
made to the remote database since the previous synchronization. On
receiving this data, the MobiLink synchronization server updates the
consolidated database, and then downloads changes on the consolidated
database to the remote database.

MobiLink features

MobiLink synchronization is adaptable and flexible. Following are some of
its key features:

♦ Data coordination MobiLink allows you to choose selected portions of
the data for synchronization. MobiLink synchronization also allows you
to resolve conflicts between changes made in different databases. The
synchronization process is controlled by synchronization logic, which
can be written as a SQL, Java, or .NET application. Each piece of logic is
called ascript. With scripts, for example, you can specify how uploaded
data is applied to the consolidated, specify what gets downloaded, and
handle different schema and names between the consolidated and remote
databases.

♦ Automation MobiLink has a number of automated capabilities. The
MobiLink synchronization server can be instructed to generate scripts
suitable for snapshot synchronization, or instructed to generate example
synchronization scripts. It can also automatically add users for
authentication. Server-initiated synchronization allows you to push data
updates to remote databases.

♦ Monitoring and reporting MobiLink provides two mechanisms for
monitoring your synchronizations: the MobiLink Monitor, and statistical
scripts. You can monitor scripts, schema contents, row-count values,
script names, translated script contents, and row values.

♦ Performance tuning There are a number of mechanisms for tuning
MobiLink performance. For example, you can adjust the degree of

4

Chapter 1. Introducing MobiLink Synchronization

contention, upload cache size, number of database connections, number
of worker threads, logging verbosity, or BLOB cache size.

♦ Two-way synchronization Changes to a database can be made at any
location.

♦ Upload-only or download-only synchronization You can choose to
perform only an upload or only a download.

♦ File-based download Downloads can be distributed as files, enabling
offline distribution of synchronization changes. This allows you to create
a file once and distribute it widely.

♦ Server-initiated synchronization You can initiate MobiLink
synchronization from the consolidated database. This means you can
push data updates to remote databases, as well as cause remote databases
to upload data to the consolidated database.

♦ Choice of communication streams Synchronization can be carried out
over TCP/IP, HTTP, or HTTPS. Palm devices can synchronize through
HotSync. Windows CE devices can synchronize using ActiveSync.

♦ Remote-initiated Synchronization between a remote database and a
consolidated database can be initiated at the remote database.

♦ Session-based All changes can be uploaded in a single transaction and
downloaded in a single transaction. At the end of each successful
synchronization, the consolidated and remote databases are consistent.

♦ Transactional integrity Either a whole transaction is synchronized, or
none of it is synchronized. This ensures transactional integrity for each
database.

♦ Data consistency MobiLink operates using aloose consistencypolicy.
All changes are synchronized with each site over time in a consistent
manner, but different sites may have different copies of data at any
instant.

♦ Wide variety of hardware and software platforms A variety of
widely-used database management systems can be used as a MobiLink
consolidated database: Adaptive Server Anywhere, Adaptive Server
Enterprise, Oracle, Microsoft SQL Server, or IBM DB2. Remote
databases can be Adaptive Server Anywhere or UltraLite databases. The
MobiLink synchronization server runs on Windows or UNIX platforms.
Adaptive Server Anywhere runs on Windows, Windows CE, or UNIX
machines. UltraLite runs on Palm, Windows CE, or Java-based devices.

5

♦ Flexibility The MobiLink synchronization server uses SQL, Java, or
.NET scripts to control the upload and download of data. The scripts are
executed according to an event model during each synchronization.
Event-based scripting provides great flexibility in the design of the
synchronization process, including such features as conflict resolution,
error reporting, and user authentication.

♦ Scalability and performance MobiLink synchronization is scalable: a
single server can handle thousands of simultaneous synchronizations, and
multiple MobiLink servers can be run simultaneously using load
balancing. The MobiLink synchronization sever is multi-threaded and
uses connection pooling with the consolidated database. MobiLink
provides extensive monitoring and reporting facilities.

♦ Easy to get started Simple MobiLink installations can be constructed
quickly. More complex refinements can be added incrementally for
full-scale production work.

6

CHAPTER 2

Synchronization Basics

About this chapter This chapter introduces the basic components of MobiLink technology and
provides information about how to set up your synchronization system.

Contents Topic: page

Parts of the synchronization system 8

Consolidated database 10

The MobiLink synchronization server 16

MobiLink clients 19

The synchronization process 21

Upload-only and download-only synchronization 30

Options for writing synchronization logic 31

Security 35

7

Parts of the synchronization system
The following diagram shows the major parts of the synchronization system.

MobiLink
synchronization server

Consolidated
database

network

Consolidated
database server Adaptive Server

Anywhere or UltraLite
MobiLink clients

ODBC

♦ consolidated database This database contains the central copy of all
information in the synchronization system.

☞ For more information, see“Consolidated database” on page 10.

♦ consolidated database server The server, or DBMS, that manages the
consolidated database. This server can be a Sybase product, such as
Adaptive Server Anywhere or Adaptive Server Enterprise, or it may be a
supported system made by another company.

☞ For more information, see“Supported consolidated databases” on
page 10.

♦ ODBC connection All communication between the MobiLink
synchronization server and the consolidated database occurs through an
ODBC connection. ODBC allows the synchronization server to utilize a
variety of consolidated database systems.

☞ For more information, see “ODBC Drivers”[MobiLink Synchronization
Reference,page 335].

♦ MobiLink synchronization server This server manages the
synchronization process and provides the interface between all MobiLink
clients and the consolidated database server.

☞ For more information, see“The MobiLink synchronization server”
on page 16.

8

Chapter 2. Synchronization Basics

♦ Network The connection between the MobiLink synchronization server,
dbmlsrv9, and the MobiLink client, dbmlsync or UltraLite, can use a
number of protocols.

☞ For more information about connecting to dbmlsync, see “-x option”
[MobiLink Synchronization Reference,page 24]. For information about
connecting to UltraLite, see “Stream parameters reference”[UltraLite
Database User’s Guide,page 179].

♦ MobiLink client The client can be installed on a handheld device such
as a Palm Pilot or PocketPC, a server or desktop computer, or an
embedded device such as a cell phone or vending machine. Two types of
clients are supported: UltraLite and Adaptive Server Anywhere
databases. Either or both may be used in a single MobiLink installation.

☞ For more information, see“MobiLink clients” on page 19.

9

Consolidated database
Applications synchronize with a central, consolidated database. This
database is the master repository of information in the synchronization
system.

There are many ways to structure the relations between consolidated and
remote databases. Following are two examples.

The schema of the remote databases can be a subset of the schema of the
consolidated database. For example, a table called emp might be repeated
among a number of different remote sites, and the consolidated database
might use column data from emp.salary in a table called expense. In this
instance, the schemas of the consolidated and remote databases are different,
though data is shared.

The schema of the remote database can also be parallel in structure to the
schema of the consolidated database. Here, the schema of the consolidated
database is a reference for the remote database. In the consolidated database,
you may already have tables that correspond to each of the remote tables. In
this instance, the schemas in the consolidated and remote databases are
virtually the same, and the data in the remote is only a subset of the data on
the consolidated.

You writesynchronization scriptsfor each table in the remote database and
you save these scripts on the consolidated database. These scripts, from their
central location on the consolidated database, direct the synchronization
server in moving data between remote and consolidated databases. One
script for a particular remote table tells the synchronization server where to
store data uploaded from that remote table in the consolidated database.
Another script tells the synchronization server which data to download to the
same remote table.

Supported consolidated databases

Your consolidated database can be one of the following ODBC-compliant
databases: Adaptive Server Anywhere, Adaptive Server Enterprise, Oracle,
IBM DB2, and Microsoft SQL Server. You can use synchronization scripts
to exploit the features of your particular consolidated server.

☞ For information about writing synchronization scripts for specific
consolidated databases, see“DBMS-dependent scripts” on page 65.

☞ For information about setting up each type of database as a consolidated
database, see“Setting up a consolidated database” on page 11.

10

Chapter 2. Synchronization Basics

How remote tables relate to consolidated tables

Synchronization designs can specify mappings between tables and rows in
the remote database with tables and rows in the consolidated database.

Arbitrary relationships
permitted

Tables in a remote database need not be identical to those in the consolidated
database. Synchronized data in one remote application table can be
distributed between columns in different tables, and even between tables in
different consolidated databases. You specify these relationships using
synchronization scripts.

Synchronization scripts are associated with the consolidated database. SQL
scripts are stored in the consolidated database, and Java and .NET scripts are
referenced.

Direct relationships are
simple

You can often simplify your design using a table structure in the remote
database that is a subset of that in the consolidated database. Using this
method, every table in the remote database exists in the consolidated
database. Corresponding tables have the same structure and foreign key
relationships as those in the consolidated database.

Tables in the consolidated database will frequently contain extra columns
that are not synchronized. Indeed, extra columns can aid synchronization.
For example, a timestamp column can identify new or updated rows in the
consolidated database. In other cases, extra columns or tables in the
consolidated database may hold information that is not required at remote
sites.

Setting up a consolidated database

Setup scripts To set up a database so that it can be used as a MobiLink consolidated
database, you must run asetup script that installs MobiLink system tables
and stored procedures. The exception is Adaptive Server Anywhere
databases, which are preconfigured with the appropriate system tables and
stored procedures. For instructions on how to run the setup scripts, see the
sections below for each supported RDBMS.

☞ For more information about MobiLink system tables, see “MobiLink
System Tables”[MobiLink Synchronization Reference,page 315].

☞ For more information about stored procedures, see “Stored Procedures”
[MobiLink Synchronization Reference,page 261].

ODBC connection In addition, the MobiLink synchronization server needs an ODBC
connection to your consolidated database. You must configure the
appropriate ODBC driver for your server and create an ODBC data source
for the database on the computer where your MobiLink synchronization

11

server is running.

☞ For a summary of supported ODBC drivers, see “ODBC Drivers”
[MobiLink Synchronization Reference,page 335].

☞ For updated information and complete functional specifications, see
http://www.ianywhere.com/developer/technotes/odbc_mobilink.html.

☞ For information about configuring ODBC drivers for MobiLink
consolidated databases, see “Introduction to ODBC Drivers”[iAnywhere
Solutions ODBC Drivers,page 1].

☞ For specific information, see the section below for each supported
RDBMS.

Setting up a Sybase Adaptive Server Anywhere consolidated database

Adaptive Server Anywhere databases are automatically configured so that
they can be used as a MobiLink consolidated database without running a
setup script.

A setup script is provided for Adaptive Server Anywhere databases in case
you want to examine source code. For example, it includes source code for
the ml_add_connection_script stored procedure. This setup script is called
syncasa.sqland it is located in thescriptssubdirectory of your SQL
Anywhere installation.

Setting up the ODBC
driver

You must set up an ODBC DSN for your Adaptive Server Anywhere
consolidated database. The ODBC driver for Adaptive Server Anywhere is
installed with SQL Anywhere Studio.

☞ For information about the Adaptive Server Anywhere ODBC driver, see
“Working with ODBC data sources”[ASA Database Administration Guide,
page 53].

Setting up a Sybase Adaptive Server Enterprise consolidated database

To set up Adaptive Server Enterprise version 12.5 or later to work as a
MobiLink consolidated database, run thesyncase125.sqlsetup script,
located in theMobiLink\setupsubdirectory of your SQL Anywhere
installation. For versions prior to 12.5, runsyncase.sqlfrom the same
location.

Tips ☞ For tips on using Adaptive Server Enterprise as a MobiLink
consolidated database, see“DBMS-dependent scripts” on page 65and
“Supported DBMS scripting strategies” on page 65.

ODBC driver You must set up an ODBC DSN for your Adaptive Server Enterprise
consolidated database. SQL Anywhere Studio includes an iAnywhere

12

Chapter 2. Synchronization Basics

Solutions ODBC driver for Adaptive Server Enterprise. You must configure
this driver to work with MobiLink.

☞ For more information, see “iAnywhere Solutions ODBC Driver for
Sybase Adaptive Server Enterprise”[iAnywhere Solutions ODBC Drivers,
page 15].

Setting up an Oracle consolidated database

To set up Oracle to work as a MobiLink consolidated database, run the
syncora.sqlsetup script, located in theMobiLink\setupsubdirectory of your
SQL Anywhere installation.

Tips ☞ For tips on using Oracle as a MobiLink consolidated database, see
“DBMS-dependent scripts” on page 65and“Supported DBMS scripting
strategies” on page 65.

ODBC driver You must set up an ODBC DSN for your Oracle consolidated database. SQL
Anywhere Studio includes an iAnywhere Solutions ODBC driver for Oracle.
You must configure this driver to work with MobiLink.

☞ For more information, see “iAnywhere Solutions ODBC Driver for
Oracle Wire Protocol”[iAnywhere Solutions ODBC Drivers,page 31].

Setting up an IBM DB2 consolidated database

To set up IBM DB2 UDB version 6 or later to work as a MobiLink
consolidated database, run thesyncdb2long.sqlsetup script, located in the
MobiLink\setupsubdirectory of your SQL Anywhere installation. For IBM
DB2 prior to version 6, run thesyncdb2.sqlsetup script from the same
location.

Thesyncdb2.sqlandsyncdb2long.sqlscripts contain a default connection
statement,connect to DB2Database . You should make a copy of the
script and alter this line to be appropriate for your installation. The syntax of
the line must be:

connect to DB2Database user userid using password

whereDB2Database, userid, andpasswordare names you provide.

Thesyncdb2.sqlandsyncdb2long.sqlscripts use the tilde character (~) as a
command delimiter. You can run the scripts as follows:

db2 -c -ec -td~ +s -v -f syncdb2long.sql

In addition, there are columns that require a LONG tablespace. If there is no
default LONG tablespace, the creation statements for the tables containing
these columns must be qualified appropriately, as in the following example.

13

CREATE TABLE ... (...)
IN tablespace
LONG IN long-tablespace

The stored procedures insyncdb2.sqlandsyncdb2long.sqlare implemented
in Java in the filesSyncDB2.classandsyncdb2long.class. The source code
is provided inSyncDB2.javaandSyncDB2long.java. These scripts use the
tilde character (~) as a command delimiter.

The default tablespace (usually called USERSPACE1) of a DB2 database
that you wish to use as a consolidated database must use 8 kb pages.

☞ For an example using the sample application, see“The CustDB Sample
Application” on page 429.

Tips ☞ For tips on using IBM DB2 as a MobiLink consolidated database, see
“DBMS-dependent scripts” on page 65and“Supported DBMS scripting
strategies” on page 65.

ODBC driver You must set up an ODBC DSN for your DB2 UDB consolidated database.

For Solaris, Linux, and AIX, SQL Anywhere Studio includes an iAnywhere
Solutions ODBC driver for IBM DB2.

For Windows, we recommend that you use the ODBC driver provided by
IBM.

☞ You must configure the driver to work with MobiLink. For more
information, see “iAnywhere Solutions ODBC driver for DB2”[iAnywhere
Solutions ODBC Drivers,page 47].

Setting up a Microsoft SQL Server consolidated database

To set up Microsoft SQL Server to work as a MobiLink consolidated
database, run thesyncmss.sqlsetup script, located in theMobiLink\setup
subdirectory of your SQL Anywhere installation.

ODBC driver You must set up an ODBC DSN for your Microsoft SQL Server
consolidated database. Unlike the other consolidated databases, iAnywhere
Solutions does not provide an ODBC driver for Microsoft SQL Server. This
is because the Microsoft SQL Server driver is freely available for download.

However, there are two changes that you should make to the default
configuration to use Microsoft SQL Server as a consolidated database. In the
Microsoft SQL Server DSN Configuration dialog, remove the check marks
from the following options:

♦ Use ANSI quoted identifiers

14

Chapter 2. Synchronization Basics

♦ Use ANSI nulls, paddings and warnings

For updated details, see
http://www.ianywhere.com/developer/technotes/odbc_mobilink.html.

15

The MobiLink synchronization server
All MobiLink clients synchronize through the MobiLink synchronization
server. None connect directly to a database server. You must start the
MobiLink synchronization server before asking a MobiLink client to
synchronize.

Running the MobiLink synchronization server

The MobiLink synchronization server opens connections, via ODBC, with
your consolidated database server. It then accepts connections from remote
applications and controls the synchronization process.

❖ To start the MobiLink synchronization server

1. Run dbmlsrv9. Use the –c option to specify the ODBC connection
parameters for your consolidated database.

☞ For information about connection parameters, see “-c option”[MobiLink
Synchronization Reference,page 10].

You must specify connection parameters. Other options are available, but are
optional. These options allow you to specify how the server works. For
example, you can specify a maximum number of worker threads, cache size,
and logging options.

☞ For more information about dbmlsrv9 options, see “MobiLink
Synchronization Server Options”[MobiLink Synchronization Reference,page 3].

Note: The dbmlsrv9 options allow you to specify how the MobiLink
synchronization server works. To control what the server does, you define
scripts that are invoked at synchronization events.

☞ For more information, see“MobiLink events” on page 22.

Example The following command starts the MobiLink synchronization server,
identifying the ODBC data sourceUltraLite 9.0 Sampleas the consolidated
database. Enter the entire command on one line.

dbmlsrv9
-c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-zs MyServer
-o mlsrv.log
-vcr
-x tcpip

In this example, the -zs option provides a server name. The –o option
specifies that the log file should be namedmlsrv.log. The contents of

16

Chapter 2. Synchronization Basics

mlsrv.logare verbose because of the –vcr option. The –x option specifies
that MobiLink clients will be permitted to connect via TCP/IP.

☞ You can also start the MobiLink synchronization server as a Windows
service or UNIX daemon. For more information, see“Running MobiLink
Outside the Current Session” on page 329.

Stopping the MobiLink synchronization server

The MobiLink synchronization server can be stopped from the computer
where the server was started. You can stop the MobiLink server in the
following ways:

♦ Click Shutdown on the MobiLink server window.

♦ Use Exit from the System tray context menu.

♦ Use the dbmlstop utility.

☞ For more information, see “MobiLink stop utility”[MobiLink
Synchronization Reference,page 303].

Logging MobiLink synchronization server actions

Logging the actions that the server takes is particularly useful during the
development process, and when troubleshooting. Verbose output is not
recommended for normal operation of a production environment because it
can slow performance.

Logging output to a file Logging output is sent to the MobiLink synchronization server window. In
addition, you can send the output to a log file using the -o option. The
following command sends output to a log file namedmlsrv.log.

dbmlsrv9 -o mlsrv.log -c ...

☞ For more information, see “-o option”[MobiLink Synchronization
Reference,page 13].

Controlling the size of log
files

You can control the size of log files, and specify what you want done when a
file reaches its maximum size.

♦ With the -on option, you specify the size at which the log file is renamed
with the extension .old, and a new file is started with the original name.

♦ With the -os option, you specify the size at which a new log file is started
with a new name based on the date and a sequential number.

♦ With the -ot option, the contents of the log file are deleted before
messages are sent to it.

17

☞ For more information, see

♦ “-on option” [MobiLink Synchronization Reference,page 14]

♦ “-os option” [MobiLink Synchronization Reference,page 15]

♦ “-ot option” [MobiLink Synchronization Reference,page 16]

Controlling the amount of
logging output

You can control the amount of output that is logged using the -v option.

☞ For more information, see “-v option”[MobiLink Synchronization
Reference,page 21].

Controlling which errors
are reported

☞ You can also control which warning messages are reported.

☞ For more information, see

♦ “-zw option” [MobiLink Synchronization Reference,page 31]

♦ “-zwd option” [MobiLink Synchronization Reference,page 32]

♦ “-zwe option” [MobiLink Synchronization Reference,page 33]

18

Chapter 2. Synchronization Basics

MobiLink clients
Each remote database, together with its applications, is referred to as a
MobiLink client. Two types of MobiLink client are supported:

♦ Adaptive Server Anywhere

♦ UltraLite

Adaptive Server Anywhere clients

Synchronization is initiated by running a command line utility called
dbmlsync. This utility connects to the remote database and prepares the
upload stream using information contained in the transaction log of the
remote database. It then uses information stored in a synchronization
publication and synchronization subscription to connect to the MobiLink
synchronization server and exchange data.

☞ For more information about Adaptive Server Anywhere clients, see
“Adaptive Server Anywhere Clients” on page 167.

UltraLite clients

Applications built with the UltraLite technology available in SQL Anywhere
Studio are automatically MobiLink-enabled whenever the application
includes a call to the appropriate MobiLink synchronization function. The
UltraLite development tools included in SQL Anywhere Studio
automatically include synchronization logic when you build your UltraLite
application.

The UltraLite application and libraries handle the synchronization actions at
the application end. You can write your UltraLite application with little
regard to synchronization. The UltraLite runtime keeps track of changes
made since the previous synchronization.

Synchronization is initiated from your application by a single call to a
synchronization function when using TCP/IP, HTTP, HTTPS, or ActiveSync.

The interface for HotSync is slightly different. Once synchronization is
initiated from the application or from HotSync, the MobiLink
synchronization server and the UltraLite runtime control the actions that
occur during synchronization.

☞ For more information about initiating synchronization, see
“Synchronization for UltraLite Applications”[UltraLite Database User’s
Guide,page 143].

19

☞ For more information about UltraLite clients, see“UltraLite Clients” on
page 207.

Specifying the communications protocol for clients

The MobiLink synchronization server has the -x command line option to
specify the communications protocol or protocols for the synchronization
client to connect to the MobiLink server. The kind of communication
protocol you choose must match the synchronization protocol used by the
client. The syntax for this command line option is:

dbmlsrv9 -c " connection-string" -x protocol

In the following example, the TCP/IP protocol is selected with no additional
communications parameters.

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -x tcpip

You can configure your protocol using communication parameters of the
form:

(keyword=value;. . .)

For example:

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -x tcpip(
host=localhost;port=2439)

☞ For more information about communication protocols, see “-x option”
[MobiLink Synchronization Reference,page 24].

MobiLink users

You need to provide one unique MobiLink user name for each remote
database in the MobiLink system. This name uniquely identifies each
MobiLink remote database.

The ml_user MobiLink system table, located in the consolidated database,
holds a list of MobiLink user names. The synchronization state of each user
is recorded in the commit_state column or the progress column. This
information ensures proper recovery if synchronization is interrupted.

☞ For more information about MobiLink users, see

♦ “About MobiLink users” on page 104

♦ “Creating MobiLink users” on page 178

♦ “ml_user” [MobiLink Synchronization Reference,page 320]

20

Chapter 2. Synchronization Basics

The synchronization process
A synchronization is the process of bidirectional data exchange between the
MobiLink client and synchronization server. During this process, the client
must establish and maintain a connection to the synchronization server. If
successful, the session leaves the remote and consolidated databases in a
mutually consistent state.

The client normally initiates the synchronization process. It begins by
establishing a connection to the MobiLink synchronization server.

The upload stream and
the download stream

To upload rows, MobiLink clients prepare and send anupload streamthat
contains a list of all the rows that have been updated, inserted, or deleted on
the MobiLink client since the last synchronization. Similarly, to download
rows, the MobiLink synchronization server prepares and sends adownload
stream that contains a list of inserts, updates, and deletes.

1. Upload stream The MobiLink client automatically keeps track of
which rows in the remote database have been inserted, updated, or
deleted since the previous successful synchronization. Once the
connection is established, the MobiLink client uploads a list of all these
changes to the synchronization server.

The upload stream consists of a set of new and old row values for each
row modified in the remote database. If a row has been updated or
deleted, the old values are those that were present immediately following
the last successful synchronization. If a row has been inserted or updated,
the new values are the current row values. No intermediate values are
sent, even if the row was modified several times before arriving at its
current state.

The MobiLink synchronization server receives the upload stream and
applies the changes to the consolidated database. It normally applies all
the changes in a single transaction. When it has finished, the MobiLink
synchronization server commits the transaction.

Note
MobiLink operates using the ODBC isolation level SQL_TXN_-
READ_COMMITTED as the default isolation level for the consolidated
database. MobiLink does so because repeatable reads are required for
conflict detection purposes. If you have no conflict detection scripts or
if you want to select an isolation level more suited to your needs, you
can set this level in your begin_connection script.

2. Download stream The MobiLink synchronization server compiles a
list of rows to be inserted, updated, or deleted on the MobiLink client,
using synchronization logic that you create. It downloads these rows to

21

the MobiLink client. To compile this list, the MobiLink synchronization
server opens a new transaction on the consolidated database.

The MobiLink client receives the download stream. It takes the arrival of
this stream as confirmation that the consolidated database has
successfully applied all uploaded changes. It will then ensure these
changes are not sent to the consolidated database again.

Next, the MobiLink client automatically processes the download stream,
deleting old rows, inserting new rows, and updating rows that have
changed. It applies all these changes in a single transaction in the remote
database. When finished, it commits the transaction.

3. Optional download acknowledgement The MobiLink client
optionally sends a short confirmation message to the MobiLink
synchronization server.

The MobiLink synchronization server receives the confirmation message.
This message tells the synchronization server that the client has received
and processed all downloaded changes. In response, it commits the
download transaction begun in step 2.

☞ For more information about the SendDownloadAck extended option,
see “SendDownloadACK (sa) extended option”[MobiLink Synchronization
Reference,page 62]and “Send Download Acknowledgement
synchronization parameter”[UltraLite Database User’s Guide,page 172].

During MobiLink synchronization, there are few distinct exchanges of
information. The client builds and uploads the entire upload stream. In
response, the synchronization server builds and downloads the entire
download stream. Limiting the chattiness of the protocol is especially
important when communication is slower and has higher latency, as is the
case when using telephone lines or public wireless networks.

MobiLink events

When the MobiLink client initiates a synchronization, a number of
synchronization events occur. At the occurrence of an event, MobiLink
looks for a script to match the synchronization event. This script contains
your instructions outlining what you want done. The basic sequence is:

Event occurs➤ Script is invoked(if it exists)

☞ For more information about synchronization events and scripts, see:

♦ “Synchronization Events”[MobiLink Synchronization Reference,page 83]

♦ “Writing Synchronization Scripts” on page 37

22

Chapter 2. Synchronization Basics

MobiLink scripts

Whenever an event occurs, the MobiLink synchronization server executes
the associated script if you have created one. If no script exists, the next
event in the sequence occurs.

Following are some typical synchronization scripts for tables.

Event Script

upload_insert INSERT INTO
emp (emp_id,emp_name)
VALUES (?,?)

upload_delete DELETE FROM emp
WHERE emp_id=?

upload_update UPDATE emp
SET emp_name=?
WHERE emp_id=?

upload_old_row_insert INSERT INTO old_emp
(emp_id,emp_name)
VALUES (?,?)

upload_new_row_insert INSERT INTO new_emp
(emp_id,emp_name)
VALUES (?,?)

upload_fetch SELECT id, name, size, quantity,
unit_price

FROM Product WHERE id=?

The first event, upload_insert, triggers the running of the upload_insert
script, which inserts the emp_id and emp_name into the emp table. In like
fashion, the upload_delete and upload_update tables will perform similar
functions for delete and update actions on the same emp table.

The download script uses a cursor. Following is an example of a
download_cursor script:

SELECT emp_id, emp_name
FROM emp
WHERE emp_name = ?

The download_cursor acquires data from the emp table for a specified

23

emp_name.

COMMIT or ROLLBACK statements within scripts alter the transactional
nature of the synchronization steps. If you use them, you cannot guarantee
the integrity of your data in the event of a failure. There should be no
implicit or explicit commit or rollback in your synchronization scripts or the
procedures or triggers that are called from your synchronization scripts.

Scripts can be written in
SQL, Java, or .NET

You can write scripts using the native SQL dialect of your consolidated
database, or using Java or .NET synchronization logic. Java and .NET
synchronization logic allow you to write code, invoked by the MobiLink
synchronization server, to connect to a database, manipulate variables, and
create user-defined procedures that can work with MobiLink and any
supported relational database. There is a MobiLink Java API and a
MobiLink .NET API that have routines to suit the needs of synchronization.

☞ For more information about programming synchronization logic, see
“Options for writing synchronization logic” on page 31.

☞ For information about DBMS-dependent scripting, such as scripting for
Oracle, MS SQL Server, IBM DB2 or Adaptive Server Enterprise databases,
see“DBMS-dependent scripts” on page 65.

Storing scripts SQL scripts are stored in system tables in the consolidated database. For
Java and .NET, pointers to other locations are stored in the consolidated
database. You can add all kinds of scripts to a consolidated database in two
ways:

♦ By using stored procedures that are installed along with the MobiLink
system tables when you create a consolidated database.

♦ By using Sybase Central.

☞ For more information, see“Adding and deleting scripts in your
consolidated database” on page 51.

Stored procedures

MobiLink stored procedures are used for programmatic conflict resolution,
adding scripts, user authentication, and other customization procedures.

☞ For more information about using MobiLink stored procedures for
customization, see “Stored Procedures”[MobiLink Synchronization Reference,
page 261].

Other means to gain procedural control are commonly used with databases
that don’t have a defined procedural language. For example, with databases
that do not permit user-defined procedures, such as IBM’s DB2, Java
procedures may be employed to act as MobiLink stored procedures.

24

Chapter 2. Synchronization Basics

☞ For more information about writing scripts using Java or .NET
synchronization logic, see“Writing Synchronization Scripts in Java” on
page 227and“Writing Synchronization Scripts in .NET” on page 251.

For Adaptive Server Anywhere clients, you can use stored procedures called
client event hook procedures, which are held on the remote database. A
variety of event hook procedures are available for you to insert your own
logic into the MobiLink synchronization process.

☞ For more information, see “Client event-hook procedures”[MobiLink
Synchronization Reference,page 269].

Transactions in the synchronization process

The MobiLink synchronization server incorporates changes uploaded from
each MobiLink client into the consolidated database in one transaction. The
MobiLink synchronization server commits these changes once it has
completed inserting new rows, deleting old rows, making updates, and
resolving any conflicts.

The MobiLink synchronization server prepares the download stream,
including all deletes, inserts, and updates, using another transaction. By
default, it does not commit this transaction until it receives a positive
confirmation from the MobiLink client. If the client confirms a successful
download, the MobiLink synchronization server commits the download
transaction. If the application encounters problems or cannot reply, the
MobiLink synchronization server instead rolls back the download
transaction.

Do not commit or roll back transactions within a script
COMMIT or ROLLBACK statements within scripts alter the transactional
nature of the synchronization steps. If you use them, you cannot guarantee
the integrity of your data in the event of a failure. There should be no
implicit or explicit commit or rollback in your synchronization scripts or
the procedures or triggers that are called from your synchronization scripts.

Tracking downloaded
information

The primary role of the download transaction is to select rows in the
consolidated database. If the download fails being sent to the remote, the
remote will upload the same timestamp over again, and no data will be lost.

The MobiLink synchronization server uses two other transactions, one at the
beginning of synchronization, and one at the end. These transactions allow
you to record information regarding each synchronization and its duration.
Thus, you can record statistics about attempted synchronizations, successful
synchronizations, and the duration of synchronizations. Since data is
committed at various points in the process, these transactions also let you

25

commit data useful when analyzing failed synchronization attempts.

Similarly, the MobiLink client processes information in the download stream
in one transaction. Rows are inserted, updated, and deleted to bring the
remote database up to date with the consolidated data.

How synchronization failure is handled

MobiLink synchronization is fault tolerant. For example, if a
communication link fails during synchronization, both the remote database
and the consolidated database are left in a consistent state.

On the client, failure is indicated by a return code. For example, in an
embedded SQL UltraLite application, the SQLCode is set to
SQLE_COMMUNICATION_ERROR when ULSynchronize returns.

There are three cases that are handled in different ways:

♦ Failure during upload If the failure occurs while building or applying
the upload stream, the remote database is left in exactly the same state as
at the start of synchronization. At the server, any part of the upload
stream that has been applied will be rolled back.

♦ Failure between upload and download If the failure occurs once the
upload stream is complete, but before the MobiLink client receives the
download stream, the client cannot be certain whether the uploaded
changes were successfully applied to the consolidated database. The
upload stream might be fully applied and committed, or the failure may
have occurred before the server applied the entire upload stream. The
MobiLink synchronization server automatically rolls back incomplete
transactions in the consolidated database.

The MobiLink client maintains a record of all uploaded changes in case
they must be sent again. The next time the client synchronizes, it requests
the state of the previous upload stream before building the new upload
stream. If the previous upload was not committed, the new upload stream
contains all changes from the previous upload stream.

♦ Failure during download If the failure occurs in the remote device
while applying the download stream, any part of the download that has
been applied is rolled back and the remote database is left in the same
state as before the download. The MobiLink synchronization server
automatically rolls back the download transaction in the consolidated
database.

In all cases where failure may occur, no data is lost. The MobiLink server
and the MobiLink client manage this for you. The developer/user need not
worry about maintaining consistent data in their application.

26

Chapter 2. Synchronization Basics

How the upload stream is processed

When the MobiLink synchronization server receives an upload stream from
a MobiLink client, the entire upload stream is stored until the
synchronization is complete. This is done for three purposes.

♦ Deadlock When an upload stream is being applied to the consolidated
database, it may encounter deadlock due to concurrency with other
transactions. These transactions might be upload transactions from other
MobiLink synchronization server database connections, or transactions
from other applications using the consolidated database. When an upload
transaction is deadlocked, it is rolled back and the MobiLink
synchronization server automatically starts applying the upload stream
from the beginning again.

Performance tip
It is important to write your synchronization scripts to avoid contention
as much as possible. Contention has a significant impact on performance
when multiple users are synchronizing simultaneously.

♦ Filtering download rows The most common technique for determining
rows to download is to download rows that have been modified since the
previous download. When synchronizing, the upload precedes the
download. Any rows inserted or updated during the upload will be rows
that have been modified since the previous download.

It would be difficult to write a download_cursor script that omits from the
download stream rows that were sent as part of the upload. For this
reason, the MobiLink synchronization server automatically removes
these rows from the download stream. When a row is being added to the
download stream, the MobiLink synchronization server locates the row in
the upload stream and omits the row from the download stream when it is
found to be the same.

♦ Processing deletes after inserts and updates The upload stream is
applied to the consolidated database in an order that avoids referential
integrity violations. The upload stream is formatted so all operations
(inserts, updates, and deletes) for a single table are grouped together. The
tables in the upload stream are ordered based on foreign key
relationships. All tables in the remote database that are referenced by
another table in the remote database will be in the upload stream before
the referencing table.

For example, if table A and table C both have foreign keys that reference
a primary key column in B, then table B rows are uploaded first.

27

When the upload stream is applied to the consolidated database, the
inserts and updates are applied in the order they appear in the upload
stream. When an inserted or updated row references a newly inserted
row, this ensures the referenced row will be inserted before the
referencing row. Deletes are applied in the opposite order after all inserts
and updates have been applied. When a row being deleted references
another row that is also being deleted, this order of operations ensures the
referencing row is deleted before the referenced row is deleted.

Referential integrity and synchronization

All MobiLink clients enforce referential integrity when they incorporate the
download stream into the remote database.

Rather than failing the download transaction, the MobiLink client
automatically deletes all rows that violate referential integrity.

This feature affords you these key benefits.

♦ Protection from mistakes in your synchronization scripts. Given the
flexibility of the scripts, it is possible to accidentally download rows that
would break the integrity of the remote database. The MobiLink client
automatically maintains referential integrity without requiring
intervention.

♦ You can use this referential integrity mechanism to delete information
from a remote database efficiently. By only sending a delete to a parent
record, the MobiLink client will remove all the child records
automatically for you. This can greatly reduce the amount of traffic
MobiLink must send to the remote database.

Referential integrity
checked at the end of the
transaction

The MobiLink client incorporates changes from the download stream in a
single transaction. To offer more flexibility, referential integrity checking
occurs at the end of this transaction. Because checking is delayed, the
database may temporarily pass through states where referential integrity is
violated as rows are inserted, updated, and deleted, but the rows that violate
referential integrity are automatically removed before the download is
committed.

Errors are avoided The MobiLink client resolves referential integrity violations automatically.
This feature minimizes administration requirements. It also prevents an error
in a synchronization script from disabling an MobiLink client.

An efficient way to delete
rows

You can exploit the automatic referential integrity mechanism of MobiLink
clients to delete large quantities of information in a very efficient manner. If
your MobiLink client contains a primary row, and other rows that reference

28

Chapter 2. Synchronization Basics

it, you can delete all the referencing rows simply by synchronizing a delete
of the primary row.

Example Suppose that an UltraLite sales application contains, among others, the
following two tables. One table contains sales orders. Another table contains
items that were sold in each order. They have the following relationship.

If you use the download_delete_cursor for the sales_order table to delete an
order, the automatic referential integrity mechanism automatically deletes all
rows in the sales_order_items table that point to the deleted sales order.

This arrangement has the following advantages.

♦ You do not require a sales_order_items script because rows from this
table will be deleted automatically.

♦ The efficiency of synchronization is improved. You need not download
rows to delete from the sales_order_item table. If each sales order
contains many items, the performance improves because the download
stream is now smaller. This technique is particularly valuable when using
slow communication methods.

29

Upload-only and download-only synchronization
For both Adaptive Server Anywhere and UltraLite remote databases, you
can choose to do a full synchronization, or you can perform only an upload
or download.

Adaptive Server
Anywhere remote
databases

In Adaptive Server Anywhere remote databases, you perform upload-only
synchronization using the dbmlsync option -ds or the extended option
DownloadOnly.

☞ For more information, see “-ds option”[MobiLink Synchronization
Reference,page 43]and “DownloadOnly (ds) extended option”[MobiLink
Synchronization Reference,page 49].

In Adaptive Server Anywhere remote databases, you perform
download-only synchronization using the dbmlsync option -uo or the
extended option UploadOnly.

☞ For more information, see “-uo option”[MobiLink Synchronization
Reference,page 80]or “UploadOnly (uo) extended option”[MobiLink
Synchronization Reference,page 65].

UltraLite remote
databases

In UltraLite remote databases, you perform download-only synchronization
using the Download Only synchronization parameter.

☞ For more information, see “Download Only synchronization parameter”
[UltraLite Database User’s Guide,page 165].

In UltraLite remote databases, you perform upload-only synchronization
using the Upload Only synchronization parameter.

☞ For more information, see “Upload Only synchronization parameter”
[UltraLite Database User’s Guide,page 176].

30

Chapter 2. Synchronization Basics

Options for writing synchronization logic
MobiLink synchronization scripts can be written in SQL, in Java, or in .NET
programming languages. Java or .NET are a good choice whenever your
design is restricted by the limitations of the SQL language or by the
capabilities of your database-management system, of if you want
DBMS-independent synchronization logic.

Program synchronization logic can function just as SQL logic functions, as
shown in the figure below. The MobiLink synchronization server can make
calls to Java or .NET methods on the occurrence of MobiLink events just as
it can access SQL scripts on the occurrence of MobiLink events. However,
the upload and download streams are not directly accessible from Java or
.NET synchronization logic, where a SQL string must be returned to
MobiLink.

Java or .NET
Synchronization Logic

consolidated
data store

MobiLink
synchronization

server

ODBC

INSERT...
AUTHENTICATE_

USER

Other
scripts

Calls for
events

SQL string
returned

network

client
applications

SQL synchronization logic is restricted to the procedural language
capabilities of your consolidated database. SQL languages are unlikely to
offer all the programming logic given by Java or .NET programming
languages. You might want to use Java or .NET synchronization logic when

31

your SQL logic is limited, when you need to perform operations across
database platforms, and when you need portability across RDBMSs and
operating systems. Following are some scenarios where you might want to
consider writing scripts in Java or .NET.

♦ A user authentication procedure can be written in Java or .NET that
inserts the user ID of a MobiLink user into a table on the consolidated
database for audit purposes.

♦ If your database lacks the ability to handle variables, you can create a
variable in Java or .NET that persists throughout your connection or
synchronization.

♦ If your database lacks the ability to make user-defined stored procedures,
you can make a method in Java or .NET that can perform the needed
functionality.

♦ If your program calls for contacting an external server midway through a
synchronization event, you can use Java or .NET synchronization logic to
perform actions triggered by synchronization events. Java and .NET
synchronization logic can be shared across multiple connections.

♦ With Java and .NET synchronization logic, you can use MobiLink to
access data from application servers, Web servers, and files. You can use
JDBC or iAnywhere classes in your synchronization logic to access data
in relational databases other than the consolidated database. For example,
an external server can be used to validate a user ID and password. The
figure below shows the links between Java or .NET synchronization logic
and both a consolidated database and a second data server.

32

Chapter 2. Synchronization Basics

Java or .NET
synchronization

logic

consolidated
data store

MobiLink
synchronization

server

client applications

ODBC

External data
server

network

MobiLink APIs With Java and .NET synchronization logic, you have access to a MobiLink
API. The MobiLink APIs are sets of classes and interfaces for MobiLink
synchronization. There are two MobiLink APIs: Java and .NET.

The MobiLink Java API offers you:

♦ Access to the existing ODBC connection as a JDBC connection.

♦ The ability to create new JDBC connections to perform commits or
connects outside the current synchronization connection. For example,
you can use this for error logging.

♦ The ability to write and debug Java code before it is executed by the
MobiLink server. SQL development environments for many database
management systems are relatively primitive compared to those available
for Java applications.

33

♦ Code that runs inside the Java virtual machine and allows access to all
Java libraries and Java Native Interface calls.

☞ For more information, see“MobiLink Java API Reference” on page 246.

The MobiLink .NET API offers you:

♦ Access to the existing ODBC connection using iAnywhere classes that
call ODBC from .NET.

♦ Code that runs inside the .NET Common Language Runtime (CLR) and
allows access to all .NET libraries and unmanaged calls.

☞ For more information, see“MobiLink .NET API Reference” on
page 269.

Further reading ☞ For more information about your options for writing synchronization
scripts, see

♦ “Writing Synchronization Scripts” on page 37

♦ “Synchronization Techniques” on page 69

♦ “Writing Synchronization Scripts in Java” on page 227

♦ “Writing Synchronization Scripts in .NET” on page 251

34

Chapter 2. Synchronization Basics

Security
There are several aspects to securing data throughout a widely distributed
system such as a MobiLink installation:

♦ Protecting data in the consolidated database Data in the
consolidated database can be protected using the DBMS user
authentication system and other security features.

☞ For more information, see your DBMS documentation. If you are
using an Adaptive Server Anywhere consolidated database, see “Keeping
Your Data Secure”[SQL Anywhere Studio Security Guide,page 3].

♦ Protecting data in the remote databases If you are using Adaptive
Server Anywhere remote databases, the data can be protected using
Adaptive Server Anywhere security features. By default, these are
designed to prevent unauthorized access through client/server
communications, but not to be proof against a serious attempt to extract
information directly from the database file.

Files on the client are protected by the security features of the client
operating system.

☞ If you are using an Adaptive Server Anywhere remote database, see
“Keeping Your Data Secure”[SQL Anywhere Studio Security Guide,page 3].

♦ Protecting data during synchronization Communication from
MobiLink clients to MobiLink synchronization servers can be protected
by the MobiLink transport layer security features.

☞ For more information, see“Transport-Layer Security” on page 337.

♦ Protecting the synchronization system from unauthorized users
MobiLink synchronization can be secured by a password-based user
authentication system. This mechanism prevents unauthorized users from
synchronizing data.

☞ For more information, see“Authenticating MobiLink Users” on
page 103.

35

CHAPTER 3

Writing Synchronization Scripts

About this chapter You control the synchronization process by writing synchronization scripts
and storing them in the consolidated database.

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds
of scripts, but focuses on how to write synchronization scripts in SQL.

For more information about writing scripts, see

♦ “Synchronization Events”[MobiLink Synchronization Reference,page 83]

♦ “Synchronization Techniques” on page 69

♦ “Writing Synchronization Scripts in Java” on page 227

♦ “Writing Synchronization Scripts in .NET” on page 251

Contents Topic: page

Introduction to synchronization scripts 38

Scripts and the synchronization process 44

Script types 46

Script parameters 48

Script versions 49

Adding and deleting scripts in your consolidated database 51

Writing scripts to upload rows 54

Writing scripts to download rows 56

Writing scripts to handle errors 62

Testing script syntax 64

DBMS-dependent scripts 65

37

Introduction to synchronization scripts
MobiLink Synchronization logic consists of scripts, which may be
individual statements or stored procedure calls, stored in your consolidated
database. During synchronization, the MobiLink synchronization server
reads the scripts and executes them against the consolidated database.
Scripts provide you with opportunities to perform tasks at various points of
time during the synchronization process. You can use Sybase Central to add
scripts to the consolidated database or you can use stored procedures.

upload_insert

upload_delete

other scripts

consolidated
server

MobiLink
synchronization

server

remote
applications

client data
store

synchronization scripts

network

The synchronization process is composed of multiple steps. A uniqueevent
name identifies each step. You control the synchronization process by
writing scripts associated with some of these events. You write a script only
when some particular action must occur at a particular event. The MobiLink
synchronization server executes each script when its associated event occurs.
If you do not define a script for a particular event, the MobiLink
synchronization server simply proceeds to the next step.

38

Chapter 3. Writing Synchronization Scripts

For example, one event is begin_upload_rows. You can write a script and
associate it with this event. The MobiLink synchronization server reads this
script when it is first needed, and executes it during the upload phase of
synchronization. If you write no script, the MobiLink synchronization server
proceeds immediately to the next step, which is processing the uploaded
rows.

Some scripts, calledtable scripts, are associated not only with an event, but
also with a particular table in the remote database. The MobiLink
synchronization server performs some tasks on a table-by-table basis; for
example, downloading rows. You can have many scripts associated with the
same event, but each with different application tables. Alternatively, you can
define many scripts for some application tables, but none for others.

☞ For an overview of events, see“The synchronization process” on
page 21.

☞ For a description of every script you can write, see “Synchronization
Events”[MobiLink Synchronization Reference,page 83].

You can write scripts in SQL, Java, or .NET. This chapter applies to all kinds
of scripts, but focuses on how to write synchronization scripts in SQL.

☞ For a description and comparison of SQL, Java, and .NET, see“Options
for writing synchronization logic” on page 31.

☞ For information about writing scripts in .NET, see“Writing
Synchronization Scripts in .NET” on page 251.

☞ For information about writing scripts in Java, see“Writing
Synchronization Scripts in Java” on page 227.

☞ For information about how to implement synchronization scripts, see
“Synchronization Techniques” on page 69.

A simple synchronization script

MobiLink provides many events that you can exploit, but it is not mandatory
to provide scripts for each event. In a simple synchronization model, you
may need only a few scripts.

Downloading all the rows from the table to each remote database
synchronizes the ULProduct table in the CustDB sample application. In this
case, no additions are permitted at the remote databases. You can implement
this simple form of synchronization with a single script; in this case only one
event has a script associated with it.

The MobiLink event that controls the rows to be downloaded during each

39

synchronization is named the download_cursor event. Cursor scripts must
contain SELECT statements. The MobiLink synchronization server uses
these queries to define a cursor. In the case of a download_cursor script, the
cursor selects the rows to be downloaded to one particular table in the
remote database.

In the CustDB sample application, there is a single download_cursor script
for the ULProduct table in the sample application, which consists of the
following query.

SELECT prod_id, price, prod_name
FROM ULProduct

This query generates a result set. The rows that make up this result set are
downloaded to the client. In this case, all the rows of the table are
downloaded.

The MobiLink synchronization server knows to send the rows to the
ULProduct application table because this script is associated with both the
download_cursor event and ULProduct table by the way it is stored in the
consolidated database. Sybase Central allows you to make these
associations.

Note
In this example, the query selects data from a consolidated table also named
ULProduct. The names need not match. You could, instead, download data
to the ULProduct application table from any table, or any combination of
tables, in the consolidated database by rewriting the query.

You can write more complicated synchronization scripts. For example, you
could write a script that downloads only recently modified rows, or one that
provides different information to each remote database.

Generating scripts automatically

You can use the dbmlsrv9 -za option to generate default synchronization
scripts. The synchronization scripts perform a snapshot synchronization of
your consolidated database with your remote database using table and
column names that are sent from the client.

To use this feature with Adaptive Server Anywhere clients, set the
SendColumnNames extended option to ON to cause dbmlsync to send the
column names with the upload header. To use this feature with UltraLite
clients, set the send_column_names parameter to ul_true.

When you use -za, scripts are generated the first time that a remote
synchronizes with a script version that doesn’t exist. If the given script

40

Chapter 3. Writing Synchronization Scripts

version already exists, -za has no effect. This means that you cannot use -za
to generate scripts one table at a time for the same script version. Using -za,
you must generate scripts for all tables and publications at once.

☞ For more information, see “-za option”[MobiLink Synchronization
Reference,page 28].

Example Start the MobiLink synchronization server using the -za switch. For
example, type:

dbmlsrv9 -c "dsn=YourDBDSN" -za

Run dbmlsync and set the SendColumnNames extended option to ON. For
example, type:

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

Scripts are generated for all tables specified in the publication. On
synchronization, these automatically-generated scripts control the upload
and download of data to and from your client and consolidated databases.
The following table describes these scripts for the emp table.

Script name Script contents

upload_insert INSERT INTO emp (emp_id, emp_name)
VALUES (?,?)

upload_update UPDATE emp SET emp_name=?
WHERE emp_id=?

upload_delete DELETE FROM emp
WHERE emp_id=?

download_cursor SELECT emp_id, emp_name FROM emp

Generating example scripts

You can use the dbmlrv9 -ze option to generate example synchronization
scripts. The example synchronization scripts are capable of performing a
snapshot synchronization of your consolidated database with your remote
database using the table and column names sent from the client, but they are
not enabled. If the consolidated database has different table or column
names, then activating these scripts causes an error during the
synchronization.

To use this feature with Adaptive Server Anywhere clients, set the

41

SendColumnNames extended option to ON to cause dbmlsync to send the
column names with the upload header. To use this feature with UltraLite
clients, set the send_column_names parameter to ul_true.

The -ze option generates the example scripts example_upload_insert,
example_upload_update, example_upload_delete, and
example_download_cursor.

☞ For more information, see “-ze option”[MobiLink Synchronization
Reference,page 29].

Example The following example generates scripts for an Adaptive Server Anywhere
remote database.

At a command prompt, type:

dbmlsrv9 -c "dsn=YourDBDSN" -ze

At a command prompt, type:

dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

In the example above, example scripts are generated for all tables specified
in the synchronization definition. The scripts exist for each table specified in
the synchronization definition. The following table lists these scripts for the
emp table.

Script name Script

example_upload_insert INSERT INTO emp (emp_id,emp_name)
VALUES (?,?)

example_upload_update UPDATE emp SET emp_name=?
WHERE emp_id=?

example_upload_delete DELETE FROM emp
WHERE emp_id=?

example_download_cursor SELECT emp_id, emp_name FROM emp

The example scripts select and upload all records from any table in the
synchronization subscription that meet the conditions specified in the
statement. So, for example, the upload_insert script for emp inserts all
records from emp. The example scripts are generated for each table in the
remote database specified in the synchronization subscription. The
MobiLink synchronization server generates complete scripts needed for a

42

Chapter 3. Writing Synchronization Scripts

snapshot synchronization. The scripts are added right after the
synchronization description is processed. The synchronization is aborted
after scripts are generated.

Example scripts for UltraLite

When you build an UltraLite application, the UltraLite generator
automatically inserts an example_upload_cursor script and an
example_download_cursor script into the UltraLite reference database. The
action of the example download script is to download all rows of a
corresponding table that exists in the remote database. These scripts specify
the select list in the correct order, and the example_upload_cursor script also
includes the correct WHERE clause.

The example scripts are inserted into the ml_scripts table, but they are not
used unless you insert an entry in the ml_table_script table that associates
them with the upload_cursor or download_cursor event, respectively.

Minimally, the example scripts for download cursors provide the order of
columns expected by the remote database.

43

Scripts and the synchronization process
Each script corresponds to a particular event in the synchronization process.
You write a script only when some action must occur. All unnecessary
events can be left undefined.

The two principal parts of the process are the processing of uploaded
information and the preparation of rows for downloading.

The MobiLink synchronization server reads and prepares each script once,
when it is first needed. The script is then executed whenever the event is
invoked.

The sequence of events ☞ For information about the full sequence of MobiLink events, see
“Overview of MobiLink events”[MobiLink Synchronization Reference,page 86].

☞ For the details of upload stream processing, see“Writing scripts to
upload rows” on page 54.

☞ For the details of download stream processing, see“Writing scripts to
download rows” on page 56.

Notes ♦ MobiLink technology allows multiple clients to synchronize
concurrently. In this case, each client uses a separate connection to the
consolidated database.

♦ The begin_connection and end_connection events are independent of any
one synchronization as one connection can handle many synchronization
requests. These scripts have no parameters. These are examples of
connection-level scripts.

♦ Some events are invoked only once for each synchronization and have a
single parameter. This parameter is the user name, which uniquely
identifies the MobiLink client that is synchronizing. These are also
examples of connection-level scripts.

♦ Some events are invoked once for each table being synchronized. Scripts
associated with these events are called table-level scripts. They provide
two parameters. The first is the user name supplied in the call to the
synchronization function, and the second is the name of the table in the
remote database being synchronized.

While each table can have its own table scripts, you can also write
table-level scripts that are shared by several tables.

♦ Some events, such as begin_synchronization, occur at both the
connection level and the table level. You can supply both connection and
table scripts for these events.

44

Chapter 3. Writing Synchronization Scripts

♦ The COMMIT statements illustrate how the synchronization process is
broken up into distinct transactions.

♦ Errors are a separate event that can occur at any point within the
synchronization process. Errors are handled using the following script.

handle_error(error_code, error_message, user_name, table_
name)

☞ For reference material, including detailed information about each script
and its parameters, see “Synchronization Events”[MobiLink Synchronization
Reference,page 83].

45

Script types
Synchronization scripts can apply to the entire connection or to specific
tables.

♦ connection scripts These scripts perform actions that are
connection-specific or synchronization-specific and that are independent
of any one remote table. These scripts are used in conjunction with other
scripts when implementing more complex synchronization schemes.

♦ table scripts These scripts perform actions specific to one
synchronization and one particular remote table. These scripts are used in
conjunction with other scripts when implementing more complex
synchronization schemes.

Connection scripts

Connection-level scripts control high level events that are not associated
with a particular table. Use these events to perform global tasks that are
required during every synchronization.

Connection scripts control actions centered on connecting and
disconnecting, as well as actions at synchronization-level events such as
beginning and ending the upload or download process. Some connection
scripts have related table scripts. These connection scripts are always
invoked regardless of the tables being synchronized.

You only need to write a connection-level script when some action must
occur at a particular event. You may need to create scripts for only a few
events. The default action at any event is for the MobiLink synchronization
server to carry out no actions. Some simple synchronization schemes need
no connection scripts.

Table scripts

Table scripts allow actions at specific events relating to the synchronization
of a specific table, such as the start or end of uploading rows, resolving
conflicts, or selecting rows to download.

The synchronization scripts for a given table can refer to any table, or
combination of tables, in the consolidated database. You can use this feature
to fill a particular remote table with data stored in one or more consolidated
tables, or to store data uploaded from a single remote table into multiple
tables in the consolidated database.

Table names need not
match

The names of tables in the remote databases need not match the names of the
tables in the consolidated database. The MobiLink synchronization server

46

Chapter 3. Writing Synchronization Scripts

determines which scripts are associated with a table by looking up the
remote table name in the ml_table system table.

47

Script parameters
Most synchronization scripts receive parameters from the MobiLink
synchronization server. You can use these parameters in your scripts by
placing question marks in the script.

The following are some common parameters used in scripts.

♦ last_download_timestamp The last download timestamp is the value
obtained from the consolidated database during the last successful
synchronization immediately prior to the download phase. If the current
MobiLink user has never synchronized, or has never synchronized
successfully, this value is set to 1900-01-01.

☞ For more information, see“Timestamp-based synchronization” on
page 72.

♦ ml_username The value of this parameter is the string that uniquely
identifies a MobiLink client. Each client must identify itself by this name
when initiating synchronization with a MobiLink synchronization server.
This parameter is available within most connection-level scripts, all
table-level scripts, and some cursor scripts.

The user name can be used to partition tables among remote databases.

♦ table This parameter identifies a table in the remote database. The
consolidated database may or may not contain a table with the same
name. Only table scripts use this parameter.

To use parameters, place a single question mark in your SQL script for each
parameter. Some parameters are optional. The MobiLink synchronization
server replaces each question mark with the value of a parameter. It
substitutes values in the order the parameters appear in the script definition.

☞ For reference material, including detailed information about each script
and its parameters, see “Synchronization Events”[MobiLink Synchronization
Reference,page 83].

48

Chapter 3. Writing Synchronization Scripts

Script versions
Scripts are organized into groups calledscript versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scripts will be used to process the upload stream and prepare the download
stream.

☞ For information about how to add a script version to the consolidated
database, see“Adding a script version” on page 50.

Application of script
versions

Script versions allow you to organize your scripts into sets, which are run
under different circumstances. This ability provides flexibility and is
especially useful in the following circumstances.

♦ customization Using a different set of scripts to process information
from different types of remote users. For example, you could write a
different set of scripts for use when managers synchronize their databases
than would be used for other people in the organization. Although you
could achieve the same functionality with one set of scripts, these scripts
would be more complicated.

♦ upgrading applications When you wish to upgrade a database
application, new scripts may be needed because the new version of your
application may handle data differently. New scripts are almost always
necessary when the remote database changes. It is usually impossible to
upgrade all users simultaneously. MobiLink clients can request that a
new set of scripts be used during synchronization. Since both old and
new scripts can coexist on the server, all users can synchronize no matter
which version of your application they are using.

♦ multiple applications A single MobiLink synchronization server may
need to synchronize two entirely different applications. For example,
some employees may use a sales application, whereas others require an
application designed for inventory control. When two applications
require different sets of data, you can create two versions of the
synchronization scripts, one version for each application.

Assigning version names A script version name is a string. You specify this name when you add a
script to the consolidated database. For example, if you add your scripts with
the ml_add_connection_script and the ml_add_table_script stored
procedures, the script version name is the first parameter. Alternatively, if
you add your scripts using Sybase Central, you are prompted for the version
name.

The default script version Whenever a remote site fails to supply a script version, the MobiLink
synchronization server uses the first version defined in the ml_script_version
table. If no script version has been defined, the synchronization fails.

49

Adding a script version

All scripts are associated with a script version. You must add a version name
to your consolidated database before you can add any connection scripts.

☞ For more information, see“Script versions” on page 49.

❖ To add a script version to a database (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open the Versions folder.

3. Double-click Add Version and follow the instructions in the wizard.

❖ To remove a script version from a database (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open the Versions folder.

3. Right-click the version name and select Delete.

4. The Confirm Delete dialog appears. Click Yes.

❖ To add a script version to a database (stored procedures)

1. You can add a script version in the same operation as adding a connection
script or table script.

☞ For more information, see “Stored procedures to add or delete scripts”
[MobiLink Synchronization Reference,page 262].

50

Chapter 3. Writing Synchronization Scripts

Adding and deleting scripts in your consolidated
database

When you have created scripts, you must add them to MobiLink system
tables in the consolidated database. To do this, you can use stored
procedures or Sybase Central wizards.

☞ For information about the MobiLink system tables, see “MobiLink
System Tables”[MobiLink Synchronization Reference,page 315].

Note: SQL scripts are stored in the consolidated database. In the case of
Java and .NET scripts, the location of the script is stored in the consolidated
database. However, the method for adding/deleting a script or script location
is similar.

Adding or deleting scripts

You can add synchronization scripts using Sybase Central wizards. The
procedure is different for connection scripts and table scripts. Table scripts
correspond to tables in the remote database, so before you can add a table
script, you must add the name of the remote database table to the
consolidated database.

If you are using Sybase Central, you must add a synchronization version to
the database before you can add individual scripts. For more information,
see“Adding a script version” on page 50.

❖ To add or delete a connection script (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open Connection Scripts.

3. To add a connection script, double-click Add Connection Script and
follow the instructions in the wizard.

or

To delete a connection script, right-click the script name and select
Delete. The Confirm Delete dialog appears. Click Yes.

51

❖ To add or delete a remote table in the list of synchronized tables
(Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open Synchronized Tables.

3. To add a remote table to the list of synchronized tables, double-click Add
Synchronized Table. Enter the name of a table at the remote database for
which you are going to write synchronization scripts. The wizard
provides a shortcut if the consolidated database has a table with a
matching name.

or

To delete a remote table from the list of synchronized tables, right-click
the table name and select Delete. The Confirm Delete dialog appears.
Click Yes.

❖ To add or delete a table script in a database (Sybase Central)

1. From Sybase Central, right-click MobiLink Synchronization and connect
to the consolidated database.

2. Open Synchronized Tables.

3. Select the table for which you wish to add a script.

4. To add a table script, double-click Add Table Script and follow the
instructions in the wizard.

or

To delete a table script, right-click the script name and select Delete. The
Confirm Delete dialog appears. Click Yes.

❖ To add or delete all types of scripts (stored procedures)

1. You can add scripts to a consolidated database or delete scripts from a
consolidated database using stored procedures that are installed along
with the MobiLink system tables when you create your consolidated
database.

☞ For a description of the stored procedures that you can use to add or
delete scripts, see “Stored procedures to add or delete scripts”[MobiLink
Synchronization Reference,page 262].

52

Chapter 3. Writing Synchronization Scripts

Direct inserts of scripts

In most cases, it is recommended that you use stored procedures or Sybase
Central to insert scripts into the system tables. However, in some rare cases
you may need to use an INSERT statement to directly insert the scripts. For
example, older versions of some DBMSs may have length limitations that
make it difficult to use stored procedures.

☞ For a complete description of the MobiLink system tables, see
“MobiLink System Tables”[MobiLink Synchronization Reference,page 315].

The format of the INSERT statements that are required to directly insert
scripts can be found in the source code for the ml_add_connection_script
and ml_add_table_script stored procedures. The source code for these stored
procedures is located in the MobiLink setup scripts. There is a different
setup script for each supported RDBMS. The setup scripts are:

Consolidated database Setup file

Adaptive Server Anywhere scripts\syncasa.sql

Oracle MobiLink\setup\syncora.sql

IBM DB2 version 6 and later MobiLink\setup\syncdb2long.sql

IBM DB2 prior to version 6 MobiLink\setup\syncdb2.sql

Microsoft SQL Server MobiLink\setup\syncmss.sql

Adaptive Server Enterprise
version 12.5 and later

MobiLink\setup\syncase125.sql

Adaptive Server Enterprise
prior to version 12.5

MobiLink\setup\syncase.sql

Note: IBM DB2 prior to version 6 only supports column names and other
identifiers of 18 characters or less, and so the names are truncated. For
example, ml_add_connection_script is shortened to ml_add_connection_.

53

Writing scripts to upload rows
To upload information contained in your remote database to your
consolidated database, you define upload scripts. You write separate scripts
to handle rows that are updated, inserted, or deleted at the remote database.
A simple implementation would carry out corresponding actions (update,
insert, delete) at the consolidated database.

The MobiLink synchronization server uploads data in a single transaction.
For a description of the upload process, see “Events during upload”
[MobiLink Synchronization Reference,page 92].

Notes ♦ The begin_upload and end_upload scripts for each remote table hold
logic that is independent of the individual rows being updated.

♦ The upload stream consists of single row inserts, updates, and deletes.
These actions are typically performed using upload_insert,
upload_update and upload_delete scripts.

♦ To prepare the upload for Adaptive Server Anywhere clients, the
dbmlsync utility requires access to all transaction logs written since the
last successful synchronization. For more information, see“Transaction
log files” on page 187.

Writing upload_insert scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows inserted into the remote database. The
following INSERT statement shows how you use the upload_insert
statement.

INSERT INTO emp (emp_id,emp_name)
VALUES (?,?)

☞ For more information, see “upload_insert table event”[MobiLink
Synchronization Reference,page 218].

Writing upload_update scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows updated at the remote database. The
following UPDATE statement illustrates use of the upload_update statement.

UPDATE emp
SET emp_name=?
WHERE emp_id=?

54

Chapter 3. Writing Synchronization Scripts

For more information, see “upload_update table event”[MobiLink
Synchronization Reference,page 231].

Writing upload_delete scripts

The MobiLink synchronization server uses this event during processing of
the upload stream to handle rows deleted from the remote database. The
following statement shows how to use the upload_delete statement.

DELETE FROM emp
WHERE emp_id=?

For more information, see “upload_delete table event”[MobiLink
Synchronization Reference,page 214].

Writing upload_fetch scripts

The upload_fetch script is a SELECT statement that defines a cursor in the
consolidated database table. This cursor is used to compare the old values of
updated rows, as received from the remote database, against the value in the
consolidated database. In this way, the upload_fetch script identifies
conflicts when updates are being processed.

Given a synchronized table defined as:

CREATE TABLE uf_example (
pk1 integer NOT NULL,
pk2 integer NOT NULL,
val varchar(200),
PRIMARY KEY(pk1, pk2))

Then one possible upload_fetch script for this table is:

SELECT pk1, pk2, val
FROM uf_example
WHERE pk1 = ? and pk2 = ?

☞ For more information, see “upload_fetch table event”[MobiLink
Synchronization Reference,page 216].

The MobiLink synchronization server requires the WHERE clause of the
query in the upload_fetch script to identify exactly one row in the
consolidated database to be checked for conflicts.

55

Writing scripts to download rows
There are two scripts that can be used for processing each table during the
download transaction. These are the download_cursor script, which carries
out inserts and updates, and the download_delete_cursor script, which
carries out deletes.

These scripts are either SELECT statements or calls to procedures that
return result sets. The MobiLink synchronization server downloads the
result set of the script to the remote database. The MobiLink client
automatically inserts or updates rows based on the download_cursor script
result set, and deletes rows based on the download_delete_cursor event.

☞ For more information about using stored procedures, see“Downloading
a result set from a stored procedure call” on page 97.

The MobiLink synchronization server downloads data in a single
transaction. For a description of the download process, see “Events during
download”[MobiLink Synchronization Reference,page 96].

Notes ♦ Like the upload stream, the download stream starts and ends with
connection events. Other events are table-level events.

♦ By default, if no confirmation of the download is received from the client,
the entire download transaction is rolled back in the consolidated
database. You can change this behavior with the dbmlsync option
“SendDownloadACK (sa) extended option”[MobiLink Synchronization
Reference,page 62]or UltraLite “Send Download Acknowledgement
synchronization parameter”[UltraLite Database User’s Guide,page 172].

♦ The begin_download and end_download scripts for each remote table
hold logic that is independent of the individual rows being updated.

♦ The download stream does not distinguish between inserts and updates.
The script associated with the download_cursor event is a SELECT
statement that defines the rows to be downloaded. The client detects
whether the row exists or not and carries out the appropriate insert or
update operation.

♦ At the end of the download processing, the client automatically deletes
rows if necessary to avoid referential integrity violations.

☞ For more information, see“Referential integrity and
synchronization” on page 28.

Writing download_cursor scripts

You write download_cursor scripts to download information from the

56

Chapter 3. Writing Synchronization Scripts

consolidated database to your remote database. You must write one of these
scripts for each table in the remote database for which you want to download
changes. You can use other scripts to customize the download process, but
no others are necessary.

♦ Each download_cursor script must contain a SELECT statement or a call
to a procedure that contains a SELECT statement. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

♦ The script must select all columns that correspond to the columns in the
corresponding table in the remote database. The columns in the
consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

♦ The columns must be selected in the order that the corresponding
columns are defined in the remote database. This order is identical to the
order of the columns in the reference database.

Example The following script could serve as a download_cursor script for a remote
table that holds employee information. The MobiLink synchronization
server would use this SQL statement to define the download cursor. This
script downloads information about all the employees.

SELECT emp_id, emp_fname, emp_lname
FROM employee

The MobiLink synchronization server passes specific parameters to some
scripts. To use these parameters, you include a question mark in your SQL
statement. The MobiLink synchronization server substitutes the value of the
parameter before executing the statement against the consolidated database.
The following script shows how you can use these parameters:

call ml_add_table_script(’Lab’, ’ULOrder’, ’download_cursor’,
’SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc,

o.quant, o.notes, o.status
FROM ULOrder o
WHERE o.last_modified >= ?
AND o.emp_name = ?’)

In this example, the MobiLink synchronization server replaces the question
mark with the value of the parameter to the download_cursor script.

Notes ♦ Row values can be selected from a single table or from a join of multiple
tables.

♦ The script itself need not include the name of the remote table. The
remote table need not have the same name as the table in the consolidated
database. The name of the remote table is identified by an entry in the

57

ml_tabletable. In Sybase Central, the remote tables are listed together
with their scripts.

♦ The rows in the remote table must contain the values ofemp_id,
emp_fname, andemp_lname. The remote columns must be in that order,
although they can have different names. The columns in the remote
database are in the same order as those in the reference database.

UltraLite tip
The example scripts list the columns in the order that they are defined
in the reference database. Inspect the example_download_cursor and
example_upload_cursor scripts to see the column order.

♦ All cursor scripts must select the columns in the same order as the
columns are defined in the remote database. Where column names or
table structure is different in the consolidated database, columns should
be selected in the correct order for the remote database, or equivalently,
the reference database. Columns are assigned to columns in the remote
database based on their order in the SELECT statement.

♦ When you build an UltraLite application, the UltraLite generator creates
a sample download script for each table in your UltraLite application. It
inserts these sample scripts into your reference database. The example
scripts assume that the consolidated database contains the same tables as
your application. You must modify the sample scripts if your
consolidated database differs in design, but these scripts provide a
starting point.

Writing download_delete_cursor scripts

You write download_delete_cursor scripts to delete rows from your remote
database. You must write one of these scripts for each table in the remote
database from which you want to delete rows during synchronization.

You cannot just delete rows from the consolidated database and have them
disappear from remote databases. You need to keep track of the primary
keys for deleted rows, so that you can select those primary keys with your
download_delete_cursor. There are two common techniques for achieving
this:

♦ Logical deletes Do not physically delete the row in the consolidated
database. Instead, have a status column that keeps track of whether rows
are valid. This simplifies the download_delete_cursor. However, the
download_cursor and other applications may need to be modified to
recognize and use the status column. If you have a last modified column
that holds the time of deletion, and if you also keep track of the last

58

Chapter 3. Writing Synchronization Scripts

download time for each remote, then you can physically delete the row
once all remote download times are newer than the time of deletion.

♦ Shadow table For each table for which you want to track deletes,
create a shadow table with two columns, one holding the primary key for
the table, and the other holding a timestamp. Create a trigger that inserts
the primary key and timestamp into the shadow table whenever a row is
deleted. Your download_delete_cursor can then select from this shadow
table. As with logical deletes, you can delete the row from the shadow
table once all remote databases have downloaded it.

The MobiLink synchronization server deletes rows in the remote database
by selecting primary key values from the consolidated database and passing
those values to the remote database. If the values match those of a primary
key in the remote database, then that row is deleted.

♦ Each download_delete_cursor script must contain a SELECT statement
or a call to a stored procedure that returns a result set. The MobiLink
synchronization server uses this statement to define a cursor in the
consolidated database.

♦ This statement must select all the columns that correspond to the primary
key columns in the table in the remote database. The columns in the
consolidated database can have different names than the corresponding
columns in the remote database, but they must be of compatible types.

♦ The values must be selected in the same order as the corresponding
columns are defined in the remote database. That order is the order of the
columns in the CREATE TABLE statement used to make the table, not
the order they appear in the statement that defines the primary key.

While each download_delete_cursor script must select all the column values
present in the primary key of the corresponding remote table, it may also
select all the other columns. This feature is present only for compatibility
with older clients. Selecting the additional columns is less efficient, as the
database engine must retrieve more data. Unless the client is of an old
design, the MobiLink synchronization server discards the extra values
immediately. The extra values are downloaded only to older clients.

Deleting all the rows in a
table

When MobiLink detects a download_delete_cursor with a row that contains
all NULLs, it deletes all the data in the remote table. The number of NULLs
in the download_delete_cursor can be the number of primary key columns or
the total number of columns in the table.

For example, the following download_delete_cursor SQL script deletes
every row in a table in which there are two primary key columns. This

59

example works for Adaptive Server Anywhere, Adaptive Server Enterprise,
and Microsoft SQL Server databases.

SELECT NULL, NULL

In IBM DB2 and Oracle consolidated databases, you must specify a dummy
table to select NULL. For IBM DB2 7.1, you can use the following syntax:

SELECT NULL FROM SYSIBM.SYSDUMMY1

For Oracle consolidated databases, you can use the following syntax:

SELECT NULL FROM DUAL

Examples The following example is a download_delete_cursor script for a remote table
that holds employee information. The MobiLink synchronization server uses
this SQL statement to define the delete cursor. This script deletes
information about all employees who are both in the consolidated and
remote databases at the time the script is executed.

