
MobiLink Synchronization
Reference

Part number: DC50018-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright l’
1997–2001 Certicom Corp. Portions are Copyright l’ 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of
Certicom Corp. All rights reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by
U.S. patents 5,787,028; 4,745,568; 5,761,305. Patents pending.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions . xi
The CustDB sample database . xiii
Finding out more and providing feedback xiv

I MobiLink Reference 1

1 MobiLink Synchronization Server Options 3
MobiLink synchronization server . 4

2 MobiLink Synchronization Client 35
MobiLink synchronization client . 36
dbmlsync options . 40

3 Synchronization Events 83
Overview of MobiLink events . 86
authenticate_parameters connection event 98
authenticate_user connection event 100
authenticate_user_hashed connection event 104
begin_connection connection event 107
begin_connection_autocommit connection event 109
begin_download connection event 110
begin_download table event . 112
begin_download_deletes table event 114
begin_download_rows table event . 116
begin_publication connection event 118
begin_synchronization connection event 121
begin_synchronization table event 123
begin_upload connection event . 125
begin_upload table event . 127
begin_upload_deletes table event . 129
begin_upload_rows table event . 131
download_cursor cursor event . 133
download_delete_cursor cursor event 136
download_statistics connection event 139
download_statistics table event . 142

iii

end_connection connection event . 145
end_download connection event . 147
end_download table event . 149
end_download_deletes table event 151
end_download_rows table event . 153
end_publication connection event . 155
end_synchronization connection event 158
end_synchronization table event . 160
end_upload connection event . 162
end_upload table event . 164
end_upload_deletes table event . 166
end_upload_rows table event . 168
example_upload_cursor table event 170
example_upload_delete table event 171
example_upload_insert table event 172
example_upload_update table event 173
handle_error connection event . 174
handle_odbc_error connection event 177
modify_last_download_timestamp connection event 180
modify_next_last_download_timestamp connection event 182
modify_user connection event . 184
new_row_cursor cursor event (deprecated) 186
old_row_cursor cursor event (deprecated) 189
prepare_for_download connection event 192
report_error connection event . 194
report_odbc_error connection event 196
resolve_conflict table event . 199
synchronization_statistics connection event 202
synchronization_statistics table event 205
time_statistics connection event . 207
time_statistics table event . 209
upload_cursor cursor event (deprecated) 212
upload_delete table event . 214
upload_fetch table event . 216
upload_insert table event . 218
upload_new_row_insert table event 220
upload_old_row_insert table event 222
upload_statistics connection event 224
upload_statistics table event . 227
upload_update table event . 231

4 SQL Statements 233
ALTER PUBLICATION statement . 234

iv

ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink] 236
ALTER SYNCHRONIZATION USER statement [MobiLink] 238
CREATE PUBLICATION statement 240
CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]243
CREATE SYNCHRONIZATION USER statement [MobiLink] 245
DROP PUBLICATION statement . 255
DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink] 256
DROP SYNCHRONIZATION USER statement [MobiLink] 257
START SYNCHRONIZATION DELETE statement [MobiLink] 258
STOP SYNCHRONIZATION DELETE statement [MobiLink] 260

5 Stored Procedures 261
Stored procedures to add or delete scripts 262
Client event-hook procedures . 269

6 Utilities 299
ActiveSync provider installation utility 300
MobiLink stop utility . 303
MobiLink client database extraction utility (deprecated) 304
MobiLink user authentication utility 308
Certificate reader utility . 310
Certificate generation utility . 311

7 MobiLink System Tables 315
Introduction . 316

8 DataType Conversions 323
Sybase Adaptive Server Enterprise 324
IBM DB2 . 326
Oracle . 328
Microsoft SQL Server . 330

9 Character Set Considerations 331
Character set considerations . 332

10 ODBC Drivers 335
ODBC drivers supported by MobiLink 336

11 Deploying MobiLink Applications 337
Deployment overview . 338
Deploying the MobiLink server . 339
Deploying Adaptive Server Anywhere MobiLink clients 342
Deploying UltraLite MobiLink clients 344

v

II Error and Warning Messages 345

12 MobiLink Communication Error Messages 347
Communication error messages sorted by code 348
Communication error messages sorted by message 352
Communication error messages sorted by constant 356
Communication error descriptions . 362

13 MobiLink Synchronization Server Error Messages 399
MobiLink synchronization server error messages sorted by code . . 400
MobiLink synchronization server error messages sorted message . . 406
MobiLink synchronization server error descriptions 412

14 MobiLink Synchronization Server Warning Messages 437
MobiLink synchronization server warning messages sorted by code . 438
MobiLink synchronization server warning messages sorted by mes-

sage . 443
MobiLink synchronization server warning descriptions 448

Index 469

vi

About This Manual

Subject This manual describes MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication
and is well suited to mobile computing environments.

Audience This manual is for users of Adaptive Server Anywhere and other relational
database systems who wish to add synchronization or replication to their
information systems.

Before you begin ☞ For a comparison of MobiLink with other synchronization and
replication technologies, see “Replication Technologies”[Introducing SQL
Anywhere Studio,page 19].

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

viii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

ix

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

x

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

The CustDB sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The reference database for the UltraLite sample database is held in a file
namedcustdb.db, and is located in theSamples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. A complete application built
on this database is also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

xiii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xiv

PART I

MOBIL INK REFERENCE

This part contains reference material that describes in detail the various
commands and components specific to MobiLink synchronization

technology.

CHAPTER 1

MobiLink Synchronization Server Options

About this chapter This chapter describes the options that can be set when starting the
MobiLink synchronization server, dbmlsrv9.

Contents Topic: page

MobiLink synchronization server 4

3

MobiLink synchronization server
The MobiLink synchronization server lets you synchronize remote databases
or applications with an ODBC- compliant consolidated database.

Function Start a MobiLink synchronization server.

Syntax dbmlsrv9 -c " connection-string" [options]

Option Description

–a Disable automatic reconnection upon syn-
chronization error. See“-a option” on
page 8.

-b Trim blank padding of strings. See“-b
option” on page 8.

–bcsize Specify the amount of memory to reserve
for blob caching. See“-bc option” on
page 9.

–bn size Specify the maximum number of bytes to
consider when comparing blobs for conflict
detection. See“-bn option” on page 10.

–c ”keyword=value; . . .” Supply ODBC database connection param-
eters for your consolidated database. See
“-c option” on page 10.

–cnconnections Set the maximum number of simultaneous
connections with the consolidated database
server. See“-cn option” on page 11.

–cr count Set the maximum number of database
connection retries. See“-cr option” on
page 11.

–ct connection-timeout Set the length of time a connection may
be unused before it is timed out. See“-ct
option” on page 11.

–d number Specify the size of the download cache. See
“-d option” on page 11.

–dl Display all log messages on the console.
See“-dl option” on page 12.

4

Chapter 1. MobiLink Synchronization Server Options

Option Description

–efilename Store remote error logs sent into the named
file. See“-e option” on page 12.

–etfilename Truncate the file and append remote syn-
chronization logs to the new file. See“-et
option” on page 12.

–f Assume synchronization scripts do not
change. See“-f option” on page 13.

–fr If table data scripts are missing, synchro-
nization will not abort, but just issue an
error. See“-fr option” on page 13.

–o logfile Log messages to a file. See“-o option” on
page 13.

-on size Set maximum size for log file. See“-on
option” on page 14.

–oq Prevent the popup dialog on startup error.
See“-oq option” on page 15.

–ossize Maximum size of output file. See“-os
option” on page 15.

–ot logfile Log messages to a file, but truncate it first.
See“-ot option” on page 16.

–psnum Set maximum number of prepared state-
ments to cache per connection. See“-ps
option” on page 16.

–q Minimize the synchronization server win-
dow. See“-q option” on page 16.

–r retries Retry deadlocked uploads at most this many
times. See“-r option” on page 16.

–rd delay Set maximum delay, in seconds, before
retrying a deadlocked transaction. See“-rd
option” on page 17.

–scount Specify the maximum number of rows to be
fetched or sent at once. See“-s option” on
page 17.

5

Option Description

–sl dnetscript-options Set the .NET CLR options and force loading
of the virtual machine on startup. See“-sl
dnet option” on page 17.

–sl javascript-options Set the Java virtual machine options and
force loading of the virtual machine on
startup. See“-sl java option” on page 19.

–t ODBC-output-file Log ODBC calls issued by MobiLink to
this file. See“-t option” on page 19.

–tt ODBC-output-file Log ODBC calls issued by MobiLink to
this file, but first delete the file if it exists.
See“-tt option” on page 20.

–u size Specify the amount of memory to reserve
for caching upload streams. See“-u option”
on page 20.

–ud On UNIX platforms, run as a daemon. See
“-ud option” on page 20.

–v [levels] Controls the type of messages written to the
log file. See“-v option” on page 21.

–w count Set the number of worker threads. See“-w
option” on page 22.

–wu count Set the maximum number of worker threads
permitted to process uploads concurrently.
See“-wu option” on page 23.

–x protocol[(network-
parameters)]

Specify the communications protocol. Op-
tionally, specify network parameters in
form parameter=value, with multiple pa-
rameters separated by semicolons. See“-x
option” on page 24.

–za Allow generation of active scripts. See“-za
option” on page 28.

–ze Allow generation of sample scripts. See
“-ze option” on page 29.

6

Chapter 1. MobiLink Synchronization Server Options

Option Description

–zp In the event of a timestamp conflict between
the consolidated and remote database, this
option allows timestamp values with a
precision higher than the lowest-precision
to be used for conflict detection purposes.
See“-zp option” on page 30.

–zsname Specify a name fordbmlstop purposes. See
“-zs option” on page 30.

–zt number Specify the maximum number of processors
used to run the MobiLink synchronization
server. See“-zt option” on page 31.

–zu { + | – } Controls the automatic addition of users
when the authenticate_user script is unde-
fined. See“-zu option” on page 31.

-zw 1,. . . 5 Controls which levels of warning message
to display. See“-zw option” on page 31.

-zwd code Disables specific warning codes. See“-zwd
option” on page 32.

-zwecode Enables specific warning codes. See“-zwe
option” on page 33.

Description The MobiLink synchronization server opens connections, via ODBC, with
your consolidated database server. It then accepts connections from client
applications and controls the synchronization process.

The MobiLink synchronization server is compatible with a variety of
database-management systems, including Adaptive Server Anywhere,
Adaptive Server Enterprise, Oracle, Microsoft SQL Server, and IBM DB2.

You must supply connection parameters for the consolidated database using
the –c option. The command line options may be presented in any order.
The –c option is shown here as the first item in a command string as a
convention only. It can be anywhere in a list of options, but must precede a
connection string.

Unless your ODBC data source is configured to automatically start the
consolidated database, the database must be running before you start the
MobiLink server.

You can put dbmlsrv9 command line options in a configuration file and

7

optionally use the File Hiding utility, dbfhide, to add simple encryption to
the configuration file.

☞ For more information, see “Using configuration files”[ASA Database
Administration Guide,page 10]and “The File Hiding utility” [ASA Database
Administration Guide,page 466].

dbmlsrv9 options

This section lists all MobiLink synchronization server command line
options.

-a option

Function Instructs the MobiLink synchronization server not to reconnect on
synchronization error.

Syntax dbmlsrv9 -c " connection-string" -a . . .

Description Should an error occur during synchronization, the MobiLink
synchronization server automatically disconnects from the consolidated
database, and then re-establishes the connection. Reconnecting ensures that
the following synchronization starts from a known state. When this behavior
is not required, you can use this option to disable it. The maintenance of
state information depends on programmer requirements and may vary
depending on the ways in which the programmer configures MobiLink
scripting to work with the DBMS. This applies even if that database is an
Oracle, Adaptive Server Anywhere database, or other supported product.
Some status information may need to be re-initialized depending on the
client application.

-b option

Function For columns of type VARCHAR, CHAR, LONG VARCHAR, or LONG
CHAR, removes trailing blanks from strings during synchronization.

Syntax dbmlsrv9 -c " connection-string" -b . . .

Description This option is intended to help resolve differences between the Adaptive
Server Anywhere CHAR data type and the CHAR or VARCHAR data type
used by the consolidated database. The Adaptive Server Anywhere CHAR
data type is equivalent to VARCHAR. However, in most consolidated
databases that are not Adaptive Server Anywhere, the CHAR(n) data type is
blank-padded to n characters.

When -b is specified, the MobiLink synchronization server removes trailing
blanks from strings for columns of type CHAR, VARCHAR, LONG CHAR,

8

Chapter 1. MobiLink Synchronization Server Options

or LONG VARCHAR if the column on the remote is a string. It does this
before filtering rows that were uploaded in the current synchronization. The
trimmed data is then downloaded to the remote databases.

This option can also be used to detect conflict updates. For each upload
update row, the MobiLink synchronization server fetches the row from the
consolidated database for the given primary key, compares the row with the
pre-image of the update, and then determines whether the update is a conflict
update. When -b is used, MobiLink trims trailing blanks from columns of
type CHAR, VARCHAR, LONG CHAR, or LONG VARCHAR before
doing the comparison.

Example If the -b option is not used, a primary-key value of ‘abc’ uploaded from an
Adaptive Server Anywhere or UltraLite remote to a CHAR(10) column in
the consolidated database will become ‘abc’ followed by seven blank spaces.
If the same row is downloaded, then it will appear on the remote as ‘abc’
followed by seven spaces. If the remote database is not blank-padded, then
the remote will now have two rows: both ‘abc’ and ‘abc’ followed by seven
spaces. There is now a duplicate row on the remote.

If the -b option is used, a primary-key value of ‘abc’ uploaded from an
Adaptive Server Anywhere or UltraLite remote to a CHAR(10) column in
the consolidated database will become ‘abc’ followed by seven spaces.
Seven spaces still pad the value to ten characters, but if the same row is
downloaded, then MobiLink server will strip the trailing spaces, and the
value will appear on the remote as ‘abc’. The -b option thus fixes the
duplicate row problem.

-bc option

Function Sets the blob cache size.

Syntax dbmlsrv9 -c " connection-string" -bc size [k | m | g] . . .

Description The amount of memory to use for caching blobs. If more memory is
required, the MobiLink synchronization server uses disk space, instead. For
this reason, too small a value can degrade performance. To calculate the
minimum recommended size, multiply the maximum size of all blob data in
any one row by the number of worker threads, then multiply the result by 4,
which provides for a large reserve of memory.

Thesize is the amount of memory to reserve in bytes. Use the suffix k, m, or
g to specify units of kilobytes, megabytes, or gigabytes, respectively. The
default is 524 288 bytes.

9

-bn option

Function Sets the maximum number of blob bytes to compare during conflict
detection.

Syntax dbmlsrv9 -c " connection-string" -bn size. . .

Description When two blobs contain similar or identical values, the operation of
comparing them for filtering or conflict detection can be expensive due to the
amount of data involved. This option tells the MobiLink synchronization
server to consider only the firstsizebytes of two blobs when making the
comparison. The default is to consider the entire blobs, no matter how big
they are.

Under some situations, limiting the maximum amount of data compared can
speed synchronization substantially; however, it can also cause errors.
For example, if two large blobs differ only in the last few bytes, the
MobiLink synchronization server may consider them identical when in fact
they are not.

-c option

Function Specifies connection parameters for the consolidated database.

Syntax dbmlsrv9 -c " connection-string" . . .

Description The connection string must give the MobiLink synchronization server
information sufficient to connect to the consolidated database. The
connection string is required.

The connection string must specify connection parameters in the form
keyword=value, separated by semicolons, with no spaces between
parameters.

Connection parameters must be included in the ODBC data source
specification if not given in the command line. Check your RDBMS and
ODBC data source to determine required connection data.

☞ For a complete list of SQL Anywhere connection parameters, see
“Connection parameters”[ASA Database Administration Guide,page 174].

☞ For information about how to hide the password, see “The File Hiding
utility” [ASA Database Administration Guide,page 466].

Example dbmlsrv9 -c "dsn=odbcname;uid=DBA;pwd=sql"

10

Chapter 1. MobiLink Synchronization Server Options

-cn option

Function Sets the maximum number of simultaneous consolidated database
connections.

Syntax dbmlsrv9 -c " connection-string" -cn value. . .

Description Specifies the maximum number of simultaneous connections that the
MobiLink synchronization server should make to the consolidated database.
The minimum and the default value are one greater than the number of
worker threads. A warning is issued if the supplied value is too small.

A value larger than the number of worker threads may speed performance,
particularly if connecting to the consolidated database is slow or if multiple
script versions are in use. The optimum maximum number of database
connections is the number of script versions times the number of worker
threads, plus one. Connections above this optimum value will not necessarily
speed synchronization, and will needlessly consume resources in both the
MobiLink synchronization server and the consolidated database server.

-cr option

Function Sets the maximum number of database connection retries.

Syntax dbmlsrv9 -c " connection-string" -cr value. . .

Description Set the maximum number of times that the MobiLink synchronization server
will attempt to connect to the database, before quitting, when a connection
goes bad. The default value is three connection retries.

-ct option

Function Sets the length of time, in minutes, that a connection may be unused before
it is timed out and disconnected by the MobiLink synchronization server.

Syntax dbmlsrv9 -c " connection-string" -ct connection-timeout . . .

Description MobiLink database connections that go unused for a specified amount of
time are freed by the server. The timeout can be set using the -ct option. A
default timeout period of 60 minutes is used.

-d option

Function Sets the size of the download cache.

Syntax dbmlsrv9 -c " connection-string" -d number [k | m | g]. . .

11

Description When no download acknowledgement is required, MobiLink buffers the
download stream in a download cache. Since no acknowledgement is
required from the client to commit the download transaction, the buffered
download stream is sent to the client after the commit.

Use the suffix k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively. The default size for the download cache is 0.5
megabytes.

-dl option

Function Displays all log messages on screen.

Syntax dbmlsrv9 -c " connection-string" -v -dl . . .

Description Display all log messages in the MobiLink synchronization server window.
By default, only a subset of all messages is shown in the window when a log
file is being output (using -o). In circumstances with many messages, this
option can degrade performance.

-e option

Function Stores error logs sent from Adaptive Server Anywhere MobiLink clients.

Syntax dbmlsrv9 -c " connection-string" -e filename. . .

Description With no -e option, error logs from Adaptive Server Anywhere MobiLink
clients are stored in a file nameddblmsrv.mle. The -e option instructs the
MobiLink synchronization server to store the error logs in the named file.
By default, dbmlsync sends, on the occurrence of an error on the remote site,
up to 32 kilobytes of remote log messages to a MobiLink synchronization
server.

This option provides centralized access to remote error logs to help diagnose
synchronization issues.

The amount of information delivered from a remote site can be controlled by
the dbmlsync extended option ErrorLogSendLimit.

See also “-et option” on page 12

“ErrorLogSendLimit (el) extended option” on page 50

-et option

Function Stores error logs sent from Adaptive Server Anywhere MobiLink clients in
the named file after truncating the existing file.

Syntax dbmlsrv9 -c " connection-string" -et filename. . .

12

Chapter 1. MobiLink Synchronization Server Options

Description The -et option is the same as the -e option, except that the error log file is
truncated before any new errors are added to it.

The amount of information delivered from a remote site can be controlled by
the dbmlsync extended option ErrorLogSendLimit.

See also “ErrorLogSendLimit (el) extended option” on page 50

“-e option” on page 12

-f option

Function Loads synchronization scripts only once, for better performance.

Syntax dbmlsrv9 -c " connection-string" -f. . .

Description Without the -f option, the MobiLink synchronization server checks to see if
synchronization scripts have changed during regular operation. This
checking is helpful during development, but can have an unnecessary
performance impact in a production environment. With the -f option, the
MobiLink synchronization server loads the synchronization scripts.

-fr option

Function If table data scripts are missing, synchronization will not abort, but just issue
a warning.

Syntax dbmlsrv9 -c " connection-string" -fr . . .

Description Without the -fr option, the MobiLink synchronization server aborts if a
synchronization does not include at least one script that uploads or
downloads data. This option causes MobiLink to issue a warning instead of
aborting.

-o option

Function Logs output messages to a message log file.

Syntax dbmlsrv9 -c " connection-string" -o logfile. . .

Description Write all log messages to the specified file. Note that the MobiLink
synchronization server window, if present, usually shows a subset of all
messages logged.

The MobiLink synchronization server gives the full error context in its
output file if errors occur during synchronization. The error context may
include the following information:

♦ User Name This is the actual user name that is provided by MobiLink

13

Adaptive Server Anywhere applications during synchronization.

♦ Modified User Name This is the user name as modified by the
modify_user script.

♦ Transaction This lists the transaction the error occurs in. The
transaction could be authenticate_user, begin_synchronization, upload,
prepare_for_download, download, or end_synchronization.

♦ Table Name This shows the table name if it is available or NULL.

♦ Row Operation The operation could be INSERT, UPDATE, DELETE
or FETCH.

♦ Row Data This shows all the column values of the row that caused the
error.

♦ Script Version This is the script version currently used for
synchronization.

♦ Script This is the script that caused the error.

Contextual information appears in the log regardless of your chosen level of
verbosity.

See also “-os option” on page 15

“-ot option” on page 16

“-on option” on page 14

“-v option” on page 21

-on option

Function Specifies a maximum size for the MobiLink synchronization server message
log file, after which the file is renamed with the extension .old and a new file
is started.

Syntax dbmlsrv9 -c " connection-string" -on size [k | m]. . .

Description Thesize is the maximum file size for the output log, in bytes. Use the suffix
k or m to specify units of kilobytes or megabytes, respectively. The
minimum size limit is 10 Kb.

When the log file reaches the specified size, the MobiLink synchronization
server renames the output file with the extension .old, and starts a new one
with the original name.

14

Chapter 1. MobiLink Synchronization Server Options

Note
If the .old file already exists, it is overwritten. To avoid losing old log files,
use the -os option instead.

This option cannot be used with the -os option.

See also “-o option” on page 13

“-os option” on page 15

“-ot option” on page 16

“-v option” on page 21

-oq option

Function On Windows, prevents the appearance of the error dialog when a startup
error occurs.

Syntax dbmlsrv9 -c " connection-string" -oq . . .

Description By default, the MobiLink synchronization server displays a message box
dialog if a startup error occurs. The- oq option prevents this dialog from
being displayed.

-os option

Function Sets the maximum size of the message log file, after which a new log file
with a new name is created and used.

Syntax dbmlsrv9 -c " connection-string" -os size [k | m]. . .

Description Thesize is the maximum file size for logging output messages. The default
units is bytes. Use the suffix k or m to specify units of kilobytes or
megabytes, respectively. The minimum size limit is 10 kb.

Before the MobiLink synchronization server logs output messages to a file,
it checks the current file size. If the log message will make the file size
exceed the specified size, the MobiLink synchronization server renames the
message log file toyymmddxx.mls.In this instance,xx are sequential
characters ranging from 00 to 99, andyymmdd represents the current year,
month, and day.

You can use this option to prune old message log files to free up disk space.
The latest output is always appended to the file specified by -o or -ot.

You cannot use this option with the -on option.

See also “-o option” on page 13

15

“-on option” on page 14

“-ot option” on page 16

“-v option” on page 21

-ot option

Function Logs output messages to the message log file, but truncates it first.

Syntax dbmlsrv9 -c " connection-string" -ot logfilename . . .

Description Truncate the message log file and then append output messages to it. The
default is to send output to the screen.

See also “-o option” on page 13

“-on option” on page 14

“-os option” on page 15

“-v option” on page 21

-ps option

Function Sets the maximum number of prepared statements to cache per connection.

Syntax dbmlsrv9 -c " connection-string" -ps num . . .

Description Controls the maximum number of ODBC prepared statements kept in the
prepared statement cache.

Caching prepared statements improves performance, but consumes
resources. Some consolidated database types have configurable limits on the
number of prepared statements, so this option may be set accordingly.

-q option

Function Instructs MobiLink to run in a minimized window on startup.

Syntax dbmlsrv9 -c " connection-string" -q . . .

Description Minimize the MobiLink synchronization server window.

-r option

Function Sets the maximum number of deadlock retries.

Syntax dbmlsrv9 -c " connection-string" -r retries . . .

Description By default, MobiLink synchronization server retries uploads that are

16

Chapter 1. MobiLink Synchronization Server Options

deadlocked, for a maximum of 10 attempts. If the deadlock is not broken,
synchronization fails, since there is no guarantee that the deadlock can be
overcome. This option allows an arbitrary retry limit to be set. To stop the
server from retrying deadlocked transactions, specify–r 0. The upper bound
on this setting is 2 to the power 32, minus one.

-rd option

Function Sets the maximum delay time between deadlock retries.

Syntax dbmlsrv9 -c " connection-string" -rd delay . . .

Description When upload transactions are deadlocked, the MobiLink synchronization
server waits a random length of time before retrying the transaction. The
random nature of the delay increases the likelihood that future attempts will
succeed. This option allows you to specify the maximum delay in units of
seconds. The value 0 (zero) makes retries instantaneous, but larger values
are recommended because they yield more successful retries. The default
and maximum delay value is 30.

-s option

Function Sets the maximum number of rows fetched, inserted, updated, or deleted at
once.

Syntax dbmlsrv9 -c " connection-string" -s count . . .

Description Set the maximum number of rows transferred between the MobiLink
synchronization server and the consolidated database tocount.

Set this option to no less than the number of rows specified in the ODBC
prefetch option, if this option is set. The default value is 10.

The number of rows fetched at once can be viewed in the log file asrowset
size.

Note: The actual maximum number of rows transferred is influenced by
settings in your ODBC data source, and/or database client software.

-sl dnet option

Function Sets the .NET Common Language Runtime (CLR) options and forces the
CLR to load on startup.

Syntax dbmlsrv9 -c " connection-string" -sl dnet options . . .

Description Sets options to pass directly to the .NET CLR. The options are:

17

Option Description

-Dname=value Set an environment variable. For example,

-Dsynchtype=far -Dextra_rows=yes

For more information, see the .NET frame-
work class System.Environment.

-MLAutoLoadPath= path Set the location of base assemblies. Only
works with private assemblies. To tell Mo-
biLink where assemblies are located, use this
option or -MLDomConfigFile, but not both.
When you use -MLAutoLoadPath, you can-
not specify a domain in the event script. The
default is the current directory.

-MLDomConfigFile=file Set the location of base assemblies. Use when
you have shared assemblies, or you don’t want
to load all assemblies in the directory, or you
can’t use MLAutoLoadPath for some other
reason. To tell MobiLink where assemblies
are located, use -MLDomConfigFile or -
MLAutoLoadPath, but not both.

-MLStartClasses=

classnames

At server startup, load and instantiate user-
defined start classes in the order listed.

-clrConGC Enable concurrent garbage collection in the
CLR.

-clrFlavor= (wks | svr) Flavor of the .NET CLR to load. The flavor
is svr for server andwks for workstation. By
default,wks is loaded.

-clrVersion=version Version of the .NET CLR to load. This must
be prefixed withv. For example,v1.0.3705
loads the directory\WINNT\Microsoft.-
NET\Framework\v1.0.3705.

To display this list of options, use the following command:

dbmlsrv9 -sl dnet (?)

See also “Writing Synchronization Scripts in .NET”[MobiLink Synchronization User’s
Guide,page 251]

18

Chapter 1. MobiLink Synchronization Server Options

-sl java option

Function Sets the Java virtual machine options and forces the virtual machine to load
on startup.

Syntax dbmlsrv9 -c " connection-string" -sl java options . . .

Description Sets- jrepath and other options to pass directly to the Java virtual machine.
The options are:

Option Description

(-hotspot | -server | -classic) Override the default choice for the Java VM
to use.

{ –cp | –classpath} loca-
tion;. . .

Specify a set of directories or jar files in
which to search for classes.

–Dname=value Set a system property. For example,

-Dsynchtype=far -Dextra_rows=yes

–DMLStartClasses=class, . . . At server startup, load and instantiate user-
defined start classes in the order listed.

–jrepath path Override the default JRE path, which
is the sun\jre131directory under the
Sybase\shareddirectory.

–verbose:(class| gc | jni) Enable verbose output.

–X vm-option Set a VM-specific option as described in the
file Xusage.txt, which by default is installed
to Sybase\Shared\Sun\jre131\bin\hotspot.

To display this list of options, use the following command:

dbmlsrv9 -sl java (?)

See also “Writing Synchronization Scripts in Java”[MobiLink Synchronization User’s
Guide,page 227]

-t option

Function Creates a file containing all the ODBC calls issued by MobiLink.

Syntax dbmlsrv9 -c " connection-string" -t ODBC-output-file . . .

19

Description This option can be used to create a file containing all of the ODBC calls
issued by MobiLink. If used on UNIX, with the Adaptive Server Anywhere
driver used as a driver manager, this feature is ignored. The feature is useful
for tracing what was called, passed, and retrieved. It has a severe impact on
performance, so should not be used in production.

To prevent the file from becoming large, use the“-tt option” on page 20.

See also “-tt option” on page 20

-tt option

Function Logs ODBC calls issued by MobiLink to a file. If the file already exists, it
first deletes it.

Syntax dbmlsrv9 -c " connection-string" -tt ODBC-output-file . . .

Description This option is used to create a file containing all of the ODBC calls issued by
MobiLink. If used on UNIX with the Adaptive Server Anywhere driver used
as a driver manager, this feature is ignored. The feature is useful for tracing
what was called, passed, and retrieved. It has a severe impact on
performance, so should not be used in production.

See also “-t option” on page 19

-u option

Function Sets the upload cache size.

Syntax dbmlsrv9 -c " connection-string" -u size[k | m | g] . . .

Description The amount of space, in bytes, to reserve for caching upload streams that are
being processed. Use the suffix k, m, or g to specify units of kilobytes,
megabytes, or gigabytes respectively. You should consider enlarging this
value if your clients upload large streams, or many clients synchronize at
once, or both. The suggested size is the maximum expected size of an
upload stream multiplied by the number of worker threads. The default
value is 500 Kb.

See also “-bc option” on page 9

-ud option

Function Instructs MobiLink to run as a daemon.

Syntax dbmlsrv9 -c " connection-string" -ud . . .

Description UNIX platforms only.

20

Chapter 1. MobiLink Synchronization Server Options

See also “Running MobiLink Outside the Current Session”[MobiLink Synchronization
User’s Guide,page 329]

-v option

Function Allows you to specify what information is logged to the message log file and
displayed in the synchronization window.

Syntax dbmlsrv9 -c " connection-string" -v[levels] . . .

Description This option controls the type of messages written to the message log file.

If you specify –v alone, the MobiLink synchronization server writes a
minimal amount of information about each synchronization.

The values oflevelsare as follows. You can use one or more of these
options at once; for example,- vnrsu.

♦ + Turn on all logging options that increase verbosity.

♦ c Show the content of each synchronization script when it is invoked.
This level implies s.

♦ f Show first-read errors. This will log errors caused when
load-balancing devices check for server liveness by making connections
which don’t send any data, and thus result in failed synchronizations.

♦ h Show the remote schema as uploaded during synchronization.

♦ n Show row-count summaries.

♦ p Show progress offsets.

♦ r Display the column values of each row uploaded or downloaded.

♦ s Show the name of each synchronization script as it is invoked.

♦ t Show the translated SQL that results from scripts that are written in
ODBC canonical format. This level impliesc. The following example
shows the automatic translation of a statement for Adaptive Server
Anywhere.

I. 02/11 11:02:14. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, ’begin_upload’) }

I. 02/11 11:02:14. [102]: Translated SQL:
call SynchLogLine(?, ?, ’begin_upload’)

The following example shows the translation of the same statement for
Microsoft SQL Server.

21

I. 02/11 11:03:21. [102]: begin_upload synch2
{ call SynchLogLine(?, ?, ’begin_upload’) }

I. 02/11 11:03:21. [102]: Translated SQL:
EXEC SynchLogLine ?, ?, ’begin_upload’

♦ u Show undefined table scripts. This may help new users understand the
synchronization process.

-w option

Function Sets the number of worker threads.

Syntax dbmlsrv9 -c " connection-string" -w count . . .

Description Each worker thread accepts synchronization requests one at a time. Each
worker thread is associated with a network protocol. If you have more than
one protocol defined, the worker threads are divided evenly among the
protocols.

Each worker thread uses one connection to the consolidated database. The
MobiLink synchronization server opens one additional connection for
administrative purposes. Hence, the minimum number of connections from
the MobiLink synchronization server to the consolidated database is
count+ 1.

The number of worker threads has a strong influence on MobiLink
synchronization throughput, and you need to run tests to determine the
optimum number for your particular synchronization setup. The number of
worker threads determines how many synchronizations can be active
simultaneously; the rest will be queued waiting for worker threads to
become available. Thus adding worker threads should increase throughput,
but it will also increase the possibility of contention between the active
synchronizations. At some point adding more worker threads will decrease
throughput, because the increased contention outweighs the benefit of
overlapping synchronizations.

☞ For more information, see the MobiLink Performance whitepaper at
http://my.sybase.com/detail?id=1009664, and “MobiLink Performance”
[MobiLink Synchronization User’s Guide,page 285].

The value set for this option is also the default setting for the- wu option,
which can be used to limit the number of threads that can simultaneously
upload. This is useful if the optimum number of worker threads for
downloading is larger than the optimum number for uploading, as is
typically the case with remote databases on slow computers or with slow
connections to the MobiLink server. Tests have shown that for slow
synchronization clients (such as Palm devices or computers connected by

22

Chapter 1. MobiLink Synchronization Server Options

dialup), the best throughput is achieved with a large number of worker
threads (via- w) with a small number allowed to apply uploads
simultaneously (via- wu). In general, the optimum number for- wu depends
on the consolidated database, and is relatively independent of the processing
or network speeds for the remote databases. Therefore, when you increase
the number of threads with- w, you may want to use- wu to restrict the
number that can upload simultaneously. For more information, see“-wu
option” on page 23.

The default number of worker threads is 5.

-wu option

Function Sets the maximum number of worker threads that can apply uploads
simultaneously.

Syntax dbmlsrv9 -c " connection-string" -wu count . . .

Description Use the- wu option to limit the number of worker threads that can
simultaneously apply uploads. When the limit is reached, a worker thread
that is ready to apply its upload must wait until another finishes its upload.
The excess worker threads are still free to receive uploads or to download.

The most common cause of contention in the consolidated database is having
too many worker threads applying uploads simultaneously. This can be an
issue when the network connection is slow, or when the client device has low
processing speed. For example, when working over a wide- area wireless
network or using a Palm device you may want to increase the total number
of threads (- w) but limit the number that can apply uploads simultaneously.

Consider the following example. In a pilot setup using a LAN and remote
databases on PCs, you find that the optimum number of worker threads is
approximately 10 for both upload- only and download- only
synchronizations, and that corresponds to 100% CPU utilization on the
consolidated database. With fewer worker threads you find that throughput
is less and the CPU utilization for the consolidated database is lower. With
more worker threads, throughput does not increase because the consolidated
database is already processing as fast as it can with 10 workers. When you
switch to using a dialup network with 10 MobiLink worker threads, you will
probably find that throughput is lower and the consolidated CPU utilization
has dropped. You may find that you can get throughput (and consolidated
CPU utilization) to approach the values obtained with the LAN by
increasing the number of worker threads (via- w) while keeping the number
that apply uploads simultaneously limited to 10 (via- wu).

By default, all worker threads can apply uploads simultaneously. The
number of worker threads that are used is set by the- w option. The default

23

is 5.

-x option

Function Sets communications protocol and parameters for MobiLink clients. These
are used by the MobiLink synchronization server to listen for
synchronization requests.

Syntax dbmlsrv9 -c " connection-string"
-x protocol [(network-parameters;. . .)]. . .

Description Specify communications protocol through which to communicate with client
applications. The default is TCPIP with port 2439.

Note for UltraLite users
If you are using an UltraLite Java applicationand you are using TLS
security, the syntax of -x is slightly different. For details, see “Using
transport-layer security”[UltraLite Static Java User’s Guide,page 48].

The allowed values ofprotocol are as follows:

♦ tcpip Accept connections from applications via TCP/IP.

♦ http Accept connections via the standard Web protocol. Client
applications can pick their HTTP version and the MobiLink
synchronization server adjusts on a per-connection basis.

♦ https Accept connections via a variant of HTTP that handles secure
transactions. The HTTPS stream implements HTTP over SSL/TLS using
RSA encryption, and is compatible with any other HTTPS server.

Optionally, you can also specify network parameters, in the form
parameter=value. Separate multiple parameters with semicolons. Which
parameters you specify depends on the protocol you choose.

♦ TCP/IP parameters If you specify thetcpip protocol, you can
optionally specify the followingnetwork-parameters:
• client_port=nnnnn or client_port=nnnnn-mmmmm A range of

client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

• host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

24

Chapter 1. MobiLink Synchronization Server Options

• liveness_timeout=n The amount of time, in seconds, after a client
stops communicating before MobiLink recovers the connection. A
value of 0 means that there is no timeout. This option is only effective
if download acknowledgement if set to off (the default). The default is
120 seconds.

• port=portnumber The socket port number on which the MobiLink
synchronization server should listen. The default port is 2439, which is
the IANA registered port number for the MobiLink synchronization
server.

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted using the cipher suite specified. The
cipher can be one ofecc_tlsor rsa_tls. These refer to elliptic-curve
and RSA certification. For backwards compatibility,ecc_tlscan also
be specified ascerticom_tls.
You can optionally specify the security keywordscertificate (the
certificate that is to be used for server authentication), and
certificate_password. Certificate value is a file. You must use a
certificate that matches the cipher suite you choose. If you do not
specify a certificate, MobiLink uses a sample certificate appropriate to
the cipher suite you chose.

Your installation includes a sample elliptic-curve certificate called
sample.crt with password tJ1#m6+W, and a sample RSA certificate
called rsaserver.crt with password test. The sample certificates are for
testing and development only. They provide no security because the
same certificates and passwords are distributed to all Adaptive Server
Anywhere customers. New certificates are available from several
companies, including Entrust Technologies and VeriSign.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

♦ HTTP parameters If you specify thehttp protocol, you can optionally
specify the followingnetwork-parameters:
• client_port=nnnnn or client_port=nnnnn-mmmmm A range of

client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

• contd_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive the next part of a partially

25

completed synchronization before the synchronization is abandoned.
You can tune this option to free MobiLink worker threads when the
wait time indicates that the client will never continue the connection.
The default value is 30 seconds.

• host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

• port=portnumber The socket port number on which the MobiLink
synchronization server should listen. The port number must be a
decimal number that matches the port the MobiLink synchronization
server is setup to monitor. The default port is 80.

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted using the cipher suite specified. The
cipher can be one ofecc_tlsor rsa_tls. These refer to elliptic-curve
and RSA certification. For backwards compatibility,ecc_tlscan also
be specified ascerticom_tls.
You can optionally specify the security keywords.certificate (the
certificate that is to be used for server authentication), and
certificate_password. Certificate value is a file. You must use a
certificate that matches the cipher suite you choose. If you do not
specify a certificate, MobiLink uses a sample certificate appropriate to
the cipher suite you chose.

Your installation includes a sample elliptic-curve certificate called
sample.crt with password tJ1#m6+W, and a sample RSA certificate
called rsaserver.crt with password test. The sample certificates are for
testing and development only. They provide no security because the
same certificates and passwords are distributed to all Adaptive Server
Anywhere customers. New certificates are available from several
companies, including Entrust Technologies and VeriSign.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

• unknown_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive HTTP headers on a new
connection before the synchronization is abandoned. You can tune this
option to free MobiLink worker threads when the wait time indicates
that a network failure has occurred. The default value is 30 seconds.

26

Chapter 1. MobiLink Synchronization Server Options

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. This parameter can be used to help ensure that a
particular client connects to the intended server. Values must match or
synchronization will not be successful.

• version=http-version The MobiLink synchronization server
automatically detects the HTTP version used by a client. This
parameter is a string specifying the default version of HTTP to use in
case the server cannot detect the method used by the client. You have a
choice of1.0or 1.1. The default value is1.1.

♦ HTTPS parameters The HTTPS communication stream uses Certicom
RSA security.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

If you specify thehttps protocol, you can optionally specify the
following network-parameters:
• client_port=nnnnn or client_port=nnnnn-mmmmm A range of

client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

• contd_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive the next part of a partially
completed synchronization before the synchronization is abandoned.
You can tune this option to free MobiLink worker threads when the
wait time indicates that the client will never continue the connection.
The default value is 30 seconds.

• host=hostname The host name or IP number on which the
MobiLink synchronization server should listen. The default value is
localhost.

• port=portnumber The socket port number on which the MobiLink
synchronization server should listen. The port number must be a
decimal number that matches the port the MobiLink synchronization
server is setup to monitor. The default port is 443.

• certificate An optional parameter that specifies a certificate name.
This must be an RSA certificate. If you do not specify a certificate,
MobiLink uses the sample RSA certificate that is provided with
Adaptive Server Anywhere. It is called rsaserver.crt and has the
password test.

27

The sample certificates are for testing and development only. They
provide no security because the same certificates and passwords are
distributed to all Adaptive Server Anywhere customers. New
certificates are available from several companies, including Entrust
Technologies and VeriSign.

• certificate_password An optional parameter that specifies a
password for the certificate.
☞ For more information about security, see “Transport-Layer
Security” [MobiLink Synchronization User’s Guide,page 337].

• unknown_timeout=seconds The number of seconds the MobiLink
synchronization server waits to receive HTTP headers on a new
connection before the synchronization is abandoned. You can tune this
option to free MobiLink worker threads when the wait time indicates
that a network failure has occurred. The default value is 30 seconds.

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. This parameter can be used to help ensure that a
particular client connects to the intended server. Values must match or
synchronization will not be successful.

• version=http-version The MobiLink synchronization server
automatically detects the HTTP version used by a client. This
parameter is a string specifying the default version of HTTP to use in
case the server cannot detect the method used by the client. You have a
choice of1.0or 1.1. The default value is1.1.

-za option

Function Generates statement-based scripts that perform a simple snapshot
synchronization.

Syntax dbmlsrv9 -c " connection-string" -za

Description The following scripts are generated:

♦ upload_insert

♦ upload_update

♦ upload_delete

♦ download_cursor

This option generates active scripts; that is, they are used for the current
synchronization. The scripts are also saved and will work for subsequent
synchronizations using the same script version. The -za option is typically
used for quick demos. To generate scripts as a starting point for writing your
own scripts, the dbmlsrv9 -ze option might be more useful.

28

Chapter 1. MobiLink Synchronization Server Options

To generate scripts, you must also specify that the client sends column
names. You do this when you initiate synchronization. For Adaptive Server
Anywhere remotes, see“SendColumnNames (scn) extended option” on
page 62. For UltraLite remotes, see “Send Column Names synchronization
parameter”[UltraLite Database User’s Guide,page 171].

The generated scripts perform one-to-one snapshot synchronization using
the table and column names sent from the client. If the consolidated
database has different table or column names than the remote, activating
these scripts will cause an error during the synchronization.

Note:
Scripts are generated the first time that a remote synchronizes with a script
version that doesn’t exist. If the given script version already exists, -za has
no effect. This means that you cannot use -za to generate scripts one table
at a time for the same script version. Using -za, you must generate scripts
for all tables and publications at once.

See also “-ze option” on page 29

Example The following dbmlsrv9 command enables automatic script generation. The
dbmlsync command sets the necessary SendColumnNames option.

dbmlsrv9 -c "dsn=YourDBDSN" -za
dbmlsync -c dsn=dsn_remote -e "SendColumnNames=ON"

-ze option

Function Generates sample scripts that, if activated, perform a simple snapshot
synchronization.

Syntax dbmlsrv9 -c " connection-string" -ze

Description The following scripts are generated:

♦ example_upload_insert

♦ example_upload_update

♦ example_upload_delete

♦ example_download_cursor

You can use these scripts as starting points for creating your own scripts.

To generate scripts, you must also specify that the client sends column
names. You do this when you initiate synchronization. For Adaptive Server
Anywhere remotes, see“SendColumnNames (scn) extended option” on

29

page 62. For UltraLite remotes, see “Send Column Names synchronization
parameter”[UltraLite Database User’s Guide,page 171].

The generated scripts perform one-to-one snapshot synchronization using
the table and column names sent from the client. If the consolidated
database has different table or column names than the remote, activating
these scripts will cause an error during the synchronization.

Note:
Scripts are generated only the first time that a remote synchronizes, and
only when the given script version does not exist. Otherwise, -ze has no
effect.

See also “-za option” on page 28

-zp option

Function Adjusts which timestamp values will be used for conflict detection purposes.

Syntax dbmlsrv9 -c " connection-string" -zp

Description In the event of a timestamp conflict between the consolidated and remote
database, this option allows timestamp values with a precision higher than
the lowest precision to be used for conflict detection purposes. The option is
useful when timestamps in the consolidated database are more precise than
in the remote, as updated timestamps on the remote can cause conflicts in the
next synchronization. The option allows MobiLink to ignore these conflicts.
When there is a precision mismatch and -zp is not used, a per
synchronization and a schema sensitive per table warning are written to the
log to advertise the -zp option. Another per synchronization warning is also
added to advise users to adjust the timestamp precision on the remote
database where possible.

-zs option

Function Specifies a MobiLink server name for dbmlstop purposes.

Syntax dbmlsrv9 -c " connection-string" -zs name

Description Specify a server name for the MobiLink synchronization server. If the
MobiLink synchronization server is started using the -zs option, it must be
shut down using the dbmlstop server-name command. Shutdown may only
be initiated from the computer where the MobiLink synchronization server
is installed.

See also “MobiLink stop utility” on page 303

30

Chapter 1. MobiLink Synchronization Server Options

-zt option

Function Specifies the maximum number of processors used to run the MobiLink
synchronization server.

Syntax dbmlsrv9 -c " connection-string" -zt number

Description This option may be required for some ODBC drivers. It also gives you fine
control of processor resources.

This option can only be used on Windows operating systems. The default is
the number of processors on the computer.

-zu option

Function Controls the automatic addition of users when the authenticate_user script is
undefined.

Syntax dbmlsrv9 -c " connection-string" -zu{ + | - } . . .

Description If this is supplied as -zu+, then unrecognized MobiLink user names are
added to the ml_user table on first synchronizing. If the argument is supplied
as -zu-, or not supplied, unrecognized user names are prevented from
synchronizing.

-zw option

Function Controls which levels of warning message to display.

Syntax dbmlsrv9 -c " connection-string" -zw levels

Description MobiLink has five levels of warning messages:

31

Level Description

0 Suppress all warning messages

1 Server and high ODBC level: warn-
ing messages when the MobiLink
synchronization server starts

2 Synchronization and user level:
warning messages when a synchro-
nization starts

3 Schema level: warning messages
when a MobiLink synchronization
server is processing a client schema

4 Script and lower ODBC level:
warning messages when a Mo-
biLink synchronization server
fetches, prepares, or executes
scripts

5 Table or row level: warning mes-
sages when a MobiLink synchro-
nization server performs table oper-
ations in an upload or download

To specify the level of warning messages you want reported, you can
separate levels with a comma, or separate a range with two dots. For
example,-zw 1..3,5is the same as-zw 1,2,3,5.

The reporting of messages has a slight impact on performance. Levels with a
higher number tend to produce more messages.

If -zw is used more than once in the same command line, MobiLink
recognizes only the last instance. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

The default is1,2,3,4,5, which indicates that all levels of warning message
should be displayed.

-zwd option

Function Disables specific warning codes.

Syntax dbmlsrv9 -c " connection-string" -zwd code,. . .

Description You can disable specific warning codes so that they will not be reported,
even though other codes of the same level are reported.

32

Chapter 1. MobiLink Synchronization Server Options

☞ For a complete list of warning message codes, see“MobiLink
Synchronization Server Warning Messages” on page 437.

If -zwd is used more than once in the same command line, MobiLink
accumulates the settings. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

-zwe option

Function Enables specific warning codes.

Syntax dbmlsrv9 -c " connection-string" -zwe code,. . .

Description You can enable specific warning codes so that they will be reported even
though you have disabled other codes of the same level using -zw.

☞ For a complete list of warning message codes, see“MobiLink
Synchronization Server Warning Messages” on page 437.

If -zwe is used more than once on the same command line, MobiLink
accumulates the settings. If settings of -zw, -zwd, and -zwe conflict,
MobiLink gives priority to -zwe, then -zwd, then -zw.

33

CHAPTER 2

MobiLink Synchronization Client

About this chapter This chapter describes details of the MobiLink synchronization client,
dbmlsync. It is used to synchronize Adaptive Server Anywhere remote
databases with a consolidated database.

☞ The dbmlsync utility only works with Adaptive Server Anywhere
remote databases. To synchronize UltraLite remote databases, see “UltraLite
Clients” [MobiLink Synchronization User’s Guide,page 207].

Contents Topic: page

MobiLink synchronization client 36

dbmlsync options 40

35

MobiLink synchronization client
Use the dbmlsync utility to synchronize Adaptive Server Anywhere remote
databases with a consolidated database.

Syntax dbmlsync [options] [transaction-logs-directory]

Option Description

-a Do not prompt for input again on error. See“-a
option” on page 40

-ap Specify authentication parameters. See“-ap option”
on page 40.

-ba filename Apply a download file. See“-ba option” on page 40.

-bc filename Create a download file. See“-bc option” on page 40.

-bestring When creating a download file, add a string. See
“-be option” on page 41.

-bg When creating a download file, make it suitable for
new remotes. See“-bg option” on page 41.

-c connection-string Supply database connection parameters in the form
parm1=value1; parm2=value2,. . . If you do not
supply this option, a dialog will appear and you must
supply connection information. See“-c option” on
page 42.

-d Drop any other connections to the database whose
locks conflict with the articles to be synchronized.
See“-d option” on page 42.

-dl Display log messages on the console. See“-dl
option” on page 43.

-ds Specify download-only synchronization. See“-ds
option” on page 43.

-e “option=value”. . . Specify extended options. See“-e extended options”
on page 44.

-eh Ignore errors that occur in hook functions.

-ek key Specify encryption key. See“-ek option” on page 71.

-ep Prompt for encryption key. See“-ep option” on
page 71.

36

Chapter 2. MobiLink Synchronization Client

Option Description

-eu Specify extended options for upload defined by most
recent-n option. See“-eu option” on page 71.

-i filename Execute file containing SQL statements immediately
after synchronization. See“-i option” on page 72.

-is Ignore schedule. See“-is option” on page 72.

-k Close window on completion. See“-k option” on
page 72.

-l List available extended options. See“-l option” on
page 72.

-mn password Specify new MobiLink password. See“-mn option”
on page 73.

-mp password Specify MobiLink password. See“-mp option” on
page 73.

-n name Specify synchronization publication name(s). See
“-n option” on page 73.

-o logfile Log output messages to this file. See“-o option” on
page 74.

-ossize Maximum size of output file. See“-os option” on
page 74.

-ot logfile Truncate file and log output messages to file. See
“-ot option” on page 75.

-p Disable logscan polling. See“-p option” on page 75.

-pd dllname;... Preload specified dlls for Windows CE. See“-pd
option” on page 75.

-pi Test that you can connect to MobiLink. See“-pi
option” on page 76.

-pp number Set logscan polling period. See“-pp option” on
page 77.

-q Run in minimized window. See“-q option” on
page 77.

-r [a | b] Upload retry on client progress. See“-r option” on
page 77.

37

Option Description

-sc Reload schema information before each synchro-
nization. See“-sc option” on page 79.

-u ml_username Allows you to specify the MobiLink user to syn-
chronize. See“-sc option” on page 79.

-uo Synchronization will be upload-only (no download).
See“-uo option” on page 80.

-urc row-estimate Allows you to specify an estimate of the rows that
will be uploaded. See“-urc option” on page 80.

-v[levels] Verbose operation. See“-v option” on page 80.

-wc classname Specify a Windows class name for ActiveSync
synchronization (Windows CE only). See“-wc
option” on page 81.

-x Rename and restart the transaction log. See“-x
option” on page 82.

transaction-logs-
directory

Specify the location of the transaction log. See
Transaction Log File, below.

Description Run dbmlsync on the command line to synchronize an Adaptive Server
Anywhere remote database with a consolidated database.

To locate and connect to the MobiLink synchronization server, dbmlsync
uses the information on the publication, synchronization user,
synchronization subscription, or command line.

Transaction log file Thetransaction-logs-directoryis the directory that
contains the transaction log for the Adaptive Server Anywhere remote
database. There is an active transaction log and transaction log archive files,
both of which may be required by dbmlsync to determine what to upload.
You must specify this parameter if the following are true:

♦ the working log file has been truncated and renamed since you last
synchronized

♦ you run the dbmlsync utility from a directory other than the one where
the renamed log files are stored

☞ For more information, see “Transaction log files”[MobiLink
Synchronization User’s Guide,page 187].

Using a configuration file You can put dbmlsync command line options in
a configuration file and optionally use the File Hiding utility, dbfhide, to add

38

Chapter 2. MobiLink Synchronization Client

simple encryption to the configuration file. For more information, see
“Using configuration files”[ASA Database Administration Guide,page 10]and
“The File Hiding utility” [ASA Database Administration Guide,page 466].

dbmlsync event hooks There are also dbmlsync client stored procedures
that can help you customize the synchronization process. For more
information, see “Customizing the client synchronization process”[MobiLink
Synchronization User’s Guide,page 194]and“Client event-hook procedures” on
page 269.

Using dbmlsync For more information about using dbmlsync, see
“Initiating synchronization”[MobiLink Synchronization User’s Guide,page 185].

39

dbmlsync options
This section lists MobiLink synchronization client command line options.

-a option

Function Specifies that dbmlsync should not prompt for input again on error.

Syntax dbmlsync -a . . .

-ap option

Function Specifies parameters for authentication.

Syntax dbmlsync -ap " parameters,..." . . .

Description Use when you use the authenticate_parameters connection script. For
example,

dbmlsync -ap "parm1,parm2,parm3"

☞ For more information, see“authenticate_parameters connection event”
on page 98.

-ba option

Function Applies a download file.

Syntax dbmlsync -ba " filename" . . .