SELECT emp_id
FROM employee

The download_delete_cursor accepts the parameters last_download and
ml_username. The following script shows how you can use each parameter
to narrow your selection.

SELECT order_id
FROM ULOrder
WHERE last_modified > ?

AND status = ’Approved’
AND user_name = ?

Tips
The above examples could prove inefficient in an organization with many
employees. You can make the delete process more efficient by selecting
only rows that could be present in the remote database. For example, you
could limit the number of rows by selecting only those people who have
recently been assigned a new manager. Another strategy is to allow the
client application to delete the rows itself. This method is possible only
when a rule identifies the unneeded rows. For example, rows might contain
a timestamp that indicates an expiry date. Before you delete the rows,
use the STOP SYNCHRONIZATION DELETE statement to stop these
deletes being uploaded during the next synchronization. Be sure to execute
START SYNCHRONIZATION DELETE immediately afterwards if you
want other deletes to be synchronized in the normal fashion.

☞ You can use the referential integrity checking built into all MobiLink

60

Chapter 3. Writing Synchronization Scripts

clients to delete rows in a particularly efficient manner. For details, see
“Referential integrity and synchronization” on page 28.

☞ For more information about download_delete_cursor, see
“download_delete_cursor cursor event”[MobiLink Synchronization Reference,
page 136].

61

Writing scripts to handle errors
An error in a synchronization script occurs when an operation in the script
fails while the MobiLink synchronization server is executing it. The DBMS
returns a SQLCODE to the MobiLink synchronization server indicating the
nature of the error. Each consolidated database DBMS has its own set of
SQLCODE values.

When an error occurs, the MobiLink synchronization server invokes the
handle_error event. You should provide a connection script associated with
this event to handle errors. The MobiLink synchronization server passes
several parameters to this script to provide information about the nature and
context of the error, and requires an output value to tell it how to respond to
the error.

Error handling actions Some actions you may wish to take in an error-handling script are:

♦ Log the error in a separate table.

♦ Instruct the MobiLink synchronization server whether to ignore the error
and continue, or rollback the synchronization, or rollback the
synchronization and shut down the MobiLink synchronization server.

♦ Send an e-mail message.

☞ For more information, see “handle_error connection event”[MobiLink
Synchronization Reference,page 174].

Reporting errors

Since errors can disrupt the natural progression of the synchronization
process, it can be difficult to create a log of errors and their resolutions. The
report_error script provides a means of accomplishing this task. The
MobiLink synchronization server executes this script whenever an error
occurs. If the handle_error script is defined, it is executed immediately prior
to the reporting script.

The parameters to the report_error script are identical to those of the
handle_error script, except that the report_error script can not modify the
action code. Since the value of the action code is that returned by the
handle_error script, this script can be used to debug error-handling problems.

This script typically consists of an insert statement, which records the
values, perhaps with other data, such as the time or date, in a table for later
reference. To ensure that this data is not lost, the MobiLink synchronization
server always runs this script in a separate transaction and automatically
commits the changes as soon as this script completes.

62

Chapter 3. Writing Synchronization Scripts

☞ For more information, see “report_error connection event”[MobiLink
Synchronization Reference,page 194].

Example The following report_error script, which consists of a single insert statement,
adds the script parameters into a table, along with the current date and time.
The script does not commit this change because the MobiLink
synchronization server always does so automatically.

INSERT INTO errors
VALUES(CURRENT DATE, ?, ? ,?, ?, ?);

Handling multiple errors on a single SQL statement

ODBC allows multiple errors per SQL statement, and some DBMSs make
use of this feature. Microsoft SQL Server, for example, can have two errors
for a single statement. The first is the actual error, and the second is usually
an informational message telling you why the current statement has been
terminated.

When a single SQL statement causes multiple errors, the handle_error script
is invoked once per error. The MobiLink synchronization server uses the
most severe action code (that is, the numerically greatest) to determine the
action to take. The same applies to the handle_error script.

If the handle_error script itself causes a SQL error, then the default action
code (3000) is assumed.

63

Testing script syntax
As you develop your synchronization scripts, you can use Sybase Central to
test for syntax errors in your scripts.

Testing the scripts is done without any remote site in place. No data is added
to the database or downloaded from the database during testing. The validity
of the synchronized data itself is not tested.

❖ To test your synchronization scripts

1. Start Sybase Central and connect to a database from MobiLink
Synchronization.

2. In the left pane, click the database name.

3. Right-click the Synchronized Tables folder or the Connection scripts
folder and select Test Scripts from the popup menu.

The Test Scripts window appears:

4. Click Test. If prompted, enter parameters. The results of the test are
displayed in the window.

The test results include a listing of which scripts are executed, in which
order. They also include a listing of any syntax errors or data type errors
found during the test.

64

Chapter 3. Writing Synchronization Scripts

DBMS-dependent scripts
Some aspects of scripts depend on the DBMS you are using. A number of
factors determine the kind of scripting needed for your synchronization with
your ODBC compliant database, and these factors include, but are not
limited to:

♦ Session-wide connection variables

♦ User defined procedures

♦ Autoincrement methods

The chart below outlines the most common supported databases and their
properties.

Feature Oracle DB2 Adaptive Server Any-

where and other

Session-wide variables No No Yes

User-defined procedures Yes No Yes

Autoincrement for primary
keys.

No Yes Yes

One strategy for using MobiLink with these supported databases is to write
your table scripts and synchronization logic in the DBMS version of the
SQL language. Another strategy for using MobiLink with any supported
consolidated database uses Java synchronization logic. When you use Java
synchronization logic you can hold session-wide variables and create
user-defined procedures in Java.

☞ For information about Java synchronization logic, see“Writing Java
synchronization logic” on page 232.

☞ For information about .NET synchronization logic, see“Writing
Synchronization Scripts in .NET” on page 251.

Supported DBMS scripting strategies

Following are a number of issues that you may encounter when using a
consolidated database that is not Adaptive Server Anywhere.

Oracle issues Oracle does not provide session-wide variables. You can store session-wide
information in variables within Oracle packages. Oracle packages allow
variables to be created, modified and destroyed and these variables may last
as long as the Oracle package is current.

Oracle does not have autoincrementing primary key values. You can use an

65

Oracle sequence to maintain primary key uniqueness. The CustDB sample
database provides coding examples, which can be found in
Samples\MobiLink\CustDB\custora.sql.

☞ For an example of using an Oracle sequence, see“Tutorial: Using
MobiLink with an Oracle 8i Consolidated Database” on page 401.

IBM DB2 issues IBM DB2 does not have the ability to make session-wide variables. It also
does not support packages which would allow you to run user-defined
procedures. A convenient solution is to use a base table with an extra
varchar column for the MobiLink user name. This column effectively
partitions the rows of the base table between concurrent synchronizations.

IBM DB2 does not have the ability to make user-defined procedures.
However, you can use Java or .NET to manipulate SQL statements and
substitute new values.

☞ For an example of Java as a procedural language for DB2, see the
CustDB scripts in the filesSamples\MobiLink\CustDB\custdbq.sqland
Samples\MobiLink\CustDB\custdbq.java.

☞ For more information about Java and .NET, see

♦ “Options for writing synchronization logic” on page 31

♦ “Writing Synchronization Scripts in Java” on page 227

♦ “Writing Synchronization Scripts in .NET” on page 251

Adaptive Server
Enterprise issues

To download BLOB data from an Adaptive Server Enterprise consolidated
database, you need to set an ODBC driver connection option to allow
column sizes greater than 4096 bytes. To do this, use the ODBC driver
connection option called StaticCursorLongColBuffLen. For example,

dbmlsrv9 -c "...;StaticCursorLongColBuffLen=number"

wherenumberis in bytes, and is larger than the largest expected BLOB.

Note that using this option consumes significantly more disk space on the
computer that runs the MobiLink synchronization server.

Storing the MobiLink
user name

Some database-management systems provide no convenient mechanism to
store the identity of the current user.

☞ For more information, see“Storing the user name” on page 93.

Invoking procedures from
scripts

Some databases, such as Microsoft SQL Server, require that procedure calls
with parameters be written using the ODBC syntax.

{ CALL procedure_name(?, ?, ...) }

66

Chapter 3. Writing Synchronization Scripts

On these systems, an error-handler that uses a RETURN value can also be in
the following form. For example, you can return values in OUTPUT
parameters in IBM DB2.

{ ? = CALL procedure_name(?, ?, ...) }

Adaptive Server Enterprise also requires the latter format when returning a
value from a procedure.

Numeric and decimal
columns

The MobiLink synchronization server requires that primary key values of
type numeric or decimal be explicitly converted to their types under
Adaptive Server Enterprise.

You must add an explicit conversion to the numeric parameters in the script
as displayed in the following examples.

SELECT ...
WHERE numeric_col = CONVERT(NUMERIC, ?)
...

The above statement explicitly converts the first parameter to type
NUMERIC.

SELECT ...
WHERE decimal_col = CONVERT(DECIMAL(10,8), ?)
...

The above statement explicitly converts the first parameter to type
DECIMAL (10,8).

CHAR columns In Adaptive Server Anywhere databases (including UltraLite), CHAR is the
same as VARCHAR: values are not blank-padded to a fixed width. In many
other DBMSs, CHAR data types are blank-padded to the full length of the
string. The dbmlsrv9 command line option -b can be used to remove trailing
blanks from strings during synchronization.

☞ For more information, see “-b option”[MobiLink Synchronization
Reference,page 8].

Data conversion For information about the conversion of data that must take place when a
MobiLink synchronization server communicates with a consolidated
database that was not made with Adaptive Server Anywhere, see “DataType
Conversions”[MobiLink Synchronization Reference,page 323].

67

CHAPTER 4

Synchronization Techniques

About this chapter This chapter describes a variety of techniques that you can use to tackle
common synchronization tasks encountered in MobiLink installations.

☞ There are sample applications that provide examples of the techniques
that are described in this chapter. For more information, see“The Contact
Sample Application” on page 413, and“The CustDB Sample Application”
on page 429.

The techniques in this chapter are illustrated using SQL scripts. Many of the
same techniques can be implemented in Java or .NET synchronization logic.
For more information, see

♦ “Writing Synchronization Scripts in Java” on page 227

♦ “Writing Synchronization Scripts in .NET” on page 251

Contents Topic: page

Introduction 70

Development tips 71

Timestamp-based synchronization 72

Snapshot synchronization 74

Partitioning rows among remote databases 77

Maintaining unique primary keys 81

Handling conflicts 90

Data entry 94

Handling deletes 95

Handling failed downloads 96

Downloading a result set from a stored procedure call 97

Schema changes in remote databases 100

69

Introduction
The chapter“Writing Synchronization Scripts” on page 37describes how to
write simple synchronization scripts, store them in your database, and test
that they are free of syntax errors.

Many useful synchronization features require not just one script, but a set of
scripts working together. This chapter describes how to implement some
common synchronization techniques. The examples describe SQL
synchronization scripts. You can also use Java or .NET synchronization
logic, although the upload and download events still require a knowledge of
the SQL scripts.

Example The timestamp-based synchronization of the Customer table used in the
Contact sample application requires the following scripts:

♦ An upload_insertscript to handle new rows added at remote databases at
the consolidated database.

♦ An upload_updatescript to handle modifications made at remote
databases at the consolidated database.

♦ An upload_deletescript to handle rows deleted from remote databases at
the consolidated database.

♦ A download_cursorscript to download new and updated rows to remote
databases.

♦ A download_delete_cursorscript to download rows to be deleted from
remote databases.

70

Chapter 4. Synchronization Techniques

Development tips
Adding synchronization functionality to an application adds an added level
of complexity to your application. The following tips may be useful.

♦ Wait If you try to add synchronization to a prototype application, it can
be difficult to see which components are causing problems. This is
particularly the case with UltraLite applications, where database and
application are compiled together. When developing a prototype,
temporarily hard code INSERT statements in your application to provide
data for testing and demonstration purposes. Once your prototype is
working correctly, enable synchronization and discard the temporary
INSERT statements.

♦ Go step-by-step Start with straightforward synchronization techniques.
Operations such as a simple upload or download require only one or two
scripts. Once those are working correctly, you can introduce more
advanced techniques, such as timestamps, primary key pools, and conflict
resolution.

Following are some fundamental rules of MobiLink synchronization
applications.

♦ Every table that is to be synchronized must have a primary key.

♦ Don’t update the values of primary keys.

♦ Primary keys must be unique across all synchronized databases.

♦ The MobiLink user ID that identifies each remote database must be
unique.

71

Timestamp-based synchronization
The timestamp method is the most useful general technique for efficient
synchronization. The technique involves tracking the last time that each user
synchronized, and using this information to control the rows downloaded to
each remote database.

MobiLink maintains a timestamp value indicating when each MobiLink user
last downloaded data. This value is called thelast download timestamp.
The last download timestamp is provided as a parameter to many events, and
can be used in synchronization scripts.

❖ To implement timestamp-based synchronization for a table

1. At the consolidated database, add a column that holds the most recent
time the row was modified. This column is not needed at remote
databases. The column is typically declared as follows:

DBMS last modified column

Adaptive Server Anywhere timestamp DEFAULT timestamp

Adaptive Server Enterprise datetime

Microsoft SQL Server datetime

Oracle date

IBM DB2 timestamp

2. In scripts for the download_cursor and download_delete_cursor events,
compare the first parameter to the value in the timestamp column.

Example The following table declaration and scripts implement timestamp-based
synchronization on the Customer table in the Contact sample:

♦ Table definition:

CREATE TABLE "DBA"."Customer"(
"cust_id" integer NOT NULL

DEFAULT GLOBAL AUTOINCREMENT,
"name" char(40) NOT NULL,
"rep_id" integer NOT NULL,
"last_modified" timestamp NULL DEFAULT timestamp,
"active" bit NOT NULL,
PRIMARY KEY ("cust_id"))

♦ download_delete_cursor script:

72

Chapter 4. Synchronization Techniques

SELECT cust_id
FROM Customer JOIN SalesRep
ON Customer.rep_id = SalesRep.rep_id
WHERE Customer.last_modified > ?

AND (SalesRep.ml_username != ?
OR Customer.active = 0)

♦ download_cursor script:

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer key join SalesRep
WHERE Customer.last_modified > ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

☞ For more information, see“Synchronization logic source code” on
page 444, and“Synchronizing contacts in the Contact sample” on page 423.

73

Snapshot synchronization
Timestamp-based synchronization is appropriate for most synchronizations.
However, occasionally you may want to update a snapshot of your data.

Snapshot synchronization of a table is a complete download of all relevant
rows in the table, even if they have been downloaded before. This is the
simplest synchronization method, but can involve unnecessarily large data
sets being exchanged, which can limit performance.

You can use snapshot synchronization for downloading all the rows of the
table, or in conjunction with a partitioning of the rows as described in
“Partitioning rows among remote databases” on page 77.

When to use snapshot
synchronization

The snapshot method is typically most useful for tables that have both the
following characteristics.

♦ Relatively few rows When there are few rows, the overhead associated
with downloading all of them is small.

♦ Rows that change frequently When most rows in a table change
frequently, there is little to be gained by explicitly excluding those that
have not changed since the last synchronization.

A table that holds a list of exchange rates could be suited to this approach
because there are relatively few currencies, but the rates of most change
frequently. Depending on the nature of the business, a table that holds
prices, a list of interest rates, or current news items could all be candidates.

❖ To implement snapshot-based synchronization

1. Leave the upload scripts undefined unless remote users update the values.

2. If the table may have rows deleted, write a download_delete_cursor script
that deletes all the rows from the remote table, or at least all rows no
longer required. Do not delete the rows from the consolidated database;
rather, mark them for deletion. You must know the row values to delete
them from the remote database.

☞ For more information, see“Writing download_delete_cursor scripts”
on page 58.

3. Write a download_cursor script that selects all the rows you want to
include in the remote table.

74

Chapter 4. Synchronization Techniques

Mark rows for deletion
Rather than deleting rows from the consolidated database, mark them for
deletion. You must know the row values to delete them from the remote
database. Select only unmarked rows in the download_cursor script and
only marked rows in the download_delete_cursor script.

The download_delete_cursor script is executed before the download_cursor
script. If a row is to be included in the download stream, you need not
include a row with the same primary key in the delete list. When a
downloaded row is received at the remote location, it replaces a preexisting
row with the same primary key.

☞ For more information, see“Writing scripts to download rows” on
page 56.

An alternative deletion
technique

Rather than delete rows from the remote database using a download_cursor
script, you can allow the remote application to delete the rows. For example,
immediately following synchronization, you could allow the application to
execute SQL statements that delete the unneeded rows.

Rows deleted by the application are ordinarily uploaded to the MobiLink
synchronization server upon the next synchronization, but you can prevent
this upload using the STOP SYNCHRONIZATION DELETE statement, as
follows.

STOP SYNCHRONIZATION DELETE;
DELETE FROM table-name

WHERE expiry_date < CURRENT TIMESTAMP;
COMMIT;
START SYNCHRONIZATION DELETE;

Naturally, a different condition may be required in the WHERE clause,
depending on the business logic of the application.

Example The ULProduct table in the sample application is maintained by snapshot
synchronization. The table contains relatively few rows, and for this reason,
there is little overhead in using snapshot synchronization.

1. There is no upload script. This reflects a business decision that products
cannot be added at remote databases.

2. There is no download_delete_cursor, reflecting an assumption that
products are not removed from the list.

3. The download_cursor script selects the product identifier, price, and
name of every current product. If the product is pre-existing, the price in
the remote table will be updated. If the product is new, a row will be
inserted in the remote table.

75

SELECT prod_id, price, prod_name
FROM ULProduct

☞ For another example of snapshot synchronization in a table with very
few rows, see“Synchronizing sales representatives in the Contact sample”
on page 421.

76

Chapter 4. Synchronization Techniques

Partitioning rows among remote databases
Each user of a MobiLink remote database can contain a different subset of
the data in the consolidated database. Stated another way, you can write your
scripts so that data ispartitioned among remote databases.

The partitioning may be disjoint, or it may contain overlaps. For example, if
each employee has their own set of customers, with no shared customers, the
partitioning would bedisjoint . If there are shared customers, who appear in
more than one remote database, the partitioning containsoverlaps.

Partitioning is implemented in the download_cursor and
download_delete_cursor scripts for the table, which define the rows to be
downloaded to the remote database. Each of these scripts has a single
parameter, which is the synchronization user name. By defining your scripts
using this parameter in the WHERE clause, each user gets the appropriate
rows.

Disjoint partitioning

Partitioning is controlled by the download_cursor and
download_delete_cursor scripts for each table involved in synchronization.
These scripts take a single parameter, which is the user name supplied in the
call to synchronize.

❖ To partition a table among remote databases

1. Include in the table definition a column containing the synchronization
user name in the consolidated database. You need not download this
column to remote databases.

2. Include a condition in the WHERE clause of the download_cursor and
download_delete_cursor scripts requiring this column to match the script
parameter.

The script parameter is represented by a question mark in the script. The
user name is the second parameter in the download_cursor script. For
example, the following download_cursor script partitions a table named
Contact by employee ID.

SELECT id, contact_name
FROM Contact
WHERE last_modified > ?
AND emp_id = ?

☞ For more information, see “download_cursor cursor event”[MobiLink
Synchronization Reference,page 133], and “download_delete_cursor cursor
event” [MobiLink Synchronization Reference,page 136].

77

Example The primary key pool tables in the CustDB sample application are used to
supply each remote database with its own set of primary key values. This
technique is used to avoid duplicate primary keys, and is discussed in
“Maintaining unique primary keys” on page 81.

A necessary feature of the method is that primary key-pool tables must be
partitioned among remote databases in a disjoint fashion.

One key-pool table is ULCustomerIDPool, which holds primary key values
for each user to use when they add customers. The table has three columns:

♦ pool_cust_id A primary key value for use in the ULCustomer table.
This is the only column downloaded to the remote database.

♦ pool_emp_id The employee who owns this primary key.

♦ last_modified This table is maintained using the timestamp technique,
based on the last_modified column.

☞ For information on timestamp synchronization, see
“Timestamp-based synchronization” on page 72.

The download_cursor script for this table is as follows.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE last_modified > ?

AND pool_emp_id = ?

When not using a variable, you should use a join or sub-selection that
includes the? placeholder.

☞ For more information, see“Synchronizing customers in the Contact
sample” on page 421, and“Synchronizing contacts in the Contact sample”
on page 423.

Partitioning with overlaps

Some tables in your consolidated database may have rows that belong to
many remote databases. Each remote database has a subset of the rows in
the consolidated database and the subset overlaps with other remote
databases. This is frequently the case with a customer table. In this case,
there is a many-to-many relationship between the table and the remote
databases and there will usually be a table to represent the relationship. The
scripts for the download_cursor and download_delete_cursor events need to
join the table being downloaded to the relationship table.

Example The CustDB sample application uses this technique for the ULOrder table.
The ULEmpCust table holds the many-to-many relationship information
between ULCustomer and ULEmployee.

78

Chapter 4. Synchronization Techniques

Each remote database receives only those rows from the ULOrder table for
which the value of the emp_id column matches the MobiLink user name.

The Adaptive Server Anywhere version of the download_cursor script for
ULOrder in the CustDB application is as follows:

SELECT o.order_id, o.cust_id, o.prod_id,
o.emp_id, o.disc, o.quant, o.notes, o.status

FROM ULOrder o , ULEmpCust ec
WHERE o.cust_id = ec.cust_id

AND ec.emp_id = ?
AND (o.last_modified > ?

OR ec.last_modified > ?)
AND (o.status IS NULL

OR o.status != ’Approved’)
AND (ec.action IS NULL)

This script is fairly complex. It illustrates that the query defining a table in
the remote database can include more than one table in the consolidated
database. The script downloads all rows in ULOrder for which:

♦ the cust_id column in ULOrder matches the cust_id column in
ULEmpCust,

♦ the emp_id column in ULEmpCust matches the synchronization user
name,

♦ the last modification of either the order or the employee-customer
relationship was later than the most recent synchronization time for this
user, and

♦ the status is anything other thanApproved.

The action column on ULEmpCust is used to mark columns for delete. Its
purpose is not relevant to the current topic.

The download_delete_cursor script is as follows.

SELECT o.order_id
FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id

AND ec.emp_id = ?
AND (o.last_modified > ? OR

c.last_modified > ?)
AND (o.status IS NULL OR

o.status != ’Approved’)
AND (ec.action IS NULL)

This script deletes all approved rows from the remote database.

79

Partitioning child tables

The example above (“Partitioning with overlaps” on page 78) illustrates how
to partition tables based on a criterion in some other table.

Some tables in your remote database may have disjoint subsets or
overlapping subsets, but do not contain a column that determines the subset.
These are child tables that usually have a foreign key (or a series of foreign
keys) referencing another table. The referenced table has a column that
determines the correct subset.

In this case, the download_cursor script and the download_delete_cursor
script need to join the referenced tables and have a WHERE clause that
restricts the rows to the correct subset.

☞ For an example, see“Synchronizing contacts in the Contact sample” on
page 423.

80

Chapter 4. Synchronization Techniques

Maintaining unique primary keys
Every table that is to be synchronized must have a primary key, and the
primary key must be unique across all synchronized databases. The values
of primary keys should not be updated.

It is often convenient to use a single column as the primary key for tables.
For example, each customer should be assigned a unique identification
value. If all the sales representatives work in an environment where they can
maintain a direct connection to the database, assigning these numbers is
easily accomplished. Whenever a new customer is inserted into the customer
table, automatically add a new primary key value that is greater than the last
value.

In a disconnected environment, assigning unique values for primary keys
when new rows are inserted is not as easy. When a sales representative adds
a new customer, she is doing so to a remote copy of the Customer table. You
must prevent other sales representatives, working on other copies of the
Customer table, from using the same customer identification value.

This section describes the following ways to solve the problem of how to
generate unique primary keys:

♦ Using Universally Unique IDs (UUIDs)

♦ Using global autoincrement values.

♦ Using primary key pools.

Maintaining unique primary keys using UUIDs

You can ensure that primary keys in Adaptive Server Anywhere databases
are unique by using the newid() function to create universally unique values
for your primary key. The resulting UUIDs can be converted to a string
using the uuidtostr() function, and converted back to binary using the
strtouuid() function.

UUIDs are unique across all computers. However, the values are completely
random and so cannot be used to determine when a value was added, or the
order of values. UUID values are also considerably larger than the values
required by other methods (including global autoincrement), and require
more table space in both the primary and foreign key tables. Indexes on
tables using UUIDs are also less efficient.

☞ For more information, see

♦ “The NEWID default” [ASA SQL User’s Guide,page 82]

81

♦ “NEWID function [Miscellaneous]”[ASA SQL Reference,page 159]

♦ “UUIDTOSTR function [STRING]” [ASA SQL Reference,page 200]

♦ “STRTOUUID function [STRING]” [ASA SQL Reference,page 192]

Example The following CREATE TABLE statement creates a primary key that is
universally unique:

CREATE TABLE customer (
cust_key BINARY(16) NOT NULL

DEFAULT newid()
rep_key VARCHAR(5)
PRIMARY KEY(cust_key)

Maintaining unique primary keys using global autoincrement

In Adaptive Server Anywhere and UltraLite databases, you can set the
default column value to be GLOBAL AUTOINCREMENT. You can use this
default for any column in which you want to maintain unique values, but it is
particularly useful for primary keys.

❖ To use global autoincrement columns

1. Declare the column as a global autoincrement column.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contains the same number of
values. For example, if you set the partition size for an integer column in
a database to 1000, one partition extends from 1001 to 2000, the next
from 2001 to 3000, and so on.

☞ See“Declaring default global autoincrement” on page 83.

2. Set the GLOBAL_DATABASE_ID value.

Adaptive Server Anywhere supplies default values in a database only
from the partition uniquely identified by that database’s number.
For example, if you assigned the database in the above example the
identity number 10, the default values in that database would be chosen
in the range 10001–11000. Another copy of the database, assigned the
identification number 11, would supply default value for the same
column in the range 11001–12000.

☞ See“Setting the GLOBAL_DATABASE_ID value” on page 83.

For more information This section describes how to use global autoincrement columns in Adaptive
Server Anywhere remote databases. For information on using global
autoincrement columns in UltraLite databases, see “Declaring default global
autoincrement columns”[UltraLite Database User’s Guide,page 151].

82

Chapter 4. Synchronization Techniques

☞ For information on how global autoincrement columns work in Adaptive
Server Anywhere databases, see“How default values are chosen” on
page 85. For information on how they work in UltraLite databases, see
“Declaring default global autoincrement columns”[UltraLite Database User’s
Guide,page 151].

Declaring default global autoincrement

You can set default values in your database by selecting the column
properties in Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a CREATE TABLE or ALTER TABLE
statement.

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is
216 = 65536; for columns of other types the default partition size is 232 =
4294967296. Since these defaults may be inappropriate, especially if our
column is not of type INT or BIGINT, it is best to specify the partition size
explicitly.

For example, the following statement creates a simple table with two
columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

CREATE TABLE customer (
id INT DEFAULT GLOBAL AUTOINCREMENT (5000),
name VARCHAR(128) NOT NULL,
PRIMARY KEY (id)

)

In the above example, the chosen partition size is 5000.

☞ For more information on GLOBAL AUTOINCREMENT, see
“CREATE TABLE statement”[ASA SQL Reference,page 361].

Setting the GLOBAL_DATABASE_ID value

When deploying an application, you must assign a different identification
number to each database. You can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

83

❖ To set the global database identification number

1. You set the identification number of a database by setting the value of the
public option GLOBAL_DATABASE_ID. The identification number
must be a non-negative integer.

Example For example, the following statement sets the database identification number
to 20.

SET OPTION PUBLIC.GLOBAL_DATABASE_ID = 20

If the partition size for a particular column is 5000, default values for this
database are selected from the range 100001–105000.

Setting unique database identification numbers when extracting databases

If you use the extraction utility to create your remote databases, you can
write a stored procedure to automate the task. If you create a stored
procedure named sp_hook_dbxtract_begin, it is called automatically by the
extraction utility. Before the procedure is called, the extraction utility creates
a temporary table named #hook_dict, with the following contents:

name value

extracted_db_global_id user ID being extracted

If you write your sp_hook_dbxtract_begin procedure to modify the value
column of the row, that value is used as the GLOBAL_DATABASE_ID
option of the extracted database, and marks the beginning of the range of
primary key values for GLOBAL DEFAULT AUTOINCREMENT values.

Example Consider extracting a database for remote useruser2with auser_idof 101.
If you do not define an sp_hook_dbxtract_begin procedure, the extracted
database will have GLOBAL_DATABASE_ID set to101.

If you define a sp_hook_dbxtract_begin procedure, but it does not modify
any rows in the #hook_dict then the option will still be set to101.

If you set up the database as follows:

84

Chapter 4. Synchronization Techniques

set option "PUBLIC"."Global_database_id" = ’1’;
create table extract_id (next_id integer not null) ;
insert into extract_id values(1);
create procedure sp_hook_dbxtract_begin
as

declare @next_id integer
update extract_id set next_id = next_id + 1000
select @next_id = (next_id)
from extract_id
commit
update #hook_dict
set value = @next_id
where name = ’extracted_db_global_id’

Then each extracted or re-extracted database will get a different
GLOBAL_DATABASE_ID. The first starts at 1001, the next at 2001, and so
on.

To assist in debugging procedure hooks,dbxtractoutputs the following
when it is set to operate in verbose mode:

♦ the procedure hooks found

♦ the contents of #hook_dict before the procedure hook is called

♦ the contents of #hook_dict after the procedure hook is called

How default values are chosen

The public option GLOBAL_DATABASE_ID in each database must be set
to a unique, non-negative integer. The range of default values for a particular
database ispn + 1 top(n + 1), wherep is the partition size andn is the value
of the public option GLOBAL_DATABASE_ID. For example, if the
partition size is 1000 and GLOBAL_DATABASE_ID is set to 3, then the
range is from 3001 to 4000.

If GLOBAL_DATABASE_ID is set to a non-negative integer, Adaptive
Server Anywhere chooses default values by applying the following rules:

♦ If the column contains no values in the current partition, the first default
value ispn + 1.

♦ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

♦ Default column values are not affect by values in the column outside of
the current partition; that is, by numbers less thanpn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

85

If the public option GLOBAL_DATABASE_ID is set to the default value of
2147483647, a null value is inserted into the column. Should null values not
be permitted, the attempt to insert the row causes an error. This situation
arises, for example, if the column is contained in the table’s primary key.

Because the public option GLOBAL_DATABASE_ID cannot be set to
negative values, the values chosen are always positive. The maximum
identification number is restricted only by the column data type and the
partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new value of
GLOBAL_DATABASE_ID should be assigned to the database to allow
default values to be chosen from another partition. Attempting to insert the
null value causes an error if the column does not permit nulls. To detect that
the supply of unused values is low and handle this condition, create an event
of typeGlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign
a new database id to that database. You can assign new database id numbers
in any convenient manner. However, one possible technique is to maintain a
pool of unused database id values. This pool is maintained in the same
manner as a pool of primary keys.

You can set an event handler to automatically notify the database
administrator (or carry out some other action) when the partition is nearly
exhausted. For more information, see “Defining trigger conditions for
events”[ASA Database Administration Guide,page 273].

☞ For more information, see“Setting the GLOBAL_DATABASE_ID
value” on page 83, and “GLOBAL_DATABASE_ID option [database]”[ASA
Database Administration Guide,page 595].

Maintaining unique primary keys using key pools

One efficient means of solving this problem is to assign each user of the
database a pool of primary key values to assign as the need arises. For
example, you can assign each sales representative 100 new identification
values. Each sales representative can freely assign values to new customers
from his own pool.

86

Chapter 4. Synchronization Techniques

❖ To implement a primary key pool

1. Add a new table to the consolidated database and to each remote database
to hold the new primary key pool. Apart from a column for the unique
value, these tables should contain a column for a user name, to identify
who has been given the right to assign the value.

2. Write a stored procedure to ensure that each user is assigned enough new
identification values. Assign more new values to remote users who insert
many new entries or who synchronize infrequently.

3. Write a download_cursor script to select the new values assigned to each
user and download them to the remote database.

4. Modify the application that uses the remote database so that when a user
inserts a new row, the application uses one of the values from the pool.
The application must then delete that value from the pool so it is not used
a second time.

5. Write an upload_cursor script. The MobiLink synchronization server will
then delete rows from the consolidated pool of values that a user has
deleted from his personal value pool in the remote database.

6. Write an end_upload script to call the stored procedure that maintains the
pool of values. Doing so has the effect of adding more values to the
user’s pool to replace those deleted during upload.

A primary key pool example

The sample application allows remote users to add customers. It is essential
that each new row has a unique primary key value, and yet each remote
database is disconnected when data entry is occurring.

The ULCustomerIDPool holds a list of primary key values that can be used
by each remote database. In addition, the ULCustomerIDPool_maintain
stored procedure tops up the pool as values are used up. The maintenance
procedures are called by a table-level end_upload script, and the pools at
each remote database are maintained by upload_cursor and
download_cursor scripts.

1. The ULCustomerIDPool table in the consolidated database holds the pool
of new customer identification numbers. It has no direct link to the
ULCustomer table.

87

2. The ULCustomerIDPool_maintain procedure updates the
ULCustomerIDPool table in the consolidated database. The following
sample code is for an Adaptive Server Anywhere consolidated database.

CREATE PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id
INTEGER)

BEGIN
DECLARE pool_count INTEGER;

-- Determine how may ids to add to the pool
SELECT COUNT(*) INTO pool_count
FROM ULCustomerIDPool
WHERE pool_emp_id = syncuser_id;

-- Top up the pool with new ids
WHILE pool_count < 20 LOOP

INSERT INTO ULCustomerIDPool (pool_emp_id)
VALUES (syncuser_id);
SET pool_count = pool_count + 1;

END LOOP;
END

This procedure counts the numbers presently assigned to the current user,
and inserts new rows so that this user has a sufficient supply of customer
identification numbers.

This procedure is called at the end of the upload stream, by the
end_upload table script for the ULCustomerIDPool table. The script is as
follows:

CALL ULCustomerIDPool_maintain(?)

3. The download_cursor script for the ULCustomerIDPool table downloads
new numbers to the remote database.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE pool_emp_id = ?
AND last_modified > ?

4. To insert a new customer, the application using the remote database must
select an unused identification number from the pool, delete this number

88

Chapter 4. Synchronization Techniques

from the pool, and insert the new customer information using this
identification number. The following embedded SQL function for an
UltraLite application retrieves a new customer number from the pool.

bool CDemoDB::GetNextCustomerID(void)
/*************************************/
{

short ind;

EXEC SQL SELECT min(pool_cust_id)
INTO :m_CustID:ind FROM ULCustomerIDPool;
if(ind < 0) {

return false;
}
EXEC SQL DELETE FROM ULCustomerIDPool
WHERE pool_cust_id = :m_CustID;
return true;

}

5. The upload_cursor script deletes numbers from the consolidated pool of
numbers once they have been used and hence deleted from the remote
pool.

SELECT pool_cust_id
FROM ULCustomerIDPool
WHERE pool_cust_id = ?

89

Handling conflicts
Conflicts arise during the upload of rows to the consolidated database. If two
users modify the same row, a conflict is detected when the second of the
rows arrives at the MobiLink synchronization server. When conflicts can
occur, you should define a process to compute the correct values, or at least
to log the conflict.

Conflicts are detected only during updates of a row. If an attempt to insert a
row finds that the row has already been inserted, an error is generated. If an
attempt to delete a row finds that the row has already been deleted, the
attempt to delete is ignored. An attempt to update a row that has been
deleted is a conflict.

No conflicts arise in the remote database as a result of synchronization. If a
downloaded row contains a new primary key, the values are inserted into a
new row. If the primary key matches that of a pre-existing row, the other
values in the row are updated.

Conflicts are not the same as errors. Conflict handling can be an integral part
of a well-designed application, allowing concurrency, even in the absence of
locking.

Caution
Don’t update primary keys in a MobiLink environment.

How conflicts are detected

Whenever a row is updated at a remote database, a copy of the values the
row contained at the time of last synchronization is retained. When you next
synchronize, your remote database contains not only the present data, but
also a record of the values that were present the last time you synchronized.

When the client sends an updated row to the MobiLink synchronization
server, it includes not only the new values, but also a copy of the original
values.

Detecting conflicts

When using upload_update scripts, conflict detection is carried out in one of
the following circumstances:

♦ An upload_fetch script is supplied.

The upload_fetch script typically selects a single row of data from a table
corresponding to the row being updated. A typical upload_fetch script
would conform to the following syntax:

90

Chapter 4. Synchronization Techniques

SELECT col1, col2, . . .
FROM table-name
WHERE pk1 = ? AND pk2 = ? . . .

☞ For more information, see “upload_fetch table event”[MobiLink
Synchronization Reference,page 216].

♦ Theupload_updatescript provides a parameter for each element on the
row.

The parameters for anupload_updateevent are arranged so that
statements with the following syntax update rows correctly:

UPDATE table-name
SET col1 = ?, col2 = ?, . . .
WHERE pk1 = ? AND pk2 = ? . . .

In this statement, col1, col2 and so on are the non-primary key columns,
while pk1, pk2 and so on are primary key columns.

For a conflict to be detected, the syntax must be as follows:

UPDATE table-name
SET col1 = ?, col2 = ?, . . .
WHERE pk1 = ? AND pk2 = ? . . .
AND col1 = ? AND col2 = ? . . .

☞ For more information, see “upload_update table event”[MobiLink
Synchronization Reference,page 231].

The MobiLink synchronization server processes each uploaded update using
the following procedure.

1. MobiLink synchronization server detects conflicts only if an
upload_fetch or appropriate upload_update script is applied:

♦ If an upload_fetch script is supplied, the MobiLink synchronization
server compares the old uploaded values to the values of the row
returned by the upload_fetch statement with the same primary key
values.

♦ If an upload_update script of the above form is supplied, the MobiLink
synchronization server compares the old uploaded values to the values
of the row returned in the final set of parameters.

2. If any of the old uploaded valuesdo notmatch the current consolidated
values, the MobiLink synchronization server detects a conflict.

♦ The MobiLink synchronization server inserts the old values as defined
by the upload_old_row_insert script.

☞ For more information, see “upload_old_row_insert table event”
[MobiLink Synchronization Reference,page 222].

91

♦ The MobiLink synchronization server inserts the new values as defined
by the upload_new_row_insert script.

☞ For more information, see “upload_new_row_insert table event”
[MobiLink Synchronization Reference,page 220].

♦ The MobiLink synchronization server executes the resolve_conflict
script. In this script you can either call a stored procedure, or define a
sequence of steps to resolve the conflict as appropriate.

☞ For more information, see “resolve_conflict table event”[MobiLink
Synchronization Reference,page 199].

You can resolve conflicts as they occur using the resolve_conflict script, or
you can resolve all conflicts at once using the table’s end_upload script.

☞ For an example of conflict resolution using statement-based uploads, see
“Synchronizing products in the Contact sample” on page 425.

Forced conflict resolution

Forced conflict resolution is a special technique that forces every uploaded
row to be treated as if it were a conflict.

Forced conflict resolution

If no upload_insert, upload_update, or upload_delete script is defined for a
remote table, the MobiLink synchronization server usesforced conflict
resolution. In this mode of operation, MobiLink synchronization server
attempts to insert all uploaded rows from that table using the statements
defined by the upload_old_row_insert and upload_new_row_insert scripts.
In essence, all uploaded rows are then treated as conflicts. You can write
stored procedures or scripts to process the uploaded values in any way you
want.

Without any of the upload_insert, upload_update, or upload_delete scripts,
the normal conflict-resolution procedure is bypassed. This technique has two
principal uses.

♦ Arbitrary conflict detection and resolution The automatic mechanism
only detects errors when updating a row, and only then when the old
values do not match the present values in the consolidated database.

You can capture the raw uploaded data using the upload_old_row_insert
and upload_new_row_insert scripts, then process the rows as you see fit.

♦ Performance When the upload_insert, upload_update, or upload_delete
are not defined, the MobiLink synchronization server is relieved of its
normal conflict-detection tasks, which involve querying the consolidated
database one row at a time. Instead, it needs only to insert the raw

92

Chapter 4. Synchronization Techniques

uploaded information using the statements defined by the
upload_old_row_insert and upload_new_row_insert scripts. Since only
inserts are involved, the MobiLink synchronization server performs these
inserts using bulk operations that are more efficient.

Storing the user name

When you write upload_old_row_insert or upload_new_row_insert scripts,
you can include an extra column in your select statement. If you do so, the
MobiLink synchronization server automatically inserts the user name into
the first column, and then uses the rest of the columns as usual. This
mechanism is available because some database-management systems
provide no convenient mechanism to store the identity of the current user.

You can use this feature to conveniently identify which user inserted each
row. This information allows you to include user-specific logic in the
resolve_conflict script.

For example, an ordinary upload_old_row_insert script is of the following
form. The items in the select list correspond to the columns of the remote
table.

INSERT c1, c2, . . . , cN FROM table

However, the following syntax is also permitted.

INSERT user_name, c1, c2, . . . , cN FROM table

Normally, the selected columns must match the columns of the remote table
in both number and type. This case is an exception. The single extra column
in the select list must be of a type suitable to hold the user name, for
example, VARCHAR(128). The subsequent columns in the list must match
the columns of the remote table in order and type, as usual. If you include
more than one extra column, an error results.

☞ For more information, see “upload_old_row_insert table event”
[MobiLink Synchronization Reference,page 222]and “upload_new_row_insert
table event”[MobiLink Synchronization Reference,page 220].

93

Data entry
In some databases, there are tables that are only used for data entry. One
way of processing these tables is to upload all inserted rows at each
synchronization, and remove them from the remote database on the
download stream. After synchronization, the remote table is empty again,
ready for another batch of data.

To achieve this model, you can upload rows into a temporary table and then
insert them into a base table using an end_upload table script. The
temporary table can be used in the download_delete_cursor to remove rows
from the remote database following a successful synchronization.

Alternatively, you can allow the client application to the delete the rows,
using the STOP SYNCHRONIZATION DELETE statement to stop the
deletes being uploaded during the next synchronization.

☞ For more information, see “STOP SYNCHRONIZATION DELETE
statement [MobiLink]”[MobiLink Synchronization Reference,page 260].

94

Chapter 4. Synchronization Techniques

Handling deletes
When rows are deleted from the consolidated database, there needs to be a
record of the row so it can be removed from any remote databases that have
the row.

One technique is to not delete the row. Data that is no longer required can be
marked as inactive by changing a status column in the row. The
download_cursor and download_delete_cursor can refer to the status of the
row in the WHERE clause. The CustDB sample application uses this
technique for the ULOrder table using the status column, and the Contact
sample uses the technique on the Customer, Contact, and Product tables.

This technique is used in the ULEmpCust table in the CustDB sample
application, in which the action column holds a D for Delete. The scripts use
this value to delete the record from the remote database, and delete the
record from the consolidated database at the end of the synchronization.

A second technique is to have a shadow table that stores the primary key
values of deleted rows. When a row is deleted, a trigger can populate the
shadow table. The download_delete_cursor can use the shadow table to
remove rows from remote databases. The shadow table only needs to have
the primary key columns from the real table.

☞ For more information, see

♦ “download_cursor cursor event”[MobiLink Synchronization Reference,
page 133]

♦ “Writing download_delete_cursor scripts” on page 58

♦ “download_delete_cursor cursor event”[MobiLink Synchronization
Reference,page 136]

♦ “Snapshot synchronization” on page 74

♦ “Temporarily stopping synchronization of deletes” on page 193

♦ “STOP SYNCHRONIZATION DELETE statement [MobiLink]”
[MobiLink Synchronization Reference,page 260]

95

Handling failed downloads
Bookkeeping information about what is downloaded must be maintained in
the download transaction. This information is updated atomically with the
download being applied to the remote database.

If a failure occurs before the entire download stream is applied to the remote
database, by default the MobiLink synchronization server does not get
confirmation for the download and rolls back the download transaction.
Since the bookkeeping information is part of the download transaction, it is
also rolled back. Next time the download stream is built, it will use the
original bookkeeping information. You can change this default behavior. For
more information, see “SendDownloadACK (sa) extended option”[MobiLink
Synchronization Reference,page 62]or “Send Download Acknowledgement
synchronization parameter”[UltraLite Database User’s Guide,page 172].

When testing your synchronization scripts, you should add logic to your
end_download script that causes occasional failures. This will ensure that
your scripts can handle a failed download.

96

Chapter 4. Synchronization Techniques

Downloading a result set from a stored procedure
call

You can download a result set from a stored procedure call. For example,
you might currently have a download_cursor for the following table:

CREATE TABLE MyTable (
pk INTEGER PRIMARY KEY NOT NULL,
col1 VARCHAR(100) NOT NULL,
col2 VARCHAR(20) NOT NULL

)

The download_cursor cursor script might look as follows:

SELECT pk, col1, col2
FROM MyTable

WHERE last_modified > ?
AND employee = ?

If you want your downloads to MyTable to use more sophisticated business
logic, you can now create your script as follows, where DownloadMyTable
is a stored procedure taking two parameters (last-download timestamp and
MobiLink user name) and returning a result set. (This example uses an
ODBC calling convention for portability):

{call DownloadMyTable(?, ?)}

Following are some simple examples for each supported consolidated
database. Consult the documentation for your consolidated database for full
details.

The following example works with Adaptive Server Anywhere, Adaptive
Server Enterprise, and Microsoft SQL Server.

CREATE PROCEDURE SPDownload
@last_dl_ts DATETIME,
@u_name VARCHAR(128)

AS
BEGIN

SELECT pk, col1, col2
FROM MyTable

WHERE last_modified > @last_dl_ts
AND employee = @u_name

END

The following example works with Oracle. Oracle requires that a package be
defined. This package must contain a record type for the result set, and a
cursor type that returns the record type.

97

Note
This example requires that Oracle return a result set. In the ODBC
Oracle Driver Setup dialog, you must select the Procedure Returns Results
option; or in the connection string, set ProcedureRetResults=1. For more
information about setting up the Oracle ODBC driver, see “iAnywhere
Solutions ODBC Driver for Oracle Wire Protocol”[iAnywhere Solutions
ODBC Drivers,page 31].

Create or replace package SPInfo as
Type SPRec is record (

pk integer,
col1 varchar(100),
col2 varchar(20)

);
Type SPCursor is ref cursor return SPRec;
End SPInfo;

Next, Oracle requires a stored procedure with the cursor type as the first
parameter. Note that the download_cursor script only passes in two
parameters, not three. For stored procedures returning result sets in Oracle,
cursor types declared as parameters in the stored procedure definition define
the structure of the result set, but do not define a true parameter as such.

Create or replace procedure
DownloadMyTable(spcursor IN OUT SPInfo.SPCursor,

last_dl_ts IN DATE,
user_name IN VARCHAR) As

Begin
Open spcursor For

select pk, col1, col2
from MyTable

where last_modified > last_dl_ts
and employee = user_name;

End;

The following example works with IBM DB2 UDB.

CREATE PROCEDURE DownloadMyTable(
IN last_dl_ts TIMESTAMP,
IN u_name VARCHAR(128))

EXTERNAL NAME ’DLMyTable!DownloadMyTable’
RESULT SETS 1
FENCED
LANGUAGE JAVA PARAMETER STYLE DB2GENERAL

The following example is a Java implementation of the stored procedure, in
DLMyTable.java. To return a result set, you must leave the result set open
when the method returns:

98

Chapter 4. Synchronization Techniques

import COM.ibm.db2.app.*;
import java.sql.*;

public class DLMyTable extends StoredProc
{

public void DownloadMyTable(
Date last_dl_ts,
String u_name) throws Exception

{
Connection conn = getConnection();
conn.setAutoCommit(false);
Statement s = conn.createStatement();
// Execute the select and leave it open.
ResultSet r = s.executeQuery(

"select pk, col1, col2 from MyTable"
+ " where last_modified > ’"
+ last_dl_ts
+ "’ and employee = ’"
+ u_name + "’");

}
}

99

Schema changes in remote databases
As your needs evolve, deployed remote databases may require schema
changes. The most common schema changes are adding a new column to an
existing table or adding a new table to the database.

Adaptive Server
Anywhere remote
databases ❖ To add tables to Adaptive Server Anywhere remote databases

1. Add the associated table scripts in the consolidated database.

The same script version may be used for the remote database without the
new table and the remote database with the new table. However, if the
presence of the new table changes how existing tables are synchronized,
then you must create a new script version, and create new scripts for all
tables being synchronized with the new script version.

2. Perform a normal synchronization.

This step is optional, but recommended, before changing schema.

3. Use the ALTER PUBLICATION statement to add the table. For example,

ALTER PUBLICATION your_pub
ADD TABLE table_name

☞ For more information, see “ALTER PUBLICATION statement”
[MobiLink Synchronization Reference,page 234].

4. Synchronize. Use the new script version, if required.

Changing table
definitions in remote
databases

Changing the number or type of columns in an existing table must be done
carefully. When a MobiLink client synchronizes with a new schema, it
expects scripts, such as upload_update or download_cursor, which have
parameters for all columns in the remote table. An older remote database
expects scripts that have only the original columns.

❖ To alter a published table in a deployed Adaptive Server Any-
where remote database

1. At the consolidated database, create a new script version.

☞ For more information, see“Script versions” on page 49.

2. For your new script version, create scripts for all tables in the
publication(s) that contain the table that you want to alter and that are
synchronized with the old script version.

3. At the remote database, perform a normal synchronization using the old
script version.

100

Chapter 4. Synchronization Techniques

4. At the remote database, use the ALTER PUBLICATION statement to to
temporarily drop the table from the publication. For example,

ALTER PUBLICATION your_pub
DROP TABLE table_name

☞ For more information, see “ALTER PUBLICATION statement”
[MobiLink Synchronization Reference,page 234].

5. At the remote database, use the ALTER TABLE statement to alter the
table.

☞ For more information, see “ALTER TABLE statement”[ASA SQL
Reference,page 250].

6. At the remote database, use the ALTER PUBLICATION statement to add
the table back into the publication.

☞ For more information, see “ALTER PUBLICATION statement”
[MobiLink Synchronization Reference,page 234].

7. Synchronize with the new script version.

Note: Steps 4 through 6 may also be performed by the
sp_hook_dbmlsync_schema_upgrade stored procedure. For more
information, see “sp_hook_dbmlsync_schema_upgrade”[MobiLink
Synchronization Reference,page 291].

☞ For more information about changing schemas for Adaptive Server
Anywhere remote databases, see “sp_hook_dbmlsync_schema_upgrade”
[MobiLink Synchronization Reference,page 291].

UltraLite remote
databases

You can change the schema of a remote database by deploying a new
application or through a schema upgrade.

♦ If you deploy a new application without a schema upgrade, you need to
repopulate the UltraLite database by synchronizing with the MobiLink
synchronization server.

♦ In the schema upgrade case, your data will be preserved. It is usually
impractical to have all users upgrade to the new version of the application
at the same time.

You need to be able to have both versions co-existing in the field and
synchronizing with a single consolidated database. You can create two or
more versions of the synchronization scripts that are stored in the
consolidated database and control the actions of the MobiLink
synchronization server. Each version of your application can then select the

101

appropriate set of synchronization scripts by specifying the correct version
name when it initiates synchronization.

☞ For more information about schemas in UltraLite, see “Databases and
schema files”[UltraLite Database User’s Guide,page 28].

102

CHAPTER 5

Authenticating MobiLink Users

About this chapter This chapter describes how to manage MobiLink users, including the
mechanisms provided to manage and authenticate their passwords.

Contents Topic: page

About MobiLink users 104

Choosing a user authentication mechanism 107

User authentication architecture 108

Providing initial passwords for users 110

Synchronizations from new users 111

Prompting end users to enter passwords 112

Changing passwords 113

Custom user authentication 114

103

About MobiLink users
A MobiLink user , also called asynchronization user, is a name assigned
to a remote database. Each MobiLink user name must be unique within the
synchronization system.

MobiLink user names and passwords are not the same as database user
names and passwords. MobiLink user names and passwords are used to
identify, and optionally authenticate, clients attempting to connect to the
MobiLink synchronization server.

You can also use user names to control the behavior of the synchronization
server. You do so using the user name in synchronization scripts. For
example, you can send remote databases different rows based on their user
name.

The MobiLink user name is stored in the ml_user MobiLink system table in
the consolidated database.

UltraLite user
authentication

Although UltraLite and MobiLink user authentication schemes are separate,
you may wish to share the values of UltraLite user IDs with MobiLink user
names for simplicity. This will only work when the UltraLite application is
used by a single user.

☞ For more information about UltraLite user authentication, see “User
authentication”[UltraLite Database User’s Guide,page 38].

Creating MobiLink users

You can use any of the following methods to register user names in the
consolidated database:

♦ Use the dbmluser utility.

☞ For more information, see “MobiLink user authentication utility”
[MobiLink Synchronization Reference,page 308].

♦ Use Sybase Central.

♦ Specify the -zu+ command line option with dbmlsrv9. In this case, any
existing MobiLink users that have not been added to the consolidated
database are added when they first synchronize.

☞ For more information, see “-zu option”[MobiLink Synchronization
Reference,page 31].

The MobiLink user must already exist in a remote database. To add users at
the remote, you have the following options:

104

Chapter 5. Authenticating MobiLink Users

♦ For Adaptive Server Anywhere remotes, use the CREATE
SYNCHRONIZATION USER statement.

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 351].

♦ For UltraLite remotes, you can use the user_name field of the
ul_synch_info structure. In Java, use the SetUserName() method of the
ULSynchInfo class before synchronizing.

☞ For more information, see “User Name synchronization parameter”
[UltraLite Database User’s Guide,page 177], and “Password synchronization
parameter”[UltraLite Database User’s Guide,page 167].

Sharing MobiLink user names

If you want two or more remote databases (UltraLite or Adaptive Server
Anywhere) to share the same MobiLink user name, then you can create a
MobiLink user name that is a base name with a unique suffix. You do this in
the CREATE SYNCHRONIZATION USER statement by adding a + after
the user name, followed by your suffix.

A typical use of this technique is for a person who wants to have several
remote databases. Each remote database must have a unique MobiLink user
name, but they can share the same base name.

Example The following example creates MobiLink user names that are 102 followed
by a colon and a UUID.

BEGIN
EXECUTE IMMEDIATE ’CREATE SYNCHRONIZATION USER "102’ + ’:’ +
UUIDTOSTR(NEWID()) + ’"’;
END;

This creates a MobiLink user name such as
102:b23fdbed-bead-418a-9d53-917e774c2f4f.

You still need MobiLink to provide the user name to each of the MobiLink
scripts. To do this, you can use a MobiLink event called modify_user. It
takes the MobiLink user as input and allows you to modify it. The modified
value is what is passed to all the download events. For example,

CALL sp_ML_modify_user(?)

The result is that the following download_cursor is based on the value of
102, not 102:b23fdbed-bead-418a-9d53-917e774c2f4f.

Select emp_id, emp_name
From ULEmployee
Where last_modified > ?

And emp_id = ?

105

Here is the procedure written using Adaptive Server Anywhere syntax. This
can easily be converted for other RDBMSs.

CREATE PROCEDURE sp_ML_modify_user(INOUT @ml_user_name
VARCHAR(255))

BEGIN
DECLARE @colon_at INT;
SET @colon_at = LOCATE(@ml_user_name, ’:’);
IF(@colon_at > 0) THEN

-- Message statements are displayed in the minimized
engine

-- window, this is useful for debugging

MESSAGE ’UUID: ’ +
RIGHT(@ml_user_name,

(LENGTH(@ml_user_name)-@colon_at));
SET @ml_user_name = LEFT(@ml_user_name, (@colon_at-1)

);
MESSAGE ’New MobiLink User: ’ + @ml_user_name;

ELSE
MESSAGE ’No change to MobiLink User: ’ + @ml_user_name;

END IF;
END;

106

Chapter 5. Authenticating MobiLink Users

Choosing a user authentication mechanism
User authentication is one part of a security system for protecting your data.

MobiLink provides you with a choice of user authentication mechanisms.
You do not have to use a single installation-wide mechanism; MobiLink lets
you use different authentication mechanisms for different users within the
installation for flexibility.

♦ No MobiLink user authentication If your data is such that you do not
need password protection, you can choose not to use any user
authentication in your installation.

♦ Built-in MobiLink user authentication MobiLink uses the user names
and passwords stored in the ml_user MobiLink system table to perform
authentication.

The built-in mechanism is described in the following sections.

♦ Custom authentication You can use the MobiLink script
authenticate_user to replace the built-in MobiLink user authentication
system with one of your own. For example, depending on your
consolidated database-management system, you may be able to use the
database user authentication instead of the MobiLink system.

☞ For more information about custom user authentication mechanisms,
see“Custom user authentication” on page 114.

☞ For information about other security-related features of MobiLink and
its related products, see

♦ “Transport-Layer Security” on page 337

♦ “Encrypting an UltraLite database”[UltraLite Database User’s Guide,
page 36]

♦ “Keeping Your Data Secure”[SQL Anywhere Studio Security Guide,page 3]

107

User authentication architecture
The MobiLink user authentication system relies on user names and
passwords. You can choose either to let the MobiLink synchronization
server validate the user name and password using a built-in mechanism, or
you can implement your own custom user authentication mechanism.

In the built-in authentication system, both the user name and the password
are stored in the ml_user MobiLink system table in the consolidated
database. The password is stored in hashed form so that applications other
than the MobiLink synchronization server cannot read the ml_user table and
reconstruct the original form of the password. You add user names and
passwords to the consolidated database using Sybase Central or the
dbmluser utility.

☞ For more information, see “MobiLink user authentication utility”
[MobiLink Synchronization Reference,page 308].

When a MobiLink client connects to a MobiLink synchronization server, it
provides the following values.

♦ user name The MobiLink user name. Mandatory. This value typically
matches exactly a user name in the ml_user MobiLink system table.

♦ password The MobiLink password. Optional only if the user is
unknown or if the corresponding password in the ml_user MobiLink
system table is NULL.

♦ new password A new MobiLink password. Optional. MobiLink users
can change their password by setting this value.

The MobiLink synchronization server, upon receiving a connection request
from a MobiLink client, proceeds as follows.

If the MobiLink synchronization server finds the supplied user name in the
ml_user MobiLink system table, compares the supplied password with the
stored value. If the passwords match or the stored password is NULL,
synchronization proceeds. Otherwise, the synchronization server denies the
request and returns an error code to the client.

New users and passwords
If a MobiLink client supplies a user name that is not present in the ml_user
table, the behavior is determined by a MobiLink synchronization server
command line option.

For more information, see“Synchronizations from new users” on page 111.

Custom authentication Optionally, you can substitute your own user authentication mechanism. You

108

Chapter 5. Authenticating MobiLink Users

do so by providing an authenticate_user script. If this script exists, it is
executed instead of the password comparison. The script must return error
codes to indicate the success or failure of the authentication.

The following sections describe how to implement the different pieces of the
authentication system, and describe some specific issues you may encounter.

109

Providing initial passwords for users
The password for each user is stored along with the user name in the
ml_user table. You can provide initial passwords from Sybase Central, or
using the dbmluser command line utility.

Sybase Central is a convenient way of adding individual users and
passwords. The dbmluser utility is useful for batch additions.

If you create a user with no password, then MobiLink performs no user
authentication for that user: they can connect and synchronize without
supplying a password.

❖ To provide an initial MobiLink password for a user (Sybase Cen-
tral)

1. Connect to the consolidated database from Sybase Central using the
MobiLink plug-in.

2. Open the Users folder.

3. Double-click Add User. The Add User wizard appears.

4. Supply a user name and an optional password.

5. Click Finish to complete the task.

❖ To provide initial MobiLink passwords (command line)

1. Create a file with a single user name and password on each line, separated
by white space.

2. Open a command prompt, and execute the dbmluser command line
utility. For example:

dbmluser -c "dsn=my_dsn" -f password-file

In this command line, the -c option specifies an ODBC connection to the
consolidated database. The -f option specifies the file containing the user
names and passwords.

☞ For information about dblmuser, see “MobiLink user authentication
utility” [MobiLink Synchronization Reference,page 308].

110

Chapter 5. Authenticating MobiLink Users

Synchronizations from new users
Ordinarily, each MobiLink client must provide a valid MobiLink user name
and password to connect to a MobiLink synchronization server.

Setting the -zu+ option when you start the MobiLink synchronization server
allows the MobiLink synchronization server to automatically add new user
names to the ml_user table according to the following rules.

In effect, this option permits new users to create their own MobiLink
accounts, easing administration of new users. This arrangement can be
convenient when the server and clients all operate within a firewall.

If a MobiLink client synchronizes with a user name that is not in the current
ml_user table, MobiLink, by default, takes the following actions:

♦ New user, no password If the user supplied no password, then by
default the user name is added to the ml_user table with a NULL
password. This behavior provides compatibility with earlier releases of
MobiLink that did not allow user authentication.

☞ For more information, see “-zu option”[MobiLink Synchronization
Reference,page 31].

♦ New user, password If the user supplies a password, then the user
name and password are both added to the ml_user table and the new user
name becomes a recognized name in your MobiLink system.

♦ New user, new password A new user may provide information in the
new password field, instead of or as well as in the password field. In
either case, the new password setting overrides the password setting, and
the new user is added to the MobiLink system using the new password.

Preventing
synchronization by
unknown users

You can change the default behavior by starting the MobiLink
synchronization server using the -zu option. In this case, the MobiLink
synchronization server rejects any attempt to synchronize from a user name
that is not present in the ml_user table.

This setting provides two benefits. First, it reduces the risk of unauthorized
access to the MobiLink synchronization server. Second, it prevents
authorized users from accidentally connecting using an incorrect or
misspelled user name. Such accidents should be avoided because they can
cause the MobiLink system to behave in unpredictable ways.

111

Prompting end users to enter passwords
Each end user must supply a MobiLink user name and password each time
they synchronize from a MobiLink client, unless you choose to disable user
authentication on your MobiLink synchronization server.

❖ To prompt your end users to enter their MobiLink passwords

1. The mechanism for supplying the user name and password is different for
UltraLite and Adaptive Server Anywhere clients.

♦ UltraLite When synchronizing, the UltraLite client must supply a
valid value in the password field of the synchronization structure
(C/C++) or object (Java). For built-in MobiLink synchronization, a
valid password is one that matches the value in the ml_user MobiLink
system table.

Your application should prompt the end user to enter their MobiLink
user name and password before synchronizing.

☞ For more information, see “Synchronization for UltraLite
Applications” [UltraLite Database User’s Guide,page 143].

♦ Adaptive Server Anywhere You can supply a valid password on the
dbmlsync command line. However, if you do not do so, you are
prompted for one in the dbmlsync connection dialog. The latter
method is more secure because command lines are visible to other
processes running on the same computer.

If authentication fails, you are prompted to re-enter the user name and
password.

☞ For more information, see “MobiLink synchronization client”
[MobiLink Synchronization Reference,page 36].

112

Chapter 5. Authenticating MobiLink Users

Changing passwords
MobiLink provides a mechanism for end users to change their password.
The interface differs between UltraLite and Adaptive Server Anywhere
clients.

❖ To prompt your end users to enter MobiLink passwords

1. The mechanism for supplying the user name and password is different for
UltraLite and Adaptive Server Anywhere clients.

♦ UltraLite When synchronizing, the application must supply the
existing password in the password field of the synchronization
structure and the new password in the new_password field.

☞ For more information, see “Password synchronization parameter”
[UltraLite Database User’s Guide,page 167]and “New Password
synchronization parameter”[UltraLite Database User’s Guide,page 166].

♦ Adaptive Server Anywhere Supply a valid existing password
together with the new password on the dbmlsync command line, or in
the dbmlsync connection dialog if you do not supply command line
parameters.

☞ For more information, see “MobiLink synchronization client”
[MobiLink Synchronization Reference,page 36].

The new password is not verified until the next synchronization attempt. For
the dbmlsync utility, or if you prompt at synchronization time in an UltraLite
application, this attempt is almost immediate.

☞ An initial password can be set in the consolidated server or on the first
synchronization attempt. For more information, see“Providing initial
passwords for users” on page 110and“Synchronizations from new users”
on page 111.

Once a password is assigned, you cannot reset the password to NULL from
the client side.

113

Custom user authentication
You can choose to use a user authentication mechanism other than the
built-in MobiLink mechanism. Reasons for using a custom user
authentication mechanism include integration with existing DBMS user
authentication schemes, or supplying custom features, such as minimum
password length or password expiry, that do not exist in the built-in
MobiLink mechanism.

There are three custom authentication tools:

♦ dbmlsrv9 -zu option

♦ authenticate_user script

♦ authenticate_parameters script

The dbmlsrv9 -zu option allows you to control the automatic addition of
users. For example, specify -zu+ to have all unrecognized MobiLink user
names added to the ml_user table when they first synchronize. The -zu
option works with built-in MobiLink authorization.

The authenticate_user script and authenticate_parameters script both
override the default MobiLink user authentication mechanism. Use
authenticate_user to create custom authentication of user IDs and passwords.
Use authenticate_parameters to create custom authentication that depends on
values other than user IDs and passwords.

For more information, see

♦ “-zu option” [MobiLink Synchronization Reference,page 31]

♦ “authenticate_user connection event”[MobiLink Synchronization Reference,
page 100]

♦ “authenticate_parameters connection event”[MobiLink Synchronization
Reference,page 98]

Java and .NET user
authentication

User authentication is a natural use of Java and .NET synchronization logic,
as Java and .NET classes allow you to reach out to other sources of user
names and passwords used in your computing environment, such as
application servers.

A simple sample is included in the directory
Samples\MobiLink\JavaAuthentication. The sample code in
Samples\MobiLink\JavaAuthentication\CustEmpScripts.javaimplements a
simple user authentication system. On the first synchronization, a MobiLink
user name is added to the login_added table. On subsequent

114

Chapter 5. Authenticating MobiLink Users

synchronizations, a row is added to the login_audit table. In this sample,
there is no test before adding a user ID to the login_added table.

For a .NET sample that explains user authentication, see“.NET
synchronization example” on page 266.

SQL user authentication A typical authenticate_user SQL script would be a call to a stored procedure
that uses the parameters. The order of the parameters in the call must match
the order above. For example, in an Adaptive Server Anywhere consolidated
database, the format would be as follows:

call my_authentication(?, ?, ?, ?)

where the first argument is the error code, and so on. The error code is an
integer type, and the other parameters are VARCHAR(128).

A Transact-SQL format would be as follows:

execute ? = my_authentication(?, ?, ?)

where the error code is the parameter on the left hand side.

115

CHAPTER 6

File-Based Downloads

About this chapter This chapter describes an alternative way to download data to Adaptive
Server Anywhere remote databases. Downloads can be distributed as files,
enabling offline distribution of synchronization changes. This allows you to
create a file once and distribute it to many remote databases.

Contents Topic: page

Introduction 118

Setting up file-based downloads 119

Validation checks 123

Examples 127

117

Introduction
With file-based downloads, you can put download synchronization changes
in a file and transfer it to Adaptive Server Anywhere remote databases in any
way a file can be transferred. For example,

♦ broadcast the data by satellite multicast

♦ apply the update using Sybase Manage Anywhere

♦ e-mail or ftp the file to users

You choose the users you want to receive the file. Full synchronization
integrity is preserved in file-based downloads, including conflict detection
and resolution. You can ensure that the file is secure by applying third-party
encryption on the file.

When to use File-based downloads are useful when a large amount of data changes on the
consolidated database, but the remote database does not update the data
frequently or does not do any updates at all. For example, price lists, product
lists, and code tables.

File-based downloads are not useful when the downloaded data is updated
frequently on the remote database or when you are running frequent
upload-only synchronizations. In these situations, the remote sites may be
unable to apply download files because of integrity checks that are
performed when download files are applied.

Notes ♦ File-based downloads cannot be used as the sole means of updating
remote databases. You still need to regularly perform full
synchronizations or upload-only synchronizations. Full or upload-only
synchronizations are required to advance log offsets and to maintain the
log file, which otherwise will grow large and slow down synchronization.
A full synchronization may also be required to recover from errors.

♦ File-based downloads currently can be used only with Adaptive Server
Anywhere remote databases.

118

Chapter 6. File-Based Downloads

Setting up file-based downloads
To set up file-based download, you:

♦ Create a file-definition database.

♦ At the consolidated database, create scripts with a new script version.

♦ Create a download file.

♦ Apply the download file.

Create the file-definition database

To set up file-based downloads, you create afile-definition database. This
is an Adaptive Server Anywhere database that has the same synchronization
tables and publications as your remote databases. It can be located
anywhere. This database contains no data or state information. It does not
have to be backed up or maintained; in fact, you can delete it and recreate it
as needed.

The file-definition database must include the following:

♦ the same publications as the remote databases, as well as the tables and
columns used in the publication, the foreign key relationships and
constraints of those tables and columns, and the tables required by those
foreign key relationships.

♦ a MobiLink user name that identifies the group of remote databases that
are to apply the download file. You will use this group MobiLink user
name in your synchronization scripts to identify the group of remote
databases.

Changes at the consolidated database

On the consolidated database, create a new script version for your file-based
downloads, and implement any scripts required by your existing
synchronization system into it. (Upload scripts are not required.) This script
version will be used only for file-based downloads. For this script version,
all scripts that take MobiLink user names as parameters will instead take a
MobiLink user name that refers to a group of remote databases. This is the
user name that is defined in the file-definition database.

For each script version that you have defined, implement a
begin_publication script.

For timestamp-based downloads, implement a
modify_last_download_timestamp script for each script version. How you

119

implement this script depends on how much data you intend to send in each
download file. For example, one approach is to use the earliest time that any
user from the group last downloaded successfully. Remember that the
ml_username parameter passed to this script is actually the group name.

☞ For more information, see “modify_last_download_timestamp
connection event”[MobiLink Synchronization Reference,page 180].

Creating the download file

The download file contains the data to be synchronized. To create the
download file, set up your file-definition database and consolidated database
as described above. Run dbmlsync with the -bc option and supply a file
name with the extension .df. For example,

dbmlsync -c "uid=dba;pwd=sql;eng=fbdl_eng;dbf=fdef.db" -v+
-e "sv=filebased" -bc file1.df

Optionally, you can specify options when you create the download file:

♦ -be option Use -be to add a string to the download file that can be
accessed at the remote database using the
sp_hook_dbmlsync_validate_download_file stored procedure.

☞ For more information, see “-be option”[MobiLink Synchronization
Reference,page 41]and “sp_hook_dbmlsync_validate_download_file”
[MobiLink Synchronization Reference,page 295].

♦ -bg option Use the -bg option to create a download file that can be
used by remotes that have never synchronized.

Use the -bg option to create a download file that can be used by remotes
that have never synchronized.

Synchronizing new remotes

If you want to apply a download file to a remote database that has never
synchronized using MobiLink, then before you apply the download file you
need to either perform a normal synchronization on the remote database or
use the dbmlsync -bg option when creating the download file.

For timestamp-based synchronization, doing either of these two things
causes the download of an initial snapshot of the data. For both timestamp
and snapshot based synchronization, this step sets the generation number to
the value that is generated by the begin_publication script on the
consolidated database.

Perform a normal
synchronization

You can prepare a remote database to receive download files by performing a
synchronization that does not use a download file.

120

Chapter 6. File-Based Downloads

Use the -bg option Alternatively, you can create a download file with the -bg option to use with
remotes that haven’t yet synchronized. You apply this initial download file to
prepare the remote database for file-based synchronization.

♦ Snapshot downloads If you are performing snapshot downloads, then
the initial download file just needs to set the generation number. You may
choose to include an initial snapshot of the data in this file, but since each
snapshot download contains all the data and does not depend on previous
downloads, this is not required.

For snapshot downloads, using the -bg option is straightforward. Just
specify -bg in the dbmlsync command line when you create the download
file. You can use the same script version to create the initial download file
as you use for subsequent download files.

♦ Timestamp-based downloads If you are performing timestamp-based
downloads, then the initial download must set the generation number on
the remote database and include a snapshot of the data. With
timestamp-based downloads, each download builds on previous ones.
Each download file contains a last download timestamp. All rows
changed on the consolidated after the file’s last download timestamp are
included in the file. To apply a file, a remote database must already have
received all the changes that occurred before the file’s last download
timestamp. This is confirmed by checking that the file’s last download
timestamp is greater than or equal to the remote database’s last download
timestamp (the time up to which the remote database has received all
changes from the consolidated database).

Before a remote can apply its first normal download file, it must receive
all data changed before that file’s last download timestamp and after
January 1, 1900. The initial download file created with the –bg option
must contain this data. The easiest way to select this data is to create a
separate script version that uses the same download_cursors as your
normal file-based synchronization script version but does not have a
modify_last_download_timestamp script. If no
modify_last_download_timestamp script is defined, then the last
download timestamp for a file-based download will default to January 1,
1900.

If you apply download files built with the -bg option to remote databases that
have already synchronized, the -bg option causes the generation numbers on
the remote database to be updated with the value on the consolidated
database at the time the download file was created. This defeats the purpose
of generation numbers, which is to prevent you from applying further
file-based downloads until an upload has been performed in situations such
as when recovering a consolidated database that is lost or corrupted.

121

☞ For more information about generation numbers, see“MobiLink
generation numbers” on page 125.

122

Chapter 6. File-Based Downloads

Validation checks
Before applying a download file to a remote database, dbmlsync does a
number of things to ensure that the synchronization is valid.

♦ dbmlsync checks the download file to ensure that the file-definition
database that was used to create it has:

• the same publication as the remote database

• the same tables and columns used in the publication

• the same foreign key relationships and constraints as those tables and
columns

♦ dbmlsync checks to see if there is any data in the publication that has not
been uploaded from the remote. If there is, the download file is not
applied, because applying the download file could cause pending upload
data to be lost.

♦ dbmlsync checks the last download timestamp, next last download
timestamp, and creation time of the download file to ensure that:

• newer data on the remote database will not be overwritten by older
data contained in the download file.

• a download file will not be applied if applying it means that the remote
database would miss some changes that have occurred on the
consolidated database. This situation might occur if the remote did not
apply previous file-based downloads.

☞ For more information, see“Automatic validation” on page 123.

♦ Optionally, dbmlsync checks the generation number in the remote
database to ensure it matches the generation number in the download file.

☞ For more information, see“MobiLink generation numbers” on
page 125.

♦ Optionally, you can create custom validation logic with the
sp_hook_dbmlsync_validate_download_file stored procedure.

☞ For more information, see“Custom validation” on page 126.

Automatic validation

Before applying a download file, dbmlsync performs special checks on the
last download timestamp, next last download timestamp, download file
creation time, and transaction log.

Last download
timestamp and next last
download timestamp

Each download file contains all changes to be downloaded that occurred on
the consolidated database between the file’s last download timestamp, and

123

its next last download timestamp. Both times are expressed in terms of the
time at the consolidated database. By default the file’s last download time is
Jan 1, 1900 12:00 AM and the file’s next last download timestamp is the
time the download file was created. These defaults can be overridden by
implementing the modify_last_download_timestamp and
modify_next_last_download_timestamp scripts on the consolidated
database.

A remote site can apply a download file only if the file’s last download
timestamp is less than or equal to the remote’s last download timestamp.
This ensures that a remote never misses operations that occur on the
consolidated database. Usually when a file-based download fails based on
this check, the remote has missed one or more download files. The situation
can be corrected by applying the missing download files or by performing a
full or download-only synchronization.

In addition, a remote site can apply a download file only if the file’s next last
download timestamp is greater than the remote’s last download timestamp.
The remote’s last download timestamp is the time (at the consolidated
database) up to which the remote has received all changes that are to be
downloaded. The remote database’s last download time is updated each time
the remote successfully applies a download (normal or file-based). This
check ensures that a download file will not be applied if more recent data has
already been downloaded. A common case where this could happen occurs
when download files are applied out of order. For example, suppose a
download file F1.df is created, and another file F2.df is created later. This
check ensures that F1.df cannot be applied after F2.df, because that could
allow newer data in F2.df to be overwritten with older data in F1.df.

When a file-based download fails based on the next last download
timestamp, no additional action is required other than to delete the file.
Synchronization will succeed once a new file is received.

Creation time The download file’s creation time indicates the time at the consolidated
database when creation of the file began. A download file can only be
applied if the file’s creation time is greater than the remote database’s last
upload time. The remote’s last upload time is the time at the consolidated
database when the remote’s last successful upload was committed. This
check ensures that data that has been uploaded after the creation of the
download (and hence is newer than the download) will not be overwritten by
older data in the download file.

When a download file is rejected based on this check, no action is required.
The remote site should be able to apply the next download file.

When an upload fails because dbmlsync sent an upload to the MobiLink

124

Chapter 6. File-Based Downloads

synchronization server but got no acknowledgement, the remote database’s
last upload time may be incorrect. In this case, the creation time check
cannot be performed and the remote is unable to apply download files until it
completes a normal synchronization.

Transaction log Before applying a download file, dbmlsync scans the remote database’s
transaction log and builds up a list of all changes that must be uploaded.
Dbmlsync will only apply a download file if it does not contain any
operations that affect rows with changes that must be uploaded.

MobiLink generation numbers

Generation numbers provide a mechanism for forcing remote databases to
upload data before applying any more download files. This is especially
useful when a problem on the consolidated database has resulted in data loss
and you must recover lost data from the remote databases.

On the remote database, a separate generation number is automatically
maintained for each subscription. On the consolidated database, the
generation number for each subscription is determined by the
begin_publication script. Each time a remote performs a successful upload,
it updates the remote generation number with the value set by the
begin_publication script in the consolidated database.

Each time a download file is created, the generation number set by the
begin_publication script is stored in the download file. A remote site will
only apply a download file if the generation number in the file is equal to the
generation number stored in the remote database.

Note
Whenever the generation number generated by the begin_publication script
for a file-based download changes, the remote databases must perform a
successful upload before they can apply any new download files.

The sp_hook_dbmlsync_validate_download_file stored procedure can be
used to override the default checking of the generation number.

For more information about managing MobiLink generation numbers, see:

♦ “begin_publication connection event”[MobiLink Synchronization Reference,
page 118]

♦ “end_publication connection event”[MobiLink Synchronization Reference,
page 155]

♦ “sp_hook_dbmlsync_validate_download_file”[MobiLink Synchronization
Reference,page 295]

125

Custom validation

You can create custom validation logic to determine if a download file
should be applied to a remote database. You do this with the
sp_hook_dbmlsync_validate_download_file stored procedure. With this
stored procedure, you can both reject a download file and override the
default checking of the generation number.

You can use the dbmlsync -be option to embed a string in the file. You use
the -be option against the file-definition database when you create the
download file This string is passed to the
sp_hook_dbmlsync_validate_download_file through the #hook_dict table,
and can be used in your validation logic.

☞ For more information, see
“sp_hook_dbmlsync_validate_download_file”[MobiLink Synchronization
Reference,page 295].

126

Chapter 6. File-Based Downloads

Examples
This section contains two very simple examples. Each sets up a file-based
download synchronization using a consolidated database with only one
table. The first is a snapshot example and the second is a timestamp-based
example.

Snapshot example

This example implements file-based download for snapshot synchronization.

The following commands create the three databases used in the example: a
consolidated database, a remote database, and a file-definition database.

dbinit scons.db
dbinit sremote.db
dbinit sfdef.db

The following commands start the three databases, create a data source name
for MobiLink to use to connect to the consolidated database, and start the
MobiLink synchronization server.

dbeng9 -n sfdef_eng sfdef.db
dbeng9 -n scons_eng scons.db
dbeng9 -n sremote_eng sremote.db
dbdsn -y -w fbd_demo -c "eng=scons_eng;dbf=scons.db;uid=dba;

pwd=sql;astart=off;astop=off"
start dbmlsrv9 -v+ -c "dsn=fbd_demo"

-zu+ -ot scons.txt

Create the snapshot
example consolidated
database

In this example, the consolidated database has one table, called T1. After
connecting to the consolidated database, you can run the following SQL to
create table T1:

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

The following code creates a download script for the “filebased” script
version:

CALL ml_add_table_script(’filebased’,
’T1’, ’download_cursor’,

’SELECT pk, c1 FROM T1’);

The following code creates upload and download scripts for the “normal”
script version:

127

CALL ml_add_table_script (’normal’, ’T1’,
’upload_insert’,
’INSERT INTO T1 VALUES (?,?)’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_update’,
’UPDATE T1 SET c1 = ? WHERE pk = ? ’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_delete’,

’DELETE FROM T1 WHERE pk = ?’);

CALL ml_add_table_script(’normal’, ’T1’,
’download_cursor’,

’SELECT pk, c1 FROM T1’);

COMMIT;

The following command creates the stored procedure begin_pub and
specifies that begin_pub is the begin_publication script for both the
“normal” and “filebased” script versions:

CREATE PROCEDURE begin_pub (
INOUT generation_num integer,

IN username varchar(128),
IN pubname varchar(128))

BEGIN
SET gnum=1;

END;

CALL ml_add_connection_script(
’filebased’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

CALL ml_add_connection_script(’normal’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

Create the snapshot
example remote
database

In this example, the remote database also contains one table, called T1.
Connect to the remote database and run the following SQL to create the
table T1, a publication called P1, and a user called U1. The SQL also creates
a subscription for U1 to P1.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

128

Chapter 6. File-Based Downloads

CREATE SYNCHRONIZATION USER U1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR U1;

The following code creates an sp_hook_dbmlsync_validate_download_file
hook to implement user-defined validation logic in the remote database:

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file()
BEGIN

DECLARE udata varchar(256);
SELECT value

INTO udata
FROM #hook_dict
WHERE name = ’user data’;

IF udata <> ’ok’ THEN
UPDATE #hook_dict

SET value = ’FALSE’
WHERE name = ’apply file’;

END IF;
END

Create the snapshot
example file-definition
database

A file-definition database is required in MobiLink systems that use
file-based downloads. This database has the same schema as the remote
databases being updated by file-based download, and it contains no data or
state information. The file-definition database is used solely to define the
structure of the data that is to be included in the download file. One
file-definition database can be used for many groups of remote databases,
each defined by its own MobiLink group user name.

The following code defines the file-definition database for this sample. It
creates a schema that is identical to the remote database, and also creates:

♦ a publication called P1 that publishes all rows of the T1 table. The same
publication name must be used in the file-definition database and the
remote databases.

♦ a MobiLink user called G1. This user represents all the remotes that are
to be updated in the file-based download.

♦ a subscription to the publication

You must connect to sfdef.db before running this code.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

129

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER G1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR G1;

Prepare for initial
synchronization

To prepare your new remote database so that you can apply a download file,
you need to either perform a normal synchronization or create the download
file with the dbmlsync -bg option. This example shows you how to initialize
your new remote database by performing a normal synchronization.

You can perform an initial synchronization of the remote database with the
script version called normal that was created earlier:

dbmlsync -c "uid=dba;pwd=sql;eng=sremote_eng;
dbf=sremote.db" -v+ -e "sv=normal"

Demonstrate the
snapshot example
file-based download

Connect to the consolidated database and insert some data that will be
synchronized by file-based download, such as the following:

INSERT INTO T1 VALUES(1, 1);
INSERT INTO T1 VALUES(2, 4);
INSERT INTO T1 VALUES(3, 9);
COMMIT;

The following command must be run on the computer that holds the
file-definition database. It does the following:

♦ the dbmlsync -bc option creates the download file, and names it file1.df.

♦ the -be option includes the string “OK” in the download file that will be
accessible to the sp_dbmlsync_validate_download_file hook.

dbmlsync -c
"uid=dba;pwd=sql;eng=sfdef_eng;dbf= sfdef.db "
-v+ -e "sv=filebased" -bc file1.df -be ok -ot fdef.txt

To apply the download file, run dbmlsync with the -ba option on the remote
database, supplying the name of the download file you want to apply:

dbmlsync -c "uid=dba;pwd=sql;eng=sremote_eng;
dbf= sremote.db " -v+ -ba file1.df -ot remote.txt

The changes are now applied to the remote database. Open Interactive SQL,
connect to the remote database, and run the following SQL command to
verify that the remote has the data:

SELECT * FROM T1

130

Chapter 6. File-Based Downloads

Clean up the snapshot
example

The following commands stop all three database engines and erase the files.

del file1.df
dbmlstop -h -w
dbstop -y -c eng=sfdef_eng
dbstop -y -c eng=scons_eng
dbstop -y -c eng=sremote_eng
dberase -y sfdef.db
dberase -y scons.db
dberase -y sremote.db

Timestamp-based example

This example implements file-based download for timestamp-based
synchronization.

The following commands create the three databases used in the example: a
consolidated database, a remote database, and a file-definition database.

dbinit tcons.db
dbinit tremote.db
dbinit tfdef.db

The following commands start the three databases, create a data source name
for MobiLink to use to connect to the consolidated database, and start the
MobiLink synchronization server.

dbeng9 -n tfdef_eng tfdef.db
dbeng9 -n tcons_eng tcons.db
dbeng9 -n tremote_eng tremote.db
dbdsn -y -w tfbd_demo -c "eng=tcons_eng;dbf=tcons.db;uid=dba;

pwd=sql;astart=off;astop=off"
start dbmlsrv9 -v+ -c "dsn=tfbd_demo" -zu+ -ot tcons.txt

Create the timestamp
example consolidated
database

In this example, the consolidated database has one table, called T1. After
connecting to the consolidated database, you can run the following code to
create T1:

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER,
last_modified TIMESTAMP DEFAULT TIMESTAMP

);

The following code defines a script version called normal with a minimal
number of scripts. This script version is used for synchronizations that do
not use file-based download.

131

CALL ml_add_table_script(’normal’, ’T1’,
’upload_insert’,

’INSERT INTO T1(pk, c1) VALUES(?, ?)’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_update’,
’UPDATE T1 SET c1 = ? WHERE pk = ? ’);

CALL ml_add_table_script(’normal’, ’T1’,
’upload_delete’,

’DELETE FROM T1 WHERE pk = ?’);

CALL ml_add_table_script(’normal’, ’T1’,
’download_cursor’,

’SELECT pk, c1 FROM T1 WHERE last_modified >= ?’);

The following code sets the generation number for all subscriptions to 1. It
is good practice to use generation numbers in case your consolidated
database ever becomes lost or corrupted and you need to force an upload.

CREATE PROCEDURE begin_pub (
INOUT generation_num integer,

IN username varchar(128),
IN pubname varchar(128))

BEGIN
SET generation_num = 1;

END;

CALL ml_add_connection_script(’normal’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

COMMIT;

The following code defines the script version called filebased. This script
version is used to create file-based downloads.

CALL ml_add_connection_script(’filebased’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

CALL ml_add_table_script(’filebased’, ’T1’,
’download_cursor’,

’SELECT pk, c1 FROM T1 WHERE last_modified >= ?’);

The following code sets the last download time so that all changes that
occurred within the last five days will be included in download files. Any
remote that has missed all the download files created in the last five days will
have to perform a normal synchronization before being able to apply any
more file-based downloads.

132

Chapter 6. File-Based Downloads

CREATE PROCEDURE ModifyLastDownloadTimestamp(
INOUT last_download_timestamp TIMESTAMP,
IN ml_username VARCHAR(128))

BEGIN
SELECT dateadd(day, -5, CURRENT TIMESTAMP)
INTO last_download_timestamp;

END;

CALL ml_add_connection_script(’filebased’,
’modify_last_download_timestamp’,

’CALL ModifyLastDownloadTimestamp(?, ?)’);

COMMIT;

Create the timestamp
example remote
database

In this example, the remote database also contains one table, called T1.
After connecting to the remote database, run the following code to create
table T1, a publication called P1, and a user called U1. The code also creates
a subscription for U1 to P1.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER U1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR U1;

The following code defines a sp_hook_dbmlsync_validate_download_file
stored procedure. This stored procedure prevents the application of
download files that do not have the string “ok” embedded in them.

133

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file()
BEGIN

DECLARE udata varchar(256);

SELECT value
INTO udata
FROM #hook_dict
WHERE name = ’user data’;

IF udata <> ’ok’ THEN
UPDATE #hook_dict

SET value = ’FALSE’
WHERE name = ’apply file’;

END IF;
END

Create the timestamp
example file-definition
database

The following code defines the file-definition database for the timestamp
example. It creates a table, a publication, a user, and a subscription for the
user to the publication.

CREATE TABLE T1 (
pk INTEGER PRIMARY KEY,
c1 INTEGER

);

CREATE PUBLICATION P1 (
TABLE T1

);

CREATE SYNCHRONIZATION USER G1;

CREATE SYNCHRONIZATION SUBSCRIPTION
TO P1
FOR G1;

Prepare for initial
synchronization

To prepare your new remote database so that you can apply a download file,
you need to either perform a normal synchronization or create the download
file with the dbmlsync -bg option. This example shows you how to use -bg.

The following code defines a script version called filebased_init for the
consolidated database. This script version has a single begin_publication
script.

CALL ml_add_table_script(
’filebased_init’, ’T1’, ’download_cursor’,

’SELECT pk, c1 FROM T1’);

CALL ml_add_connection_script(
’filebased_init’,
’begin_publication’,

’{ call begin_pub(?, ?, ?) }’);

COMMIT;

134

Chapter 6. File-Based Downloads

The following two command lines create and apply an initial download file
using the script version called filebased_init and the -bg option.

dbmlsync -c "uid=dba;pwd=sql;eng=tfdef_eng;dbf=tfdef.db"
-v+ -e "sv=filebased_init" -bc tfile1.df -be ok -bg
-ot tfdef1.txt

dbmlsync -c "uid=dba;pwd=sql;eng=tremote_eng;dbf=tremote.db"
-v+ -ba tfile1.df -ot tremote.txt

Demonstrate the
timestamp example
file-based download

Connect to the consolidated database and insert some data that will be
synchronized by file-based download, such as the following:

INSERT INTO T1(pk, c1) VALUES(1, 1);
INSERT INTO T1(pk, c1) VALUES(2, 4);
INSERT INTO T1(pk, c1) VALUES(3, 9);
commit;

The following command line creates a download file containing the new
data.

dbmlsync -c
"uid=dba;pwd=sql;eng=tfdef_eng;dbf=tfdef.db"
-v+ -e "sv=filebased" -bc tfile2.df -be ok -ot tfdef2.txt

The following command line applies the download file to the remote
database.

dbmlsync -c "uid=dba;pwd=sql;eng=tremote_eng;dbf=tremote.db"
-v+ -ba tfile2.df -ot tfdef3.txt

The changes are now applied to the remote database. Open Interactive SQL,
connect to the remote database, and run the following SQL command to
verify that the remote has the data:

SELECT * FROM T1

Clean up the timestamp
example

The following commands stop all three database engines and then erase the
files.

del file1.df
dbmlstop -h -w
dbstop -y -c eng=tfdef_eng
dbstop -y -c eng=tcons_eng
dbstop -y -c eng=tremote_eng
dberase -y tfdef.db
dberase -y tcons.db
dberase -y tremote.db

135

CHAPTER 7

Server-Initiated Synchronization

About this chapter Server-initiated synchronization allows you to initiate MobiLink
synchronization from the consolidated database. This means you can push
data updates to remote databases, as well as cause remote databases to
upload data to the consolidated database. This MobiLink component
provides programmable options for determining what changes in the
consolidated database will initiate synchronization, how remotes are chosen
to receive push messages, and how the remotes respond.

This chapter describes how to develop a server-initiated synchronization
application, documents a Software Development Kit that you can use to add
support for new devices, and provides information about several sample
applications.

Contents Topic: page

Introduction 138

Supported platforms 141

Setting up server-initiated synchronization 142

Push requests 143

Set up the Notifier 145

Set up the Listener 154

Listener Software Development Kit 162

Deployment considerations 163

Walkthrough of server-initiated synchronization 164

Sample applications 166

137

Introduction
MobiLink server-initiated synchronization works as follows:

♦ Push requests cause synchronization to occur. A push request takes
the form of some data that you insert into a table, or in some cases data
inserted into a temporary table or even just a SQL result set. You can
create push requests in any way that you cause data to be inserted into a
table. For example, a push request could be created by a database trigger
that is activated when a price changes. Any database application can
create push requests, including the Notifier.

☞ For more information, see“Push requests” on page 143.

♦ The Notifier is a Java program running on the same computer as the
MobiLink synchronization server. It polls the consolidated database on a
regular basis, looking for push requests. You control how often the
Notifier polls the database. You specify business logic that the Notifier
uses to gather push requests, including which remote devices should be
notified. When the Notifier detects a request, it sends the message
associated with the request via SMTP or UDP to a Listener on one or
more remote devices. You have the option to send repeatable messages
with an expiry time.

To set up Notifiers, you edit a properties file. The properties file is a text
file that includes configuration information, including the query that the
Notifier uses when it gathers push requests. A properties file can
configure multiple Notifiers.

To run Notifiers, you use the dbmlsrv9 -notifier option.

☞ For more information, see“Set up the Notifier” on page 145.

♦ The Listener is a program that is installed on each remote device. It
receives messages from the Notifier and initiates action. The action is
most frequently synchronization, but can be other things. You can
configure the Listener to act only on messages from selected sources, or
with specific content.

You can send messages from the Notifier to the Listener on an SMTP
gateway or a UDP gateway. When you use an SMTP gateway, you send
an e-mail message that your carrier converts into SMS before the Listener
receives it. Most carriers provide an e-mail-to-SMS service.

On Windows or Windows CE, the Listener is an executable program
configured by command line options. In order to receive a message, the
remote device must be on and the Listener must be started.

On the Palm OS, you first create a configuration file by running the
Listener program with special command line settings on a Windows

138

Chapter 7. Server-Initiated Synchronization

machine. Then you copy the configuration file to your Palm device.

☞ For more information, see“Set up the Listener” on page 154.

Example For example, a fleet of truck drivers uses mobile databases to determine
routes and delivery points. A driver synchronizes a report of a traffic
disruption. The Notifier detects the change in the consolidated database and
automatically sends a message to the remote device of every driver whose
route is affected, which causes the drivers’ remote databases to synchronize
so that the drivers will use an alternate route.

The notification process In the following illustration, the Notifier polls a consolidated database and
detects a change that it has been configured to look for. In this scenario, the
Notifier sends a message to a single remote device, resulting in the remote
database being updated via synchronization.

4. Initiate
synchronization

Listener

1. Polling

remote
database

Notifier

remote device

server computer

2. Change detected

consolidated
database

5. Synchronization
3. Message

sent

Following are the steps that occur in this example:

1. Using a query based on business logic, the Notifier polls the consolidated
database to detect any change that needs to be synchronized to the
remote.

2. When a change is detected, the Notifier prepares a message to send to the
remote device.

3. The Notifier sends a message over UDP or SMTP. Most

139

telecommunication providers have a service that lets you send SMS
messages by sending e-mails via SMTP to a special address.

4. The Listener checks the contents and sender of the message against a
filter.

5. If the message matches the filter, the Listener runs a program that has
been associated with the filter. For example, the Listener runs dbmlsync
or it launches an UltraLite application.

140

Chapter 7. Server-Initiated Synchronization

Supported platforms
If you use the Notifier on UNIX, the computer must have JRE 1.4.1 or
higher. If you are targeting Palm remotes, you must have at least one
Windows device or laptop to to create a configuration file using the Listener
utility, dblsn.

♦ SMS messages can be transmitted through an SMTP gateway and go
through an e-mail-to-SMS conversion that is provided by wireless
carriers. This has been tested on the following platforms:

• Palm 3.5 and higher on the Treo 180 and the Kyocera 6035

• Pocket PC 2002 with Sierra Wireless AirCard 510, 555, 710, or 750

• Windows 2000 and XP with the Sierra Wireless AirCard 510, 555,
710, or 750

♦ UDP messages have been tested on the following platforms:

• Pocket PC 2002

• Windows 2000 and XP

141

Setting up server-initiated synchronization
To set up server-initiated synchronization, you should perform the following
steps. This assumes that synchronization is already set up.

1. Set up push requests.

See“Push requests” on page 143.

2. Set up the Notifier.

See“Set up the Notifier” on page 145.

3. Set up the Listener.

See“Set up the Listener” on page 154.

142

Chapter 7. Server-Initiated Synchronization

Push requests
The Notifier sends a message to a remote database when it detects a push
request. A push request is a row in a SQL result set that contains the
following columns in the following order. The first five columns are required
and the last two columns are optional.

Column Description

request id INTEGER. A unique ID for a push request.

gateway VARCHAR. The gateway on which to send the message. The
names of gateways are defined in your Notifier properties file.

subject VARCHAR. The subject line of the message.

content VARCHAR. The content of the message.

address VARCHAR. Destination address. The format of the address
is gateway-specific. For example, in an SMTP gateway the
address is an e-mail address.

resend in-
terval

INTEGER. Optional. How often the message should be resent,
in minutes. Useful especially when the network is unreliable or
the remote device may go out of coverage. The Notifier assumes
that all attributes associated with a resendable notification
request do not change: subsequent updates are ignored after
the first poll of the request. The Notifier automatically adjusts
the next polling interval if a resendable notification must be
sent before the next polling time. You can stop a resendable
notification using the request_cursor query or by deleting the
request from the request table. The default is to send exactly
once, with no resend.

time to
live

INTEGER. Optional. The time in minutes until the request
should be deleted. If this value is 0, NULL, or not specified, the
default is to send exactly once, with no resend.

A push request occurs when the Notifier finds a new row in the result set.
The Notifier uses this result set to decide what messages to send to specific
addresses. Each row of the result set represents one push request to send one
message to one address through one gateway.

In a typical implementation, you add a table to your consolidated database
with the columns listed above.

143

Create push requests

There are many ways that you can create push requests. You can use any
method for inserting data. Following is a list of common ways to create push
requests:

♦ Define a database trigger. For example, create a trigger that detects when
a price changes and then inserts push request data into a table of push
requests.

♦ Use a database client application that inserts data into a push request
table directly.

♦ Use the Notifier property begin_poll.

☞ For more information, see begin_poll in“Notifier properties” on
page 147.

♦ Manually insert push request data.

Detect push requests

The Notifier obtains a set of push requests by executing a SQL query that
you provide in the request_cursor property. The query contains your
business logic for determining who gets the message, what the message
contains, and when the message is sent.

☞ For more information about querying the consolidated database, see
request_cursor in“Notifier properties” on page 147.

Delete push requests

You should implement a cleanup system to delete push requests or you may
flood your system. The most straightforward way to do this is to use the
Notifier property request_delete. This property is a SQL statement with a
request ID as a parameter.

☞ For more information about the request_delete property, see“Notifier
properties” on page 147.

144

Chapter 7. Server-Initiated Synchronization

Set up the Notifier
You start Notifiers on the dbmlsrv9 command line. You configure Notifiers
with a Notifier properties file.

Start the Notifier

The Notifier is implemented as a MobiLink startup Java class. It runs as a
thread within the Java VM. The Notifier thread polls the consolidated
database and sends messages according to your business logic.

To start the Notifier, use the dbmlsrv9 option-notifier . Optionally, you can
also specify the name of your Notifier properties file.

Following is a partial dbmlsrv9 command line:

dbmlsrv9 ... -notifier c: \config.notifier

Configure the Notifier

You configure Notifiers using a Notifier properties file. This text file can
have any name. The easiest way to create this file is to alter the template,
%asany%\samples\MobiLink\template.notifier. The properties are described
in the following sections.

You can have several Notifier property files. To identify the properties file
you want to use, specify the name and location when you start dbmlsrv9
with the -notifier option. Following is a partial dbmlsrv9 command line:

dbmlsrv9 ... -notifier "c: \samples \CarDealer.notifier"

If you do not specify a file with the -notifier option, by default the Notifier
looks for a file calledconfig.notifierin your system path. If it doesn’t find
one, the MobiLink synchronization server issues an error and fails to start.

A Notifier properties file can configure and start multiple Notifiers and
multiple gateways. You provide a name for each Notifier and gateway that
you want to define.

Notifier properties must be entered on one line, but you can use the
backslash (\) as a line continuation character. The backslash is also an
escape character.

You can use the following escape sequences in your property settings:

145

Escape se-

quence

Description

\b \u0008: backspace BS

\t \u0009: horizontal tab HT

\n \u000a: linefeed LF

\f \u000c: form feed FF

\r \u000d: carriage return CR

\” \u0022: double quote"

\’ \u0027: single quote’

\\ \u005c: backslash \

\uhhhh Unicode

\xhh \xhh: ASCII escape

\e \u001b: Unicode escape

The properties file contains four sections:

♦ Common properties

♦ Notifier properties

♦ SMTP gateway properties (optional)

♦ UDP gateway properties (optional)

Common properties

There is one common property, verbosity.

verbosity Verbosity affects all Notifiers and gateways in the properties file. You can set
the verbosity to the following levels:

Level Description

0 No trace (the default)

1 Startup, shutdown, and property trace

2 Display notification messages

3 Poll-level trace

For example,

146

Chapter 7. Server-Initiated Synchronization

verbosity=2

Notifier properties

The following properties can be set in the Notifier properties file. The enable
and request_cursor properties are required. All other Notifier properties are
optional.

You can have multiple Notifiers running with one MobiLink server. To set
up additional Notifiers, copy the properties for one Notifier and provide a
different Notifier name and property values.

enable Specify enable=yes to use a Notifier. You can define and use multiple
Notifiers in one file.

For example, a Notifier called NotifierA is enabled with the following line:

Notifier(NotifierA).enable=yes

isolation Isolation is an optional property that controls the isolation level of the
Notifier’s database connection. The default value is 1. You can use the
following values:

Value Isolation level

0 Read uncommitted

1 Read committed (the default)

2 Repeatable read

3 Serializable

For example, the isolation level is set for NotifierA with the following line:

Notifier(NotifierA).isolation=2

connect_string By default, the Notifier uses ianywhere.ml.script.ServerContext to connect
to the consolidated database. This means that it uses the connection string
that was specified in the current dbmlsrv9 session’s command line.

This is an optional property that can be used to override the default
connection behavior. It is a JDBC connection string. You can use it to
connect to any database, including the consolidated database. It may be
useful to connect to another database when you want notification logic and
data to be separate from your synchronization data.

☞ For more information, see“ServerContext interface” on page 248.

For example, a Notifier called Simple is configured to use a DSN with the

147

following line:

Notifier(Simple).connect_string = dsn=SIS_DB \
;uid=user;pwd=myPwd

poll_every This property specifies the polling interval. If no unit is specified, the
interval is in seconds. You can specify S, M, and H for units of seconds,
minutes. and hours. You can also combine units, as in 1H 30M 10S.

If the Notifier loses the database connection, it will recover automatically
after the polling interval.

This property is optional. The default is 30 seconds.

For example, a Notifier called Simple is configured to poll every three hours
with the following line:

Notifier(Simple).poll_every = 3H

gui This controls whether the Notifier dialog is open on the computer where the
Notifier is running. This user interface allows users to temporarily change
the polling interval, or poll immediately. It can also be used to shut down the
Notifier without shutting down the MobiLink synchronization server. (Once
stopped, the Notifier can only be restarted by shutting down and restarting
the MobiLink synchronization server.)

This property is optional. The default is ON.

For example, the Notifier dialog is disabled for a Notifier called Simple with
the following line:

Notifier(Simple).gui=off

begin_connection This is a SQL statement that runs as a separate transaction after the Notifier
connects to the database and before the first poll. For example, this property
can be used to create temporary tables or variables.

If the Notifier loses its connection to the consolidated database, it will
re-execute this transaction immediately after reconnecting.

You should not use this property to change isolation levels. To control
isolation levels, use the isolation property.

For example, begin_connection is defined for a Notifier called Car Dealer
with the following line. The backslash is a line continuation character.

Notifier(Car Dealer).begin_connection = \
set temporary option blocking = ’off’

begin_poll This is a SQL statement that is executed before each poll. Typical uses are to
detect data change in the database and create push requests.

148

Chapter 7. Server-Initiated Synchronization

The statement is executed in a standalone transaction.

This property is optional. The default is NULL.

For example, the following SQL statement inserts rows into a table called
PushRequest. Each row in this table represents a message to send to an
address. The WHERE clause determines what push requests are inserted
into the PushRequest table. The backslash is used as a line continuation
character.

Notifier(NotifierA).begin_poll = \
INSERT INTO PushRequest \
(gateway, mluser, subject, content) \

SELECT ’MyGateway’, DISTINCT mluser, \
’sync’, stream_param \

FROM MLUserExtra, mluser_union, Dealer \
WHERE

MLUserExtra.mluser = mluser_union.name \
AND(push_sync_status = ’waiting for request’ \

OR datediff(hour, last_status_change, \
now()) > 12) \

AND (mluser_union.publication_name is NULL \
OR mluser_union.publication_name = \

’FullSync’) \
AND \

Dealer.last_modified > mluser_union.last_sync_time

shutdown_query This is a SQL statement that is executed right after begin_poll. The result
should contain only the value yes (or 1) or no (or 0). To shut down the
Notifier, specify yes or 1. This statement is executed as a standalone
transaction.

If you are storing the connection state in a table, then you can use the
end_connection property to reset the state before the Notifier disconnects.

For example, shutdown_query is defined for a Notifier called Simple with
the following line. The backslash is a line continuation character.

Notifier(Simple).shutdown_query = \
SELECT COUNT(*) FROM NotifierShutdown \
WHERE name=’Simple’

request_cursor This property determines what information is sent in the message, who
receives the information, when, and where. You must set this property.

This property specifies a SQL statement for the Notifier to collect push
requests from the consolidated database. The result set of this statement
must contain five columns, and can optionally contain two other columns.
These columns can have any name, but must be in the following order in the
result set:

149

♦ request id

♦ gateway

♦ subject

♦ content

♦ address

♦ resend interval

♦ time to live

☞ For more information about these columns, see“Push requests” on
page 143.

You might want to include a WHERE clause in your request_cursor to filter
out requests that have been satisfied. For example, you can add a column to
your push request table to track the time you inserted a request, and then use
a WHERE clause to filter out requests that were inserted prior to the last
time the user synchronized.

The statement is executed in a standalone transaction.

Following is an example of a request_cursor. The backslash is a line
continuation character.

Notifier(Simple).request_cursor = \
SELECT \

PushRequest.req_id, MLUserExtra.gateway, \
PushRequest.subject, \
PushRequest.content, MLUserExtra.address, \
PushRequest.resend_minute, PushRequest.minute_to_live \

FROM PushRequest, mluser_union, MLUserExtra \
WHERE PushRequest.mluser = mluser_union.name \

AND PushRequest.mluser = MLUserExtra.mluser \
AND PushRequest.req_time > mluser_union.last_sync_time

request_delete This is a SQL statement that specifies cleanup operations. The statement
takes the request id as its only parameter. The placeholder for a parameter is
a question mark (?).

Using the delete statement, the Notifier can automatically remove two forms
of old request:

♦ implicitly dropped requests requests that appeared previously, but
disappeared from the current set of requests obtained from the query.

♦ expired requests requests that have expired based on their resend
attributes and the current time. Requests without resend attributes are
considered expired even if they appear in the next request.

150

Chapter 7. Server-Initiated Synchronization

You can write the WHERE clause of request_delete in such a way that
previous requests that have been handled by the Listener will not enter the
next set of requests. For example, the Car Dealer sample uses request time
and last synchronization time. This not only stops further messages for the
same request, but also allows the Notifier to delete the implicitly dropped
request.

This property is optional if you have provided another process to do the
cleanup.

The statement is executed per request ID in a standalone transaction.

For example, the Notifier called Simple is configured to substitute a req_id
previously obtained from request_cursor for the question mark (?):

Notifier(Simple).request_delete = \
DELETE FROM PushRequest WHERE req_id = ?

end_poll This is a SQL statement that is executed after each poll. Typical uses are to
perform customized cleanup or track polling.

The statement is executed in a standalone transaction.

This property is optional. The default is NULL.

For example,

Notifier(Simple).end_poll = call reportAliveRequests()

end_connection This is a SQL statement that runs as a separate transaction just before a
Notifier database connection is closed. For example, this property can be
used to delete temporary storage such as SQL variables and temporary
tables.

The statement is executed in a standalone transaction.

For example, end_connection is defined for the Simple Notifier with the
following line. The backslash is a line continuation character.

Notifier(Simple).end_connection = \
DELETE FROM NotifierShutdown WHERE name = ’Simple’

SMTP gateway properties

SMTP gateway configuration is required only if you are using an SMTP
gateway.

SMTP gateways can be used to send e-mail messages. They can also send
SMS messages to SMS listeners via a wireless carrier’s e-mail-to-SMS
service.

151

The following properties can be set in the Notifier properties file. The enable
and server properties are required. The user and password properties may be
required, depending on your SMTP server setup. All other SMTP gateway
properties are optional.

You can have multiple SMTP gateways. To set up additional SMTP
gateways, copy the properties for one gateway and provide a different
gateway name and property values.

enable Specify enable=yes to use an SMTP gateway. You can define and use
multiple SMTP gateways in one file.

For example, an SMTP gateway called Gate2 is enabled with the following
line:

SMTP(Gate2).enable = yes

server This is the IP address of the SMTP server for sending the message to the
Listener.

For example,

SMTP(Gate2).server = mail.mycorp.com

user This is the user name for your SMTP service. Your SMTP service may not
require a user name.

For example,

SMTP(Gate2).user = smtp_username

password This is the password for your SMTP service. Your SMTP service may not
require a password.

For example,

SMTP(Gate2).password = smtp_password

sender This is the sender address of the e-mails (SMTP requests).

The sender may or may not be available as an action variable to the Listener.

For example,

SMTP(Gate2).sender = SimpleNotifier@mycorp.com

UDP gateway properties

UDP gateway configuration is required only if you are using a UDP gateway.

UDP is useful for development and for applications over wireless LANs.

152

Chapter 7. Server-Initiated Synchronization

The format of the UDP message is [subject] contentwheresubjectand
contentcome from the subject and content columns of the request_cursor
Notifier property.

The following properties can be set in the Notifier properties file. The enable
property is required. All other UDP gateway properties are optional.

You can have multiple UDP gateways. To set up additional UDP gateways,
copy the properties for one gateway and provide a different gateway name
and property values.

enable Specify enable=yes to use a UDP gateway. You can define and use multiple
UDP gateways in one file.

For example, a UDP gateway called Gate3 is enabled with the following line:

UDP(Gate3).enable = yes

sender This is the IP address of the sender. This property is optional, and is only
required for multi-homed hosts. The default is localhost.

For example,

UDP(Gate3).sender = \
my_server_on_an_alternate_network_card.mycorp.com

sender_port This is the port to use for sending the UDP packet. This property is optional;
you may need to set it if your firewall restricts outgoing traffic. If not set,
your operating system will assign a free port.

For example,

UDP(Gate3).sender_port = 1234

listener_port This is the port on the remote device where the gateway sends the UDP
packet. This property is optional. The default is the default listening port of
the supplied UDP Listener (5001).

For example,

UDP(Gate3).listener_port = 4321

153

Set up the Listener
The Listener runs on remote devices. It receives messages from the Notifier
and processes them into actions. For example,

dblsn -l message=[FullSync]Host=myML.com;action=run dbmlsync.exe
...

The message that you supply acts as a filter. In this example, the Listener
will only start dbmlsync if it receives a message with the subject “FullSync”
and contents “Host=myML.com”. This message corresponds to the third and
fourth columns in the result set created by the Notifier property
request_cursor.

A convenient way to configure the Listener is to store the command line
options in a text file and access it with the @ symbol. For example, store the
settings inmydblsn.txtand start the Listener by typing

dblsn @mydblsn.txt

The Listener utility

Configures and starts the Listener on Windows devices, including Windows
CE.

Syntax dblsn [options] -l message-handler [-l message-handler . . .]

message-handler : [filter ;. . .];action

filter :
[message = string | message_start = string]
[sender = string]

action :
action = command [;altaction = command]

[;continue = { yes | no }]
[;maydial = { yes | no }]

command :
{ start program [program-arguments]

| run program [program-arguments]
| post window-message to window-class
| tcpip-socket-action
| DBLSN FULL SHUTDOWN }

154

Chapter 7. Server-Initiated Synchronization

tcpip-socket-action :
socket port= app-port

[;host= app-host]
[;sendText= text1]
[;recvText= text2 [;timeout= num-sec]]

Parameters Options The following options can be used to configure the Listener. If
you are creating a configuration file for a Palm device, you must use -n. The
rest are optional.

dblsn options Description

-a option Specifies Listener dll options. To specify multiple options,
repeat -a. For example, -a port=2439 -a ShowSenderPort.
To see options for your dll, type:

dblsn -dfilename.dll-a ?

The default dll is lsn_udp.dll.

-d filename Specifies the Listener dll that you want to use. On Windows
you can specifylsn_swi510.dll. The default islsn_udp.dll.

-i seconds Sets the polling interval in seconds. This is the frequency at
which the Listener listens for messages. The default is 30
seconds.

-m Turns on message logging. The default is off.

-n [filename] Creates a Palm Listener configuration file. If you use -n,
dblsn generates the file and then shuts down. When you use
-n, options such as -a, -d, -i, -m, and -p are ignored. If you
use -n but omit thefilename, the Palm configuration file is
calledlsncfg.pdb.

-o filename Logs output messages to a file.

-osbytes Specifies a maximum size for the log file in bytes. The
minimum size is 10 000. By default, there is no limit.

-ot filename Logs output messages to file, but first truncates the file.

-p Allows automatic idle power-off. This option has an effect
only on CE devices. Use it to allow the device to shut down
when idle. By default, the Listener prevents the device from
shutting itself down.

-q Runs in a minimized window.

-r bytes Specifies the minimum number of bytes per record in the
Palm Listener configuration file. The default is 1 000.

155

dblsn options Description

-v [level] Sets the verbosity level for the dblsn log and console. The
level can be0, 1, 2, or 3:

♦ 0 - show no informational messages (the default).

♦ 1 - show Listener dll messages and basic action tracing
steps.

♦ 2 - show level 1 plus detailed action tracing steps.

♦ 3 - show level 2 plus polling and listening states.

-l message-handler -l allows you to specify a message handler, which is a
filter-action pair. The filter determines which message should be handled,
and the action is invoked when the filter matches a message. You can specify
multiple instances of -l. Each instance of -l specifies a different message
handler.

Filters You specify a filter to compare to an incoming message. If the filter
matches, the action you specify is invoked.

There are three types of filter you can specify:

♦ message compares the entire message to text you specify. To match,
this filter must also be the exact same length as the message.

The Listener translates non-printable characters to a tilde (~), so if there
are non-printable characters, the pattern to match must also use tildes.

The format of messages is carrier-dependent. For example, you may want
to match a message from a sender named Bob@mail.com with the
subject Help and the message Me. In UDP, this would appear as
[Help]Me . On Bell Mobility’s e-mail to SMS conversion service, it
would beBob@mail.com[Help]Me . On Fido’s e-mail to SMS
conversion service, it would be sent asBob@mail.com\n(Help)\nMe ,
but would be translated by the Listener toBob@mail.com~(Help)~Me .
You must test with your carrier to determine the appropriate format, using
the dblsn options -v and -m.

♦ message_start compares a portion of the message (from the
beginning) to text that you specify. When you specify message_start, the
Listener creates the action variables $message_start and $message_end.
For more information, see Action variables, below.

The Listener translates non-printable characters to a tilde (~) so if there
are non-printable characters, the pattern match must also use tildes.

156

Chapter 7. Server-Initiated Synchronization

♦ sender is the sender of the message. You can only specify one sender.
For UDP gateways, the sender is the IP address of the host of the
gateway. For SMTP gateways, the sender is optionally specified with the
sender SMTP property.

The filter is optional. If you do not specify a filter, the action is performed
when any message is received.

Action and altaction Each filter is associated with an action and,
optionally, an alternative action called the altaction. If a message meets the
conditions of the filter, the action is invoked. You must specify an action. If
you specify an altaction, the altaction is invoked only if the action fails.
Palm devices do not recognize altaction.

The action and altaction are specified as {action | altaction } = command.
For each action and altaction, there can be one command, and it can be one
of start, run , post, socket, or DBLSN FULL SHUTDOWN .

♦ start spawns a process. When you start a program, the Listener
continues listening for more messages.

The following example starts dbmlsync with some command line
options, parts of which are obtained from the message.

"action=start dbmlsync.exe @dbmlsync.txt -n
$message_end -wc dbmlsync_$message_end -e sch=INFINITE"

♦ run runs the program and waits for it to finish. The Listener resumes
listening after the process is complete. You cannot use run on Palm
devices.

The following example runs dbmlsync with some command line options,
parts of which are obtained from the message.

"action=run dbmlsync.exe @dbmlsync.txt -n $message_end"

♦ post posts a message to a window class. This is required by dbmlsync
when scheduling is on. Use the dbmlsync -wc option to specify the
window class name. Post is also used when signaling applications that
use Windows messages. You cannot use post on Palm devices.

The following example posts a Windows message registered as
dbas_synchronize to a dbmlsync instance registered with the class name
dbmlsync_FullSync.

action=post dbas_synchronize to dmblsync_FullSync

♦ socket notifies an application by making a TCP/IP connection. This is
especially useful for Java and eMbedded Visual Basic applications,
because Java and eVB don’t support custom window messaging, and

157

eVB doesn’t support command line parameters. You can connect to a
local socket by specifying just a port, or you can connect to a remote
socket by specifying the host along with the port. Using sendText, you
can send a string. You can optionally verify that the response is as
expected with recvText. When you use recvText, you can also specify a
timeout to avoid hanging if the case of application or network problems.

The following example forwards the string in $sender=$message to a
local application that is listening on port 12345, and expects the
application to send back “beeperAck” as an acknowledgement.

-l "action=’socket
port=12345;
sendText=$sender=$message;
recvText=beeperAck;
timeout=5’"

♦ DBLSN FULL SHUTDOWN After shutdown, the Listener stops
handling inbound messages. The remote user must restart the Listener in
order to continue with server-initiated synchronization. This feature is
mostly useful during development.

For example,action=’DBLSN FULL SHUTDOWN’

You can also specify the following action options:

♦ continue {yes|no} specifies whether the Listener should continue after
finding the first match. This is useful when you specify multiple -l
clauses to cause one message to initiate multiple actions. This option is
not recognized by Palm devices. The default is no.

♦ maydial {yes|no} specifies whether the action can dial the modem.
This provides information to the Listener to decide whether to release the
modem or not before the action. This option is useful when the action or
altaction need exclusive access to the modem used by the Listener. This
option is not recognized by Palm devices. The default is yes.

The escape character for action and altaction is a dollar sign ($), so to
specify a single dollar sign as plain text, type $$.

The Listener determines that an action has failed (and then invokes the
altaction) in the following ways:

♦ When yourun a program, the Listener determines that the program has
failed if the program doesn’t exist or if it returns a non-zero return code.

♦ When youstart a program, the Listener doesn’t wait for a return code, so
it can only tell that the action has failed if the program does not exist.

158

Chapter 7. Server-Initiated Synchronization

♦ When youpost to a window class, the Listener determines that the action
has failed if no window class has been registered with the given name or
the operating system has reported that the post failed.

♦ When you perform asocketaction, the Listener determines that the
action has failed if it failed to connect, send, or receive expected
acknowledgement before timeout.

You can only specify one action and one altaction in each instance of -l. You
can also write a cover program or batch file that contains multiple actions,
and run it as the action.

Following is an example of the specification of altaction. In this example,
the $message_end that matches the filter is the stream parameter for
connecting to MobiLink. The primary action is to post the dbas_synchronize
Windows message to the dbmlsync_FullSync window. The example uses
altaction to start (not run) dbmlsync with the window class name
dbmlsync_FullSync if the primary action fails. This is the standard way to
make the Listener work with dbmlsync scheduling.

-l "message_start=[sync];
action=’post dbas_synchronize to dbmlsync_FullSync’;
altaction=’start dbmlsync.exe

@dbmlsync.txt
-wc dbmlsync_FullSync
-e adr=$message_end;sch=INFINITE’"

Action variables The following Listener action variables can be used anywhere in the action
or altaction.

An action variable is replaced just before the action or altaction is performed.

Listener action variables start with a dollar sign ($). The escape character is
also a dollar sign, so to specify a dollar sign as plain text, type $$. For
example, type $$message_start when you don’t want $message_start to be
substituted.

Action variable Description

$sender The sender of the message.

$message_start A portion of the text of the message from the beginning,
as specified in -l message_start. This variable is only
available if you have specified -l message_start.

$message The content of the message.

$message_end The part of the message that is left over after the part
specified in -l message_start is removed. This variable is
only available if you have specified -l message_start.

159

Action variable Description

$year The meaning of this variable is carrier library dependent.
Not available on Palm.

$month The meaning of this variable is carrier library dependent.
Values can be from 1-12. Not available on Palm.

$day The meaning of this variable is carrier library dependent.
Values can be from 1-31. Not available on Palm.

$hour The meaning of this variable is carrier library dependent.
Values can be from 0-23. Not available on Palm.

$minute The meaning of this variable is carrier library dependent.
Values can be from 0-59. Not available on Palm.

$second The meaning of this variable is carrier library dependent.
Values can be from 0-59. Not available on Palm.

$type The meaning of this variable is carrier library dependent.
Not available on Palm.

$priority The meaning of this variable is carrier library dependent.
Not available on Palm.

$time Palm only. This is the current time in seconds since 12:00
AM, January 1, 1904.

Default parameters file dblsn.txt

You can also create a file called dblsn.txt and specify arguments for dblsn in
it. If you type dblsn without any arguments, dblsn will use dblsn.txt as the
default argument file. This feature is particularly useful for CE devices.

On CE devices, dblsn.txt must be in the root directory. On Windows PCs,
dblsn must be in the system path.

Palm devices

If you are using Palm remote devices, you must run the Listener utility
(dblsn) on a Windows device to create a configuration file for the Palm. Use
the dblsn -n option to create the configuration file. The configuration file
must later be transferred to the Palm device via HotSync.

Once you have a configuration file on your Palm, you can use thePalm
Listener utility to edit the message handlers in the configuration file. If you
create a new configuration file, it will overwrite the old one.

160

Chapter 7. Server-Initiated Synchronization

The Palm Listener also allows you to set three semi-persistent options:

♦ Listening A way to stop the Listener from consuming messages. For
example, if you turn off listening on a Treo 180, all messages will go into
your default SMS message box on the device.

♦ Enable Actions This is applicable only when Listening is on.

♦ Confirm Actions This is applicable only when actions are enabled.

There is a separate Palm Listener for the two supported devices:

♦ For Kyocera 6035, uselsnk6035.prc

♦ For Treo 180, uselsnT180.prc

Notes ♦ When running the Listener on Windows to generate a configuration file
for the Palm, you must specify an action. However, on the Palm device
you can delete the action using the Handler Editor in the Palm Listener.
This way you can consume the message without causing an action.

♦ The device need not be on if it turns on automatically when an SMS
message is received. Kyocera and Treo devices do not need to be on for
the Listener to work. The battery requirements of these devices are
smaller.

161

Listener Software Development Kit
If you want to use remote devices that are not currently supported by
MobiLink server-initiated synchronization, you can use the Listener
Software Development Kit to create Listeners for those devices. The
Listener SDK is a simple program API that is provided to help you extend
the Listener utility.

You can use the Listener SDK to create Listeners for new Palm devices, or
for new wireless network adapters for CE or laptops. The SDK provides
development material for both Windows (32-bit and CE) and Palm operating
systems.

The MobiLink Listener SDK and sample implementations are located in the
following files. All are located in theMobiLink\ListenerSDKdirectory in
your installation path.

Windows Files Description

\Win32andCE\Win32_-
VC\lsn.def

Visual C++ module definition for the Listener
library.

\Win32andCE\CE_EVC\lsn.-
def

Embedded Visual C module definition for
the Listener library.

\Win32andCE\src\lsn.h Win32 and CE Listener library API.

\Win32andCE\src\swi510.c Sierra Wireless AirCard 510 implementation.

Win32andCE\src\udp.c UDP implementation.

Palm Files Description

\Palm\68k\cw\lib\PalmLsn.-
lib

Runtime library for Palm Listeners. This pro-
vides a message handling routine, Listener
controls, and a handler editor.

\Palm\68k\cw\rsc\. . . Contains UI resources for the Palm Listener.

\Palm\src\PalmLsn.h Runtime library header and Palm Listener
API.

\Palm\src\Kyocera6035.c Kyocera 6035 implementation.

\Palm\src\Treo180.c Treo180 implementation.

162

Chapter 7. Server-Initiated Synchronization

Deployment considerations
Following are some issues that you should consider before deploying
server-initated synchronization applications.

Limitations of UDP
Listeners

♦ The UDP Listener keeps a socket open for listening, and so must be
connected to an IP network all the time.

♦ The Listener does not detect lost connections and cannot re-open the
listening socket.

♦ If you use dynamic IP addresses on the remote, you may have trouble
updating the address on the server. MobiLink does not provide IP
tracking. You may be able to use a third-party solution.

♦ The IP address on the remote needs to be reachable from the MobiLink
synchronization server.

Limitations of Listeners
on CE or PCs

♦ The Listener requires that the operating system is running, which could
result in battery drain. Make sure that you have enough power for your
usage pattern.

Delivery not guaranteed ♦ Both SMS and UDP delivery are not guaranteed, so you should
implement a feedback loop if guaranteed delivery is essential. For
example, you can use the MobiLink last_upload_time and
last_download_time values to verify the delivery status of push requests.

163

Walkthrough of server-initiated synchronization
This section describes a hypothetical set of operations. It illustrates how
server-initiated synchronization helps remote and consolidated databases
stay in sync.

The walkthrough describes a situation with two remote databases (A and B).
The following configuration parameters are set at the consolidated database:

♦ the Notifier polling interval is 2 minutes

♦ each push request has a resend interval of 5 minutes

♦ each push request has a time-to-live period of 6 minutes

The walkthrough starts just before noon on a business day. Initially, the
remote databases A and B are both fully synchronized with the consolidated
database. Here is a possible sequence of events.

1. On Remote A the Listener is on, but on Remote B the Listener is off.

2. Data is changed on the consolidated database.

3. The Notifier polls at 12:00:
♦ The begin_poll statement is executed, and inserts push requests for A

and B into the PushRequest table.

♦ The request_cursor SELECT statement is executed to query the
PushRequest table.

♦ The Notifier sends messages to both remotes.

4. The Listener on Remote A picks up the message and invokes
synchronization.

The synchronization resets the status of the push request and updates the
last_sync_time for Remote A.

5. Being offline, Remote B does not receive the message and is not
synchronized.

6. The next Notifier poll is two minutes later, at 12:02:
♦ The begin_poll statement is executed. This won’t insert a request for

Remote A because its last_sync_time is greater than the last_modified
time of the Dealer data. This won’t insert a request for Remote B
because the request has already been sent.

♦ The request_cursor statement is executed to query the PushRequest
table. The handled request for Remote A is not in the result set because
the last_sync_time is greater than the req_time (but it is still in the
PushRequest table). The request for Remote B remains in the result set.

164

Chapter 7. Server-Initiated Synchronization

♦ The request_delete statement is executed. This performs automatic
cleanup of the request for Remote A because it is implicitly dropped.

♦ The Notifier does not send a message to Remote B because the resend
time is 12:05. The request for Remote B is pending for resend.

7. The next Notifier poll is at 12:04:

♦ The begin_poll statement is executed. This won’t insert a request for
Remote A because its last_sync_time is greater than the last_modified
time of the Dealer data. This won’t insert a request for Remote B
because the request has already been inserted.

♦ The request_cursor statement is executed to query the Request table.
The request for Remote B remains in the result set.

♦ The Notifier does not send a message to Remote B because the resend
time is 12:05. The request for Remote B is pending for resend.

8. The next Notifier poll is at 12:05:

♦ The begin_poll statement is executed. This won’t insert a request for
Remote A because its last_sync_time is greater than the last_modified
time of the Dealer data. This won’t insert a request for Remote B
because the request has already been inserted.

♦ The request_cursor statement is executed to query the Request table.
The request for Remote B remains in the result set.

♦ The Notifier sends the message to Remote B again.

9. The next Notifier poll is at 12:07:

♦ The begin_poll statement is executed. This won’t insert a request for
Remote A because its last_sync_time is greater than the last_modified
time of the Dealer data. This won’t insert a request for Remote B
because the request has already been inserted.

♦ The request_cursor statement is executed to query the Request table.
The request for Remote B remains in the result set.

♦ The request_delete statement is executed. This performs automatic
cleanup of the request for Remote B because it has exceeded its time to
live.

♦ There are no pending requests.

10. The next Notifier poll is at 12:09. . .

165

Sample applications
Several sample implementations of server-initiated synchronization are
included in the SQL Anywhere Studio install. They are fully documented in
readmes and code comments.

To locate the sample applications, navigate to theSamples\MobiLink
directory in your SQL Anywhere Studio install path. All server-initiated
synchronization sample directories start with the prefix SIS_.

166

CHAPTER 8

Adaptive Server Anywhere Clients

About this chapter This chapter describes how to use Adaptive Server Anywhere databases as
MobiLink clients.

☞ For a tutorial to walk you through some of the concepts in this chapter,
see“Tutorial: Synchronizing Adaptive Server Anywhere Databases” on
page 369.

Contents Topic: page

Creating a remote database 168

Publishing data 171

Creating MobiLink users 178

Subscribing MobiLink synchronization users 182

Initiating synchronization 185

Using ActiveSync synchronization 189

Temporarily stopping synchronization of deletes 193

Customizing the client synchronization process 194

Scheduling synchronization 198

Adaptive Server Anywhere version 7 MobiLink clients 200

167

Creating a remote database
Any Adaptive Server Anywhere database can be converted for use as a
remote database in a MobiLink installation. All you need to do is create a
publication, create a MobiLink user, and subscribe the MobiLink user to the
publication.

❖ To create an Adaptive Server Anywhere remote database

1. Start with an existing Adaptive Server Anywhere database, or create a
new one and add your tables.

2. Create one or more publications in the new database.

☞ See“Publishing data” on page 171.

3. Create a MobiLink user.

☞ See“Creating MobiLink users” on page 178.

4. Subscribe a MobiLink user to one or more of the publications.

☞ See“Subscribing MobiLink synchronization users” on page 182.

Deploying remote databases

To deploy Adaptive Server Anywhere remote databases, you need to create
the databases and add the appropriate publications and subscriptions. To do
this, you customize a prototype remote database.

❖ To deploy MobiLink remote databases by customizing a proto-
type

1. Create a prototype remote database.

The prototype database should have all the tables and publications
needed, but not the information that is specific to each database. This
individual information typically includes the following:

♦ The MobiLink user name.

♦ Synchronization subscriptions.

♦ The GLOBAL_DATABASE_ID option that provides the starting point
for global autoincrement key values.

2. For each remote database, carry out the following operations:
♦ Create a directory to hold the remote database.

♦ Copy the prototype remote database into the directory.
If the transaction log is held in the same directory as the remote
database, the log filename does not need to be changed.

168

Chapter 8. Adaptive Server Anywhere Clients

♦ Run a SQL script that adds the individual information to the database.

The SQL script can be a parameterized script. For information on
parameterized scripts, see “PARAMETERS statement [Interactive
SQL]” [ASA SQL Reference,page 506], and “Running SQL command
files” [ASA SQL User’s Guide,page 553].

Example The following SQL script is taken from the Contact sample. It can be found
in Samples\MobiLnk\Contact\customize.sql.

PARAMETERS ml_userid, db_id;
go
SET OPTION PUBLIC.GLOBAL_DATABASE_ID = {db_id}
go

CREATE SYNCHRONIZATION USER {ml_userid}
TYPE ’TCPIP’
ADDRESS ’host=localhost;port=2439’
OPTION MEM=’’

go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Product"

FOR {ml_userid}
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Contact"

FOR {ml_userid}
go
commit work
go

The following command line executes the script for a remote database with
data sourcedsn_remote_1.

dbisql -c "dsn=dsn_remote_1" read customize.sql [SSinger] [2]

Partitioning data between remote databases

It is common for remote databases to fall into separate categories, each with
their own requirements. Consider a sales application. All the sales personnel
in one region may require access to a particular set of data, but not require
access to information about regions other than their own. Employees in
other departments may require data of an entirely different nature. Managers
may require data that should not be accessible to their subordinates.

Publications are typically used to specify fundamentally different sets of
data. For example, you can create one publication for the sales staff and
another publication for those employees who do technical support.

You can further fine-tune the data any given remote database will receive by
using a WHERE clause within the publication. This feature is useful when
remote databases require similar types of information. For example, it can

169

be used to provide sales representatives with only the information relevant to
their region.

☞ For more information, see“Partitioning rows among remote databases”
on page 77.

Upgrading remote databases

If you install a new Adaptive Server Anywhere remote database over an
older version, the synchronization progress information in the consolidated
database is incorrect.

You can correct this problem by setting the progress column of the ml_user
table to 0 (zero) for this user. This is an exceptional case when direct
modification of the MobiLink system tables is required. In other cases, you
should not directly access the MobiLink system tables.

☞ For more information, see “Upgrading Adaptive Server Anywhere
MobiLink clients” [What’s New in SQL Anywhere Studio,page 185].

170

Chapter 8. Adaptive Server Anywhere Clients

Publishing data
A publication is a database object that identifies the data that is to be
synchronized. A publication consists of articles, which are subsets of a
table’s columns, rows, or both. Each publication can contain one or more
entire tables, or partial tables consisting of selected rows and columns. In a
single publication, no table can be included in more than one article.

You create publications using Sybase Central or with the CREATE
PUBLICATION statement.

In Sybase Central, all publications and articles appear in the Publications
folder.

Notes about publications ♦ DBA authority is required to create and drop publications.

♦ A single publication can publish a subset of columns from a set of tables
and use a WHERE clause to select a set of rows to be replicated.

♦ Views and stored procedures cannot be included in publications.

♦ Publications and subscriptions are also used by the Sybase
message-based replication technology, SQL Remote. SQL Remote
requires publications and subscriptions in both the consolidated and
remote databases. In contrast, MobiLink publications appear only in
Adaptive Server Anywhere remote databases. MobiLink consolidated
databases are configured using synchronization scripts.

Publishing whole tables

The simplest publication you can make consists of a single article, which
consists of all rows and columns of one or more tables. These tables must
already exist.

❖ To publish one or more entire tables (Sybase Central)

1. Connect to the remote database as a user with DBA authority, using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. From the File menu, choose New➤ Publication. The Create a New
Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables.
Click Add. The table appears in the list of Selected Tables on the right.

171

6. Optionally, you may add additional tables. The order of the tables is not
important.

7. Click Finish.

❖ To publish one or more entire tables (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of
the new publication and the table you want to publish.

Example The following statement creates a publication that publishes the whole
customer table:

CREATE PUBLICATION pub_customer (
TABLE customer

)

The following statement creates a publication including all columns and
rows in each of a set of tables from the Adaptive Server Anywhere sample
database:

CREATE PUBLICATION sales (
TABLE customer,
TABLE sales_order,
TABLE sales_order_items,
TABLE product

)

☞ For more information, see the “CREATE PUBLICATION statement”
[ASA SQL Reference,page 334].

Publishing only some columns in a table

You can create a publication that contains all the rows but only some of the
columns of a table from Sybase Central or by listing the columns in the
CREATE PUBLICATION statement.

Note If you create two publications that include the same table with different
column subsets, then any user who subscribes to both publications will be
unable to synchronize.

172

Chapter 8. Adaptive Server Anywhere Clients

❖ To publish only some columns in a table (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. From the File menu, choose New➤ Publication. The Create a New
Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables. Click
Add. The table is added to the list of Selected Tables on the right.

6. On the Columns tab, double-click the table’s icon to expand the list of
Available Columns. Select each column you want to publish and
click Add. The selected columns appear on the right.

7. Click Finish.

❖ To publish only some columns in a table (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the
publication name and the table name. List the published columns in
parenthesis following the table name.

Example The following statement creates a publication that publishes all rows of the
id, company_name, and city columns of the customer table:

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name,

city)
)

☞ For more information, see the “CREATE PUBLICATION statement”
[ASA SQL Reference,page 334].

Publishing only some rows in a table

You can create a publication that contains some or all the columns in a table,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

Sybase Central and the SQL language each provide two ways of publishing
only some of the rows in a table; however, only one way is compatible with
MobiLink.

173

♦ WHERE clause Compatible with MobiLink. You can use a WHERE
clause to include a subset of rows in an article.

♦ Subscription expression Ignored by MobiLink.

In MobiLink, you can use the WHERE clause to exclude the same set of
rows from all subscriptions to a publication. All subscribers to the
publication upload any changes to the rows that satisfy the search condition.

❖ To create a publication using a WHERE clause (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. From the File menu, choose New➤ Publication. The Create a New
Publication wizard appears.

4. Type a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables. Click
Add. The table is added to the list of Selected Tables on the right.

6. On the WHERE Clauses tab, select the table and type the search
condition in the lower box. Optionally, you can use the Insert dialog to
assist you in formatting the search condition.

7. Click Finish.

❖ To create a publication using a WHERE clause (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes the tables
you wish to include in the publication and a WHERE condition.

Examples The following statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, for the
customers marked as active in the status column.

CREATE PUBLICATION pub_customer (
TABLE customer (

id,
company_name,
city,
state)

WHERE status = ’active’
)

174

Chapter 8. Adaptive Server Anywhere Clients

In this case, the status column itself is not published. All unpublished rows
must have a default value. Otherwise, an error occurs when rows are
downloaded for insert from the consolidated database.

The following example creates a single-article publication that includes
order information for sales rep number 856.

CREATE PUBLICATION pub_orders_samuel_singer (
TABLE sales_order WHERE sales_rep = 856

)

☞ For more information, see the “CREATE PUBLICATION statement”
[ASA SQL Reference,page 334]. Note that the CREATE PUBLICATION
statement includes a SUBSCRIBE BY clause. This clause can be used to
selectively publish rows in SQL Remote. However, it is ignored during
MobiLink synchronization.

Altering existing publications

After you have created a publication, you can alter it by adding, modifying,
or deleting articles, or by renaming the publication. If an article is modified,
the entire specification of the modified article must be entered.

You can perform these tasks using Sybase Central or with the ALTER
PUBLICATION statement.

Notes ♦ Publications can be altered only by the DBA or the publication’s owner.

♦ Be careful. In a running MobiLink setup, altering publications may cause
errors and can lead to loss of data.

❖ To modify the properties of existing publications or articles
(Sybase Central)

1. Connect to the remote database as a user who owns the publication or as
a user with DBA authority.

2. In the left pane, click the publication or article. The properties will
appear in the right pane.

3. Configure the desired properties.

175

❖ To add articles (Sybase Central)

1. Connect to the remote database as a user who owns the publication or as
a user with DBA authority using the Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. Select a publication.

4. From the File menu, choose New➤ Article. The Create a New Article
wizard appears.

5. In the Article Creation wizard, do the following:

♦ On the first page, select a table.

♦ On the next page, select the number of columns.

♦ On the final page, enter a WHERE clause (if desired).

6. Click Finish to create the article.

❖ To remove articles (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user
with DBA authority using the Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. Click the publication.

4. In the right pane, right-click the article you want to delete and choose
Delete from the popup menu.

❖ To modify an existing publication (SQL)

1. Connect to the remote database as a user who owns the publication or as
a user with DBA authority.

2. Connect to a database with DBA authority.

3. Execute an ALTER PUBLICATION statement.

Example ♦ The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact (
ADD TABLE customer

)

176

Chapter 8. Adaptive Server Anywhere Clients

☞ See also the “ALTER PUBLICATION statement”[ASA SQL Reference,
page 238].

Dropping publications

You can drop a publication using either Sybase Central or the DROP
PUBLICATION statement. Before dropping the publication, you must drop
all subscriptions connected to it.

You must have DBA authority to drop a publication.

❖ To delete a publication (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the
Adaptive Server Anywhere plug-in.

2. Open the Publications folder.

3. Right-click the desired publications and choose Delete from the popup
menu.

❖ To delete a publication (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

Example The following statement drops the publication named pub_orders.

DROP PUBLICATION pub_orders

☞ See also the “DROP PUBLICATION statement”[ASA SQL Reference,
page 413].

177

Creating MobiLink users
A MobiLink user name uniquely identifies a remote database. It is used to
identify, and optionally authenticate, clients attempting to connect to the
MobiLink synchronization server.

MobiLink users are not the same as database users. You can create a
MobiLink user ID that matches the name of a database user, but neither
MobiLink nor Adaptive Server Anywhere is affected by this coincidence.

☞ For information about adding MobiLink users to the consolidated
database, see“About MobiLink users” on page 104.

Adding MobiLink users to a remote database

This section describes how to add a MobiLink user name to a remote
database. For information on supplying MobiLink user properties, including
the password, see“Configuring MobiLink user properties” on page 179.

❖ To add a MobiLink user to a remote database (Sybase Central)

1. Connect to the database from the Adaptive Server Anywhere plug-in as a
user with DBA authority.

2. Click the MobiLink Users folder.

3. From the File menu, choose New➤ MobiLink User. The Create a New
MobiLink User wizard appears.

4. Enter a name for the MobiLink user. This name is supplied to the
MobiLink synchronization server during synchronization.

5. Click Finish.

❖ To add a MobiLink user to a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE SYNCHRONIZATION USER statement.

The following example adds a MobiLink user named SSinger:

CREATE SYNCHRONIZATION USER SSinger

You can specify properties for the MobiLink user as part of the CREATE
SYNCHRONIZATION USER statement, or you can specify them
separately with an ALTER SYNCHRONIZATION USER statement.

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 351].

178

Chapter 8. Adaptive Server Anywhere Clients

Configuring MobiLink user properties

You can specify the following properties for each MobiLink user in a remote
database:

♦ Connection properties This information includes the address for the
MobiLink synchronization server, the protocol to use for communications
with the server, and other connection parameters.

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 351].

♦ Extended options Extended options include the password (although it
is more secure to supply a password at synchronization time, and use it
on the dbmlsync command line), the script version, as well as options
that tune performance and behavior.

☞ For more information, see “-e extended options”[MobiLink
Synchronization Reference,page 44].

❖ To configure MobiLink user properties (Sybase Central)

1. Connect to the database from the Adaptive Server Anywhere plug-in as a
user with DBA authority.

2. Open the MobiLink Users folder.

3. Right-click the MobiLink user name and choose Properties from the
pop-up menu.

4. Change the properties as needed.

❖ To configure MobiLink user properties (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION USER statement.

The following example changes the extended options for MobiLink user
named SSinger to their default values:

ALTER SYNCHRONIZATION USER SSinger
DELETE ALL OPTION

☞ For more information, see “ALTER SYNCHRONIZATION USER
statement [MobiLink]”[MobiLink Synchronization Reference,page 238].

You can also specify properties when you create the MobiLink user name.

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[MobiLink Synchronization Reference,page 245].

179

Priority order for extended options and connection parameters

The CREATE/ALTER SYNCHRONIZATION USER and CREATE/ALTER
SYNCHRONIZATION SUBSCRIPTION statements allow you to store
extended options and connection parameters in the database and associate
them with subscriptions, users or publications. The dbmlsync utility reads
this information from the database.

Note: You specify options for a publication by using the CREATE
SYNCHRONIZATION SUBSCRIPTION statement and omitting the FOR
clause.

If extended options are specified in both the database and the command line,
the option strings are combined. If conflicting options are specified,
dbmlsync resolves them as follows. In the following list, options specified
by methods occurring earlier in the list take precedence over those occurring
later in the list.

1. options specified on the command line with the dbmlsync -eu option.

2. options specified on the command line with the dbmlsync -e option.

3. options specified for the subscription (whether using SQL statements or
Sybase Central).

4. options specified for the user (whether using SQL statements or Sybase
Central).

5. options specified for the publication (whether using SQL statements or
Sybase Central).

If the connection TYPE or ADDRESS is specified in more than one place,
the one specified with the highest priority according to the list above
overrides any other specification. The connection TYPE and ADDRESS can
be specified on the command line using adr and ctp extended options.

Dropping MobiLink users

You must drop all subscriptions for a MobiLink user before you drop the
user from a remote database.

❖ To drop a MobiLink user from a remote database (Sybase Central)

1. Connect to the database from the Adaptive Server Anywhere plug-in as a
user with DBA authority.

2. Locate the MobiLink user in the MobiLink Users folder.

3. Right click the MobiLink user and choose Delete from the popup menu.

180

Chapter 8. Adaptive Server Anywhere Clients

❖ To drop a MobiLink user from a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION USER statement.