Description Specify the name of an existing download file. You can optionally specify a
path. If you do not specify a path, the default location is dbmlsync’s current
working directory (the directory where dbmlsync was started).

☞ For more information, see “File-Based Downloads”[MobiLink
Synchronization User’s Guide,page 117].

-bc option

Function Creates a download file.

Syntax dbmlsync -bc " filename" . . .

Description Create a download file with the specified name. You should use the file
extension .df for download files.

You can optionally specify a path. If you do not specify a path, the default
location is dbmlsync’s current working directory, which is the directory

40

Chapter 2. MobiLink Synchronization Client

where dbmlsync was started.

Optionally, in the same dbmlsync command line as you create the download
file, you can use the -be option to specify a string that can be validated at the
remote database, and the -bg option to create a download file for new remote
databases.

See also “File-Based Downloads”[MobiLink Synchronization User’s Guide,page 117]

“-be option” on page 41

“-bg option” on page 41

-be option

Function When creating a download file, this option specifies an extra string to be
included in the file.

Syntax dbmlsync -bc " filename" -be " string" . . .

Description The string can be used for authentication or other purposes. It is verified at
the remote database using the sp_hook_dbmlsync_validate_download_file
stored procedure.

See also “sp_hook_dbmlsync_validate_download_file” on page 295

“File-Based Downloads”[MobiLink Synchronization User’s Guide,page 117]

“-bc option” on page 40

-bg option

Function When creating a download file, this option creates a file that can be used
with remote databases that have not yet synchronized.

Syntax dbmlsync -bc " filename" -bg . . .

Description The -bg option causes the download file to update the generation numbers on
the remote database.

This option allows you to build a download file that can be applied to remote
databases that have never synchronized. Otherwise, you must perform a
synchronization before you apply a download file.

Download files built with the -bg option should be snapshot downloads.
Timestamp-based downloads will not work with remote databases that have
not synchronized because the last download timestamp on a new remote is
by default January 1, 1900, which will be earlier than the last download
timestamp in the download file. For timestamp-based file-based downloads

41

to work, the last download timestamp in the download file must be the same
or earlier than on the remote.

You should not apply download files built with the -bg option to remote
databases that have already synchronized. The -bg option causes the
generation numbers on the remote database to be updated with the value on
the consolidated database at the time the download file was created. For
remotes that have already synchronized, this means that the remote database
is not forced to upload data before applying a download, and so data could
be lost.

See also “-bc option” on page 40

“File-Based Downloads”[MobiLink Synchronization User’s Guide,page 117]

“MobiLink generation numbers”[MobiLink Synchronization User’s Guide,
page 125]

“Synchronizing new remotes”[MobiLink Synchronization User’s Guide,
page 120]

-c option

Function Specifies connection parameters for the remote database.

Syntax dbmlsync -c " connection-string" . . .

Description The connection string must give dbmlsync permission to connect to the
Adaptive Server Anywhere remote database. Commonly, a user ID with
REMOTE DBA authority is used.

Specify the connection string in the formkeyword=value, with multiple
parameters separated by semicolons. If any of the parameter names contain
spaces, you need to enclose the connection string in double quotes.

If you do not specify-c , a dbmlsync Setup dialog appears. You can specify
the remaining command line options in the fields of the connection dialog.

For a complete list of connection parameters for connecting to Adaptive
Server Anywhere databases, see “Connection parameters”[ASA Database
Administration Guide,page 174].

-d option

Function Drops conflicting locks to the remote database.

Syntax dbmlsync -d . . .

Description During synchronization, unless the locktables extended option is set to OFF,

42

Chapter 2. MobiLink Synchronization Client

all tables involved in the publications being synchronized are locked to
prevent any other processes from making changes. Ordinarily, if another
process has a lock on one of these tables, the synchronization is delayed
until that process releases its lock. Specifying this option forces Adaptive
Server Anywhere to drop any other connections to the remote database that
hold conflicting locks.

-dl option

Function Displays messages in the log file.

Syntax dbmlsync -dl . . .

Description Normally when output is logged to a file, more messages are written to the
log file than to the dbmlsync window. This option forces dbmlsync to write
information normally only written to the file to the window as well. Using
this option may have an effect on the speed of synchronization.

-ds option

Function Specifies download-only synchronization.

Syntax dbmlsync -ds . . .

Description When download-only synchronization occurs, dbmlsync does not upload
any row operations or data. However, it does upload information about the
schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten
during download-only synchronization. It does this by scanning the log to
detect rows with operations waiting to be uploaded. If any of these rows is
modified by the download stream, the download stream is rolled back and
the synchronization fails. If the synchronization fails for this reason, you
must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only
synchronization, you should regularly do a full synchronization to reduce the
amount of log that is scanned by the download-only synchronization.
Otherwise, the download-only synchronizations will take an increasingly
long time to complete.

When -ds is used, the ConflictRetries setting is ignored. dbmlsync never
retries a download-only synchronization. If a download-only
synchronization fails, it will continue to fail until a normal synchronization
is performed.

See also “DownloadOnly (ds) extended option” on page 49

43

-e extended options

Function Specifies extended options.

Syntax dbmlsync -e extended-option=value; . . .

extended-option:
adr ctp cr p dbs el ft eh isc inc lt mem mp mn dir pp sch sv scn sa st sn

to v vs vm vo vn vr vu

Parameters Extended options can be specified by their long form or short form. See each
option, below, for details.

Description Options specified on the command line with the -e option apply to all
synchronizations requested on the command line. For example, in the
following command line, the extended option sv=test applies to the
synchronization of both pub1 and pub2.

dbmlsync -e sv=test -n pub1 -n pub2

To specify extended options for a single upload, use the -eu option.

Extended options can be specified on the dbmlsync command line using the
-e or -eu options, or they can be stored in the database. You store extended
options in the database using Sybase Central, or by using the OPTIONS
clause in any of the following statements:

♦ CREATE SYNCHRONIZATION SUBSCRIPTION

♦ ALTER SYNCHRONIZATION SUBSCRIPTION

♦ CREATE SYNCHRONIZATION USER

♦ ALTER SYNCHRONIZATION USER

♦ CREATE SYNCHRONIZATION SUBSCRIPTION without specifying a
synchronization user (which associates extended options with a
publication)

Dbmlsync combines options stored in the database with those specified on
the command line. If conflicting options are specified, dbmlsync resolves
them as follows. In the following list, options specified by methods
occurring earlier in the list take precedence over those occurring later in the
list.

♦ options specified on the command line with the -eu option

♦ options specified on the command line with the -e option

44

Chapter 2. MobiLink Synchronization Client

♦ options specified for the subscription (whether by a SQL statement or in
Sybase Central)

♦ options specified for the user (whether by a SQL statement or in Sybase
Central)

♦ options specified for the publication (whether by a SQL statement or in
Sybase Central)

You can review extended options in the log and the SYSSYNC system table.

☞ For information on how extended options can be used to tune
synchronization, see “Customizing synchronization”[MobiLink
Synchronization User’s Guide,page 186].

For a detailed explanation of each option, see below.

See also “-eu option” on page 71

“SYSSYNC system table”[ASA SQL Reference,page 676]

Example The following dbmlsync command line illustrates how you can set extended
options when you start dbmlsync:

dbmlsync -e "adr=host=localhost;dir=c: \db\logs"...

The following SQL statement illustrates how you can store extended options
in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS ’host=localhost’
OPTION schedule=’weekday@11:30am-12:30pm’, dir=’c: \db\logs’

The following dbmlsync command line opens the usage screen that lists
options and their syntax:

dbmlsync -l

CommunicationAddress (adr) extended option

Function Specifies the communication address for connecting to the MobiLink server.

Syntax dbmlsync -e adr= network-parameters; ...

Description For a list ofnetwork-parameters, see “CREATE SYNCHRONIZATION
USER statement [MobiLink]”[ASA SQL Reference,page 351].

You must ensure that all subscriptions for a MobiLink user are synchronized
to only one consolidated database. Otherwise, you may experience data loss
and unpredictable behavior.

45

This option has a short form and long form: you can useadr or
CommunicationAddress.

This option can also be stored in the database using the SQL statement that
creates or alters a publication, subscription, or user. For more information,
see “CREATE SYNCHRONIZATION USER statement [MobiLink]”[ASA
SQL Reference,page 351].

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "adr=host=localhost"

To specify multiple network parameters on the command line, enclose them
in single quotes. For example,

dbmlsync -e "adr=’host=somehost;port=5001’"

To store the Address or CommunicationType in the database, you can use an
extended option or you can use the ADDRESS or TYPE clause. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
TYPE ’https’
ADDRESS host=’localhost’

CommunicationType (ctp) extended option

Function Specifies the communication type for connecting to the MobiLink server.

Syntax dbmlsync -e ctp= sync-type; ...

Description sync-typecan be one oftcpip, http , https, or ActiveSync. If you purchase a
special license, you can also useecc_tlsandrsa_tls. The default istcpip.

You must ensure that all subscriptions for a MobiLink user are synchronized
to only one consolidated database. Otherwise, you may experience data loss
and unpredictable behavior.

This option has a short form and long form: you can usectp or
CommunicationAddress.

This option can also be stored in the database using the SQL statement that
creates or alters a publication, subscription, or user. For more information,
see “CREATE SYNCHRONIZATION USER statement [MobiLink]”[ASA
SQL Reference,page 351].

See also “Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337]

46

Chapter 2. MobiLink Synchronization Client

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "ctp=https"

To store the Address or CommunicationType in the database, you can use an
extended option or you can use the ADDRESS or TYPE clause. For
example,

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
TYPE ’tcpip’
ADDRESS host=’localhost’

ConflictRetries (cr) extended option

Function Specifies the number of retries if the download fails because of conflicts.

Syntax dbmlsync -e cr= number ; ...

Description -1 specifies that retries should continue indefinitely. The default is-1.

This option is useful only if the LockTables option is OFF, which is not the
default.

This option has a short form and long form: you can usecr or
ConflictRetries.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "cr=5"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION cr=’5’;

DisablePolling (p) extended option

Function Disables automatic logscan polling.

Syntax dbmlsync -e p= { ON | OFF }; ...

47

Description In order to build an upload stream, dbmlsync must scan the transaction log.
Usually it does this just before synchronization. However, when
synchronizations are scheduled, dbmlsync by default scans the log in the
time between scheduled synchronizations; and when the
sp_hook_dbmlsync_delay hook is used, dbmlsync by default scans the log in
the pause that occurs just before synchronization. This behavior is more
efficient because the log is already at least partially scanned when
synchronization begins. This default behavior is called logscan polling.

Logscan polling is on by default but only has an effect when
synchronizations are scheduled or when sp_hook_dbmlsync_delay hook is
used. When in effect, polling occurs at set intervals: dbmlsync scans to the
end of the log, waits for the polling period, and then scans any new
transactions in the log. By default, the polling period is 1 minute, but it can
be changed with the dbmlsync -pp option or the PollingPeriod extended
option.

The default is to not disable logscan polling (OFF).

This option is identical todbmlsync -p.

This option has a short form and long form: you can usep orDisablePolling.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “PollingPeriod (pp) extended option” on page 58

“-p option” on page 75

“-pp option” on page 77

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "p=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION p=’on’;

DownloadBufferSize (dbs) extended option

Function Specifies the size of the download buffer.

Syntax dbmlsync -e dbs= number [K | M]; ...

48

Chapter 2. MobiLink Synchronization Client

Description The buffer size is specified in units of bytes. Use the suffix k or m to specify
units of kilobytes or megabytes, respectively.

If you set this option to 0, dbmlsync does not buffer the download stream. If
the setting is greater than 0 but less than 4k, dbmlsync uses a 4k buffer size
and issues a warning. The default is32K on Windows CE, and1M on all
other operating systems.

Download buffering increases the benefit of eliminating the download
acknowledgement because it allows the worker thread to send the download
faster.

This option has a short form and long form: you can usedbsor
DownloadBufferSize.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "dbs=32k"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION dbs=’32k’;

DownloadOnly (ds) extended option

Function Specifies that synchronization should be download-only.

Syntax dbmlsync -e ds= { ON | OFF }; ...

Description When download-only synchronization occurs, dbmlsync does not upload
any row operations or data. However, it does upload information about the
schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten
during download-only synchronization. It does this by scanning the log to
detect rows with operations waiting to be uploaded. If any of these rows is
modified by the download stream, the download stream is rolled back and
the synchronization fails. If the synchronization fails for this reason, you
must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only
synchronization, you should regularly do a full synchronization to reduce the

49

amount of log that is scanned by the download-only synchronization.
Otherwise, the download-only synchronizations will take an increasingly
long time to complete.

The default isOFF (full synchronization of both upload and download).

This option has a short form and long form: you can useds or
DownloadOnly.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “-ds option” on page 43

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "ds=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION ds=’ON’;

ErrorLogSendLimit (el) extended option

Function Specifies how much of the remote log file dbmlsync should send to the
server when synchronization error occurs.

Syntax dbmlsync -e el= number [K | M]; ...

Description This option is specified in units of bytes. Use the suffix k or m to specify
units of kilobytes or megabytes, respectively.

This option specifies the number of bytes of the output log that dbmlsync
sends to the MobiLink synchronization server when errors occur during
synchronization. Set this option to0 if you don’t want any dbmlsync output
log to be sent.

If ErrorLogSendLimit is set to be large enough, dbmlsync sends the entire
output log messages from the current session to the MobiLink
synchronization server. For example, if the output log messages were
appended to an old output log file, dbmlsync only sends the new messages
generated in the current session. If the total length of new messages is
greater than ErrorLogSendLimit, dbmlsync only logs the last part of the
newly generated error and log messages up to the specified size.

50

Chapter 2. MobiLink Synchronization Client

Note: The size of the output log is influenced by your verbosity settings.
You can adjust these using the dbmlsync -v option, or by using dbmlsync
extended options starting with “verbose”. For more information, see“-v
option” on page 80and -e verbose options, below.

The default is32K.

This option has a short form and long form: you can useel or
ErrorLogSendLimit .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "el=32k"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION el=’32k’;

FireTriggers (ft) extended option

Function Specifies that triggers should be fired on the remote database when the
download is applied.

Syntax dbmlsync -e ft= { ON | OFF }; ...

Description The default isON.

This option has a short form and long form: you can useft or FireTriggers.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "ft=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION ft=’off’;

51

HoverRescanThreshold (hrt) extended option

Function When you are using scheduling, this limits the amount of discarded memory
that is allowed to accumulate before a rescan is performed.

Syntax dbmlsync -e hrt= number [K | M]; ...

Description Specifies memory in units of bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The default is1M.

When scheduling options are specified or when more than one dbmlsync -n
option is specified, dbmlsync goes into hovering mode. Hovering is a feature
that reduces the amount of time spent scanning the log when dbmlsync is
started and asked to perform more than one synchronization before shutting
down. Hovering can occur only when all the subscriptions to be
synchronized involve the same MobiLink user.

While hovering, dbmlsync keeps track of operations read from the log using
a system than maintains information first in memory, and then spills it on to
disk. As hovering continues, dbmlsync discards memory that has become
fragmented. The amount of memory discarded is proportional to the number
of operations processed while hovering and the size of the rows involved
(not counting blobs). Memory is not discarded if the remote database has
only one publication for the user being synchronized.

Discarded memory can be recovered after a complete rescan is performed.
There are two ways that you can control when memory is recovered: the
HoverRescanThreshold extended option and the
sp_hook_dbmlsync_log_rescan stored procedure.

This option has a short form and long form: you can usehrt or
HoverRescanThreshold.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “sp_hook_dbmlsync_log_rescan” on page 286

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "hrt=2m"

The following SQL statement illustrates how you can store this option in the
database:

52

Chapter 2. MobiLink Synchronization Client

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION hrt=’2m’;

IgnoreHookErrors (eh) extended option

Function Specifies that errors that occur in hook functions should be ignored.

Syntax dbmlsync -e eh= { ON | OFF }; ...

Description The default isOFF.

This option has a short form and long form: you can useehor
IgnoreHookErrors .

This option is equivalent to the dbmlsync -eh option.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "eh=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION eh=’off’;

IgnoreScheduling (isc) extended option

Function Specifies that scheduling settings should be ignored.

Syntax dbmlsync -e isc= { ON | OFF }; ...

Description If set to ON, dbmlsync ignores any scheduling information that is specified
in extended options and synchronizes immediately. The default isOFF.

This option is equivalent to the dbmlsync -is option.

This option has a short form and long form: you can useiscor
IgnoreScheduling.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

53

See also “Scheduling synchronization”[MobiLink Synchronization User’s Guide,
page 198]

“Schedule (sch) extended option” on page 59

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "isc=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION isc=’off’;

Increment (inc) extended option

Function Controls the size of incremental uploads.

Syntax dbmlsync -e inc= number [K | M]; ...

Description This option specifies a minimum incremental scan volume in units of bytes.
Use the suffix k or m to specify units of kilobytes or megabytes, respectively.

When this option is specified, uploads are sent to MobiLink in one or more
parts. This could be useful if a site has difficulty maintaining a connection
for long enough to complete the full upload. When the option is not set,
uploads are sent as a single unit.

The value of this option specifies, very approximately, the size of each
upload part. The value of the option controls the size of each upload part as
follows. Dbmlsync builds the upload stream by scanning the database
transaction log. When this option is set, dbmlsync scans the number of bytes
that are set in the option, and then continues scanning to the first point at
which there are no outstanding partial transactions—the next point at which
all transactions have either been committed or rolled back. It then sends
what it has scanned as an upload part and resumes scanning the log from
where it left off.

This option has a short form and long form: you can useinc or Increment.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

54

Chapter 2. MobiLink Synchronization Client

dbmlsync -e "inc=32000"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION inc=’32k’;

LockTables (lt) extended option

Function Specifies that articles (table or parts of tables in the publications being
synchronized) should be locked before synchronizing.

Syntax dbmlsync -e lt= { ON | OFF | SHARE | EXCLUSIVE }; ...

Description SHARE means that dbmlsync locks all synchronization tables in shared
mode. EXCLUSIVE means that dbmlsync locks all synchronization tables
in exclusive mode. For all platforms except Windows CE, ON is the same as
SHARE. For Windows CE devices, ON is the same as EXCLUSIVE. The
default isON.

Set to OFF to allow modifications during synchronization.

☞ For more information about shared and exclusive locks, see “How
locking works” [ASA SQL User’s Guide,page 131]and “LOCK TABLE
statement”[ASA SQL Reference,page 493].

☞ For more information about locking tables in MobiLink applications,
see “Concurrency during synchronization”[MobiLink Synchronization User’s
Guide,page 187].

When synchronization tables are locked in exclusive mode (the default for
Windows CE devices), no other connections can access the tables, and so
dbmlsync stored procedures that require a separate connection will not be
able to execute if they require access to any of the synchronization tables.
The stored procedures that require a separate connection are

♦ sp_hook_dbmlsync_download_com_error

♦ sp_hook_dbmlsync_download_fatal_sql_error

♦ sp_hook_dbmlsync_download_log_ri_violation

This option has a short form and long form: you can uselt or LockTables.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

55

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "lt=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION lt=’on’;

Memory (mem) extended option

Function Specifies a cache size.

Syntax dbmlsync -e mem= number [K | M]; ...

Description Specifies the memory used for building the upload stream, in units of bytes.
Use the suffix k or m to specify units of kilobytes or megabytes, respectively.
The default is1M.

This option has a short form and long form: you can usememor Memory.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mem=2M"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mem=’2m’;

MobiLinkPwd (mp) extended option

Function Specifies the MobiLink password.

Syntax dbmlsync -e mp= password ; ...

Description Specifies the password used to connect. This password should be the correct
password for the MobiLink user whose subscriptions are being
synchronized. This user may be specified with the dbmlsync -u option. The

56

Chapter 2. MobiLink Synchronization Client

default isNULL .

If the MobiLink user already has a password, use the extended option-e mn
to change it.

This option has a short form and long form: you can usemp or
MobiLinkPwd .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “NewMobiLinkPwd (mn) extended option” on page 57

“-mn option” on page 73

“-mp option” on page 73

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mp=SQL"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mp=’SQL’;

NewMobiLinkPwd (mn) extended option

Function Specifies a new password.

Syntax dbmlsync -e mn= new-password ; ...

Description Specifies a password for the MobiLink user whose subscriptions are being
synchronized. Use this option when you want to change an existing
password. The default isNULL .

This option has a short form and long form: you can usemn or
NewMobiLinkPwd .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “MobiLinkPwd (mp) extended option” on page 56

“-mn option” on page 73

“-mp option” on page 73

57

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "mp=oldpassword; mn=newpassword"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION mn=’SQL’;

OfflineDirectory (dir) extended option

Function Specifies the path containing offline transaction logs.

Syntax dbmlsync -e dir= path; ...

Description This option has a short form and long form: you can usedir or
OfflineDirectory .

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "dir=c: \db\logs"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION dir=’c: \db\logs’;

PollingPeriod (pp) extended option

Function Specifies the logscan polling period.

Syntax dbmlsync -e pp= number [S | M | H | D]; ...

Description This option specifies the interval between log scans. Use the suffix s, m, h,
or d to specify seconds, minutes, hours or days, respectively. The default is1
minute. If you do not specify a suffix, the default unit of time is minutes.

Logscan polling occurs only when you are scheduling synchronizations or
using the sp_hook_dbmlsync_delay hook.

58

Chapter 2. MobiLink Synchronization Client

☞ For an explanation of logscan polling, see“DisablePolling (p) extended
option” on page 47.

This option is identical todbmlsync -pp.

This option has a short form and long form: you can usepp or
PollingPeriod.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “DisablePolling (p) extended option” on page 47

“-pp option” on page 77

“-p option” on page 75

“sp_hook_dbmlsync_delay” on page 273

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "pp=5"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION pp=’5’;

Schedule (sch) extended option

Function Specifies a schedule for synchronization.

Syntax dbmlsync -e sch= schedule; ...

schedule= { EVERY:hhhh:mm | singleSchedule | INFINITE,. . . }

hhhh : 00. . . 9999

mm : 00. . . 59

singleSchedule : day @hh:mm[AM | PM] [-hh:mm[AM | PM]]

hh : 00. . . 24

mm : 00. . . 59

59

day :
EVERYDAY | WEEKDAY | MON | TUE | WED | THU | FRI | SAT | SUN | day-
OfMonth

dayOfMonth : 0. . . 31

Parameters EVERY The EVERY keyword causes synchronization to occur
immediately, and then repeat indefinitely after the specified time period. If
the synchronization process takes longer than the specified period,
synchronization starts again immediately.

singleSchedule Given one or more single schedules, synchronization
occurs only at the specified days and times.

An interval is specified as@hh:mm–hh:mm (with optional specification of
AM or PM). If AM or PM is not specified, a 24-hour clock is assumed.
24:00 is interpreted as 00:00 on the next day. When an interval is specified,
synchronization occurs, starting at a random time within the interval. The
interval provides a window of time for synchronization so that multiple
remote databases with the same schedule do not cause congestion at the
synchronization server by synchronizing at exactly the same time.

The interval end time is always interpreted as following the start time. When
the time interval includes midnight, it ends on the next day. If dbmlsync is
started midway through the interval, synchronization occurs at a random
time before the end time.

EVERYDAY EVERYDAY is all seven days of the week.

WEEKDAY WEEKDAY is Monday through Friday.

Days of the week are Mon, Tue, and so on. You may also use the full forms
of the day, such as Monday. You must use the full forms of the day names if
the language you are using is not English, is not the language requested by
the client in the connection string, and is not the language which appears in
the server window.

dayOfMonth To specify the last day of the month regardless of the length
of the month, set thedayOfMonthto 0.

Description If a previous synchronization is still incomplete at a scheduled time, the
scheduled synchronization commences when the previous synchronization
completes.

The default is no schedule.

This option has a short form and long form: you can useschor Schedule.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

60

Chapter 2. MobiLink Synchronization Client

The schedule option syntax is the same when used in the synchronization
SQL statements and in the dbmlsync command line.

The IgnoreScheduling extended option and the -is option instruct dbmlsync
to ignore scheduling, so that synchronization is immediate. For more
information, see“-is option” on page 72.

☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "sch=WEEKDAY@8:00am,SUN@9:00pm"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION sch=’WEEKDAY@8:00am,SUN@9:00pm’;

ScriptVersion (sv) extended option

Function Specifies a script version.

Syntax dbmlsync -e sv= version-name; ...

Description The script version determines which scripts are run by MobiLink on the
consolidated database during synchronization. The default script version
name isdefault.

This option has a short form and long form: you can usesvor
ScriptVersion.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "sv=SyaAd001"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION sv=’SysAd001’;

61

SendColumnNames (scn) extended option

Function Specifies that column names should be sent in the upload.

Syntax dbmlsync -e scn= { ON | OFF }; ...

Description Set this option to ON to tell dbmlsync to send column names from the
remote database to the server. This option is required when you generate
scripts automatically using the dbmlsrv9 -za or -ze options. This option
increases the size of your upload, so you probably won’t want to use it if you
are not using -za or -ze.

The default isOFF.

This option has a short form and long form: you can usescnor
SendColumnNames.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “-za option” on page 28

-ze option

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "scn=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION scn=’on’;

SendDownloadACK (sa) extended option

Function Specifies that a download acknowledgement should be sent from the client
to the server.

Syntax dbmlsync -e sa= { ON | OFF }; ...

Description Turning the acknowledgement off (the default) can lead to less contention in
the consolidated database and also increased throughput due to shorter
download transactions. Download transactions are shorter because they are
committed or rolled back as soon as possible, since MobiLink doesn’t need
to keep these transactions open for as long as it takes the remote client to

62

Chapter 2. MobiLink Synchronization Client

apply the download. Enable client side download buffering to get the most
performance out of eliminating the download acknowledgement. It is
recommended that SendDownloadAck be set to OFF.

☞ For more information about improving performance by turning off the
download acknowledgement, see “Performance tips”[MobiLink
Synchronization User’s Guide,page 286].

Note: When SendDownloadAck is set to ON and you are in verbose mode,
an acknowledgement line is written to the client log.

The default isOFF.

This option has a short form and long form: you can usesaor
SendDownloadACK.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "sa=off"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION sa=’off’;

SendTriggers (st) extended option

Function Specifies that trigger actions should be sent on upload.

Syntax dbmlsync -e st= { ON | OFF }; ...

Description Cascaded deletes are also considered trigger actions.

The default isOFF.

This option has a short form and long form: you can usest or SendTriggers.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "st=on"

63

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION st=’on’;

TableOrder (tor) extended option

Function Specifies the order of tables in the upload stream.

Syntax dbmlsync -e tor= tables ; ...

Description This option allows you to specify the order of tables that are to be uploaded.
Specify tables as a comma-separated list. You must specify all tables that are
to be uploaded. If you list tables that are not included in the synchronization,
they are ignored.

Specify table order to ensure referential integrity. For example, if Table1
refers to Table2, then Table2 must be uploaded before Table1.

In the specified table order, no table may have a foreign key that refers to a
table that comes after it in the table order, unless your tables have a cyclical
foreign key relationship. By default, dbmlsync selects a table order that
satisfies this condition.

There are no cases where this option must be used. It is provided for users
who for some reason (usually because it makes their scripts simpler on the
consolidated database) would like to ensure that tables are uploaded in a
specific order.

This option has a short form and long form: you can usetor or TableOrder.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

See also “Referential integrity and synchronization”[MobiLink Synchronization User’s
Guide,page 28]

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "tor=admin,parent,child"

The following SQL statement illustrates how you can store this option in the
database:

64

Chapter 2. MobiLink Synchronization Client

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION tor=’admin,parent,child’;

UploadOnly (uo) extended option

Function Specifies that synchronization should only include an upload.

Syntax dbmlsync -e uo= { ON | OFF } ; ...

Description During an upload only synchronization, dbmlsync prepares and sends an
upload to the MobiLink synchronization server exactly as in a normal full
synchronization. However, instead of sending a download stream back
down, MobiLink sends only an acknowledgment indicating if the upload
was successfully committed.

The default isOFF.

This option has a short form and long form: you can useuo or UploadOnly.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "uo=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION uo=’on’;

Verbose (v) extended option

Function Specifies full verbosity.

Syntax dbmlsync -e v= { ON | OFF } ; ...

Description This option specifies a high level of verbosity, which may affect
performance and should normally be used in the development phase only.

This option is identical todbmlsync -v+. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all

65

options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usev or Verbose.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "v=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION v=’on’;

VerboseHooks (vs) extended option

Function Specifies that messages related to hook scripts should be logged.

Syntax dbmlsync -e vs= { ON | OFF } ; ...

Description This option is identical todbmlsync -vs. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usevs or
VerboseHooks.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

66

Chapter 2. MobiLink Synchronization Client

See also “Client event-hook procedures” on page 269

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vs=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vs=’on’;

VerboseMin (vm) extended option

Function Specifies that a small amount of information should be logged.

Syntax dbmlsync -e vm= { ON | OFF } ; ...

Description This option is identical todbmlsync -v. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usevm or VerboseMin.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vm=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vm=’on’;

67

VerboseOptions (vo) extended option

Function Specifies that information should be logged about the command line options
(including extended options) that you have specified.

Syntax dbmlsync -e vo= { ON | OFF } ; ...

Description This option is identical todbmlsync -vo. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usevo or
VerboseOptions.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vo=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vo=’on’;

VerboseRowCounts (vn) extended option

Function Specifies that the number of rows that are uploaded and downloaded should
be logged.

Syntax dbmlsync -e vn= { ON | OFF } ; ...

Description This option is identical todbmlsync -vn. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended

68

Chapter 2. MobiLink Synchronization Client

option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usevn or
VerboseRowCounts.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vn=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vn=’on’;

VerboseRowValues (vr) extended option

Function Specifies that the values of rows that are uploaded and downloaded should
be logged.

Syntax dbmlsync -e vr= { ON | OFF } ; ...

Description This option is identical todbmlsync -vr. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usevr or
VerboseRowValues.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

69

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vr=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vr=’on’;

VerboseUpload (vu) extended option

Function Specifies that information about the upload steam should be logged.

Syntax dbmlsync -e vu= { ON | OFF } ; ...

Description This option is identical todbmlsync -vu. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended
option. If there is no conflict, the verbosity logging options are additive—all
options that you specify are used. When logging verbosity is set by extended
option, the logging does not take effect immediately, so startup information
is not logged. By the time of the first synchronization, the logging behavior
is identical between the -v options and the extended options.

☞ For more information, see“-v option” on page 80.

The default isOFF.

This option has a short form and long form: you can usevu or
VerboseUpload.

You can also store extended options in the database. For more information
about dbmlsync extended options, see“-e extended options” on page 44.

Example The following dbmlsync command line illustrates how you can set this
option when you start dbmlsync:

dbmlsync -e "vu=on"

The following SQL statement illustrates how you can store this option in the
database:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION vu=’on’;

70

Chapter 2. MobiLink Synchronization Client

-eh option

Function Ignores errors that occur in hook functions.

Syntax dbmlsync -eh . . .

-ek option

Function Allows you to specify the encryption key for strongly encrypted databases
directly on the command line.

Syntax dbmlsync -ek key . . .

Description If you have a strongly encrypted database, you must provide the encryption
key to use the database or transaction log in any way, including offline
transactions. For strongly encrypted databases, you must specify either -ek
or -ep, but not both. The command will fail if you do not specify a key for a
strongly encrypted database.

-ep option

Function Prompt for the encryption key.

Syntax dbmlsync -ep . . .

Description This option causes a dialog box to appear, in which you enter the encryption
key. It provides an extra measure of security by never allowing the
encryption key to be seen in clear text. For strongly encrypted databases,
you must specify either -ek or -ep, but not both. The command will fail if
you do not specify a key for a strongly encrypted database.

-eu option

Function Specifies extended upload options.

Syntax dbmlsync -n publication-name -eu keyword=value;. . .

Description Extended options that are specified on the command line with the -eu option
apply only to the synchronization specified by the -n option they follow. For
example, on the following command line, the extended option sv=test
applies only to the synchronization of pub2.

dbmlsync -n pub1 -n pub2 -eu sv=test

For an explanation of how extended options are processed when they are set
in more than one place, see“-e extended options” on page 44.

71

For a complete list of extended options, see“-e extended options” on
page 44.

-i option

Function Executes the SQL script contained in the named file.

Syntax dbmlsync -i filename . . .

Description This option is intended for upgrading applications and making schema
changes to deployed remote databases. Use this option when you make
schema changes to ensure that all changes are in a compatible format.

The SQL script contained in the specified file is executed immediately after
synchronization is complete and before releasing the table locks. The script
is executed if dbmlsync received confirmation from MobiLink that the
upload was applied even if an error occurs during the download.

You should be explicit about commit/rollback operations when using the -i
option. Failure to do so may cause inconsistent results.

-is option

Function Ignores scheduling instructions so that synchronization is immediate.

Syntax dbmlsync -is . . .

Description Ignore extended options that schedule synchronization.

☞ For information about scheduling, see “Scheduling synchronization”
[MobiLink Synchronization User’s Guide,page 198].

-k option

Function Closes window on completion.

Syntax dbmlsync -k . . .

Description Close window on completion, if used together with the -o option.

-l option

Function Lists available extended options.

Syntax dbmlsync -l . . .

Description When used with the dbmlsync command line it shows you available
extended options.

72

Chapter 2. MobiLink Synchronization Client

-mn option

Function Supplies a new password for the user being synchronized.

Syntax dbmlsync -mn password . . .

Description Changes the MobiLink user’s password.

☞ For more information, see “Authenticating MobiLink Users”[MobiLink
Synchronization User’s Guide,page 103].

See also “MobiLinkPwd (mp) extended option” on page 56

“NewMobiLinkPwd (mn) extended option” on page 57

“-mp option” on page 73

-mp option

Function Supplies the password of the user being synchronized.

Syntax dbmlsync -mp password . . .

Description Supplies the password for MobiLink user authentication.

☞ For more information, see “Authenticating MobiLink Users”[MobiLink
Synchronization User’s Guide,page 103].

See also “MobiLinkPwd (mp) extended option” on page 56

“NewMobiLinkPwd (mn) extended option” on page 57

“-mn option” on page 73

-n option

Function Names the synchronization publication.

Syntax dbmlsync -n pubname . . .

Description Name of synchronization publication. You can supply more than one -n
option to synchronize more than one synchronization publication.

There are two ways to use -n to synchronize multiple publications:

♦ Specify-n pub1,pub2,pub3 to upload pub1, pub2, and pub3 in one
upload stream.

In this case, if you have set extended options on the publications, only the
options set on the first publication in the list are used. Extended options
set on subsequent publications are ignored.

73

♦ Specify-n pub1 -n pub2 -n pub3 to upload pub1 in one upload
stream, pub2 in another, and pub3 in a third upload stream.

When successive synchronizations occur very quickly, such as when you
specify-n pub1 -n pub2 , it is possible that dbmlsync may start
processing a synchronization when the server is still processing the
previous synchronization. In this case, the second synchronization will
fail with an error indicating that concurrent synchronizations are not
allowed. If you run into this situation, you can define an
sp_hook_dbmlsync_delay stored procedure to create a delay before each
synchronization. Usually a few seconds to a minute is a sufficient delay.

☞ For more information, see“sp_hook_dbmlsync_delay” on page 273.

-o option

Function Sends output to a log file.

Syntax dbmlsync -o filename . . .

Description Append output to a log file. Default is to send output to the screen.

See also “-os option” on page 74

“-ot option” on page 75

-os option

Function Specifies the maximum size of the output log.

Syntax dbmlsync -os size [K | M | G]. . .

Description Thesize is the maximum file size for logging output messages, specified in
units of bytes. Use the suffix k, m or g to specify units of kilobytes,
megabytes or gigabytes, respectively. By default, there is no size limit. The
minimum size limit is 10 kb.

Before the dbmlsync utility logs output messages to a file, it checks the
current file size. If the log message will make the file size exceed the
specified size, the dbmlsync utility renames the output file to
yymmddxx.dbr, whereyymmdd represents the year, month, and day, andxx
are sequential characters ranging from AA to ZZ.

This option allows you to manually delete old log files and free up disk
space.

See also “-o option” on page 74

“-ot option” on page 75

74

Chapter 2. MobiLink Synchronization Client

-ot option

Function Truncates the log file and appends output messages to it.

Syntax dbmlsync -ot logfile . . .

Description The functionality is the same as the -o option except the log file is truncated
before any messages are written to it.

See also “-o option” on page 74

“-os option” on page 74

-p option

Function Disables logscan polling.

Syntax dbmlsync -p . . .

Description In order to build an upload stream, dbmlsync must scan the transaction log.
Usually it does this just before synchronization. However, when
synchronizations are scheduled or when the sp_hook_dbmlsync_delay hook
is used, dbmlsync by default scans the log in the pause that occurs just
before synchronization. This behavior is more efficient because when
synchronization begins the log is already at least partially scanned. This
default behavior is called logscan polling.

Logscan polling is on by default but only has an effect when
synchronizations are scheduled using scheduling options or when
sp_hook_dbmlsync_delay hook is used. When in effect, polling occurs at set
intervals; by default this is 1 minute, but it can be changed with the
dbmlsync -pp option.

The default is to not disable logscan polling (OFF).

This option is identical todbmlsync -e p.

See also “DisablePolling (p) extended option” on page 47

“PollingPeriod (pp) extended option” on page 58

“-pp option” on page 77

-pd option

Function Preload specified dlls for Windows CE.

Syntax dbmlsync -pd dllname;...

75

Description When running dbmlsync on Windows CE, you should use the -pd option to
specify dlls that need to be loaded. Otherwise, the correct dlls may not be
loaded and an error may be generated.

Following are the dlls that need to be loaded for each communication
protocol:

Protocol DLL

TCP/IP dbmlsock9.dll

HTTP dbmlhttp9.dll

HTTPS dbmlhttps9.dll

You should specify multiple dlls as a semicolon-separated list. For example,

-pd dbmlsock9.dll;dbmlhttp9.dll

-pi option

Function Pings a MobiLink synchronization server.

Syntax dbmlsync -pi -c connection_string -e sv=script_version
[-n pubname] [-u ml_username]

Description The ping option allows you to test that your connection information is
correct. When you use -pi, dbmlsync does not initiate synchronization.

In order to be able to ping, dbmlsync must have a unique address for the
MobiLink synchronization server. This means that you must include
connection parameters and a script version, as well as the publication name,
MobiLink user name, or both. The publication or user hold connection
information for the remote. You need to specify both when the user is
subscribed to multiple publications or the publication has multiple users. For
example, if there is only one subscription to the publication, you can specify
the publication without the user.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client (dbmlsync or
UltraLite).

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

76

Chapter 2. MobiLink Synchronization Client

The MobiLink synchronization server may execute the following scripts, if
they exist:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

The client cannot synchronize while it is pinging the server.

-pp option

Function Specifies the frequency of log scans.

Syntax dbmlsync -pp number [h | m | s]. . .

Description This option specifies the interval between log scans. Use the suffix s, m, h,
or d to specify seconds, minutes, hours or days, respectively. The default is1
minute. If you do not specify a suffix, the default unit of time is minutes.

Logscan polling occurs only when you are scheduling synchronizations or
using the sp_hook_dbmlsync_delay hook.

☞ For an explanation of logscan polling, see“-p option” on page 75.

See also “PollingPeriod (pp) extended option” on page 58

“DisablePolling (p) extended option” on page 47

“-p option” on page 75

-q option

Function Starts the MobiLink synchronization client in a minimized window.

Syntax dbmlsync -q . . .

Description For Windows operating systems only.

-r option

Function Specifies that the remote offset should be used when there is disagreement
between the offsets in the remote and consolidated databases.

The -rb option can be used when the remote offset is less than the
consolidated offset (such as when the remote database has been restored
from backup). The -r option is provided for backward compatibility and is

77

identical to -rb. The -ra option, used when the remote offset is greater than
the consolidated offset, is provided only for very rare circumstances and
may cause data loss.

Syntax dbmlsync { -r | -ra | -rb } . . .

Description Theoffset, also called theprogress, refers to a position in the transaction
log of the remote database. It indicates the point to which all operations for
the subscription have been uploaded and acknowledged. dbmlsync uses the
offset to decide what data to upload. On the remote database, the offset is
stored in the progress column of the SYS.SYSSYNC system table. On the
consolidated database, the offset is stored in the progress column of the
ml_user table for version 7.x databases, and in the progress column of the
ml_subscription table for version 8.0 and up databases.

For each remote, the remote and consolidated databases maintain an offset
for every subscription. When a user synchronizes, the offsets are confirmed
for all subscriptions that are associated with the user. If there is any
disagreement between the remote and consolidated database offsets, the
default behavior is to update the offsets on the remote with values from the
consolidated and then send a new upload based on those offsets. In most
cases, this default is appropriate. For example, it is generally appropriate
when the consolidated database is restored from backup and the remote
transaction log is intact, or when an upload is successful but communication
failure prevented an upload acknowledgement from being sent.

-rb If the remote database is restored from backup, the default behavior
may cause data to be lost. In this case, the first time you run dbmlsync after
the remote database is restored, you should specify -rb. When you use -rb,
the upload continues from the offset recorded in the remote database if the
offset recorded in the remote is less than that obtained from the consolidated
database. If you use -rb and the offset in the remote is not less than the offset
from the consolidated database, an error is reported and the synchronization
is aborted.

The -rb option may result in some data being uploaded that has already been
uploaded. This can result in conflicts in the consolidated database and
should be handled with appropriate conflict resolution scripts.

-ra The -ra option should be used only in very rare cases. If you use -ra, the
upload is retried starting from the offset obtained from the remote database
if the remote offset is greater than the offset obtained from the consolidated
database. If you use -ra and the offset in the remote is not greater than the
offset from the consolidated database, an error is reported and the
synchronization is aborted.

The -ra option should be used with care. If the offset mismatch is the result

78

Chapter 2. MobiLink Synchronization Client

of a restore of the consolidated database, changes that happened in the
remote database in the gap between the two offsets are lost. The -ra option
may be useful when the consolidated database has been restored from
backup and the remote database transaction log has been truncated at the
same point as the remote offset. In this case, all data that was uploaded from
the remote database is lost from the point of the consolidated offset to the
point of the remote offset.

-sc option

Function Specifies that dbmlsync should reload schema information before each
synchronization.

Syntax dbmlsync -sc . . .

Description Prior to version 9.0, dbmlsync reloaded schema information from the
database before each synchronization. The information that was reloaded
includes foreign key relationships, publication definitions, extended options
stored in the database, and information about database settings. On slower
handheld devices, loading this information typically took 20 seconds. In
most cases this information does not change between synchronizations.

Starting with version 9.0, by default dbmlsync loads schema information
only at startup. Specify -sc if you want the information to be loaded before
every synchronization.

-u option

Function Specifies the MobiLink user name.

Syntax dbmlsync -u ml_username . . .

Description You can specify one user in the dbmlsync command line, where
ml_usernameis the name used in the FOR clause of the CREATE
SYNCHRONIZATION SUBSCRIPTION statement corresponding to the
subscription to be processed.

This option should be used in conjunction with -npublicationto identify the
subscription on which dbmlsync should operate. Each subscription is
uniquely identified by anml_username, publicationpair.

You can only specify one user name on the command line. All subscriptions
to be synchronized in a single run must involve the same user. The -u option
can be omitted if each publication that is specified on the command line with
the -n option has only one subscription.

79

-uo option

Function Specifies that synchronization will only include an upload, and no download
will occur.

Syntax dbmlsync -uo . . .

Description During an upload only synchronization, dbmlsync prepares and sends an
upload to MobiLink exactly as it would in a normal full synchronization.
However, instead of sending a download stream back down, MobiLink sends
only an acknowledgment indicating if the upload was successfully
committed.

-urc option

Function Specifies an estimate of the number of rows to be uploaded in a
synchronization.

Syntax dbmlsync -urc row-estimate . . .

Description To improve performance, you can specify an estimate of the number of rows
that will be uploaded in a synchronization. In general, a higher estimate
results in faster uploads but more memory usage.

Synchronization will proceed correctly regardless of the estimate that is
specified.

-v option

Function Allows you to specify what information is logged to the message log file and
displayed in the synchronization window. A high level of verbosity may
affect performance and should normally be used in the development phase
only.

Syntax dbmlsync -v [levels] . . .

Description The -v options affect the message log file and synchronization window. You
only have a message log if you specify -o or -ot on the dbmlsync command
line.

If you specify –v alone, a small amount of information is logged.

The values oflevelsare as follows. You can use one or more of these
options at once; for example, -vnrsu or -v+cp.

♦ + Turn on all logging options except for c and p.

♦ c Expose the connect string in the log.

80

Chapter 2. MobiLink Synchronization Client

♦ p Expose the password in the log.

♦ n Log the number of rows that were uploaded and downloaded.

♦ o Log information about the command line options and extended
options that you have specified.

♦ r Log the values of rows that were uploaded and downloaded.

♦ s Log messages related to hook scripts.

♦ u Log information about the upload stream.

There are extended options that have similar functionality to the -v options.
If you specify both -v and the extended options and there are conflicts, the -v
option overrides the extended option. If there is no conflict, the verbosity
logging options are additive—all options that you specify are used. When
logging verbosity is set by extended option, the logging does not take effect
immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and
the extended options.

See also “Verbose (v) extended option” on page 65

“VerboseHooks (vs) extended option” on page 66

“VerboseMin (vm) extended option” on page 67

“VerboseOptions (vo) extended option” on page 68

“VerboseRowCounts (vn) extended option” on page 68

“VerboseRowValues (vr) extended option” on page 69

-wc option

Function For Windows CE only, this option specifies a Windows class name for use
with ActiveSync synchronization.

Syntax dbmlsync -wc class-name . . .

Description This option specifies a class name that identifies the application for
ActiveSync synchronization. The class name must be given when registering
the application for use with ActiveSync synchronization.

See also “Registering Adaptive Server Anywhere clients for ActiveSync”[MobiLink
Synchronization User’s Guide,page 192]

“Using ActiveSync synchronization”[MobiLink Synchronization User’s Guide,
page 189]

81

-x option

Function Renames and restarts the transaction log after it has been scanned for
outgoing messages.

Syntax dbmlsync -x [size [K | M | G]. . .

Description The optionalsizemeans that the transaction log is renamed only if it is
larger than the specified size. Use the suffix k, m or g to specify units of
kilobytes, megabytes or gigabytes, respectively. The default size is 0.

In some circumstances, synchronizing data to a consolidated database can
take the place of backing up remote databases, or renaming the transaction
log when the database server is shut down.

If backups are not routinely performed at the remote database, the
transaction log continues to grow. As an alternative to using the -x option to
control transaction log size, you can use an Adaptive Server Anywhere event
handler to control the size of the transaction log. For example, the following
event handler renames the transaction log at the remote database when its
size exceeds 5 Mb. You can use such an event handler together with the
DELETE_OLD_LOGS database option to control the space taken up by
transaction logs.

CREATE EVENT RenameLogLimit
TYPE GrowLog
WHERE event_condition(’LogSize’) > 5
AT REMOTE
HANDLER
BEGIN

BACKUP DATABASE DIRECTORY backupdir
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME

END

See also “Automating Tasks Using Schedules and Events”[ASA Database
Administration Guide,page 267]

“DELETE_OLD_LOGS option [replication]”[ASA Database Administration
Guide,page 590]

82

CHAPTER 3

Synchronization Events

About this chapter This chapter provides information about the MobiLink synchronization
events and the SQL scripts, Java methods, or .NET methods that handle
these events. You implement scripts to handle one or more of these events to
control the actions of the MobiLink synchronization server.

☞ For information about storing scripts, see “Adding and deleting scripts in
your consolidated database”[MobiLink Synchronization User’s Guide,page 51].

Contents Topic: page

Overview of MobiLink events 86

authenticate_parameters connection event 98

authenticate_user connection event 100

authenticate_user_hashed connection event 104

begin_connection connection event 107

begin_connection_autocommit connection event 109

begin_download connection event 110

begin_download table event 112

begin_download_deletes table event 114

begin_download_rows table event 116

begin_publication connection event 118

begin_synchronization connection event 121

begin_synchronization table event 123

begin_upload connection event 125

begin_upload table event 127

begin_upload_deletes table event 129

begin_upload_rows table event 131

download_cursor cursor event 133

83

Topic: page

download_delete_cursor cursor event 136

download_statistics connection event 139

download_statistics table event 142

end_connection connection event 145

end_download connection event 147

end_download table event 149

end_download_deletes table event 151

end_download_rows table event 153

end_publication connection event 155

end_synchronization connection event 158

end_synchronization table event 160

end_upload connection event 162

end_upload table event 164

end_upload_deletes table event 166

end_upload_rows table event 168

example_upload_cursor table event 170

example_upload_delete table event 171

example_upload_insert table event 172

example_upload_update table event 173

handle_error connection event 174

handle_odbc_error connection event 177

modify_last_download_timestamp connection event 180

modify_next_last_download_timestamp connection event 182

modify_user connection event 184

new_row_cursor cursor event (deprecated) 186

old_row_cursor cursor event (deprecated) 189

prepare_for_download connection event 192

report_error connection event 194

84

Chapter 3. Synchronization Events

Topic: page

report_odbc_error connection event 196

resolve_conflict table event 199

synchronization_statistics connection event 202

synchronization_statistics table event 205

time_statistics connection event 207

time_statistics table event 209

upload_cursor cursor event (deprecated) 212

upload_delete table event 214

upload_fetch table event 216

upload_insert table event 218

upload_new_row_insert table event 220

upload_old_row_insert table event 222

upload_statistics connection event 224

upload_statistics table event 227

upload_update table event 231

85

Overview of MobiLink events
When a synchronization request occurs and MobiLink server decides that a
new connection must be created, the begin_connection event is fired and
synchronization starts.

begin_connection

do synchronization(s)

end_connection

Following the synchronization, the connection is placed in a connection
pool, and MobiLink again waits for a synchronization request for the current
script version. Before a connection is eventually dropped from the
connection pool, the end_connection event is fired. But if another
synchronization request for the same version is received, then MobiLink
handles the next synchronization request on the same connection. There are
a number of events that affect the current synchronization.

The primary phases of a synchronization are the upload and download
transactions. The events contained in the upload and download transactions
are outlined below.

The upload transaction The upload transaction applies changes uploaded from a remote database.

The begin_upload event marks the beginning of the upload transaction. The
upload transaction is a two-part process. First, inserts and updates are
uploaded for all remote tables, and second, deletes are uploaded for all
remote tables.

86

Chapter 3. Synchronization Events

insert and/or update
rows

last remote table?

Yes

delete rows

last remote table?

Yes

upload transaction

begin_upload
(per connection then

per table)

end_upload
(per table then per

connection)

No

No

The end_upload event marks the end of the upload transaction.

For more information about the events that happen during upload, see
“Writing scripts to upload rows”[MobiLink Synchronization User’s Guide,
page 54].

The download
transaction

The download transaction fetches rows from the consolidated database. It

87

begins with the begin_download event.

The download transaction is a two-part process. For each table, first deletes
are downloaded, and then update/insert rows (upserts) are downloaded. The
end_download event ends the download transaction.

download transaction

download_delete_cursor

download_cursor

last remote table?

begin_download
(per connection then per

table)

Yes

end_download
(per table then per

connection)

No

☞ For more information about the events that happen during download, see
“Writing scripts to download rows”[MobiLink Synchronization User’s Guide,
page 56].

The following pseudo code provides an overview of the sequence in which
events, and hence the script of the same name, are invoked.

Event overview in
pseudo-code

The following pseudo-code shows the complete MobiLink synchronization
event model. This model assumes a full synchronization (not upload-only or
download-only) with no errors.

Notes

88

Chapter 3. Synchronization Events

♦ In most cases, if you have not defined a script for a given event, the
default action is to do nothing.

♦ The begin_connection and end_connection events areconnection-level
events. They are independent of any single synchronization and have no
parameters.

♦ Some events are invoked once per synchronization for each table being
synchronized. Scripts associated with these events are calledtable-level
scripts.

While each table can have its own table scripts, you can also write
table-level scripts that are shared by several tables.

♦ Some events, such as begin_synchronization, occur at both the
connection level and the table level. You can supply both connection and
table scripts for these events.

♦ The COMMIT statements illustrate how the synchronization process is
broken up into distinct transactions.

♦ A database error can occur at any point within the synchronization
process. Database errors are handled using the handle_error or
handle_odbc_error scripts.

Warning
There should be no implicit or explicit commit or rollback in your syn-
chronization scripts or the procedures or triggers that are called from your
synchronization scripts. COMMIT or ROLLBACK statements within
scripts alter the transactional nature of the synchronization steps. If you
use them, you cannot guarantee the integrity of your data in the event of a
failure.

--
Synchronization events in pseudo-code.

Legend:
- // This is a comment
- <name>

The pseudo code for <name> is listed separately
in a later section, under a banner:

name

- VariableName <- value
Assign the given value to the given variable name.
Variable names are in mixed case.

- event_name
If you have defined a script for the given event name,
it will be invoked.

--

89

CONNECT to consolidated database
begin_connection_autocommit
begin_connection
COMMIT
for each synchronization request with

the same script version {
<synchronize>

}
end_connection
COMMIT
DISCONNECT from consolidated database

--
synchronize
--

<authenticate>
<begin_synchronization>
<upload>
<prepare_for_download>
<download>
<end_synchronization>

--
authenticate
--

Status <- 1000
UseDefaultAuthentication <- TRUE
if(authenticate_user script is defined) {

UseDefaultAuthentication <- FALSE
TempStatus <- authenticate_user
if(TempStatus > Status) {

Status <- TempStatus
}

}

90

Chapter 3. Synchronization Events

if(authenticate_user_hashed script is defined) {
UseDefaultAuthentication <- FALSE
TempStatus <- authenticate_user_hashed
if(TempStatus > Status) {

Status <- TempStatus
}

}
if(UseDefaultAuthentication) {

if(the user exists in the ml_user table) {
if(ml_user.hashed_password column is not NULL) {

if(password matches ml_user.hashed_password) {
Status <- 1000

} else {
Status <- 4000

}
} else {

Status <- 1000
}

} else if(-zu+ was on the command line) {
Status <- 1000

} else {
Status <- 4000

}
}

if(Status <= 2000) {
if(authenticate_parameters script is defined)

{
TempStatus <- authenticate_parameters
if(TempStatus > Status) {

Status <- TempStatus
}

}
if(Status >= 3000) {

ROLLBACK
// Abort the synchronization.