The following example removes the MobiLink user named SSinger from
the database:

DROP SYNCHRONIZATION USER SSinger

☞ For more information, see “DROP SYNCHRONIZATION USER
statement [MobiLink]”[MobiLink Synchronization Reference,page 257].

181

Subscribing MobiLink synchronization users
To complete the setup, you must subscribe at least one MobiLink user to one
or more pre-existing publications.

☞ For information about creating publications, see“Publishing data” on
page 171. For information about creating MobiLink users, see“Creating
MobiLink users” on page 178.

Subscriptions versus synchronization subscriptions
Do not confuse subscriptions (CREATE SUBSCRIPTION statement)
with synchronization subscriptions (CREATE SYNCHRONIZATION
SUBSCRIPTION statement). Subscriptions work only with SQL Remote.
They create relationships between publications anddatabase userswho
have been granted remote privileges. Synchronization subscriptions, used
with MobiLink, create relationships between publications andMobiLink
users.

A synchronization subscription links a particular MobiLink user with a
publication. It can also carry other information needed for synchronization.
For example, you can specify the address of the MobiLink server and any
desired options for a synchronization subscription. Values for a specific
synchronization subscription override those set for MobiLink users.

Synchronization subscriptions are required only in MobiLink Adaptive
Server Anywhere remote databases. Server logic is implemented through
synchronization scripts, stored in the MobiLink system tables in the
consolidated database.

A single Adaptive Server Anywhere database can synchronize with more
than one MobiLink synchronization server. To allow synchronization with
multiple servers, create different MobiLink users for each server.

Example To synchronize the customer and sales_order tables in the Adaptive Server
Anywhere sample database, you could use the following statements.

1. First, publish the customer and sales_order tables. Give the publication
the name testpub.

CREATE PUBLICATION testpub
(TABLE customer, TABLE sales_order)

2. Next, create a MobiLink user. In this case, the MobiLink user is
demo_ml_user.

CREATE SYNCHRONIZATION USER demo_ml_user

3. To complete the process, subscribe the user to the publication.

182

Chapter 8. Adaptive Server Anywhere Clients

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
FOR demo_ml_user
TYPE tcpip
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’

Altering MobiLink subscriptions

Synchronization subscriptions can be altered using Sybase Central or the
ALTER SYNCHRONIZATION SUBSCRIPTION statement. The syntax is
similar to that of the CREATE SYNCHRONIZATION SUBSCRIPTION
statement, but provides an extension to more conveniently add, modify, and
delete options.

❖ To alter a synchronization subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Click the desired user. The properties appear in the right pane.

4. In the right pane, click the Synchronization Subscriptions tab. Right-click
the subscription you wish to change and select Properties from the popup
menu.

5. Change the properties as needed

❖ To alter a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION SUBSCRIPTION statement.

☞ For more information, see “ALTER SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink]”[MobiLink Synchronization Reference,
page 236].

Dropping MobiLink subscriptions

You can delete a synchronization subscription using either Sybase Central or
the DROP SYNCHRONIZATION SUBSCRIPTION statement.

You must have DBA authority to drop a synchronization subscription.

183

❖ To delete a synchronization subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Select a MobiLink user.

4. Right-click the desired subscription and choose Delete from the popup
menu.

❖ To delete a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION SUBSCRIPTION statement.

Example The following statement drops the synchronization subscription of
MobiLink user jsmith to a publication named pub_orders.

DROP SYNCHRONIZATION SUBSCRIPTION
FOR jsmith TO pub_orders

☞ See also the “DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]”[ASA SQL Reference,page 420].

184

Chapter 8. Adaptive Server Anywhere Clients

Initiating synchronization
The client always initiates MobiLink synchronization. In the case of an
Adaptive Server Anywhere client, synchronization is initiated by running the
dbmlsync utility. This utility connects to and synchronizes an Adaptive
Server Anywhere remote database.

You can specify connection parameters on the dbmlsync command line
using the -c option. These parameters are for the remote database. If you do
not specify connection parameters, a connection dialog appears, asking you
to supply the missing connection parameters and startup options.

Connection parameters set in the synchronization subscriptions within the
remote database are used to locate the appropriate MobiLink
synchronization server.

Permissions for
dbmlsync

When dbmlsync connects to a database, it must have permissions to apply all
the changes being made. The dbmlsync command line contains the
password for this connection. This could present a security issue.

To avoid security problems, grant a user (other than DBA) REMOTE DBA
authority, and use this user ID in the dbmlsync connection string. A user ID
with REMOTE DBA authority has DBA authority only when the connection
is made from the dbmlsync utility. Any other connection using the same
user ID is granted no special authority.

Example Suppose that you have a remote database named remote and that this
database is currently running on your local machine. In addition, assume
that the MobiLink synchronization server has been started and is ready to
accept requests. You could use the following command to synchronize as
user syncuser, who has been granted REMOTE DBA authority.

dbmlsync -c "dbn=remote;uid=syncuser" c: \oldlogs

Since the user’s password is not specified on the command line, a dialog
appears letting you enter this additional piece of information.

Note that no connection parameters for the MobiLink synchronization server
appear on the command line. Instead, these parameters are set in the
synchronization subscription, publication, or user, and stored in the remote
database.

Multiple MobiLink synchronization users

Each remote database typically contains exactly one MobiLink
synchronization user. In this case, you do not need to specify a MobiLink
user name on the dbmlsync command line. However, if the remote database

185

contains more than one, you must specify which MobiLink synchronization
user to synchronize using the-u command line option.

dbmlsync -c "dbn=remote;uid=syncuser" -u mluser

Similarly, you can specify the user’s password using the-mp option, or
change the password by specifying the new password with the-mn option.
These are the user ID and password used to the MobiLink synchronization
server and may be different from the user ID and password used to connect
to the remote database.

Customizing synchronization

MobiLink provides a number of extended options to customize the
synchronization process. Extended options can be set for publications, users,
and subscriptions. In addition, extended option values can be overridden
using options on the dbmlsync command line.

☞ For a complete list of extended options, see “-e extended options”
[MobiLink Synchronization Reference,page 44].

❖ To override an extended option on the dbmlsync command line

1. Supply the extended option values in the -e or -eu dbmlsync options for
dbmlsync, in the formoption-name=value. For example:

dbmlsync -e "v=on;sc=low"

❖ To set an extended option for a subscription, publication or user

1. Add the option to the CREATE SYNCHRONIZATION
SUBSCRIPTION statement or CREATE SYNCHRONIZATION USER
statement in the Adaptive Server Anywhere remote database.

Adding an extended option for a publication is a little different. To add an
extended option for a publication, use the ALTER/CREATE
SYNCHRONIZATION SUBSCRIPTION statement and omit the FOR
clause.

Example The following statement creates a synchronization subscription that uses
extended options to set the cache size for preparing the upload stream to
3 Mb and the upload increment size to 3 kb.

CREATE SYNCHRONIZATION SUBSCRIPTION TO my_pub
FOR ml_user
ADDRESS ’host=test.internal;port=2439;’
OPTION memory=’3m’,increment=’3k’

186

Chapter 8. Adaptive Server Anywhere Clients

Note that the option values can be enclosed in single quotes, but the option
names must remain unquoted.

Transaction log files

To prepare the upload stream, the dbmlsync utility requires access to all
transaction logs written since the last successful synchronization. However,
log files are typically truncated and renamed as part of regular database
maintenance. In such a case, old log files must be renamed and saved in a
separate directory until all changes they describe have been synchronized
successfully.

You can specify the directory that contains the renamed log files on the
dbmlsync command line. You may omit this parameter if the working log
file has not been truncated and renamed since you last synchronized, or if
you run dbmlsync from the directory that contains the renamed log files.

☞ For more information, see “Backup and Data Recovery”[ASA Database
Administration Guide,page 337].

Example Suppose that the old log files are stored in the directoryc:\oldlogs. You
could use the following command to synchronize the remote database.

dbmlsync -c "dbn=remote;uid=syncuser" c: \oldlogs

The path to the old logs directory must be the final argument on the
command line.

Concurrency during synchronization

To ensure the integrity of synchronizations, dbmlsync must ensure that no
rows in the download stream are modified between the time the upload
stream is built and the time the download is applied. It offers two
mechanisms to ensure this.

By default, dbmlsync obtains an exclusive lock on all tables mentioned in
any publication being synchronized. It does this before it begins building the
upload stream. Dbmlsync maintains this lock until the download is applied.

When using the locking mechanism, if other connections to the database
exist and if these connections have any locks on the synchronization tables,
then synchronization will be delayed until the locks are released. If you want
to ensure that synchronization proceeds immediately even if other locks
exist, use the dbmlsync -d option. When this option is specified, any
connection with locks that would interfere with synchronization are dropped
by the database so that synchronization can proceed. Uncommitted changes
on the dropped connections are rolled back.

187

☞ For more information, see “-d option”[MobiLink Synchronization
Reference,page 42].

You can further protect data integrity by setting the extended option
LockTables to OFF. This causes dbmlsync to track all rows that are modified
after the upload stream has been built. When the download is received, it is
not applied if any rows in the download have been modified. Dbmlsync will
then retry the synchronization. The retry will succeed unless a new
download conflict is detected.

☞ For more information, see “LockTables (lt) extended option”[MobiLink
Synchronization Reference,page 55].

By default, dbmlsync will retry synchronization until success is achieved.
You can limit the number of retries using the extended option
ConflictRetries. Setting ConflictRetries to the -1 causes dbmlsync to retry
until success is achieved. Setting it to a non-negative integer causes
dbmlsync to retry for not more than the specified number of times.

☞ For more information, see “ConflictRetries (cr) extended option”
[MobiLink Synchronization Reference,page 47].

Initiating synchronization from an application

You may wish to include the features of dbmlsync in your application, rather
than provide a separate executable to your customers. If you are developing
in any language that can call a DLL, you can do so.

If you are programming in C or C#, include thedbtools.hheader file located
in theh subdirectory of your SQL Anywhere directory. This file contains a
description of the a_sync_db structure and the DBSynchronizeLog function,
which you use to add this functionality to your application.

☞ For more information, see “DBSynchronizeLog function”[ASA
Programming Guide,page 273], and “a_sync_db structure”[ASA Programming
Guide,page 295].

188

Chapter 8. Adaptive Server Anywhere Clients

Using ActiveSync synchronization
ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. Adaptive Server Anywhere MobiLink clients can use
ActiveSync version 3.1 or 3.5.

ActiveSync governs synchronization between a Windows CE device and a
desktop computer. A MobiLink provider for ActiveSync governs
synchronization to the MobiLink synchronization server, as shown in the
following diagram.

ActiveSync
software

ActiveSync
software

MobiLink
provider for
ActiveSync MobiLink

synchronization
server

UltraLite or
ASA MobiLink

client

Windows CE
device

Desktop
computer

Server
computer

Setting up ActiveSync synchronization for Adaptive Server Anywhere
clients involves the following steps:

♦ Configure the Adaptive Server Anywhere remote database for
ActiveSync synchronization.

☞ See“Configuring Adaptive Server Anywhere remote databases for
ActiveSync” on page 190.

♦ Install the MobiLink provider for ActiveSync.

☞ See“Installing the MobiLink provider for ActiveSync” on page 191.

♦ Register the Adaptive Server Anywhere client for use with ActiveSync.

☞ See“Registering Adaptive Server Anywhere clients for ActiveSync”
on page 192.

If you use ActiveSync synchronization, synchronization must be initiated
from the ActiveSync software. The MobiLink provider for ActiveSync can
start dbmlsync or it can wake a dbmlsync that is sleeping as scheduled by a
schedule string.

189

You can also put dbmlsync into a sleep mode using a delay hook in the
remote database, but the MobiLink provider for ActiveSync cannot invoke
synchronization from this state.

☞ For information about scheduling synchronization, see“Scheduling
synchronization” on page 198.

Configuring Adaptive Server Anywhere remote databases for ActiveSync

❖ To configure your Adaptive Server Anywhere remote database for
ActiveSync

1. Select ActiveSync as the synchronization type.

The synchronization type can be set for a synchronization publication, for
a synchronization user or for a synchronization subscription. It is set in a
similar manner for each. Here is part of a typical CREATE
SYNCHRONIZATION USER statement:

CREATE SYNCHRONIZATION USER SSinger
TYPE ActiveSync
...

2. Supply an address clause to specify communication between the
MobiLink provider for ActiveSync and the MobiLink synchronization
server.

For HTTP or TCP/IP synchronization the ADDRESS clause of the
CREATE SYNCHRONIZATION USER or CREATE
SYNCHRONIZATION SUBSCRIPTION statement specifies
communication between the MobiLink client and server. For ActiveSync,
the communication takes place in two stages: from the dbmlsync utility
on the device to the MobiLink provider for ActiveSync on the desktop
machine, and from desktop machine to the MobiLink synchronization
server. The ADDRESS clause specifies the communication between
MobiLink provider for ActiveSync and the MobiLink synchronization
server.

The following statement specifies TCP/IP communication to a MobiLink
synchronization server on a machine named kangaroo:

CREATE SYNCHRONIZATION USER SSinger
TYPE ActiveSync
ADDRESS ’stream=tcpip;host=kangaroo;port=2439’

☞ For more information, see “CREATE SYNCHRONIZATION USER
statement [MobiLink]”[ASA SQL Reference,page 351].

190

Chapter 8. Adaptive Server Anywhere Clients

Installing the MobiLink provider for ActiveSync

Before you register your Adaptive Server Anywhere MobiLink client for use
with ActiveSync, you must install the MobiLink provider for ActiveSync
using the installation utility (dbasinst.exe).

The Adaptive Server Anywhere for Windows CE setup program installs the
MobiLink provider for ActiveSync. If you install Adaptive Server Anywhere
for Windows CE you do not need to carry out the steps in this section.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see“Registering
Adaptive Server Anywhere clients for ActiveSync” on page 192.

❖ To install the MobiLink provider for ActiveSync

1. Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

2. Enter the following command to install the MobiLink provider:

dbasinst -k desk-path -v dev-path

wheredesk-pathis the location of the desktop component of the provider
(dbasdesk.dll) anddev-pathis the location of the device component
(dbasdev.dll).

If you have SQL Anywhere installed on your computer,dbasdesk.dllis in
thewin32 or win64 subdirectory of your SQL Anywhere directory and
dbasdev.dllis in a platform-specific directory in theCE subdirectory. If
you omit -v or -k, these directories are searched by default.

If you receive a message telling you that the remote provider failed to
open, perform a soft reset of the device and repeat the command:

☞ For more information, see “ActiveSync provider installation utility”
[MobiLink Synchronization Reference,page 300].

3. Restart your machine.

ActiveSync does not recognize new providers until the machine is
restarted.

4. Enable the MobiLink provider.

♦ From the ActiveSync window, click Options.

♦ Check the MobiLink item in the list and click OK to activate the
provider.

191

♦ To see a list of registered applications, click Options again, choose the
MobiLink provider, and click Settings.

☞ For more information about registering applications, see
“Registering Adaptive Server Anywhere clients for ActiveSync” on
page 192.

Registering Adaptive Server Anywhere clients for ActiveSync

You can register you application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

☞ For information on the alternative approach, see “ActiveSync provider
installation utility” [MobiLink Synchronization Reference,page 300].

❖ To register the Adaptive Server Anywhere client for use with Ac-
tiveSync

1. Ensure that the MobiLink provider for ActiveSync is installed.

☞ For information, see“Installing the MobiLink provider for
ActiveSync” on page 191.

2. Start the ActiveSync software on your desktop machine.

3. From the ActiveSync window, choose Options.

4. From the list of information types, choose MobiLink and click Settings.

5. In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

6. Enter the following information for your application:

♦ Application name A name identifying the application to be
displayed in the ActiveSync user interface.

♦ Class name The class name for the dbmlsync client, as set using its
-wc option.

☞ For more information, see “MobiLink synchronization client”
[MobiLink Synchronization Reference,page 36].

♦ Path The location of the dbmlsync application on the device.

♦ Arguments Any command line arguments to be used when
ActiveSync starts dbmlsync.

7. Click OK to register the application.

192

Chapter 8. Adaptive Server Anywhere Clients

Temporarily stopping synchronization of deletes
Ordinarily, Adaptive Server Anywhere automatically logs any changes to
tables or columns that are part of a publication with a synchronization
subscription. These changes are uploaded to the consolidated database
during the next synchronization.

You may, however, wish to delete rows from synchronized data and not have
those changes uploaded. This feature can be used to make unusual
corrections, but should be used with caution as it effectively disables part of
the automatic synchronization functionality. This technique is a practical
alternative to deleting the necessary rows using a download_delete_cursor
script

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations subsequently executed on that connection are
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. The effects do not nest; that is, subsequent
executions of stop synchronization delete after the first will have no
additional effect.

❖ To temporarily disable upload of deletes made through a connec-
tion
1. Issue the following statement to stop automatic logging of deletes.

STOP SYNCHRONIZATION DELETE

2. Delete rows from the synchronized data, as required, using the DELETE
statement. Commit these changes.

3. Restart logging of deletes using the following statement.

START SYNCHRONIZATION DELETE

The deleted rows will not be sent up to the MobiLink synchronization server
and hence will not be deleted from the consolidated database.

193

Customizing the client synchronization process
The Adaptive Server Anywhere synchronization client, dbmlsync, provides
a set of event hooks that you can use to customize the synchronization
process. When a hook is implemented, it is called at a specific time during
synchronization. You implement an event hook by creating a stored
procedure with a specific name. Most event-hook stored procedures are
executed on the same connection as the synchronization itself.

You can use event hooks to delay synchronization until a specific condition
is met, such as the total number of changes made reaches a set number, a
particular change is made, or some data-independent condition.

In addition, you can use event hooks to synchronize subsets of data that
cannot be easily defined in a publication. For example, you can synchronize
data in a temporary table by writing one event hook procedure to copy data
from the temporary table to a permanent table prior to the synchronization
and another to copy the data back afterwards.

☞ For more information about specific event-hook procedures, see “Client
event-hook procedures”[MobiLink Synchronization Reference,page 269].

Caution
The integrity of the synchronization process relies on a sequence of built-in
transactions. Thus, you must not perform an implicit or explicit commit or
rollback within your event-hook procedures.

Synchronization event hook sequence

The following pseudo-code shows the available events and the point at
which each is called during the synchronization process. For example,
sp_hook_dbmlsync_abort is the first event hook to be invoked.

Each event makes particular parameter values available, which you can use
when you implement the procedure. In some cases, you can modify the
value to return a new value; others are read-only. These parameters are not
stored procedure arguments. No arguments are passed to any of the
event-hook stored procedures. Instead, arguments are exchanged by reading
and modifying rows in the #hook_dict table.

For example, the sp_hook_dbmlsync_begin procedure has a parameter,
which is the user name that the application supplied in the synchronization
call. You can retrieve this value from the #hook_dict table.

Although the sequence has similarities to the event sequence at the
MobiLink synchronization server, there is little overlap in the kind of logic

194

Chapter 8. Adaptive Server Anywhere Clients

you would want to add to the consolidated and remote databases. The two
interfaces are therefore separate and distinct.

Any *_end hook will be called if the corresponding _begin hook is called
and completed successfully. A *_begin hook is considered to have run
successfully if it was not implemented when it would have been called.

sp_hook_dbmlsync_abort
loop until return codes direct otherwise (

sp_hook_dbmlsync_abort
sp_hook_dbmlsync_delay

)
sp_hook_dbmlsync_abort
// start synchronization
sp_hook_dbmlsync_begin
// upload events
sp_hook_dbmlsync_logscan_begin
sp_hook_dbmlsync_logscan_end
sp_hook_dbmlsync_upload_begin
sp_hook_dbmlsync_upload_end
// download events

sp_hook_dbmlsync_validate_download_file (only called
when -ba option is used)

sp_hook_dbmlsync_download_begin
for each table

sp_hook_dbmlsync_download_table_begin
sp_hook_dbmlsync_download_table_end

next table
sp_hook_dbmlsync_download_end
// end synchronization
sp_hook_dbmlsync_end
sp_hook_dbmlsync_process_return_code

Error handling In addition, the following event-hook procedures are available for error
handling.

sp_hook_dbmlsync_download_com_error
sp_hook_dbmlsync_download_SQL_error
sp_hook_dbmlsync_download_fatal_SQL_error
sp_hook_dbmlsync_download__ri_violation
sp_hook_dbmlsync_download_log_ri_violation

Once implemented, each procedure is automatically executed whenever an
error of the named type occurs.

☞ For more information, see “Client event-hook procedures”[MobiLink
Synchronization Reference,page 269].

Using event-hook procedures

This section describes some considerations for designing and using
event-hook procedures.

195

Event-hook procedure owner

The event-hook connection calls the stored procedures without qualifying
them by owner. The stored procedures must therefore be owned by one of
the following:

♦ The user name employed on the dbmlsync connection (typically a user
with REMOTE DBA authority).

♦ A group ID of which the dbmlsync user is a member.

Connections for event-hook procedures

Each event-hook procedure is executed on the same connection as the
synchronization itself. The following are exceptions:

♦ sp_hook_dbmlsync_download_com_error

♦ sp_hook_dbmlsync_download_fatal_sql_error

♦ sp_hook_dbmlsync_download_log_ri_violation

These procedures are called before a synchronization fails. On failure,
synchronization actions are rolled back. By operating on a separate
connection, you can use these procedures to log information about the
failure, without the logging actions being rolled back along with the
synchronization actions.

Event arguments

Each hook receives parameter values. In some cases, you can modify the
value to return a new value; others are read-only.

These parameters are exchanged by reading and modifying rows in the
#hook_dict table, which is defined as follows.

CREATE TABLE #hook_dict (
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL

)

Each row in the table contains the value for one parameter.

Before calling any of the stored procedures, dbmlsync creates the
#hook_dict table, and adds the parameters for that event. Procedures can
read the values by selecting from this table.

Some parameters can be used to pass values back to dbmlsync from the
hook. The hook passes values back by updating the #hook_dict table.

196

Chapter 8. Adaptive Server Anywhere Clients

☞ For a list of the parameter values supplied at each event, see “Client
event-hook procedures”[MobiLink Synchronization Reference,page 269].

Examples The following examples illustrate how to retrieve and set values in the
#hook_dict table.

The following sample sp_hook_dbmlsync_delay procedure illustrates the
use of the #hook_dict table to pass arguments. The procedure allows
synchronization only outside a scheduled down time of the MobiLink
system between 18:00 and 19:00.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN

DECLARE delay_val integer;
SET delay_val=DATEDIFF(

second, CURRENT TIME, ’19:00’);
IF (delay_val>0 AND

delay_val<3600)
THEN
UPDATE #hook_dict SET value=delay_val

WHERE name=’delay duration’;
END IF;

END

The following procedure is executed in the remote database at the beginning
of synchronization. It retrieves the current MobiLink user name, one of the
parameters available for the sp_hook_dbmlsync_begin event, and displays it
on the console.

CREATE PROCEDURE sp_hook_dbmlsync_begin()
BEGIN

DECLARE syncdef VARCHAR(128);
SELECT ’>>>syncdef = ’ || value INTO syncdef

FROM #hook_dict
WHERE name =’MobiLink user name’;

MESSAGE syncdef TYPE INFO TO CONSOLE;
END

Ignoring errors in event-hook procedures

By default, synchronization stops when an error is encountered in an
event-hook procedure. You can instruct the dbmlsync utility to ignore errors
that occur in event-hook procedures by supplying the -eh option.

197

Scheduling synchronization
Instead of running dbmlsync in a batch fashion, where it synchronizes and
then shuts down, you can set up an Adaptive Server Anywhere client so that
dbmlsync runs continuously, synchronizing at predetermined times.

You specify the synchronization schedule as an extended option. It can be
specified either on the dbmlsync command line or it can be stored in the
database for the synchronization user, subscription, or publication.

☞ For information about extended options, see “-e extended options”
[MobiLink Synchronization Reference,page 44]or “-eu option” [MobiLink
Synchronization Reference,page 71]. For more information about how to set
scheduling, see “Schedule (sch) extended option”[MobiLink Synchronization
Reference,page 59].

❖ To add scheduling to the synchronization subscription

1. Set the Schedule extended option in the synchronization subscription. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS ’host=localhost’
OPTION schedule=’weekday@11:30am-12:30pm’

☞ For more information about scheduling syntax, see “Schedule (sch)
extended option”[MobiLink Synchronization Reference,page 59].

☞ You can override scheduling instructions and synchronize
immediately using the dbmlsync -is option. The -is option instructs
dbmlsync to ignore all scheduling information. For more information, see
“-is option” [MobiLink Synchronization Reference,page 72].

❖ To add scheduling from the dbmlsync command line

1. Set the schedule extended option. Extended options are set with -e or -eu.
For example,

dbmlsync -e sch=weekday@11:30am-12:30pm ...

If scheduled synchronization is specified in either place, dbmlsync does not
shut down after synchronizing, but runs continuously.

Hovering When scheduling options are specified, dbmlsync goes into hovering mode.
Hovering is a feature that reduces the amount of time spent scanning the log.
You can improve the performance benefits of hovering by setting the
dbmlsync extended option HoverRescanThreshold or by using the dbmlsync
stored procedure sp_hook_dbmlsync_log_rescan.

198

Chapter 8. Adaptive Server Anywhere Clients

☞ For more information, see “HoverRescanThreshold (hrt) extended
option” [MobiLink Synchronization Reference,page 52]and
“sp_hook_dbmlsync_log_rescan”[MobiLink Synchronization Reference,
page 286].

199

Adaptive Server Anywhere version 7 MobiLink
clients

Adaptive Server Anywhere 7.0 MobiLink clients were configured using
SQL statements that are now deprecated. In particular, synchronization
definitions were used instead of publications and subscriptions. The older
statements are no longer supported. They have some disadvantages:

1. A synchronization definition is equivalent to a single publication and a
single subscription to it. There is no support for subscriptions to multiple
publications. In contrast, a single MobiLink user can now subscribe to
multiple publications. This allows you to synchronize some portions of
your data without synchronizing all of it.

2. Some people found the old terminology confusing. For example, a
MobiLink user ID was formerly called a site in the context of an
Adaptive Server Anywhere client. A MobiLink user is now called a
MobiLink user or a synchronization user.

3. The new statements are analogous to those used in SQL Remote, the
Sybase message-based replication technology.

Synchronization
definitions identify data
to upload in version 7
remote databases

You can choose to synchronize all or any portion of the data in a client
Adaptive Server Anywhere database. You can choose to synchronize entire
tables, or you can choose to synchronize only particular columns and rows.

The synchronization definition, located in the client Adaptive Server
Anywhere database, describes the data that is to be replicated and the
location of the appropriate MobiLink synchronization server.

Synchronization scripts, stored in the consolidated database, control how the
uploaded rows are processed and which rows are downloaded to the remote
database. These scripts do not depend on the type of remote database.

A synchronization definition may include data from several database tables.
Each table’s contribution to a synchronization definition is called anarticle .
Each article may consist of a whole table, or a subset of the rows and
columns in a table.

200

Chapter 8. Adaptive Server Anywhere Clients

��� � �

��� � �

A two-table synchronization definition

Article 1: all of
table A

Article 2: some rows and
columns from table B

+ �

� �

�

�

�

��� � �

��� � �

��� � �

Synchronizing a remote
database

Once a remote database is set up, the two databases must be periodically
brought to a state where they both have the same set of information. This
process of synchronization is carried out using the dbmlsync command line
utility.

Altering a synchronized
table

A table, once added to a synchronization definition, should not be altered.
Altering the table interferes with the synchronization process. Should it be
necessary to make such an alteration, this step should be performed
immediately following synchronization.

The only way to ensure that the ALTER STATEMENT is executed
immediately following synchronization is to place this statement in a script,
then execute that script using the-i option of thedbmlsynccommand line
utility.

Comparison to UltraLite
clients

If you have developed UltraLite applications for use as MobiLink clients, the
following information may be helpful. Many of the elements of a
synchronization definition have an UltraLite counterpart.

201

Adaptive Server

Anywhere 9.0

client

Adaptive Server

Anywhere 7.0

client

UltraLite

clients

MobiLink synchro-

nization server

MobiLink syn-
chronization user

site user name MobiLink user

type type stream connection type

address address connection
parameters

the server’s address

script version script version version script version

publication part of a defini-
tion in a remote
database, or part
of a template in a
reference database

none —all
tables are
synchronized

publication

subscription part of a defini-
tion in a remote
database, or a part
of a site in a refer-
ence database

none none

Writing synchronization
definitions

The synchronization definition is a version 7.0 database object describing
data in an Adaptive Server Anywhere remote database that is to be
synchronized with a particular MobiLink synchronization server. When
using Adaptive Server Anywhere 9.0 or later, publications and
synchronization subscriptions should be used instead.

☞ For details, see“Creating a remote database” on page 168.

A synchronization definition should appear only in an Adaptive Server
Anywhere 7.0 remote database. MobiLink consolidated servers are
configured using scripts.

A synchronization definition specifies the following pieces of information

♦ name The name of the synchronization definition, known only within
the remote database.

♦ site A name that uniquely identifies this particular MobiLink client.

♦ type The type of stream to be used to communicate with the MobiLink
synchronization server.

♦ address The parameters necessary to connect to the MobiLink
synchronization server.

202

Chapter 8. Adaptive Server Anywhere Clients

♦ script version The version of the synchronization scripts the MobiLink
synchronization server is to use when synchronizing this client.

♦ articles A description of the data to be synchronized. You can
synchronize entire tables, or only particular rows and columns.

The following statement creates a synchronization definition named testpub
that defines what data is to be synchronized with site demo_sync_site.

CREATE SYNCHRONIZATION DEFINITION testpub
SITE ’demo_sync_site’
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’
(table People(person_id, fname, lname),table Pets);

In this statement,

♦ The name of this synchronization definition is testpub. This name is only
known within the remote database.

♦ The name demo_sync_site uniquely identifies this client to the MobiLink
synchronization server. This name should appear in the ml_user
MobiLink system table, located in the consolidated database.

♦ The synchronization is to occur over a TCP/IP connection. The
connection parameters appear in a string in the ADDRESS clause.

The TCP/IP connection parameters show that the MobiLink
synchronization server is listening on port 2439 of the current machine.
Only the listed columns of the People table are synchronized. The option
clause is included to indicate that the MobiLink synchronization server
should useversion1of the synchronization scripts when processing data
from this client. The default value of this parameter isdefault . Notice
that the list of columns is also enclosed in parentheses.

♦ The MobiLink synchronization server is to use the set of synchronization
scripts identified by the name version1 when synchronizing this client.
This script version name should appear in the ml_script_version
MobiLink system table, located in the consolidated database.

♦ All columns and rows of thePetstable and the listed columns of the
Peopletable are to be synchronized.

☞ For the syntax of the MobiLink-synchronization-specific statements, see
“SQL Statements”[MobiLink Synchronization Reference,page 233].

Synchronizing with
multiple servers

To synchronize a remote database with multiple MobiLink synchronization
servers, create multiple synchronization definitions within the remote
database. Each synchronization definition must have a unique site name

203

because, from the point of view of the MobiLink synchronization server,
each is a separate logical client.

Synchronizing the same data in one remote database with multiple
MobiLink synchronization servers is not presently supported.

Rewriting
synchronization
definitions for version 8
and up

To use an Adaptive Server Anywhere 7 database as a MobiLink client, you
use a synchronization definition to identify which data to upload. In
version 8.0 and later, these are better rewritten as publications and
synchronization subscriptions.

Example Suppose you wanted to synchronize the Customer and Sales_Order tables of
the sample database. You could have created the following synchronization
definition.

CREATE SYNCHRONIZATION DEFINITION testpub
SITE ’demo_ml_user’
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’
(TABLE Customer, TABLE Sales_Order);

Instead, you should now do the following.

1. First, publish the Customer and Sales_Order tables.

CREATE PUBLICATION testpub
(TABLE Customer, TABLE Sales_Order);

2. Next, create a subscription to this publication for the MobiLink user. In
this case, the MobiLink user is demo_ml_user. It is unnecessary that a
database user of the same name to exist. MobiLink users and database
users are independent.

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
FOR demo_ml_user
TYPE ’tcpip’
ADDRESS ’host=localhost;port=2439;’
OPTION sv=’version1’

The information is the same, but is broken into two smaller statements
instead of one large one.

The SITE clause in the synchronization definition specifies that this
particular MobiLink client will synchronizing using the MobiLink user id
demo_sync_site. Synchronization is to occur over a TCP/IP connection. The
synchronization server is to use the version1 version of the synchronization
scripts when interacting with this client.

In the second case, the synchronized tables are published, and then a
subscription is created for the demo_sync_site MobiLink user. The TYPE,

204

Chapter 8. Adaptive Server Anywhere Clients

ADDRESS, and OPTION clauses have the same syntax.

205

CHAPTER 9

UltraLite Clients

About this chapter This chapter describes how to use an UltraLite database as a MobiLink
client. It introduces synchronization streams and provides material on how
to set up Palm OS devices and Windows CE devices for synchronization.

☞ For more information about UltraLite remote databases and MobiLink,
see “Synchronization for UltraLite Applications”[UltraLite Database User’s
Guide,page 143].

Contents Topic: page

Introduction to synchronization streams 208

Synchronizing UltraLite databases on the Palm Computing Plat-
form

209

Synchronizing UltraLite databases on Windows CE 223

207

Introduction to synchronization streams
Each UltraLite database that synchronizes with a MobiLink synchronization
server does so over a synchronization stream. The synchronization stream is
specified in the UltraLite application. Available synchronization streams
include TCP/IP, HTTP, and HTTPS for TCP/IP based networks. Support is
also provided for HotSync synchronization on the Palm Computing Platform
and for ActiveSync synchronization on Windows CE.

☞ For more information, see “Selecting a synchronization stream”
[UltraLite Database User’s Guide,page 147].

208

Chapter 9. UltraLite Clients

Synchronizing UltraLite databases on the Palm
Computing Platform

This section describes the details of synchronization that are specific to the
Palm Computing Platform.

☞ For more information about UltraLite on the Palm Computing Platform,
see “Developing UltraLite Applications for the Palm Computing Platform”
[UltraLite Embedded SQL User’s Guide,page 71].

Choosing a synchronization method

Synchronization on the Palm Computing Platform can be carried out using
HotSync or over standard network protocols using TCP/IP or HTTP. Each
synchronization method has its advantages and disadvantages.

♦ Multiple applications If you have more than one UltraLite application
installed on a Palm device, they all synchronize when you invoke
HotSync. To synchronize multiple applications through a TCP/IP or
HTTP connection, you must activate and synchronize each application in
turn.

♦ Universal Serial Bus support HotSync synchronization has automatic
support for USB.

♦ Publications Synchronization using HotSync cannot include WHERE
clauses.

☞ For more information, see “Designing sets of data to synchronize
separately”[UltraLite Database User’s Guide,page 156].

Understanding HotSync synchronization

UltraLite applications on Palm devices can synchronize over a TCP/IP or
HTTP stream, in much the same manner as UltraLite applications on other
platforms. They can also synchronize using the Palm-specific HotSync
synchronization streams, which operate in a different manner. This section
describes the architecture of the HotSync synchronization.

The sequence of events that occur during HotSync synchronization is as
follows:

1. When your UltraLite application is closed, it saves the state of your
UltraLite application. The state information is stored in the Palm
database, separately from the UltraLite database.

209

☞ For more information, see “Closing an UltraLite Palm application”
[UltraLite Embedded SQL User’s Guide,page 77].

2. When you synchronize your Palm device, HotSync calls the MobiLink
conduit to synchronize with the MobiLink synchronization server. The
MobiLink conduit reads the pages from the UltraLite database and sends
the upload to the MobiLink synchronization server.

3. The MobiLink synchronization server integrates updates into the
consolidated database and sends a download stream to the conduit.

4. The conduit integrates the download stream into the UltraLite database
on the Palm device.

5. When your application is launched, it loads the previously saved state of
your UltraLite application.

☞ For more information, see “Launching an UltraLite Palm
application”[UltraLite Embedded SQL User’s Guide,page 77].

HotSync architecture The following diagram depicts the HotSync architecture. A separate
HotSync conduit is required for each application. You can have multiple
HotSync conduits on a single PC.

 HotSync
conduit

 HotSync
conduit

 HotSync
conduit

 HotSync
conduit

MobiLink
synchronization
server

Consolidated
database

Palm
device

PC

ODBC

☞ For a description of how to set up your MobiLink HotSync conduit, see
“Configuring the MobiLink HotSync conduit” on page 214.

210

Chapter 9. UltraLite Clients

HotSync configuration overview

During HotSync synchronization, the HotSync Manager starts the MobiLink
HotSync conduit,dbhsync9.dll, which reads from the device and then sends
the upload stream to a MobiLink synchronization server. It then receives the
download stream from the MobiLink synchronization server and writes the
download to the device.

The MobiLink HotSync conduit synchronizes with the MobiLink
synchronization server using one of TCP/IP, HTTP, or HTTPS streams.

In most applications, only the MobiLink HotSync conduit is deployed onto
the desktop machines of users.

☞ For information about HotSync architecture, see“Understanding
HotSync synchronization” on page 209.

❖ To install and configure the MobiLink HotSync conduit

1. Place the MobiLink conduit files on the user’s machine.

☞ For instructions, see“Conduit files” on page 211.

2. Register the MobiLink conduit to the HotSync Manager. The HotSync
Manager is then able to use the MobiLink conduit.

☞ For instructions, see“Registering the MobiLink HotSync conduit to
HotSync Manager” on page 212.

3. If you did not include astream_parmsparameter in your UltraLite
ul_synch_infostructure, enter these parameters from the HotSync
Manager.

☞ For instructions, see“Configuring the MobiLink HotSync conduit”
on page 214.

☞ For information about includingstream_parmsparameter in your
UltraLite synchronization call, see “Adding HotSync synchronization to
Palm applications”[UltraLite Embedded SQL User’s Guide,page 81].

4. If you are using an encrypted database, enter the encryption key in the
conduit configuration dialog. If you do not enter this key, you will have to
enter it on every synchronization.

☞ For instructions, see“Configuring the MobiLink HotSync conduit”
on page 214.

Conduit files The HotSync conduit consists of the following files:

♦ dbhsync9.dll The DLL that is called by the HotSync Manager.

211

♦ dblgen9.dll The language resource library. For languages other than
English, the letters en in the file name are replaced by a two-letter
abbreviation for the language, such asdblgde9.dllor dblgja9.dll.

♦ Stream DLL You need a DLL for the communication between the
conduit and the MobiLink synchronization server. A separate DLL is
provided for each stream:

• For TCP/IP, usedbmlsock9.dll.

• For HTTP, usedbmlsock9.dllanddbmlhttp9.dll.

• For HTTPS, usedbmlhttps9.dll

• If you use encryption for this communication, you also need to supply
the encryption DLLdbmltls9.dll.

These files should be in the same directory, in your system path. When you
install SQL Anywhere Studio, they are installed into the operating system
subdirectory of your installation directory, which is already in the system
path. However, you do not have to install SQL Anywhere Studio to use these
files.

Registering the MobiLink HotSync conduit to HotSync Manager

UltraLite includes a command lineconduit installation utility named
dbcond9to make a set of registry entries for the HotSync Manager to be
able to use the MobiLink conduit. This utility requires the following files:

♦ dbcond9.exe

♦ condmgr.dll

❖ To deploy the conduit installation utility

1. Choose a top-level deployment directory.

For example, you may choose a directory namedc:\deploy.

2. Add a registry entry with the full path of the deployment directory as its
value.

The registry entry must be as follows:

HKEY_CURRENT_USER\Software \Sybase \Adaptive Server Anywhere \
version-string \Location

whereversion-stringis a number representing your version of the SQL
Anywhere Studio (such as9.0). If the entry is not found in
HKEY_CURRENT_USER, the software looks in
HKEY_LOCAL_MACHINE.

212

Chapter 9. UltraLite Clients

3. Add thedbcond9.exefile to thewin32 subdirectory of the deployment
directory.

4. Add thecondmgr.dllfile.

Thecondmgr.dllfile must go in thewin32\condmgrsubdirectory of the
deployment directory.

The SQL Anywhere Studio installation creates the required registry entries
and places files in the appropriate locations.

❖ To register the MobiLink HotSync conduit to HotSync Manager

1. Ensure that the HotSync conduit files and the files for the conduit
installation utility are in place.

2. Run the conduit installation utility. On the command line, you must
specify the creator ID of the Palm application and a name that HotSync
will use to identify the conduit.

For example, the following command installs a conduit for the
application with creator IDSyb2, namedCustDB. These are the settings
for the CustDB sample application:

dbcond9 "Syb2" -n CustDB

☞ For more information about the conduit installation utility, see “The
HotSync conduit installation utility”[UltraLite Database User’s Guide,
page 91].

Note A secondary location for HotSync synchronization depends on the
version of the Palm Computing Platform software you are using. This
secondary location may be under the
HKEY_CURRENT_USER\Software\U.S. Roboticsor
HKEY_CURRENT_USER\Software\Palm Computingfolders.

Checking that MobiLink HotSync conduit installation is correct

Following are instructions for verifying that your conduit is installed and is
working.

213

❖ To check that the HotSync conduit is properly installed

1. Check that a conduit is installed:

♦ In your PC’s system tray, right-click HotSync Manager.

♦ From the pop-up menu, choose Custom.

A list of conduits is displayed for each user. Verify that your conduit is
listed.

2. Set the system environment variable UL_DEBUG_CONDUIT to any
value.

3. Shut down and restart the HotSync Manager.

4. If the MobiLink conduit is properly installed, two dialog boxes appear. If
no dialog appears, the conduit was not properly installed.

5. Unset the environment variable.

6. Shut down and restart the HotSync Manager.

MobiLink must be started before using HotSync
Before using HotSync, the MobiLink synchronization server must be
started and be ready to accept connections from the MobiLink HotSync
conduit. The MobiLink synchronization server does not have to be on the
same computer, but it must be reachable across the network.

Configuring the MobiLink HotSync conduit

The MobiLink HotSync conduit needs to communicate with a MobiLink
synchronization server to synchronize the UltraLite application and the
consolidated database. You can provide the information needed by the
conduit to locate the MobiLink synchronization server in astream_parms
member of the UltraLiteul_synch_infostructure supplied to thePalmExit
function. If you did not specify astream_parmsvalue, or if you specified
the value as null, you can enter the required parameters from the HotSync
Manager.

In addition, if you are using a strongly encrypted UltraLite database, you can
save the encryption key so that you do not have to enter it on each
synchronization.

If you have Palm Desktop software installed, the Adaptive Server Anywhere
installation creates registry entries for theCustDB sample application. You
can use these entries as a starting point for your own application.

214

Chapter 9. UltraLite Clients

☞ For information aboutstream_parms, see “Adding HotSync
synchronization to Palm applications”[UltraLite Embedded SQL User’s Guide,
page 81].

❖ To configure the MobiLink HotSync conduit for synchronization

1. Right-click the HotSync Manager icon in the system tray, and choose
Custom from the popup menu.

2. Select your MobiLink HotSync conduit from the list of conduit names,
and click Change.

3. Enter a set of stream parameters in the Synchronization Parameters text
box. These parameters are the same as those in astream_parms
parameter, except that a “stream” entry is used to specify the
communications type (TCPIP, HTTP, or HTTPS). For example:

stream=tcpip;host=localhost

☞ For more information, see “HotSync synchronization stream
parameters”[UltraLite Database User’s Guide,page 181].

4. If the database is strongly encrypted, you can enter the encryption key in
the Encryption Key text box. If no key is entered, you will be prompted
for the encryption key on each synchronization.

5. Click OK to complete the entry. The HotSync conduit is now ready to
use.

Registry location

Location of
synchronization log files

The stream parameters and encryption key are stored in the registry in
HKEY_CURRENT_USER\Software\Sybase\Adaptive Server
Anywhere\9.0\Conduit\Creator ID, whereCreator ID is
application-dependent.

A secondary location for HotSync synchronization depends on the version of
the Palm Computing Platform software you are using. They are made under
theHKEY_CURRENT_USER\Software\U.S. Roboticsor the
HKEY_CURRENT_USER\Software\Palm Computingfolder.

HotSync log files You can obtain additional debugging information by setting the
UL_DEBUG_CONDUIT_LOG environment variable. When this
environment variable is set to 1, basic information such as synchronization
parameters, registry locations, and attempts to load libraries is written to the
HotSync log file. When set to 2, more detailed information is written to the
HotSync log file.

215

The HotSync log file is in the subdirectoryUser\HotSync.logof your Pilot
or Palm directory. HotSync records when each synchronization takes place
and whether each installed conduit worked as expected.

Deploying the MobiLink HotSync conduit

For applications using HotSync synchronization, each end user must have
the MobiLink HotSync conduit installed on their desktop. This installation
requires the following:

♦ Deploy the conduit files The files for the conduit must be installed into
a location in the end user’s system path.

☞ For a list of conduit files, see“Conduit files” on page 211.

♦ Install the conduit You can deploy the conduit installation utility to
your end users and provide instructions for them to run it, or you can use
the HotSync Manager to install the conduit.

☞ For instructions, see“Registering the MobiLink HotSync conduit to
HotSync Manager” on page 212.

♦ Configure the conduit If you did not include astream_parms
parameter in your UltraLiteul_synch_infostructure, enter these
parameters from the HotSync Manager. Also, if you are using an
encrypted database, you may want to enter the encryption key.

☞ For instructions, see“Configuring the MobiLink HotSync conduit”
on page 214.

Configuring TCP/IP, HTTP, or HTTPS synchronization

This section describes how to configure the synchronization setup for
UltraLite Palm applications using TCP/IP or HTTP synchronization.

☞ For information on synchronization architecture for HTTP or TCP/IP
communications, see“Parts of the synchronization system” on page 8.

Configuring TCP/IP synchronization for the Palm Computing Platform

There are two ways of using TCP/IP networking in a Palm device. In either
case, you must connect to a Remote Access Service (RAS). The difference
lies in how you make the connection to the RAS.

♦ Use a modem to dial into an ISP The Internet Service Provider (ISP)
must provide access to a Remote Access Service (RAS). The components
of the connection are as follows:

216

Chapter 9. UltraLite Clients

Application
<--> Palm Net Library
<--> Palm modem
<--> NT RAS
<--> TCP/IP network

♦ Connect via the serial port to a Windows NT machine The
components of the connection are as follows:

Application
<--> Palm Net Library
<--> serial cable
<--> NT RAS
<--> TCP/IP network

When using TCP/IP, the MobiLink synchronization server can be any
machine on the network that is accessible via TCP/IP.

Before synchronization, the following conditions must be satisfied:

1. The device must be in its cradle.

2. If you are using the serial port to connect to a Windows NT machine
running RAS, the HotSync Manager and other applications that use the
serial port must be shut down. Windows NT only allows one application
to use a serial port at a time.

3. The MobiLink synchronization server must be started. By default, the
MobiLink synchronization server listens for TCP/IP communications
over port 2439.

4. The Palm device must have Network settings in place so that it can
connect to the network. Modem settings are also required if using a
modem to dial into an ISP.

Configuring HTTP or HTTPS synchronization for the Palm Computing platform

To use HTTP or HTTPS synchronization, you must first configure RAS
TCP/IP synchronization. For information on configuring RAS, see
“Configuring TCP/IP synchronization for the Palm Computing Platform” on
page 216.

When using HTTP or HTTPS, the MobiLink synchronization server can be
any machine on the network that is accessible via the protocol.

217

❖ To synchronize using HTTP or HTTPS

1. Place the Palm device in its cradle.

2. If you are using the serial port to connect to a desktop machine running
RAS, shut down the HotSync Manager and other applications that use the
serial port. Windows only allows one application to use a serial port at a
time.

3. Start the MobiLink synchronization server.

4. Ensure that the network settings on the Palm device are configured so that
it can connect to the network. Modem settings are also required if using a
modem to dial into an ISP.

☞ For more information, see“Configuring TCP/IP synchronization for
the Palm Computing Platform” on page 216.

Configuring Remote Access Service

Synchronizing Palm applications over TCPIP, HTTP, or HTTPS requires a
Remote Access Service on your desktop machine. Remote Access Service
software is not part of UltraLite or MobiLink. Configuring Remote Access
Service software is tricky, however, and so this section provides some
instructions to assist with the task.

Configuring RAS for synchronization via modem

To use this method, you must have access to a Remote Access Service when
you dial in.

❖ To configure a Palm device for RAS TCP/IP via a modem

1. Install the modem by plugging the Palm device into the modem module.

2. Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

3. Choose the Windows RAS service.

4. Set the dial-in username and password.

5. Set the phone number to the number at which the Remote Access Service
can be reached. Obtain this number from your ISP.

6. Tap Details.

7. Set the connection type (usually PPP).

218

Chapter 9. UltraLite Clients

8. Set the DNS and IP addresses as recommended by your network
administrator.

9. Tap Script and enter the script recommended by your ISP. This script will
be similar to the following sample.

Wait For: Username:
Delay: 1
Send UserID:
Send CR:
Wait For: Password:
Delay: 1
Send Password:
Send CR:
Wait For: >
Delay: 1
Send: ppp
Send CR:
End:

Tap OK until you are back to the Network Preferences.

At this point, you are ready to test your TCP/IP connection.

Configuring RAS for serial port connection

This procedure involves actions both on Windows NT and on the Palm
Computing device.

❖ To configure Windows NT for RAS TCP/IP via serial port

1. From the Control Panel, open Modems. Make sure that a modem is
defined forDial-Up Networking Serial Cable between 2 PCson the
COM port to which the cradle is connected.

2. Set the speed for this modem to the baud rate you are using. The default
is 19200.

3. Make sure TCP/IP protocol is installed. Select Start➤ Settings➤ Control
Panel and double-click the Network icon. Click on the Protocols tab. If
there is no TCP/IP entry, choose Add to install it.

4. Enable IP Forwarding (in the Routing tab of TCP/IP properties)

5. Under the Services tab, make sure that Remote Access Service is
installed. If there is no entry for Remote Access Service, choose Add to
install it.

In Remote Access Service Properties, addDial Up Network serial cable
between 2 pc’ s for that COM port if the cradle’s COM port is not in the
list of ports.

219

6. Configure this entry to receive calls. In the RAS Network properties set
encryption settings toAllow any authentication including clear text. In
the RAS Network properties allow only TCP/IP client.

7. Configure TCP/IP. Allow clients to access the entire network. Assigning
the TCP/IP addresses depends on your network. Contact your network
administrator for details.

8. Add a user for dial-in access. Select Start➤ Programs➤ Administrative
Tools➤ User Manager. UncheckUser Must Change Password at Next
Logon. Choose the Dialin button, and grant dialin permission to user
with No Call Back.

9. If the RAS COM port is the same one that HotSync Manager uses, shut
down the HotSync Manager or any other applications that use the COM
port.

10. Start the Remote Access Administrator. Select Start➤ Programs➤
Administrative Tools➤ Remote Access Admin.

11. Start the RAS service. Select Server➤ Start Remote Access Service.
Choose to start the service on the local machine.

HotSync Manager or any other applications that use the serial port and the
RAS service will not run at the same time. One must be shut down first for
the other to run, as Windows NT prevents two different applications from
accessing the same serial port. You have to stop the RAS service (Server➤

Stop Remote Access Service from the Remote Access Admin) before you
can restart the HotSync Manager. Alternatively, you can use separate serial
ports.

Once the RAS service is running, it is ready to receive connection requests
via the serial port.

❖ To configure a Palm device for RAS TCP/IP via serial port

1. Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

2. Choose the Windows RAS service.

3. Set the dial-in username and password.

4. Set the Palm to use the serial port.
♦ For Palm OS 3.3 and above, selectDirect serial.

♦ For earlier versions of the Palm OS, set the phone number to00 (zero
zero). This is a special phone number that tells the Palm to use the
serial port directly, instead of a modem.

220

Chapter 9. UltraLite Clients

5. Tap Details.

6. Set the connection type (usually PPP).

7. Set the DNS and IP addresses as recommended by your network
administrator.

8. Tap Script and enter the following script:

Send: CLIENT
Send CR:
Delay: 1
Send: CLIENT
END

Tap OK until you are back to the Network Preferences

At this point, you are ready to test your TCP/IP connection.

Testing and troubleshooting

❖ To test the connection

1. via modem Connect the Palm device to the modem and follow the
instructions provided by your ISP for connecting to their network. Once
connected, tap the Connect button in Prefs➤ Network on the Palm
device.

2. via serial port Ensure RAS is running on the Windows NT machine.
Place the Palm device in the cradle and connect the cradle to the correct
COM port on the Windows NT machine. Tap the Connect button in Prefs
➤ Network on the Palm device.

With TCP/IP, there are two levels of service. At the minimum level, you can
connect to another TCP/IP host using an IP number of the following form.

NNN.NNN.NNN.NNN

At the next level, when a DNS server is properly configured, you are able to
connect to another host by name.

some_host_machine.any_company.com

Having a DNS service is more convenient, since most people are better at
remembering a name than a number. As long as you have the minimum
TCP/IP service, and an IP number, you can synchronize an UltraLite
application using TCP/IP.

There are a number of steps you can take to troubleshoot TCP/IP
connections on the Palm device.

221

♦ Hitting the scroll down button on the Palm device during the connection
phase displays the progress of the connection.

♦ The connection log is accessible from the Network Preferences panel.
Choose View Log from the Options menu to see information about the
network connection. The log is an interactive utility for controlling and
viewing your connection information. Enter ? for help.

♦ There are several tools for testing a TCP/IP connection from the Palm.
You can find most of them at the following locations:

http://www.roadcoders.com
http://www.palmcentral.com

There are also steps you can take for troubleshooting on Windows NT:

♦ In the Remote Access Admin, double-click on the running server.

♦ Select the appropriate port and choose Port Status. The Port Status dialog
shows you the Line condition (connected or waiting for a call) and lets
you watch the byte counts for both directions.

222

Chapter 9. UltraLite Clients

Synchronizing UltraLite databases on Windows
CE

UltraLite applications on Windows CE can synchronize using standard
network protocols (TCP/IP, HTTP, or HTTPS). UltraLite applications built
using embedded SQL, the static C++ API, or Native UltraLite for Java can
also use ActiveSync.

This section describes ActiveSync synchronization.

Installing the MobiLink provider for ActiveSync

Before you register your application for use with ActiveSync, you must
install the MobiLink provider for ActiveSync using the installation utility
(dbasinst.exe).

The MobiLink provider for ActiveSync includes a desktop component and a
device component. You must configure the provider for each device that
synchronizes through your desktop machine.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see“Registering
applications for use with ActiveSync” on page 224.

❖ To install the MobiLink provider for ActiveSync

1. Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

2. Enter the following command to install the MobiLink provider:

dbasinst -k desk-path -v dev-path

wheredesk-pathis the location of the desktop component of the provider
(dbasdesk.dll) anddev-pathis the location of the device component
(dbasdev.dll).

If you have SQL Anywhere installed on your machine,dbasdesk.dllis in
thewin32 subdirectory of your SQL Anywhere directory anddbasdev.dll
is in a platform-specific directory in theCE subdirectory. These
directories are default search locations, and you can omit both the -k and
-v options.

☞ For more information, see “ActiveSync provider installation utility”
[MobiLink Synchronization Reference,page 300].

3. Restart your machine.

223

ActiveSync does not recognize new providers until the machine is
restarted.

4. Enable the MobiLink provider.
♦ From the ActiveSync window, click Options.

♦ Check the MobiLink item in the list and click OK to activate the
provider.

♦ To see a list of registered applications, click Options again, choose the
MobiLink provider, and click Settings.
☞ For more information about registering applications, see
“Registering applications for use with ActiveSync” on page 224.

Registering applications for use with ActiveSync

You can register your application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

☞ For information about the alternative approach, see “ActiveSync
provider installation utility”[MobiLink Synchronization Reference,page 300].

❖ To register an application for use with ActiveSync

1. Ensure that the MobiLink provider for ActiveSync is installed.

☞ For information, see“Installing the MobiLink provider for
ActiveSync” on page 223.

2. Start the ActiveSync software on your desktop machine.

3. From the ActiveSync window, choose Options.

4. From the list of information types, choose MobiLink and click Settings.

5. In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

6. Enter the following information for your application:
♦ Application name A name identifying the application to be

displayed in the ActiveSync user interface.

♦ Class name The registered class name for the application.
☞ See “Assigning class names for applications”[UltraLite Embedded
SQL User’s Guide,page 93].

♦ Path The location of the application on the device.

♦ Arguments Any command line arguments to be used when
ActiveSync starts the application.

224

Chapter 9. UltraLite Clients

7. Click OK to register the application.

Deploying applications that use ActiveSync

Applications that use ActiveSync synchronization must be registered with
ActiveSync as well as copied onto the device. Also, each desktop machine
must have the MobiLink provider for ActiveSync installed. The architecture
for ActiveSync is illustrated in the following diagram.

ActiveSync
software

ActiveSync
software

MobiLink
provider for
ActiveSync MobiLink

synchronization
server

UltraLite or
ASA MobiLink

client

Windows CE
device

Desktop
computer

Server
computer

❖ To deploy ActiveSync applications

1. Install the MobiLink provider for ActiveSync on each end user’s
computer.

An ActiveSync provider install utility is provided with SQL Anywhere.
This is thedbasinst.execommand line utility.

☞ For information about thedbasinst.execommand line utility, see
“Installing the MobiLink provider for ActiveSync” on page 223and
“ActiveSync provider installation utility”[MobiLink Synchronization
Reference,page 300].

2. Register the application for use with ActiveSync.

You can register the application either by using ActiveSync, or by using
the ActiveSync provider installation utilitydbasinst.exe.

☞ For information about registering the application, see“Registering
applications for use with ActiveSync” on page 224.

3. Copy the application onto the device.

225

If your application is a single executable, statically linked with the
runtime library, you can use the ActiveSync provider installation utility
dbasinst.exeto copy the application to the device.

If the application includes multiple files (for example, if you use the
UltraLite runtime DLL rather than the static runtime library), you must
copy the files onto the device in some other way.

226

CHAPTER 10

Writing Synchronization Scripts in Java

About this chapter You control the actions of the MobiLink synchronization server by writing
synchronization scripts. You can implement these scripts in SQL, .NET or
Java. This chapter describes how to implement synchronization scripts in
Java.

☞ For a description and comparison of SQL, Java, and .NET, see“Options
for writing synchronization logic” on page 31.

☞ For information about writing scripts, see“Writing Synchronization
Scripts” on page 37.

☞ For information about writing scripts in .NET, see“Writing
Synchronization Scripts in .NET” on page 251.

Contents Topic: page

Introduction 228

Setting up Java synchronization logic 229

Running Java synchronization logic 231

Writing Java synchronization logic 232

Java synchronization example 240

MobiLink Java API Reference 246

227

Introduction
MobiLink synchronization scripts can be written in Java. Java
synchronization logic can function just as SQL logic functions: the
MobiLink synchronization server can make calls to Java methods on the
occurrence of MobiLink events just as it accesses SQL scripts on the
occurrence of MobiLink events. A SQL string may be returned as a Java
method to MobiLink.

This section tells you how to set up, develop, and run Java synchronization
logic. It includes a sample application and the MobiLink Java API.

228

Chapter 10. Writing Synchronization Scripts in Java

Setting up Java synchronization logic
When you install SQL Anywhere Studio, the installer automatically sets the
location of the MobiLink Java API classes. When you start the MobiLink
synchronization server, it automatically includes these classes in your
classpath. The MobiLink Java API classes are installed to Java\mlscript.jar
in your SQL Anywhere Studio installation directory. MobiLink uses the
ASANYSH* environment variables to determine the shared component path.

☞ For more information, see “ASANYSH9 environment variable”[ASA
Database Administration Guide,page 245].

❖ To implement synchronization scripts in Java

1. Create your own class or classes. Write a method for each required
synchronization script. These methods must be public. The class must be
public in the package.

☞ For more information about methods, see“Methods” on page 234.

Each class with non-static methods should have a public constructor. The
MobiLink synchronization server automatically instantiates each class
the first time a method in that class is called. The class constructor may
have one of two signatures, as described below.

☞ For more information about constructors, see“Constructors” on
page 233.

2. When compiling the class, you must include the JAR file
java\mlscript.jar.

For example,

javac MyClass.java -classpath %asany9% \java \mlscript.jar

3. In your consolidated database, specify the name of the package, class, and
method to call for each script. One class is permitted per script version.

This information is stored in the MobiLink system tables. The
script_language column of the ml_script table must contain the word
java. The string in the script column, which contains a statement for
scripts implemented in SQL, must instead contain the qualified name of a
public Java method.

The easiest way to add this information to the MobiLink system tables is
to use the ml_add_java_connection_script stored procedure or the
ml_add_java_table_script stored procedure. You can also add this
information using Sybase Central.

229

☞ For more information, see “ml_add_java_connection_script”
[MobiLink Synchronization Reference,page 266]and
“ml_add_java_table_script”[MobiLink Synchronization Reference,page 267].

For example, the following statement, when run in an Adaptive Server
Anywhere database, specifies that myPackage.myClass.myMethod
should be run whenever the authenticate_user connection-level event
occurs.

call ml_add_java_connection_script(’version1’,
’authenicate_user’, ’myPackage.myClass.myMethod’)

The example code below, for use with the Sample application, calls Java
procedures to add connection and table script data to the MobiLink
system tables.

call ml_add_java_connection_script(’ver1’, ’authenticate_
user’,

’CustEmpScripts.authenticateUser’)
call ml_add_java_connection_script(’ver1’, ’end_connection’,

’CustEmpScripts.endConnection’)
call ml_add_java_table_script(’ver1’, ’emp’, ’upload_

cursor’,
’CustEmpScripts.empUploadCursor’)

call ml_add_java_table_script(’ver1’, ’emp’,
’download_cursor’, ’CustEmpScripts.empDownloadCursor’)

call ml_add_java_table_script(’ver1’, ’cust’, ’upload_
cursor’,

’CustEmpScripts.custUploadCursor’)
call ml_add_java_table_script(’ver1’, ’cust’,

’download_cursor’,
’CustEmpScripts.custDownloadCursor’)

4. A vital part of setting up for using Java synchronization logic is to
establish aclasspathto tell the virtual machine where to look for Java
classes. There are two ways to do this:

♦ To set the classpath for user-defined classes, use a statement such as
the following:

SET classpath=%classpath%;c: \local \Java \myclasses.jar

♦ Use the dbmlsrv9 -sl java -cp option to specify a set of directories or
jar files in which to search for classes.

☞ For more information about -cp, see “-sl java option”[MobiLink
Synchronization Reference,page 19].

230

Chapter 10. Writing Synchronization Scripts in Java

Running Java synchronization logic
If your system classpath includes your Java synchronization logic classes,
you do not need to make changes to your MobiLink synchronization server
command line.

You can use the -sl java option to force the Java virtual machine to load at
server startup. Otherwise, the Java virtual machine is started when the first
Java method is executed.

dbmlsrv9 -c "dsn=MyDataSource" -sl java ...

You also can set the classpath and pass flags to the Java virtual machine on
the MobiLink synchronization server command line. The MobiLink
synchronization server automatically appends the location of the MobiLink
Java API classes (java\mlscript.jar) to your classpath.

dbmlsrv9 -c "dsn=MyDataSource" -sl java (-cp c: \local \Java \
myclass.jar)

☞ For more information about the available Java options, see “-sl java
option” [MobiLink Synchronization Reference,page 19].

231

Writing Java synchronization logic
Writing Java synchronization logic is no different in complexity from writing
any other Java code. What is required from you is knowledge of MobiLink
events, some knowledge of Java, and knowledge of the MobiLink Java API.
The following sections help you write useful synchronization logic.

In this release, the row data for the upload and download streams are not
passed to the Java synchronization logic. Java synchronization logic can be
used to maintain state information, and implement logic around the upload
and download events. For example, a begin_synchronization script written
in Java could store the MobiLink user ID in a variable. Scripts called later in
the synchronization process can access this variable.

Using Java reduces dependence on the consolidated database. Behavior is
affected less by upgrading the consolidated database to a new version or
switching to a different database-management system.

☞ For a complete description of the API, see“MobiLink Java API
Reference” on page 246.

Class instances

The MobiLink synchronization server instantiates your classes at the
connection level. When an event is reached for which you have written a
non-static Java method, the MobiLink synchronization server automatically
constructs the class, if it has not already done so on the present connection.
To do so, it uses the class constructor.

For each database connection, once a class has been instantiated, the class
persists until that connection is closed. Thus, the same instance may well be
used for multiple consecutive synchronization sessions. Information present
in public or private variables will thus persist across synchronizations that
occur on the same connection unless explicitly cleared.

You can also use static classes or variables. In this case, the values are
available across all connections.

The MobiLink synchronization server automatically deletes your class
instances only when the connection to the consolidated database is closed.

All methods in one script version called on the same connectionmust belong
to the same class.

Transactions

The normal rules regarding transactions apply to Java methods. The start
and duration of database transactions is critical to the synchronization

232

Chapter 10. Writing Synchronization Scripts in Java

process. Transactions must be started and ended only by the MobiLink
synchronization server. Explicitly committing or rolling back transactions
on the synchronization connection within a Java method violates the
integrity of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink
synchronization server and, in particular, to SQL statements returned by
methods. If your classes create other database connections, you are free to
manage them as you please.

SQL-Java data types

The following table shows SQL data types and the corresponding Java data
types.

SQL data type Corresponding Java data type

VARCHAR java.lang.String

CHAR java.lang.String

INTEGER Int or Integer

BINARY byte[]

TIMESTAMP java.sql.Timestamp

INOUT INTEGER ianywhere.ml.script.InOutInteger

INOUT VARCHAR ianywhere.ml.script.InOutString

INOUT CHAR ianywhere.ml.script.InOutString

INOUT BYTEARRAY ianywhere.ml.script.InOutByteArray

The MobiLink synchronization server automatically adds this package to
your classpath if it is not already present.

However, when you compile your class you need to add the path of
java\mlscript.jar, from your SQL Anywhere Studio installation directory.

Constructors

The constructor of your class may have one of two possible signatures.

public MyScriptClass (
ianywhere.ml.script.DBConnectionContext sc)

or

public MyScriptClass ()

233

The synchronization context passed to you is for the connection through
which the MobiLink synchronization server is synchronizing the current
user.

ThegetConnection method of theDBConnectionContext returns the
same database connection that MobiLink is using to synchronize the present
user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink synchronization server
manages the transactions.

The MobiLink synchronization server prefers to use constructors with the
first signature. It only uses the non-argument constructor if a constructor
with the first signature is not present.

Methods

In general, you implement one method for each synchronization event.
These methods must be public. If they are private, the MobiLink
synchronization server cannot use them and will fail to recognize that they
exist.

The names of the methods are not important, as long as the names match the
names specified in the ml_script table in the consolidated database. In the
examples included in the documentation, however, the method names are the
same as those of the MobiLink events as this naming convention makes the
Java code easier to read.

The signature of your method should match the signature of the script for
that event, except that you can truncate the parameter list if you do not need
the values of parameters at the end of the list. Indeed, you should accept
only the parameters you need, because overhead is associated with passing
the parameters.

You cannot, however, overload the methods. In other words, you must
provideonly one methodper class with the name specified in the ml_script
table.

Return values Methods called for a MobiLink upload or download must return a valid
SQL-language statement. The return type of these methods must be
java.lang.String. No other return types are allowed.

The return type of all other scripts must either be java.lang.String or void.
No other types are allowed. If the return type is a string and not null, the
MobiLink synchronization server assumes that the string contains a valid
SQL statement and executes this statement in the consolidated database as it
would an ordinary SQL-language synchronization script. If a method
ordinarily returns a string but does not wish to execute a SQL statement

234

Chapter 10. Writing Synchronization Scripts in Java

against the database upon its return, it can return null.

Debugging Java classes

MobiLink provides various information and facilities that you may find
helpful when debugging your Java code. This section describes where you
can find this information and exploit these capabilities.

Information in the
MobiLink synchronization
server’s log file

The MobiLink synchronization server writes various related information to
its output log file. The synchronization server log file contains the following
information:

♦ The Java Runtime Environment. You can use the -jrepath option to
request a particular JRE when you start the MobiLink synchronization
server. The default is the path installed with Adaptive Server Anywhere 9.

♦ The path of the standard Java classes loaded. If you did not specify these
explicitly, the MobiLink synchronization server automatically adds them
to your classpath before invoking the Java virtual machine.

♦ The fully specified names of the specific methods invoked. You can use
this information to verify that the MobiLink synchronization server is
invoking the correct methods.

♦ Any output written in a Java method to java.lang.System.out or
java.lang.System.err is redirected to the MobiLink synchronization server
log file.

♦ The dbmlsrv9 command line option -verbose can be used.

☞ For more information, see “-sl java option”[MobiLink Synchronization
Reference,page 19].

Using a Java debugger You can debug your Java classes using a standard Java debugger. Specify the
necessary parameters using the -sl java option on the dbmlsrv9 command
line.

☞ For more information, see “-sl java option”[MobiLink Synchronization
Reference,page 19].

Specifying a debugger causes the Java virtual machine to pause and wait for
a connection from a Java debugger.

Printing information from
Java

Alternatively, you may choose to add statements to your Java methods that
print information to the MobiLink output log, using java.lang.System.err or
java.lang.System.out. Doing so can help you track the progress and behavior
of your classes.

235

Performance tip
Printing information in this manner is a useful monitoring tool, but is not
recommended in a production scenario.

The same technique can be exploited to log arbitrary synchronization
information or collect statistical information on how your scripts are used.

Writing your own test
driver

You may wish to write your own driver to exercise your Java classes. This
approach can be helpful because it isolates the actions of your Java methods
from the rest of the MobiLink system.

Handling MobiLink server errors in Java

When scanning the log is not sufficient, you can monitor your applications
programmatically. For example, you can send messages of a certain type in
an email.

You can write methods that are passed a class representing every error or
warning message that is printed to the log. This may help you monitor and
audit a MobiLink synchronization server.

The following code installs a LogListener for all warning messages, and
writes the information to a file.

class TestLogListener implements LogListener {
FileOutputStream _out_file;

public TestLogListener(FileOutputStream out_file)
{

_out_file = out_file;
}

public void messageLogged(ServerContext sc,
LogMessage msg)

{
String type;
String user;
try {

if(msg.getType() == LogMessage.ERROR) {
type = "ERROR";

} else if(msg.getType() == LogMessage.WARNING)
{

type = "WARNING";
} else {

type = "UNKNOWN!!!";
}

236

Chapter 10. Writing Synchronization Scripts in Java

user = msg.getUser();
if(user == null) {

user = "NULL";
}
_out_file.write(

("Caught msg type=" + type +
" user=" + user +
" text=" +msg.getText() +
" \n").getBytes());

_out_file.flush();
} catch(Exception e) {

// print some error output to the MobiLink log
e.printStackTrace();

}
}

}

// This line of code will register TestLogListener to receive
// warning messages. Call this code from anywhere that has
// access to the ServerContext such as a class constructor or
// synchronization script. ServerContext serv_context;
serv_context.addWarningListener(

new MyLogListener(ll_out_file));

See also addErrorListener, removeErrorListener, addWarningListener,
removeWarningListener in“ServerContext interface” on page 248

“LogListener interface” on page 247

“LogMessage class” on page 247

User-defined start classes

You can define start classes that are loaded automatically when the server is
started. The purpose of this feature is to allow you to write Java code that
executes at the time the MobiLink server starts the JVM—before the first
synchronization. This means you can create connections or cache data
before a user synchronization request.

You do this with the DMLStartClasses option of the dbmlsrv9 -sl java
option. For example, the following is part of a dbmlsrv9 command line. It
causes mycl1 and mycl2 to be loaded as start classes.

-sl java(-DMLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is
listed more than once, more than one instance is created.

All start classes must be public and must have a public constructor that
either accepts no arguments or accepts one argument of type
ianywhere.ml.script.ServerContext.

237

The names of loaded start classes are output to the MobiLink log with the
message “Loaded JAVA start class:classname”.

☞ For more information about Java virtual machine options, see “-sl java
option” [MobiLink Synchronization Reference,page 19].

☞ To see the start classes that are constructed at server start time, see
“getStartClassInstances” on page 248.