} else {
// UserName defaults to MobiLink user name
// sent from the remote.
if(modify_user script is defined) {
UserName <- modify_user
// The new value of UserName is later passed to
// all scripts that expect the MobiLink user name.
}
COMMIT

}

91

--
begin_synchronization
--

begin_synchronization
for each publication being synchronized {

begin_publication
COMMIT

}

--
end_synchronization
--

for each publication being synchronized {
if(begin_publication script was called) {

end_publication
}

}
for each table being synchronized {

if(begin_synchronization table script was called) {
end_synchronization // table event

}
}
end_synchronization // connection event
synchronization_statistics
time_statistics
COMMIT

☞ For the details of upload stream processing, see“Events during upload”
on page 92.

☞ For the details of download stream processing, see“Events during
download” on page 96.

Events during upload

The following pseudo-code illustrates how upload events and upload scripts
are invoked.

These events take place at the upload location in the complete event model.
For more information, see“Overview of MobiLink events” on page 86.

92

Chapter 3. Synchronization Events

--
upload
--

begin_upload
for each table being synchronized {

begin_upload_rows
for each uploaded INSERT or UPDATE for this table {

if(INSERT) {
<upload_inserted_row>

}
if(UPDATE) {

<upload_updated_row>
}

}
end_upload_rows

}
for each table being synchronized IN REVERSE ORDER {

begin_upload_deletes
for each uploaded DELETE for this table {

<upload_deleted_row>
}
end_upload_deletes

}
end_upload
upload_statistics
COMMIT

--
<upload_inserted_row>
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Cursor-based upload scripts, like upload_cursor,
// are deprecated, and so are not shown.

UploadUsingStatements <- (
upload_insert script is defined

or upload_update script is defined
or upload_delete script is defined
or upload_fetch script is defined
or upload_new_row_insert script is defined
or upload_old_row_insert script is defined)

93

if(UploadUsingStatements) {
ConflictsAreExpected <- (

upload_new_row_insert script is defined
or upload_old_row_insert script is defined
or resolve_conflict script is defined)

if(upload_insert script is defined) {
upload_insert

} else if(ConflictsAreExpected
and upload_update script is not defined
and upload_insert script is not defined
and upload_delete script is not defined) {
// Forced conflict.
upload_new_row_insert
resolve_conflict

} else {
// ignore the insert

}
} else {

// ignore the insert
}

--
upload_updated_row
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Both the old (original) and new rows are uploaded for
// each update.
// - Cursor-based upload scripts, like upload_cursor,
// are deprecated, and so are not shown.

94

Chapter 3. Synchronization Events

UploadUsingStatements <- (
upload_insert script is defined

or upload_update script is defined
or upload_delete script is defined
or upload_fetch script is defined
or upload_new_row_insert script is defined
or upload_old_row_insert script is defined)

if(UploadUsingStatements) {
ConflictsAreExpected <- (

upload_new_row_insert script is defined
or upload_old_row_insert script is defined
or resolve_conflict script is defined)

Conflicted <- FALSE
if(upload_update script is defined) {

if(ConflictsAreExpected
and upload_fetch script is defined) {
FETCH using upload_fetch INTO current_row
if(current_row <> old row) {

Conflicted <- TRUE
}

}
if(not Conflicted) {

upload_update
}

} else if(upload_update script is not defined
and upload_insert script is not defined
and upload_delete script is not defined) {
// Forced conflict.
Conflicted <- TRUE

}
if(ConflictsAreExpected and Conflicted) {

upload_old_row_insert
upload_new_row_insert
resolve_conflict

}
} else {

// ignore the update
}

--
upload_deleted_row
--
// NOTES:
// - Only table scripts for the current table are involved.
// - Cursor-based upload scripts, like upload_cursor,
// are deprecated, and so are not shown.

UploadUsingStatements <- (
upload_insert script is defined

or upload_update script is defined
or upload_delete script is defined
or upload_fetch script is defined
or upload_new_row_insert script is defined
or upload_old_row_insert script is defined)

95

if(UploadUsingStatements) {
ConflictsAreExpected <- (

upload_new_row_insert script is defined
or upload_old_row_insert script is defined
or resolve_conflict script is defined)

if(upload_delete is defined) {
upload_delete

} else if(ConflictsAreExpected
and upload_update script is not defined
and upload_insert script is not defined
and upload_delete script is not defined) {
// Forced conflict.
upload_old_row_insert
resolve_conflict

} else {
// ignore this delete

}
} else {

// ignore this delete
}

Events during download

The following pseudo-code provides an overview of the sequence in which
download events, and hence the script of the same name, are invoked.

These events take place at the download location in the complete event
model provided in“Overview of MobiLink events” on page 86.

--
prepare_for_download
--

prepare_for_download
modify_last_download_timestamp
if(prepare_for_download script is defined

or modify_last_download_timestamp script is defined) {
COMMIT

}

96

Chapter 3. Synchronization Events

--
download
--

begin_download
for each table being synchronized {

begin_download_deletes
for each row in download_delete_cursor {

if(all primary key columns are NULL) {
send TRUNCATE to remote

} else {
send DELETE to remote

}
}
end_download_deletes
begin_download_rows
for each row in download_cursor {

send INSERT ON EXISTING UPDATE to remote
}
end_download_rows

}
modify_next_download_timestamp
end_download
COMMIT

Notes ♦ If an acknowledgement is expected, and if no confirmation of the
downloads is received from the client, the entire download transaction is
rolled back in the consolidated database.

☞ For more information, see“SendDownloadACK (sa) extended
option” on page 62for Adaptive Server Anywhere remotes or “Send
Download Acknowledgement synchronization parameter”[UltraLite
Database User’s Guide,page 172]for UltraLite remotes.

♦ The download stream does not distinguish between inserts and updates.
The script associated with the download_cursor event is a SELECT
statement that defines the rows to be downloaded. The client detects
whether the row exists or not and carries out the appropriate insert or
update operation.

♦ At the end of the download processing, the client automatically deletes
rows that violate referential integrity.

☞ For more information, see “Referential integrity and
synchronization”[MobiLink Synchronization User’s Guide,page 28].

97

authenticate_parameters connection event
Function Receives non-table data that is sent from the remote.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 auth_status INTEGER. This is an INOUT
parameter.

2 ml_username VARCHAR(128).

3... remote_parameters (one or
more)

VARCHAR(128).

Description You can send strings or parameters in the form of strings from both Adaptive
Server Anywhere and UltraLite remotes. This allows you to have
authentication beyond a user ID and password. It also means that you can
customize your synchronization based on the value of parameters, and do
this in a pre-synchronization phase, during authentication.

For UltraLite remote databases, pass the parameters using the
num_auth_parms and auth_parms fields in the ul_synch_info struct.
num_auth_parms is a count of the number of parameters, from 0 to 255.
auth_parms is a pointer to a list of strings. To prevent the strings being
viewed as plain text, the strings are sent in the same way as passwords. If
num_auth_parms is 0, set auth_parms to NULL.

Following is an example of passing parameters in UltraLite:

ul_char * Params[3] = { UL_TEXT("parm1"), UL_TEXT("parm2"
), UL_TEXT("parm3") };

...
info.num_auth_parms = 3;
info.auth_parms = Params;

For Adaptive Server Anywhere remote databases, you pass parameters using
the dbmlsync -ap option, in a comma-separated list. For example,

dbmlsync -ap "parm1,parm2,parm3"

The MobiLink synchronization server executes this event upon starting each
synchronization. It is executed before, and in the same transaction as, the

98

Chapter 3. Synchronization Events

begin_synchronization event.

You can use this event to replace the built-in MobiLink authentication
mechanism with a custom mechanism. You may want to call into the
authentication mechanism of your DBMS, or you may wish to implement
features not present in the MobiLink built-in mechanism.

The number of remote parameters must match the number expected or an
error will result. For example, if three parameters are sent, the event must
expect five, because there is auth_status and ml_username plus the three
parameters. An error will also occur if parameters are sent from the client
and there is no event.

If the authenticate_user or authenticate_user_hashed scripts are invoked and
return an error, this event is not called.

SQL scripts for the authenticate_parameters event must be implemented as
stored procedures.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103]

“Custom user authentication”[MobiLink Synchronization User’s Guide,
page 114]

“authenticate_user connection event” on page 100

“authenticate_user_hashed connection event” on page 104

“begin_synchronization connection event” on page 121

“Authentication Parameters synchronization parameter”[UltraLite Database
User’s Guide,page 162]

99

authenticate_user connection event
Function Implements a custom user authentication mechanism.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 auth_status INTEGER. This is an INOUT
parameter.

2 ml_username VARCHAR(128).

3 user_password VARCHAR(128).

4 user_new_password VARCHAR(128).

Default action Use MobiLink built-in user authentication mechanism.

Description The MobiLink synchronization server executes this event upon starting each
synchronization. It is executed in a transaction before the
begin_synchronization transaction.

You can use this event to replace the built-in MobiLink authentication
mechanism with a custom mechanism. You may want to call into the
authentication mechanism of your DBMS, or you may wish to implement
features not present in the MobiLink built-in mechanism, such as password
expiry or a minimum password length.

The parameters used in an authenticate_user event are as follows:

1. auth_status This required parameter is an INOUT parameter: a
parameter that provides a value to the script, and could be given a new
value by the script. The auth_status parameter indicates the overall
success of the authentication, and can be set to one of the following
values:

100

Chapter 3. Synchronization Events

Returned Value Auth_status Description

V <= 1999 1000 Authentication succeeded.

1999< V <= 2999 2000 Authentication succeeded: pass-
word expiring soon.

2999< V <= 3999 3000 Authentication failed: password
expired.

3999< V <= 4999 4000 Authentication failed.

4999< V <= 5999 5000 Authentication failed as user is
already synchronizing.

5999< V 4000 If the returned value is greater than
5999, MobiLink interprets it as a
returned value of 4000.

2. ml_username This optional parameter is the name of the remote
database.

3. user_password This optional parameter indicates the password for
authentication purposes. If the user does not supply a password, this is
NULL.

4. user_new_password This optional parameter indicates a new
password. If the user does not change their password, this is NULL.

SQL scripts for the authenticate_user event must be implemented as stored
procedures.

When the two authentication scripts are both defined, and both scripts return
different auth_status codes, the higher value is used.

The authenticate_user script is executed immediately before, and in the same
transaction as, the begin_synchronization script. The transaction is ended
immediately after the begin_synchronization script.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103]

“Custom user authentication”[MobiLink Synchronization User’s Guide,
page 114]

“authenticate_user_hashed connection event” on page 104

“authenticate_parameters connection event” on page 98

“modify_user connection event” on page 184

“begin_synchronization connection event” on page 121

101

SQL example A typical authenticate_user script is a call to a stored procedure. The order
of the parameters in the call must match the order above. In an Adaptive
Server Anywhere consolidated database, the script could be as follows.

call my_auth (?, ?, ?, ?)

The following Adaptive Server Anywhere stored procedure uses only the
user name to authenticate—it has no password check. The procedure ensures
only that the supplied user name is one of the employee IDs listed in the
ULEmployee table.

CREATE PROCEDURE my_auth(in @user_name varchar(128))
begin

if exists
(select * from ulemployee

where emp_id = @user_name)
then

message ’OK’ type info to client;
return 1000;
else
message ’Not OK’ type info to client;
return 4000;

end if
end

Java example The following stored procedure call registers a Java method called
authenticateUser as the script for the authenticate_user event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’, ’authenticate_user’,
’ExamplePackage.ExampleClass.authenticateUser’)

Following is the sample Java method authenticateUser. It calls Java
functions that check and, if needed, change the user’s password.

102

Chapter 3. Synchronization Events

public String authenticateUser
(ianywhere.ml.script.InOutInteger authStatus,

String user, String pwd, String newPwd)
throws java.sql.SQLException

{ // in a real authenticate_user handler, we would
// handle more auth code states
_curUser = user;
if(checkPwd(user, pwd))
{ // auth successful

if(newPwd != null)
{ // pwd is being changed

if(changePwd(user, pwd, newPwd))
{ // auth ok and pwd change ok. Use custom code

authStatus.setValue(1001);
}
else { // authorization ok but password

// change failed. Use custom code.
java.lang.System.err.println("user: "
+ user + " pwd change failed!");
authStatus.setValue(1002); } }

else { authStatus.setValue(1000); } }
else { // auth failed

authStatus.setValue(4000); }
return(null); }

.NET example The following stored procedure call registers a .NET method called
AuthUser as the script for the authenticate_user connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’, ’authenticate_user’,
’TestScripts.Test.AuthUser’

)

Following is the C# signature for the method AuthUser.

public void AuthUser(ref int authStatus, string user, string
pwd, string newPwd)

☞ For a more detailed example of an authenticate_user script written in C#
in .NET, see “.NET synchronization example”[MobiLink Synchronization
User’s Guide,page 266].

103

authenticate_user_hashed connection event
Function Implements a custom user authentication mechanism.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 auth_status INTEGER. This is an INOUT param-
eter.

2 ml_username VARCHAR(128).

3 hashed_user_password BINARY(20). If the user does not
supply a password, this is NULL.

4 hashed_new_password BINARY(20). If the user does not
change their password, this is NULL.

Default action Use MobiLink built-in user authentication mechanism.

Description This event is identical to authenticate_user except for the passwords, which
are in the same hashed form as those stored in the ml_user.hashed_password
column. Passing the passwords in hashed form provides increased security.

A one-way hash is used. A one-way hash takes a password and converts it to
a byte sequence that is (essentially) unique to each possible password. The
one-way hash lets password authentication take place without having to
store the actual password in the consolidated database.

When the two authentication scripts are both defined, and both scripts return
different auth_status codes, the higher value is used.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103]

“Custom user authentication”[MobiLink Synchronization User’s Guide,
page 114]

“authenticate_user connection event” on page 100

“authenticate_parameters connection event” on page 98

104

Chapter 3. Synchronization Events

SQL example A typical authenticate_user_hashed script is a call to a stored procedure. The
order of the parameters in the call must match the order above. In an
Adaptive Server Anywhere consolidated database, the script could be as
follows.

call my_auth (?, ?, ?)

The following Adaptive Server Anywhere stored procedure uses both the
user name and password to authenticate. The procedure ensures only that the
supplied user name is one of the employee IDs listed in the ULEmployee
table. The procedure assumes that the Employee table has a binary(20)
column called hashed_pwd.

CREATE PROCEDURE my_auth(
inout @auth_status integer,
in @user_name varchar(128),
in @hpwd binary(20))

begin
if exists
(select * from ulemployee

where emp_id = @user_name
and hashed_pwd = @hpwd)

then
message ’OK’ type info to client;
return 1000;
else
message ’Not OK’ type info to client;
return 4000;

end if
end

Java example The following stored procedure call registers a Java method called
authUserHashed as the script for the authenticate_user_hashed event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’, ’authenticate_user_hashed’,
’ExamplePackage.ExampleClass.authUserHashed)

Following is the sample Java method authUserHashed. It calls Java
functions that check and, if needed, change the user’s password.

105

public String authUserHashed(
ianywhere.ml.script.InOutInteger authStatus,
String user, byte pwd[], byte newPwd[])

throws java.sql.SQLException
{ // in a real authenticate_user_hashed handler, we

// would handle more auth code states
_curUser = user;
if(checkPwdHashed(user, pwd)) {
// auth successful

if(newPwd != null)
{ // pwd is being changed

if(changePwdHashed(user, pwd, newPwd))
{ // auth ok and pwd change ok use custom code

authStatus.setValue(1001); }
else
{ // auth ok but pwd change failed.

// Use custom code
java.lang.System.err.println("user: " + user

+ " pwd change failed!");
authStatus.setValue(1002); } }

else { authStatus.setValue(1000); } }
else { // auth failed

authStatus.setValue(4000); }
return(null); }

.NET example The following stored procedure call registers a .NET method called
AuthUserHashed as the script for the authenticate_user_hashed connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’authenticate_user_hashed’,
’TestScripts.Test.AuthUserHashed’

)

Following is the C# signature for the call AuthUserHashed.

public void AuthUserHashed(
ref int authStatus,
string user,
byte[] pwd,
byte[] newPwd)

106

Chapter 3. Synchronization Events

begin_connection connection event
Function Invoked at the time the MobiLink synchronization server connects to the

consolidated database server.

Parameters None.

Default action None.

Description The MobiLink synchronization server executes this event upon opening each
worker-thread connection to the consolidated database server. The
MobiLink synchronization opens connections on demand as synchronization
requests come in. When an application forms or reforms a connection with
the MobiLink synchronization server, the MobiLink synchronization server
temporarily allocates one connection with the database server for the
duration of that synchronization.

See also “end_connection connection event” on page 145

SQL example The following SQL script works in an Adaptive Server Anywhere database.
Two variables are created, one for the last_download timestamp, and one for
employee ID.

call ml_add_connection_script(
’custdb’,
’begin_connection’,
’create variable @LastDownload timestamp;
create variable @EmployeeID integer;’)

Java example Note: This script is not generally used in Java, because instead of database
variables you would use member variables in this class instance, and prepare
the members in the constructor.

The following stored procedure call registers a Java method called
beginConnection as the script for the begin_connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’begin_connection’,
’ExamplePackage.ExampleClass.beginConnection’)

Following is the sample Java method beginConnection. This returns SQL
that will create a connection level variable.

public String beginConnection()
{ return("create variable @LastDownload timestamp;"); }

.NET example The following stored procedure call registers a .NET method called

107

BeginConnection as the script for the begin_connection connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’begin_connection’,
’TestScripts.Test.BeginConnection’

)

Following is the signature for the call BeginConnection.

public void BeginConnection()

108

Chapter 3. Synchronization Events

begin_connection_autocommit connection event
Function Turns on autocommit.

Parameters None.

Default action Autocommit is off.

Description When the MobiLink synchronization server connects to the consolidated
database, it turns off autocommit so that it can roll back the upload and
download streams if an error occurs.

However, if you are using an Adaptive Server Enterprise consolidated
database, you cannot perform DDL functions such as creating temporary
tables unless autocommit is on. If you are using an Adaptive Server
Enterprise consolidated database, run your DDL commands in the
begin_connection_autocommit event. When the event is finished,
autocommit is turned off.

Begin_connection_autocommit scripts must be written so that they are
repeatable. This is because if an error or deadlock occurs, the MobiLink
synchronization server needs to be able to retry the script (since it can’t roll
it back).

109

begin_download connection event
Function Processes any statements just before the MobiLink synchronization server

commences preparing the download data stream.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
the processing of downloaded information. Download information is
processed in a single transaction. The execution of this event is the first
action in this transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “end_download connection event” on page 147

SQL example The following example works in an Adaptive Server Anywhere installation.

call ml_add_connection_script (
’Lab’,
’begin_download’,
’CALL SetDownloadParameters (?, ?)’)

Java example The following stored procedure call registers a Java method called
beginDownloadConnection as the script for the begin_download connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_connection_script(
’example_ver’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadConnection’)

110

Chapter 3. Synchronization Events

Following is the sample Java method beginDownloadConnection. It calls a
Java function that will prepare the delete tables using a JDBC
synchronization that was set earlier.

public String beginDownloadConnection(
Timestamp ts, String user)

throws java.sql.SQLException
{ prepDeleteTables (_syncConn, ts, user);

return (null); }

.NET example The following stored procedure call registers a .NET method called
BeginDownload as the script for the begin_download connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’begin_download’,
’TestScripts.Test.BeginDownload’

)

Following is the C# signature for the call BeginDownload.

public void BeginDownload(
DateTime timestamp,
string user)

111

begin_download table event
Function Provides a location to process statements related to a specific table just

before preparing the download stream of inserts, updates, and deletions.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR (128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
preparing download information for a specific table. The download
information is prepared in its own transaction. The execution of this event is
the first table-specific action in the transaction.

You can have one begin_download script for each table in the remote
database. The script is only invoked when that table is synchronized.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “end_download table event” on page 149

SQL example The following example can be used on an Adaptive Server Anywhere 9
database. The first chunk of code calls the ml_add_table_script, and the
second creates a BeginTableDownload procedure.

112

Chapter 3. Synchronization Events

call ml_add_table_script(
’version1’,
’Leads’,
’begin_download’,
’call BeginTableDownLoad(?, ?, ?));

create procedure BeginTableDownload(
LastDownload timestamp,
MLUser varchar(128),
TableName varchar(128))

begin
execute immediate ’update ’ || TableName ||

’ set last_download_check = CURRENT TIMESTAMP
where Owner = ’ ||MLUser;

end

Java example The following stored procedure call registers a Java method called
beginDownloadTable as the script for the begin_download table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadTable’)

Following is the sample Java method beginDownloadTable. It saves the
name of the current table for use in a later member function call.

public String beginDownloadTable(
Timestamp ts,
String user,
String table)

{ _curTable = table;
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginTableDownload as the script for the begin_download table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_download’,
’TestScripts.Test.BeginTableDownload’

)

Following is the C# signature for the call BeginTableDownload.

public void BeginTableDownload(
DateTime timestamp,
string user,
string table)

113

begin_download_deletes table event
Function Processes statements related to a specific table just before fetching a list of

rows to be deleted from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR (128)

3 table VARCHAR (128)

Default action None.

Description This event is executed immediately before fetching a list of rows to be
deleted from the named table in the remote database.

You can have one begin_download_deletes script for each table in the
remote database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “begin_download_rows table event” on page 116

“end_download_rows table event” on page 153

SQL example To minimize the amount of data on remotes, you can use this event to flag
data that will be deleted when the download_delete_cursor is executed. The
following example flags for deletion sales leads from the remote device that
are over 10 weeks old. The example can be used on an Adaptive Server
Anywhere 9 database. The code calls the ml_add_table_script, and then
creates a beginDownloadDeletes procedure.

114

Chapter 3. Synchronization Events

call ml_add_table_script (
’version1’,
’Leads’,
’begin_download_deletes’,
’call BeginDownloadDeletes (?, ?, ?)’);

create procedure BeginDownloadDeletes(
LastDownload timestamp,
MLUser varchar(128),
TableName varchar(128))

begin
execute immediate ’update ’ || TableName ||
’ set delete_flag = 1 where
days(creation_time, CURRENT DATE) > 70 and Owner = ’
|| MLUser;

end;

Java example The following stored procedure call registers a Java method called
beginDownloadDeletes as the script for the begin_download_deletes table
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_download_deletes’,
’ExamplePackage.ExampleClass.beginDownloadDeletes’)

Following is the sample Java method beginDownloadDeletes. It saves the
name of the current table for use in a later member function call.

public String beginDownloadDeletes(Timestamp ts,
String user, String table)
{ _curTable = table;

return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginDownloadDeletes as the script for the begin_download_deletes table
event when synchronizing the script version ver1 and the table table1. This
syntax is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_download_deletes’,
’TestScripts.Test.BeginDownloadDeletes’

)

Following is the C# signature for the call BeginDownloadDeletes.

public void BeginDownloadDeletes(
DateTime timestamp,
string user,
string table)

115

begin_download_rows table event
Function Processes statements related to a specific table just before fetching a list of

rows to be inserted or updated in the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR (128)

3 table VARCHAR (128)

Default action None.

Description This event is executed immediately before fetching the stream of rows to be
inserted or updated in the named table in the remote database.

You can have one begin_download_rows script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “begin_download_deletes table event” on page 114

“end_download_deletes table event” on page 151

SQL example You can use the begin_download_rows table event to flag rows that you no
longer want to download for this table. The following example archives
sales leads that are over seven days old.

116

Chapter 3. Synchronization Events

call ml_add_table_script(’version1’, ’Leads’,
’begin_download_rows’,
’call BeginDownloadRows (?, ?, ?)’);

create procedure BeginDownloadRows (
LastDownload timestamp, MLUser varchar(128),
TableName varchar(128))

begin
execute immediate ’update ’ || TableName ||
’ set download_flag = 0 where
days(creation_time, CURRENT DATE) > 7 and Owner = ’
|| MLUser;

end;

Java example The following stored procedure call registers a Java method called
beginDownloadRows as the script for the begin_download_rows table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_download_rows’,
’ExamplePackage.ExampleClass.beginDownloadRows’)

Following is the sample Java method beginDownloadRows. It generates an
UPDATE statement using the table and user. MobiLink will execute this
SQL statement.

public String beginDownloadRows(Timestamp ts,
String user, String table)
{ return("update " + table + " set download_flag = 0 "

+ " where days(creation_time, CURRENT DATE) > 7 " +
" and Owner = ’" + user + "’"); }

.NET example The following stored procedure call registers a .NET method called
BeginDownloadRows as the script for the begin_download_rows table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_download_rows’,
’TestScripts.Test.BeginDownloadRows’

)

Following is the C# signature for the call BeginDownloadRows.

public void BeginDownloadRows(
DateTime timestamp,
string user,
string table)

117

begin_publication connection event
Function Provides useful information about the publication(s) being synchronized.

This script may also be used to manage generation numbers for file-based
downloads.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 generation_number INTEGER. This is an INOUT pa-
rameter. If your deployment does
not use file-based downloads, this
parameter can be ignored. The
default is 1.

2 ml_username VARCHAR(128). If an UltraLite
remote is synchronizing with UL_-
SYNC_ALL, this event is invoked
once with the name ‘unknown’.

3 publication_name VARCHAR(128)

4 last_upload TIMESTAMP. Last successful up-
load.

5 last_download TIMESTAMP. Last successful
download.

Default action The default generation number is 1. If no script is defined for this event, the
generation number sent to the remote will always be 1.

Description This event lets you design synchronization logic based on the publications
currently being synchronized. This event is invoked in the same transaction
as the begin_synchronization event, and is invoked after the
begin_synchronization event. It is invoked once per publication being
synchronized.

One potential use for this event is to affect what is downloaded based on the
publication used. For example, consider a table that is part of both a priority
publication (PriorityPub) and a publication for all tables (AllTablesPub). A
script for the begin_publication event could store the publication names in a
Java class or a SQL variable or package. Download scripts could then
behave differently based on whether the publication being synchronized is

118

Chapter 3. Synchronization Events

PriorityPub or AllTablesPub.

Generation number The generation_number parameter is specifically for file-based downloads.
The output value of the generation number is passed from the
begin_synchronization script to the end_synchronization script. The
meaning of the generation_number depends on whether the current
synchronization is being used to create a download file, or whether the
current synchronization has an upload.

The output value of the generation number is passed from the
begin_publication script to the end_publication script. The meaning of the
generation_number depends on whether the current synchronization is being
used to create a download file, or whether the current synchronization has an
upload.

In file-based downloads, generation numbers are used to force an upload
before the download. The number is stored in the download file. During a
synchronization that has an upload, one generation number is output for
every subscription to a publication. They are sent to the remote database in
the upload acknowledgement, and stored in SYSSYNC.generation_number.