Example Following is a template start class. It starts a daemon thread that processes
events and creates a database connection. (Not all start classes will need to
create a thread but if a thread is spawned it should be a daemon thread.)

import ianywhere.ml.script.*;
import java.sql.*;

public class StartTemplate extends
Thread implements ShutdownListener {

//===
ServerContext _sc;
Connection _conn;
boolean _exit_loop;

public StartTemplate(ServerContext sc)
//===

throws SQLException
{

// perform setup first so that an exception will
// cause MobiLink startup to fail

_sc = sc;
// create a connection for use later
_conn = _sc.makeConnection();
_exit_loop = false;
setDaemon(true);
start();

}

238

Chapter 10. Writing Synchronization Scripts in Java

public void run()
//===============
{

_sc.addShutdownListener(this);
// we can’t throw any exceptions through run()
try {

handlerLoop();
_conn.close();
_conn = null;

} catch(Exception e) {
// print some error output to the MobiLink log
e.printStackTrace();
// we will die so we don’t need to be notified
// of shutdown
_sc.removeShutdownListener(this);
// ask server to shutdown so that this fatal
// error will be fixed
_sc.shutdown();

}
// shortly after return this thread will no longer
// exist
return;

}

public void shutdownPerformed(ServerContext sc)
//===
// stop our event handler loop
{

try {
// wait max 10 seconds for thread to die

join(10*1000);
} catch(Exception e) {

// print some error output to the MobiLink log
e.printStackTrace();

}
}

private void handlerLoop()
//================throws InterruptedException
{

while(!_exit_loop) {
// Handle events in this loop. Sleep not
// needed, we should block on event queue.
sleep(1*1000);

}
}

}

239

Java synchronization example
Java synchronization logic works with MobiLink and common Java classes
to provide you with flexibility in deploying applications using MobiLink
synchronization server. The following section introduces you to this
extended range of functionality using a simple example.

Introduction

This section describes a working example of Java synchronization logic.
Before you try to use this class or write your own class, use the following
checklist to ensure you have all the pieces in place before compiling the
class.

♦ Plan your desired functionality using, for example, pseudocode.

♦ Create a map of database tables and columns.

♦ Set up the consolidated database by ensuring you have specified in the
MobiLink system tables the language type and location of the Java
synchronization methods.

☞ For more information see“Setting up Java synchronization logic” on
page 229.

♦ Create a list of associated Java classes that are called during the running
of your Java class.

♦ Have a location for your Java classes that is in the classpath for MobiLink
synchronization server.

Plan The Java synchronization logic for this example points to the associated Java
files and classes that contain functionality needed for the example to work. It
will show you how to create a classCustEmpScripts . It shows you how to
set up a synchronization context for the connection. Finally, the example
provides Java methods to

♦ Authenticate a MobiLink user

♦ Perform download and upload operations using cursors for each database
table.

Schema The tables to be synchronized are emp and cust. The emp table has three
columns called emp_id, emp_name and manager. The cust table has three
columns called cust_id, cust_name and emp_id. All columns in each table
are synchronized. The mapping from consolidated to remote database is
such that the table names and column names are identical in both databases.
One additional table, an audit table, is added to the consolidated database.

240

Chapter 10. Writing Synchronization Scripts in Java

Java class files The files used in the example are included in the
Samples\MobiLink\JavaAuthenticationdirectory.

Create your Java synchronization script

Setup The following sets up the Java synchronization logic. The import statements
tell the Java virtual machine the location of needed files. The public class
statement declares the class.

// use a package when you create your own script
import ianywhere.ml.script.InOutInteger;
import ianywhere.ml.script.DBConnectionContext;
import ianywhere.ml.script.ServerContext;
import java.sql.*;
public class CustEmpScripts {
/* Context for this synchronization connection.
*/

DBConnectionContext _conn_context;
/* Same connection MobiLink uses for sync we can’t commit or

* close this.
*/

Connection _sync_connection;
Connection _audit_connection;

/* Get a user id given the user name. On audit connection.
*/

PreparedStatement _get_user_id_pstmt;
/* Add record of user logins added. On audit connection.
*/

PreparedStatement _insert_login_pstmt;
/* Prepared statement to add a record to the audit table.

* On audit connection.
*/

PreparedStatement _insert_audit_pstmt;

TheCustEmpScripts constructor sets up all the prepared statements for
theauthenticateUser method. It sets up member data.

241

public CustEmpScripts(DBConnectionContext cc)
throws SQLException

{
try

{
_conn_context = cc;
_sync_connection = _conn_context.getConnection();

ServerContext serv_context =
_conn_context.getServerContext();
_audit_connection = serv_context.makeConnection();

// get the prep statements ready
_get_user_id_pstmt =
_audit_connection.prepareStatement(

"select user_id from ml_user where name = ?"
);

_insert_login_pstmt =

_audit_connection.prepareStatement(
"insert into login_added(ml_user, add_time)
" + " values(?, { fn CONVERT({ fn NOW() },
SQL_VARCHAR) })"
);

_insert_audit_pstmt =
_audit_connection.prepareStatement(
"insert into login_audit(ml_user_id,
audit_time, audit_action) " +
" values(?, { fn CONVERT({ fn NOW() },
SQL_VARCHAR) }, ?) "
);

} catch (SQLException e) {
freeJDBCResources();
throw e;

} catch (Error e) {
freeJDBCResources();
throw e;

}
}

The finalize method cleans up JDBC resources if end_connection is not
called.

protected void finalize()
throws SQLException, Throwable

{
super.finalize();
freeJDBCResources();

}

The freeJDBCResources method frees allocated memory and we close the
audit connection. It is a housekeeping procedure.

242

Chapter 10. Writing Synchronization Scripts in Java

private void freeJDBCResources()
throws SQLException

{
if(_get_user_id_pstmt != null) {

_get_user_id_pstmt.close();
}
if(_insert_login_pstmt != null) {

_insert_login_pstmt.close();
}
if(_insert_audit_pstmt != null) {

_insert_audit_pstmt.close();
}
if(_audit_connection != null) {

_audit_connection.close();
}
_conn_context = null;
_sync_connection = null;
_audit_connection = null;
_get_user_id_pstmt = null;
_insert_login_pstmt = null;
_insert_audit_pstmt = null;

}

TheendConnection method cleans up resources once the resources are not
needed. This is also a housekeeping procedure.

public void endConnection()
throws SQLException

{
freeJDBCResources();

}

The authenticateUser method below approves all user logins and logs user
information to database tables. If the user is not in the ml_user table they are
logged to login_added. If the user id is found in ml_user then they are
logged to login_audit. In a real system we would not ignore the
user_password but in order to keep this sample simple we approve all users.
The procedure throws SQLException if any of the database operations we
perform fail with an exception

243

public void authenticateUser(InOutInteger auth_status,
String user_name)

throws SQLException
{

boolean new_user;
int user_id;

// get ml_user id
_get_user_id_pstmt.setString(1, user_name);
ResultSet user_id_rs =
_get_user_id_pstmt.executeQuery();
new_user = !user_id_rs.next();
if(!new_user) {

user_id = user_id_rs.getInt(1);
} else {

user_id = 0;
}

user_id_rs.close();
user_id_rs = null;
// in this tutorial always allow the login
auth_status.setValue(1000);
if(new_user) {

_insert_login_pstmt.setString(1, user_name);
_insert_login_pstmt.executeUpdate();
java.lang.System.out.println("user: " +

user_name + " added. ");
} else {

_insert_audit_pstmt.setInt(1, user_id);
_insert_audit_pstmt.setString(2, "LOGIN ALLOWED");
_insert_audit_pstmt.executeUpdate();

}
_audit_connection.commit();
return;

}

The following methods use SQL code to act as cursors on the database
tables. Since these are cursor scripts, they must return a SQL string.

public static String empUploadInsertStmt()
{

return("INSERT INTO emp(
emp_id, emp_name) VALUES(?, ?) ");

}

public static String empUploadDeleteStmt()
{

return("DELETE FROM emp WHERE emp_id = ?");
}

public static String empUploadUpdateStmt()
{

return("UPDATE emp SET emp_name = ?
WHERE emp_id = ? ");

}

244

Chapter 10. Writing Synchronization Scripts in Java

public static String empDownloadCursor()
{

return("SELECT emp_id, emp_name FROM emp");
}

public static String custUploadInsertStmt()
{

return("INSERT INTO cust(
cust_id, emp_id, cust_name)
VALUES (?, ?, ?) ");

}

public static String custUploadDeleteStmt()
{

return("DELETE FROM cust WHERE cust_id = ? ");
}

public static String custUploadUpdateStmt()
{

return("UPDATE cust
SET emp_id = ?, cust_name = ?
WHERE cust_id = ? ");

}

public static String custDownloadCursor()
{

return("SELECT cust_id, emp_id, cust_name
FROM cust");

}
}

This code would be compiled using the command

javac -cp %asany9% \java \mlscript.jar CustEmpScripts.jar

and we could run the MobiLink synchronization server with the location of
CustEmpScripts.class in the classpath. Following is a partial command line:

dbmlsrv9 ... -sl java (-cp <class_location>)

245

MobiLink Java API Reference
This section explains the MobiLink Java interfaces and classes, and their
associated methods and constructors.

DBConnectionContext interface

An encapsulation of context that lives for the duration of one database
connection. A DBConnectionContext is not valid outside of the thread that
calls into the user written Java code. If context is required for a background
thread or beyond the lifetime of a connection use a ServerContext.

getConnection method public java.sql.Connection getConnection()
throws java.sql.SQLException

Returns the existing connection java.sql.Connection as a JDBC connection.
The connection is the same connection that MobiLink uses to execute SQL
scripts.

This connection must not be committed, closed or altered in any way that
would affect the MobiLink server use of this connection. The connection
returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has
been called for that connection.

If an error occurs binding the existing connection as a JDBC connection then
it throws java.sql.SQLException

If a server connection with full access is required, use
ServerContext.makeConnection().

getServerContext
method

public ServerContext getServerContext()

Returns the ServerContext for this MobiLink server.

InOutByteArray interface

Passed into methods to enable the functionality of an in/out parameter
passed to a SQL script.

getValue method public byte[] getValue()

Returns the value of this byte array parameter.

setValue method public void setValue(byte[] new_value)

Sets the value of this byte array parameter. There is one parameter,
new_value, which is the value this byte array should take.

246

Chapter 10. Writing Synchronization Scripts in Java

InOutInteger interface

Passed into methods to enable the functionality of an in/out parameter
passed to a SQL script.

getValue method public int getValue()

Returns the value of this integer parameter.

setValue method public void setValue(int new_value)

Sets the value of this integer parameter. There is one parameter,new_value,
which is the value this integer should take.

InOutString interface

Passed into methods to enable the functionality of an in/out parameter
passed to a SQL script.

getValue method public java.lang.String getValue()

Returns the value of this string parameter.

setValue method public void setValue(int new_value)

Sets the value of this integer parameter. There is one parameter,new_value,
which is the value this string should take.

LogListener interface

The listener interface for catching messages that are printed to the log.

messageLogged method public void messageLogged(
ServerContext sc
LogMessage message)

Invoked when a message is printed to the log. There are two parameters:sc,
which is the context for the server that is printing the message; andmessage,
which is the LogMessage that has been sent to the MobiLink log.

LogMessage class

Holds the data associated with a log message.

Extends java.lang.Object

Constants int ERROR

247

int WARNING

getType method public int getType()

Accessor for this message type.

Returns the type of this message, which can be either ERROR or
WARNING.

getUser method public java.lang.String getUser()

Accessor for this message user. If the message has no user, then the user is
NULL.

Returns the user associated with this message.

getText method public java.lang.String getText()

Accessor for the message text.

Returns the main text of this message.

ServerContext interface

An instantiation of all the context that is present for the duration of the
MobiLink server. This context can be held as static data and used in a
background thread. It is valid for the duration of the Java virtual machine
invoked by MobiLink.

addShutdownListener public void addShutdownListener (ShutdownListener sl)

Adds the specified ShutdownListener that is to receive notification before
the server context is destroyed. On shutdown, the method
ShutdownListener.shutdownPerformed (ianywhere.ml.script.ServerContext)
is called. There is one parameter,sl, which specifies that the
ShutdownListener is to be notified on shutdown.

removeShutdownListener public void removeShutdownListener (ShutdownListener sl)

Removes the specified ShutdownListener from the list of listeners that are to
receive notification before the server context is destroyed. There is one
parameter,sl, which specifies the listener that will no longer be notified on
shutdown.

shutdown public void shutdown()

Forces the server to shut down.

getStartClassInstances public java.lang.Object[] getStartClassInstances()

248

Chapter 10. Writing Synchronization Scripts in Java

Gets an array of the start classes that were constructed at server start time.
The array length is zero if there are no start classes.

☞ For more information about user-defined start classes, see“User-defined
start classes” on page 237.

Following is an example of getStartClassInstances():

Object objs[] = sc.getStartClassInstances();
int i;
for(i=0; i<objs.length; i+=1) {

if(objs[i] instanceof MyClass) {
//use class

}
}

makeConnection method public java.sql.Connection makeConnection()
throws java.sql.SQLException

Opens and returns a new server connection. To access the server context, use
DBConnectionContext.getServerContext on the synchronization context for
the current connection. If an error occurs opening a new connection, the
method throws java.sql.SQLException.

addErrorListener method public void addErrorListener(LogListener ll)

Adds the specified LogListener to receive a notification when an error is
printed.

ll is the LogListener that is to be notified.

The following method will be called:
LogListener.messageLogged(ianywhere.ml.script.ServerContext,
ianywhere.ml.script.LogMessage).

removeError Listener
method

public void removeErrorListener(LogListener ll)

Removes the specified LogListener from the list of listeners that are to
receive a notification when an error is printed.

ll is the LogListener that is no longer to be notified.

addWarningListener
method

public void addWarningListener(LogListener ll)

Adds the specified LogListener to receive a notification when a warning is
printed.

ll is the LogListener that is to be notified.

The following method will be called:
LogListener.messageLogged(ianywhere.ml.script.ServerContext,
ianywhere.ml.script.LogMessage).

249

removeWarningListener
method

public void removeWarningListener(LogListener ll)

Removes the specified LogListener from the list of listeners that are to
receive a notification when a warning is printed.

ll is the LogListener that is no longer to be notified.

ServerException class

Thrown to indicate that there is an error condition that makes any further
synchronization on the server impossible. Throwing this exception causes
the MobiLink server to shut down.

ServerException
constructors

public ServerException()

Constructs a ServerException with no detail message.

public ServerException(java.lang.String s)

Constructs a ServerException with a specified detail message. There is one
parameter,s, which specifies the detailed message.

ShutdownListener interface

The listener interface for catching server shutdowns. Use this interface to
ensure that all resources, threads, connections, and so on are cleaned up
before the server exits.

shutdownPerformed
method

public void shutdownPerformed(ServerContext sc)

Invoked before the ServerContext is destroyed due to server shutdown.
There is one parameter, sc, which is the context for the server that is being
shut down.

SynchronizationException class

Thrown to indicate that there is an error condition that makes the completion
of the current synchronization impossible. Throwing this exception will
force the MobiLink server to rollback.

SynchronizationException
constructors

public SynchronizationException()

Constructs a SynchronizationException with no detail message.

public SynchronizationException(java.lang.String s)

Constructs a SynchronizationException with the specified detail message.
There is one parameter, s, which specifies a detail message.

250

CHAPTER 11

Writing Synchronization Scripts in .NET

About this chapter You control the actions of the MobiLink synchronization server by writing
synchronization scripts. You can implement these scripts in SQL, Java, or
.NET. This chapter describes how to implement synchronization scripts in
.NET.

☞ For information about writing scripts, see“Writing Synchronization
Scripts” on page 37.

☞ For a description and comparison of SQL, Java, and .NET, see“Options
for writing synchronization logic” on page 31.

☞ For information about writing scripts in Java, see“Writing
Synchronization Scripts in Java” on page 227.

Contents Topic: page

Introduction 252

Setting up .NET synchronization logic 253

Running .NET synchronization logic 255

Writing .NET synchronization logic 260

.NET synchronization example 266

MobiLink .NET API Reference 269

251

Introduction
☞ Microsoft .NET is a platform for building, deploying, and running Web
services and applications.

☞ MobiLink supports Visual Studio .NET programming languages for
writing synchronization scripts. To write MobiLink scripts in .NET, you can
use any language that lets you create valid .NET assemblies. In particular,
the following languages are tested and documented:

♦ C#

♦ Visual Basic .NET

♦ C++

.NET synchronization logic can function just as Java logic functions: the
MobiLink synchronization server can make calls to .NET methods on the
occurrence of MobiLink events. A SQL string may be returned to MobiLink.

This section tells you how to set up, develop, and run .NET synchronization
logic for C#, Visual Basic .NET, and C++. It includes a sample application
and the MobiLink .NET API Reference.

252

Chapter 11. Writing Synchronization Scripts in .NET

Setting up .NET synchronization logic
☞ The most important part of implementing synchronization scripts in
.NET is telling MobiLink where to find the packages, classes, and methods
that are contained in your assemblies. This is described, below.

❖ To implement synchronization scripts in .NET

1. Create your own class or classes. Write a method for each required
synchronization event. These methods must be public.

☞ For more information about methods, see“Methods” on page 262.

Each class with non-static methods should have a public constructor. The
MobiLink synchronization server automatically instantiates each class
the first time a method in that class is called for a connection. The class
constructor may have one of two signatures, as described below.

☞ For more information about constructors, see“Constructors” on
page 261.

2. In the MobiLink system tables in your consolidated database, specify the
name of the package, class, and method to call for each script.
Optionally, specify the domain. One class is permitted per script version.

The script_language column of the ml_script system table must contain
the worddnet. The string in the script column, which contains a
statement for scripts implemented in SQL, must instead contain the
qualified name of a public .NET method.

The easiest way to add this information to the MobiLink system tables is
to use the ml_add_dnet_connection_script stored procedure or the
ml_add_dnet_table_script stored procedure. You can also add this
information using Sybase Central.

☞ For more information, see “ml_add_dnet_connection_script”
[MobiLink Synchronization Reference,page 264]and
“ml_add_dnet_table_script”[MobiLink Synchronization Reference,page 265].

For example, the following statement, when run in an Adaptive Server
Anywhere database, specifies that myNamespace.myClass.myMethod
should be run whenever the authenticate_user connection-level event
occurs.

call ml_add_dnet_connection_script(’version1’,
’authenicate_user’, ’myNamespace.myClass.myMethod’)

3. Create one or more assemblies. You tell MobiLink where to locate these
assemblies using options on the dbmlsrv9 command line. There are two
options to choose from:

253

♦ Use -sl dnet (-MLAutoLoadPath) This sets the given path to the
application base directory and loads all the assemblies within it. You
should use this option in most cases.

♦ Use -sl dnet (-MLDomConfigFile) This option requires a
configuration file that contains domain and assembly settings. You
should use this option when you have shared assemblies, when you
don’t want to load all the assemblies in a directory, or when for some
other reason you need to use a configuration file.

☞ For more information about loading assemblies, see“Loading
assemblies” on page 255. For more information about the dbmlsrv9
option -sl dnet, see “-sl dnet option”[MobiLink Synchronization Reference,
page 17].

254

Chapter 11. Writing Synchronization Scripts in .NET

Running .NET synchronization logic
This section describes how to run .NET synchronization logic.

Loading assemblies

A .NET assembly is a package of types, metadata, and executable code. In
.NET applications, all code must be in an assembly. Assembly files have the
extension.dll or .exe.

There are two types of assembly:

♦ Private assemblies A private assembly is a file in the file system.

♦ Shared assemblies A shared assembly is an assembly that is installed
in the global assembly cache.

Before MobiLink can load a class and call a method of that class, it must
locate the assembly that contains the class. MobiLink only needs to locate
the assembly that it calls directly. The assembly can then call any other
assemblies it needs.

For example, MobiLink calls MyAssembly, and MyAssembly calls
UtilityAssembly and NetworkingUtilsAssembly. In this situation, MobiLink
only needs to be configured to find MyAssembly.

MobiLink provides two ways to load assemblies:

♦ Use -sl dnet (-MLAutoLoadPath) This option only works with private
assemblies. It sets the path to the application base directory and loads all
the assemblies within it. This option is simpler to use and it is expected
that it will be sufficient in most cases.

When you use this option, you cannot specify a domain in the event
script.

When you specify a path and directory with -MLAutoLoadPath,
MobiLink does the following:

• sets this path as the application base path

• loads all classes in all files ending with.dll or .exe in the directory that
you specified

• creates one application domain and loads into that domain all user
classes that do not have a domain specified

Assemblies in the global assembly cache cannot be called directly with
this option. To call these shared assemblies, use -MLDomConfigFile.

255

♦ Use -sl dnet (-MLDomConfigFile) This option works with both
private and shared assemblies. It requires a configuration file that
contains domain and assembly settings. You should use this option when
you have shared assemblies, when you don’t want to load all the
assemblies in the application base path, or when for some other reason
you need to use a configuration file.

With this option, MobiLink reads the settings in the specified domain
configuration file. A domain configuration file contains configuration
settings for one or more .NET domains. If there is more than one domain
represented in the file, the first one that is specified is used as the default
domain. (The default domain is used when scripts do not have a domain
specified.)

Only assemblies that are specified in the domain configuration file can be
called directly from event scripts.

When loading assemblies, MobiLink tries to load the assembly first as
private, and then attempts to load the assembly from the global assembly
cache. Private assemblies must be located in the application base
directory. Shared assemblies are loaded from the global assembly cache.

Sample domain
configuration file

A sample domain configuration file is installed with MobiLink. You can
write your own file from scratch, or edit the sample to suit your needs. The
sample file is located in the SQL Anywhere Studio path, in

MobiLink\setup\dnet\mlDomConfig.xml

Following is the content of the sample domain configuration file
mlDomConfig.xml:

<?xml version="1.0" encoding="utf-8"?>
<config xmlns="iAnywhere.MobiLink.mlDomConfig"

xsi:schemaLocation=’iAnywhere.MobiLink.mlDomConfig
mlDomConfig.xsd’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’ >

<domain>
<name>SampleDomain1</name>
<appBase>C: \scriptsDir</appBase>
<configFile></configFile>
<assembly name="Assembly1" />
<assembly name="Assembly2" />

</domain>
<domain>

<name>SampleDomain2</name>
<appBase> \Dom2assembly</appBase>
<configFile> \Dom2assembly \

AssemblyRedirects.config</configFile>
<assembly name="Assembly3" />
<assembly name="Assembly4" />

</domain>
</config>

256

Chapter 11. Writing Synchronization Scripts in .NET

Following is an explanation of the contents ofmlDomConfig.xml:

♦ name is the domain name, used when specifying the domain in an event
script. An event script with the format
"DomainName:Namespace.Class.Method" would require a domain
called DomainName be in the domain configuration file.

You must specify at least one domain name.

♦ appBase is the directory that the domain should use as its application
base directory. All private assemblies are loaded by the .NET CLR based
on this directory. You must specify appBase.

♦ configFile is the .NET application configuration file that should be used
for the domain. This can be left blank. It is usually used to modify the
default assembly binding and loading behavior. Refer to your .NET
documentation for more information about application configuration files.

♦ assembly is the name of an assembly that MobiLink should load and
search when resolving type references in event scripts. You must specify
at least one assembly. If an assembly is used in more than one domain, it
must be specified as an assembly in each domain. If the assembly is
private, it must be in the application base directory for the domain.

☞ For more information about the dbmlsrv9 option -sl dnet, see “-sl dnet
option” [MobiLink Synchronization Reference,page 17].

Printing information from .NET

You may choose to add statements to your .NET methods that print
information to the MobiLink log using System.Console. Doing so can help
you track the progress and behavior of your classes.

Performance tip
Printing information in this manner is a useful monitoring tool, but is not
recommended in a production scenario.

The same technique can be exploited to log arbitrary synchronization
information or collect statistical information on how your scripts are used.

Handling MobiLink server errors with .NET

When scanning the log is not sufficient, you can monitor your applications
programmatically. For example, you can send messages of a certain type in
an email.

257

You can write methods that are passed a class representing every error or
warning message that is printed to the log. This may help you monitor and
audit a MobiLink synchronization server.

The following code installs a Listener for all error messages and prints the
information to a StreamWriter.

class TestLogListener {
public TestLogListener(StreamWriter output_file)
{

_output_file = output_file;
}
public void errCallback(ServerContext sc, LogMessage lm)
{

string type;
string user;
if(lm.Type==LogMessage.MessageType.ERROR) {

type = "ERROR";
} else if(lm.Type==LogMessage.MessageType.WARNING) {

type = "WARNING";
} else {

type = "INVALID TYPE!!";
}
if(lm.User == null) {

user = "null";
} else {

user = lm.User;
}

_output_file.WriteLine("Caught msg type=" + type +
" user=" + user +
" text=" + lm.Text);

_output_file.Flush();
}
StreamWriter _output_file;

}

// Two lines that registers the TestLogListener Call this code
// from anywhere that has access to the ServerContext such as
// a class constructor or synchronization script.
// ServerContext serv_context;
TestLogListener etll = new TestLogListener(log_listener_file);
serv_context.ErrorListener += new LogCallback(etll.errCallback);

See also “LogCallback delegate” on page 277

ErrorListener and WarningListener in“ServerContext interface” on page 277

“LogMessage class” on page 277

“MessageType enumeration” on page 277

258

Chapter 11. Writing Synchronization Scripts in .NET

Debugging .NET synchronization logic

The following procedure describes one way you can debug your .NET
scripts using Microsoft Visual Studio .NET.

❖ To debug .NET scripts

1. Compile your code with debugging information turned on:

♦ On the csc command line, set the flag/debug+
or

♦ Use Microsoft Visual Studio settings to set debug output

2. Load MobiLink in Microsoft Visual Studio.

For example, type the following partial command line:

devenv /debugexe %asany9% \win32 \dbmlsrv9.exe -c ...

This causes dbmlsrv9.exe to appear in the Solution Explorer window.

3. Set up Microsoft Visual Studio for debugging .NET code:

♦ In the Visual Studio Solution Explorer window, right-click
dbmlsrv9.exe and choose Properties.

♦ ChangeDebugger Typefrom Auto to Mixed or Managed Only.

4. Using Visual Studio, set break points in your .NET source code.

5. Start MobiLink from the Debug menu or using F5.

6. Perform a synchronization that causes the code with a breakpoint to be
executed by MobiLink.

259

Writing .NET synchronization logic
Writing .NET synchronization logic is no different in complexity from
writing any other .NET code. What is required from you is knowledge of
MobiLink events, some knowledge of .NET, and knowledge of the
MobiLink .NET API. The following sections help you write useful
synchronization logic.

In this release, the row data for the upload and download streams are not
passed to the .NET synchronization logic. .NET synchronization logic can
be used to maintain state information, and implement logic around the
upload and download events. For example, a begin_synchronization script
written in .NET could store the MobiLink user ID in a variable. Scripts
called later in the synchronization process can access this variable. Also,
you can access the rows after they are in the consolidated database and
before or after they are committed.

Using .NET reduces dependence on the consolidated database. Behavior is
affected less by upgrading the consolidated database to a new version or
switching to a different database-management system.

☞ For a complete description of the API, see“MobiLink .NET API
Reference” on page 269.

Class instances

The MobiLink synchronization server instantiates your classes at the
connection level. When an event is reached for which you have written a
non-static .NET method, the MobiLink synchronization server automatically
constructs the class, if it has not already done so on the present database
connection. To do so, it uses the class constructor.

For each database connection, once a class has been instantiated, the class
persists until that connection is closed. Thus, the same instance may well be
used for multiple consecutive synchronization sessions. Information present
in public or private variables will thus persist across synchronizations that
occur on the same connection unless explicitly cleared.

You can also use static classes or variables. In this case, the values are
available across all connections in the same domain.

The MobiLink synchronization server automatically deletes your class
instances only when the connection to the consolidated database is closed.

All methods in one script version called on the same connectionmust belong
to the same class.

260

Chapter 11. Writing Synchronization Scripts in .NET

Transactions

The normal rules regarding transactions apply to .NET methods. The start
and duration of database transactions is critical to the synchronization
process. Transactions must be started and ended only by the MobiLink
synchronization server. Explicitly committing or rolling back transactions
on the synchronization connection within a .NET method violates the
integrity of the synchronization process and can cause errors.

These rules apply only to the database connections created by the MobiLink
synchronization server and, in particular, to SQL statements returned by
methods. If your classes create other database connections, you are free to
manage them as you please.

SQL-.NET data types

The following table shows SQL data types and the corresponding .NET data
types for MobiLink script parameters.

SQL data type Corresponding .NET data type

VARCHAR string

CHAR string

INTEGER int

BINARY byte []

TIMESTAMP DateTime

INOUT INTEGER ref int

INOUT VARCHAR ref string

INOUT CHAR ref string

INOUT BYTEARRAY ref byte []

Constructors

The constructor of your class may have one of two possible signatures.

public ExampleClass(
iAnywhere.MobiLink.Script.DBConnectionContext cc)

or

public ExampleClass()

261

The synchronization context passed to you is for the connection through
which the MobiLink synchronization server is synchronizing the current
user.

ThegetConnection method of theDBConnectionContext returns the
same database connection that MobiLink is using to synchronize the present
user. You can execute statements on this connection, but you must not
commit or roll back the transaction. The MobiLink synchronization server
manages the transactions.

The MobiLink synchronization server prefers to use constructors with the
first signature. It only uses the void constructor if a constructor with the first
signature is not present.

Methods

In general, you implement one method for each synchronization event.
These methods must be public. If they are private, the MobiLink
synchronization server cannot use them and will fail to recognize that they
exist.

The names of the methods are not important, as long as the names match the
names specified in the ml_script table in the consolidated database. In the
examples included in the documentation, however, the method names are the
same as those of the MobiLink events as this naming convention makes the
.NET code easier to read.

The signature of your method should match the signature of the script for
that event, except that you can truncate the parameter list if you do not need
the values of parameters at the end of the list. Indeed, you should accept
only the parameters you need, because overhead is associated with passing
the parameters.

You cannot, however, overload the methods. In other words, you must
provideonly one methodper class with the name specified in the ml_script
table.

Return values Methods called for a MobiLink upload or download must return a valid SQL
language statement. The return type of these methods must be String. No
other return types are allowed.

The return type of all other scripts must either be string or void. No other
types are allowed. If the return type is a string and not null, the MobiLink
synchronization server assumes that the string contains a valid SQL
statement and executes this statement in the consolidated database as it
would an ordinary SQL-language synchronization script. If a method
ordinarily returns a string but does not wish to execute a SQL statement

262

Chapter 11. Writing Synchronization Scripts in .NET

against the database upon its return, it can return null.

User-defined start classes

You can define start classes that are loaded automatically when the server is
started. The purpose of this feature is to allow you to write .NET code that
executes at the time the MobiLink server starts the CLR—before the first
synchronization. This means you can create connections or cache data
before a user synchronization request.

You do this with the MLStartClasses option of the dbmlsrv9 -sl dnet option.
For example, the following is part of a dbmlsrv9 command line. It causes
mycl1 and mycl2 to be loaded as start classes.

-sl dnet(-MLStartClasses=com.test.mycl1,com.test.mycl2)

Classes are loaded in the order in which they are listed. If the same class is
listed more than once, more than one instance is created.

All start classes must be public and must have a public constructor that
either accepts no arguments or accepts one argument of type
MobiLink.Script.ServerContext.

The names of loaded start classes are output to the MobiLink log with the
message “Loaded .NET start class:classname”.

☞ For more information about .NET CLR, see “-sl dnet option”[MobiLink
Synchronization Reference,page 17].

☞ To see the start classes that are constructed at server start time, see
“GetStartClassInstances method” on page 278.

Example Following is a template start class. It starts a daemon thread that processes
events and creates a database connection. (Not all start classes will need to
create a thread but if a thread is spawned it should be a daemon thread.)

using System;
using System.IO;
using System.Threading;
using iAnywhere.MobiLink.Script;

namespace TestScripts
{

public class MyStartClass {
ServerContext _sc;
bool _exit_loop;
Thread _thread;
OdbcConnection _conn;

263

public MyStartClass(ServerContext sc)
//=====================================
{

// perform setup first so that an exception will
// cause MobiLink startup to fail
_sc = sc;
// create connection for use later
_conn = _sc.makeConnection();
_exit_loop = false;
_thread = new Thread(new ThreadStart(run)) ;
_thread.IsBackground = true;

_thread.Start();
}

public void run()
//===============
{

ShutdownCallback callback = new ShutdownCallback(
shutdownPerformed);

_sc.ShutdownListener += callback;
// we can’t throw any exceptions through run()
try {

handlerLoop();
_conn.close();
_conn = null;

} catch(Exception e) {
// print some error output to the MobiLink log
Console.Error.Write(e.ToString());
// we will die so we don’t need to be notified of
// shutdown
_sc.ShutdownListener -= callback;
// ask server to shutdown so that this fatal error will
// be fixed
_sc.Shutdown();

}
// shortly after return this thread will no longer
// exist
return;

}

public void shutdownPerformed(ServerContext sc)
//===
// stop our event handler loop
{

try {
_exit_loop = true;
// wait max 10 seconds for thread to die
_thread.Join(10*1000);

} catch(Exception e) {
// print some error output to the MobiLink log
Console.Error.Write(e.ToString());

}
}

264

Chapter 11. Writing Synchronization Scripts in .NET

private void handlerLoop()
//========================
{

while(!_exit_loop) {
// handle events in this loop
Thread.Sleep(1*1000);

}
}

}
}

265

.NET synchronization example
This example modifies an existing application to describe how to use .NET
synchronization logic to handle the authenticate_user event. It creates a C#
script for authenticate_user calledAuthUser.cs. This script looks up the
user’s password in a table called user_pwd_table and authenticates the user
based on that password.

First, add the table user_pwd_table to the database. Execute the following in
Interactive SQL:

CREATE TABLE user_pwd_table (
user_name varchar(128) PRIMARY KEY NOT NULL,
pwd varchar(128)

)

Next, add a user and password to the table:

INSERT INTO user_pwd_table VALUES(’user1’, ’myPwd’)

Create a directory for your .NET assembly. For example:

mkdir c: \mlexample

Create a file calledAuthUser.cswith the following contents:

using System;
using iAnywhere.MobiLink.Script;

namespace MLExample
{

/// <summary>
/// A simple example class the authenticates a user.
/// </summary>
/// <remarks>
/// This simple example class will compare the password
/// given for a user with the password in a table and accept
/// or reject the authentication. We don’t handle changing
/// user password. To handle changing the password we could
/// just update the user password table.</remarks>
public class AuthClass
{

private DBConnection _conn;

266

Chapter 11. Writing Synchronization Scripts in .NET

/// <summary>
/// Create the instance of AuthClass for the given MobiLink
/// connection.</summary>
/// <remarks>
/// This instance will live for the duration of
/// the MobiLink connection. This means that this instance
/// will authenticate many users just as a connection will
/// handle many synchronizations.</remarks>
/// <param name="cc">The connection that owns this
/// instance.</param>
public AuthClass(DBConnectionContext cc)
{

_conn = cc.GetConnection();
}

/// <summary>
/// Handler for ’authenticate_user’ MobiLink event.
/// </summary>
/// <remarks>
/// Handle the ’authenticate_user’ event in the simplest way
/// possible. Don’t handle password changes for any advanced
/// authStatus Codes.</remarks>
/// <param name="authStatus">The status for this
/// authenticate attempt.</param>
/// <param name="user">Name of the user to authenticate.
/// </param>
/// <param name="pwd">Password the user is authenticating
/// with.</param>
/// <param name="newPwd">The new password for the
/// authenticating user.</param>

public void DoAuthenticate(
ref int authStatus,
string user,
string pwd,
string newPwd)

{
DBCommand pwd_command = _conn.CreateCommand();
pwd_command.CommandText = "select pwd from user_pwd_table"

+ " where user_name = ? ";
pwd_command.Prepare();

// add a param for the user name that we can set later.
DBParameter user_param = new DBParameter();
user_param.DbType = SQLType.SQL_CHAR;
// we need to set the size for SQL_VARCHAR
user_param.Size = (uint)user.Length;
user_param.Value = user;
pwd_command.Parameters.Add(user_param);

267

// fetch the password for this user.
DBRowReader rr = pwd_command.ExecuteReader();
object[] pwd_row = rr.NextRow();
if(pwd_row == null) {
// user is unknown
authStatus = 4000;
} else {
if(((string)pwd_row[0]) == pwd) {

// password matched
authStatus = 1000;

} else {
// password did not match
authStatus = 4000;

}
}
pwd_command.Close();
rr.Close();
return;

}
}

}

Compile the fileAuthUser.cs. You can do this on the command line or in
Visual Studio .NET.

For example, the following command line will compileAuthUser.csand
generate an Assembly namedexample.dllin c:\mlexample. Substitute your
install directory forasany9.

csc /out:c: \mlexample \example.dll /target:library /reference: \
asany9 \win32 \iAnywhere.MobiLink.Script.dll AuthUser.cs

Register .NET code for the authenticate_user event. The method you need to
execute (DoAuthenticate) is in the namespace MLExample and class
AuthClass. Execute the following SQL:

call ml_add_dnet_connection_script(’ex_version’, ’authenticate_
user’, ’MLExample.AuthClass.DoAuthenticate’)

COMMIT

Next, run the MobiLink synchronization server with the following option.
This option causes MobiLink to load all assemblies inc:\myexample:

-sl dnet (-MLAutoLoadPath=c: \mlexample)

Now, when a user synchronizes with the version ex_version, they are
authenticated with the password from the table user_pwd_table.

268

Chapter 11. Writing Synchronization Scripts in .NET

MobiLink .NET API Reference
This section explains the MobiLink .NET interfaces and classes, and their
associated methods, properties, and constructors. To use these classes,
reference the assembly \win32\iAnywhere.MobiLink.Script.dll in your SQL
Anywhere Studio installation directory.

This section focuses on C#, but there are equivalents in Embedded Visual
Basic and C++.

DBCommand interface

public interface DBCommand
Member of iAnywhere.MobiLink.Script

Represents a SQL statement or database command. DBCommand can
represent an update or query.

For example, the following C# code uses the DBCommand interface to
execute two queries:

DBCommand stmt = conn.CreateCommand();

stmt.CommandText = "select t1a1, t1a2 from table1 ";

DBRowReader rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();

stmt.CommandText = "select t2a1 from table2 ";

rs = stmt.ExecuteReader();
printResultSet(rs);
rs.Close();
stmt.Close();

The following C# example uses DBCommand to execute an update with
parameters:

269

DBCommand cstmt = conn.CreateCommand();

cstmt.CommandText = "call myProc(?,?,?)";

cstmt.Prepare();

DBParameter param = new DBParameter();
param.DbType = SQLType.SQL_CHAR;
param.Value = "10000";
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_INTEGER;
param.Value = 20000;
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_DECIMAL;
param.Precision = 5;
param.Value = new Decimal(30000);
cstmt.Parameters.Add(param);

// Execute update
DBRowReader rset = cstmt.ExecuteNonQuery();
cstmt.Close();

Prepare method public void Prepare()

Prepare the SQL statement stored in CommandText for execution.

ExecuteNonQuery()
method

public int ExecuteNonQuery()

Execute a non-query statement. Returns the number of rows in the database
affected by the SQL statement.

ExecuteReader() method public DBRowReader ExecuteReader()

Execute a query statement returning the result set. Returns a DBRowReader
for retrieving results returned by the SQL statement.

Close() method public void Close()

Close the current SQL statement or command.

CommandText property public string CommandText

The value is the SQL statement to be executed.

DBParameterCollection
Parameters property

public DBParameterCollection Parameters

Gets the iAnywhere.MobiLink.Script.DBParameterCollection for this
DBCommand.

270

Chapter 11. Writing Synchronization Scripts in .NET

DBConnection interface

public interface DBConnection
Member of iAnywhere.MobiLink.Script

Represents a MobiLink ODBC connection.

This interface allows user-written synchronization logic to access an ODBC
connection created by MobiLink.

Commit() method public void Commit()

Commit the current transaction.

Rollback() method public void Rollback()

Roll back the current transaction.

Close() method public void Close()

Close the current connection.

CreateCommand()
method

public DBCommand CreateCommand()

Create a SQL statement or command on this connection. Returns the newly
generated DBCommand.

DBConnectionContext interface

public interface DBConnectionContext
Member of iAnywhere.MobiLink.Script

Interface for obtaining information about the current database connection.
This is passed to the constructor of classes containing scripts.

GetConnection method public iAnywhere.MobiLink.Script.DBConnection GetConnection()
Member of iAnywhere.MobiLink.Script.DBConnectionContext

Returns the existing connection. The connection is the same connection that
MobiLink uses to execute SQL scripts.

This connection must not be committed, closed or altered in any way that
would affect the MobiLink server use of the connection. The connection
returned is only valid for the lifetime of the underlying MobiLink
connection. Do not use the connection after the end_connection event has
been called for the connection.

If a server connection with full access is required, use

271

ServerContext.makeConnection().

GetServerContext
method

public iAnywhere.MobiLink.Script.ServerContext.GetServerContext()
Member of iAnywhere.MobiLink.Script.DBConnectionContext

Returns the ServerContext for this MobiLink server.

DBParameter class

public class DBParameter
Member of iAnywhere.MobiLink.Script

Represents a bound ODBC parameter.

DBParameter is required to execute commands with parameters. All
parameters must be in place before the command is executed.

For example, the following C# code uses DBCommand to execute an update
with parameters:

DBCommand cstmt = conn.CreateCommand();

cstmt.CommandText = "call myProc(?,?,?)";

cstmt.Prepare();

DBParameter param = new DBParameter();
param.DbType = SQLType.SQL_CHAR;
param.Value = "10000";
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_INTEGER;
param.Value = 20000;
cstmt.Parameters.Add(param);

param = new DBParameter();
param.DbType = SQLType.SQL_DECIMAL;
param.Precision = 5;
param.Value = new Decimal(30000);
cstmt.Parameters.Add(param);

// Execute update
DBRowReader rset = cstmt.ExecuteNonQuery();
cstmt.Close();

dbType property public SQLTYPE dbType

The value is the SQLType of this parameter.

Default: SQLType.SQL_TYPE_NULL.

Direction property public System.Data.ParameterDirection Direction

272

Chapter 11. Writing Synchronization Scripts in .NET

The value is the Input/Output direction of this parameter.

Default: ParameterDirection.Input.

IsNullable property public bool IsNullable

The value Indicates whether this parameter can be NULL.

Default: false.

ParameterName
property

public string ParameterName

The value is the name of this parameter.

Default: null.

Precision property public uint Precision

The value is the decimal precision of this parameter. Only used for
SQLType.SQL_NUMERIC and SQLType.SQL_DECIMAL parameters.

Default: 0.

Scale property public short Scale

The value is the resolvable digits of this parameter. Only used for
SQLType.SQL_NUMERIC and SQLType.SQL_DECIMAL parameters.

Default: 0.

Size property public uint Size

The value is the size in bytes of this parameter.

Default: Inferred from DbType.

Value property public object Value

The value is the value of this parameter.

Default: null.

DBParameterCollection class

public class DBParameterCollection
inherits from IDataParameterCollection , IList , ICollection , IEnumerable
Member of iAnywhere.MobiLink.Script

Collection of DBParameters. When DBCommand creates a
DBParamterCollection it is empty and must be filled with appropriate
parameters before the DBCommand executes.

DBParameterCollection(
) method

public DBParameterCollection()

273

Creates an empty list of DBParameters.

Contains(string
parameterName)
method

public bool Contains(string parameterName)

Returns true if the collection contains a parameter with the specified name.
Takes one parameter,parameterName, which is the name of the parameter.

IndexOf(string
parameterName)
method

public int IndexOf(string parameterName)

Returns index of the parameter, or -1 if there is no parameter with the given
name. Takes one parameter,parameterName, which is the name of the
parameter.

RemoveAt(string
parameterName)
method

public void RemoveAt(string parameterName)

Removes the parameter with the given name from the collection. Takes one
parameter,parameterName, which is the name of the parameter.

Add(object value)
method

public int Add(object value) method

Adds the given parameter to the collection. Takes one parameter,value,
which is the iAnywhere.MobiLink.Script.DBParameter to add to the
collection. Returns the index of the added parameter in the collection.

Clear() method public void Clear()

Removes all parameters from the collection.

Contains(object value)
method

public bool Contains(object value) method

Returns true if this collection contains the given
iAnywhere.MobiLink.Script.DBParameter. Takes one parameter,value,
which is the iAnywhere.MobiLink.Script.DBParameter.

IndexOf(object value)
method

public int IndexOf(object value)

Returns the index of the given iAnywhere.MobiLink.Script.DBParameter in
the collection. Takes one parameter,value, which is the
iAnywhere.MobiLink.Script.DBParameter.

Insert(int index, object
value) method

public void Insert(int index , object value)

Inserts the given iAnywhere.MobiLink.Script.DBParameter into the
collection at the specified index. Takes two parameters:value, which is the
iAnywhere.MobiLink.Script.DBParameter; andindex, which is the index to
insert at.

Remove(object value)
method

public void Remove(object value)

Removes the given iAnywhere.MobiLink.Script.DBParameter from the

274

Chapter 11. Writing Synchronization Scripts in .NET

collection. Takes one parameter,value, which is the
iAnywhere.MobiLink.Script.DBParameter.

RemoveAt(int index)
method

public int RemoveAt(int index)

Removes the iAnywhere.MobiLink.Script.DBParameter at the given index
in the collection. Takes one parameter,index, which is the index of the
iAnywhere.MobiLink.Script.DBParameter.

CopyTo(Array array, int
index) method

public void CopyTo(Array array , int index)

Copies the contents of the collection into the given array starting at the
specified index. Takes two parameters:array, which is the array to copy the
contents of the collection into; andindex, which is the index in the array to
begin copying the contents of the collection into.

GetEnumerator() method public IEnumerator GetEnumerator()

Returns an enumerator for the collection.

IsFixedSize property public bool IsFixedSize

Returns false.

IsReadOnly property public bool IsReadOnly

Returns false.

Count property public int Count

The number of parameters in the collection.

IsSynchronized property public bool IsSynchronized

Returns false.

SyncRoot property public object SyncRoot

Object that can be used to synchronize the collection.

this[string
parameterName]
property

public object this[string parameterName]

Gets or sets the iAnywhere.MobiLink.Script.DBParameter with the given
name in the collection. Takes one parameter,parameterName, which is the
name of the iAnywhere.MobiLink.Script.DBParameter to get or set.

this[int index] property public object this[int index]

Gets or sets the iAnywhere.MobiLink.Script.DBParameter at the given index
in the collection. Takes one parameter,index, which is the index of the
iAnywhere.MobiLink.Script.DBParameter to get or set.

275

DBRowReader interface

public interface DBRowReader
Member of iAnywhere.MobiLink.Script

Represents a set of rows being read from a database. Executing the method
DBCommand.executeReader() creates a DBRowReader.

The following example is a C# code fragment. It calls a function with the
rows in the result set represented by the given DBRowReader.

DBCommand stmt = conn.CreateCommand();

stmt.CommandText = "select intCol, strCol from table1 ";

DBRowReader rs = stmt.ExecuteReader();
object[] values = rset.NextRow();

while(values != null) {
handleRow((int)values[0], (String)values[1]);

values = rset.NextRow();
}
rset.Close();
stmt.Close();

NextRow() method public object[] NextRow()

Retrieves and returns the next row of values in the result set. If there are no
more rows in the result set, it returns NULL.

☞ See“SQLType enumeration” on page 280.

Close() method public void Close()

Cleans up resources used by this MLDBRowReader. After Close() is called,
this MLDBRowReader cannot be used again.

ColumnNames property public string[] ColumnNames

Gets the names of all columns in the result set. The value is an array of
strings corresponding to the column names in the result set.

ColumnTypes property public SQLType[] ColumnTypes

Gets the types of all columns in the result set. The value is an array of
SQLTypes corresponding to the column types in the result set.

276

Chapter 11. Writing Synchronization Scripts in .NET

LogCallback delegate

public delegate void LogCallback(
ServerContext sc
LogMessage message

)
Member of iAnywhere.MobiLink.Script

Called when the MobiLink synchronization server prints a message.

LogMessage class

public class LogMessage : iAnywhere.MobiLink.Script.LogMessage
Member of iAnywhere.MobiLink.Script

Contains information about a message printed to the log.

Type property public LogMessage.MessageType Type

The type of the log message that this instance represents.

User property public string User

The user for which this message is being logged. It may be null.

Text property public string Text

The main text of the message.

MessageType enumeration

public enum MessageType
Member of iAnywhere.MobiLink.Script.LogMessage

Enumeration of the possible types of LogMessage.

ERROR field public ERROR

A log error message.

WARNING field public WARNING

A log warning message.

ServerContext interface

public interface ServerContext
Member of iAnywhere.MobiLink.Script

277

An instantiation of all the context that is present for the duration of the
MobiLink server. This context can be held as static data and used in a
background thread. It is valid for the duration of the .NET CLR invoked by
MobiLink.

GetStartClassInstances
method

public object[] GetStartClassInstances()
Member of iAnywhere.MobiLink.Script.ServerContext

Gets an array of the start classes that were constructed at server start time.
The array length is zero if there are no start classes.

☞ For more information about user-defined start classes, see“User-defined
start classes” on page 263.

Following is an example of getStartClassInstances():

void FindStartClass(ServerContext sc, string name)
{

object[] startClasses = sc.GetStartClassInstances();

foreach(object obj in startClasses) {
if(obj is MyClass) {

// Execute some code.....
}

}
}

LogCallback
ErrorListener event

This event is triggered when the MobiLink synchronization server prints an
error.

LogCallback
WarningListener event

This event is triggered when the MobiLink synchronization server prints a
warning.

MakeConnection method public iAnywhere.MobiLink.Script.DBConnection makeConnection()
Member of iAnywhere.MobiLink.Script.ServerContext

Opens and returns a new server connection. To access the server context, use
DBConnectionContext.getServerContext on the synchronization context for
the current connection.

ShutDown method public void Shutdown()
Member of iAnywhere.MobiLink.Script.ServerContext

Forces the server to shut down.

ShutdownListener
method

public event iAnywhere.MobiLink.Script.ShutdownCallback ShutdownLis-
tener(

iAnwyhere.MobiLink.Script.ServerContext sc)
Member of iAnywhere.MobiLink.Script.ServerContext

This event is triggered on shutdown. The following code is an example of
how to use this event:

278

Chapter 11. Writing Synchronization Scripts in .NET

ShutdownCallback callback = new ShutdownCallback(
shutdownHandler);

_sc.ShutdownListener += callback;

public void shutdownHandler(ServerContext sc)
//===
{
_test_out_file.WriteLine("shutdownPerformed");
}

ServerException class

public class ServerException : iAnywhere.MobiLink.Script.
ScriptExecutionException

Member of iAnywhere.MobiLink.Script

Used to signal MobiLink that an error has occurred with the server and it
should shut down immediately.

ServerException
constructors

public ServerException()
Member of iAnywhere.MobiLink.Script.ServerException

Constructs a ServerException with no detail message.

public ServerException(string message)
Member of iAnywhere.MobiLink.Script.ServerException

Creates a new ServerException with the given message. The parameter
messageis the message for this ServerException.

public ServerException(string message, SystemException ie)
Member of iAnywhere.MobiLink.Script.ServerException

Creates a new ServerException with the given message and containing the
given inner exception that caused this one. There are two parameters:
message, which is the message for this ServerException, andie, which is the
exception that caused this ServerException.

ShutdownCallback delegate

public sealed delegate ShutdownCallback : System.MulticastDelegate
Member of iAnywhere.MobiLink.Script

Called when the MobiLink synchronization server is shutting down.
Implementations of this delegate can be registered with the
ServerContext.ShutdownListener event to be called when the MobiLink
server shuts down.

279

SQLType enumeration

public enum SQLType
Member of iAnywhere.MobiLink.Script

Enumeration of all possible ODBC data types.

SQL_TYPE_NULL field public SQL_TYPE_NULL

Null data type.

SQL_UNKNOWN_TYPE
field

public SQL_UNKNOWN_TYPE

Unknown data type.

SQL_CHAR field public SQL_CHAR

UTF-8 character array of a set size. Has .NET type String.

SQL_NUMERIC field public SQL_NUMERIC

Numeric value of set size and precision. Has .NET type Decimal.

SQL_DECIMAL field public SQL_DECIMAL

Decimal number of set size and precision. Has .NET type Decimal.

SQL_INTEGER field public SQL_INTEGER

32-bit integer. Has .NET type Int32.

SQL_SMALLINT field public SQL_SMALLINT

16-bit integer. Has .NET type Int16.

SQL_FLOAT field public SQL_FLOAT

Floating point number with ODBC driver defined precision. Has .NET type
Double.

SQL_REAL field public SQL_REAL

Single precision floating-point number. Has .NET type Single.

SQL_DOUBLE field public SQL_DOUBLE

Double precision floating point number. Has .NET type Double.

SQL_DATE field public SQL_DATE

A date. Has .NET type DateTime.

280

Chapter 11. Writing Synchronization Scripts in .NET

SQL_DATETIME field public SQL_DATETIME

A date and time. Has .NET type DateTime.

SQL_TIME field public SQL_TIME

A time. Has .NET type DateTime.

SQL_INTERVAL field public SQL_INTERVAL

An interval of time. Has .NET type TimeSpan.

SQL_TIMESTAMP field public SQL_TIMESTAMP

A time stamp. Has .NET type DateTime.

SQL_VARCHAR field public SQL_VARCHAR

A null terminated UTF-8 string with a user set maximum length. Has .NET
type String.

SQL_TYPE_DATE field public SQL_TYPE_DATE

A date. Has .NET type DateTime.

SQL_TYPE_TIME field public SQL_TYPE_TIME

A time. Has .NET type DateTime.

SQL_TYPE_-
TIMESTAMP
field

public SQL_TYPE_TIMESTAMP

A timestamp. Has .NET type DateTime.

SQL_DEFAULT field public SQL_DEFAULT

A default type. Has no type.

SQL_ARD_TYPE field public SQL_ARD_TYPE

An ARD object. Has no type.

SQL_BIT field public SQL_BIT

A single bit. Has .NET type Boolean.

SQL_TINYINT field public SQL_TINYINT

An 8-bit integer. Has .NET type SByte.

SQL_BIGINT field public SQL_BIGINT

A 64-bit integer. Has .NET type Int64.

281

SQL_LONGVARBINARY
field

public SQL_LONGVARBINARY

Variable length binary data with a driver dependent maximum length. Has
.NET type byte[].

SQL_VARBINARY field public SQL_VARBINARY

Variable length binary data with a user specified maximum length. Has
.NET type byte[].

SQL_BINARY field public SQL_BINARY

Fixed length binary data. Has .NET type byte[].

SQL_LONGVARCHAR
field

public SQL_LONGVARCHAR

A null-terminated UTF-8 string with a driver-dependent maximum length.
Has .NET type String.

SQL_GUID field public SQL_GUID

A Global Unique ID (also called a UUID). Has .NET type Guid.

SQL_WCHAR field public SQL_WCHAR

Unicode character array of fixed size. Has .NET type String.

SQL_WVARCHAR field public SQL_WVARCHAR

Null-terminated Unicode string of user-defined maximum length. Has .NET
type String.

SQL_WLONGVARCHAR
field

public SQL_WLONGVARCHAR

Null-terminated Unicode string of driver-dependent maximum length. Has
.NET type String.

SynchronizationException class

public class SynchronizationException: iAnywhere.MobiLink.Script.
ScriptExecutionException

Member of iAnywhere.MobiLink.Script

Used to signal that a synchronization exception has occurred and that the
current synchronization should be rolled back and restarted.

SynchronizationException
constructors

public SynchronizationException()
Member of iAnywhere.MobiLink.Script.SynchronizationException

Constructs a SynchronizationException with no details.

282

Chapter 11. Writing Synchronization Scripts in .NET

public SynchronizationException(string message)
Member of iAnywhere.MobiLink.Script.SynchronizationException

Creates a new SynchronizationException with the given message. The
parametermessageis the message for this ServerException.

public SynchronizationException(string message, SystemException ie)
Member of iAnywhere.MobiLink.Script.SynchronizationException

Creates a new SynchronizationException with the given message and
containing the given inner exception that caused this one. There are two
parameters:message, which is the message for this ServerException, andie,
which is the exception that caused this ServerException.

283

CHAPTER 12

MobiLink Performance

About this chapter This chapter provides information that can help you improve the
performance of your MobiLink synchronization.

For more information about MobiLink performance, see theMobiLink
Performancewhitepaper athttp://my.sybase.com/detail?id=1009664.

Contents Topic: page

Performance tips 286

Key factors influencing MobiLink performance 290

Monitoring MobiLink performance 295

285

Performance tips
Following are some suggestions to help you get the best performance out of
MobiLink.

♦ Test Before deploying, perform volume testing using the same
hardware and network that you plan to use for production. Use this time
to experiment with the following performance tips.

♦ Avoid contention Avoid contention in your synchronization scripts.
Another way of putting this is that you should maximize concurrency.

For example, suppose a begin_download script increments a column in a
table to count the total number of downloads. If multiple users
synchronize at the same time, this script would effectively serialize their
downloads. The same counter would be better in the
begin_synchronization or end_synchronization script because these
scripts are called just before a commit.

☞ For more information about contention, see“Contention” on
page 291.

☞ For information on the transaction structure of synchronization, see
“Transactions in the synchronization process” on page 25.

♦ Use an optimal number of worker threads Use the MobiLink –w
option to set the number of MobiLink worker threads to the smallest
number that gives you optimum throughput. You will need to experiment
to find the best number for your situation.

A larger number of worker threads can improve throughput by allowing
more synchronizations to occur at the same time.

Keeping the number of worker threads small reduces the chance of
contention in the consolidated database, the number of connections to the
consolidated database, and the memory required for optimal caching.

For example, in tests with fast clients, it was discovered that
approximately five worker threads gave optimum throughput. For slower
clients, more worker threads were needed to maximize download
throughput, and the best upload throughput was obtained by limiting the
number that can simultaneously upload, via the -wu option. In tests with
extremely slow clients, the best throughput for both uploads and
downloads was obtained with hundreds of worker threads with only five
allowed to upload simultaneously. Note that these numbers are from a
specific set of tests. Every deployment has different characteristics, and
you must test to determine the optimal values for -w and -wu.

☞ For more information about worker threads, see“Number of worker
threads” on page 292.

286

Chapter 12. MobiLink Performance

☞ For more information, see “-w option”[MobiLink Synchronization
Reference,page 22]and “-wu option”[MobiLink Synchronization Reference,
page 23].

♦ Enable the client-side download buffer for ASA clients For Adaptive
Server Anywhere clients, a download buffer allows a MobiLink worker
thread to transmit the download without waiting for the client to apply the
download. The download buffer is enabled by default. However, the
download buffer cannot be used if download acknowledgement is
enabled (see next bullet).

☞ For more information about setting the download buffer size, see the
“DownloadBufferSize (dbs) extended option”[MobiLink Synchronization
Reference,page 48].

♦ Disable download acknowledgement for ASA clients Eliminating the
optional download acknowledgement can free up MobiLink worker
threads that are waiting for confirmation of successful download from the
client, which also frees up the connection that the worker thread is using.
It also makes it possible for MobiLink synchronization server to buffer
the downloads.

You can also disable the download acknowledgement for UltraLite
clients, but there is little performance improvement because UltraLite
clients do not buffer downloads.

☞ For more information about download acknowledgements, see the
“SendDownloadACK (sa) extended option”[MobiLink Synchronization
Reference,page 62].

♦ Set the upload cache size To avoid the situation where the upload
cache overflows to disk, set the upload cache size to be larger than the
size of your largest upload stream times the number of worker threads.
You set the upload cache size with the dbmlsrv9 –u option.

☞ For more information, see “-u option”[MobiLink Synchronization
Reference,page 20].

♦ Set the download cache size To avoid the situation where the
download buffer overflows to disk, set the download cache size to be
larger than the size of your largest download times the number of worker
threads. You set the download cache size with the dbmlsrv9 -d option.

☞ For more information about setting the memory allocated to the
download buffer, see “-d option”[MobiLink Synchronization Reference,
page 11].

♦ Set the BLOB cache size If your rows have data of type LONG
VARCHAR or LONG BINARY, you can avoid having the BLOB cache

287

access disk if you set the BLOB cache size to be larger than twice the
largest BLOB data in a row times the number of worker threads. You set
the BLOB cache size with the dbmlsrv9 -bc option.

☞ For more information, see “-bc option”[MobiLink Synchronization
Reference,page 9].

♦ Set maximum number of database connections Set the maximum
number of MobiLink database connections to be your typical number of
synchronization script versions times the number of MobiLink worker
threads, plus one. This reduces the need for MobiLink to close and create
database connections. You set the maximum number of connections with
the dbmlsrv9 -cn option.

☞ For more information, see“MobiLink database connections” on
page 293and “-cn option”[MobiLink Synchronization Reference,page 11].

♦ Have sufficient physical memory Ensure that the computer running
MobiLink has enough physical memory to accommodate the upload,
download and BLOB caches in addition to its other memory
requirements.

♦ Use sufficient processing power Dedicate enough processing power
to MobiLink so that the MobiLink server processing is not a bottleneck.
In tests with an Adaptive Server Anywhere consolidated database,
MobiLink required a third to a half of the processing required by
Adaptive Server Anywhere when both were stressed and executing on the
same computer.

♦ Use minimum logging verbosity Use the minimum logging verbosity
that is compatible with your business needs. By default, verbose logging
is off, and MobiLink does not write its log to disk. You can control
logging verbosity with the -v option, and enable logging to a file with the
-o or -ot options.

As an alternative to verbose log files, you can monitor your
synchronizations with the MobiLink Monitor. The Monitor does not need
to be on the same computer as the MobiLink synchronization server, and
a Monitor connection has negligible effect on MobiLink server
performance. For more information, see“MobiLink Monitor” on
page 297.

♦ Java or .NET vs. SQL synchronization logic No significant
throughput difference has been found between using Java or .NET
synchronization logic vs. SQL synchronization logic. However, Java and
.NET synchronization logic have some extra overhead per
synchronization and require more memory.

288

Chapter 12. MobiLink Performance

In addition, SQL synchronization logic is executed on the computer that
runs the consolidated database, while Java or .NET synchronization logic
is executed on the computer that runs the MobiLink server. Thus, Java or
.NET synchronization logic may be desirable if your consolidated
database is heavily loaded.

♦ Priority synchronization If you have some tables that you need to
synchronize more frequently than others, create a separate publication
and subscription for them. You can synchronize this priority publication
more frequently than other publications, and synchronize other
publications at off-peak times.

♦ Download only the rows you need Take care to download only the
rows that are required. It is easier to write synchronization scripts that
download all rows upon each synchronization, but downloading
unneeded rows affects synchronization performance.

♦ Optimize script execution The performance of your scripts in the
consolidated database is an important factor. It may help to create indexes
on your tables so that the upload and download cursor scripts can
efficiently locate the required rows. However, too many indexes may
slow uploads.

♦ For large uploads from ASA clients, estimate the number of rows
You can significantly improve the speed of uploading a large number of
rows by providing dbmlsync with an estimate of the number of rows that
will be uploaded. You do this with the dbmlsync -urc option.

☞ For more information, see “-urc option”[MobiLink Synchronization
Reference,page 80].

289

Key factors influencing MobiLink performance
The overall performance of any system, including throughput for MobiLink
synchronization, is usually limited by a bottleneck at one point in the
system. For MobiLink synchronization, the following might be the
bottlenecks limiting synchronization throughput:

♦ The performance of the consolidated database Of particular
importance for MobiLink is the speed at which it can execute the
MobiLink scripts. Multiple worker threads might execute scripts
simultaneously, so for best throughput you need to avoid database
contention in your synchronization scripts.

♦ The bandwidth for MobiLink to consolidated communication This is
unlikely to be a bottleneck if both MobiLink and the consolidated
database are running on the same computer, or if they are on separate
computers connected by a high-speed network.

♦ The speed of the computer running MobiLink If the processing
power of the computer running MobiLink is slow, or if it does not have
sufficient memory for the MobiLink worker threads and buffers, then
MobiLink execution speed could be a synchronization bottleneck. The
MobiLink server’s performance depends little on disk speed as long as
the buffers and worker threads fit in physical memory.

♦ The number of MobiLink worker threads A smaller number of threads
will involve fewer database connections, less chance of contention in the
consolidated database and less operating system overhead. However, too
small a number may leave clients waiting for a free worker thread, or
have fewer connections to the consolidated database than it can overlap
efficiently.

♦ The bandwidth for client-to-MobiLink communications For slow
connections, such as those over dial-up or wide-area wireless networks,
the network may cause clients and MobiLink worker threads to wait for
data to be transferred.

♦ The client processing speed Slow client processing speed is more
likely to be a bottleneck in downloads than uploads, since downloads
involve more client processing as rows and indexes are written.

Tuning MobiLink for performance

The key to achieving optimal MobiLink synchronization throughput is to
have multiple synchronizations occurring simultaneously and executing
efficiently. To enable multiple simultaneous synchronizations, MobiLink

290

Chapter 12. MobiLink Performance

assigns a worker thread to each synchronization. A worker thread receives
the changes uploaded from the client and applies them to the consolidated
database. It then fetches the changes from the consolidated database, and
downloads them to the client. Each worker thread uses a single connection
to the consolidated database for applying and fetching changes, using your
synchronization scripts.

Contention The most important factor is to avoid database contention in your
synchronization scripts. Just as with any other multi-client use of a database,
you want to minimize database contention when clients are simultaneously
accessing a database. Database rows that must be modified by each
synchronization can increase contention. For example, if your scripts
increment a counter, then updating that counter can be a bottleneck.

The figure below shows the following:

♦ a pool of connections to the consolidated database, shown as C1 to Cn

♦ a number of synchronization requests, shown as S1 to Sn

♦ MobiLink worker threads, shown as W1 to Wn

MobiLink

Consolidated
Server

C3 ...C2 CnC1

S3 ...S2 ...S1

C3 ...C2C1

...

S3 ...S2 ...S1

Remote(s)

Cn

...

W
n

W
1

W
2

W
3

Sn
... Sn

If there are more synchronization requests than worker threads, the excess
requests are queued until a worker thread becomes available after
completing a synchronization. You can control the number of worker threads

291

and connections, but MobiLink will always ensure that there is at least one
connection per worker thread. If there are more connections than worker
threads, the excess connections will be idle. Excess connections may be
useful with multiple script versions, as discussed below.

Number of worker
threads

Other than contention in your synchronization scripts, the most important
factor for synchronization throughput is the number of worker threads. The
number of worker threads controls how many synchronizations can proceed
simultaneously.

Testing is vital to determine the optimum number of worker threads.

Increasing the number of worker threads allows more overlapping
synchronizations, and increased throughput, but it will also increase resource
and database contention between the overlapping synchronizations, and
increase the time for individual synchronizations. As the number of worker
threads is increased, the benefit of more simultaneous synchronizations
becomes outweighed by the cost of longer individual synchronizations, and
adding more worker threads decreases throughput. Experimentation is
required to determine the optimal number of worker threads for your
situation, but the following may help to guide you.

For uploads, performance testing shows that the best throughput happens
with a relatively small number of worker threads: in most cases, three to ten
worker threads. Variation depends on factors like the type of consolidated
database, data volume, database schema, the complexity of the
synchronization scripts, and the hardware used. The bottleneck is usually
due to contention between worker threads executing the SQL of your upload
scripts at the same time in the consolidated database.

For downloads, the optimum number of worker threads depends on the client
to MobiLink bandwidth and the processing speed of clients. For slower
clients, more worker threads are needed to get optimal download
performance. This is because downloads involve more client processing and
less consolidated database processing than uploads.

For Adaptive Server Anywhere clients, eliminating the download
acknowledgement (and not disabling the optional download buffering) can
reduce the optimal number of worker threads for download, because worker
threads do not have to wait for clients to apply downloads. There is little
effect for UltraLite clients since UltraLite clients apply the download as it is
received, without buffering.

☞ For more information on disabling the download acknowledgement, see
the “SendDownloadACK (sa) extended option”[MobiLink Synchronization
Reference,page 62].

292

Chapter 12. MobiLink Performance

To get both the best download throughput and the best upload throughput,
MobiLink provides two options. You can specify a total number of worker
threads to optimize downloads. You can also limit the number that can
simultaneously apply uploads to optimize upload throughput.

The -w option controls the total number of worker threads. The default is
five.

The -wu option limits the number of worker threads that can simultaneously
apply uploads to the consolidated database. By default, all worker threads
can apply uploads simultaneously, but that can cause severe contention in the
consolidated database. The -wu option lets you reduce that contention while
still having a larger number of worker threads to optimize downloads and
receive uploads. The -wu option only has an effect if the number is less than
the total number of worker threads.

☞ For more information, see “-w option”[MobiLink Synchronization
Reference,page 22]and “-wu option”[MobiLink Synchronization Reference,
page 23].

MobiLink database
connections

MobiLink creates a database connection for each worker thread. You can use
the -cn option to specify that MobiLink create a larger pool of database
connections, but any excess connections will be idle unless MobiLink needs
to close a connection or use a different script version.

There are two cases where MobiLink will close a database connection and
open a new one. The first case is if an error occurs. The second case is if the
client requests a synchronization script version, and none of the available
connections have already used that synchronization version.

Note
Each database connection is associated with a script version. To change the
version, the connection must be closed and reopened.

If you have more than one synchronization version, you may want to set the
maximum number of pooled connections to be larger than the number of
worker threads, which is the default number. Then MobiLink will not need
to close and open a new database connection each time a different
synchronization version is requested.

If you routinely use more than one script version, you can reduce the need
for MobiLink to close and open connections by increasing the number of
connections. You can eliminate the need completely if the number of
connections is the number of worker threads times the number of versions.

An example of tuning MobiLink for two script versions is given in the
command line below:

293

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -w 5 -cn 10

Since the maximum usable number of database connections is the number of
script versions times the number of worker threads plus one, you can set -cn
to 10 to ensure that database connections are not closed and opened to
accommodate synchronization versions.

An example of tuning MobiLink for three script versions is:

dbmlsrv9 -c "dsn=ASA 9.0 Sample" -w 7 -cn 21

☞ For more information on setting the number of connections for any
number of script versions, see “-cn option”[MobiLink Synchronization
Reference,page 11].

294

Chapter 12. MobiLink Performance

Monitoring MobiLink performance
There are a variety of tools available to help you monitor the performance of
your synchronizations.

The MobiLink Monitor is a graphical tool for monitoring synchronizations.
It allows you to see the time taken by every aspect of the synchronization,
sorted by MobiLink user or by worker thread.

☞ For more information, see“MobiLink Monitor” on page 297.

In addition, there are a number of MobiLink scripts that are available for
monitoring synchronizations. These scripts allow you to use performance
statistics in your business logic. You may, for example, want to store the
performance information for future analysis, or alert a DBA if a
synchronization takes too long. For more information, see

♦ “download_statistics connection event”[MobiLink Synchronization
Reference,page 139]

♦ “download_statistics table event”[MobiLink Synchronization Reference,
page 142]

♦ “synchronization_statistics connection event”[MobiLink Synchronization
Reference,page 202]

♦ “synchronization_statistics table event”[MobiLink Synchronization
Reference,page 205]

♦ “time_statistics connection event”[MobiLink Synchronization Reference,
page 207]

♦ “time_statistics table event”[MobiLink Synchronization Reference,page 209]

♦ “upload_statistics connection event”[MobiLink Synchronization Reference,
page 224]

♦ “upload_statistics table event”[MobiLink Synchronization Reference,
page 227]

295

CHAPTER 13

MobiLink Monitor

About this chapter The MobiLink Monitor is a tool for monitoring MobiLink synchronizations.

Contents Topic: page

Introduction 298

Starting the MobiLink Monitor 299

Using the MobiLink Monitor 302

Saving Monitor data 307

Customizing your statistics 308

MobiLink statistical properties 310

297

Introduction
The MobiLink Monitor is a MobiLink administration tool that provides you
with detailed information about the performance of your synchronizations.

When you start the Monitor and connect it to a MobiLink synchronization
server, the Monitor begins to collect statistical information about all
synchronizations that occur in that monitoring session. The Monitor
continues to collect data until you disconnect it or shut down the MobiLink
server.

You can view the data in tabular or graphical form in the Monitor interface.
You can also save the data in binary format for viewing with the Monitor
later, or in .csv format to open in another tool, such as Microsoft Excel.