See also “end_publication connection event” on page 155

“File-Based Downloads”[MobiLink Synchronization User’s Guide,page 117]

SQL example You may want to record the information for each publication being
synchronized:

call ml_add_connection_script(
’version1’,
’begin_publication’,
’{call RecordPubSync(?, ?, ?, ?, ?)}’);

Java example The following stored procedure call registers a Java method called
beginPublication as the script for the begin_publication connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’begin_publication’,
’ExamplePackage.ExampleClass.beginPublication’)

Following is the sample Java method beginPublication. It saves the name of
each publication for later use.

119

public String beginPublication(
ianywhere.ml.script.InOutInteger generation_number,
String user,
String pub_name,
Timestamp last_upload,
Timestamp last_download)

{ _publicationNames[_numPublications++] = pub_name;
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginPub as the script for the begin_publication connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
’begin_publication’,
’TestScripts.Test.BeginPub’

)

Following is the C# signature for BeginPub.

public void BeginPub(
ref int generation_number,
string user,
string pub_name,
DateTime last_upload,
DateTime last_download)

{
_publicationNames[_numPublications++] = pub_name;

}

120

Chapter 3. Synchronization Events

begin_synchronization connection event
Function Processes any statements at the time an application connects to the

MobiLink synchronization server in preparation for the synchronization
process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this event immediately after
an application preparing to synchronize has formed a connection with the
MobiLink synchronization server.

This event is executed within a separate transaction before the upload
transaction. It is useful for maintaining statistics.

See also “end_synchronization connection event” on page 158

“begin_synchronization table event” on page 123

SQL example You may want to store the ml_username value in a temporary table or
variable if you will be referencing that value many times in subsequent
scripts.

Call ml_add_connection_script (
’version1’,
’begin_synchronization’,
’set @EmployeeID = ?’);

Java example The following stored procedure call registers a Java method called
beginSynchronizationConnection as the script for the begin_synchronization
connection event when synchronizing the script version ver1. This syntax is
for Adaptive Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’,
’begin_synchronization’,
’ExamplePackage.ExampleClass.beginSynchronizationConnection’

)

Following is the sample Java method beginSynchronizationConnection. It
saves the name of the synchronizing user for later use.

121

public String beginSynchronizationConnection(
String user)

{ _curUser = user;
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginSync as the script for the begin_synchronization connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
’begin_synchronization’,
’TestScripts.Test.BeginSync’

)

Following is the C# signature for the call BeginSync.

public void BeginSync(string user)

122

Chapter 3. Synchronization Events

begin_synchronization table event
Function Processes statements related to a specific table at the time an application

connects to the MobiLink synchronization server in preparation for the
synchronization process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR (128)

2 table VARCHAR (128)

Default action None.

Description The MobiLink synchronization server executes this event after an
application that is preparing to synchronize has formed a connection with
the MobiLink synchronization server, and after the begin_synchronization
connection-level event.

You can have one begin_synchronization script for each table in the remote
database. The event is only invoked when the table is synchronized.

See also “end_synchronization table event” on page 160

“begin_synchronization connection event” on page 121

SQL example The begin_synchronization table event is used to set up the synchronization
of a particular table. The following Adaptive Server Anywhere SQL
procedure call registers a script that creates a temporary table for storing
rows during synchronization.

123

call ml_add_table_script(
’ver1’,
’sales_order’,
’begin_synchronization’,
’CREATE TABLE #sales_order

(
id integer NOT NULL default autoincrement,
cust_id integer NOT NULL,
order_date date NOT NULL,
fin_code_id char(2) NULL,
region char(7) NULL,
sales_rep integer NOT NULL,
PRIMARY KEY (id),

)’)

Java example The following stored procedure call registers a Java method called
beginSynchronizationTable as the script for the begin_synchronization table
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_synchronization’,
’ExamplePackage.ExampleClass.beginSynchronizationTable’)

Following is the sample Java method beginSynchronizationTable. It adds the
current table name to a list of table names contained in this instance.

public String beginSynchronizationTable(String user,
String table)
{ _tableList.add(table);

return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginTableSync as the script for the begin_synchronization table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’,

’begin_synchronization’,
’TestScripts.Test.BeginTableSync’

)

Following is the C# signature for the call BeginTableSync.

public void BeginTableSync(string user, string table)

124

Chapter 3. Synchronization Events

begin_upload connection event
Function Processes any statements just before the MobiLink synchronization server

commences processing the stream of uploaded inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR (128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
the processing of uploaded information. Upload information is processed in
a single transaction. The execution of this event is the first action in this
transaction.

See also “end_upload connection event” on page 162

“begin_upload table event” on page 127

SQL example The begin_upload connection event is used to perform whatever steps you
need performed prior to uploading rows. The following Adaptive Server
Anywhere SQL script creates a temporary table for storing old and new row
values for conflict processing of the sales_order table.

call ml_add_connection_script(
’version1’,
’begin_upload’,
’CREATE TABLE #sales_order_conflicts

(
id integer NOT NULL default autoincrement,
cust_id integer NOT NULL,
order_date date NOT NULL,
fin_code_id char(2) NULL,
region char(7) NULL,
sales_rep integer NOT NULL,
new_value char(1) NOT NULL,
PRIMARY KEY (id),

)’)

Java example The following stored procedure call registers a Java method called
beginUploadConnection as the script for the begin_upload connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

125

call ml_add_java_connection_script(’ver1’, ’begin_upload’,
’ExamplePackage.ExampleClass. beginUploadConnection ’)

Following is the sample Java method beginUploadConnection. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String beginUploadConnection(String user)
{ java.lang.System.out.println(

"Starting upload for user: " + user);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginUpload as the script for the begin_upload connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’begin_upload’,
’TestScripts.Test.BeginUpload’

)

Following is the C# signature for the call BeginUpload.

public void BeginUpload(string user)

The following C# example saves the current user name for use in a later
event.

public void BeginUpload(string curUser)
{

user = curUser;
}

126

Chapter 3. Synchronization Events

begin_upload table event
Function Processes statements related to a specific table just before the MobiLink

synchronization server commences processing the stream of uploaded
inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this event as the first step in
the processing of uploaded information. Upload information is processed in
a separate transaction. The execution of this event is the first table-specific
action in this transaction.

You can have one begin_upload script for each table in the remote database.
The script is only invoked when the table is actually synchronized.

See also “end_upload table event” on page 164

“begin_upload connection event” on page 125

SQL example When uploading rows from a remote you may want to place the changes in
an intermediate table and manually process changes yourself. You can
populate a global temporary table in this event.

call ml_add_table_script(
’version1’,
’Leads’,
’begin_upload’,
’insert into T_Leads SELECT *

FROM Leads WHERE Owner = @EmployeeID’)

Java example The following stored procedure call registers a Java method called
beginUploadTable as the script for the begin_upload table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

127

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_upload’,
’ExamplePackage.ExampleClass.a beginUploadTable’

)

Following is the sample Java method beginUploadTable. This example takes
no action. MobiLink interprets NULL as no script.

public String beginUploadTable(String user,
String table)
{ return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginTableUpload as the script for the begin_upload table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_upload’,
’TestScripts.Test.BeginTableUpload’

)

Following is the C# signature for the call BeginTableUpload.

public void BeginTableUpload(
string user,
string table)

128

Chapter 3. Synchronization Events

begin_upload_deletes table event
Function Processes statements related to a specific table just before uploading deleted

rows from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description This event runs immediately before applying the changes that result from
rows deleted in the client table named in the second parameter.

You can have one begin_upload_deletes script for each table in the remote
database. The script is only invoked when the table is actually synchronized.

See also “end_upload_deletes table event” on page 166

SQL example The begin_upload_deletes connection event is used to perform whatever
steps you need performed after uploading inserts and updates for a particular
table, but before deletes are uploaded for that table. The following Adaptive
Server Anywhere SQL script creates a temporary table for storing deletes
temporarily during upload:

call ml_add_table_script(
’ver1’,
’sales_order’,
’begin_upload_deletes’,
’CREATE TABLE #sales_order_deletes

(
id integer NOT NULL default autoincrement,
cust_id integer NOT NULL,
order_date date NOT NULL,
fin_code_id char(2) NULL,
region char(7) NULL,
sales_rep integer NOT NULL,
PRIMARY KEY (id),

)’)

129

Java example The following stored procedure call registers a Java method called
beginUploadDeletes as the script for the begin_upload_deletes table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(’ver1’, ’table1’,
’begin_upload_deletes’,
’ExamplePackage.ExampleClass. beginUploadDeletes’)

Following is the sample Java method beginUploadDeletes. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String beginUploadDeletes(
String user,
String table)

throws java.sql.SQLException
{ java.lang.System.out.println("Starting upload

deleted for table: " + table);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginUploadDeletes as the script for the begin_upload_deletes table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(’ver1’, ’table1’,
’begin_upload_deletes’,
’TestScripts.Test.BeginUploadDeletes’

)

Following is the C# signature for the call BeginUploadDeletes.

public void BeginUploadDeletes(string user,
string table)

130

Chapter 3. Synchronization Events

begin_upload_rows table event
Function Processes statements related to a specific table just before uploading inserts

and updates from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description This event is run immediately prior to applying the changes that result from
inserts and deletes to the client table named in the second parameter.

You can have one begin_upload_rows script for each table in the remote
database. The script is only invoked when the table is actually synchronized.

See also “end_upload_rows table event” on page 168

SQL example The begin_upload_rows connection event is used to perform whatever steps
you need performed before uploading inserts and updates for a particular
table. The following Adaptive Server Anywhere SQL script calls a stored
procedure that prepares the consolidated database for inserts and updates
into the Inventory table:

call ml_add_table_script(
’MyCorp 1.0’,
’Inventory’,
’begin_upload_rows’,
’call PrepareForUpserts()’)

Java example The following stored procedure call registers a Java method called
beginUploadRows as the script for the begin_upload_rows table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

131

call ml_add_java_table_script(
’ver1’,
’table1’,
’begin_upload_rows’,
’ExamplePackage.ExampleClass.beginUploadRows’)

Following is the sample Java method beginUploadRows. It prints a message
to the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String beginUploadRows(String user,
String table)

throws java.sql.SQLException
{ java.lang.System.out.println("Starting upload rows

for table: " + table + " and user: " + user);
return(null); }

.NET example The following stored procedure call registers a .NET method called
BeginUploadRows as the script for the begin_upload_rows table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’begin_upload_rows’,
’TestScripts.Test.BeginUploadRows’

)

Following is the C# signature for the call BeginUploadRows.

public void BeginUploadRows(
string user,
string table)

132

Chapter 3. Synchronization Events

download_cursor cursor event
Function Defines a cursor to select rows that are to be downloaded and inserted or

updated in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

A default download_cursor SQL script can be generated using the MobiLink
synchronization server -za option. Also, the UltraLite analyzer generates a
SELECT statement based on your reference database that you can use to get
started.

Description The MobiLink synchronization server opens a read-only cursor with which
to fetch a list of rows to download to the remote database. This script should
contain a suitable SELECT statement.

The parameters are the last_download timestamp and the user name. You
can use these values if you choose by placing question marks in your SQL
statement.

You can have one download_cursor script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

To optimize performance of the download stage of synchronization to
UltraLite clients, when the range of primary key values is outside the current
rows on the device, you should order the rows in the download cursor by
primary key. Downloads of large reference tables, for example, can benefit
from this optimization.

133

Note that download_cursor allows for cascading deletes. Thus, you can
delete records from a database.

For Java and .NET applications, this script must return valid SQL.

See also “download_delete_cursor cursor event” on page 136

SQL example The following example comes from an Oracle installation, although the
statement is valid against all supported databases. The example downloads
all rows that have been changed since the last time the user downloaded
data, and which match the user name in the emp_name column.

call ml_add_table_script(
’Lab’,
’ULOrder’,
’download_cursor’,
’SELECT order_id, cust_id, prod_id, emp_id,

disc, quant, notes, status
FROM ULOrder
WHERE last_modified >= ? AND emp_name = ?’)

To write a download_cursor SQL script that does not use the first parameter
(the last_download timestamp), but does use the second parameter (the
MobiLink user name), add a dummy clause that affects no rows. For
example:

call ml_add_table_script(
’Lab’,
’ULOrder’,
’download_cursor’,
’SELECT order_id, cust_id, prod_id, emp_id, disc,

quant, notes, status
FROM ULOrder WHERE ? IS NOT NULL AND emp_name = ?’)

You must still use both parameters, but the first ? is a place holder that does
nothing.

Java example The following stored procedure call registers a Java method called
downloadCursor as the script for the download_cursor cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’download_cursor’,
’ExamplePackage.ExampleClass. downloadCursor ’)

Following is the sample Java method downloadCursor. It dynamically
creates the SQL statement for the download cursor.

134

Chapter 3. Synchronization Events

public String downloadCursor(Timestamp ts,
String user)
{ return("SELECT order_id, cust_id, prod_id, emp_id,
disc, " + " quant, notes, status " + "FROM ULOrder " +
"WHERE emp_name = ’" + user + "’"); }

.NET example The following stored procedure call registers a .NET method called
DownloadCursor as the script for the download_cursor cursor event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’download_cursor’,
’TestScripts.Test.DownloadCursor’

)

Following is the C# signature for the call DownloadCursor.

public string DownloadCursor(
DateTime timestamp,
string user)

The following C# example populates a temporary table with the contents of
a file calledrows.txt. It then returns a cursor that causes MobiLink to send
the rows in the temporary table to the remote database.

public string DownloadCursor(
DateTime ts,
string user)

{
DBCommand stmt = curConn.CreateCommand();
StreamReader input = new StreamReader("rows.txt");
string sql = input.ReadLine();

stmt.CommandText = "DELETE FROM dnet_dl_temp";
stmt.ExecuteNonQuery();

while(sql != null){
stmt.CommandText = "INSERT INTO dnet_dl_temp VALUES " + sql;
stmt.ExecuteNonQuery();
sql = input.ReadLine();

}
return("SELECT * FROM dnet_dl_temp");

}

135

download_delete_cursor cursor event
Function Defines a cursor to select rows that are to be deleted in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server opens a read-only cursor with which
to fetch a list of rows to download, and then insert or update in the remote
database. This script must contain a SELECT statement that returns the
primary key values of the rows to be deleted from the table in the remote
database.

The parameters are the last_download timestamp and the user name. You
can use these values by placing a question mark in your SQL statement.

You can have one download_delete_cursor script for each table in the remote
database.

If the download_delete_cursor has NULLs for the primary key columns for
one or more rows in a table, then MobiLink tells the remote to delete all the
data in the table. For a complete description of this behavior, see “Deleting
all the rows in a table”[MobiLink Synchronization User’s Guide,page 59].

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

Note that rows deleted from the consolidated database will not appear in a
result set defined by a download_delete_cursor event, and so are not
automatically deleted from the remote database. One technique for
identifying rows to be deleted from remote databases is to add a column to
the consolidated database table identifying a row as inactive.

136

Chapter 3. Synchronization Events

For Java and .NET applications, this script must return valid SQL.

See also “download_cursor cursor event” on page 133

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It deletes from the remote
database any customers that:

♦ have been changed since the last time this user downloaded data
(Customer.last_modified > ?), and either

♦ do not belong to the synchronizing user (SalesRep.ml_username !=

?), or

♦ are marked as inactive in the consolidated database (Customer.active

= 0).

SELECT cust_id FROM Customer key join SalesRep
WHERE Customer.last_modified > ? AND
(SalesRep.ml_username != ? OR Customer.active = 0)

Java example The following stored procedure call registers a Java method called
downloadDeleteCursor as the script for the download_delete_cursor event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’download_delete_cursor’,
’ExamplePackage.ExampleClass.downloadDeleteCursor’)

Following is the sample Java method downloadDeleteCursor. It calls a Java
method that generates the SQL for the download delete cursor.

public String downloadDeleteCursor(Timestamp ts,
String user)
{ return(getDownloadCursor(_curUser, _curTable)); }

.NET example The following stored procedure call registers a .NET method called
DownloadDeleteCursor as the script for the download_delete_cursor cursor
event when synchronizing the script version ver1 and the table table1. This
syntax is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’download_delete_cursor’,
’TestScripts.Test.DownloadDeleteCursor’

)

Following is the C# signature for the call DownloadDeleteCursor.

137

public string DownloadDeleteCursor(
DateTime timestamp,
string user)

138

Chapter 3. Synchronization Events

download_statistics connection event
Function Tracks synchronization statistics for download operations.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128). The MobiLink user
name as specified in your SYNCHRO-
NIZATION USER definition.

2 warnings INTEGER. The number of warnings
issued.

3 errors INTEGER. The number of errors,
including handled errors, that occurred.

4 fetched_rows INTEGER. The number of rows
fetched by the download_cursor script.

5 deleted_rows INTEGER. The number of rows
fetched by the download_deletes
script.

6 filtered_rows INTEGER. The number of rows from
(5) actually sent to the remote. This
reflects download filtering of uploaded
values.

7 bytes INTEGER. The number of bytes sent
to the remote as the download.

Default action None.

Description The download_statistics event allows you to gather, for any user, statistics on
downloads. The download_statistics connection script is called just prior to
the commit at the end of the download transaction.

139

Note:
Depending on the command line, not all warnings or errors are logged, so
the warnings and errors counts may be more than the number of warnings
or errors logged.

See also “download_statistics table event” on page 142

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“synchronization_statistics table event” on page 205

“time_statistics connection event” on page 207

“time_statistics table event” on page 209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

INSERT INTO download_audit (id, user_name, warnings,
errors, deleted_rows, fetched_rows, download_rows, bytes)
VALUES (d_audit.nextval, ?,?,?,?,?,?,?)

Once vital statistics are inserted into the audit table, you may use these
statistics to monitor your synchronizations and make optimizations where
applicable.

Java example The following stored procedure call registers a Java method called
downloadStatisticsConnection as the script for the download_statistics event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’, ’download_
statistics’,
’ExamplePackage.ExampleClass.downloadStatisticsConnecti
on’)

Following is the sample Java method downloadStatisticsConnection. It
prints the number of fetched rows to the MobiLink output log.

public String downloadStatisticsConnection(
String user,
int warnings,
int errors,
int fetchedRows,
int deletedRows,
int bytes)

{ java.lang.System.out.println("download connection
stats fetchedRows: " + fetchedRows);
return(null); }

140

Chapter 3. Synchronization Events

.NET example The following stored procedure call registers a .NET method called
DownloadStats as the script for the download_statistics connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’download_statistics’,
’TestScripts.Test.DownloadStats’

)

Following is the C# signature for the call DownloadStats.

public void DownloadStats(
string user,
int warnings,
int errors,
int deletedRows,
int fetchedRows,
int downloadRows,
int bytes)

141

download_statistics table event
Function Tracks synchronization statistics for download operations by table.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128). This is the MobiLink
user name as specified in your SYNCHRO-
NIZATION USER definition.

2 table VARCHAR(128). The table name.

3 warnings INTEGER. The number of warnings issued.

4 errors INTEGER. The number of errors, including
handled errors, that occurred.

5 fetched_rows INTEGER. The number of rows fetched by
the download_cursor script.

6 deleted_rows INTEGER. The number of rows fetched by
the download_deletes script.

7 filtered_rows INTEGER. The number of rows from (6)
actually sent to the remote. This reflects
download filtering of uploaded values.

8 bytes INTEGER. The number of bytes sent to the
remote as the download.

Default action None.

Description The download_statistics event allows you to gather, for any user and table,
statistics on downloads as they apply to that table. The download_statistics
table script is called just prior to the commit at the end of the download
transaction.

See also “download_statistics connection event” on page 139

142

Chapter 3. Synchronization Events

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“synchronization_statistics table event” on page 205

“time_statistics connection event” on page 207

“time_statistics table event” on page 209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

INSERT INTO download_audit (
id, user_name, table, warnings, errors,
deleted_rows, fetched_rows, download_rows, bytes)

VALUES (d_audit.nextval,?,?,?,?,?,?,?,?)

Once vital statistics are inserted into the audit table, you may use these
statistics to monitor your synchronizations and make optimizations where
applicable.

Java example The following stored procedure call registers a Java method called
downloadStatisticsTable as the script for the download_statistics table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’download_statistics’,
’ExamplePackage.ExampleClass.downloadStatisticsTable’)

Following is the sample Java method downloadStatisticsTable. It prints
some statistics for this table to the MobiLink output log.

public String downloadStatisticsTable(String user,
String table, int warnings, int errors, int fetchedRows,
int deletedRows, int bytes)
{ java.lang.System.out.println("download table stats "

+ "table: " + table + "bytes: " + bytes);
return(null); }

.NET example The following stored procedure call registers a .NET method called
DownloadTableStats as the script for the download_statistics table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

143

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’download_statistics’,
’TestScripts.Test.DownloadTableStats’

)

Following is the C# signature for the call DownloadTableStats.

public void DownloadTableStats(
string user,
string table,
int warnings,
int errors,
int deletedRows,
int fetchedRows,
int downloadRows,
int bytes)

144

Chapter 3. Synchronization Events

end_connection connection event
Function Processes any statements just before the MobiLink synchronization server

closes a connection with the consolidated database server, either in
preparation to shut down or when a connection is removed from the
connection pool.

This script is normally used to complete any actions started by the
begin_connection script and free any resources acquired by it.

Parameters None.

Default action None.

Description You can use the end_connection script to perform an action of your choice
just prior to closing of a connection between the MobiLink synchronization
server and the consolidated database server.

See also “begin_connection connection event” on page 107

SQL example The following Adaptive Server Anywhere SQL script drops a temporary
table that was created by the begin_connection script. Strictly speaking, this
table doesn’t need to be dropped explicitly, since ASA will do this
automatically when the connection is destroyed. Whether or not a temporary
table needs to be dropped explicitly depends on your consolidated database
type.

call ml_add_connection_script(
’version 1.0’,
’end_connection’,
’drop table #sync_info’)

Java example The following stored procedure call registers a Java method called
endConnection as the script for the end_connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’end_connection’,
’ExamplePackage.ExampleClass.endConnection’)

Following is the sample Java method endConnection. It prints a message to
the MobiLink output log. (This might be useful at development time but
would slow down a production server.)

public String endConnection()
{ java.lang.System.out.println("ending connection");

return(null); }

145

.NET example The following stored procedure call registers a .NET method called
EndConnection as the script for the end_connection connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’end_connection’,
’TestScripts.Test.EndConnection’

)

Following is the C# signature for the call EndConnection.

public void EndConnection()

146

Chapter 3. Synchronization Events

end_download connection event
Function Processes any statements just after the MobiLink synchronization server

concludes preparation of the download data.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script after all rows have
been downloaded and, if expecting a download acknowledgement,
confirmation of receipt has been received. Download information is
processed in a single transaction. The execution of this script is the last non
statistical action in this transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “begin_download connection event” on page 110

SQL example The following example shows one possible use of an end_download
connection script.

DELETE FROM ULEmpCust ec
WHERE ? IS NOT NULL

AND ec.emp_id = ? AND action = ’’D’’

Java example The following stored procedure call registers a Java method called
endDownloadConnection as the script for the end_download connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’end_download’,
’ExamplePackage.ExampleClass.endDownloadConnection’)

147

Following is the sample Java method endDownloadConnection. It uses the
current MobiLink connection (saved earlier) to perform an update before the
download ends.

public String endDownloadConnection(
Timestamp ts,
String user)

throws java.sql.SQLException
{ String del_sql = "DELETE FROM ULEmpCust ec " +

"WHERE ec.emp_id = ’" + user + "’ " +
"AND action = ’D’ ";
execUpdate(_syncConn, del_sql);
return(null);

}

.NET example The following stored procedure call registers a .NET method called
EndDownload as the script for the end_download connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’end_download’,
’TestScripts.Test.EndDownload’)

Following is the C# signature for the call EndDownload.

public void EndDownload(
DateTime timestamp,
string user)

148

Chapter 3. Synchronization Events

end_download table event
Function Processes statements related to a specific table just after the MobiLink

synchronization server concludes preparing the stream of downloaded
inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script after all rows have
been downloaded and confirmation of receipt has been received. The
download information is prepared in a separate transaction. The execution of
this script is the last table-specific, non-statistical action in this transaction.

You can have one end_download script for each table in the remote database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “begin_download table event” on page 112

“end_download connection event” on page 147

SQL example The end_download table event is used to perform whatever steps you need
performed after downloading a particular table. The following Adaptive
Server Anywhere SQL script drops a temporary table created by a
prepare_for_download script to hold download rows for the sales_summary
table.

149

call ml_add_table_script(
’MyCorp 1.0’,
’sales_summary’,
’end_download’,
’drop table #sales_summary_download’)

Java example The following stored procedure call registers a Java method called
endDownloadTable as the script for the end_download table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script (
’ver1’,
’table1’,
’end_download’,
’ExamplePackage.ExampleClass.endDownloadTable’)

Following is the sample Java method endDownloadTable. It resets the
current table member variable.

public String endDownloadTable(Timestamp ts,
String user, String table)
{ _curTable = null;

return(null); }

.NET example The following stored procedure call registers a .NET method called
EndTableDownload as the script for the end_download table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_download’,
’TestScripts.Test.EndTableDownload’

)

Following is the C# signature for the call EndTableDownload.

public void EndTableDownload
DateTime timestamp,
string user,
string table)

150

Chapter 3. Synchronization Events

end_download_deletes table event
Function Processes statements related to a specific table just after preparing a list of

rows to be deleted from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

Default action None.

Description This script is executed immediately after preparing a list of rows to be
deleted from the named table in the remote database.

You can have one end_download_deletes script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “begin_download_deletes table event” on page 114

“end_download connection event” on page 147

“begin_download_rows table event” on page 116

“end_download_rows table event” on page 153

SQL example You may want to mark a row as deleted on the remote database in this event,
using a WHERE clause on the UPDATE that matches the WHERE clause
used for your download_delete_cursor.

151

Call ml_add_table_script(
’version1’,
’Leads’,
’end_download_deletes’,
’UPDATE Leads SET OnRemote = 0

WHERE LastModified > ?
AND Owner = ? AND DeleteFlag=1’);

Java example The following stored procedure call registers a Java method called
endDownloadDeletes as the script for the end_download_deletes table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_download_deletes’,
’ExamplePackage.ExampleClass.endDownloadDeletes’)

Following is the sample Java method endDownloadDeletes. It returns the
end_download_deletes SQL statement. MobiLink will execute this
statement.

public String endDownloadDeletes(Timestamp ts,
String user, String table)
{ return("UPDATE Leads SET OnRemote = 0

WHERE LastModified > ?
AND Owner = ? AND DeleteFlag=1"); }

.NET example The following stored procedure call registers a .NET method called
EndDownloadDeletes as the script for the end_download_deletes table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_download_deletes’,
’TestScripts.Test.EndDownloadDeletes’

)

Following is the C# signature for the call EndDownloadDeletes.

public void EndDownloadDeletes(
DateTime timestamp, string user, string table)

152

Chapter 3. Synchronization Events

end_download_rows table event
Function Processes statements related to a specific table just after preparing a list of

rows to be inserted or updated in the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

3 table VARCHAR(128)

Default action None.