Monitor output allows you to see a wide variety of information about your
synchronizations. For example, you can quickly identify synchronizations
that result in errors, or that meet other criteria that you specify. You can
identify possible contention in synchronization scripts by checking to see if
synchronizations of differing durations have phases that end around the
same time (because synchronizations are waiting for a previous phase to
finish before they can continue).

The MobiLink Monitor can be used routinely in development and
production, because monitoring does not degrade performance, particularly
when the Monitor is run on a different computer from the MobiLink
synchronization server.

298

Chapter 13. MobiLink Monitor

Starting the MobiLink Monitor
If synchronization is already occurring when the MobiLink Monitor is
started, the Monitor must wait until a worker thread is free before it can start
monitoring. Therefore, you may want to start the Monitor before starting
synchronizations. Once the Monitor is running it does not use a MobiLink
worker thread.

You can have one instance of the Monitor running for each MobiLink
synchronization server.

❖ To start monitoring data

1. From the Start menu, choose Programs➤ SQL Anywhere 9➤ MobiLink
➤ MobiLink Monitor.

Alternatively, you can typedbmlmon at a command prompt. For details,
see below.

2. Start your consolidated database and MobiLink synchronization server, if
they are not already running.

3. In the MobiLink Monitor, choose Monitor➤ Connect to MobiLink
Server.

The Connect to MobiLink Server dialog appears.

A Monitor connection starts like a synchronization connection to the
MobiLink synchronization server. For example, if you started the
MobiLink server with -zu+ then it doesn’t matter what user ID you use
here. For all MobiLink Monitor sessions, the script version is set to
for_ML_Monitor_only.

The Connect to MobiLink Server dialog should be completed as follows:

♦ Host is the computer where the MobiLink synchronization server is
running. By default, it is the computer where the Monitor is running.

♦ Network Protocol should be set to the same protocol and port as the
MobiLink synchronization server is using for synchronization requests.

♦ Additional Network Parameters allows you to set optional
parameters. You can set the following parameters, separated by
semi-colon if you need to specify multiple parameters:

• buffer_size=number(HTTP and HTTPS only)

• client_port=nnnn
• client_port=nnnn-mmmmm
• persistent={ 0|1}

• proxy_host=proxy_hostname(HTTP and HTTPS only)

299

• proxy_port=proxy_portnumber(HTTP and HTTPS only)
• url_suffix=suffix (HTTP and HTTPS only)
• version=versionnumber(HTTP and HTTPS only)

☞ For more information about these network parameters, see “Stream
parameters reference”[UltraLite Database User’s Guide,page 179].

In the following example, the outgoing port range is restricted to
50000-51000, and a persistent HTTP connection is used.

4. Start synchronizing.

The data appears in the Monitor as it is collected.

Starting dbmlmon on the
command line

You can also start the MobiLink Monitor on the command line, using the
following syntax:

dbmlmon [connect-options | inputfile.{ mlm | csv } | -?]

where:

connect-options can be one or more of the following:

-u ml_username

-p password

-x { tcpip | http | https } [(keyword=value;...)]

300

Chapter 13. MobiLink Monitor

-o outputfile.{ mlm | csv }

-? You can typedbmlmon -? to view the dbmlmon syntax.

❖ To stop the MobiLink Monitor

1. In the Monitor, choose Monitor➤ Disconnect from MobiLink Server.
This stops the collection of data.

You can also stop collecting data by shutting down the MobiLink
synchronization server or closing the Monitor.

Before closing the Monitor, you can save the data for the session. For
more information, see“Saving Monitor data” on page 307.

2. When you are ready to close the Monitor, choose File➤ Close.

301

Using the MobiLink Monitor
Following is an example of the MobiLink Monitor when synchronization
data has been collected:

The Monitor has three panes:

♦ Details Table is the top pane. It is a spreadsheet that shows the total
time taken by each synchronization, with a breakdown showing the
amount of time taken by each part of the synchronization.

♦ Chart is the middle pane. It provides a graphical representation of the
data. The scale at the bottom of this pane represents time. You can select
the data that is displayed in the Chart by drawing a box around data in the
Overview pane; or by choosing View➤ Go To.

In the screen shot above, the cursor is hovering over the time scale, and
so a box is apparent that shows the complete date and time for the
position of the cursor.

♦ Overview is the bottom pane. It shows an overview of all the data. To
choose data to see in the Chart, click in the Overview and draw a box.
The Chart will show everything that is located in the box.

In addition, there is an Options dialog that you can use to customize the data,
and properties dialogs for viewing more detailed information. All of these
panes and dialogs are described in detail, below.

302

Chapter 13. MobiLink Monitor

Details Table pane

The Details Table provides information about how long each part of the
synchronization took. All times are measured by the MobiLink
synchronization server. Some times may be non-zero even when you do not
have the corresponding script defined.

The Details Table has the following columns:

♦ Worker Identifies the MobiLink worker thread that carried out the
synchronization. The worker is identified asn.m, wheren is the stream
number andm is the thread number.

♦ User Identifies the synchronization user.

♦ Version The version of the synchronization script.

☞ For information about script versions, see“Script versions” on
page 49.

♦ Start Time The date and time when the MobiLink synchronization
server started the synchronization. (This may be later than when the
synchronization was requested by the client.)

♦ Duration The total duration of the synchronization, in seconds.

♦ Verify The time in seconds for MobiLink to validate the
synchronization request, validate the user name, and validate the
password (if your synchronization setup requires authentication).

♦ Preload The time in seconds for MobiLink to receive the uploaded data
from the client.

♦ Begin The time in seconds to run your begin_synchronization script, if
one was run.

♦ Upload The time in seconds to apply the upload to the consolidated
database. This is the time between the begin_upload script and the
end_upload script.

♦ P.F.D. The time in seconds to run your prepare_for_download script, if
one was run.

♦ Download The time in seconds to download the data. This is the time
between the begin_download script and the end_download script. If
download acknowledgement is enabled, this includes the time to apply
the download on the remote database and return acknowledgement.

303

♦ End The time in seconds to run the end_synchronization script, if one
was run.

To sort the table by a specific column, click on the column heading.

You can close the Details Table pane by clearing View➤ Details Table.

Chart pane

The Chart pane presents the same information as the Details Table, but in
graphical format. The bars in the Chart represent the length of time taken by
each synchronization, with subsections of the bars representing the phases of
the synchronization.

Viewing data Click a synchronization to select that synchronization in the Details Table.

Double-click a synchronization to open the Synchronization Session
Properties for the synchronization. For more information, see
“Synchronization Properties” on page 306.

Grouping data by thread
or user

You can group the data by worker thread or by user. Choose View➤ By
User or View➤ By Worker Thread.

Zooming in on data There are three ways to select the data that is visible:

♦ Scrollbar Click the scrollbar at the bottom of the Chart pane and slide
it.

♦ Go To dialog Open this dialog by choosing View➤ Go To. The Go To
dialog appears:

Start Date & Time lets you specify the start time for the data that appears
in the Chart pane. If you change this setting, you must specify at least the
year, month, and date of the date-time.

Chart Range lets you specify the duration of time that is displayed. The
chart range can be specified in milliseconds, seconds, minutes, hours, or
days. The chart range determines the granularity of the data: a smaller
length of time means that more detail is visible.

♦ Overview Pane The box in the Overview pane indicates the area being
displayed in the Chart. It allows you to quickly select a portion of data to

304

Chapter 13. MobiLink Monitor

view. You can easily resize or move the box to see different data, or see
data at different granularity. If you make the box smaller you shorten the
interval of the visible data in the Chart, which makes more detail visible.
Click to move the current box without changing the zoom. Drag in the
Overview to redraw the box and select a different zoom and position.

Time axis At the bottom of the Chart pane there is a scale showing time periods. The
format of the time is readjusted automatically depending on the span of time
that is displayed. You can always see the complete date-time by hovering
your cursor over the scale.

Default color scheme You can view or set the colors in the Chart pane by opening the Options
dialog (available from the Tools menu). The default color scheme for the
Chart pane uses green for uploads, red for downloads, and blue for begin and
end phases, with a darker shade for earlier parts of a phase.

☞ For information about setting colors, see“Options” on page 305.

Overview pane

The Overview pane shows you an overview of the entire Monitor session.
The area that is currently displayed in the Chart pane is represented as a box
in the Overview. Click in the Overview pane to move the box (and thus
move the start time of the data shown in the Chart) or drag in the Overview
to redraw the box to change the box’s location and size (and thus change the
start time and the range of data)

You can separate the Overview pane from the rest of the Monitor window. In
the Options dialog, open the Overview tab and clear the Keep Overview
Window Attached to Main Window checkbox.

☞ For more information, see“Options” on page 305.

You can close the Overview pane by clearing View➤ Overview Pane.

Options

Options allow you to specify a number of settings, including colors and
patterns for the graphical display in the Chart pane (the middle pane of the
MobiLink Monitor) and the Overview pane (the bottom pane).

To open the Options dialog, open the Monitor and choose Tools➤ Options.

Restoring defaults To restore default settings, delete the file .mlMonitorSettings. This file is
stored in your user profiles directory.

305

Session Properties

The Session Properties dialog provides basic information about the
monitoring session.

To open the Session Properties dialog, open the Monitor and choose File➤

Properties. In the following example of a Session Properties dialog, data for
a series of synchronizations has been saved in a file calledcli5-20.mlm:

Synchronization Properties

Double-click a synchronization in either the Details Table or the Chart to see
properties for that synchronization.

You can choose to see statistics for all tables (which is the sum for all tables
in the synchronization), or for individual tables. The dropdown list provides
a list of the tables that were involved in the synchronization.

☞ For an explanation of the statistics in Synchronization Properties, see
“MobiLink statistical properties” on page 310.

306

Chapter 13. MobiLink Monitor

Saving Monitor data
You can save the data from a Monitor session as a binary file (.mlm) or as a
text file with comma-separated values (.csv). To save the data, choose File➤

Save As.

♦ Save the data as a binary (.mlm) file if you want to view the saved data in
the MobiLink Monitor. To reopen, choose File➤ Open.

♦ Save the data as a comma separated file (.csv) if you want to view it in
another tool, such as Microsoft Excel. This will save all the information
in the session and synchronization property sheets, except per table
information and the session begin and end time. You can also open a .csv
file in the Monitor.

In the .csv file format, time durations are stored in milliseconds.

You can specify that you want data to be saved automatically to a file. To do
this, choose Tools➤ Options, and enter an output file name on the General
tab. The output file is overwritten by new data.

307

Customizing your statistics
The Watch Manager allows you to visibly distinguish synchronizations that
meet criteria that you specify. For example, you might want to highlight big
synchronizations, long synchronizations, small synchronizations that take a
long time, or synchronizations that receive warnings.

To open the Watch Manager, open the Monitor and then click Tools➤ Watch
Manager. The Watch Manager appears:

The left pane contains a list of all available watches. The right pane contains
a list of active watches. To add or remove a watch from the active list, select
a watch in the left pane and click the appropriate button.

There are three predefined watches (Active, Completed, and Failed). You
can edit predefined watches to change the way they are displayed, and you
can deactivate them by removing them from the right pane.

No synchronizations are displayed in the Chart unless they meet the
conditions of a watch. If you disable all watches (by removing them from
the Current Watches list), then no synchronizations are shown in the Chart or
Overview.

The order of watches in the right pane is important. Watches that are closer
to the top of the list are processed first. Use the Move Up and Move Down
buttons to organize the order of watches in the right pane.

You can use the predefined watches, and create other watches. To edit a
watch condition, remove it and then add the new watch condition.

308

Chapter 13. MobiLink Monitor

❖ To create a new watch

1. In the Watch Manager, click New.

The New Watch dialog appears.

2. Give the watch a name in the Name box.

3. Select a property, comparison operator, and value.

☞ For a complete list of properties, see“MobiLink statistical
properties” on page 310.

4. Click Add. (You must click Add to save the settings.)

5. If desired, select another property, operator, and value, and click Add.

6. Select a pattern for the watch in the Chart pane. (The Chart pane is the
middle pane in MobiLink Monitor.)

7. Select a color for the watch in the Overview pane. (The Overview pane is
the bottom pane in the MobiLink Monitor.)

309

MobiLink statistical properties
Following is a list of the properties that are available in the MobiLink
Monitor. These can be specified in the New Watch dialog. They can also be
viewed in the Synchronization Properties dialog. In Synchronization
Properties, the property names do not contain underscores.

Property Notes

active True if the synchronization is in progress.

begin_sync Time for the begin_synchronization event.

completed True if the synchronization completed success-
fully.

conflicted_deletes Number of uploaded deletes for which con-
flicts were detected.

conflicted_inserts Number of uploaded inserts for which conflicts
were detected.

conflicted_updates Number of uploaded updates for which con-
flicts were detected.

connection_retries Number of times the MobiLink synchro-
nization server retried the connection to the
consolidated database.

download Time for the download.

download_bytes Bytes downloaded to the synchronization
client.

download_deleted_rows Number of row deletions fetched from the con-
solidated database by the MobiLink synchro-
nization server (using download_delete_cursor
scripts).

download_errors Number of errors that occurred during the
download.

download_fetched_rows Number of rows fetched from the consolidated
database by the MobiLink synchronization
server (using download_cursor scripts).

download_filtered_rows Number of fetched rows that were not down-
loaded to the MobiLink client because they
matched rows that the client uploaded.

310

Chapter 13. MobiLink Monitor

Property Notes

download_warnings Number of warnings that occurred during the
download.

duration Total time for the synchronization, as mea-
sured by the MobiLink synchronization server.
This does not include time when the syn-
chronization request is queued waiting for an
available worker thread.

end_sync Time for the end_synchronization event.

ignored_deletes Number of uploaded deletes that were ignored.

ignored_inserts Number of uploaded inserts that were ignored.

ignored_updates Number of uploaded updates that were ig-
nored.

preload_upload Time for the transfer of the upload data from
the client to the MobiLink synchronization
server.

prepare_for_download Time for the prepare_for_download event.

start_time Date-time (in ISO-8601 extended format) for
the start of the synchronization. All fields
of the format must be specified:YYYY-
MM-DD hh :mm:ss.sssor YYYY-MM-DD
hh:mm:ss,sss, depending on your locale set-
ting.

sync_deadlocks Total number of deadlocks in the consolidated
database that were detected for the synchro-
nization.

sync_errors Total number of errors that occurred for the
synchronization.

sync_tables Number of client tables that were involved in
the synchronization.

sync_warnings Total number of warnings that occurred for the
synchronization.

upload Time for data to be uploaded to the consoli-
dated database.

upload_bytes Number of bytes uploaded from the synchro-
nization client.

311

Property Notes

upload_deadlocks Number of deadlocks in the consolidated
database that were detected during the upload.

upload_deleted_rows Number of row deletions that were uploaded
from the synchronization client.

upload_errors Number of errors that occurred during the
upload.

upload_inserted_rows Number of row insertions that were uploaded
from the synchronization client.

upload_updated_rows Number of row updates that were uploaded
from the synchronization client.

upload_warnings Number of warnings that occurred during the
download.

user Name of the MobiLink client.

verify_upload Time for verifying the synchronization pro-
tocol and authenticating the synchronization
client.

version Name of the synchronization version.

worker Identifier for the MobiLink worker thread used
for the synchronization in the formn.m, where
n is the stream number andm is the thread
number.

312

CHAPTER 14

Synchronizing Through a Web Server

About this chapter This chapter describes one way to route MobiLink synchronization through
a web server. This method is particularly useful for synchronizing across a
firewall or with multiple MobiLink synchronization servers.

The software that routes requests is called the Redirector.

Contents Topic: page

Introduction 314

Setting up the Redirector 315

Configuring MobiLink clients and servers for the Redirector 316

Configuring Redirector properties (all versions) 318

Configuring an NSAPI Redirector for Netscape web servers 320

Configuring an ISAPI Redirector for Microsoft web servers 323

Configuring the servlet Redirector 325

313

Introduction
MobiLink includes a web server extension called theRedirector that routes
requests and responses between a client and the MobiLink synchronization
server. A plug-in such as this is also commonly called areverse proxy.

Using the Redirector, you can configure your web server to route specific
URL requests to one or more computers running MobiLink synchronization
server. The Redirector also implements load-balancing and failover: each
MobiLink synchronization server is tested at set intervals and requests are no
longer sent to a server that is not responding. It also detects when a
MobiLink synchronization server is running again and resumes sending
requests at that time.

Web servers can be configured to pass requests with specific URLs or ranges
of URLs to extension programs commonly written in the form of perl CGI
scripts, DLLs, or other extension mechanisms. These extension programs
may access external data sources and provide responses for the web server to
deliver to its clients.

Uses of the Redirector This chapter describes one way to set up MobiLink synchronization across a
firewall, with the MobiLink synchronization server running inside the
firewall, and the MobiLink clients outside the firewall. Synchronization is
routed through a web server.

The main reason for routing requests through a web server is to use existing
web server and firewall configurations for HTTP or HTTPS synchronization.
However, a web server can operate as a proxy without the Redirector. The
Redirector is most useful when you have more than one MobiLink
synchronization server.

HTTPS synchronization In HTTPS synchronization, HTTP headers are encrypted over SSL/TLS
using RSA encryption before being sent to or from the server. HTTPS is
only used for the connection between the MobiLink client and the web
server. The web server decrypts the HTTPS and sends HTTP to MobiLink
via the Redirector.

The HTTPS stream is slower than other secure streams, so it is
recommended that it be used only if the HTTPS protocol is required.

Supported web servers Plug-ins are provided for the following web servers:

♦ Netscape iPlanet web servers (the NSAPI Redirector)

♦ Microsoft web servers (the ISAPI Redirector)

♦ Web servers that support the Java Servlet API 2.2 (the servlet Redirector)

314

Chapter 14. Synchronizing Through a Web Server

Setting up the Redirector
The following sections describe how to configure your web server to manage
synchronization requests.

❖ To set up synchronization through a web server

1. Configure the MobiLink clients and MobiLink synchronization server.

☞ See“Configuring MobiLink clients and servers for the Redirector”
on page 316.

2. Ensure that the Redirector configuration file is on the same computer as
the web server.

☞ See“Configuring Redirector properties (all versions)” on page 318.

3. Modify the Redirector configuration file.

☞ See“Configuring Redirector properties (all versions)” on page 318.

4. Perform web server-specific configuration.

☞ See:

♦ “Configuring an NSAPI Redirector for Netscape web servers” on
page 320

♦ “Configuring an ISAPI Redirector for Microsoft web servers” on
page 323

♦ “Configuring the servlet Redirector” on page 325

315

Configuring MobiLink clients and servers for the
Redirector

This section describes how to configure MobiLink clients and the MobiLink
synchronization server for synchronization through a web server. The
following procedure sets the parameters required for requests directed
through web servers.

❖ To configure MobiLink clients and servers

1. Specify the communication type for the MobiLink clients. For example,
HTTP or HTTPS protocol may be specified on the dbmlsync command
line as follows, wheresync-typeis http or https.

dbmlsync -e ctp=sync-type

☞ For more information, see “CommunicationType (ctp) extended
option” [MobiLink Synchronization Reference,page 46].

2. Set the following HTTP/HTTPS synchronization stream parameters on
the MobiLink client:

♦ host the name or IP address of the web server.

♦ port the web server port accepting HTTP or HTTPS requests.

♦ url_suffix This setting depends on the type of web server you are
using:

• For ISAPI web servers, set this to the following:

exe_dir /iaredirect.dll/ml/

whereexe_diris the location ofiaredirect.dll.
• For NSAPI web servers, set this to the following:

mlredirect /ml/

wheremlredirectis a name mapped in yourobj.conf file.

• For servers that support the Java Servlet API 2.2, set this to the
following:

iaredirect/servlet/redirect/ml/

☞ For UltraLite clients, for more information, see “HTTP stream
parameters”[UltraLite Database User’s Guide,page 184]and “HTTPS
stream parameters”[UltraLite Database User’s Guide,page 186].

☞ For Adaptive Server Anywhere clients, for more information, see
“CREATE SYNCHRONIZATION USER statement [MobiLink]”[ASA
SQL Reference,page 351].

316

Chapter 14. Synchronizing Through a Web Server

3. The MobiLink server must be started with the HTTP protocol to use
HTTP or HTTPS for communication between the client and the proxy.
The Redirector cannot use HTTPS directly.

For example, the HTTP protocol may be specified on the dbmlsrv9
command line as follows:

dbmlsrv9 -x http

☞ For more information, see “-x option”[MobiLink Synchronization
Reference,page 24].

4. Set the following parameters on the MobiLink server:

♦ port for the HTTP protocol, MobiLink defaults to port 80. For the
HTTPS protocol, MobiLink defaults to port 443. If the MobiLink
synchronization server is running on the same machine as the web
server, port 80 is normally in use by the web server. If this is the case
you must specify a different port. For example, you could use port
2439, which is the Internet Assigned Numbers Authority
(IANA)-registered port number for the MobiLink synchronization
server.

♦ contd_timeout This is the number of seconds to wait to receive the
next part of a partially completed synchronization before the
synchronization is abandoned. This setting is optional and has a
default value of 30 seconds.

You may wish to increase the timeout parameters if your applications
involve large synchronizations over slow networks.

5. Complete the steps in“Configuring Redirector properties (all versions)”
on page 318.

317

Configuring Redirector properties (all versions)
This section describes generic web server configuration steps to configure
Redirector properties.

❖ To configure Redirector properties

1. Complete the steps in“Configuring MobiLink clients and servers for the
Redirector” on page 316.

2. Copyredirector.configto the web server.

The fileredirector.configis provided with the MobiLink synchronization
server installation, in theMobiLink\redirectorsubdirectory of your
SQL Anywhere installation.

If the MobiLink synchronization server is not installed on the same
computer as the web server, copyredirector.configto the computer that
holds the web server.

For Microsoft web servers, copyredirector.configto the directory
Inetpub/scripts. For other web servers, you can copyredirector.configto
any directory.

3. Configure the Redirector configuration file.

To configure communications between the web server and MobiLink
synchronization server, you must edit the fileredirector.configon the
computer that holds the web server.

You can set the following directives in this file:
♦ LOG_LEVEL used to control the amount of output written to the log

file. Values are 0, 1, and 2, with 1 being the default and 2 generating
the most output.

♦ ML used to list the computers running MobiLink synchronization
server, in the formML=host:port . ML is case sensitive.

♦ ML_CLIENT_TIMEOUT used to ensure that each step of a single
synchronization is directed to the same MobiLink synchronization
server. The default value is 600 seconds (ten minutes).
Information is maintained by the MobiLink synchronization server for
the duration of a synchronization, so each step of a synchronization
should be handled by the same server. The Redirector maintains an
association between client and server for the duration of
ML_CLIENT_TIMEOUT. The value of this parameter should be
greater than the longest step in any user’s synchronization.

♦ REDIRECTOR_HOST used to specify the machine name of the web
server running the Redirector. For example, myCompany.com. If your

318

Chapter 14. Synchronizing Through a Web Server

web server is running behind a proxy or load balancer,
REDIRECTOR_HOST must specify the host name of the proxy or
load balancer.

♦ REDIRECTOR_PORT used to specify the port of the web server
running the Redirector. For example, 80. If your web server is running
behind a proxy or load balancer, REDIRECTOR_PORT must specify
the port number of the proxy or load balancer.

♦ SLEEP used to set the interval in seconds at which the Redirector
checks that the servers are functioning. The default is 1800 (30
minutes). For example,SLEEP=3600. SLEEP is case sensitive.

The following rules apply toredirector.config:

• The maximum line length is 300 characters.

• Comments start with the hash character (#).

• You cannot include spaces or tabs in the directive definitions.

4. Complete the web server-specific configuration in one of the following
sections:

♦ “Configuring an ISAPI Redirector for Microsoft web servers” on
page 323

♦ “Configuring an NSAPI Redirector for Netscape web servers” on
page 320

♦ “Configuring the servlet Redirector” on page 325

Example Following is a sampleredirector.configfile. This file specifies the following:

♦ The Redirector should check every 1800 seconds that the servers are
functioning.

♦ The three computers running MobiLink synchronization server that are
able to process requests.

♦ The host name and port of the web server where the Redirector resides.

SLEEP=1800
ML=myServ-pc:80
ML=209.123.123.1:8080
ML=myCompany.com:8081
REDIRECTOR_HOST=test2.ianywhere.com
REDIRECTOR_PORT=8081

319

Configuring an NSAPI Redirector for Netscape
web servers

The NSAPI Redirector is provided for the Netscape iPlanet Enterprise
Edition web server. Following are setup instructions for the iPlanet web
Server, Enterprise Edition 4.1, Service Pack 12.

❖ To configure NSAPI Redirector for iPlanet

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 318.

2. If necessary, copy the fileiaredirect.dllto the computer that holds the
web server. This file is installed with the MobiLink synchronization
server, in theMobiLink\redirector\nsapisubdirectory of your
SQL Anywhere installation.

3. Update the iPlanet web server configuration fileobj.conf as follows.

Sample file provided
A complete sample copy ofobj.conf, preconfigured for the MobiLink
synchronization server, is provided inMobiLink\redirector\nsapi, and is
calledobj.conf.example. You can use this sample file to confirm where
the following sections fit in to the file.

Note: For some versions of iPlanet, you may need to specify init
directives in themagnus.conffile, rather than theobj.conf file. For an
example, see the example at the end of this section.

Update the following sections ofobj.conf.
♦ Specify whereiaredirect.dllandredirector.configare located. At the

end of the Init section, add the following text, where<location> is the
actual location of the files. (iaredirect.dllandredirector.configcan be
in different locations, although both must be on the same computer as
the web server.)

Init fn="load-modules" shlib="<location>/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn="initialize_redirector"

configFile="<location>/redirector.config"

♦ Specify the name of the Redirector to be used in URLs. At the
beginning of the “default object” section, add the following text. This
section should appear exactly as provided below, except that you can
changemlredirectto whatever you wish. All requests of the form
http://host:port/mlredirect/ml/*will be sent to one of the MobiLink
synchronization servers running with the Redirector.

320

Chapter 14. Synchronizing Through a Web Server

<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*"

name="redirectToML"

♦ Specify the objects that are called by the Redirector. After the “default
object” section, add two new objects, as follows:

<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

4. Set the buffer size for the MobiLink upload streams.

Add a directive to your web server’smagnus.conffile to set the buffer
size (in bytes) for the upload and download stream. For example:

ChunkedRequestBufferSize=2000000

This directive increases the buffer to 2 Mb. The value must be sufficient
to accommodate the size of the uploaded data.

5. If you are using HTTPS synchronization, configure your server as
follows:

♦ Start the iPlanet web server Administration Server.
Choose Start➤ Programs➤ iPlanet Web Server➤ Start iWS
Administration Server.

♦ Login to the Administration Server.
Choose Start➤ Programs➤ iPlanet Web Server➤ Administer Web
Server.
When prompted, enter your user ID and password.

♦ On the Servers tab, select your server from the list and click Manage.

♦ On the Security tab, click Request a Certificate.

♦ Generate a certificate request and have it signed by a certificate
authority or using gencert, which requires a separate license.

• To have the certificate request signed by a certificate authority, fill
out the form.

• To use the gencert utility, fill out the form, supplying your own
e-mail address instead of the e-mail address of a certificate authority.
Save the text of the certificate request to a file, then run the gencert
utility. For more information, see “Certificate generation utility”
[MobiLink Synchronization Reference,page 311].

♦ On the Security tab, click Install Certificate. Fill out the form and
specify the location of your signed certificate.

♦ Click Manage Certificates to verify that your certificate has been
installed correctly.

321

♦ On the Preferences tab, click Add Listen Socket. Specify the required
parameters. The default port for HTTPS is 443. Select On from the
Security dropdown list to activate HTTPS synchronization.

Example Following are examples of the sections ofobj.conf that configure the
Netscape iPlanet web Server to route requests to MobiLink synchronization
server.

Init fn="load-modules" shlib="D:/iaredirect.dll"
funcs="redirector,initialize_redirector"
Init fn=" initialize_redirector "

configFile="D:/redirector.config"
For iPlanet 6.0 service pack 1 the preceding Init lines should

be
placed in the magnus.conf file, rather than the obj.conf file.
...
<Object name=default>
NameTrans fn="assign-name" from="/mlredirect/ml/*"

name="redirectToML"
...
<Object name="redirectToML">
Service fn="redirector" serverType="ml"
</Object>

❖ To test your configuration

1. Call the Redirector using the following syntax:

http:// host : port /mlredirect/ml/

2. Check the log file to see if the Redirector logged a request.

322

Chapter 14. Synchronizing Through a Web Server

Configuring an ISAPI Redirector for Microsoft web
servers

If you are using a Microsoft web server, you can use the ISAPI version of
the Redirector. Following are setup instructions for IIS 5.0.

❖ To configure ISAPI Redirector for Microsoft web servers

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 318.

2. Copy the fileiaredirect.dllto Inetpub/scriptson the computer that holds
the web server.

The file iaredirect.dllis installed with MobiLink synchronization server,
in MobiLink\redirector\isapiunder your SQL Anywhere directory

The directoryInetpub/scriptsis in the Microsoft web server installation
directory.

3. Copy the fileredirector.configto Inetpub/scriptson the computer that
holds the web server.

4. If you are using HTTPS synchronization, configure your server as
follows:

♦ Right-click My Computer and select Manage from the popup menu.

♦ In the left pane, open the Services and Applications folder. Select
Internet Information Services.

♦ In the right pane, right-click the default web site and select Configure
from the popup menu.

♦ Click the Directory Security tab.

♦ Click Server Certificate.
The Web Server Certificate wizard appears.

♦ Select Create a New Certificate to generate a certificate request.
Follow the remaining prompts, choosing to output the certificate
request to a file.

♦ Sign your certificate.
You can sign the certificate using a third-party certificate authority or
using the gencert utility, which requires a separate license. For more
information, see “Certificate generation utility”[MobiLink
Synchronization Reference,page 311].

♦ Click Server Certificate.
The Web Server Certificate wizard appears with different prompts to
allow you to install the signed certificate. Follow the prompts.

323

♦ Click View Certificate to verify that your certificate has been correctly
installed.

Note The directoryInetpub/scriptsis created during the web server installation
with execute permissions. You can putredirector.configandiaredirect.dllin
a different directory only if you use the IIS utility Internet Services Manager
to give execute permissions to the directory.

❖ To test your configuration

1. Call the ISAPI Redirector using the following syntax:

protocol://host[:port]/exec_dir/iaredirect.dll/ml/

where:

♦ protocol is http or https.

♦ host is the host name of the web server.

♦ port is the port on which the web server is listening, if it is not the
default port.

♦ exec_dir is the directory where you installed the Redirector dll,
iaredirect.dll. The default directory isscripts.
For example,

http://server:8080/scripts/iaredirect.dll/ml/

2. Check the log file to see if the Redirector logged a request.

324

Chapter 14. Synchronizing Through a Web Server

Configuring the servlet Redirector
The servlet version of the Redirector is supported for Apache Tomcat 4.0.6.

Configuring the servlet Redirector for Apache Tomcat servers

This section describes how to install the servlet version of the Redirector to
work on an Apache web server in conjunction with the Tomcat servlet
container. Testing of the Redirector software has been carried out using
Tomcat version 4.1 and Apache 2.0.45.

Installation requires the following steps:

1. Complete the steps in“Configuring Redirector properties (all versions)”
on page 318.

2. Install the servlet version of the Redirector in Tomcat.

3. Configure the Apache web server to run as a proxy.

This section uses%CATALINA_HOME% and%APACHE_HOME%as the
root directory of your Tomcat and Apache installation respectively.

❖ To install the servlet Redirector in Tomcat

1. Install Tomcat as a standalone server.

You can download Tomcat binaries from the Jakarta project on the
Apache web site at http://jakarta.apache.org.

2. Optionally, set the required Tomcat HTTP port.

Tomcat binds to port 8080 by default. If there is a conflict, perhaps
because another web server is using this port,

♦ open the file:%CATALINA_HOME%/conf/server.xml

♦ search for 8080 (which is in a<Connector> tag).

♦ Change it to a port that is not in use.

3. Install the servlet Redirector as a web application.
♦ Copy iaredirect.warfile to %CATALINA_HOME%/webapps

♦ Shutdown and restart Tomcat.
Tomcat expands the war file and creates the directoryiaredirectfor the
Redirector web application.

♦ Edit the file
%CATALINA_HOME%/webapps/iaredirect/WEB-INF/web.xml.
Search forredirector.config (in an<init-param> tag), and correct the
path for theredirector.configfile.

325

Change the entryredirector.config to read
drive:/path/redirector.config. Even on Windows operating systems,
use a forward slash as a path separator, as ind:/redirector.config.

♦ Shutdown and restart Tomcat for the changes to take effect.

Once the changes have taken effect, you no longer need the war file in
the deployed location.

♦ The Redirector can now be invoked through the following URL:

http://tc-machine:tc-port/iaredirect/servlet/redirect/ml/

wheretc-machineis the machine andtc-port the port on which Tomcat
is listening.

❖ To configure the Apache web server as a proxy

1. Install the Apache web server.

You can download binaries from the Apache web site at
http://www.apache.org.

2. Optionally, change the Apache web server port.

Edit the file%APACHE_HOME%/conf/httpd.confand change thePort
setting to the desired port.

3. Configure Apache to run as a proxy.

In %APACHE_HOME%/conf/httpd.conf, add the following two
directives:

LoadModule proxy_module {module-path}/mod_proxy.so
LoadModule proxy_connect_module {module-path}/mod_proxy_

connect.so
LoadModule proxy_http_module {module-path}/mod_proxy_

http.so

For example, the path may bemodules/mod_proxy.so(the default).

4. Configure Apache to forward Redirector URLs to Tomcat.

In %APACHE_HOME%/conf/httpd.conf, add the following two
directives so that Apache forwards URLs of the form
http://localhost/iaredirect/* to the Tomcat 4 Connector listening on port
8080:

ProxyPass /iaredirect http://localhost:8080/iaredirect

The port number must match the port number used for Tomcat. If Tomcat
and Apache are not running on the same machine, provide the machine
name where Tomcat is running instead oflocalhost.

326

Chapter 14. Synchronizing Through a Web Server

5. If you are using HTTPS synchronization, configure your server as
follows:

♦ Download and install binaries for mod_ssl and OpenSSL. You can find
them using the Apache Module Registry athttp://modules.apache.org/.
mod_ssl.somust be copied to%APACHE_HOME%\modules.
libeay32.dllandssleay32.dllmust be copied to
%APACHE_HOME%\bin.

♦ Generate a server certificate and private key either by generating a
request with reqtool.exe and sending it to a third party certificate
authority to sign it, or by generating a certificate directly using
gencert.exe. The private key can either be in the same file as the server
certificate or in its own file.

♦ Add the following lines to%APACHE_HOME%\conf\httpd.conf:

LoadModule ssl_module modules/mod_ssl.so
SSLEngine on
SSLCertificateFile certificate_file

wherecertificate_fileis the path and file name of the server’s
certificate file.

If the server’s private key is in a separate file from the server’s
certificate, add the additional line

SSLCertificateKeyFile private_key_file

whereprivate_key_fileis the path and file name of the server’s private
key.

If the private key is encrypted using a pass phrase and you are running
under win32, add the additional line

SSLPassPhraseDialog exec: exe_name

whereexe_nameis the path and file name of an executable that will
return the pass phrase on stdout.

Alternatively, the pass phrase can be removed from the private key
using openssl:

openssl rsa -in src_file -out dst_file

wheresrc_file is the path and file name of the private key protected by
a pass phrase, anddst_file is the path and file name of the output file
that will contain the unprotected private key. Note that this may reduce
server security.

Example of HTTPS
Configuration

Following is an example of how to configure Apache for HTTPS. This
example uses Apache’s virtual host feature to read HTTPS from port 443
(the default HTTPS port) and HTTP from port 80 at the same time.

327

LoadModule ssl_module modules/mod_ssl.so

Listen 80
Listen 443

NameVirtualHost *:443
<VirtualHost _default_:443>

ServerName server_name:443
ErrorLog logs/https_error
CustomLog logs/https_access common

SSLEngine on
SSLCertificateFile rsaserver.crt
SSLCertificateKeyFile rsaserver.key

</VirtualHost>

Verifying your setup

❖ To check your configuration

1. Call the Redirector using the following syntax:

http://host:port/iaredirect/servlet/redirect/ml/app

2. Check the log file to see if the Redirector logged a request.

328

CHAPTER 15

Running MobiLink Outside the Current
Session

About this chapter This chapter describes how to run the MobiLink synchronization server as a
daemon or service.

You can set up MobiLink synchronization server to be available all the time.
To make this easier, you can run the MobiLink synchronization server for
Windows and for UNIX in such a way that, when you log off the computer it
remains running. The way you do this depends on your operating system.

♦ UNIX daemon You can run the MobiLink synchronization server as a
daemon using the-ud command line option, enabling the MobiLink
server to run in the background, and to continue running after you log off.

♦ Windows service You can run the Windows MobiLink server as a
service.

Contents Topic: page

Running the UNIX MobiLink server as a daemon 330

Running the Windows MobiLink server as a service 331

Troubleshooting MobiLink server startup 336

329

Running the UNIX MobiLink server as a daemon
To run the UNIX MobiLink server in the background, and to enable it to run
independently of the current session, you run it as adaemon.

❖ To run the UNIX MobiLink server as a daemon

1. Use the-ud command line option when starting the MobiLink server.
For example:

dbmlsrv9 -c "dsn=ASA 9.0 Sample;uid=DBA;pwd=SQL" -ud

☞ For more information, see “-ud option”[MobiLink Synchronization
Reference,page 20].

330

Chapter 15. Running MobiLink Outside the Current Session

Running the Windows MobiLink server as a
service

To run the Windows MobiLink server in the background, and to enable it to
run independently of the current session, you run it as aservice.

You can carry out the following service management tasks from the
command line, or on the Services tab in Sybase Central:

♦ Add, edit, and remove services.

♦ Start, stop, and pause services.

♦ Modify the parameters governing a service.

♦ Add databases to a service, so you can run several databases at one time.

Adding, modifying, and removing services

The service icons in Sybase Central display the current state of each service
using a traffic light icon that displays running, paused, or stopped.

❖ To add a new service (Sybase Central)

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. Double-click Add Service.

3. Follow the instructions in the wizard.

You can also use the dbsvc utility to create the service. For more
information, see “Managing services using the dbsvc command-line utility”
[ASA Database Administration Guide,page 519].

❖ To remove a service (Sybase Central)

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. In the right pane, right-click the icon of the service you want to remove
and choose Delete from the popup menu.

331

❖ To change the parameters for a service

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. In the right pane, right-click the service you want to change and choose
Properties from the popup menu.

3. Alter the parameters as needed on the tabs of the Service property sheet.

4. Click OK when finished.

Changes to a service configuration take effect the next time the service is
started.

Setting the startup option The following options govern startup behavior for MobiLink services. You
can set them on the General tab of the service property sheet.

♦ Automatic If you chooseAutomatic, the service starts whenever the
Windows operating system starts. This setting is appropriate for database
servers and other applications running all the time.

♦ Manual If you chooseManual, the service starts only when a user with
Administrator permissions starts it. For information about Administrator
permissions, see your Windows documentation.

♦ Disabled If you chooseDisabled, the service will not start.

The startup option is applied the next time Windows is started.

Specifying command line
options

The Configuration tab of the service property sheet provides a text box for
typing command line options for a service. Do not type the name of the
program executable in this box.

For example, to start a MobiLink synchronization service with verbose
logging and three worker threads, type the following in the Parameters box:

-c "dsn=ASA 9.0 Sample;uid=DBA;pwd=SQL"
-vc
-w 3

☞ The command line options for a service are the same as those for the
executable. For a full description of the command line options for
MobiLink, see “MobiLink synchronization server”[MobiLink Synchronization
Reference,page 4].

Setting account options You can choose which account the service runs under. Most services run
under the special LocalSystem account, which is the default option for
services. You can set the service to log on under another account by opening

332

Chapter 15. Running MobiLink Outside the Current Session

the Account tab on the Service property sheet, and typing the account
information.

If you choose to run the service under an account other than LocalSystem,
that account must have the “log on as a service” privilege. This can be
granted from the Windows User Manager application, under Advanced
Privileges.

Whether or not an icon for the service appears on the taskbar or desktop
depends on the account you select, and whether Allow Service to Interact
with Desktop is checked, as follows:

♦ If a service runs under LocalSystem, and Allow Service to Interact with
Desktop is checked in the service property sheet, an icon appears on the
desktop of every user logged in to Windows NT/2000/XP on the
computer running the service. Consequently, any user can open the
application window and stop the program running as a service.

♦ If a service runs under LocalSystem, and Allow Service to Interact with
Desktop is unchecked in the service property sheet, no icon appears on
the desktop for any user. Only users with permissions to change the state
of services can stop the service.

♦ If a service runs under another account, no icon appears on the desktop.
Only users with permissions to change the state of services can stop the
service.

Changing the executable
file

To change the program executable file associated with a service in Sybase
Central, click the Configuration tab on the Service property sheet and type
the new path and file name in the File Name box.

If you move an executable file to a new directory, you must modify this entry.

Starting, stopping, and
pausing services

❖ To start, stop, or pause a service

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. Right-click the service and choose Start, Stop, or Pause from the popup
menu.

To resume a paused service, right-click the service and select Continue
from the popup menu.

If you start a service, it keeps running until you stop it. Closing Sybase
Central or logging off does not stop the service.

333

Stopping a service closes all connections to the database and stops the
database server. For other applications, the program closes down.

Pausing a service prevents any further action being taken by the application.
It does not shut the application down or (in the case of server services) close
any client connections to the database. Most users do not need to pause their
services.

Running more than one service at a time

Although you can use the Windows Service Manager in the Control Panel
for some tasks, you cannot install or configure a MobiLink service from the
Windows Service Manager. You can use Sybase Central to carry out all the
service management for MobiLink.

When you open the Windows Service Manager from the Windows Control
Panel, a list of services appears. The names of the Adaptive Server
Anywhere services are formed from the Service Name you provided when
installing the service, prefixed by Adaptive Server Anywhere. All the
installed services appear together in the list.

This section describes topics specific to running more than one service at a
time.

Service dependencies In some circumstances you may wish to run more than one executable as a
service, and these executables may depend on each other. For example, you
must run the MobiLink synchronization server and the database server in
order to synchronize.

In cases such as these, the services must start in the proper order. If a
MobiLink synchronization service starts up before the consolidated database
server has started, it fails because it cannot find the consolidated database
server. The sequence must be such that the database server is running when
you start the MobiLink server. (This does not apply if the consolidated
database server is on another computer.)

You can prevent these problems using service groups, which you manage
from Sybase Central.

Service groups You can assign each service on your system to be a member of a service
group. By default, each service belongs to a group. The default group for the
MobiLink synchronization server is ASANYMobiLink.

Before you can configure your services to ensure they start in the correct
order, you must check that your service is a member of an appropriate group.
You can check which group a service belongs to, and change this group,
from Sybase Central.

334

Chapter 15. Running MobiLink Outside the Current Session

❖ To check and change which group a service belongs to

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane.

2. Right-click the service and choose Properties from the popup menu.

3. Click the Dependencies tab. The top text box displays the name of the
group the service belongs to.

4. Click Change to display a list of available groups on your system.

5. Select one of the groups, or type a name for a new group.

6. Click OK to assign the service to that group.

Managing service
dependencies

With Sybase Central, you can specify dependencies for a service. For
example:

♦ You can ensure that at least one group has started before the current
service.

♦ You can ensure that any service starts before the current service.

❖ To add a service or group to a list of dependencies

1. In Sybase Central, click the server in the left pane, and then open the
Services tab in the right pane

2. Right-click the service and choose Properties from the popup menu.

3. Click the Dependencies tab.

4. Click Add Services or Add Service Groups to add a service or group to
the list of dependencies.

5. Select one of the services or groups from the list.

6. Click OK to add the service or group to the list of dependencies.

335

Troubleshooting MobiLink server startup
This section describes some common problems when starting the MobiLink
server.

Ensure that network communication software is running

Appropriate network communication software must be installed and running
before you run the MobiLink server. If you are running reliable network
software with just one network installed, this should be straightforward. You
should confirm that other software requiring network communications is
working properly before running the MobiLink server.

If you are running under the TCP/IP protocol, you may want to confirm that
ping and telnet are working properly. The ping and telnet applications are
provided with many TCP/IP protocol stacks.

Debugging network communications startup problems

If you are having problems establishing a connection across a network, you
can use debugging options at both client and server to diagnose problems.
The startup information appears on the server window: you can use the-o

option to log the results to an output file.

336

CHAPTER 16

Transport-Layer Security

About this chapter This chapter describes transport-layer security (TLS). This security
mechanism protects messages as they travel between a MobiLink client and
the MobiLink synchronization server or between a database client and the
database server.

Transport-layer security is a separately licensable component and must be
ordered before you can install it. To order this component, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

☞ For information about Adaptive Server Anywhere database security, see
“Keeping Your Data Secure”[SQL Anywhere Studio Security Guide,page 3].

Contents Topic: page

About transport-layer security 338

Invoking transport-layer security 346

Certificate authorities 351

Certificate chains 352

Enterprise root certificates 353

Globally signed certificates 358

Obtaining server-authentication certificates 360

Verifying certificate fields 363

337

About transport-layer security
MobiLink transport-layer security uses encryption to protect the
confidentiality and integrity of the synchronization data stream as it passes
between a MobiLink client and the MobiLink synchronization server. This
feature is important whenever this communication must travel over a public
or wireless network. Under such circumstances, someone with a suitable
radio or network connection could otherwise intercept your data.

Furthermore, transport-layer security allows a client application to verify the
identity of a MobiLink synchronization server. Hence, client applications
can ensure that they synchronize only with MobiLink synchronization
servers they trust.

This security is implemented by means of digital certificates. You can
achieve a variety of security objectives using different types of certificates
and configuring them in different ways. This section introduces the concepts
that underlie public-key cryptography and explains how they apply to digital
certificates. Examples illustrate several typical arrangements, each offering
different benefits.

MobiLink transport-layer security is implemented using Certicom
encryption technology. This public-key cryptographic technology uses an
RSA cipher suite or an elliptic-curve cipher suite. When transport-layer
security is invoked, all messages sent between the client and server are
encrypted using a 128-bit cipher.

Invoking trasport-layer
security

To invoke the server authentication features, you create and use digital
certificates. Different types of certificates and different arrangements of
these certificates allow you to provide various levels of security. You create
the certificates using tools included with SQL Anywhere Studio.

About public-key cryptography

Public key cryptography makes use of mathematical systems that work with
pairs of very large, associated numbers. These numbers, calledkeys, have
particular properties. Each key can be used to encrypt information. Once
encrypted, these messages can only be decrypted using the matching key.

One of the keys, called thepublic key, is published in a public forum. It can
be used to encrypt information to be sent to the owner of the public key. The
owner keeps the second key, called theprivate key, secret. A message
encrypted with the public key can be decrypted only using the matching
private key. Since the public key is published, anyone can create a message
that only the owner of the private key can read.

338

Chapter 16. Transport-Layer Security

In addition, a message encrypted with the private key can be decrypted by
anyone who knows the public key. Such a message can be created only by
someone who knows the private key. If the private key is kept secret, the
owner can prove his or her identity by constructing such a message.

It is essential that the private key cannot be found easily through knowledge
of the public key. The ease with which the private key can be derived from
the public key is often associated with the strength of the cryptosystem and
the size (in bits) of the public key. Another aspect of the private key is that it
must be difficult to guess. The generation of high-quality private keys must
incorporate pseudo-random data of high quality. If the data is predictable, it
is easier for an adversary to guess the keys. To meet this criterion, the tools
provided with MobiLink gather pseudo-random data from the operating
system when generating new private and public key pairs.

The role of public-key
cryptography

Public-key cryptography has many advantages. Using the public key, anyone
can send a message that can be read only by the person who knows the
matching private key. Likewise, someone can prove that they know a private
key by using it to encrypt a message. To verify the identity of a key owner,
you can send an arbitrary message and ask them to encrypt. You can be sure
that person knows the private key if you can decrypt the resulting message
with their public key.

These features make public-key cryptography especially useful when
establishing a secure communication link and happen automatically when
you establish a synchronization connection using transport-layer security.

Once the secure link is established, the server and client automatically
switch to a symmetric-key system of equivalent strength. In a symmetric
system, the same key is used to encrypt and decrypt messages. This type of
symmetric cipher can be computed more efficiently, reducing the
computation time required to encrypt and decrypt messages.

How transport-layer
security works

Transport-layer security works by filtering all incoming and all out-going
communication through the cipher of your choice. The translation occurs
between the MobiLink synchronization server and the communication
protocol of your choice. For example, adding security to a TCP/IP
connection affects the architecture as shown in the following diagram:

339

connections with
remote sites

No security Certicom TLS security

connections with
remote sites

TCP/IP

TCP/IP

MobiLink MobiLink

Certicom TLS

Transport-level security requires additional communication between a
MobiLink client and the MobiLink synchronization serverbeforethe upload
stream is sent. When a client initiates synchronization, it passes a message
to the server. The client encrypts this message using the server’s public key.
The server decrypts this message using its private key. Initially, the server
encrypts all messages to the client using the client’s public key.

While this public-key/private-key cipher is secure as long as the private keys
are kept secret, the encryption and decryption process is computationally
intensive. To make further communication more efficient, the client and
server agree upon and exchange another key and switch to a symmetric key
cipher. They use this key and cipher for the rest of their communication
because the symmetric cipher allows data to be encrypted and decrypted
more efficiently.

Client architecture

To synchronize with a MobiLink synchronization server by secure means,
the client must use the same cipher suite as the server. All messages received
from the server via a communication protocol, such as TCP/IP, are decrypted
before being passed to the remote MobiLink client. The following diagram

340

Chapter 16. Transport-Layer Security

depicts how Certicom TLS cipher suite is added to a client using TCP/IP to
communicate with a MobiLink synchronization server:

MobiLink synchronization
server

TCP/IP

client applications

client
data
store

Certicom TLS

Digital certificates

A digital certificate is an electronic document that identifies a person or
entity and contains a copy of their public key. Each certificate includes a
public key so that anyone can communicate securely with the person or
entity by encrypting information with this public key. Digital certificates
conform to a standardized file format that contains the following
information:

♦ Identity information, such as the name and address of the certificate
owner.

♦ Public key.

♦ Expiry date.

♦ One or more digital signatures.

Digital signatures A digital signature provides a means to detect whether a certificate has

341

been altered. A digital signature is a cryptographic operation created by
calculating a value, called amessage digest, from the identity information
and the public key.

A message digest is a bit-value designed to change if any part of the
certificate changes. The algorithm used to calculate the message digest is
known to all users of the certificates. The correct value is encrypted with the
private key contained in the certificate. Thus, anyone can detect alteration
using the algorithm to calculate the message digest, using the public key to
decrypt the message digest contained in the certificate, and comparing the
two values.

A certificate constructed in this manner is called aself-signed certificate
because the digital signature is constructed with the matching private key.
Such a certificate cannot be altered without knowledge of the private key.

The importance of digital
certificates

Digital certificates play the role of identity cards. The signatures prevent
alteration because as long as the private keys used to create the signatures
are kept secret, the digital certificate cannot be altered.

The role of digital certificates

A MobiLink synchronization server must be able to identify itself to clients
with its own server certificate. The client must ensure that the certificate is
authentic. To do so, the client must already have a trusted copy of the public
certificate. Alternatively, the server’s certificate may be signed by another
certificate. In the latter case, the client must have a reliable copy of the
signing certificate.

The MobiLink synchronization server must have access to its public
certificate and to the private key for this certificate. This information is
contained in aserver identity. A server certificate is constructed by
appending the private key to the matching public certificate.

The following figure displays a sample server certificate. This certificate is a
server identity, suitable for use by a MobiLink synchronization server. This
particular certificate has been signed by another certificate. The file contains
both public certificates and the server’s password.

342

Chapter 16. Transport-Layer Security

-----BEGIN CERTIFICATE-----

MIIBqDCCAWSgAwIBAgIFMTIzNDUwCwYHKoZIzj0EAQUAMGsxDDAKBgNVBAYTA1VT

QTELMAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5

YmFzZSBJbmMuMQ8wDQYDVQQLFAZTeWJhc2UxEjAQBgNVBAMUCVN5YmFzZSBDQTAe

Fw05OTExMTcxODA1MzZaFw0wOTExMTcxODA1MzZaMGcxDDAKBgNVBAYTA1VTQTEL

MAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5YmFz

ZSBJbmMuMQwwCgYDVQQLFANNRUMxETAPBgNVBAMUCE1vYmlsaW5rMCswEAYHKoZI

zj0CAQYFK4EEAAEDFwACAx0L37T06bGehBNlRVJcma/Y0h5xoyYwJDAOBgNVHQ8B

Af8EBAMCAf4wEgYDVR0TAQH/BAgwBgEB/wIBCjALBgcqhkjOPQQBBQADMQAwLgIV

Ad+4IluT7/1URk7SfZTTiYqnR/rAAhUCCQRGc62100Mtt69TxusuwBvI2OY=

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIBrDCCAWigAwIBAgIFMTIzNDUwCwYHKoZIzj0EAQUAMGsxDDAKBgNVBAYTA1VT

QTELMAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5

YmFzZSBJbmMuMQ8wDQYDVQQLFAZTeWJhc2UxEjAQBgNVBAMUCVN5YmFzZSBDQTAe

Fw05OTExMTcxODA0MjNaFw0wOTExMTcxODA0MjNaMGsxDDAKBgNVBAYTA1VTQTEL

MAkGA1UECBMCQ0ExEzARBgNVBAcTCkVtZXJ5dmlsbGUxFDASBgNVBAoUC1N5YmFz

ZSBJbmMuMQ8wDQYDVQQLFAZTeWJhc2UxEjAQBgNVBAMUCVN5YmFzZSBDQTArMBAG

ByqGSM49AgEGBSuBBAABAxcAAgFJVb7gQh0cy6XgxsRQUPaMCmIyk6MmMCQwDgYD

VR0PAQH/BAQDAgH+MBIGA1UdEwEB/wQIMAYBAf8CAQowCwYHKoZIzj0EAQUAAzEA

MC4CFQITRvY7k6c3jy37KyC4iDj6UNGWnQIVA/qAjA8SA2W7SyAfQ23oCY7n29Ss

-----END CERTIFICATE-----

-----BEGIN ENCRYPTED PRIVATE KEY-----

ME4wGgYJKoZIhvcNAQUDMA0ECL+NqY7WeMr/AgEFBDAZTKkSUdCw2sUC45GKQaTR

xc1epiZwr9g5jm6wK8cCqOBfgZxs/Ne8eC2sn2klqlM=

-----END ENCRYPTED PRIVATE KEY-----

root certificate

server's certificate

server's private key
(encrypted with password)

Since other users may have access to the computer running the MobiLink
synchronization server, the file containing the private key is protected by a
password. This password is intended to maintain the honesty of the people
given access to the computer. It does not provide an adequate barrier to an
outside attack as the password is only a few characters in length. To further
protect the private key, outsiders must be denied access to the MobiLink
synchronization server by a firewall, or by other traditional means.

Instead of being signed directly by the certificate authority, the server’s
certificate may be the first certificate in a certificate chain. In this case, the
client must trust the owners of all certificates and must have a trusted copy
of the final certificate in the chain, called the root certificate. Such a
certificate file would have a structure similar to that displayed above, but
could contain a longer list of certificates.

Using chains of certificates

A certificate may be signed by other certificates, or it may beself-signed,
which means it is signed only with its own private key. A sequence of public
certificates, each signed by the next, is called acertificate chain. At one end
of a typical chain is a certificate used for a particular MobiLink
synchronization server. At the other end is a certificate, signed by no other
certificates, called theroot certificate.

You can arrange certificates in various ways, depending on your

343

requirements. The following sections describe how to construct and use
certificate chains to achieve particular security goals. The following topics
are covered:

♦ If you have only a single server, the simplest setup is to create a
self-signed certificate. The only disadvantage is that the private key for
the certificate must be held on the synchronization server, where it is
harder to protect.

♦ An enterprise root certificate is of particular benefit to organizations
using more than one MobiLink synchronization server. In this setup,
MobiLink clients need keep only a copy of this root certificate to
recognize any MobiLink synchronization server issuing a certificate
signed by this root certificate.

♦ Commercial certificate authorities can benefit organizations that require
the utmost in security. These organizations can help in two ways. First,
the root certificates they use are of the highest possible quality, making
these certificates somewhat less prone to attack. Secondly, commercial
certificate authorities can provide a trusted third party when two
companies wish to communicate securely but are not familiar with each
other.

♦ You can, and in some cases should, use the facilities provided to verify
certificate fields. This precaution is appropriate in many scenarios, but is
particularly so when using a globally signed certificate. In this case, you
are unlikely to want your clients to trust certificates that your certificate
authority has signed for other customers.

In all cases, you must ensure that the MobiLink command line and log file
are secure. This is best done using a firewall and by otherwise limiting
access to the computer running the MobiLink synchronization server.

MobiLink transport-layer security is a flexible mechanism that lets you
achieve the security important to your setup. The basic system allows you to
keep information private, while certificates ensure MobiLink clients that
they are talking to a trusted MobiLink synchronization server.

Server authentication

One method of breaking a system is to masquerade as the server. The client
connects to what it thinks is the server, but the connection is unknowingly
made to another, hostile server. To guard against this form of attack, the
server can use a digital certificate. A digital certificate plays the role of an
identity card.

344

Chapter 16. Transport-Layer Security

Each digital certificate contains a public encryption key and information
about the owner’s identity. The certificates are designed in such a way that
they can be altered only by someone who knows the matching private key.
As long as this private key is kept a secret, clients can safely assume the
identity information accurately identifies a server. To ensure that they are
talking to the correct server, clients ask the server to prove that it knows the
matching private key. The server can do so by decrypting a message that has
been encrypted with the public key shown in the certificate.

345

Invoking transport-layer security
You can use transport-layer security when using the TCP/IP, HTTP,
or HTTPS communication protocols. For TCP/IP and HTTP, you can use
either RSA or elliptic-curve encryption. For HTTPS, you must use RSA
encryption.

To invoke transport-layer security, you must first set it up for the client,
storing the settings in the publication, subscription, or MobiLink user. You
invoke server authentication on the dbmlsrv9 command line.

☞ For information about how to invoke transport-layer security on
Adaptive Server Anywhere clients, see “CREATE SYNCHRONIZATION
USER statement [MobiLink]”[ASA SQL Reference,page 351].

☞ For information about how to invoke server authentication for UltraLite
clients, see “Synchronization for UltraLite Applications”[UltraLite Database
User’s Guide,page 143].

☞ For information about how to invoke server authentication for Adaptive
Server Anywhere, see “-x option”[MobiLink Synchronization Reference,
page 24].

The Certicom security software built into MobiLink uses certificates for the
purpose of server identification. Two sample certificates are provided with
Adaptive Server Anywhere, for elliptic-curve and for RSA encryption. The
sample elliptic-curve certificate is called sample.crt and the password is
tJ1#m6+W. The sample RSA certificate is called rsaserver.crt and the
password is test.

Caution
The sample certificates should be used for testing purposes only. The
sample certificates provide no security in deployed situations because they
and their corresponding passwords are widely distributed with Sybase
software. To protect your system, you must create your own certificate.

Confirming proper
startup

The MobiLink synchronization server screen displays informational
messages on startup. These messages are also sent to the log file if you start
the server with the –o option. You can use the –v+ option to provide more
detailed messages.

If Certicom security starts properly, the informational messages confirm this
fact. The absence of such messages indicates that Certicom security has not
started properly.

346

Chapter 16. Transport-Layer Security

Self-signed certificates

SQL Anywhere Studio includes tools for working with certificates. These
are included in the distribution if your license permits it. If so, you can
choose to install these security components.

A utility named gencert allows you to generate new certificates. Since
certificates are normally written in a machine-readable format, another
utility, named readcert, displays the contents of a certificate in
human-readable format.

You can make a number of types of certificates with the gencert utility. The
easiest type to make is a self-signed (root) certificate, as no other signing
certificate is required.

public information
and

public key

signature

Self-signed public
certificate

Use matching server
identity with one MobiLink

synchronization server

Give a trusted copy of the
public certificate to each

client

The main advantage of a setup with only one root certificate is simplicity;
you need create only one certificate. This setup is often sufficient for simple
setups involving only one MobiLink synchronization server. If you operate
multiple MobiLink synchronization servers, an enterprise level certificate,
discussed later, is often more convenient.

The biggest disadvantage is that a self-signed certificate is easier than other
types to forge. This type of attack can be accomplished by creating a
counterfeit certificate using a different key pair. Other types of certificates
are more secure because they bear more than one digital signature.

347

Making a new self-signed certificate

To generate a root certificate, start the gencert utility from a command
prompt using the –r option. The utility prompts you to enter the identity
information, the certificate password and expiry date, and the names of the
new certificate files.

In the following procedure, you are prompted for names for the certificate,
private key, and server identity files. MobiLink accepts any name and
extension for these files. However, Windows only recognizes.crt and.cer
extensions as certificate files.

In the following procedure, an RSA certificate is generated. Alternatively,
you can generate an elliptic-curve certificate by choosing certificate type
ECC.

>gencert -r
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): R
Enter key length (512-2048): 2048
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 2003.07.29.01
Certificate valid for how many years: 2
Enter password to protect private key: password
Enter file path to save certificate: self.crt
Enter file path to save private key: self.pri
Enter file path to save server identity: serv1.crt

The response to each question should be a string, except for the number of
years to the expiry date, which must be an integer.

The utility creates three files, which in this example are calledself.crt,
self.pri, andserv1.crt.

♦ self.crt This file contains the new certificate, including the identity
information, public key, expiry date, and signature. You can give out
copies of this file to people whom you wish to contact you.

♦ self.pri This file contains the private key that matches the public key
encoded in the certificate. The private key is encoded using the password
you supplied, providing a modest barrier to others with access to your
computer. However, since password encryption is not very secure, you
must restrict access to this file to maintain secrecy.

348

Chapter 16. Transport-Layer Security

♦ serv1.crt This file contains the same information as the above two files,
combined into one file. It is intended for use with a MobiLink
synchronization server. The server sends the public information to
identify itself to clients. It requires the private key to decode messages
returned by the clients. You must restrict access to this file. It, too,
contains a copy of the private key, protected only by the password.

public information
and

public key

signature(s)

private key

public information
and

public key

signature(s)

private key

Public certificate

Private key file

Server identity

You can create a server identity certificate
by concatenating a public certificate and

the matching private file.

The server certificate contains the information in the public and private
certificate files. You can make a server certificate by concatenating a public
certificate and the file containing the private key.

Using a self-signed certificate

You can use the self-signed certificate for server authentication by following
these steps:

1. Supply a copy of the public certificate to all clients. When the client first
contacts the MobiLink synchronization server, the server will send them a
copy of the public certificate,self.crt. The client can detect fake
certificates by comparing the one sent by the server with the copy the
client already has.

2. Tell each client that it is to trust only servers that can decrypt messages
encoded using the public key contained within the copy of the supplied
public certificate. For Adaptive Server Anywhere clients, you do so using
thetrusted_certificatessecurity parameter. For example, you can tell an
Adaptive Server Anywhere client to trust only theself.crt certificate by
including the following parameter in the address clause of the
synchronization subscription:

349

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user001’
TO test -pub
ADDRESS ’host=myhost;security=ecc_tls (

trusted_certificates=self.crt)’

To tell an UltraLite client to trust only the desired certificate, name the
trusted certificate using the –r option when running the UltraLite
generator, as follows. Open a command prompt and run the following
command line:

ulgen -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-r self.crt -j custapi

3. When you start the MobiLink synchronization server, specify the name of
the server certificate file,serv1.crt, and the corresponding password.
Open a command prompt and run the following command line:

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-x tcpip (security=ecc_tls (certificate=serv1.crt;

certificate_password=password))

You can hide the contents of the command line using the File Hiding utility,
dbfhide. For more information, see “The File Hiding utility”[ASA Database
Administration Guide,page 466].

Note that the clients do not need and should not have either the private key
or the password that unlocks it. Clients need only the public certificate.

In contrast, the MobiLink synchronization server requires access to the
private key, as well as to the public parts of the certificate. Thus, the server
requires access to the server certificate file, which contains both public and
private information.

The MobiLink synchronization server must have access to the private key
and the password that protects it. For this reason, you must ensure that the
MobiLink command line and log file are secure. This is best done using a
firewall and by otherwise limiting access to the computer running the
MobiLink synchronization server.

Note: The certificate file name and password are not displayed in the log file.

350

Chapter 16. Transport-Layer Security

Certificate authorities
One problem with self-signed certificates is that an adversary can create a
fake certificate using a different public- and private-key pair. Someone,
mistaking the fake certificate for the original, may unknowingly encrypt his
or her message using the substitute public key, rather than that owned by the
intended recipient. Only the adversary, who knows the substitute private key,
could read a message encrypted using the fake certificate.

To guard against such an attack, both the user and the owner of the certificate
must agree to trust a third party. This third party, called asigning authority
or certificate authority , adds a digital signature to the certificate using his
or her private key. Once signed, the document certificate can be altered only
with the aid of the third party. To sign a certificate, the certificate authority
need not know the private key of the certificate owner.

The certificate authority need not be an external person or organization.
If the certificates are to be used only within the company, it may be
appropriate for someone at the company to act as the certificate authority.

To create a trustworthy system, a certificate authority must confirm the
identity of a certificate owner before signing a certificate. In particular, the
certificate authority must check that the identity fields in the certificate
accurately describe the certificate owner and that the certificate owner owns
the matching private key.

Someone wishing to use this certificate to communicate with the certificate
owner must have confidence in the following:

♦ Before signing the certificate, the certificate authority made certain that
the identity information contained in the certificate correctly identified
the certificate owner.

♦ Each private key is known only to the certificate owner.

♦ The user has a reliable copy of the certificate authority’s public key.

To satisfy these conditions, not only must the user have confidence in the
integrity of the certificate authority, but the user must also have obtained the
same public key directly from the certificate authority.

To obtain valid copies of a public key, users of this system typically obtain
copies of a self-signed certificate owned by the certificate authority. To foil
impostors, the certificate must be obtained by reliable means.

In addition, each client must store the copy of the certificate authority’s
certificate securely. Should an adversary have access to the user’s computer,
he or she could replace the certificate authority’s certificate with a fake.

351

Certificate chains
When deploying a replication system, a large number of certificates may be
required. The responsibility of signing many certificates may place too great
a burden on the certificate authority. To lessen their workload, a certificate
authority can delegate signing authority to others. To do so, the certificate
authority signs a certificate held by the delegate. The delegate then proceeds
to sign certificates using the private key that matches the one in this
certificate.

A certificate chain is a sequence of certificates such that each certificate is
signed by the next. The final certificate, called the root certificate, is owned
by a certificate authority. For example, a server certificate can be signed by a
delegate. The delegate’s certificate can be signed by a certificate authority.
The certificate authority’s public key is contained in a third certificate. Such
a situation is a chain of three certificates.

public information
and

public key 1

signature 1
signature 2

Public
certificate (1)

public information
and

public key 1

signature 2
signature 3

Public
certificate (2)

public information
and

public key 1

signature (n – 1)
signature (root)

Public
certificate (n – 1)

public information
and

public key 1

signature (root)

Public
certificate (root)

. . .

Use matching server
identity (1) with one

MobiLink synchronization
server

Give a trusted copy of the
public root certificate to

each client

In fact, a delegate can also have delegates. Thus, a chain of certificates can
be of any length. However, the final certificate is always a self-signed root
certificate, owned by a certificate authority.

To trust a chain, a user must trust each of the following:

♦ Before signing each certificate, the certificate authority and all delegates
made certain that the identity information contained in the certificate
correctly identified the certificate owner.

♦ Each private key is known only to the certificate owner.

♦ The user has a reliable copy of the certificate authority’s public key.

All conditions are extremely important. The chain of certificates is only as
strong as its weakest link.

352

Chapter 16. Transport-Layer Security

Enterprise root certificates
A deployment of MobiLink that involves multiple servers can be improved
by assigning each server a unique certificate also signed by a common root
certificate. A certificate authority within the enterprise holds the root
certificate.

This arrangement has the following advantages:

♦ Each MobiLink synchronization server can be given a unique certificate,
so that if one site is compromised, the others are not affected.

♦ Security is enhanced because the private key for the enterprise root
certificate need not be stored on the MobiLink synchronization server.

♦ Clients do not need to keep a copy of each server’s public certificate, only
a copy of the public root certificate because you can configure them to
trust any certificate signed by the root certificate.

The security of the system can be improved somewhat by obtaining a
globally signed certificate, discussed later, from a commercial certificate
authority. In practice, however, this arrangement provides adequate security
for many applications.

You can program your clients to verify the values of some certificate fields,
as discussed later. In this way, you can ensure that your clients synchronize
with particular MobiLink synchronization servers within your organization.

353

Use matching server
identity (1) with one

MobiLink synchronization
server

Give a trusted copy of the
public enterprise root

certificate to each client

public information
and

public key 1

signature 1
enterprise signature

Public
certificate (1)

public information
and

public key 2

signature 2
enterprise signature

Public
certificate (2)

public information
and

enterprise public key

enterprise signature

Public enterprise
root certificate

Use matching server
identity (2) with another

MobiLink synchronization
server

. . .

Create the enterprise
certificate first, then

use the private
enterprise key

to create and sign as
many certificates as

you want.

This setup provides more flexibility than self-signed server certificates. For
example, you can add a new server and give it a new certificate. If the new
certificate is signed with the same enterprise root certificate, existing clients
will automatically trust it. Were you, instead, to give each MobiLink
synchronization server a self-signed certificate, all clients would require a
copy of the new public certificate.

Creating the certificates

The first step in setting up an enterprise-level system is to generate the
common self-signed certificate. To generate this root certificate, start gencert
with the –r option.

354

Chapter 16. Transport-Layer Security

>gencert -r
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 2003.07.29.02
Certificate valid for how many years: 2
Enter password to protect private key: password2
Enter file path to save certificate: ent_root.crt
Enter file path to save private key: ent_root.pri
Enter file path to save server identity: ent_serv.crt

The utility creates three files, which in this example are calledent_root.crt,
ent_root.pri, andent_serv.crt.

♦ ent_root.crt This file contains the new certificate. This certificate
should be published as all clients require a reliable copy.

♦ ent_root.pri This file contains the private key that matches the public
key encoded in the certificate.

♦ ent_serv.crt This file contains the same information as the above two
files, combined. It is intended for use with a MobiLink synchronization
server.

The first two of these three files can be used to sign additional, new
certificates. To generate a signed certificate, start gencert with the –s option.
Enter the name of the signing certificate file, the name of the signing
private-key file, and the password for the signing private key.

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 2003.07.29.03
Certificate valid for how many years: 1
Enter file path of signer’s certificate: ent_root.crt
Enter file path of signer’s private key: ent_root.pri
Enter password for signer’s private key: password2
Enter password to protect private key: password3
Enter file path to save server identity: serv1.crt

355

This time, gencert creates only one file. This file contains the signed
certificate and the private key. It is intended for use with a MobiLink
synchronization server.

Repeat this last step as many times as necessary to create a signed certificate
for each MobiLink synchronization server.

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 2003.07.29.04
Certificate valid for how many years: 2
Enter file path of signer’s certificate: ent_root.crt
Enter file path of signer’s private key: ent_root.pri
Enter password for signer’s private key: password2
Enter password to protect private key: password4
Enter file path to save server identity: serv2.crt

You now have the following files:

♦ ent_root.crt The root certificate.

♦ ent_root.pri The root private key.

♦ ent_serv.crt The root combined certificate.

♦ serv1.crt The combined certificate for the first MobiLink
synchronization server.

♦ serv2.crt The combined certificate for the second MobiLink
synchronization server.

You do not need the combined root certificate because no MobiLink
synchronization server uses it directly. Instead, you created a separate
certificate for each MobiLink synchronization server.

Using the signed certificates

You can use the signed certificates for server-authentication by following
these steps:

1. Supply a copy of the public root certificate to all clients. When the client
first contacts the MobiLink synchronization server, the server sends the
client a copy of its own public certificate. This certificate bears the

356

Chapter 16. Transport-Layer Security

signature of the root certificate. The client can detect fake certificates by
verifying that the root signature matches the public key in their copy of
the root certificate.