Description This script is executed immediately after preparing the stream of rows to be
inserted or updated in the named table in the remote database.

You can have one end_download_rows script for each table in the remote
database.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “begin_download_rows table event” on page 116

“end_download connection event” on page 147

“end_download_deletes table event” on page 151

“begin_download_deletes table event” on page 114

SQL example You may want to mark a row as successfully downloaded to the remote
database in this event, using a WHERE clause on the UPDATE that matches
the WHERE clause used for your download_cursor.

153

call ml_add_table_script(
’version1’,
’Leads’,
’end_download_rows’,
’UPDATE Leads SET OnRemote = 1 WHERE LastModified > ?

AND Owner = ? AND DownloadFlag=1’);

Java example The following stored procedure call registers a Java method called
endDownloadRows as the script for the end_download_rows table event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_download_rows’,
’ExamplePackage.ExampleClass.endDownloadRows’)

Following is the sample Java method endDownloadRows. It prints a
message to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String endDownloadRows(
Timestamp ts,
String user,
String table)

{ java.lang.System.out.println("Done downloading
inserts and updates for table " + table);
return(null); }

.NET example The following stored procedure call registers a .NET method called
EndDownloadRows as the script for the end_download_rows table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’end_download_rows’,

’TestScripts.Test.EndDownloadRows’
)

Following is the C# signature for the call EndDownloadRows.

public void EndDownloadRows(
DateTime timestamp,
string user,
string table)

154

Chapter 3. Synchronization Events

end_publication connection event
Function Provides useful information about the publication(s) being synchronized.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 generation_number INTEGER. If your deployment does
not use file-based downloads, this
parameter can be ignored. The
default is 1.

2 ml_username VARCHAR(128). If an UltraLite
remote is synchronizing with UL_-
SYNC_ALL, this event is invoked
once with the name ‘unknown’.

3 publication_name VARCHAR(128)

4 last_upload TIMESTAMP. Last successful up-
load.

5 last_download TIMESTAMP. Last successful
download.

Default action None.

Description This event lets you design synchronization logic based on the publications
currently being synchronized. This event is invoked in the same transaction
as the end_synchronization event, and is invoked before the
end_synchronization event. It is invoked once per publication being
synchronized.

If the current synchronization successfully applied an upload, the
last_upload parameter will contain the time this latest upload was applied. If
the current synchronization has a successful download acknowledgement,
the last_download time will contain the time this latest download was
generated. This is the same value that was passed to the download scripts as
the last download timestamp.

Generation number The generation_number parameter is specifically for file-based downloads.

The output value of the generation number is passed from the
begin_publication script to the end_publication script. The meaning of the

155

generation_number depends on whether the current synchronization is being
used to create a download file, or whether the current synchronization has an
upload.

In file-based downloads, generation numbers are used to force an upload
before the download. The number is stored in the download file.

See also “begin_publication connection event” on page 118

“File-Based Downloads”[MobiLink Synchronization User’s Guide,page 117]

SQL example You may want to record the information for each publication being
synchronized:

call ml_add_connection_script(
’version1’,
’end_publication’,
’{call RecordPubEndSync(?, ?, ?, ?, ?)}’);

Java example The following stored procedure call registers a Java method called
endPublication as the script for the begin_publication connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’end_publication’,
’ExamplePackage.ExampleClass.endPublication’)

Following is the sample Java method endPublication. It outputs a message to
the MobiLink log.

public String endPublication(
ianywhere.ml.script.InOutInteger generation_number,
String user,
String pub_name,
Timestamp last_upload,
Timestamp last_download)

{ System.out.println(
"Finished synchronizing publication " + pub_name);

return(null); }

.NET example The following stored procedure call registers a .NET method called EndPub
as the script for the end_publication connection event when synchronizing
the script version ver1. This syntax is for Adaptive Server Anywhere
consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
’end_publication’,
’TestScripts.Test.EndPub’

)

156

Chapter 3. Synchronization Events

Following is the C# signature for EndPub.

public void EndPub(
ref int generation_number,
string user,
string pub_name,
DateTime last_upload,
DateTime last_download)

{
Console.Write(

"Finished synchronizing publication " + pub_name);
}

157

end_synchronization connection event
Function Processes any statements at the time an application disconnects from the

MobiLink synchronization server upon completion of the synchronization
process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR(128)

2 sync_ok INTEGER. This value is 1 for
a successful synchronization
and 0 for an unsuccessful
synchronization.

Default action None.

Description The MobiLink synchronization server executes this script after
synchronization is complete and, if expecting a download acknowledgement,
the MobiLink client has returned confirmation of receipt of the download
stream.

This script is executed within a separate transaction after the download
transaction. It is useful for maintaining statistics.

See also “begin_synchronization connection event” on page 121

“begin_synchronization table event” on page 123

“end_synchronization table event” on page 160

SQL example The following Adaptive Server Anywhere SQL script calls a stored
procedure that records the end time of the synchronization attempt along
with its success or failure status:

call ml_add_connection_script(
’ver1’,
’end_synchronization’,
’call RecordEndOfSyncAttempt(?,?)’)

Java example The following stored procedure call registers a Java method called
endSynchronizationConnection as the script for the end_synchronization
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

158

Chapter 3. Synchronization Events

call ml_add_java_connection_script(
’ver1’,
’end_synchronization’,
’ExamplePackage.ExampleClass.endSynchronizationConnection’

)

Following is the content of the sample Java method
endSynchronizationConnection. It uses the JDBC connection to execute an
update.

public String endSynchronizationConnection(
String user)

throws java.sql.SQLException
{ execUpdate(_syncConn, "UPDATE sync_count set cnt =

count + 1 where user_id = ’" + user + "’ ");
return(null); }

.NET example The following stored procedure call registers a .NET method called EndSync
as the script for the end_synchronization connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’end_synchronization’,
’TestScripts.Test.EndSync’

)

Following is the C# signature for the call EndSync.

public void EndSync(string user)

159

end_synchronization table event
Function Processes statements related to a specific table at the time an application

disconnects from the MobiLink synchronization server upon completion of
the synchronization process.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 sync_ok INTEGER. This value is 1 for
a successful synchronization
and 0 for an unsuccessful
synchronization.

Default action None.

Description The MobiLink synchronization server executes this script after an
application has synchronized and is about to disconnect from the MobiLink
synchronization server, and before the connection level script of the same
name.

You can have one end_synchronization script for each table in the remote
database.

See also “begin_synchronization table event” on page 123

“end_synchronization connection event” on page 158

“end_synchronization table event” on page 160

SQL example The following Adaptive Server Anywhere SQL script drops a temporary
table created by the begin_synchronization script:

call ml_add_table_script(
’ver1’,
’sales_order’,
’end_synchronization’,
’drop table #sales_order’)

160

Chapter 3. Synchronization Events

Java example The following stored procedure call registers a Java method called
endSynchronizationTable as the script for the end_synchronization table
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_synchronization’,
’ExamplePackage.ExampleClass.endSynchronizationTable’)

Following is the sample Java method endSynchronizationTable. It takes no
action. MobiLink interprets NULL as no script.

public String endSynchronizationTable(String user,
String table)
{ return(null); }

.NET example The following stored procedure call registers a .NET method called
EndTableSync as the script for the end_synchronization table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’, ’table1’, ’end_synchronization’,
’TestScripts.Test.EndTableSync’

)

Following is the C# signature for the call EndTableSync.

public void EndTableSync(string user, string table)

161

end_upload connection event
Function Processes any statements just after the MobiLink synchronization server

concludes processing uploaded inserts, updates, and deletes.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script as the last step in
the processing of uploaded information. Upload information is processed in
a single transaction. The execution of this script is the last action in this
transaction before statistical scripts.

See also “begin_upload connection event” on page 125

“end_upload table event” on page 164

SQL example The following statements define a stored procedure and an end_upload script
suited to the CustDB sample application from an Oracle installation.

CREATE OR REPLACE PROCEDURE ULCustomerIDPool_maintain(
SyncUserID IN integer)

AS
pool_count INTEGER;
pool_max INTEGER;

BEGIN
-- Determine how many ids to add to the pool

SELECT COUNT(*)
INTO pool_count
FROM ULCustomerIDPool
WHERE pool_emp_id = SyncUserID;

-- Determine the current Customer id max

SELECT MAX(pool_cust_id)
INTO pool_max
FROM ULCustomerIDPool;

-- Top up the pool with new ids

162

Chapter 3. Synchronization Events

WHILE pool_count < 20 LOOP
pool_max := pool_max + 1;

INSERT INTO ULCustomerIDPool(
pool_cust_id, pool_emp_id)

VALUES (pool_max, SyncUserID);
pool_count := pool_count + 1;

END LOOP;
END;

ml_add_table_script(
’custdb’,
’ULCustomerIDPool’,
’end_upload’, -

ULCustomerIDPool_maintain(?);)

Java example The following stored procedure call registers a Java method called
endUploadConnection as the script for the end_upload connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’end_upload’,
’ExamplePackage.ExampleClass.endUploadConnection’)

Following is the sample Java method endUploadConnection. It calls a
method to perform operations on the database.

public String endUploadConnection(String user)
{ // clean up new and old tables

Iterator two_iter = _tables_with_ops.iterator();
while(two_iter.hasNext())
{ TableInfo cur_table = (TableInfo)two_iter.next();

dumpTableOps(_sync_conn, cur_table); }
_tables_with_ops.clear(); }

.NET example The following stored procedure call registers a .NET method called
EndUpload as the script for the end_upload connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’end_upload’,
’TestScripts.Test.EndUpload’

)

Following is the C# signature for the call EndUpload.

public void EndUpload(string user)

163

end_upload table event
Function Processes statements related to a specific table just after the MobiLink

synchronization server concludes processing the stream of uploaded inserts,
updates, and deletions.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script as the last step in
the processing of uploaded information. Upload information is processed in
a separate transaction. The execution of this script is the last table-specific
action in this transaction.

You can have one end_upload script for each table in the remote database.

See also “begin_upload table event” on page 127

“end_upload connection event” on page 162

SQL example The event can be used to clean up anything that may still exist in the
database after the upload processing is done for a particular table.

Call ml_add_table_script(
’version1’,
’Leads’,
’end_upload’,
’DELETE FROM T_Leads’);

Java example The following stored procedure call registers a Java method called
endUploadTable as the script for the end_upload table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

164

Chapter 3. Synchronization Events

call ml_add_java_table_script(
’ver1’,
’table1’
’end_upload’,
’ExamplePackage.ExampleClass.endUploadTable’)

Following is the sample Java method endUploadTable. It generates a delete
for a table with a name related to the passing-in table name.

public String endUploadTable(String user,
String table)
{ return("DELETE from ’" + table + "_temp’"); }

.NET example The following stored procedure call registers a .NET method called
EndTableUpload as the script for the end_upload table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_upload’,
’TestScripts.Test.EndTableUpload’

)

Following is the C# signature for the call EndTableUpload.

public void EndTableUpload(
string user, string table)

The following C# example moves rows inserted into a temporary table into
the table passed into the script.

public void EndUpload(string user, string table)
{

DBCommand stmt = curConn.CreateCommand();

// move the uploaded rows to the destination table
stmt.CommandText = "INSERT INTO "

+ table
+ " SELECT * FROM dnet_ul_temp";

stmt.ExecuteNonQuery();
stmt.Close();

}

165

end_upload_deletes table event
Function Processes statements related to a specific table just after applying deletes

uploaded from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description This script is run immediately after applying the changes that result from
rows deleted in the remote table named in the second parameter.

You can have one end_upload_deletes script for each table in the remote
database.

See also “begin_upload_deletes table event” on page 129

SQL example You can use this event to process rows deleted during the upload stream on
an intermediate table. You can compare the rows in the base table with rows
in the intermediate table and decide what to do with the deleted row.

Call ml_add_table_script(
’version1’,
’Leads’,
’end_uploads_deletes’,
’call EndUploadDeletesLeads()’);

Create procedure EndUploadDeletesLeads ()
Begin

FOR names AS curs CURSOR FOR
SELECT LeadID

FROM Leads
WHERE LeadID NOT IN (SELECT LeadID FROM T_Leads);

DO
CALL decide_what_to_do(LeadID);

END FOR;
end

Java example The following stored procedure call registers a Java method called
endUploadDeletes as the script for the end_upload_deletes table event when

166

Chapter 3. Synchronization Events

synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_upload_deletes’,
’ExamplePackage.ExampleClass.endUploadDeletes’)

Following is the sample Java method a endUploadDeletes. It calls a Java
method that manipulates the database.

public String endUploadDeletes(String user,
String table)

throws java.sql.SQLException
{ processUploadedDeletes(_syncConn, table);

return(null); }

.NET example The following stored procedure call registers a .NET method called
EndUploadDeletes as the script for the end_upload_deletes table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_upload_deletes’,
’TestScripts.Test.EndUploadDeletes’

)

Following is the C# signature for the call EndUploadDeletes.

public void EndUploadDeletes(string user, string table)

167

end_upload_rows table event
Function Processes statements related to a specific table just after applying uploaded

inserts and updates from the specified table in the remote database.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description Uploaded information can require inserting or updating rows in the
consolidated database. This script is run immediately after applying the
changes that result from modifications to the remote table named in the
second parameter.

You can have one end_upload_rows script for each table in the remote
database.

See also “begin_upload_rows table event” on page 131

SQL example You use this event to process rows deleted during the upload stream on an
intermediate table. You can compare the rows in the base table with the rows
in the intermediate table and decide what to do with the deleted row.

Call ml_add_table_script(
’version1’,
’Leads’,
’end_uploads_deletes’,
’call EndUploadDeletesLeads()’);

Create procedure EndUploadDeletesLeads ()
Begin

FOR names AS curs CURSOR FOR
SELECT LeadID FROM Leads

WHERE LeadID NOT IN (select LeadID from T_Leads);
DO

CALL decide_what_to_do(LeadID);
END FOR;

end

168

Chapter 3. Synchronization Events

Java example The following stored procedure call registers a Java method called
endUploadRows as the script for the end_upload_rows table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’end_upload_rows’,
’ExamplePackage.ExampleClass.endUploadRows’)

Following is the sample Java method endUploadRows. It calls a Java
method that manipulates the database.

public String endUploadRows(String user,
String table)

throws java.sql.SQLException
{ processUploadedRows(_syncConn, table);

return(null); }

.NET example The following stored procedure call registers a .NET method called
EndUploadRows as the script for the end_upload_rows table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’end_upload_rows’,
’TestScripts.Test.EndUploadRows’

)

Following is the C# signature for the call EndUploadRows.

public void EndUploadRows(
string user,
string table)

169

example_upload_cursor table event
Function Provides an event that the MobiLink synchronization server does not use

during processing of the upload stream to handle rows inserted into the
remote database. The event is not called.

Parameters

Item Parameter

1 column 1

2 column 2

.

Description The statement based example_upload_cursor script performs direct inserts
of column values identical to those specified in the example_upload_cursor
statement. The example_upload_cursor event is not called by MobiLink.

SQL example The script is not called. If it were called, it would insert the values into a
table named Customer in the consolidated database. The final column of the
table identifies the Customer as active. The final column does not appear in
the remote database.

SELECT cust_id, name, rep_id
FROM customer
WHERE cust_id=?

170

Chapter 3. Synchronization Events

example_upload_delete table event
Function Processes the upload stream to handle rows deleted from the remote

database. The script is not called by MobiLink.

Parameters

Item Parameter

1 column 1

2 column 2

.

Description The statement based example_upload_delete script handles rows that are
deleted in the remote database. The action taken at the consolidated database
can be a DELETE statement, but need not be.

See also “upload_delete table event” on page 214

SQL example This example marks customers that are deleted from the remote database as
inactive.

UPDATE Customer
SET active = 0
WHERE cust_id=?

171

example_upload_insert table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows inserted into the remote
database.

Parameters

Item Parameter

1 column 1

2 column 2

.

Description The statement based example_upload_insert script performs direct inserts of
column values identical to those specified in the upload_insert statement.

The example_upload_insert event is not called.

See also “upload_insert table event” on page 218

SQL example The script is not called. But if called, it would insert the values into a table
named Customer in the consolidated database. The final column of the table
identifies the Customer as active. The final column does not appear in the
remote database.

INSERT INTO Customer(cust_id, name, rep_id)
VALUES (?, ?, ?)

172

Chapter 3. Synchronization Events

example_upload_update table event
Function An example event for the upload stream to handle rows updated at the

remote database. The example script is not called by MobiLink but is
identical in form to the upload_update event.

Parameters

Clause Parameters

SET column 1

column 2

. . .

WHERE primary key 1

primary key 2

. . .

Description You create an example_upload_update event script by using the option -za in
the dbmlsync command line.

See also “upload_update table event” on page 231

SQL example This example handles updates made to the Customer table in the remote
database. The script updates the values in a table named Customer in the
consolidated database. Note: The script is never called and is only an
example script.

UPDATE Customer
SET name=?, rep_id=?
WHERE cust_id=?

173

handle_error connection event
Function Executed whenever the MobiLink synchronization server encounters a SQL

error.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This is an IN-
OUT parameter.

2 error_code INTEGER

3 error_message TEXT

4 ml_username VARCHAR(128)

5 table VARCHAR(128). If the
script is not a table script, the
table name is NULL.

Default action When no handle_error script is defined or this script causes an error, the
default action code is 3000: rollback the current transaction and cancel the
current synchronization.

Description The MobiLink synchronization server sends in the current action_code.
Initially, this is set to 3000 for each set of errors caused by a single SQL
operation. Usually, there is only one error per SQL operation, but there may
be more. This handle_error script is called once per error in the set. The
action code passed into the first error is 3000. Subsequent calls are passed in
the action code returned by the previous call. MobiLink will use the
numerically highest value returned from multiple calls.

You can modify the action code in the script, and return a value instructing
MobiLink how to proceed. The action code parameter takes one of the
following values:

♦ 1000 Skip the current row and continue processing.

♦ 3000 Rollback the current transaction and cancel the current

174

Chapter 3. Synchronization Events

synchronization. This is the default action code, and is used when no
handle_error script is defined or this script causes an error.

♦ 4000 Rollback the current transaction, cancel the synchronization, and
shut down the MobiLink synchronization server.

SQL scripts for the handle_error event must be implemented as stored
procedures.

The MobiLink synchronization server executes this script whenever it
encounters an error during the synchronization process. The error codes and
message allow you to identify the nature of the error. If the error happened
as part of synchronization, the user name is supplied. Otherwise, this value
is NULL.

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the client application. This name may or may not have a direct
counterpart in the consolidated database, depending upon the design of the
synchronization system.

The action code tells the MobiLink synchronization server what to do next.
Before it calls this script, the MobiLink synchronization server sets the
action code to a default value, which depends upon the severity of the error.
Your script may modify this value. Your script must return or set an action
code.

You can return a value from the handle_error script in two ways.

♦ Pass the action parameter to an OUTPUT parameter of a procedure:

CALL my_handle_error(?, ?, ?, ?, ?)

♦ Set the action code via a procedure or function return value:

? = CALL my_handle_error(?, ?, ?, ?)

Most DBMSs use the RETURN statement to set the return value from a
procedure or function.

The CustDB sample application contains error handlers for various
database-management systems.

See also “report_error connection event” on page 194

“report_odbc_error connection event” on page 196

“handle_odbc_error connection event” on page 177

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It allows your application to ignore redundant inserts.

175

CREATE PROCEDURE ULHandleError(
INOUT action integer,
IN error_code integer,
IN error_message varchar(1000),
IN user_name varchar(128),
IN table_name varchar(128))

BEGIN
-- -196 is SQLE_INDEX_NOT_UNIQUE
-- -194 is SQLE_INVALID_FOREIGN_KEY

if error_code = -196 or error_code = -194 then
-- ignore the error and keep going
SET action = 1000;

else
-- abort the synchronization
SET action = 3000;

end if;
END

Java example The following stored procedure call registers a Java method called
handleError as the script for the handle_error connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’handle_error’,
’ExamplePackage.ExampleClass.handleError’)

Following is the sample Java method handleError. It processes an error based
on the data that is passed in. It also determines the resulting error code.

public String handleError(
ianywhere.ml.script.InOutInteger actionCode,
int errorCode,
String errorMessage,
String user,
String table)

{ int new_ac;
if(user == null)
{ new_ac = handleNonSyncError(errorCode,

errorMessage); }
else if(table == null)

{ new_ac = handleConnectionError(errorCode,
errorMessage, user); }

else
{ new_ac = handleTableError(errorCode,

errorMessage, user, table); }
// keep the most serious action code
if(actionCode.getValue() < new_ac)
{ actionCode.setValue(new_ac); }
return(null); }

176

Chapter 3. Synchronization Events

handle_odbc_error connection event
Function Executed whenever the MobiLink synchronization server encounters an

error triggered by the ODBC Driver Manager.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This is an
INOUT parameter.

2 ODBC_state VARCHAR(5)

3 error_message TEXT

4 ml_username VARCHAR(128)

5 table VARCHAR(128)

Default action The MobiLink synchronization server selects a default action code. You can
modify the action code in the script, and return a value instructing MobiLink
how to proceed. The action code parameter takes one of the following
values:

♦ 1000 Skip the current row and continue processing.

♦ 3000 Rollback the current transaction and cancel the current
synchronization. This is the default action code, and is used when no
handle_error script is defined or this script causes an error.

♦ 4000 Rollback the current transaction, cancel the synchronization, and
shut down the MobiLink synchronization server.

Description The MobiLink synchronization server executes this script whenever it
encounters an error flagged by the ODBC Driver Manager during the
synchronization process. The error codes allow you to identify the nature of
the error.

The action code tells the MobiLink synchronization server what to do next.
Before it calls this script, the MobiLink synchronization server sets the
action code to a default value, which depends upon the severity of the error.

177

Your script may modify this value. Your script must return or set an action
code.

The handle_odbc_error script is called after the handle_error and
report_error scripts, and before the report_odbc_error script.

When only one, but not both, error-handling script is defined, the return
value from that script decides error behavior. When both error-handling
scripts are defined, the MobiLink synchronization server uses the
numerically highest action code. If both handle_error and
handle_ODBC_error are defined, MobiLink uses the numerically highest
action code returned from all calls.

See also “handle_error connection event” on page 174

“report_error connection event” on page 194

“report_odbc_error connection event” on page 196

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It allows your application to ignore ODBC integrity
constraint violations.

call ml_add_connection_script(
’ver1’,
’handle_odbc_error’,
’call HandleODBCError(?, ?, ?, ?, ?)’)

CREATE PROCEDURE HandleODBCError(INOUT action integer,
IN odbc_state varchar(5), IN error_message varchar(1000),
IN user_name varchar(128), IN table_name varchar(128))
BEGIN

if odbc_state = ’23000’ then
-- ignore the error and keep going
SET action = 1000;

else
-- abort the synchronization
SET action = 3000;

end if;
END

Java example The following stored procedure call registers a Java method called
handleODBCError as the script for the handle_odbc_error event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(’ver1’, ’handle_odbc_error’,
’ExamplePackage.ExampleClass.handleODBCError’)

Following is the sample Java method handleODBCError. It processes an
error based on the data that is passed in. It also determines the resulting error
code.

178

Chapter 3. Synchronization Events

public String handleODBCError(
ianywhere.ml.script.InOutInteger actionCode,
String ODBCState,
String errorMessage,
String user,
String table)

{ int new_ac;
if(user == null)
{ new_ac = handleNonSyncError(ODBCState,

errorMessage); }

else if(table == null)
{ new_ac = handleConnectionError(ODBCState,

errorMessage, user); }
else { new_ac = handleTableError(ODBCState,

errorMessage, user, table); }
// keep the most serious action code
if(actionCode.getValue() < new_ac)
{ actionCode.setValue(new_ac); }
return(null); }

179

modify_last_download_timestamp connection
event
Function The script can be used to modify the last_download timestamp for the

current synchronization.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download_timestamp TIMESTAMP. This is an
INOUT parameter.

2 ml_username VARCHAR(128)

Default action None.

Description Use this script when you want to modify the last download timestamp for the
current synchronization. If this script is defined, the MobiLink
synchronization server calls this script and uses the modified last_download
timestamp as the last_download timestamp passed to the download scripts.

SQL scripts for the modify_last_download_timestamp event must be
implemented as stored procedures. The MobiLink synchronization server
passes in the last_download_timestamp as the first parameter to the stored
procedure, and replaces the timestamp by the first value passed out by the
stored procedure.

For example, if you defined the following download_cursor script, the
MobiLink synchronization server would replace the ? with the value of the
modified last download timestamp before executing the SELECT statement:

SELECT pk, c2, c3 FROM test WHERE last_modified > ?

This script is executed just before the prepare_for_download script, in the
same transaction.

SQL example The following example downloads everything from one day ago, regardless
of whether the databases were synchronized since then.

First, create a procedure for your Adaptive Server Anywhere consolidated
database:

180

Chapter 3. Synchronization Events

CREATE PROCEDURE ModifyLastDownloadTimestamp(
inout last_download_time TIMESTAMP,
in user_name VARCHAR(128))

BEGIN
SELECT dateadd(day, -1, last_download_time)
INTO last_download_time

END

Second, install the script into your Adaptive Server Anywhere consolidated
database:

call ml_add_connection_script(
’modify_ts_test’,
’modify_last_download_timestamp’,
’call ModifyLastDownloadTimestamp (?, ?)’)

Java example The following stored procedure call registers a Java method called
modifyLastDownloadTimestamp as the script for the
modify_last_download_timestamp connection event when synchronizing the
script version ver1. This syntax is for Adaptive Server Anywhere
consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’modify_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyLastDownloadTimestamp’)

Following is the sample Java method modifyLastDownloadTimestamp. It
prints the current and new timestamp and modifies the timestamp that is
passed in.

public String modifyLastDownloadTimestamp(
Timestamp last_download_time,
String user_name)

{ java.lang.System.out.println("old date: " +
last_download_time.toString());
last_download_time.setDate(
last_download_time.getDate() -1);
java.lang.System.out.println("new date: " +
last_download_time.toString());
return(null); }

181

modify_next_last_download_timestamp
connection event
Function The script can be used to modify the last_download timestamp for the next

synchronization.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 download_timestamp TIMESTAMP. This is an
INOUT parameter.

2 last_download_timestamp TIMESTAMP

3 ml_username VARCHAR(128)

Default action None.

Description Use this script when you want to modify the last download timestamp for the
next synchronization. If this script is defined, the MobiLink synchronization
server calls this script and sends the next last download timestamp down to
the remote, which will send it as part of the next synchronization.

SQL scripts for the modify_next_last_download_timestamp event must be
implemented as stored procedures. The MobiLink synchronization server
passes in the download_timestamp as the first parameter to the stored
procedure, and replaces the timestamp by the first value passed out by the
stored procedure.

You can use this script to modify the download timestamp that the MobiLink
synchronization server sends to the MobiLink client. If the client is
dbmlsync, the timestamp is stored in the SYSSYNC system table.

This script is executed in the download transaction, after downloading user
tables.