2. Tell each client that it is to trust only servers whose certificates bear the
signature of the root certificate. For Adaptive Server Anywhere clients,
use the trusted_certificates security parameter. For example, you can tell
an Adaptive Server Anywhere client to trust only theent_cert.crt
certificate by including this parameter in the address clause of the
synchronization subscription, as in the following example.

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user001’ TO test
ADDRESS ’host=myhost;security=ecc_tls (

trusted_certificates=ent_cert.crt)’

To tell an UltraLite client to trust only the desired certificate, name the
trusted certificate using the-r option when running the UltraLite
generator, as follows. Open a command prompt and run the following
command line:

ulgen -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-r ent_cert.crt -j custapi

3. When you start each MobiLink synchronization server, specify the name
of that server’s certificate file and the corresponding password. Enter
each command on one line.

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-x tcpip (port=3333;

security=ecc_tls (certificate=serv1.crt;
certificate_password=password3))

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-x tcpip (port=4444;

security=ecc_tls (certificate=serv2.crt;
certificate_password=password4))

357

Globally signed certificates
You can improve the security of a multi-server MobiLink setup by assigning
each server a unique certificate that is signed by a common root certificate.
You can improve it further using a certificate signed by a commercial
certificate authority. Such a certificate is called a global certificate or a
globally-signed certificate. A commercial certificate authority is an
organization that is in the business of creating high-quality certificates and
using these certificates to sign other certificates.

A global certificate has the following advantages:

♦ Security requires that both parties trust the root certificate. In the case of
inter-company communication, common trust in an outside, recognized
authority may increase confidence in the security of the system because a
certificate authority must guarantee the accuracy of the identification
information in any certificate that it signs.

♦ Security is enhanced when keys are created using pseudo-random data of
high quality. The data used with the gencert utility is of cryptographic
quality, but other, even better methods can be used in controlled
environments.

♦ The private key for the root certificate must remain private. An enterprise
may not have a suitable place to store this crucial information, whereas a
certificate authority can afford to design and maintain dedicated facilities.

When using a globally signed certificate, each client must verify certificate
field values to avoid trusting certificates that the same certificate authority
has signed for other clients. This process is described in the next section.

358

Chapter 16. Transport-Layer Security

Use matching server
identity (1) with one

MobiLink synchronization
server

Give a trusted copy of the
certificate authority's public

certificate to each client.
Require each client to verify

certificate fields.

public information
and

public key 1

signature 1
enterprise signature

Public
certificate (1)

public information
and

public key 1

signature 2
enterprise signature

Public
certificate (2)

public information
and

enterprise public key

enterprise signature
certificate authority's

signature

Globally-signed
public enterprise

certificate

Use matching server
identity (2) with another

MobiLink synchronization
server

. . .

Create the
enterprise certificate

and have your
certificate authority

sign it. You can then
use the private

enterprise key to
create and sign as

many certificates as
you want.

public information
and

root public key

root signature

Certificate
authority's public

root certificate

. . .

certificates for other
MobiLink servers

enterprise certificates
for other organizations

359

Obtaining server-authentication certificates
MobiLink transport-layer security is based on Certicom SSL/TLS Plus
libraries, which require elliptic-curve or RSA certificates. You can obtain a
global certificate from any certificate authority that can supply certificates in
the correct format. Two such companies are VeriSign and Entrust
Technologies.

☞ For more information, seehttp://www.verisign.com/or
http://www.entrust.com/certificate_services/index.htm.

☞ There are several ways to obtain certificates. One way is to use the
Certicom reqtool utility, which is installed when you install the security
component. This tool creates a server certificate and a global certificate
request. Copy the contents of the public certificate onto your clipboard, and
paste them into the form on the Web site of the certificate-issuing authority.
Only submit the public component of the certificate request. You must not
disclose your private key.

For more information about this procedure, see the documentreqtool.pdf,
located in thewin32 subdirectory of your SQL Anywhere 9 installation. It is
installed when you install the security component.

Example The following example creates an elliptic-curve certificate:

> reqtool
-- Certicom Corp. Certificate Request Tool 3.0d1 --
Choose certificate request type:

E - Personal email certificate request.
S - Server certificate request.
Q - Quit.

Please enter your request [Q] : S
Choose key type:

R - RSA key pair.
D - DSA key pair.
E - ECC key pair.
Q - Quit.

Please enter your request [Q] : E
Using curve ec163a02. Generating key pair (please wait)...
Country: CA
State: Ontario
Locality: Waterloo
Organization: Sybase, Inc.
Organizational Unit: IAS
Common Name: MobiLink
Enter password to protect private key : password5
Enter file path to save request : global.req
Enter file path to save private key : global.pri

The fileglobal.reqcontains the public certificate and request information.
Paste the contents of this file into the form on the certificate-issuing Web site.

360

Chapter 16. Transport-Layer Security

The fileglobal.pri contains the private key for the enterprise certificate. This
file is protected by the password you entered, but since the protection
provided by the password is weak, you must store this file in a secure
location.

Using a global certificate as a server certificate

You can use your global certificate directly as a MobiLink synchronization
server certificate. To do so, you must create a server identity certificate by
concatenating the public and private certificates. Open a command prompt
and run the following command line:

copy global.crt+global.pri global2.crt

You can now start a MobiLink synchronization server, specifying the new
certificate and the password for your private certificate. Open a command
prompt and run the following command line:

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL" -x tcpip
(security=ecc_tls(certificate=global2.crt;

certificate_password=password5))

You can hide the contents of the command line using the File Hiding utility,
dbfhide. For more information, see “The File Hiding utility”[ASA Database
Administration Guide,page 466].

You must also ensure that clients contacting your MobiLink synchronization
server trust the certificate. To do so, you must tell the clients to trust the root
certificate in the chain. In this case, the root certificate in the chain is a
certificate held by the certificate authority.

By default, MobiLink clients trust certificates signed by the Sybase root
certificate used to sign the sample certificate included with MobiLink.

For better security, however, you should ensure that clients consider only the
root certificate of your certificate authority to be valid.

You can tell an Adaptive Server Anywhere MobiLink client to accept only a
particular root certificate by naming only this certificate in the Address
clause of the SQL CREATE SYNCHRONIZATION SUBSCRIPTION
statement. For example, to trust certificates from XXX:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user001’ TO test -pub
ADDRESS ’host=myhost;security=ecc_tls (

trusted_certificates=XXX.crt)’

To tell an UltraLite client to trust only the XXX root certificate, name the
trusted certificate using the-r option when running the UltraLite generator,

361

as follows. Open a command prompt and run the following command line:

> ulgen -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL"
-r XXX.crt -j custapi

362

Chapter 16. Transport-Layer Security

Verifying certificate fields
Global certificates have one potentially serious flaw. Because the MobiLink
clients, as configured above, trust all certificates signed by the certificate
authority, they may also trust certificates that the same certificate authority
has issued to other companies. Without a means to discriminate, your clients
might mistake a competitor’s MobiLink synchronization server for your own
and accidentally send it sensitive information.

Similar precautions can be required in other scenarios. A company may use
an enterprise certificate, but it may still be important to verify with which
department a MobiLink client is connected.

This problem can be resolved by requiring your clients to test the value of
fields in the identity portion of the certificate. Three fields in the certificate
can be verified. You can verify any or all of the following three fields:

♦ Organization

♦ Organizational Unit

♦ Common Name

To verify the fields, you supply the acceptable value. For example, the
following SQL statement tells an Adaptive Server Anywhere client to check
all three fields and to accept only the named values:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR ’user01’
TO test
ADDRESS ’port=3333;security=ecc_tls(trusted_

certificates=certicom.crt;
certificate_company=Sybase, Inc.;
certificate_unit=iAnywhere;certificate_name=sample)’

You can verify the fields from an UltraLite client in a similar manner. The
precise syntax depends upon the interface used to build the application. The
following fragment of C code accomplishes the same task when developing
the UltraLite application using embedded SQL in C or C++:

ul_synch_info info;
. . .
info.security_parms =

UL_TEXT ("certificate_company=Sybase, Inc.")
UL_TEXT (";")
UL_TEXT ("certificate_unit=iAnywhere")
UL_TEXT (";")
UL_TEXT ("certificate_name=sample");

. . .
ULSynchronize(&info);

363

This example verifies all three fields. You can instead choose to verify only
one or two fields.

Verifying fields in certificate chains

When the first certificate is part of a chain, all the specified field values are
checked in that certificate. If specified, the company name is also checked in
all the other certificates, except for the root certificate. This arrangement
allows for the case that the root certificate is held by a certificate authority.
In this case, the field values of the root certificate will be different, as it is
owned by the certificate authority, rather than your company or organization.

Using a globally-signed certificate as an enterprise certificate

Instead of using a global certificate as a server certificate, it is possible to
instead use it to sign other certificates, as you would an enterprise certificate.
This setup lets you combine the benefits of a global certificate and an
enterprise certificate. The most important advantage is that you need not
store the private key for your global certificate on the computer running the
MobiLink synchronization server.

To create such a setup, generate a unique certificate for each MobiLink
synchronization server. When you do so, sign them with your global
certificate.

The following example displays how two server certificates can be generated
and signed by the global certificate:

364

Chapter 16. Transport-Layer Security

>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 2003.07.29.06
Certificate valid for how many years: 1
Enter file path of signer’s certificate: global.crt
Enter file path of signer’s private key: global.pri
Enter password for signer’s private key: password5
Enter password to protect private key: password6
Enter file path to save server identity: serv6.crt
>gencert -s
Certificate Generation Tool
Choose certificate type ((R)SA or (E)CC): E
Generating key pair...
Country: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase
Organizational Unit: IAS
Common Name: MobiLink
Serial Number: 2003.07.29.07
Certificate valid for how many years: 1
Enter file path of signer’s certificate: global.crt
Enter file path of signer’s private key: global.pri
Enter password for signer’s private key: password5
Enter password to protect private key: password7
Enter file path to save server identity: serv7.crt

The above commands generate two server identity certificates, intended for
use with two MobiLink synchronization servers.

♦ serv6.crt The server identity certificate for MobiLink synchronization
server #1.

♦ serv7.crt The server identity certificate for MobiLink synchronization
server #2.

Both certificates are signed byglobal.crt, which in turn is signed by your
certificate authority’s root certificate.

You can start these two MobiLink synchronization servers with the
following commands, entered one command per line.

365

dbmlsrv9 -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL" -x tcpip
(port=3333;security=ecc_tls (certificate=serv6.crt;

certificate_password=password6))
dbmlsrv9 -c "dsn=UltraLite 9.0 Sample;uid=DBA;pwd=SQL" -x tcpip

(port=4444;security=ecc_tls (certificate=serv7.crt;
certificate_password=password7))

You can hide the contents of the command line using the File Hiding utility,
dbfhide. For more information, see “The File Hiding utility”[ASA Database
Administration Guide,page 466].

In addition, you must ensure that each client trusts your certificate
authority’s root certificate.

366

PART II

MOBIL INK TUTORIALS

This part provides hands-on tutorials that introduce you to the basic
techniques of creating MobiLink synchronization systems.

CHAPTER 17

Tutorial: Synchronizing Adaptive Server
Anywhere Databases

About this chapter This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated and remote databases
are both Adaptive Server Anywhere databases.

Contents Topic: page

Introduction 370

Lesson 1: Creating and populating your databases 371

Lesson 2: Running the MobiLink synchronization server 375

Lesson 3: Running the MobiLink synchronization client 377

Tutorial cleanup 379

Summary 380

Further reading 381

369

Introduction
In this tutorial, you create a consolidated database and a remote database.
You then synchronize these databases using MobiLink synchronization
technology.

Timing The tutorial takes about 30 minutes.

Competencies and
experience

You will require:

♦ Knowledge of and/or experience with command line processing.

♦ Knowledge of and/or experience with Interactive SQL.
• For more information, see “Using Interactive SQL”[ASA Getting

Started,page 67].

Goals You will gain competence and familiarity with:

♦ The MobiLink synchronization server and client as an integrated system.

♦ The MobiLink synchronization server and client command lines and
options.

Key concepts The MobiLink synchronization server connects to the consolidated database
using ODBC. The MobiLink synchronization client connects to your remote
database. The MobiLink synchronization server and client function as a
group, managing the upload and download of data from one database to
another, as shown in the figure below.

370

Chapter 17. Tutorial: Synchronizing Adaptive Server Anywhere Databases

Lesson 1: Creating and populating your databases
MobiLink synchronization requires that you have data in a relational
database, an ODBC data source for each database, and two compatible
databases.

Create your database
files

The first step is to create each of the databases. In this procedure, you build a
consolidated database and a remote database using thedbinit utility from a
command line.

Thedbinit utility creates a database file with no user tables or procedures.
You create your database schema when you define, within the
newly-initialized file, user-defined tables and procedures.

❖ To create your database files

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Create a consolidated database for this tutorial. Run the following
command line:

dbinit consol.db

If this tutorial has been previously run on your computer,consol.dband
consol.logmay already exist. This will causedbinit to fail. Delete these
files before runningdbinit.

3. Create the remote database for this tutorial. Run the following command
line:

dbinit remote.db

If this tutorial has been previously run on your computer,remote.dband
remote.logmay already exist. This will causedbinit to fail. Delete these
files before runningdbinit.

4. Verify the successful creation of these database files by listing the
contents of the directory. You should seeconsol.dbandremote.dbin the
listing.

Create ODBC data
sources

☞ You are now ready to build ODBC data sources through which you can
connect to your Adaptive Server Anywhere databases.

☞ For more information about creating ODBC data sources, see “The Data
Source utility” [ASA Database Administration Guide,page 472].

371

❖ To create ODBC data sources

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Create your ODBC data source for a consolidated database by running
the following command line:

dbdsn -w test_consol -y -c
"uid=DBA;pwd=SQL;dbf=consol.db;eng=Consol"

This command line specifies the following options:
♦ -w Creates a data source definition.

♦ -y Delete or overwrite data source without confirmation.

♦ -c Specifies the connection parameters as a connection string.
☞ For more information, see “Data Source utility options”[ASA
Database Administration Guide,page 475].

3. Create an ODBC data source for a remote database by running the
following command line:

dbdsn -w test_remote -y -c
"uid=DBA;pwd=SQL;dbf=remote.db;eng=Remote"

4. Verify the successful creation of your data sources as follows.

❖ To verify your new data sources

1. Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

2. Click the User DSN tab.

3. Scroll through the list to find the test_remote and test_consol data
sources.

4. Select each data source and click Configure.

5. Test your data source by clicking the Test Connection button.

6. Click OK to close the ODBC Data Source Administrator.

Create your schema The following procedure executes SQL statements using the Interactive SQL
utility to create and populate tables in the consolidated database. It also
creates tables and inserts synchronization subscriptions and publications into
the remote database.

The SQL files,build_consol.sqlandbuild_remote.sql, are created
specifically for this tutorial.

372

Chapter 17. Tutorial: Synchronizing Adaptive Server Anywhere Databases

❖ To call and run your scripts using Interactive SQL

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the following command line:

dbisql -c "dsn=test_consol;astop=no" build_consol.sql

The SQL statements inbuild_consol.sqlcreate and populate the emp and
cust tables in the consolidated database.

This step includesastop=no to instruct the server not to shut down when
thedbisql utility shuts down.

3. Run the following command line:

dbisql -c "dsn=test_remote;astop=no" build_remote.sql

The SQL statements inbuild_remote.sqlcreate the remote tables emp
and cust, and insert synchronization subscriptions and publications.

4. Verify the creation of the emp and cust tables in the remote and
consolidated databases using Interactive SQL.

♦ Open Interactive SQL by typingdbisql at a command prompt. Connect
using the test_consol DSN as DBA, using SQL as the password.

♦ Execute the following SQL statement by typing it into the SQL
Statements pane and pressing F9.

SELECT * FROM emp, cust

The tables in the consolidated database are populated with data.

♦ Connect using the test_remote DSN and execute the following SQL
statement:

SELECT * FROM emp, cust

The tables in the remote database are empty.

5. Leave the consolidated and remote databases running for the next lesson.

Further reading ☞ For more information about creating remote databases, see“Creating a
remote database” on page 168.

☞ For more information about creating subscriptions and publications, see
“Publishing data” on page 171.

☞ For more information about creating databases, see “The Initialization
utility” [ASA Database Administration Guide,page 485]and “Creating a

373

database using the dbinit command-line utility”[ASA Database Administration
Guide,page 486].

☞ For more information about running Interactive SQL, see “The
Interactive SQL utility”[ASA Database Administration Guide,page 492]and
“Using Interactive SQL”[ASA Getting Started,page 67].

☞ For more information about SELECT statements, see “SELECT
statement”[ASA SQL Reference,page 541].

374

Chapter 17. Tutorial: Synchronizing Adaptive Server Anywhere Databases

Lesson 2: Running the MobiLink synchronization
server

☞ Your consolidated database must be running prior to running MobiLink.
If you shut down your consolidated database following Lesson 1, you should
restart the database. You can start the MobiLink synchronization server from
a command prompt.

❖ To start the MobiLink synchronization server

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the following command line:

dbmlsrv9 -c "dsn=test_consol" -o mlserver.mls -v+ -dl -za -
zu+

This command line specifies the following options:

♦ -c The connection string for the MobiLink synchronization server uses
the DSN for the consolidated database. For more information, see “-c
option” [MobiLink Synchronization Reference,page 10].

♦ -o The-o option is used to specify the message log file. For more
information, see “-o option”[MobiLink Synchronization Reference,page 13].

♦ -v+ The-v+ option sets verbose logging on. For more information, see
“-v option” [MobiLink Synchronization Reference,page 21].

♦ -dl The-dl option sets the display log feature ON. For more
information, see “-dl option”[MobiLink Synchronization Reference,page 12].

♦ -za The-za option turns automated scripting ON. For more
information, see “-za option”[MobiLink Synchronization Reference,page 28].

♦ -zu+ The -zu+ option automates the user authentication process. For
more information, see “-zu option”[MobiLink Synchronization Reference,
page 31].

The options -o, -v, and -dl are chosen to provide debugging and
troubleshooting information. Using these options in a production
environment may affect performance. They typically are not used in a
production environment.

Once you have executed the MobiLink synchronization server command, the
output below appears.

375

If MobiLink is already running when you attempt to rundbmlsrv9, you will
receive an error message. Shut down the current instance of MobiLink and
run the command again.

Further reading ☞ For more information about the MobiLink synchronization server, see
“The MobiLink synchronization server” on page 16.

☞ For a complete list of dbmlsrv9 options, see “MobiLink Synchronization
Server Options”[MobiLink Synchronization Reference,page 3].

376

Chapter 17. Tutorial: Synchronizing Adaptive Server Anywhere Databases

Lesson 3: Running the MobiLink synchronization
client

Adaptive Server Anywhere clients initiate MobiLink synchronization by
using the dbmlsync utility.

❖ To start the MobiLink synchronization client

1. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

2. Run the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v -e
"SendColumnNames=ON"

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information, see
“-c option” [MobiLink Synchronization Reference,page 42].

♦ -o Specify the message log file. For more information, see “-o
option” [MobiLink Synchronization Reference,page 74].

♦ -v Verbose operation. For more information, see “-v option”
[MobiLink Synchronization Reference,page 80].

♦ -e Extended options. Specifying “SendColumnNames=ON” sends
column names to MobiLink. This is required when you use -za in the
dbmlsrv9 command line. For more information, see
“SendColumnNames (scn) extended option”[MobiLink Synchronization
Reference,page 62].

Once you have executed the MobiLink synchronization client command, the
output below appears to indicate that synchronization has succeeded. After
synchronization, the remote database is populated with the data from the
consolidated database.

377

Further reading For more information about dbmlsync options, see “MobiLink
synchronization client”[MobiLink Synchronization Reference,page 36].

☞ For more information about remote clients, see“MobiLink clients” on
page 19.

☞ For more information about dbmlsync, see“Initiating synchronization”
on page 185.

378

Chapter 17. Tutorial: Synchronizing Adaptive Server Anywhere Databases

Tutorial cleanup
You should remove tutorial materials from your computer.

❖ To remove tutorial materials from your computer

1. Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking each taskbar item and choosing Close.

2. Delete all tutorial-related data sources.

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤ Adaptive
Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

♦ Select test_remote and test_consol from the list of User Data Sources.
Click Remove.

♦ Click OK to close the ODBC Data Source Administrator.

3. Delete the consolidated and remote databases.

♦ Open Windows Explorer and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your
SQL Anywhere 9 installation.

♦ Deleteremote.db, remote.log, consol.db, andconsol.log.

379

Summary
During this tutorial, you:

♦ Created and populated Adaptive Server Anywhere consolidated and
remote databases.

♦ Started a MobiLink synchronization server.

♦ Started the MobiLink synchronization client and synchronized the remote
database with the consolidated database.

Learning
accomplishments

During this tutorial, you gained:

♦ Familiarity with the MobiLink synchronization server and client as an
integrated system.

♦ Competence in executing MobiLink synchronization server and client
commands.

♦ Familiarity with the MobiLink synchronization server and client
command lines and options.

380

Chapter 17. Tutorial: Synchronizing Adaptive Server Anywhere Databases

Further reading
The following documentation sections are good starting points for further
reading:

☞ For more information about Adaptive Server Anywhere remote
databases, see“Adaptive Server Anywhere Clients” on page 167.

☞ For more information about running the MobiLink synchronization
server, see“Synchronization Basics” on page 7.

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts” on page 37.

381

CHAPTER 18

Tutorial: Writing SQL Scripts Using
Sybase Central

About this chapter This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated and remote databases
are both Adaptive Server Anywhere databases.

This tutorial guides you through the process of creating and modifying
synchronization scripts. You also view MobiLink objects using the Sybase
Central MobiLink plug-in.

Contents Topic: page

Introduction 384

Lesson 1: Creating your databases 385

Lesson 2: Creating scripts for your synchronization 389

Lesson 3: Running the MobiLink synchronization server 392

Lesson 4: Running the MobiLink synchronization client 394

Lesson 5: Monitoring your MobiLink synchronization using log
files

396

Tutorial cleanup 398

Further reading 399

383

Introduction
In this tutorial, you create a consolidated database and a remote database,
and write scripts to perform synchronization. You then synchronize the two
databases.

Timing The tutorial takes about 50 minutes.

Competencies and
experience

You will require:

♦ An understanding of the role of synchronization scripts in the
synchronization process.

♦ An understanding of the properties of publications and subscriptions.

Goals The goals for the tutorial are to gain competence and familiarity with the
following tasks:

♦ Creating MobiLink synchronization scripts using Sybase Central.

♦ Troubleshooting MobiLink errors.

Key concepts The key concepts you will learn from this tutorial include:

♦ The role of the MobiLink synchronization server and client in the
synchronization process.

♦ How to create an ODBC connection and set the properties of an ODBC
connection for Adaptive Server Anywhere.

♦ How to create synchronization scripts to work with MobiLink.

♦ How to initialize a database.

Suggested background
reading

☞ For more information about Sybase Central, see “Tutorial: Managing
Databases with Sybase Central”[Introducing SQL Anywhere Studio,page 47].

☞ For more information about synchronization, see“Tutorial:
Synchronizing Adaptive Server Anywhere Databases” on page 369.

☞ For more information about synchronization scripts, see“Introduction to
synchronization scripts” on page 38.

384

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

Lesson 1: Creating your databases
MobiLink synchronization requires that you have data in a relational
database, an ODBC data source for the consolidated database, and two
supported databases.

Before you start, to ensure that there are no conflicts with databases or DSNs
created during other tutorials, navigate to the
Samples\MobiLink\Autoscriptingsubdirectory of your SQL Anywhere 9
installation and runclean.bat.

Create databases In this procedure, you build a consolidated database and a remote database
using Sybase Central.

❖ To create your databases

1. Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤ Sybase Central.

Sybase Central appears.

2. In Sybase Central, choose Tools➤ Adaptive Server Anywhere 9➤ Create
Database.

The Create a Database wizard appears. Click Next.

3. Leave the default of Create a Database on this Computer. Click Next.

4. Enter the following filename and path for the database:

Samples\MobiLink\Autoscripting\test_consol.db

Click Finish.

5. Repeat steps 2 through 4 for the remote database, using the filename
test_remote.dbin place oftest_consol.db.

Create ODBC data
sources

☞ You will now build ODBC data sources through which you can connect
to your Adaptive Server Anywhere 9 databases.

❖ To create ODBC data sources

1. In Sybase Central, choose Tools➤ Adaptive Server Anywhere 9➤
Open ODBC Administrator.

2. Create your ODBC data source for a database:
♦ Click the User DSN tab and click Add.

The Create New Data Source dialog appears.

♦ Select Adaptive Server Anywhere 9.0 and click Finish.
The ODBC Configuration for Adaptive Server Anywhere 9.0 dialog
appears.

385

3. Click the ODBC tab and entertest_consolas the Data Source Name.

4. Click the Login tab and enter the User IDdba and passwordSQL.

5. Entertest_consolunder Server Name.

6. Click the Database tab. Click Browse to locatetest_consol.db.

7. Clear the Stop Database After Last Disconnect checkbox.

8. Click OK to return to the ODBC Data Source Administrator.

9. Repeat steps 2 through 8 using the nametest_remoteinstead of
test_consolfor the ODBC connection name, database file name, and
server name.

10. Click OK to close the ODBC Data Source Administrator.

❖ To verify your new data sources

1. In Sybase Central, choose Tools➤ Adaptive Server Anywhere 9➤ Open
ODBC Administrator.

The ODBC Data Source Administrator appears.

2. Click the User DSN tab.

3. Scroll through the list to find test_consol and test_remote.

4. Select each data source and click Configure.

5. Test your data source by clicking the Test Connection button.

Create your schema The following procedure executes SQL statements using the Interactive SQL
utility to create and populate tables in the consolidated database. It also
creates tables and inserts synchronization subscriptions and publications into
the remote database.

The SQL filesbuild_consol.sqlandbuild_remote.sqlare created specifically
for this tutorial.

386

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

❖ To run your scripts in Interactive SQL

1. In Sybase Central, choose Tools➤ Adaptive Server Anywhere 9➤
Open Interactive SQL.

2. Connect to the consolidated database using thetest_consol ODBC
data source.

3. Choose File➤ Run Script.

The Open File dialog appears. Browse to
Samples\MobiLink\AutoScripting\build_consol.sql.

The SQL statements create and populate two tables, emp and dept.

4. Verify the successful creation of each of the emp and cust tables.

♦ Execute the following command in the SQL Statements pane:

SELECT * FROM emp, cust

The tables should be populated with data.

5. Close Interactive SQL.

6. Repeat steps 1 to 3 for the remote, using the ODBC data source
test_remoteand the filebuild_remote.sql.

The SQL statements create, but do not populate, two tables, emp and
dept. Synchronization subscriptions and publications define the
synchronization parameters for the MobiLink synchronization client.

7. Verify the successful creation of each of the emp and cust tables.

♦ Execute the following command in the SQL Statements pane:

SELECT * FROM emp, cust

The tables should contain no data.

8. Close Interactive SQL. Leave the consolidated and remote databases
running.

Synchronization
subscriptions and
publications

☞ MobiLink synchronization requires a MobiLink synchronization
subscription and publication. Synchronization subscriptions and
publications are stored in the remote database.

Publications identify the tables and columns on your remote database that
you want synchronized. These tables and columns are called articles. After
you create articles for your publication, the MobiLink synchronization
server uses the information contained in the publication to construct SQL
statements that are used to transfer data from your remote to your
consolidated database.

387

This tutorial uses the SQL filebuild_remote.sql. The SQL statements in
build_remoteperform the following steps to a build publication and a
synchronization subscription:

♦ The following SQL statement creates the emp_cust synchronization
publication that identifies two articles, the cust and emp tables:

CREATE PUBLICATION emp_cust (TABLE cust, TABLE emp)

♦ The following SQL statement creates a synchronization user, ml_user:

CREATE SYNCHRONIZATION SUBSCRIPTION USER ml_user

♦ The following SQL statement creates a synchronization subscription for
ml_user to the emp_cust publication. The synchronization subscription
identifies a MobiLink user, the publication name (emp_cust), and
optional communication parameters.

CREATE SYNCHRONIZATION SUBSCRIPTION TO emp_cust FOR ml_user

♦ The following SQL statement specifies the communication mode for the
synchronization subscription as TCP/IP:

ALTER SYNCHRONIZATION SUBSCRIPTION
TO emp_cust FOR ml_user
TYPE TCPIP ADDRESS ’host=localhost’

In the next lesson, you will learn how to modify these objects in Sybase
Central.

Further reading ☞ For more information about consolidated databases, see“Consolidated
database” on page 10.

☞ For more information about remote databases, see“MobiLink clients”
on page 19.

☞ For more information about Interactive SQL, see “The Interactive SQL
utility” [ASA Database Administration Guide,page 492].

☞ For more information about creating ODBC data sources, see “The Data
Source utility” [ASA Database Administration Guide,page 472].

☞ For more information about defining publications and subscriptions, see
“Publishing data” on page 171.

388

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

Lesson 2: Creating scripts for your
synchronization

You can view, write, and modify synchronization scripts using Sybase
Central. In this section you add scripts to the consolidated database.

Each script belongs to a designatedscript version. You must add a script
version to the consolidated database before you add scripts.

❖ To add a script version

1. Start Sybase Central and connect to the test_consol database using the
MobiLink plug-in.

2. Select the Versions folder. Double-click Add Version.

The Add a New Script Version dialog appears.

3. Name the new versiondefault. Click Finish.

❖ To add synchronized tables to your consolidated database

1. In the MobiLink Synchronization plug-in of Sybase Central, select the
Tables folder and double-click DBA.

You will see two tables, emp and cust.

2. Right-click each table and choose Add to Synchronized Tables.

Now that you have designated these tables as synchronized, you can add a
new table script for each upload and download to the consolidated database.

389

❖ To add table scripts to each synchronized table

1. In the MobiLink Synchronization plug-in of Sybase Central, select the
Synchronized Tables folder. You will see two tables, emp and cust.
Double-click the emp table.

2. Double-click Add Table Script. The following dialog appears.

3. Select theupload_insertevent from the dropdown list.

4. Click Finish.

5. Type the following SQL statement into the edit screen:

INSERT INTO emp (emp_id, emp_name)
VALUES (?, ?)

6. Save the script.

7. Close the dialog.

8. Repeat steps 2 to 7 for thedownload_cursorevent using the following
SQL statement:

SELECT emp_id, emp_name FROM emp

9. Select the cust table.

10. Repeat steps 2 to 7 for theupload_insertevent using the following SQL
statement:

INSERT INTO cust
(cust_id, emp_id, cust_name)
VALUES (?, ?, ?)

390

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

11. Repeat steps 2 to 7 for thedownload_cursorevent using the following
SQL statement:

SELECT cust_id, emp_id, cust_name
FROM cust

Further reading ☞ For more information about the scripts you just created, see
“upload_insert table event”[MobiLink Synchronization Reference,page 218]and
“download_cursor cursor event”[MobiLink Synchronization Reference,
page 133].

☞ For more information about script versions, see“Script versions” on
page 49.

☞ For more information about adding scripts, see“Adding and deleting
scripts in your consolidated database” on page 51.

☞ For more information about writing table scripts, see“Table scripts” on
page 46.

For more information about writing synchronization scripts, see“Writing
Synchronization Scripts” on page 37.

391

Lesson 3: Running the MobiLink synchronization
server

☞ The MobiLink synchronization server can be started from a command
prompt. Since the MobiLink synchronization server is a client to the
consolidated database, your consolidated database must be started prior to
starting MobiLink. If you shut down your consolidated database following
Lesson 1, you should restart the database.

❖ To start the MobiLink synchronization server

1. Ensure that your consolidated database is running by looking in the
system tray for the SQL icon.

2. Open a command prompt and navigate to
Samples\MobiLink\Autoscripting. Run the following command:

dbmlsrv9 -c "dsn=test_consol" -o mlserver.mls -v+ -dl -zu+

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information, see
“-c option” [MobiLink Synchronization Reference,page 10].

♦ -o Specify the message log file. For more information, see “-o option”
[MobiLink Synchronization Reference,page 13].

♦ -v+ Sets verbose logging on. For more information, see “-v option”
[MobiLink Synchronization Reference,page 21].

♦ -dl Sets the display log feature ON. For more information, see “-dl
option” [MobiLink Synchronization Reference,page 12].

♦ -zu+ Automates the user authentication process. For more information,
see “-zu option”[MobiLink Synchronization Reference,page 31].

The options -o, -v, and -dl are chosen to provide debugging and
troubleshooting information. Using these options in a production
environment may affect performance. They typically are not used in a
production environment.

Once you have executed the MobiLink synchronization server command, the
output below appears.

392

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

If MobiLink is already running when you attempt to run dbmlsrv9, you will
receive an error message. Shut down the current instance of MobiLink and
attempt to run the command again.

Further reading For more information about dbmlsrv9, see“The MobiLink synchronization
server” on page 16.

393

Lesson 4: Running the MobiLink synchronization
client

The MobiLink synchronization client may now be started from a command
prompt. Adaptive Server Anywhere clients initiate MobiLink
synchronization by using the dbmlsync utility.

You specify connection parameters on the dbmlsync command line using the
-c option. These parameters are for the remote database.

❖ To start the MobiLink client

1. Ensure the MobiLink synchronization server is running by looking for
the MobiLink icon in the system tray.

2. Open a command prompt and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your SQL Anywhere 9
installation.

3. Run the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v+

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information, see
“-c option” [MobiLink Synchronization Reference,page 10].

♦ -o Specify the message log file. For more information, see “-o
option” [MobiLink Synchronization Reference,page 13].

♦ -v+ Verbose operation. For more information, see “-v option”
[MobiLink Synchronization Reference,page 21].

Once you have executed the MobiLink synchronization client command, the
output below appears to indicate that synchronization has succeeded. After
synchronization, the remote database is populated with the data from the
consolidated database.

394

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

Further reading ☞ For more information about dbmlsync, see “MobiLink synchronization
client” [MobiLink Synchronization Reference,page 36].

For more information about synchronization, see“The synchronization
process” on page 21.

395

Lesson 5: Monitoring your MobiLink
synchronization using log files

Once the tables have synchronized, you can view the progress of the
synchronization using the two message log files you created with each
command line, namely,mlserver.mlsanddbmlsync.out.

❖ To find errors in a MobiLink synchronization log file

1. Open your log file in a text editor. For this tutorial, the log file is
mlserver.mls.

2. Search the file for the stringSynchronization Server started.

3. Scan down the left side of the file. A line beginning withI. contains an
informational message, and a line beginning withE. contains an error
message. For example:

4. Note that beside theE. in this example, there is the following text:

04/27 16:01:01. <Main>: Error: Unable to initialize
communications stream 1: tcpip.

This message indicates an error prior to the upload and download. There
may be errors in the synchronization subscription or publication
definitions.

5. Look for the clause that begins as follows:

Synchronization request from:

This clause indicates that a synchronization request has been established.

6. Look for the clause that beginsWorking on a request . This indicates
that the client and server are communicating. You may get this message if
you have specified a high level of verbosity.

396

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

❖ To detect errors in your MobiLink synchronization client log file

1. Open your log file in a text editor. For this tutorial, the log file is
dbmlsync.out.

2. Search the file for the stringCOMMIT. If it appears, your synchronization
was successful.

3. Search the file for the string ROLLBACK. If the transaction was rolled
back, there were errors that prevented it from completing.

4. Scan down the left side of the file. If you see anE. , you have an error. If
you don’t have any errors, your synchronization has completed
successfully.

Further reading ☞ For more information about MobiLink synchronization server log files,
see“Logging MobiLink synchronization server actions” on page 17.

397

Tutorial cleanup
You should remove tutorial materials from your computer.

❖ To remove tutorial materials from your computer

1. Close the Adaptive Server Anywhere, MobiLink, and synchronization
client windows by right-clicking on each taskbar item and choosing
Close.

2. Delete all tutorial-related data sources.

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤ Adaptive
Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

♦ Select test_remote and test_consol from the list of User Data Sources.
Click Remove.

♦ Click OK to close the ODBC Data Source Administrator.

3. Delete the consolidated and remote databases.

♦ Open Windows Explorer and navigate to the
Samples\MobiLink\AutoScriptingsubdirectory of your
SQL Anywhere 9 installation.

♦ Deleteremote.db, remote.log, consol.db, andconsol.log.

398

Chapter 18. Tutorial: Writing SQL Scripts Using Sybase Central

Further reading
The following documentation sections are a good starting point for further
reading:

☞ For more information about running the MobiLink synchronization
server, see“The MobiLink synchronization server” on page 16.

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts” on page 37and “Synchronization Events”
[MobiLink Synchronization Reference,page 83].

☞ For an introduction to other methods of synchronization such as
timestamp, see“Synchronization Techniques” on page 69.

☞ For information about testing your scripts in Sybase Central, see
“Testing script syntax” on page 64.

399

CHAPTER 19

Tutorial: Using MobiLink with an Oracle 8i
Consolidated Database

About this chapter This chapter provides a tutorial to guide you through the process of setting
up a synchronization system when the consolidated database is an Oracle
database and the remote database is an Adaptive Server Anywhere database.

This tutorial will guide you through the process of creating and
synchronizing the two databases.

Contents Topic: page

Introduction 402

Lesson 1: Create your databases 403

Lesson 2: Starting the MobiLink synchronization server 409

Lesson 3: Running the MobiLink synchronization client 410

Summary 411

Further reading 412

401

Introduction
In this tutorial, you prepare an Oracle consolidated database and an Adaptive
Server Anywhere remote database. You then synchronize the two databases
using MobiLink.

Timing The tutorial takes about 120 minutes.

Required software ♦ A full Adaptive Server Anywhere installation including Sybase Central.

♦ A full installation of MobiLink synchronization server and client.

♦ A full installation of Oracle Enterprise Edition 8i.

♦ The iAnywhere Solutions - Oracle 8, 8i and 9i driver.

Competencies and
experience

You should have the following competencies and experience before
beginning the tutorial:

♦ Familiar with Sybase Central interface and functionality.

♦ Competent with Interactive SQL and Oracle SQL Plus.

♦ Competent programming Oracle.

Goals The goals for the tutorial are:

♦ To acquire familiarity with the MobiLink synchronization server and
related components as they can be used with Oracle.

♦ To gain competence in executing MobiLink server and client commands
as they pertain to an Oracle consolidated database.

Suggested background
reading

☞ For more information about writing SQL scripts, see“Tutorial: Writing
SQL Scripts Using Sybase Central” on page 383.

☞ For more information about running the MobiLink synchronization
server, see“Synchronization Basics” on page 7.

402

Chapter 19. Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

Lesson 1: Create your databases
MobiLink synchronization requires that you have data a relational database,
an ODBC data source for each database and two compatible databases.

SQL files

You may enter data into a database using a number of different methods.
This tutorial uses Oracle SQL Plus.

Copy the following code into SQL Plus and execute it. These SQL
statements drop, create and populate tables in the consolidated database. If
there are no tables to drop, an error will appear in the SQL Plus output. This
will not affect processing.

create sequence emp_sequence;
create sequence cust_sequence;
drop table emp;
create table emp (emp_id int primary key, emp_name varchar(128

));
drop table cust;
create table cust (cust_id int primary key, emp_id int

references emp(emp_id), cust_name varchar(128));
insert into emp (emp_id, emp_name) values (emp_

sequence.nextval, ’emp1’);
insert into emp (emp_id, emp_name) values (emp_

sequence.nextval, ’emp2’);
insert into emp (emp_id, emp_name) values (emp_

sequence.nextval, ’emp3’);
commit;
insert into cust (cust_id, emp_id, cust_name) values (cust_

sequence.nextval, 1, ’cust1’);
insert into cust (cust_id, emp_id, cust_name) values (cust_

sequence.nextval, 1, ’cust2’);
insert into cust (cust_id, emp_id, cust_name) values (cust_

sequence.nextval, 2, ’cust3’);
commit;

Copy the following code into SQL Plus and execute it. These SQL
statements drop and create tables in the remote databases. If there are no
tables to drop, an error will appear in the SQL Plus output. This will not
affect processing. Synchronization subscriptions and publications are also
inserted to define the synchronization parameters for the MobiLink
synchronization server.

403

create table emp (emp_id int primary key ,emp_name varchar(128
));

create table cust (cust_id int primary key, emp_id int
references emp (emp_id), cust_name varchar(128));

CREATE PUBLICATION emp_cust (TABLE cust, TABLE emp);
CREATE SYNCHRONIZATION USER ml_user;
CREATE SYNCHRONIZATION SUBSCRIPTION
TO emp_cust FOR ml_user TYPE TCPIP ADDRESS ’host=localhost’;

ODBC data sources

You can now create ODBC data sources through which you connect to the
Oracle consolidated database and the Adaptive Server Anywhere remote
database. MobiLink requires ODBC data source to perform data
synchronization.

The consolidated data
source

Ensure that you know your Instance, Service and Database names, as these
values are required for the ODBC portion of the installation. These values
are established at the time of your Oracle installation.

The following steps set up an ODBC configuration for the Oracle
consolidated database. You will set up the ODBC connections for the
Adaptive Server Anywhere remote database later.

❖ To set up an ODBC data source for Oracle

1. Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator opens.

2. Click Add on the User DSN tab. The Create New Data Source window
appears.

3. Select iAnywhere Solutions - Oracle 8, 8i and 9i Driver, and click Finish.

The ODBC Oracle Driver Setup window appears.

4. Click the General tab and type the data source nameora_consol . This
is the DSN value used for connecting to your Oracle database. You will
need it later.

5. Enter the server name. This value depends on your Oracle installation. If
the server is on your computer, you may be able to leave this field blank.

6. Click the Advanced tab. Enter a Default User Name. For this tutorial you
can usesystem, or any User Name with sufficient rights to create objects.
Click OK.

7. Click OK to close the ODBC Data Source Administrator.

404

Chapter 19. Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

MobiLink system tables

MobiLink comes with a script calledsyncora.sql, located in the
MobiLink\setupsubdirectory of your SQL Anywhere installation.
Syncora.sqlcontains SQL statements, written in Oracle SQL, to prepare
Oracle databases for use as consolidated databases. It creates a series of
system tables, triggers, and procedures for use by MobiLink. The system
tables are prefaced with ML_. MobiLink works with these tables during the
synchronization process.

❖ Create MobiLink system tables within Oracle

1. Start SQL Plus. Choose Start➤ Programs➤ Oracle - OraHome81➤
Application Development➤ SQL Plus.

Connect to your Oracle database by using Oracle SQL Plus. Log on
using thesystemschema with passwordmanager.

2. Runsyncora.sqlby typing the following command:

@path \syncora.sql;

wherepath is theMobiLink\setupsubdirectory of your SQL Anywhere 9
installation. If there are spaces in your path, you should enclose the path
and filename in quotation marks.

❖ To verify that the system tables are installed

1. Start SQL Plus. Choose Start➤ Programs➤ Oracle - OraHome81➤
Application Development➤ SQL Plus.

2. Run the following SQL statement to yield a listing of the MobiLink
system tables, procedures, and triggers:

SELECT object_name
FROM all_objects
WHERE object_name
LIKE ’ML_%’;

If all of the objects shown in the following table are included, you can
proceed to the next step.

405

OBJECT_NAME

ML_ADD_CONNECTION_SCRIPT

ML_ADD_DNET_CONNECTION_SCRIPT

ML_ADD_DNET_TABLE_SCRIPT

ML_ADD_JAVA_CONNECTION_SCRIPT

ML_ADD_JAVA_TABLE_SCRIPT

ML_ADD_LANG_CONNECTION_SCRIPT

ML_ADD_LANG_TABLE_SCRIPT

ML_ADD_TABLE_SCRIPT

ML_ADD_USER

ML_CONNECTION_SCRIPT

ML_CONNECTION_SCRIPT_TRIGGER

ML_SCRIPT

ML_SCRIPTS_MODIFIED

ML_SCRIPT_TRIGGER

ML_SCRIPT_VERSION

ML_SUBSCRIPTION

ML_TABLE

ML_TABLE_SCRIPT

ML_TABLE_SCRIPT_TRIGGER

ML_USER

Note
If any of the objects are missing, the procedure you just completed was not
successful. In this case, you need to review the MobiLink error messages
to see what went wrong; correct the problem; and then drop the MobiLink
system tables as follows. However, do not drop system tables if there are
any tables starting with ML_ other than the ones listed above.

❖ To drop the MobiLink system tables

1. Generate and run the drop statements:

♦ Run the following SQL statement in SQL Plus:

select ’drop ’ || object_type || ’ ’ || object_name ||
’;’

from all_objects
where object_name like ’ML_%’;

This generates a list of tables, procedures and triggers to be dropped.

406

Chapter 19. Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

Copy this list to a text file and save it asdrop.sqlin yourOracleTut
directory. Remove any lines that do not contain drop statements.

♦ Execute the SQL statements indrop.sqlby running the following
command:

@c:\OracleTut \drop.sql;

Replacec:\ with the location of yourOracleTutdirectory. Run
drop.sqla second time to delete tables that were not removed the first
time because of dependencies.
You can now repeat the instructions for Creating MobiLink system
tables in Oracle.

The remote data source

❖ To initialize your remote database

1. Open a command prompt and navigate to yourOracleTutdirectory, for
examplec:\OracleTut. Run the following command line:

dbinit remote.db

2. Verify the successful creation of the database by getting a listing of the
contents of this directory. The fileremote.dbshould appear in the
directory listing.

❖ To create an ODBC data source for the remote database

1. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbdsn -w test_remote -y -c "uid=DBA;pwd=SQL;
dbf=c: \OracleTut \remote.db;eng=remote"

Replacec:\ with the location of yourOracleTutdirectory.

❖ To verify your new data source

1. Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

The ODBC Data Source Administrator appears.

2. Click the User DSN tab.

3. Select test_remote from the list of data sources and click Configure.

4. Test test_remote by clicking the Test Connection button.

5. Click OK to close the ODBC Data Source Administrator.

407

Databases

In this procedure, you build a consolidated database using thedbisql
command line utility. Thedbisql utility helps you to execute SQL
commands within your database. This procedure executes SQL statements
within each database.

☞ For more information aboutdbisql, see “The Interactive SQL utility”
[ASA Database Administration Guide,page 492].

❖ To create and populate tables in the consolidated database

1. Start SQL Plus and connect to your consolidated database. Choose Start
➤ Programs➤ Oracle - OraHome81➤ Application Development➤
SQL Plus.

2. Execute the SQL statements inbuild_consol.sqlby running the following
command:

@c:\OracleTut \build_consol.sql;

Replacec:\ with the location of yourOracleTutdirectory. If the path
contains spaces, enclose the path and filename in double quotes.

3. Verify the successful creation of each of the tables through SQL Plus
directly from within the application. Run the following SQL statements:

SELECT * FROM emp;
SELECT * FROM cust;

4. Leave the consolidated database running.

❖ To create tables and synchronization information in the remote
database

1. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbisql -c "dsn=test_remote" build_remote.sql

Thedbisql plug-in starts the remote database and executes the SQL
statements inbuild_remote.sql.

2. Verify the successful creation of the emp and cust tables using
Interactive SQL or Sybase Central.

3. Leave the consolidated and remote databases running.

408

Chapter 19. Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

Lesson 2: Starting the MobiLink synchronization
server

☞ The MobiLink synchronization server can now be started from a
command prompt. Since MobiLink synchronization server is a client to the
consolidated database, your consolidated database must be started prior to
starting MobiLink. If you shut down your consolidated database following
Lesson 1, you should restart the database.

❖ To start the MobiLink synchronization server

1. Ensure that your consolidated database is running.

2. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbmlsrv9 -c "dsn=ora_consol;pwd=manager" -o mlserver.mls -v+
-za -zu+

This command line specifies the following options:

♦ -c Specifies connection parameters. Note that we only use the password
as the User ID is contained in the DSN. For more information, see “-c
option” [MobiLink Synchronization Reference,page 10].

♦ -o Specifies the message log file. For more information, see “-o option”
[MobiLink Synchronization Reference,page 13].

♦ -v+ Sets verbose logging on. For more information, see “-v option”
[MobiLink Synchronization Reference,page 21].

♦ -dl Sets the display log feature ON.

♦ -za Turns automated scripting ON. For more information, see “-za
option” [MobiLink Synchronization Reference,page 28].

♦ -zu+ Automates the user authentication process. For more information,
see “-zu option”[MobiLink Synchronization Reference,page 31].

Further reading ☞ For more information about dbmlsrv9, see“The MobiLink
synchronization server” on page 16and “MobiLink synchronization server”
[MobiLink Synchronization Reference,page 4].

409

Lesson 3: Running the MobiLink synchronization
client

The MobiLink client may now be started from a command prompt. The
MobiLink client initiates synchronization.

You can specify connection parameters on thedbmlsynccommand line
using the-c option. These parameters are for theremotedatabase.

❖ To start the MobiLink client

1. Ensure that the MobiLink synchronization server is started.

2. Open a command prompt and navigate to yourOracleTutdirectory. Run
the following command line:

dbmlsync -c "dsn=test_remote" -o dbmlsync.out -v+ -e
"SendColumnNames=ON"

This command line specifies the following options:

♦ -c Supply database connection parameters. For more information, see
“-c option” [MobiLink Synchronization Reference,page 10].

♦ -o Specify the message log file. For more information, see “-o
option” [MobiLink Synchronization Reference,page 13].

♦ -v+ Verbose operation. For more information, see “-v option”
[MobiLink Synchronization Reference,page 21].

♦ -e Extended options. Specifying “SendColumnNames=ON” sends
column names to MobiLink. For more information, see “-e option”
[MobiLink Synchronization Reference,page 12].

Further reading ☞ For more information about dbmlsync, see “MobiLink synchronization
client” [MobiLink Synchronization Reference,page 36].

410

Chapter 19. Tutorial: Using MobiLink with an Oracle 8i Consolidated Database

Summary
During this tutorial, you accomplished the following tasks.

♦ Created a new Adaptive Server Anywhere database to serve as a remote
database.

♦ Started a MobiLink synchronization server to work with your
consolidated Oracle database.

♦ Started the MobiLink synchronization client and synchronized the remote
database with the consolidated Oracle database.

Learning
accomplishments

In this tutorial, you gained:

♦ Familiarity with the MobiLink synchronization server and client and how
they work with an Oracle database.

♦ Competence in executing MobiLink server and client commands.

411

Further reading
The following documentation areas are good starting points for further
reading:

☞ For more information about running the MobiLink synchronization
server, see“Running the MobiLink synchronization server” on page 16.

☞ For more information about synchronization scripting, see“Writing
Synchronization Scripts” on page 37, and “Synchronization Events”
[MobiLink Synchronization Reference,page 83].

☞ For an introduction to other methods of synchronization such as
timestamp, see“Synchronization Techniques” on page 69.

412

CHAPTER 20

The Contact Sample Application

About this chapter This chapter uses the Contact MobiLink sample application to illustrate a
variety of techniques that you can use for common synchronization tasks.

The techniques are illustrated using SQL scripts. Many of the same
techniques can be implemented using Java or .NET synchronization logic.

Contents Topic: page

Introduction 414

Setup 415

Tables in the Contact databases 417

Users in the Contact sample 420

Synchronization 421

Monitoring statistics and errors in the Contact sample 428

413

Introduction
This chapter introduces you to the Contact sample application. This sample
is a valuable resource for the MobiLink developer. It provides you with an
example of how to implement many of the techniques you will need to
develop MobiLink applications.

The Contact sample application includes an Adaptive Server Anywhere
consolidated database and two Adaptive Server Anywhere remote databases.
It illustrates several common synchronization techniques. To get the most
out of this example, you should study the sample application as you read.

Although the consolidated database is an Adaptive Server Anywhere
database, the synchronization scripts consist of simple SQL statements that
should work with minimal changes on other database management systems.

The Contact sample is in theSamples\MobiLink\Contactsubdirectory of
your SQL Anywhere installation. For an overview, see
Samples\MobiLink\Contact\readme.txt.

Synchronization design The synchronization design in the Contact sample application uses the
following features:

♦ Column subsets A subset of the columns of the Customer, Product,
SalesRep, and Contact tables are shared with the remote databases.

♦ Row subsets All of the columns but only one of the rows of the
SalesRep table are shared with each remote database.

☞ For more information, see“Partitioning rows among remote
databases” on page 77.

♦ Timestamp-based synchronization This is a way of identifying
changes that were made to the consolidated database since the last time a
device synchronized. The Customer, Contact, and Product tables are
synchronized using a method based on timestamps.

☞ For more information, see“Timestamp-based synchronization” on
page 72.

414

Chapter 20. The Contact Sample Application

Setup
A batch file namedbuild.bat is provided to build the Contact sample
databases. On UNIX systems, the file isbuild.sh. You may want to examine
the contents of the batch file. It carries out the following actions:

♦ Creates ODBC data source definitions for a consolidated database and
each of two remote databases.

♦ Creates a consolidated database namedconsol.dband loads the
MobiLink system tables, database schema, some data, synchronization
scripts, and MobiLink user names into the database.

♦ Creates two remote databases, each namedremote.db, in subdirectories
namedremote_1andremote_2. Loads information common to both
databases and applies customizations. These customizations include a
global database identifier, a MobiLink user name, and subscriptions to
two publications.

❖ To build the Contact sample

1. Open a command prompt and navigate to theSamples\MobiLink\Contact
subdirectory of your SQL Anywhere installation.

2. Runbuild.bat(Windows) orbuild.sh (Unix).

Running the Contact sample

The Contact sample includes batch files that carry out initial
synchronizations and illustrate MobiLink synchronization server and
dbmlsync command lines. You can examine the contents of the following
batch files, located in theSamples\MobiLink\Contactsubdirectory of your
SQL Anywhere 9 installation, in a text editor:

♦ step1.bat

♦ step2.bat

♦ step3.bat

415

❖ To run the Contact sample

1. Start the MobiLink synchronization server.

♦ Open a command prompt and navigate to the
Samples\MobiLink\Contactsubdirectory of your SQL Anywhere 9
installation and execute the following command:

step1

This command runs a batch file that starts the MobiLink
synchronization server in a verbose mode. This mode is useful during
development or troubleshooting, but has a significant performance
impact and so would not be used in a routine production environment.

2. Synchronize both remote databases.

♦ Open a command prompt and navigate to the
Samples\MobiLink\Contactsubdirectory of your SQL Anywhere 9
installation and execute the following command:

step2

This is a batch file that synchronizes both remote databases.

3. Shut down the MobiLink synchronization server.

♦ Open a command prompt and navigate to the
Samples\MobiLink\Contactsubdirectory of your SQL Anywhere 9
installation and execute the following command:

step3

This is a batch file that shuts down the MobiLink synchronization
server.

To explore how synchronization works in the Contact sample, you can use
Interactive SQL to modify the data in the remote and consolidated databases,
and use the batch files to synchronize.

416

Chapter 20. The Contact Sample Application

Tables in the Contact databases
The table definitions for the Contact database are located in the following
files:

♦ Samples\MobiLink\Contact\build_consol.sql

♦ Samples\MobiLink\Contact\build_remote.sql

Both the consolidated and the remote databases contain the following three
tables, although their definition is slightly different in each place.

SalesRep Each SalesRep occupies one row in this table. Each remote database belongs
to a single sales representative.

In each remote database, SalesRep has the following columns:

♦ rep_id A primary key column that contains an identifying number for
the sales representative.

♦ name The name of the representative.

In the consolidated database only, there is also a ml_username column
holding the MobiLink user name for the representative.

Customer This table holds one row for each customer. Each customer is a company
with which a single sales representative does business. There is a
one-to-many relationship between the SalesRep and Customer tables.

In each remote database, Customer has the following columns:

♦ cust_id A primary key column holding an identifying number for the
customer.

♦ name The customer name. This is a company name.

♦ rep_id A foreign key column referencing the SalesRep table. Identifies
the sales representative assigned to the customer.

In the consolidated database, there are two additional columns,
last_modified and active:

♦ last_modified The last time the row was modified. This column is used
for timestamp-based synchronization.

♦ active A BIT column that indicates if the customer is currently active
(1) or if the company no longer deals with this customer (0). If the
column is marked inactive (0) all rows corresponding to this customer are
deleted from remote databases.

417

Contact This table holds one row for each contact. A contact is a person who works
at a customer company. There is a one-to-many relationship between the
Customer and Contact tables.

In each remote database, Contact has the following columns:

♦ contact_id A primary key column holding an identifying number for
the customer.

♦ name The name of the individual contact.

♦ cust_id The identifier of the customer for whom the contact works.

In the consolidated database, the table also has the following columns:

♦ last_modified The last time the row was modified. This column is used
for timestamp-based synchronization.

♦ active A BIT column that indicates if the contact is currently active (1)
or if the company no longer deals with this contact (0). If the column is
marked inactive (0) the row corresponding to this contact is deleted from
remote databases.

Product Each product sold by the company occupies one row in the Product table.
The Product table is held in a separate publication so that remote databases
can synchronize the table separately.

In each remote database, Product has the following columns:

♦ id A primary key column holding an identifying number for the product.

♦ name The name of the individual item.

♦ size The size of the item.

♦ quantity The number of items in stock. When a sales representative
takes an order, this column is updated.

♦ unit_price The price per unit of the product.

In the consolidated database, the Product table has the following additional
columns:

♦ supplier The company that manufactures the product.

♦ last_modified The last time the row was modified. This column is used
for timestamp-based synchronization.

♦ active A BIT column that indicates if the contact is currently active (1)
or if the company no longer deals with this contact (0). If the column is
marked inactive (0), the row corresponding to this contact is deleted from
remote databases.

418

Chapter 20. The Contact Sample Application

In addition to these tables, a set of tables is created at the consolidated
database only. These include the product_conflict table, which is a
temporary table used during conflict resolution, and a set of tables for
monitoring MobiLink activities owned by a user named mlmaint. Scripts to
create the MobiLink monitoring tables are in the file
Samples\MobiLink\Contact\mlmaint.sql.

419

Users in the Contact sample
Several different database user IDs and MobiLink user names are included
in the Contact sample.

Database user IDs The two remote databases belong to sales representatives Samuel Singer
(rep_id 856) and Pamela Savarino (rep_id 949).

When connecting to their remote database, these users both use the default
user IDdba and passwordSQL.

Each remote database also has a user IDsync_userwith password
sync_user. This user ID is employed only on the dbmlsync command line.
It is a user with REMOTE DBA authority, and so can carry out any
operation when connected from dbmlsync, but has no authority when
connected from any other application. The widespread availability of the
user ID and password is thus not a problem.

At the consolidated database, there is a user namedmlmaint , who owns the
tables used for monitoring MobiLink synchronization statistics and errors.
This user has no right to connect. The assignment of the tables to a separate
user ID is done simply to separate the objects from the others in the schema
for easier administration in Sybase Central and other utilities.

MobiLink user names MobiLink user names are distinct from database user IDs. Each remote
device has a MobiLink user name in addition to the user ID they use when
connecting to a database. The MobiLink user name for Samuel Singer is
SSinger. The MobiLink user name for Pamela Savarino is PSavarino. The
MobiLink user name is stored or used in the following locations:

♦ At the remote database, the MobiLink user name is added using a
CREATE SYNCHRONIZATION USER statement.

♦ At the consolidated database, the MobiLink user name and password are
added using the dbmluser utility.

♦ During synchronization, the MobiLink password for the connecting user
is supplied on the dbmlsync command line listed in
Samples\MobiLInk\Contact\step2.bat.

♦ The MobiLink synchronization server supplies the MobiLink user name
as a parameter to many of the scripts during synchronization.

♦ The SalesRep table at the consolidated database has an ml_username
column. The synchronization scripts match the MobiLink user name
parameter against the value in this column.

420

Chapter 20. The Contact Sample Application

Synchronization
The following sections describe the Contact sample’s synchronization logic.

Synchronizing sales representatives in the Contact sample

The synchronization scripts for the SalesRep table illustrates snapshot
synchronization. Regardless of whether a sales representative’s information
has changed, it is downloaded.

☞ For more information, see“Snapshot synchronization” on page 74.

Business rules The business rules for the SalesRep table are as follows:

♦ The table must not be modified at the remote database.

♦ A sales representative’s MobiLink user name and rep_id value must not
change.

♦ Each remote database contains a single row from the SalesRep table,
corresponding to the remote database owner’s MobiLink user name.

Downloads ♦ download_cursor At each remote database, the SalesRep table
contains a single row. There is very little overhead for the download of a
single row, so a simple snapshotdownload_cursorscript is used:

SELECT rep_id, name
FROM SalesRep
WHERE ? IS NOT NULL
AND ml_username = ?

The first parameter in the script is the last download timestamp, which is
not used. The IS NOT NULL expression is a dummy expression supplied
to use the parameter. The second parameter is the MobiLink user name.

Uploads This table should not be updated at the remote database, so there are no
upload scripts for the table.

Synchronizing customers in the Contact sample

The synchronization scripts for the Customer table illustrate
timestamp-based synchronization and partitioning rows. Both of these
techniques minimize the amount of data that is transferred during
synchronization while maintaining consistent table data.

☞ For more information, see“Timestamp-based synchronization” on
page 72.

☞ For more information, see“Partitioning rows among remote databases”
on page 77.

421

Business rules The business rules governing customers are as follows:

♦ Customer information can be modified at both the consolidated and
remote databases.

♦ Periodically, customers may be reassigned among sales representatives.
This process is commonly called territory realignment.

♦ Each remote database contains only the customers they are assigned to.

Downloads ♦ download_cursor The followingdownload_cursorscript downloads
only active customers for whom information has changed since the last
successful download. It also downloads only customers assigned to a
particular sales representative.

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer key join SalesRep
WHERE Customer.last_modified > ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

♦ download_delete_cursor The followingdownload_delete_cursor
script downloads only customers for whom information has changed
since the last successful download. It deletes all customers marked as
inactive or who are not assigned to the sales representative.

SELECT cust_id
FROM Customer key join SalesRep
WHERE Customer.last_modified > ?
AND (SalesRep.ml_username != ? OR Customer.active = 0)

If rows are deleted from the Customer table at the consolidated database,
they do not appear in this result set and so are not deleted from remote
databases. Instead, customers are marked as inactive.

When territories are realigned, this script deletes those customers no
longer assigned to the sales representative. It also deletes customers who
are transferred to other sales representatives. Such additional deletes are
flagged with a SQLCODE of 100 but do not interfere with
synchronization. A more complex script could be developed to identify
only those customers transferred away from the current sales
representative.

The MobiLink client carries out cascading deletes at the remote database,
so this script also deletes all contacts who work for customers assigned to
some other sales representative.

Uploads Customer information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

422

Chapter 20. The Contact Sample Application

♦ upload_insert The followingupload_insertscript adds a row to the
Customer table, marking the customer as active:

INSERT INTO Customer(
cust_id, name, rep_id, active)

VALUES (?, ?, ?, 1)

♦ upload_update The followingupload_updatescript modifies the
customer information at the consolidated database:

UPDATE Customer
SET name = ?, rep_id = ?
WHERE cust_id = ?

Conflict detection is not carried out on this table.

♦ upload_delete The followingupload_deletescript marks the customer
as inactive at the consolidated database. It does not delete a row.

UPDATE Customer
SET active = 0
WHERE cust_id = ?

Synchronizing contacts in the Contact sample

The Contact table contains the name of a person working at a customer
company, a foreign key to the customer and a unique integer identifying the
contact. It also contains a last_modified timestamp and a marker to indicate
whether the contact is active.

Business rules The business rules for this table are as follows:

♦ Contact information can be modified at both the consolidated and remote
databases.

♦ Each remote database contains only those contacts who work for
customers they are assigned to.

♦ When customers are reassigned among sales representatives, contacts
must also be reassigned

Trigger A trigger on the Customer table is used to ensure that the contacts get picked
up when information about a customer is changed. The trigger explicitly
alters the last_modified column of each contact whenever the corresponding
customer is altered:

423

CREATE TRIGGER UpdateCustomerForContact
AFTER UPDATE OF rep_id ORDER 1
ON DBA.Customer
REFERENCING OLD AS old_cust NEW as new_cust
FOR EACH ROW
BEGIN

UPDATE Contact
SET Contact.last_modified = new_cust.last_modified
FROM Contact
WHERE Contact.cust_id = new_cust.cust_id

END

By updating all contact records whenever a customer is modified, the trigger
ties the customer and their associated contacts together so that whenever a
customer is modified, all associated contacts are modified too, and will be
downloaded together on the next synchronization.

Downloads ♦ download_cursor Thedownload_cursorscript for Contact is as
follows:

SELECT contact_id, contact.name, contact.cust_id
FROM (contact JOIN customer) JOIN salesrep
ON contact.cust_id = customer.cust_id

AND customer.rep_id = salesrep.rep_id
WHERE Contact.last_modified > ?

AND salesrep.ml_username = ?
AND Contact.active = 1

This script retrieves all contacts that are active, that have been changed
since the last time the sales representative downloaded (either explicitly
or by modification of the corresponding customer), and that are assigned
to the representative. A join with the Customer and SalesRep table is
needed to identify the contacts associated with this representative.

♦ download_delete_cursor Thedownload_delete_cursorfor Contact is
as follows:

SELECT contact_id
FROM (Contact JOIN Customer) JOIN SalesRep
ON Contact.cust_id = Customer.cust_id

AND Customer.rep_id = SalesRep.rep_id
WHERE Contact.last_modified > ?

AND Contact.active = 0

The automatic use of cascading referential integrity by the MobiLink
client deletes contacts when the corresponding customer is deleted from
the remote database. Thedownload_delete_cursorscript therefore has
to delete only those contact explicitly marked as inactive.

Uploads Contact information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

424

Chapter 20. The Contact Sample Application

♦ upload_insert The followingupload_insertscript adds a row to the
Contact table, marking the contact as active:

INSERT INTO Contact (
contact_id, name, cust_id, active)

VALUES (?, ?, ?, 1)

♦ upload_update The followingupload_updatescript modifies the
contact information at the consolidated database:

UPDATE Contact
SET name = ?, cust_id = ?
WHERE contact_id = ?

Conflict detection is not carried out on this table.

♦ upload_delete The followingupload_deletescript marks the contact
as inactive at the consolidated database. It does not delete a row.

UPDATE Contact
SET active = 0
WHERE contact_id = ?

Synchronizing products in the Contact sample

The scripts for the Product table illustrate conflict detection and resolution.

The Product table is kept in a separate publication from the other tables so
that it can be downloaded separately. For example, if the price changes and
the sales representative is synchronizing over a slow link, they can download
the product changes without uploading their own customer and contact
changes.

Business rules The only change that can be made at the remote database is to change the
quantity column, when an order is taken.

Downloads ♦ download_cursor The followingdownload_cursorscript downloads
all rows changed since the last time the remote database synchronized:

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified > ?
AND active = 1

♦ download_delete_cursor The followingdownload_delete_cursor
script removes all products no longer sold by the company. These
products are marked as inactive in the consolidated database.

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified > ?
AND active = 0

425

Uploads Only UPDATE operations are uploaded from the remote database. The
major feature of these upload scripts is a conflict detection and resolution
procedure.

If two sales representatives take orders and then synchronize, each order is
subtracted from the quantity column of the Product table. For example, if
Sam Singer takes an order for 20 baseball hats (product ID 400), he will
change the quantity from 90 to 70. If Pam Savarino takes an order for 10
baseball hats before receiving this change, she will change the column in her
database from 90 to 80.

When Sam Singer synchronizes his changes, the quantity column in the
consolidated database is changed from 90 to 70. When Pam Savarino
synchronizes her changes, the correct action is to set the value to 60. This
setting is accomplished by detecting the conflict.

The conflict detection scheme includes the following scripts:

♦ upload_update The followingupload_updatescript is a
straightforward UPDATE at the consolidated database:

UPDATE product
SET name = ?, size = ?, quantity = ?, unit_price = ?
WHERE product.id = ?

♦ upload_fetch The followingupload_fetchscript fetches a single row
from the Product table for comparison with the old values of the uploaded
row. If the two rows differ, a conflict is detected.

SELECT id, name, size, quantity, unit_price
FROM Product
WHERE id = ?

♦ upload_old_row_insert If a conflict is detected, the old values are
placed into the product_conflict table for use by theresolve_conflict
script. The row is added with a value of O (for Old) in the row_type
column.

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’O’)’)

♦ upload_new_row_insert The following script adds the new values of
the uploaded row into the product_conflict table for use by the
resolve_conflictscript:

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’N’)

426

Chapter 20. The Contact Sample Application

Conflict resolution ♦ resolve_conflict The following script resolves the conflict by adding
the difference between new and old rows to the quantity value in the
consolidated database:

UPDATE Product
SET p.quantity = p.quantity

- old_row.quantity
+ new_row.quantity

FROM Product p,
DBA.product_conflict old_row,
DBA.product_conflict new_row

WHERE p.id = old_row.id
AND p.id = new_row.id
AND old_row.row_type = ’O’
AND new_row.row_type = ’N’

427

Monitoring statistics and errors in the Contact
sample

The Contact sample contains some simple error reporting and monitoring
scripts. The SQL statements to create these scripts are in the file
Samples\MobiLink\Contact\mlmaint.sql.

The scripts insert rows into tables created to hold the values. For
convenience, the tables are owned by a distinct user, mlmaint.

428

CHAPTER 21

The CustDB Sample Application

About this chapter This chapter uses the CustDB sample application to illustrate a variety of
techniques that you can use for common synchronization tasks.

The techniques are illustrated using SQL scripts and Java synchronization
logic. Many of the same techniques can be implemented using .NET
synchronization logic.

Contents Topic: page

Introduction 430

Setup 432

Tables in the CustDB databases 440

Users in the CustDB sample 443

Synchronization 444

Maintaining the customer and order primary key pools 448

Further reading 450

429

Introduction
This chapter introduces you to the CustDB (Customer Database) MobiLink
sample application. CustDB is a sales-status application.

The CustDB sample is a valuable resource for the MobiLink developer. It
provides you with examples of how to implement many of the techniques
you will need to develop MobiLink applications.

The application has been designed to illustrate several common
synchronization techniques. To get the most out of this chapter, you should
study the sample application as you read.

A version of CustDB is supplied for each supported operating system and
for each supported database type.

☞ For the locations of CustDB and setup instructions, see“Setting up the
CustDB consolidated database” on page 432.

Following is the schema of CustDB:

Scenario The CustDB scenario is as follows.

A consolidated database is located at the head office. The following data is
stored in the consolidated database:

♦ The MobiLink system tables that hold the synchronization metadata.

♦ The synchronization scripts that implement synchronization logic.

♦ The CustDB data, including all customer, product, and order information,
stored in the rows of base tables.

There are two types of remote databases, mobile managers and sales
representatives.

430

Chapter 21. The CustDB Sample Application

Each mobile sales representative’s database contains all products but only
those orders assigned to that sales representative while a mobile manager’s
database contains all products and orders.

Synchronization design The synchronization design in the CustDB sample application uses the
following features:

♦ Complete table downloads All rows and columns of the ULProduct
table are shared in their entirety with the remote databases.

♦ Column subsets All rows, but not all columns, of the ULCustomer
table are shared with the remote databases.

♦ Row subsets Different remote users get different sets of rows from the
ULOrder table.

☞ For more information about row subsets, see“Partitioning rows
among remote databases” on page 77.

♦ Timestamp-based synchronization This is a way of identifying
changes that were made to the consolidated database since the last time a
device synchronized. The ULCustomer and ULOrder tables are
synchronized using a method based on timestamps.

☞ For more information, see“Timestamp-based synchronization” on
page 72.

♦ Snapshot synchronization This is a simple method of synchronization
that downloads all rows in every synchronization. The ULProduct table is
synchronized in this way.

☞ For more information, see“Snapshot synchronization” on page 74.

♦ Primary key pools to maintain unique primary keys It is essential to
ensure that primary key values are unique across a complete MobiLink
installation. The primary key pool method used in this application is one
way of ensuring unique primary keys.

☞ For more information, see“Maintaining unique primary keys using
key pools” on page 86.

☞ For other ways to ensure that primary keys are unique, see
“Maintaining unique primary keys” on page 81.

431

Setup
This section describes the pieces that make up the code for the CustDB
sample application and database. These include:

♦ The sample SQL scripts, located in theSamples\MobiLink\CustDB
subdirectory of your SQL Anywhere installation.

♦ The application code, located inSamples\UltraLite\CustDB.

♦ Platform-specific user interface code, located in subdirectories of
Samples\UltraLite\CustDBnamed for each operating system.

Setting up the CustDB consolidated database

The consolidated database may be Adaptive Server Anywhere, Sybase
Adaptive Server Enterprise, Microsoft SQL Server, Oracle, or IBM DB2.

The following SQL scripts are provided in theSamples\MobiLink\CustDB
subdirectory of your SQL Anywhere 9 installation to build the consolidated
database on any of these platforms:

♦ For an Adaptive Server Anywhere database, the file iscustdb.sql.

♦ For an IBM DB2 database, the file iscustdb2.sql.

♦ For an Adaptive Server Enterprise database, the file iscustase.sql.

♦ For a Microsoft SQL Server database, the file iscustmss.sql.

♦ For an Oracle database, the file iscustora.sql.

Creating a consolidated database

The following procedures create a consolidated database for CustDB for
each of the supported types of consolidated database.

For databases other than Adaptive Server Anywhere databases, you will first
need to run a script to add the MobiLink system tables. This
platform-specific script is located in theMobiLink\setupsubdirectory of
your SQL Anywhere 9 installation.

☞ For more information about preparing a database for use as a
consolidated database, see“Setting up a consolidated database” on page 11.

432

Chapter 21. The CustDB Sample Application

❖ To set up a consolidated database (Adaptive Server Enterprise,
Oracle or SQL Server)

1. Create the consolidated database.

2. Add the MobiLink system tables by running one of the following SQL
scripts, located in theMobiLink\setupsubdirectory of your
SQL Anywhere 9 installation:

♦ For an Adaptive Server Enterprise consolidated database prior to
version 12.5, runsyncase.sql. Otherwise, runsyncase125.sql.

♦ For an Oracle consolidated database, runsyncora.sql.

♦ For a SQL Server consolidated database, runsyncmss.sql.

3. Add tables to the CustDB database by running one of the following SQL
scripts, located in theSamples\MobiLink\CustDBsubdirectory of your
SQL Anywhere 9 installation:

♦ For an Adaptive Server Enterprise consolidated database, run
custase.sql.

♦ For an Oracle consolidated database, runcustora.sql.

♦ For a SQL Server consolidated database, runcustmss.sql.

4. Create an ODBC data source called CustDB that references your
database on the client machine.

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

♦ Click Add.

♦ Select the appropriate driver from the list.

Click Finish.

♦ Name the ODBC data source CustDB.

♦ Click the Login tab. Enter the user ID and password for your database.
The default values are DBA and SQL.

♦ Click the Database tab. Browse to the location of your database file.

433

❖ To set up a consolidated database (Adaptive Server Anywhere)

1. Create the consolidated database:

Navigate to theSamples\MobiLink\CustDBsubdirectory of your
SQL Anywhere 9 installation and run the following command line:

dbinit consol.db

2. Add tables to the CustDB database by runningcustdb.sql, located in the
Samples\MobiLink\CustDBsubdirectory of your SQL Anywhere 9
installation.

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤ Sybase
Central.

♦ In the right pane of Sybase Central, right-click
Adaptive Server Anywhere 9 and connect to the consolidated database
you have created. The default user ID and password are DBA and SQL.

♦ In the right pane, right-click the consolidated database and select Open
Interactive SQL from the popup menu.

♦ In Interactive SQL, select File➤ Run Script. Browse tocustdb.sql.
Click Open.

♦ Close Interactive SQL.

3. Create an ODBC data source called CustDB that references your
database on the client machine.

♦ In Sybase Central, select Tools➤ Adaptive Server Anywhere 9➤
Open ODBC Administrator.

♦ Click Add.

♦ Select Adaptive Server Anywhere 9.0 Driver. Click Finish.

♦ Name the ODBC data source CustDB.

♦ Click the Login tab. Enter the user ID and password for your database.
The default values are DBA and SQL.

♦ Click the Database tab. Browse to the location of your database file.

434

Chapter 21. The CustDB Sample Application

❖ To set up a consolidated database (IBM DB2)

1. Create a DB2 database on the DB2 server. Ensure that the default
table space (usually called USERSPACE1) uses 9 Kb pages.

If the default table space does not use 9 Kb pages, complete the following
steps:

♦ Delete the default table space, USERSPACE1.

♦ Verify that at least one of your buffer pools has 9 Kb pages. If not,
create a buffer pool with 9 Kb pages and restart the database to activate
it.

♦ Create a new table space with 9 Kb pages and name it USERSPACE1.
For more information, consult your DB2 documentation.

2. Add the MobiLink system tables using the file
MobiLink\setup\syncdb2long.sql. (If you are using a version of DB2
prior to 6.5, usesyncdb2.sql.)

♦ Change the connect command insyncdb2long.sql. Replace
DB2Databasewith the name of your ODBC data source. In this
example, the ODBC data source is CustDB. You could also add the
user name and password as follows. Replaceuseridandpasswordwith
your user name and password.

connect to DB2Database user userid using password

♦ Open a DB2 Command Window on either the server or client
computer. Runsyncdb2long.sqlby typing the following command:

db2 -c -ec -td~ +s -v -f syncdb2long.sql

3. Copycustdb2.classto theSQLLIB\FUNCTION directory on your DB2
server machine.

4. Add tables to the CustDB database:
♦ If necessary, change the connect command incustdb2.sql. For

example, you could add the user name and password as follows.
Replaceuseridandpasswordwith your user name and password.

connect to CustDB user userid using password

♦ Open a DB2 Command Window on either the server or client
computer. Runcustdb2.sqlby typing the following command:

db2 -c -ec -td~ +s -v -f custdb2.sql

♦ When processing is complete, enter the following command to close
the command window:

exit

435

5. Create an ODBC data source called CustDB that references the DB2
database on the DB2 client machine.

♦ Choose Start➤ Programs➤ Sybase SQL Anywhere 9➤
Adaptive Server Anywhere➤ ODBC Administrator.

♦ Click Add.

♦ Select IBM DB2 ODBC Driver. Click Finish.

♦ Name the ODBC data source CustDB.

♦ Click the Login tab. Enter the user ID and password for your database.
The default values are DBA and SQL.

♦ Click the Database tab. Browse to the location of your database file.

6. Run thecustdb2setuplongJava application on the DB2 client machine as
follows. If you are using a version of DB2 prior to 6.5, usecustdb2setup.
This application resets the CustDB example in the DB2 database. After
the initial setup, you can run this application at any time to reset the DB2
CustDB database by typing the same command line.

♦ If you use a name other than CustDB for the data source, you must
modify the connection code incustdb2setuplong.javaand recompile it
as follows. If the path specified by the system variable%db2tempdir%
contains spaces, you must enclose the path in quotation marks.

javac -g -classpath %db2tempdir% \java \jdk \lib \
classes.zip;

%db2tempdir% \java \db2java.zip;
%db2tempdir% \java \runtime.zip custdb2setuplong.java

♦ Type the following, whereuseridandpasswordare the user name and
password for connecting to the CustDB ODBC data source.

java custdb2setuplong userid password

Setting up an UltraLite remote database

The following procedure creates a remote database for CustDB. The CustDB
remote database must be an UltraLite database.

The application logic for the remote database is located in the
Samples\UltraLite\CustDBsubdirectory of your SQL Anywhere 9
installation. It includes the following files:

♦ Embedded SQL logic The filecustdb.sqccontains the SQL statements
needed to query and modify information from the UltraLite database and
the calls required to start synchronization with the consolidated database.

♦ C++ API logic The filecustdbapi.cppcontains the C++ API logic.

436

Chapter 21. The CustDB Sample Application

♦ User-interface features These features are stored separately, in
platform-specific subdirectories ofSamples\UltraLite\CustDB.

You will complete the following steps in order to install the sample
application to a remote device that is running UltraLite:

❖ To install the sample application to a remote device

1. Start the consolidated database.

2. Start the MobiLink synchronization server.

3. Install the sample application to your remote device.

4. Start the sample application on the remote device.

5. Synchronize the sample application.

Example The following example installs the CustDB sample on a Palm device
running against a DB2 consolidated database.

1. Ensure that the consolidated database is running:

♦ For a DB2 database, open a DB2 Command Window and navigate to
theSamples\MobiLink\CustDBsubdirectory of your SQL Anywhere 9
installation. Run the following command line, whereuseridand
passwordare the user ID and password for connecting to the DB2
database:

db2 connect to CustDB user userid using password

2. Start the MobiLink synchronization server:

♦ For a DB2 database, run the following command at a command
prompt:

dbmlsrv9 -c "DSN=CustDB" -zp

3. Install the sample application to your Palm device:

♦ On your PC, start Palm Desktop.

♦ Click Quick Install on the Palm Desktop toolbar.

♦ Click Add. Browse tocustdb.prcin theUltraLite\palm\68k
subdirectory of your SQL Anywhere 9 installation.

♦ Click Open.

♦ HotSync your Palm device.

4. Start the CustDB sample application on your Palm device:

437

♦ Place your Palm device in its cradle.

When you start the sample application for the first time, you are
prompted to synchronize to download an initial copy of the data. This
step is required only the first time you start the application. After that,
the downloaded data is stored in the UltraLite database.

♦ Launch the sample application.

From the Applications view, tap CustDB.

An initial dialog appears, prompting you for an employee ID.

♦ Enter an employee ID.

For the purpose of this tutorial, enter a value of 50. The sample
application also allows values of 51, 52, or 53, but behaves slightly
differently in these cases.

☞ For more information about the behavior of each user ID, see
“Users in the CustDB sample” on page 443.

A message box tells you that you must synchronize before proceeding.

♦ Synchronize your application.

Use HotSync to obtain an initial copy of the data.

♦ Confirm that the data has been synchronized into the application.

From the Applications view, tap the CustDB application. The display
shows an entry sheet for a customer, with entries.

5. Synchronize the remote application with the consolidated database. You
will only need to complete this step when you have made changes to the
database.

♦ Ensure that the consolidated database and the MobiLink
synchronization server are running.

♦ Place the Palm device in its cradle.

♦ Press the HotSync button to synchronize.

Clean up You may want to reset the data in the CustDB database in order to restart the
sample. To revert the data in the CustDB UltraLite database to its original
state, complete the following steps.

438

Chapter 21. The CustDB Sample Application

❖ To reset the data in the sample application

1. Install the ULUtil on your device:

♦ For a Palm device, start Palm Desktop on your PC.

♦ Click Install on the Palm Desktop toolbar.

♦ Click Add. Browse toulutil.prc in theUltraLite\palm\68k
subdirectory of your SQL Anywhere 9 installation.

♦ Click Done.

♦ HotSync your Palm device.

2. Delete the data using ULUtil:

♦ For a Palm device, tap the ULUtil icon.

♦ Select CustDB and tap Delete Data.

♦ HotSync your Palm device.

439

Tables in the CustDB databases
The table definitions for the CustDB database are in platform-specific files in
theSamples\MobiLink\CustDBsubdirectory of your SQL Anywhere 9
installation.

Both the consolidated and the remote databases contain the following five
tables, although their definitions are slightly different in each location.

ULCustomer The ULCustomer table contains a list of customers.

In the remote database, ULCustomer has the following columns:

♦ cust_id A primary key column that holds a unique integer identifying
the customer.

♦ cust_name A 30-character string containing the name of the customer.

In the consolidated database, ULCustomer has the following additional
column:

♦ last_modified A timestamp containing the last time the row was
modified. This column is used for timestamp-based synchronization.

ULProduct The ULProduct table contains a list of products.

In the both the remote and consolidated databases, ULProduct has the
following columns:

♦ prod_id A primary key column that holds a unique integer identifying
the product.

♦ price An integer identifying the unit price.

♦ prod_name A 30-character string containing the name of the product.

ULOrder The ULOrder table contains a list of orders, including details of the
customer who placed the order, the employee who took the order, and the
product being ordered.

In the remote database, ULOrder has the following columns:

♦ order_id A primary key column that holds a unique integer identifying
the order.

♦ cust_id A foreign key column referencing ULCustomer.

♦ prod_id A foreign key column referencing ULProduct.

♦ emp_id A foreign key column referencing ULEmployee.

♦ disc An integer containing the discount applied to the order.

440

Chapter 21. The CustDB Sample Application

♦ quant An integer containing the number of products ordered.

♦ notes A 50-character string containing notes about the order.

♦ status A 20-character string describing the status of the order.

In the consolidated database, ULOrder has the following additional column:

♦ last_modified A timestamp containing the last time the row was
modified. This column is used for timestamp-based synchronization.

ULOrderIDPool The ULOrderIDPool table is a primary key pool for ULOrder.

In the remote database, ULOrderIDPool has the following column:

♦ pool_order_id A primary key column that holds a unique integer
identifying the order ID.

In the consolidated database, ULOrderIDPool has the following additional
columns:

♦ pool_emp_id An integer column containing the employee ID of the
owner of the remote database to which the order ID has been assigned.

♦ last_modified A timestamp containing the last time the row was
modified.

ULCustomerIDPool The ULCustomerIDPool table is a primary key pool for ULCustomer.

In the remote database, ULCustomerIDPool has the following column:

♦ pool_cust_id A primary key column that holds a unique integer
identifying the customer ID.

In the consolidated database, ULCustomerIDPool has the following
additional columns:

♦ pool_cust_id An integer column containing the customer ID that will
be used for a new customer generated at a remote database.

♦ last_modified A timestamp containing the last time the row was
modified.

The following tables are contained in the consolidated database only:

ULIdentifyEmployee_-
nosync

The ULIdentifyEmployee_nosync table exists only in the consolidated
database. It has a single column as follows:

♦ emp_id This primary key column contains an integer representing an
employee ID.

441

ULEmployee The ULEmployee table exists only in the consolidated database. It contains
a list of sales employees.

ULEmployee has the following columns:

♦ emp_id A primary key column that holds a unique integer identifying
the employee.

♦ emp_name A 30-character string containing the name of the employee.

ULEmpCust The ULEmpCust table controls which customers’ orders will be
downloaded. If the employee needs a new customer’s orders, inserting the
employee ID and customer ID will force the orders for that customer to be
downloaded.

♦ emp_id A foreign key to ULEmployee.emp_id.

♦ cust_id A foreign key to ULCustomer.cust_id. The primary key
consists of emp_id and cust_id.

♦ action A character used to determine if an employee record should be
deleted from the remote database. If the employee no longer requires a
customer’s orders, set to D (delete). If the orders are still required, the
action should be set to NULL.

A logical delete must be used in this case so that the consolidated
database can identify which rows to remove from the ULOrder table.
Once the deletes have been downloaded, all records for that employee
with an action of D can also be removed from the consolidated database.

♦ last_modified A timestamp containing the last time the row was
modified. This column is used for timestamp-based synchronization.

ULOldOrder and
ULNewOrder

These tables exists only in the consolidated database. They are for conflict
resolution and contain the same columns as ULOrder. In Adaptive Server
Anywhere and Microsoft SQL Server these are temporary tables. In
Adaptive Server Enterprise, these are normal tables and @@spid. DB2 and
Oracle do not have temporary tables, so MobiLink needs to be able to
identify which rows belong to the synchronizing user. Since these are base
tables, if five users are synchronizing, they might each have a row in these
tables at the same time.

☞ For more information about @@spid, see “Variables”[ASA SQL
Reference,page 37].

442

Chapter 21. The CustDB Sample Application

Users in the CustDB sample
There are two types of users in the CustDB sample, sales people and mobile
managers. The differences are as follows:

♦ Sales people User IDs 51, 52, and 53 identify remote databases that
are associated with sales people. Sales people can carry out the following
tasks:

• View lists of customers and products.

• Add new customers.

• Add or delete orders.

• Scroll through the list of outstanding orders.

• Accept or deny orders.

• Synchronize changes with the consolidated database.

♦ Mobile managers User ID 50 identifies the remote database associated
with the mobile manager. The mobile manager can perform the same
tasks as a sales person. In addition, the mobile manager can do the
following:

• Accept or deny orders.

443

Synchronization
The following sections describe the CustDB sample’s synchronization logic.

Synchronization logic source code

You can use Sybase Central to inspect the synchronization scripts in the
consolidated database.

Script types and events Thecustdb.sqlfile adds each synchronization script to the consolidated
database by calling ml_add_connection_script or ml_add_table_script.

Example The following lines incustdb.sqladd a table-level script for the ULProduct
table, which is executed during the download_cursor event. The script
consists of a single SELECT statement.

call ml_add_table_script(
’CustDB’,
’ULProduct’, ’download_cursor’,
’SELECT prod_id, price, prod_name FROM ULProduct’)
go

Synchronizing orders in the CustDB sample

Business rules The business rules for the ULOrder table are as follows:

♦ Only approved orders are downloaded.

♦ Orders can modified at both the consolidated and remote databases.

♦ Each remote database contains only the orders assigned to an employee.

Downloads Orders can be inserted, deleted or updated at the consolidated database. The
scripts corresponding to these operations are as follows:

♦ download_cursor The first parameter in thedownload_cursorscript
is the last download timestamp. It is used to ensure that only rows that
have been modified on either the remote or the consolidated database
since the last synchronization are downloaded. The second parameter is
the employee ID. It is used to determine which rows to download.

Thedownload_cursorscript for CustDB is as follows:

CALL ULOrderDownload(?, ?)

TheULOrderDownload procedure for CustDB is as follows:

444

Chapter 21. The CustDB Sample Application

ALTER PROCEDURE ULOrderDownload (IN LastDownload timestamp,
IN EmployeeID integer)

BEGIN
SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc,

o.quant, o.notes, o.status
FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id
AND ec.emp_id = EmployeeID
AND (o.last_modified > LastDownload
OR ec.last_modified > LastDownload)
AND (o.status IS NULL OR o.status != ’Approved’)
AND (ec.action IS NULL)

END

♦ download_delete_cursor Thedownload_delete_cursorscript for
CustDB is as follows:

SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc,
o.quant, o.notes, o.status

FROM ULOrder o, ULEmpCust ec
WHERE o.cust_id = ec.cust_id
AND ((o.status = ’Approved’ AND o.last_modified > ?)
OR (ec.action = ’D’))
AND ec.emp_id = ?

Uploads Orders can be inserted, deleted or updated at the remote database. The
scripts corresponding to these operations are as follows:

♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO "ULOrder" ("order_id", "cust_id", "prod_id",
"disc", "quant", "notes", "status")

VALUES (?, ?, ?, ?, ?, ?, ?)

♦ upload_update Theupload_updatescript for CustDB is as follows:

UPDATE ULOrder SET cust_id=?, prod_id=?, emp_id=?, disc=?,
quant=?, notes=?, status=?

WHERE order_id = ?

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM "ULOrder" WHERE "order_id" = ?

♦ upload_fetch Theupload_fetchscript for CustDB is as follows:

SELECT order_id, cust_id, prod_id, emp_id, disc, quant, notes,
status

FROM ULOrder WHERE order_id = ?

♦ upload_old_row_insert Theupload_old_row_insertscript for
CustDB is as follows:

445

INSERT INTO ULOldOrder (order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status)

VALUES(?, ?, ?, ?, ?, ?, ?, ?)

♦ upload_new_row_insert Theupload_new_row_insertscript for
CustDB is as follows:

INSERT INTO ULNewOrder (order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status)

VALUES(?, ?, ?, ?, ?, ?, ?, ?)

Conflict resolution ♦ resolve_conflict Theresolve_conflictscript for CustDB is as follows:

CALL ULResolveOrderConflict

TheULResolveOrderConflict procedure for CustDB is as follows:

ALTER PROCEDURE ULResolveOrderConflict()
BEGIN

-- approval overrides denial
IF ’Approved’ = (SELECT status FROM ULNewOrder) THEN

UPDATE ULOrder o
SET o.status = n.status, o.notes = n.notes
FROM ULNewOrder n
WHERE o.order_id = n.order_id;

END IF;
DELETE FROM ULOldOrder;
DELETE FROM ULNewOrder;

END

Synchronizing customers in the CustDB sample

Business rules The business rules governing customers are as follows:

♦ Customer information can be modified at both the consolidated and
remote databases.

♦ Both the remote and consolidated databases contain a complete listing of
customers.

Downloads Customer information can be inserted or updated at the consolidated
database. The script corresponding to these operations is as follows:

♦ download_cursor The followingdownload_cursorscript downloads
all customers for whom information has changed since the last time the
user downloaded information.

SELECT cust_id, cust_name FROM ULCustomer WHERE last_modified >
?

Uploads Customer information can be inserted, updated, or deleted at the remote
database. The scripts corresponding to these operations are as follows:

446

Chapter 21. The CustDB Sample Application

♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO ULCustomer (cust_id, cust_name) VALUES (?, ?
)

♦ upload_update Theupload_updatescript for CustDB is as follows:

UPDATE ULCustomer SET cust_name = ?
WHERE "cust_id" = ?

Conflict detection is not carried out on this table.

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM ULCustomer WHERE cust_id = ?

Synchronizing products in the CustDB sample

Business rules The business rules for the ULProduct table are as follows:

♦ Products can only be modified at the consolidated database.

♦ Each remote database contains all of the products.

Downloads Product information can be inserted, deleted, or updated at the consolidated
database. The script corresponding to these operations is as follows:

♦ download_cursor The followingdownload_cursorscript downloads
all of the rows and columns of the ULProduct table at each
synchronization:

SELECT prod_id, price, prod_name FROM ULProduct

447

Maintaining the customer and order primary key
pools

The CustDB sample database uses primary key pools in order to maintain
unique primary keys in the ULCustomer and ULOrder tables. The primary
key pools are the ULCustomerIDPool and ULOrderIDPool tables.

ULCustomerIDPool

The following scripts are defined in the ULCustomerIDPool table:

Downloads ♦ download_cursor Thedownload_cursorscript for CustDB is as
follows:

SELECT pool_cust_id FROM ULCustomerIDPool
WHERE last_modified > ?

AND pool_emp_id = ?

Uploads ♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO ULCustomerIDPool (pool_cust_id) VALUES(?)

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM ULCustomerIDPool WHERE pool_cust_id = ?

♦ end_upload This end_uploadscript ensures that after each upload 20
customer IDs remain in the customer ID pool:

CALL ULCustomerIDPool_maintain(?)

TheUL_CustomerIDPool_maintain procedure for CustDB is as
follows:

ALTER PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id
INTEGER)

BEGIN
DECLARE pool_count INTEGER;
-- Determine how many ids to add to the pool
SELECT COUNT(*) INTO pool_count

FROM ULCustomerIDPool
WHERE pool_emp_id = syncuser_id;

-- Top up the pool with new ids
WHILE pool_count < 20 LOOP

INSERT INTO ULCustomerIDPool (pool_emp_id)
VALUES (syncuser_id);

SET pool_count = pool_count + 1;
END LOOP;

END

448

Chapter 21. The CustDB Sample Application

ULOrderIDPool

The following scripts are defined in the ULOrderIDPool table:

Downloads ♦ download_cursor Thedownload_cursorscript for CustDB is as
follows:

SELECT pool_order_id FROM ULOrderIDPool
WHERE last_modified > ?

AND pool_emp_id = ?

Uploads ♦ end_upload This end_uploadscript ensures that after each upload 20
order IDs remain in the order ID pool.

CALL ULOrderIDPool_maintain(?)

TheUL_OrderIDPool_maintain procedure for CustDB is as follows:

ALTER PROCEDURE ULOrderIDPool_maintain (IN syncuser_id
INTEGER)

BEGIN
DECLARE pool_count INTEGER;
-- Determine how many ids to add to the pool
SELECT COUNT(*) INTO pool_count

FROM ULOrderIDPool
WHERE pool_emp_id = syncuser_id;

-- Top up the pool with new ids
WHILE pool_count < 20 LOOP

INSERT INTO ULOrderIDPool (pool_emp_id)
VALUES (syncuser_id);

SET pool_count = pool_count + 1;
END LOOP;

END

♦ upload_insert Theupload_insertscript for CustDB is as follows:

INSERT INTO ULOrderIDPool (pool_order_id) VALUES(?)

♦ upload_delete Theupload_deletescript for CustDB is as follows:

DELETE FROM ULOrderIDPool WHERE pool_order_id = ?

449

Further reading
The following documentation sections are good starting points for further
reading:

☞ For more information about script types, see“Script types” on page 46.

☞ For reference material, including detailed information about each script
and its parameters, see “Synchronization Events”[MobiLink Synchronization
Reference,page 83].

450

Index

Symbols
-MLAutoLoadPath option

about 255
-MLDomConfigFile option

about 255
-notifier

dbmlsrv9 option 145
-sl dnet option

user-defined start classes 263
using -MLAutoLoadPath 255
using -MLDomConfigFile 255

-sl java option
user-defined start classes 237

-v option
MobiLink [dbmlsync] performance

288
.NET

about support in MobiLink 251
MobiLink API reference 269
MobiLink data types 261
synchronization logic 31
synchronization scripts for MobiLink

251
.NET MobiLink API

API reference 269
benefits 34

.NET classes
instantiation for .NET synchronization

logic 260
.NET synchronization logic

.NET class instantiations 260
about 31
API 269
DBCommand 269
DBConnection 271
DBConnectionContext 271
DBParameter 272
DBParameterCollection 273
DBRowReader 276
debugging 259
InOutInteger 282
LogCallback 277

LogMessage 277
MessageType 277
methods 262
sample 266
ServerContext 277
ServerException 279
setup 253
ShutdownCallback 279
SQLType 280
supported languages 252

#hook_dict table
about 196
unique primary keys 84

A
ActiveSync

CREATE SYNCHRONIZATION
USER statement for MobiLink
Adaptive Server Anywhere
clients 190

deploying MobiLink UltraLite
applications 225

installing the MobiLink provider for
Adaptive Server Anywhere
clients 191

installing the MobiLink provider for
UltraLite clients 223

MobiLink Adaptive Server Anywhere
clients 189

registering applications for Adaptive
Server Anywhere clients 192

registering applications for UltraLite
clients 224

Adaptive Server Anywhere
as MobiLink clients 19
as MobiLink consolidated database 12

Adaptive Server Anywhere clients
MobiLink 167

Adaptive Server Enterprise
as MobiLink consolidated database 12
MobiLink synchronization 66
StaticCursorLongColBuffLen 66

451

Index

add connection script wizard
using 51

add service wizard
using 331

add synchronized table wizard
using 51

add synchronizing table script wizard
using 52, 389

add user wizard
using 110

add version wizard
using 50, 389

adding
articles 175
columns to remote MobiLink

databases 100
MobiLink users to a remote database

178
synchronization scripts with Sybase

Central 51
tables to remote MobiLink databases

100
adding a script version 50
adding and deleting scripts in your

consolidated database 51
adding MobiLink users to a remote

database 178
adding synchronization scripts

using stored procedures 52
altering

articles 175
publications 175
synchronization subscriptions 183

altering MobiLink subscriptions 183
Apache

configuring servlet Redirector for
MobiLink 325

Apache Tomcat
servlet Redirector 325

API reference
MobiLink .NET API 269
MobiLink Java API 246

applications
differentiating MobiLink scripts 49

article creation wizard
using 175

articles

adding 175
altering 175
creating 171
MobiLink synchronization

subscriptions 182
removing 175

assemblies
implementing in MobiLink 255
locating in MobiLink .NET

synchronization logic 253
authenticate_user

about 114
automatic synchronization script

generation 40
automating scripts

MobiLink synchronization 40

B
begin_connection

example 444
blob cache size

MobiLink performance 287
BLOBs

downloaded from Adaptive Server
Enterprise 66

bottlenecks
MobiLink performance 290

C
C++

support in MobiLink .NET 252
C#

support in MobiLink .NET 252
cascading deletes

during MobiLink synchronization 28
Certicom

obtaining certificates 360
certificate authorities 351
certificate chains 352
certificates

sample certificates for MobiLink 346
chains of certificates

using 343
CHAR data type

MobiLink and other DBMSs 67
ciphers

MobiLink transport-layer security 338

452

Index

CLASSPATH environment variable
MobiLink Java synchronization logic

229
clients

Adaptive Server Anywhere as
MobiLink 19

Adaptive Server Anywhere MobiLink
clients 167

MobiLink synchronization 19
UltraLite applications as MobiLink 19
UltraLite MobiLink clients 207

columns
adding to remote MobiLink databases

100
commit_state column

about 20
communications

specifying for MobiLink 20
communications faults

MobiLink synchronization recovery 26
concurrency

MobiLink performance 286
MobiLink synchronization 187
MobiLink upload-stream processing27

conduit
dbcond9.exe 211
deploying 216
deploying UltraLite applications 211
HotSync synchronization 217
installing 212
testing 213

conduit installation utility
about 212

config.notifier
about 145

configuring
Microsoft web servers 323
Netscape web servers 320
Redirectors (all versions) 318
server-initiated synchronization 145
servlet Redirector 325
Tomcat 325

configuring Adaptive Server Anywhere
remote databases for
ActiveSync 190

configuring MobiLink user properties 179
configuring the consolidated database

for use with the Notifier 143
conflict detection

MobiLink 90
MobiLink statement-based uploads 90

conflict resolution
Contact sample 425
CustDB sample 447
forcing in MobiLink 92
MobiLink 90
MobiLink conflict detection 90
MobiLink statement-based uploads 90
user-specific logic 93

ConflictRetries synchronization option
about 187

conflicts
MobiLink 90

connection parameters
priority order 180

connection scripts
about 46
adding with Sybase Central 51
defined 46

consolidated databases
Adaptive Server Anywhere as

MobiLink 12
Adaptive Server Enterprise as

MobiLink 12
adding synchronization scripts to 51
compatibility issues for MobiLink

applications 65
creating MobiLink 11
databases other than Adaptive Server

Anywhere 65
DBMS dependencies 65
IBM DB2 as MobiLink 13
MobiLink 10
MobiLink user names 20
Oracle as MobiLink 13
relating tables to MobiLink remote

tables 11
server-initiated synchronization 143
SQL Server as MobiLink 14
supportedr 10

constructors
MobiLink synchronization 233, 261

Contact MobiLink sample
about 414

453

Index

building 415
Contact table 423
Customer table 421
monitoring statistics 428
Product table 425
running 415
SalesRep table 421
tables 417
users 420

contd_timeout stream parameter
synchronizing across firewalls 316

contention
MobiLink performance 286
MobiLink performance explanation

291
conventions

documentation xii
create database wizard

using 385
CREATE SYNCHRONIZATION

SUBSCRIPTION statement
ActiveSync for MobiLink Adaptive

Server Anywhere clients 190
CREATE SYNCHRONIZATION USER

statement
ActiveSync for MobiLink Adaptive

Server Anywhere clients 190
creating

Adaptive Server Anywhere remote
databases 168

articles 171
MobiLink consolidated databases 11
MobiLink users in remote databases

178
publications 171
publications with column-wise

partitioning 172
publications with row-wise

partitioning 173
publications with whole tables 171

creating a consolidated database 11
creating a remote database

Adaptive Server Anywhere clients 168
creating MobiLink users 178
creating the certificates 354
cryptography

public key 338

cursor scripts
defined 46

custase.sql
location 432

CustDB application
MobiLink sample application 429
synchronization scripts 432

CustDB database
DB2 432
MobiLink sample application 429

CustDB MobiLink sample
tables 440
ULCustomer table 446
ULOrder table 444
ULProduct table 447
users 443

custdb.sqc
location 436

custdb.sql
location 432

custmss.sql
location 432

customizing
MobiLink 194

customizing a prototype remote database
168

custora.sql
location 432

D
daemon

running MobiLink as a 329
data entry

synchronization techniques 94
data movement technologies

MobiLink synchronization 7
data sources

ODBC for MobiLink synchronization
12

data types
MobiLink .NET and SQL 261
MobiLink Java and SQL 233

database connections
MobiLink performance 293

database schemas
relating consolidated tables to

MobiLink remote tables 11

454

Index

databases
MobiLink consolidated 10
MobiLink synchronization

requirements for consolidated
10

synchronizing with MobiLink 7, 337
DB2

as MobiLink consolidated database 13
consolidated database 432
CustDB database 432
session-wide variables 66

dbasinst utility
installing the MobiLink provider for

ActiveSync for Adaptive Server
Anywhere clients 191

installing the MobiLink provider for
ActiveSync for UltraLite clients
223

DBCommand
MobiLink .NET API 269

dbcond9 utility
deploying 212
HotSync conduit 212

DBConnection
MobiLink .NET API 271

DBConnectionContext
MobiLink .NET API 271
MobiLink Java API 246

dbhsync9.dll
HotSync conduit 211

dblgen9.dll
HotSync conduit deployment 211

dblsn
Listener utility for Windows 154

dblsn.txt
MobiLink Listener default parameters

160
dbmlhttp9.dll

deploying UltraLite applications 211
dbmlhttps9.dll

deploying UltraLite applications 211
dbmlmon.exe

monitoring MobiLink 297
dbmlsock9.dll

deploying UltraLite applications 211
dbmlsrv9

-notifier option 145

automating script generation 40
using 16

dbmlstop utility
MobiLink 17
using 16

dbmlsync utility
-d option 187
ActiveSync for MobiLink Adaptive

Server Anywhere clients 189
changing passwords 113
concurrency 187
customizing MobiLink

synchronization 194
example 185
multiple users 185
passwords 112
permissions 185
transaction logs 187
using 185
using version 7 clients 200
writing your own 188

dbmltls9.dll
deploying UltraLite applications 211

dbmluser utility
using 112

DBMS-dependent scripts 65
DBParameter

MobiLink .NET API 272
DBParameterCollection

MobiLink .NET API 273
DBRowReader

MobiLink .NET API 276
dbser9.dll

deploying UltraLite applications 211
dbtools.h

dbmlsync features 188
synchronization 188

DDL statements
remote MobiLink databases 100

deadlocks
MobiLink upload-stream processing27

debugging
.NET synchronization logic 259
MobiLink connections 336
MobiLink synchronization server log

17
MobiLink synchronization using Java

455

Index

classes 235
DECIMAL data type

MobiLink and Adaptive Server
Enterprise 67

default global autoincrement
declaring 83

deletes
stopping upload of using MobiLink

193
deleting

all rows in a remote MobiLink table 58
articles 175
publications 177

deleting rows
synchronization 58
synchronization techniques 95

deleting rows with the
download_delete_cursor script
58

deploying
applications that use ActiveSync for

UltraLite clients 225
MobiLink ASA remote databases 168
MobiLink remote database sample 168
MobiLink synchronization conduit for

Palm 216
troubleshooting MobiLink deployment

170
UltraLite Palm applications 216

deployment options
MobiLink remote databases 19

deprecated features
MobiLink differences from version 7

200
development tips

synchronization 71
dial-up networking

about 216
configuring 219

digital certificates 341
direct inserts of scripts 53
disjoint partitioning

defined 77
synchronization 77

distributed databases
MobiLink synchronization 7

DMLStartClasses

Java user-defined start classes 237
documentation

conventions xii
SQL Anywhere Studio x

domain configuration files
about 256

download acknowledgement
MobiLink performance 287

download cache size
MobiLink performance 287

download stream
defined 21
events 56
failed downloads 96
MobiLink performance 289
MobiLink transactions 25

download-only synchronization
about 30

download_cursor
Contact sample 424, 425
CustDB sample 447
disjoint partitioning 77
example 444
example using a stored procedure call

97
partitioning child tables 80
partitioning with overlaps 78
performance 289
timestamp-based synchronization 73
using a stored procedure call 97

download_cursor table script
Contact sample 422
CustDB sample 446

download_delete_cursor
about 58
Contact sample 422, 424, 425
CustDB sample 447
disjoint partitioning 77
example using a stored procedure call

97
partitioning child tables 80
partitioning with overlaps 78
performance 289
using a stored procedure call 97

download_delete_cursor
timestamp-based
synchronization 72

456

Index

downloading a result set from a stored
procedure call

synchronization techniques 97
downloading data

file-based downloads in MobiLink 117
downloading rows

synchronization scripts 56
downloads

file-based MobiLink 117
DROP PUBLICATION statement

about 177
DROP SYNCHRONIZATION

SUBSCRIPTION statement
about 183

dropping
MobiLink subscriptions 183
MobiLink users from a remote

database 180
dropping publications 177

E
encryption

HotSync synchronization 214
MobiLink 338

enterprise root certificates 353
creating 354

error handling
during MobiLink synchronization 62

errors
handling during MobiLink

synchronization 62
multiple 63
recording 62

event hooks
#hook_dict table 196
connections 196
event arguments 196
fatal errors 196
ignoring errors 197
MobiLink 194
procedure owner 196
using 195

event names
defined 38

events
Adaptive Server Anywhere client 194
introduction to MobiLink events 38

MobiLink 22
synchronization logic and 38

events during download 56
events during upload 54
example scripts

generating 41
example scripts for UltraLite 43
example synchronization script

generation 41
example_download_cursor

about 43
example_upload_cursor

about 43
examples

synchronization scripts 43
extended options

configuring at remote databases 179
priority order 180

extended options for performance tuning
MobiLink 186

F
failed downloads

synchronization techniques 96
failover

Redirector 314
faults

MobiLink synchronization recovery 26
feedback

documentation xvi
providing xvi

file-based downloads
about 117

file-definition database
defined 119

firewalls
configuring MobiLink clients 316
configuring MobiLink synchronization

server 316
routing requests 314

forced conflict resolution
MobiLink 92
MobiLink statement-based uploads 92

forcing conflicts
MobiLink 92
MobiLink statement-based uploads 92

fundamental rules

457

Index

MobiLink 71

G
generating example scripts 41
generating scripts automatically 40
getServerContext method

DBConnectionContext class 246, 272
global assembly cache

implementing in MobiLink 255
global autoincrement

algorithm 85
declaring 83
setting GLOBAL_DATABASE_ID 83
using to generate unique values 82

GLOBAL_DATABASE_ID option
setting in MobiLink 83

globally signed certificates 358

H
handle_error

synchronization scripts 62
handling deletes

synchronization techniques 95
handling failed downloads

synchronization techniques 96
handling multiple errors on a single SQL

statement 63
hooks

Adaptive Server Anywhere client 194
host stream parameter

synchronizing across firewalls 316
HotSync conduit

configuring 214
testing 213

HotSync synchronization
about 209
architecture 210
Palm Computing Platform 211

how remote tables relate to consolidated
tables 11

HTTP synchronization
Palm Computing Platform 217

HTTPS synchronization
Palm Computing Platform 217

I
iaredirect.dll

configuring the ISAPI Redirector 323
configuring the NSAPI Redirector 320

IBM DB2
as MobiLink consolidated database 13
session-wide variables 66

icons
used in manuals xiv

IIS
configuring for ISAPI 323

indexes
MobiLink performance 289

initiating
MobiLink synchronization from

UltraLite applications 19
synchronization 185

initiating synchronization from an
application 188

InOutByteArray
MobiLink Java API 246

InOutInteger
MobiLink Java API 247

InOutString
MobiLink Java API 247

inserting
scripts in MobiLink 53

installing
MobiLink provider for ActiveSync for

Adaptive Server Anywhere
clients 191

MobiLink provider for ActiveSync for
UltraLite clients 223

servlets into EAServer 325
introduction to synchronization scripts 38
invoking transport-layer security 346
iPlanet

configuring for the NSAPI Redirector
320

ISAPI Redirector
calling 323
configuring 323

isolation levels
MobiLink default 21

J
Java

MobiLink data types 233
MobiLink Java API reference 246

458

Index

synchronization logic 31
synchronization scripts for MobiLink

227
Java classes

instantiation for Java synchronization
logic 232

Java MobiLink API
benefits 33

Java synchronization logic
about 31
API 246
DBConnectionContext 246
InOutByteArray 246
InOutInteger 247, 250
InOutString 247
Java class instantiations 232
LogListener 247
LogMessage 247
methods 234
sample 240
ServerContext 248
ServerException 250
setup 229
ShutdownListener 250
specifying in MobiLink server

command line 231
Java vs. SQL synchronization logic

MobiLink performance 288
Javadoc

MobiLink 246

K
key pools

MobiLink synchronization application
86

L
last download timestamp

about 72
Contact sample 423
maintaining 423
script parameter 48

last modified column
about 72

last_download_timestamp
script parameter 48

library functions

ULSynchronize 19
Listener utility

about 154
Listeners

about 138
configure and start 154
default parameters file 160
limitations of UDP Listeners 163
limitations on CE or PCs 163
Listener utility for Windows (dblsn)

154
Palm devices 160
SDK 162
Windows 154

loading assemblies in MobiLink 255
locking

MobiLink synchronization 187
LockTables synchronization option

about 187
log files

MobiLink 396
MobiLink synchronization server 17
synchronization 215

LogCallback
MobiLink .NET API 277

logging
MobiLink performance 288
MobiLink synchronization server

actions 17
LogListener

MobiLink Java API 247
LogMessage

MobiLink .NET API 277
MobiLink Java API 247

M
maintaining unique primary keys using

global autoincrement 82
maintaining unique primary keys using

key pools 86
maintaining unique primary keys using

UUIDs 81
making a new self-signed certificate 348
many-to-many relationships

partitioning 78
synchronization 78

MessageType

459

Index

MobiLink .NET API 277
Microsoft SQL Server

as MobiLink consolidated database 14
stored procedure calls 66

ML directive
Redirector 318

ML_CLIENT_TIMEOUT directive
Redirector 318

ml_user
installing a remote database over an

old one 170
ml_username

about 20
script parameter 48

mlDomConfig.xml
about 256

mlMonitorSettings
MobiLink Monitor settings 305

mlscript.jar
MobiLink Java synchronization logic

229
MLStartClasses

.NET user-defined start classes 263
mlxtract utility

sp_hook_dbxtract_begin procedure 84
MobiLink

.NET synchronization logic 251
a simple synchronization script 39
Adaptive Server Anywhere clients 167
architecture 8
configuring web servers 314
database connections 293
deprecated features from version 7 200
development tips 71
events during download 56
features 4
fundamental rules 71
isolation levels 21
Java synchronization logic 227
key factors 290
options for writing synchronization

logic 31
performance 285
process overview 21
running 329
sample application 414
scheduling Adaptive Server Anywhere

clients 198
server-initiated synchronization 137
starting 16
stopping the MobiLink server 17
synchronization logic 38
synchronization techniques 69, 414,

429
transport-layer security 338
Tutorial - Using Adaptive Server

Anywhere 369
Tutorial - Using an Oracle database401
Tutorial - Using MobiLink sample

applications 413, 429
Tutorial - Using Sybase Central 383
UltraLite clients 207
uploading rows 54

MobiLink .NET API reference 269
MobiLink connections

debugging 336
MobiLink consolidated databases

Adaptive Server Anywhere as 12
Adaptive Server Enterprise as 12
IBM DB2 as 13
Oracle as 13
SQL Server as 14

MobiLink data types
.NET and SQL 261
Java and SQL 233

MobiLink download stream
defined 21

MobiLink Java API reference 246
MobiLink Monitor

about 298
Chart pane 304
description of user interface 302
Details Table pane 303
Options 305
Overview pane 305
Properties 306
restoring defaults 305
saving data 307
specifying watches 308
starting 299
statistical properties 310
using 302
viewing in MS Excel 307
Watch Manager 308

460

Index

MobiLink performance
about 285
key factors 290

MobiLink security
changing passwords 113
choosing a user authentication

mechanism 107
custom user authentication 114
new users 111
passwords 110
user authentication 103
user authentication architecture 108
user authentication passwords 112

MobiLink server
troubleshooting startup 346

MobiLink synchronization
Adaptive Server Anywhere clients 167
clients 19
custdb sample database 429
file-based downloads 117
fundamental rules 71
scheduling Adaptive Server Anywhere

clients 198
server-initiated synchronization 137
UltraLite clients 207
writing .NET classes 262
writing Java classes 234

MobiLink synchronization client
tutorial 377

MobiLink synchronization logic
.NET and SQL data types 261
data types for .NET and SQL 261
data types for Java and SQL 233
Java and SQL data types 233

MobiLink synchronization scripts
constructing .NET classes 261
constructing Java classes 233
database transactions and .NET classes

261
database transactions and Java classes

232
debugging Java classes 235
preserving database transactions 232,

261
writing .NET classes 262
writing Java classes 234

MobiLink synchronization server

about 16
HotSync 211
multiple instances 318
starting 16
stopping 16
tutorial 375

MobiLink synchronization subscriptions
about 182

MobiLink system tables
creating in consolidated database 11

MobiLink upload stream
defined 21
processing 27

MobiLink user creation wizard
using 178

MobiLink user name 20
script parameter 48

MobiLink user names
about 104
Contact sample 420
CustDB sample 443

MobiLink users
about 103
adding to a remote database 178
configuring properties at a remote

database 179
creating 104
creating in remote databases 178
dropping from a remote database 180
passwords 179
sharing a name 105

modems
Palm Computing Platform 216

monitor
MobiLink Monitor 297

monitoring
synchronizations in MobiLink 297

multiple applications
differentiating MobiLink scripts 49

N
Netscape web servers

configuring the NSAPI Redirector 320
new users

MobiLink user authentication 111
newsgroups

technical support xvi

461

Index

Notifier properties file
about 145

Notifiers
about 138
configuring 145, 147
properties 145
starting 145

NSAPI Redirector
configuring 320

NUMERIC data type
MobiLink and Adaptive Server

Enterprise 67

O
objects

MobiLink .NET API 269
MobiLink Java API 246

ODBC
multiple errors 63

ODBC data sources
for MobiLink synchronization 12

options
priority order for MobiLink extended

options 180
options for performance tuning

MobiLink 186
options for writing synchronization logic

31
Oracle

as MobiLink consolidated database 13
MobiLink tutorial 401
packages in MobiLink synchronization

65
sequences in MobiLink

synchronization 65
overlaps

partitioning 77

P
packages

session-wide information 65
Palm Computing Platform

HotSync synchronization 211
synchronization 216
TCP/IP synchronization 216

Palm devices
Listener 160

parameters
last download timestamp 48
ml_username 48
MobiLink table name 48
MobiLink user name 48
synchronization scripts 48

partitioning
column-wise 172
data among MobiLink remote

databases 169
defined 77
disjoint 77
row-wise 173

partitioning rows
Contact sample 421, 423

partitioning tables
example 77

parts of the synchronization system 8
passwords

changing for MobiLink 113
MobiLink user authentication 110, 112
MobiLink users 179

performance
downloads 289
MobiLink 285
MobiLink upload stream processing 27

performance tips
MobiLink 286

Personal web Manager
configuring 323

port stream parameter
synchronizing across firewalls 316

preparing
remote databases for MobiLink 169

primary key pools
example 87
generating unique values using default

global autoincrement 82
synchronization 86

primary keys
MobiLink and Adaptive Server

Enterprise 67
Oracle sequences 65
primary key pools 87
uniqueness in synchronization 81

priority order for extended options and
connection parameters 180

462

Index

priority synchronization
MobiLink performance 289

private assemblies
implementing in MobiLink 255

procedural language
role of in MobiLink synchronization24

properties
Notifier 145
server-initiated synchronization 145

protocols
MobiLink synchronization 8

public key cryptography
about 338

publication creation wizard
column-wise partitioning 172
creating MobiLink publications 171
row-wise partitioning 174

publications
altering 175
column-wise partitioning 172
creating 171
dropping 177
row-wise partitioning 173
simple 171
using a WHERE clause 173

publishing
selected columns 172
selected rows 173
tables 171
whole tables 171

publishing data 171
publishing only some columns in a table

172
publishing only some rows in a table 173
publishing whole tables 171
push requests

about 138, 143
push technology

server-initiated synchronization 137

R
RAS

about 216
configuring 219

recording errors during synchronization
62

Redirector

about 313
configuring (all versions) 318
configuring for servlet version 325
configuring the ISAPI version for

Microsoft web servers 323
configuring the NSAPI version 320
configuring the servlet Redirector for

Tomcat 325
MobiLink requests 314
specifying the location 318

redirector.config
configuring 318
location 318

REDIRECTOR_HOST directive
Redirector 318

REDIRECTOR_PORT directive
Redirector 318

referential integrity
during MobiLink synchronization 28

registering
MobiLink Adaptive Server Anywhere

applications with ActiveSync
192

MobiLink UltraLite applications with
ActiveSync 224

registry
HotSync parameters 211

Remote Access Service
about 216
configuring 219

remote databases
creating Adaptive Server Anywhere

clients 168
deploying Adaptive Server Anywhere

databases 168
SQL scripts 169

remote DBA permissions
MobiLink synchronization 185

remote MobiLink databases
schema changes 100

remote tables
deleting rows in MobiLink 58

removing
articles 175

replication
MobiLink synchronization

subscriptions 182

463

Index

report_error
syntax 62

reporting errors during synchronization62
reqtool

how to use 360
requests

routing 314
requirements

MobiLink consolidated databases 10
resolution

MobiLink conflict resolution 90
resolve_conflict

Contact sample 426
resolving

MobiLink conflicts 90
return values

.NET synchronization 262
Java synchronization 234

reverse proxy
defined 314

role of digital certificates 342
routing requests

MobiLink synchronization 314
rows

partitioning 77
rsaserver.crt 346
running .NET synchronization logic 255
running outside the current session

MobiLink 329

S
sample application

MobiLink CustDB application 429
MobiLink database schema 432

sample database
MobiLink CustDB application 429
MobiLink database schema 432

sample domain configuration file
about 256

sample.crt 346
samples

.NET synchronization logic 266
Contact MobiLink sample 414
Contact MobiLink sample Contact

table 423
Contact MobiLink sample Customer

table 421

Contact MobiLink sample errors 428
Contact MobiLink sample Product

table 425
Contact MobiLink sample SalesRep

table 421
Contact MobiLink sample statistics

428
Contact MobiLink sample tables 417
Contact MobiLink sample users 420
CustDB MobiLink sample tables 440
CustDB MobiLink sample

ULCustomer table 446
CustDB MobiLink sample ULOrder

table 444
CustDB MobiLink sample ULProduct

table 447
CustDB MobiLink sample users 443
Java synchronization logic 240

scheduling
MobiLink Adaptive Server Anywhere

clients 198
MobiLink server-initiated

synchronization 159
schema

custdb sample database 430
schema changes

remote MobiLink databases 100
schemas

relating consolidated tables to
MobiLink remote tables 11

script parameters
about 48

script types 46
script versions

adding 50
configuring at remote databases 179
in MobiLink synchronization 49

scripts
about MobiLink 22
adding to the consolidated database 51
automating MobiLink synchronization

40
common parameters 48
connection scripts 46
MobiLink synchronization 16
supported DBMS scripting strategies

65

464

Index

table scripts 46
versions 49
writing scripts to download rows 56
writing scripts to upload rows 54

scripts and the synchronization process44
secure socket layers

obtaining certificates 360
with MobiLink synchronization 338

security
changing MobiLink passwords 113
MobiLink 338
MobiLink client architecture 340
MobiLink custom user authentication

114
MobiLink synchronization 185
MobiLink user authentication 103, 107
new MobiLink users 111
user authentication passwords 112

self-signed certificates 347
making 348
using 349

sequences
primary key uniqueness in MobiLink

synchronization 65
server authentication

MobiLink 344
server-initiated synchronization

about 137
automatic connection recovery 148
configuring and starting the Listener

154
Listener SDK 162
sample walkthrough 164
supported platforms 141
unguaranteed delivery 163

ServerContext
MobiLink .NET API 277
MobiLink Java API 248

ServerException
MobiLink .NET API 279
MobiLink Java API 250

servers
about MobiLink synchronization 16

service dependencies
MobiLink 334

services
configuring 331

dependencies 334
removing 331
running MobiLink 329
running multiple 334
Windows 331

servlet Redirector
Apache Tomcat 325
configuring 325

servlets
installing 325

session-wide variables
IBM DB2 in MobiLink

synchronization 66
Oracle packages 65

setup
MobiLink .NET synchronization logic

253
MobiLink Java synchronization logic

229
shared assemblies

implementing in MobiLink 255
ShutdownCallback

MobiLink .NET API 279
ShutdownListener

MobiLink Java API 250
simple synchronization script 39
SLEEP directive

Redirector 318
SMTP gateway

Notifier properties 151
snapshot synchronization

about 74
Contact sample 421
example 75

sp_hook_dbxtract_begin procedure
unique primary keys 84
using 84

SQL Anywhere Studio
documentation x

SQL Server
as MobiLink consolidated database 14

SQL synchronization logic
alternatives 31
MobiLink 38

SqlHook.beginPoll 148
SqlHook.endPoll 151
SQLType

465

Index

MobiLink .NET API 280
start classes

.NET synchronization logic 263
Java synchronization logic 237

starting
MobiLink synchronization from

UltraLite applications 19
MobiLink synchronization server 16

statement-based scripts
uploading rows 54

statement-based uploads
conflict detection 90

StaticCursorLongColBuffLen
Adaptive Server Enterprise 66

statistical properties
MobiLink 310

stop
MobiLink synchronization server 17

STOP SYNCHRONIZATION DELETE
statement

Adaptive Server Anywhere clients 193
stopping

MobiLink synchronization server 16,
17

upload of deletes using MobiLink 193
stored procedures

calling in MobiLink synchronization
using ODBC syntax 66

MobiLink stored procedure source
code 53

using to add or delete synchronization
scripts 52

using to download data 97
storing user name during conflict

resolution 93
stream_parms synchronization parameter

HotSync conduit 214
HotSync synchronization 210

subscribing MobiLink synchronization
users 182

subscriptions
MobiLink synchronization 182

support
newsgroups xvi

supported DBMS scripting strategies 65
syncasa.sql

about 12

syncase.sql
about 12

syncase125.sql
about 12

syncdb2.sql
about 13

synchronization
about MobiLink 7, 337
ActiveSync for MobiLink Adaptive

Server Anywhere clients 189
architecture of the MobiLink system 8
changing passwords 113
conflict resolution 90
custom user authentication 114
deleting rows 58
downloading rows 56
HotSync Palm Computing Platform

211
initiating 185
many-to-many relationships 78
MobiLink performance 27
MobiLink process overview 21
MobiLink scripts 16
MobiLink synchronization server

authentication 346
MobiLink transactions 25
MobiLink tutorial 369, 383, 401
ODBC data sources for MobiLink 12
options for writing synchronization

logic 31
Palm Computing Platform 216
performance tips 285
process 44
running the MobiLink synchronization

server 329
scheduling MobiLink Adaptive Server

Anywhere clients 198
server-initiated 137
snapshot 75
techniques 69
timestamps in MobiLink 25
transport-layer security with MobiLink

338
writing MobiLink scripts in .NET 251
writing MobiLink scripts in Java 227
writing scripts 37

synchronization basics 7

466

Index

synchronization clients
Adaptive Server Anywhere or

UltraLite for MobiLink 19
synchronization conduit

HotSync 217
synchronization definitions

differences from version 7 200
rewriting version 7 204
writing 202

synchronization errors
handling MobiLink 62

synchronization event hook sequence 194
synchronization logic

MobiLink 38
options for writing 31

synchronization scripts
.NET 251
.NET methods 262
about 38
adding and deleting 51
adding or deleting with stored

procedures 52
adding with Sybase Central 51
automatic generation 40
common parameters 48
connection scripts 46
DBMS dependencies 65
download_cursor 56
example 39
example generation 41
examples 43
execution during 44
handle_error event 62
implementing for .NET 253
implementing for Java 229
Java 227
Java methods 234
report_error 62
supported DBMS scripting strategies

65
table scripts 46
testing 64
types 46
versions in MobiLink 49
writing 37
writing scripts to download rows 56
writing scripts to upload rows 54

synchronization server
about MobiLink 16

synchronization subscriptions
altering 183
dropping 183
MobiLink 182
options 180

synchronization techniques
custdb sample application 429
data entry 94
deleting rows 95
failed downloads 96
MobiLink tutorial 413
partitioning 77
primary key pools 86
snapshot-based synchronization 74
stored procedures to download 97
timestamp-based synchronization 72
uploading rows 54

synchronization upload stream
MobiLink processing 27

synchronization user names
MobiLink 104

synchronization users
about 103
adding to a remote database 178
configuring properties at a remote

database 179
creating 104
creating in remote databases 178
dropping from a remote database 180
multiple 185
sharing a name 105

SynchronizationException
MobiLink .NET API 282
MobiLink Java API 250

synchronizing
databases with MobiLink 337

syncmss.sql
about 14

syncora.sql
about 13
using 405

system tables
creating in MobiLink consolidated

database 11

467

Index

T
table

script parameter 48
table scripts

about 46
adding with Sybase Central 51
defined 39, 46

tables
adding to remote MobiLink databases

100
column-wise partitioning 172
partitioning 77
publishing 171
relating consolidated tables to

MobiLink remote tables 11
row-wise partitioning 173

TCP/IP synchronization
Palm Computing Platform 216

technical support
newsgroups xvi

template.notifier
about 145

temporarily stopping synchronization of
deletes 193

testing
synchronization scripts 64

testing script syntax 64
timestamp-based synchronization

about 72
Contact sample 421, 423
download_cursor script 73
download_delete_cursor script 72

tips
synchronization techniques 71

Tomcat
configuring the servlet Redirector 325
supported versions 325

transaction log
location for dbmlsync 187

transactions
during MobiLink synchronization 25
in MobiLink synchronization scripts

232, 261
transport-layer security

about 337
invoking 346
MobiLink 338

MobiLink client architecture 340
obtaining certificates 360

troubleshooting
conduit 213
dial-up networking 221
handling failed downloads 96
HotSync conduit 215
MobiLink 336
MobiLink deployment 170
MobiLink security 346
MobiLink synchronization server log

17
RAS 221
Remote Access Service 221

tutorials
MobiLink 383
MobiLink custdb sample applications

429
MobiLink sample applications 413
MobiLink with Adaptive Server

Anywhere clients 369
MobiLink with Oracle 401
MobiLink with Sybase Central 383

U
UDB

as MobiLink consolidated database 13
UDP gateway

Notifier properties 152
UdpGateway.sender 153
UL_DEBUG_CONDUIT environment

variable
troubleshooting conduit 213

UL_DEBUG_CONDUIT_LOG
environment variable

troubleshooting HotSync conduit 215
ULPalmExit function

using 211
ULSynchronize library function 19
UltraLite 43

MobiLink clients 19
UltraLite applications

as MobiLink clients 19
UltraLite clients

MobiLink 19, 207
unique primary keys

468

Index

generating using global autoincrement
82

generating using key pools 86
generating using UUIDs 81
MobiLink installations 81

Universal Serial Bus
HotSync support for 209

unknown_timeout stream parameter
synchronizing across firewalls 316

upgrading
schemas in MobiLink remote

databases 100
upgrading applications

using multiple MobiLink script
versions 49

upload cache size
MobiLink performance 287

upload events
about 54

upload stream
defined 21
events 54
MobiLink transactions 25
processing of MobiLink 27

upload-only synchronization
about 30

upload_delete
Contact sample 423, 425
CustDB sample 447

upload_fetch
conflict detection 90
Contact sample 426

upload_insert
Contact sample 422, 424
CustDB sample 446

upload_new_row_insert
Contact sample 426
storing user name 93

upload_old_row_insert
Contact sample 426
storing user name 93

upload_update
conflict detection 90
Contact sample 423, 425, 426
CustDB sample 447

uploading rows
MobiLink performance 289

writing scripts 54
url_suffix stream parameter

synchronizing across firewalls 316
USB

HotSync support for 209
user authentication

.NET synchronization logic 114
changing MobiLink passwords 113
choosing a mechanism in MobiLink

107
Java synchronization logic 114
MobiLink architecture 108
MobiLink custom mechanism 114
MobiLink passwords 110
MobiLink security 103
new MobiLink users 111
passwords 112

user names
MobiLink 104
MobiLink client names 20

user-defined start classes
MobiLink .NET 263
MobiLink Java 237

user-specific conflict resolution 93
users

about MobiLink 104
Using a global certificate as a server

certificate 361
using a globally-signed certificate as an

enterprise certificate 364
using a self-signed certificate 349
using ActiveSync synchronization

MobiLink Adaptive Server Anywhere
clients 189

using stored procedures to add or delete
synchronization scripts 52

using the signed certificates 356
UUIDs

MobiLink synchronization application
81

V
VARCHAR data type

MobiLink and other DBMSs 67
verifying certificate fields 363
verifying fields in certificate chains 364
versions

469

Index

adding script versions 50
of MobiLink synchronization scripts49

Visual Basic
support in MobiLink .NET 252

W
web servers

configuring 314
configuring for synchronization 318
configuring ISAPI Microsoft for

synchronization 323
configuring NSAPI Netscape for

synchronization 320
MobiLink clients and 316

WHERE clause
publications 173

wizards
add connection script 51
add service 331
add synchronized table 51
add synchronizing table script 52, 389
add user 110
add version 50, 389
article creation 175
create database 385
MobiLink user creation 178
publication creation 171

worker threads
MobiLink 290
MobiLink performance 286

writing
.NET synchronization logic 251
Java synchronization logic 227

writing download_cursor scripts 56
writing download_delete_cursor scripts

58
writing scripts to download rows 56
writing scripts to handle errors 62
writing scripts to upload rows 54
writing SQL synchronization scripts 37
writing synchronization scripts

SQL 37
supported DBMS scripting strategies

65
writing upload_delete scripts 55
writing upload_fetch scripts 55
writing upload_insert scripts 54

writing upload_update scripts 54

470

	MobiLink Synchronization User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	Using MobiLink Technology
	Introducing MobiLink Synchronization
	The MobiLink synchronization process
	MobiLink features

	Synchronization Basics
	Parts of the synchronization system
	Consolidated database
	Supported consolidated databases
	How remote tables relate to consolidated tables
	Setting up a consolidated database
	Setting up a Sybase Adaptive Server Anywhere consolidated database
	Setting up a Sybase Adaptive Server Enterprise consolidated database
	Setting up an Oracle consolidated database
	Setting up an IBM DB2 consolidated database
	Setting up a Microsoft SQL Server consolidated database

	The MobiLink synchronization server
	Running the MobiLink synchronization server
	Stopping the MobiLink synchronization server
	Logging MobiLink synchronization server actions

	MobiLink clients
	Adaptive Server Anywhere clients
	UltraLite clients
	Specifying the communications protocol for clients
	MobiLink users

	The synchronization process
	MobiLink events
	MobiLink scripts

	Stored procedures
	Transactions in the synchronization process
	How synchronization failure is handled
	How the upload stream is processed
	Referential integrity and synchronization

	Upload-only and download-only synchronization
	Options for writing synchronization logic
	Security

	Writing Synchronization Scripts
	Introduction to synchronization scripts
	A simple synchronization script
	Generating scripts automatically
	Generating example scripts
	Example scripts for UltraLite

	Scripts and the synchronization process
	Script types
	Connection scripts
	Table scripts

	Script parameters
	Script versions
	Adding a script version

	Adding and deleting scripts in your consolidated database
	Adding or deleting scripts
	Direct inserts of scripts

	Writing scripts to upload rows
	Writing upload_insert scripts
	Writing upload_update scripts
	Writing upload_delete scripts
	Writing upload_fetch scripts

	Writing scripts to download rows
	Writing download_cursor scripts
	Writing download_delete_cursor scripts

	Writing scripts to handle errors
	Reporting errors
	Handling multiple errors on a single SQL statement

	Testing script syntax
	DBMS-dependent scripts
	Supported DBMS scripting strategies

	Synchronization Techniques
	Introduction
	Development tips
	Timestamp-based synchronization
	Snapshot synchronization
	Partitioning rows among remote databases
	Disjoint partitioning
	Partitioning with overlaps
	Partitioning child tables

	Maintaining unique primary keys
	Maintaining unique primary keys using UUIDs
	Maintaining unique primary keys using global autoincrement
	Declaring default global autoincrement
	Setting the GLOBAL_DATABASE_ID value
	Setting unique database identification numbers when extracting databases
	How default values are chosen

	Maintaining unique primary keys using key pools
	A primary key pool example

	Handling conflicts
	How conflicts are detected
	Detecting conflicts

	Forced conflict resolution
	Forced conflict resolution

	Storing the user name

	Data entry
	Handling deletes
	Handling failed downloads
	Downloading a result set from a stored procedure call
	Schema changes in remote databases

	Authenticating MobiLink Users
	About MobiLink users
	Creating MobiLink users
	Sharing MobiLink user names

	Choosing a user authentication mechanism
	User authentication architecture
	Providing initial passwords for users
	Synchronizations from new users
	Prompting end users to enter passwords
	Changing passwords
	Custom user authentication

	File-Based Downloads
	Introduction
	Setting up file-based downloads
	Create the file-definition database
	Changes at the consolidated database
	Creating the download file
	Synchronizing new remotes

	Validation checks
	Automatic validation
	MobiLink generation numbers
	Custom validation

	Examples
	Snapshot example
	Timestamp-based example

	Server-Initiated Synchronization
	Introduction
	Supported platforms
	Setting up server-initiated synchronization
	Push requests
	Create push requests
	Detect push requests
	Delete push requests

	Set up the Notifier
	Start the Notifier
	Configure the Notifier
	Common properties
	Notifier properties
	SMTP gateway properties
	UDP gateway properties

	Set up the Listener
	The Listener utility
	Default parameters file dblsn.txt

	Palm devices

	Listener Software Development Kit
	Deployment considerations
	Walkthrough of server-initiated synchronization
	Sample applications

	Adaptive Server Anywhere Clients
	Creating a remote database
	Deploying remote databases
	Partitioning data between remote databases
	Upgrading remote databases

	Publishing data
	Publishing whole tables
	Publishing only some columns in a table
	Publishing only some rows in a table
	Altering existing publications
	Dropping publications

	Creating MobiLink users
	Adding MobiLink users to a remote database
	Configuring MobiLink user properties
	Priority order for extended options and connection parameters

	Dropping MobiLink users

	Subscribing MobiLink synchronization users
	Altering MobiLink subscriptions
	Dropping MobiLink subscriptions

	Initiating synchronization
	Multiple MobiLink synchronization users
	Customizing synchronization
	Transaction log files
	Concurrency during synchronization
	Initiating synchronization from an application

	Using ActiveSync synchronization
	Configuring Adaptive Server Anywhere remote databases for ActiveSync
	Installing the MobiLink provider for ActiveSync
	Registering Adaptive Server Anywhere clients for ActiveSync

	Temporarily stopping synchronization of deletes
	Customizing the client synchronization process
	Synchronization event hook sequence
	Using event-hook procedures
	Event-hook procedure owner
	Connections for event-hook procedures
	Event arguments
	Ignoring errors in event-hook procedures

	Scheduling synchronization
	Adaptive Server Anywhere version 7 MobiLink clients

	UltraLite Clients
	Introduction to synchronization streams
	Synchronizing UltraLite databases on the Palm Computing Platform
	Choosing a synchronization method
	Understanding HotSync synchronization
	HotSync configuration overview
	Registering the MobiLink HotSync conduit to HotSync Manager
	Checking that MobiLink HotSync conduit installation is correct
	Configuring the MobiLink HotSync conduit
	Deploying the MobiLink HotSync conduit
	Configuring TCP/IP, HTTP, or HTTPS synchronization
	Configuring TCP/IP synchronization for the Palm Computing Platform
	Configuring HTTP or HTTPS synchronization for the Palm Computing platform

	Configuring Remote Access Service
	Configuring RAS for synchronization via modem
	Configuring RAS for serial port connection
	Testing and troubleshooting

	Synchronizing UltraLite databases on Windows CE
	Installing the MobiLink provider for ActiveSync
	Registering applications for use with ActiveSync
	Deploying applications that use ActiveSync

	Writing Synchronization Scripts in Java
	Introduction
	Setting up Java synchronization logic
	Running Java synchronization logic
	Writing Java synchronization logic
	Class instances
	Transactions
	SQL-Java data types
	Constructors
	Methods
	Debugging Java classes
	Handling MobiLink server errors in Java
	User-defined start classes

	Java synchronization example
	Introduction
	Create your Java synchronization script

	MobiLink Java API Reference
	DBConnectionContext interface
	InOutByteArray interface
	InOutInteger interface
	InOutString interface
	LogListener interface
	LogMessage class
	ServerContext interface
	ServerException class
	ShutdownListener interface
	SynchronizationException class

	Writing Synchronization Scripts in .NET
	Introduction
	Setting up .NET synchronization logic
	Running .NET synchronization logic
	Loading assemblies
	Printing information from .NET
	Handling MobiLink server errors with .NET
	Debugging .NET synchronization logic

	Writing .NET synchronization logic
	Class instances
	Transactions
	SQL-.NET data types
	Constructors
	Methods
	User-defined start classes

	.NET synchronization example
	MobiLink .NET API Reference
	DBCommand interface
	DBConnection interface
	DBConnectionContext interface
	DBParameter class
	DBParameterCollection class
	DBRowReader interface
	LogCallback delegate
	LogMessage class
	MessageType enumeration
	ServerContext interface
	ServerException class
	ShutdownCallback delegate
	SQLType enumeration
	SynchronizationException class

	MobiLink Performance
	Performance tips
	Key factors influencing MobiLink performance
	Tuning MobiLink for performance

	Monitoring MobiLink performance

	MobiLink Monitor
	Introduction
	Starting the MobiLink Monitor
	Using the MobiLink Monitor
	Details Table pane
	Chart pane
	Overview pane
	Options
	Session Properties
	Synchronization Properties

	Saving Monitor data
	Customizing your statistics
	MobiLink statistical properties

	Synchronizing Through a Web Server
	Introduction
	Setting up the Redirector
	Configuring MobiLink clients and servers for the Redirector
	Configuring Redirector properties (all versions)
	Configuring an NSAPI Redirector for Netscape web servers
	Configuring an ISAPI Redirector for Microsoft web servers
	Configuring the servlet Redirector
	Configuring the servlet Redirector for Apache Tomcat servers

	Running MobiLink Outside the Current Session
	Running the UNIX MobiLink server as a daemon
	Running the Windows MobiLink server as a service
	Adding, modifying, and removing services
	Running more than one service at a time

	Troubleshooting MobiLink server startup
	Ensure that network communication software is running
	Debugging network communications startup problems

	Transport-Layer Security
	About transport-layer security
	About public-key cryptography
	Client architecture
	Digital certificates
	The role of digital certificates
	Using chains of certificates
	Server authentication

	Invoking transport-layer security
	Self-signed certificates
	Making a new self-signed certificate
	Using a self-signed certificate

	Certificate authorities
	Certificate chains
	Enterprise root certificates
	Creating the certificates
	Using the signed certificates

	Globally signed certificates
	Obtaining server-authentication certificates
	Using a global certificate as a server certificate

	Verifying certificate fields
	Verifying fields in certificate chains
	Using a globally-signed certificate as an enterprise certificate

	MobiLink Tutorials
	Tutorial: Synchronizing Adaptive Server Anywhere Databases
	Introduction
	Lesson 1: Creating and populating your databases
	Lesson 2: Running the MobiLink synchronization server
	Lesson 3: Running the MobiLink synchronization client
	Tutorial cleanup
	Summary
	Further reading

	Tutorial: Writing SQL Scripts Using Sybase Central
	Introduction
	Lesson 1: Creating your databases
	Lesson 2: Creating scripts for your synchronization
	Lesson 3: Running the MobiLink synchronization server
	Lesson 4: Running the MobiLink synchronization client
	Lesson 5: Monitoring your MobiLink synchronization using log files
	Tutorial cleanup
	Further reading

	Tutorial: Using MobiLink with an Oracle 8i Consolidated Database
	Introduction
	Lesson 1: Create your databases
	SQL files
	ODBC data sources
	MobiLink system tables
	Databases

	Lesson 2: Starting the MobiLink synchronization server
	Lesson 3: Running the MobiLink synchronization client
	Summary
	Further reading

	The Contact Sample Application
	Introduction
	Setup
	Running the Contact sample

	Tables in the Contact databases
	Users in the Contact sample
	Synchronization
	Synchronizing sales representatives in the Contact sample
	Synchronizing customers in the Contact sample
	Synchronizing contacts in the Contact sample
	Synchronizing products in the Contact sample

	Monitoring statistics and errors in the Contact sample

	The CustDB Sample Application
	Introduction
	Setup
	Setting up the CustDB consolidated database
	Creating a consolidated database

	Setting up an UltraLite remote database

	Tables in the CustDB databases
	Users in the CustDB sample
	Synchronization
	Synchronization logic source code
	Synchronizing orders in the CustDB sample
	Synchronizing customers in the CustDB sample
	Synchronizing products in the CustDB sample

	Maintaining the customer and order primary key pools
	ULCustomerIDPool
	ULOrderIDPool

	Further reading

	Index