SQL example The following example shows one application of this script. First, create a
procedure for your Adaptive Server Anywhere consolidated database:

182

Chapter 3. Synchronization Events

CREATE PROCEDURE ModifyNextDownloadTimestamp(
inout download_timestamp TIMESTAMP ,
in last_download TIMESTAMP ,
in user_name VARCHAR(128))
BEGIN

SELECT dateadd(hour, -1, download_timestamp)
INTO download_timestamp

END

Second, install the script into your Adaptive Server Anywhere consolidated
database:

call ml_add_connection_script(
’modify_ts_test’,
’modify_next_last_download_timestamp’,
’call ModifyNextDownloadTimestamp (?, ?, ?)’)

Java example The following stored procedure call registers a Java method called
modifyNextDownloadTimestamp as the script for the
modify_next_last_download_timestamp connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’modify_next_last_download_timestamp’,
’ExamplePackage.ExampleClass.modifyNextDownloadTimestamp’)

Following is the sample Java method modifyNextDownloadTimestamp. It
sets the download timestamp back an hour.

public String modifyNextDownloadTimestamp(
Timestamp download_timestamp,
Timestamp last_download,
String user_name)

{ download_timestamp.setHours(
download_timestamp.getHours() -1);
return(null); }

183

modify_user connection event
Function Provide the MobiLink user name.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR(128). This is an
INOUT parameter.

Default action None.

Description The MobiLink server provides the user name as a parameter when it calls
scripts; the user name is sent by the MobiLink client. In some cases, you
may want to have an alternate user name. This script allows you to modify
the user name used in calling MobiLink scripts.

The ml_username parameter must be long enough to hold the user name.

SQL scripts for the modify_last_download_timestamp event must be
implemented as stored procedures.

See also “authenticate_user connection event” on page 100

“authenticate_user_hashed connection event” on page 104

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It maps a remote database user name to the id of the
user using the device, by using a mapping table called user_device. This
technique can be used when the same person has multiple remotes (such as a
PDA and a laptop) requiring the same synchronization logic (based on the
user’s name or id).

call ml_add_connection_script(
’ver1’,
’modify_user’,
’call ModifyUser(?)’)

CREATE PROCEDURE ModifyUser(INOUT u_name varchar(128))
BEGIN

select user_name
into u_name
from user_device
where device_name = u_name

END

Java example The following stored procedure call registers a Java method called

184

Chapter 3. Synchronization Events

modifyUser as the script for the modify_user connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’modify_user’,
’ExamplePackage.ExampleClass.modifyUser’)

Following is the sample Java method modifyUser. It gets the user ID from
the database and then uses it to set the user name.

public void ModifyUser(InOutString io_user_name)
throws SQLException

{ Statement uid_select = curConn.createStatement();
ResultSet uid_result = uid_select.executeQuery(
"select rep_id from SalesRep where name = ’" +

io_user_name.getValue() + "’ ");
uid_result.next();
io_user_name.setValue(
java.lang.Integer.toString(uid_result.getInt(1))
uid_result.close();
uid_select.close();
return; }

.NET example The following stored procedure call registers a .NET method called
ModUser as the script for the modify_user connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’modify_user’,
’TestScripts.Test.ModUser’

)

Following is the C# signature for the call ModUser.

public void ModUser(string user)

185

new_row_cursor cursor event (deprecated)
Function Defines the insert cursor that the MobiLink synchronization server uses to

insert the new values of rows that were updated in the remote database, but
conflict with values presently in the consolidated database.

Use statement-based events for uploads
This script has been deprecated. Use the statement-based event upload_-
new_row_insert instead. Support for the new_row_cursor event is likely to
be removed from future releases.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server. Also used to input an INSERT operation
in forced conflict mode.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database, using the upload_cursor. If the old uploaded values do not match
the current value in the consolidated database, the row conflicts. Instead of
updating the row, the MobiLink synchronization server inserts both old and
new values into the consolidated database using the old_row_cursor and the
new_row_cursor, respectively.

The MobiLink synchronization server uses a cursor to insert the new
uploaded values from conflicting rows into the consolidated database. This
script contains the SELECT statement used to define this cursor.

It is common practice to use temporary tables to store the old and new
versions of conflicting rows. You can create these temporary tables in an
earlier script.

You can have one new_row_cursor script for each table in the remote
database.

Normally, the columns in the select list must match those in the client table

186

Chapter 3. Synchronization Events

in both order and type. However, the MobiLink synchronization server
permits you to add one extra column. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, then proceeds to insert the new row values using the remaining
columns, as usual.

Note
The script is ignored if any of the following scripts are defined for the
same table: upload_insert, upload_update, upload_delete, upload_fetch,
upload_new_row_insert, upload_old_row_insert.

See also “upload_new_row_insert table event” on page 220

“Handling conflicts”[MobiLink Synchronization User’s Guide,page 90]

“resolve_conflict table event” on page 199

SQL example The following SELECT statement defines anew_row_cursorscript suited to
the CustDB sample application.

SELECT order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status

FROM ULNewOrder FOR update

The primary key of the ULOrder table is order_id.

The following SELECT statement could instead be used for the same client
table. This variation includes the permitted one extra row. The MobiLink
synchronization server automatically stores the user name in the first
column.

SELECT user_name, order_id, cust_id, prod_id,
emp_id, disc, quant, notes, status

FROM ULNewOrder FOR update

Java example This script must return valid SQL.

The following stored procedure call registers a Java method called
newRowCursor as the script for the new_row_cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’new_row_cursor’,
’ExamplePackage.ExampleClass.newRowCursor’)

Following is the sample Java method newRowCursor. It dynamically
generates a new row cursor statement by calling a Java method.

187

public String newRowCursor()
{ return(getRowCursor (_curTable)); }

188

Chapter 3. Synchronization Events

old_row_cursor cursor event (deprecated)
Function Defines the cursor that the MobiLink synchronization server uses to insert

the old values of rows that were updated in the remote database, but that
conflict with values presently in the consolidated database. The event is also
used to insert the values of deleted rows when in forced conflict mode.

Use statement-based events for uploads
This script has been deprecated. Use the statement-based event upload_-
old_row_insert instead. Support for the old_row_cursor event is likely to
be removed from future releases.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Item Parameter Description

1 ml_username VARCHAR(128)

Default action None.

Description When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database, using the upload_cursor cursor event. If the old uploaded values
do not match the current values in the consolidated database, the row
conflicts. Instead of updating the row, the MobiLink synchronization server
inserts both old and new values into the consolidated database using the
old_row_cursor event and the new_row_cursor event.

It is common practice to use temporary tables to store the old and new
versions of conflicting rows. In Adaptive Server Anywhere, you can create
these tables in an earlier script. Some non-ASA consolidated databases
support temporary tables, but they usually differ significantly from the
temporary tables offered by ASA. Consult your DBMS documentation for
details. An alternative to a temporary table is a base table with an extra
column for the MobiLink user name. This effectively partitions the rows of
the base table between concurrent synchronizations.

The MobiLink synchronization server uses a cursor to insert the old
uploaded values from conflicting rows into the consolidated database. This

189

script contains the SELECT statement used to define this cursor.

You can have one old_row_cursor script for each table in the remote
database.

Normally, the columns in the SELECT list must match those in the client
table in both order and type. However, the MobiLink synchronization server
permits you to add one extra column. If you do so, the MobiLink
synchronization server automatically inserts the user name into the first
column, then proceeds to insert the old row values using the remaining
columns, as usual.

See also “upload_old_row_insert table event” on page 222

“Handling conflicts”[MobiLink Synchronization User’s Guide,page 90]

“resolve_conflict table event” on page 199

SQL example The following SELECT statement defines anold_row_cursorscript suited to
the CustDB sample application for an Oracle installation. The primary key
of the ULOrder table is order_id.

SELECT order_id, cust_id, prod_id, emp_id,
disc, quant, notes, status

FROM ULOldOrder

The following SELECT statement could instead be used for the same client
table. This variation includes the permitted one extra row. The MobiLink
synchronization server automatically stores the user name in the first
column.

SELECT user_name, order_id, cust_id, prod_id,
emp_id, disc, quant, notes, status

FROM ULOldOrder

Java example This script must return valid SQL.

The following stored procedure call registers a Java method called
oldRowCursor as the script for the old_row_cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’old_row_cursor’,
’ExamplePackage.ExampleClass.oldRowCursor’)

Following is the sample Java method oldRowCursor. It dynamically
generates an old row cursor statement by calling a Java method.

190

Chapter 3. Synchronization Events

public String oldRowCursor()
{ return(getRowCursor(_curTable)); }

191

prepare_for_download connection event
Function Processes any required operations between the upload and download

transactions.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 last_download TIMESTAMP

2 ml_username VARCHAR(128)

Default action None.

Description The MobiLink synchronization server executes this script as a separate
transaction, between the upload transaction and the start of the download
transaction.

The last_download timestamp is the value obtained from the consolidated
database during the last successful synchronization immediately prior to the
download phase. If the current user has never synchronized successfully, this
value is set to 1900-01-01.

See also “end_upload connection event” on page 162

“begin_download connection event” on page 110

Java example The following stored procedure call registers a Java method called
prepareForDownload as the script for the prepare_for_download event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’prepare_for_download’,
’ExamplePackage.ExampleClass.prepareForDownload’)

Following is the sample Java method prepareForDownload. It calls a Java
method to modify some rows in the database.

192

Chapter 3. Synchronization Events

public String prepareForDownload(Timestamp ts,
String user)
{ adjustUploadedRows(_syncConn, user);

return(null); }

.NET example The following stored procedure call registers a .NET method called
PrepareForDownload as the script for the prepare_for_download connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(’ver1’,
’prepare_for_download’,
’TestScripts.Test.PrepareForDownload’

)

Following is the C# signature for the call PrepareForDownload.

public void PrepareForDownload(
DateTime timestamp,
string user)

193

report_error connection event
Function Allows you to log errors and to record the actions selected by the

handle_error script.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This parameter is mandatory.

2 error_code INTEGER. This parameter is optional
if none of the following parameters are
specified.

3 error_message TEXT. This parameter is optional if none
of the following parameters are specified.

4 ml_username VARCHAR(128). This parameter is op-
tional if none of the following parameters
are specified.

5 table VARCHAR(128). This parameter is
optional.

Default action None.

Description This script allows you to log errors and to record the actions selected by the
handle_error script. This script is executed after the handle_error event,
whether or not a handle_error script is defined. It is always executed in its
own transaction, on a different database connection than the synchronization
connection (the administrative/information connection).

The error code and error message allow you to identify the nature of the
error. The action code value is returned by the last call to an error handling
script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied.
Otherwise, this value is NULL.

If the error happened while manipulating a particular table, the table name is

194

Chapter 3. Synchronization Events

supplied. Otherwise, this value is NULL. The table name is the name of a
table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the
synchronization system.

See also “handle_error connection event” on page 174

“handle_odbc_error connection event” on page 177

“report_odbc_error connection event” on page 196

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It inserts a row into a table used to record
synchronization errors.

call ml_add_connection_script(
’ver1’,
’report_error’,
’insert into sync_error(

action_code,
error_code,
error_message,
user_name,
table_name)

values(?, ?, ?, ?, ?)’)

Java example The following stored procedure call registers a Java method called
reportError as the script for the report_error connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’report_error,
’ExamplePackage.ExampleClass.reportError’)

Following is the sample Java method reportError. It logs the error to a table
using the JDBC connection provided by MobiLink. It also sets the action
code.

public String reportError(
ianywhere.ml.script.InOutInteger actionCode,
int errorCode, String errorMessage, String user,
String table)

throws java.sql.SQLException
{ // insert error information in a table

JDBCLogError(_syncConn, errorCode, errorMessage,
user, table);
actionCode.setValue(getActionCode(errorCode));
return(null); }

195

report_odbc_error connection event
Function Allows you to log errors and to record the actions selected by the

handle_odbc_error script.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 action_code INTEGER. This parameter is manda-
tory.

2 ODBC_state VARCHAR(5). This parameter is
optional if none of the following pa-
rameters are specified.

3 error_message TEXT. This parameter is optional if
none of the following parameters are
specified.

4 ml_username VARCHAR(128). This parameter
is optional if none of the following
parameters are specified.

5 table VARCHAR(128). This parameter is
optional.

Default action None.

Description This script allows you to log errors and to record the actions selected by the
handle_odbc_error script. This script is executed after the
handle_odbc_error event, whether or not a handle_odbc_error script is
defined. It is always executed in its own transaction, on a different database
connection than the synchronization connection (the
administrative/information connection).

The error code and error message allow you to identify the nature of the
error. The action code value is returned by the last call to an error handling
script for the SQL operation that caused the current error.

If the error happened as part of synchronization, the user name is supplied.

196

Chapter 3. Synchronization Events

Otherwise, this value is NULL.

If the error happened while manipulating a particular table, the table name is
supplied. Otherwise, this value is NULL. The table name is the name of a
table in the remote database. This name may or may not have a direct
counterpart in the consolidated database, depending on the design of the
synchronization system.

See also “handle_error connection event” on page 174

“handle_odbc_error connection event” on page 177

“report_error connection event” on page 194

SQL example The following example works with an Adaptive Server Anywhere
consolidated database. It inserts a row into a table used to record
synchronization errors.

call ml_add_connection_script(
’ver1’,
’report_odbc_error’,
’insert into sync_error(

action_code,
odbc_state,
error_message,
user_name,
table_name)

values(?, ?, ?, ?, ?)’)

Java example The following stored procedure call registers a Java method called
reportODBCError as the script for the report_odbc_error event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’report_odbc_error’,
’ExamplePackage.ExampleClass.reportODBCError’)

Following is the sample Java method reportODBCError. It logs the error to a
table using the JDBC connection provided by MobiLink. It also sets the
action code.

197

public String reportODBCError(
ianywhere.ml.script.InOutInteger actionCode,
String ODBCState,
String errorMessage,
String user,
String table)

throws java.sql.SQLException
{ JDBCLogError(_syncConn, ODBCState, errorMessage,

user, table);
actionCode.setValue(getActionCode(ODBCState));
return(null); }

198

Chapter 3. Synchronization Events

resolve_conflict table event
Function Defines a process for resolving a conflict in a specific table.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. You must use parameter 1 if you want to use parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

Default action None.

Description When a row is updated on a remote database, the MobiLink client saves a
copy of the original values. The client sends both old and new values to the
MobiLink synchronization server.

When the MobiLink synchronization server receives an updated row, it
compares the original values with the present values in the consolidated
database. The comparison is carried out using the upload_fetch script or, if
using cursor-based uploads, the upload_cursor script.

If the old uploaded values do not match the current values in the
consolidated database, the row conflicts. Instead of updating the row, the
MobiLink synchronization server inserts both old and new values into the
consolidated database. The old and new rows are handled using the
upload_old_row_insert and upload_new_row_insert scripts, respectively. If
you are using cursor-based uploads the rows are handled using
old_row_cursor and new_row_cursor, respectively.

Once the values have been inserted, the MobiLink synchronization server
executes the resolve_conflict script. It provides the opportunity to resolve
the conflict. You can implement any scheme of your choosing.

This script is executed once per conflict.

Alternatively, instead of defining the resolve_conflict script, you can resolve
conflicts in a set-oriented fashion by putting conflict-resolution logic either
in your end_upload_rows script or in your end_upload table script.

You can have one resolve_conflict script for each table in the remote

199

database.

See also “upload_old_row_insert table event” on page 222

“upload_new_row_insert table event” on page 220

“upload_update table event” on page 231

“old_row_cursor cursor event (deprecated)” on page 189

“new_row_cursor cursor event (deprecated)” on page 186

“end_upload_rows table event” on page 168

SQL example The following statement defines aresolve_conflictscript suited to the
CustDB sample application for an Oracle installation. It calls a stored
procedureULResolveOrderConflict.

exec ml_add_table_script(
’custdb’, ’ULOrder’, ’resolve_conflict’,
’begin ULResolveOrderConflict();

end; ’)
CREATE OR REPLACE PROCEDURE ULResolveOrderConflict()
AS

new_order_id integer;
new_status varchar(20);
new_notes varchar(50);

BEGIN
-- approval overrides denial
SELECT order_id, status, notes

INTO new_order_id, new_status, new_notes
FROM ULNewOrder

WHERE syncuser_id = SyncUserID;
IF new_status = ’Approved’ THEN

UPDATE ULOrder o
SET o.status = new_status, o.notes =

new_notes
WHERE o.order_id = new_order_id;

END IF;
DELETE FROM ULOldOrder;
DELETE FROM ULNewOrder;

END;

Java example The following stored procedure call registers a Java method called
resolveConflict as the script for the resolve_conflict table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’resolve_conflict’,
’ExamplePackage.ExampleClass.resolveConflict’)

200

Chapter 3. Synchronization Events

Following is the sample Java method resolveConflict. It calls a Java method
that will use the JDBC connection provided by MobiLink. It also sets the
action code.

public String resolveConflict(String user,
String table)

{ resolveRows(_syncConn, user); }

201

synchronization_statistics connection event
Function Tracks synchronization statistics.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 warnings INTEGER

3 errors INTEGER

4 deadlocks INTEGER

5 synchronized_tables INTEGER

6 connection_retries INTEGER

Default action None.

Description The synchronization_statistics event allows you to gather, for any user and
connection, various statistics about the current synchronization. The
synchronization_statistics connection script is called just prior to the commit
at the end of the end synchronization transaction.

See also “download_statistics connection event” on page 139

“download_statistics table event” on page 142

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics table event” on page 205

“time_statistics connection event” on page 207

“time_statistics table event” on page 209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

202

Chapter 3. Synchronization Events

INSERT INTO sync_con_audit(
id, ml_user, warnings, errors,
deadlocks, synchronized_tables,
connection_retries)

VALUES (s_audit.nextval,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics
to monitor your synchronizations and make optimizations where applicable.

Java example The following stored procedure call registers a Java method called
synchronizationStatisticsConnection as the script for the
synchronization_statistics connection event when synchronizing the script
version ver1. This syntax is for Adaptive Server Anywhere consolidated
databases.

call ml_add_java_connection_script(
’ver1’,
’synchronization_statistics’,
’ExamplePackage.ExampleClass.synchronizationStatisticsConnecti

on’
)

Following is the sample Java method synchronizationStatisticsConnection.
It logs some of the statistics to the MobiLink output log. (This might be
useful at development time but would slow down a production server.)

public String synchronizationStatisticsConnection(
String user, int warnings, int errors, int deadlocks,
int synchronizedTables, int connectionRetries)

{ java.lang.System.out.println("synch statistics
number of deadlocks: " + deadlocks ;
return(null); }

.NET example The following stored procedure call registers a .NET method called
SyncStats as the script for the synchronization_statistics connection event
when synchronizing the script version ver1. This syntax is for Adaptive
Server Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’synchronization_statistics’,
’TestScripts.Test.SyncStats’

)

Following is the C# signature for the call SyncStats.

203

public void SyncStats(
string user,
int warnings,
int errors,
int deadLocks,
int syncedTables,
int connRetries)

204

Chapter 3. Synchronization Events

synchronization_statistics table event
Function Tracks synchronization statistics.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 warnings INTEGER

4 errors INTEGER

Default action None.

Description The synchronization_statistics event allows you to gather, for any user and
table, the number of warnings and errors that occurred during
synchronization. The synchronization_statistics table script is called just
prior to the commit at the end of the end synchronization transaction.

See also “download_statistics connection event” on page 139

“download_statistics table event” on page 142

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“time_statistics connection event” on page 207

“time_statistics table event” on page 209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

INSERT INTO sync_tab_audit (id, ml_user, table,
warnings, errors) VALUES (s_audit.nextval,?,?,?,?)

Once synchronization statistics are inserted into the audit table, you may use

205

these statistics to monitor your synchronizations and make optimizations
where applicable.

Java example The following stored procedure call registers a Java method called
synchronizationStatisticsTable as the script for the synchronization_statistics
table event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’synchronization_statistics’,
’ExamplePackage.ExampleClass.synchronizationStatisticsTable’

)

Following is the sample Java method synchronizationStatisticsTable. It logs
some of the statistics to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public String synchronizationStatisticsTable(
String user, String table, int warnings, int errors)
{ java.lang.System.out.println("synch statistics for

table: " + table + " errors: " + errors);
return(null); }

.NET example The following stored procedure call registers a .NET method called
SyncTableStats as the script for the synchronization_statistics table event
when synchronizing the script version ver1 and the table table1. This syntax
is for Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’synchronization_statistics’,
’TestScripts.Test.SyncTableStats’

)

Following is the C# signature for the call SyncTableStats.

public void SyncTableStats(
string user,
string table,
int warnings,
int errors)

206

Chapter 3. Synchronization Events

time_statistics connection event
Function Tracks time statistics by user and event.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 event_name VARCHAR(128)

3 num_calls INTEGER

4 min_time INTEGER. Milliseconds.

5 max_time INTEGER. Milliseconds.

6 total_time INTEGER. Milliseconds.

Default action None.

Description The time_statistics event allows you to gather time statistics for any user
during synchronization. The statistics are gathered only for those events for
which there is a corresponding script. The script gathers aggregate data for
occasions where a single event occurs multiple times. The script can be
especially useful for time comparisons across users, events and tables.

See also “time_statistics table event” on page 209

“download_statistics connection event” on page 139

“download_statistics table event” on page 142

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“synchronization_statistics table event” on page 205

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

207

INSERT INTO time_statistics (id, ml_user, table,
event_name, num_calls, min_time, max_time, total_time)

VALUES (ts_id.nextval,?,?,?,?,?,?)

Java example The following stored procedure call registers a Java method called
timeStatisticsConnection as the script for the time_statistics connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’time_statistics’,
’ExamplePackage.ExampleClass.timeStatisticsConnection’)

Following is the sample Java method timeStatisticsConnection. It prints
statistics for the prepare_for_download event.

public void timeStatisticsConnection(
String ml_username,
String table_name,
String event_name,

int num_calls, int min_time, int max_time,
int total_time)
{ if(event_name.equals("prepare_for_download")

{ java.lang.System.out.println(
"prepare_for_download num_calls: " + num_calls +
"total_time: " + total_time); } }

.NET example The following stored procedure call registers a .NET method called
TimeStats as the script for the time_statistics connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’time_statistics’,
’TestScripts.Test.TimeStats’

)

Following is the C# signature for the call TimeStats.

public void TimeStats(
string user,
string eventName,
int numCalls,
int minTime,
int maxTime,
int totTime)

208

Chapter 3. Synchronization Events

time_statistics table event
Function Tracks time statistics.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 event_name VARCHAR(128)

4 num_calls INTEGER

5 min_time INTEGER. Milliseconds.

6 max_time INTEGER. Milliseconds.

7 total_time INTEGER. Milliseconds.

Default action None.

Description The time_statistics table event allows you to gather time statistics for any
user and table during synchronization. The statistics are gathered only for
those events for which there is a corresponding script. The script gathers
aggregate data for occasions where a single event occurs multiple times. The
script can be especially useful for time comparisons across users, events and
tables.

See also “time_statistics connection event” on page 207

“download_statistics connection event” on page 139

“download_statistics table event” on page 142

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“synchronization_statistics table event” on page 205

209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

INSERT INTO time_statistics(
id, ml_user, table, event_name, num_calls,
min_time, max_time, total_time)

VALUES (ts_id.nextval,?,?,?,?,?,?,?)

Java example The following stored procedure call registers a Java method called
timeStatisticsTable as the script for the time_statistics table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’time_statistics’,
’ExamplePackage.ExampleClass.timeStatisticsTable’)

Following is the sample Java method timeStatisticsTable. It prints statistics
for the upload_old_row_insert event.

public void timeStatisticsConnection(
String ml_username,
String table_name,
String event_name,

int num_calls, int min_time, int max_time,
int total_time)
{ if(event_name.equals("upload_old_row_insert")

{ java.lang.System.out.println(
"upload_old_row_insert num_calls: " + num_calls +
"total_time: " + total_time); } }

.NET example The following stored procedure call registers a .NET method called
TimeTableStats as the script for the time_statistics table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’time_statistics’,
’TestScripts.Test.TimeTableStats’

)

Following is the C# signature for the call TimeTableStats.

210

Chapter 3. Synchronization Events

public void TimeTableStats(
string user,
string table,
string eventName,
int numCalls,
int minTime,
int maxTime,
int totTime)

211

upload_cursor cursor event (deprecated)
Function Defines a cursor that the MobiLink synchronization server uses to insert,

update, or delete rows during processing of the upload stream.

Use statement-based events for uploads
This script has been deprecated. Use the statement-based events upload_-
delete, upload_insert, and upload_update instead of the upload_cursor
event to process the upload stream. Support for the upload_cursor event is
likely to be removed from future releases.

Parameters

Item Parameter

1 primary key 1

2 primary key 2

.

Default action None.

Description The MobiLink synchronization server opens a cursor with which to insert,
update, or delete rows in the consolidated database based on rows uploaded
from a client application. This script should contain a suitable SELECT
statement or call a stored procedure that contains a suitable SELECT
statement.

The parameters are the values of each column included in the primary key of
the corresponding client table. You must use these in a WHERE clause, so
that the synchronization can identify a unique row based on these values.
The type and order of the parameters is as defined in the
example_upload_cursor script. This order is the same as that in the
corresponding table definition in the remote database, which in turn may
have been copied from your reference database.

You can have one upload_cursor script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also “Writing scripts to upload rows”[MobiLink Synchronization User’s Guide,
page 54]

“upload_delete table event” on page 214

“upload_insert table event” on page 218

“upload_update table event” on page 231

212

Chapter 3. Synchronization Events

SQL example The following SELECT statement defines the upload cursor in the CustDB
sample application.

SELECT cust_id, cust_name
FROM ULCustomer
WHERE cust_id = ?

The primary key of the ULCustomer table in the CustDB sample application
is the column cust_id. If the corresponding table in the consolidated database
is, instead, named Customer, then change the above statement as follows.

SELECT cust_id, cust_name
FROM Customer
WHERE cust_id = ?

Java example The following stored procedure call registers a Java method called
uploadCursor as the script for the upload_cursor cursor event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_cursor’,
’ExamplePackage.ExampleClass.uploadCursor’)

Following is the sample Java method uploadCursor. It dynamically
generates an upload cursor.

public String uploadCursor()
{ return(getUploadCursor(_curTable)); }

.NET example The following C# example deletes the contents of a temporary table. It then
returns SQL that causes rows to be uploaded into the temporary table.

public string UploadCursor()
{

DBCommand stmt = curConn.CreateCommand();
stmt.CommandText = "DELETE FROM dnet_ul_temp";
stmt.ExecuteNonQuery();
stmt.Close();

return("SELECT * FROM dnet_ul_temp WHERE pk = ?");
}

213

upload_delete table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows deleted from the remote
database.

Parameters

Item Parameter

1 primary key 1

2 primary key 2

.

Default action None.

Description The statement-based upload_delete script handles rows that are deleted in
the remote database. The action taken at the consolidated database can be a
DELETE statement, but need not be.

You can have one upload_delete script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also “upload_insert table event” on page 218

“upload_update table event” on page 231

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It marks customers that are
deleted from the remote database as inactive.

UPDATE Customer SET active = 0 WHERE cust_id=?

Java example The following stored procedure call registers a Java method called
uploadDeleteTable as the script for the upload_delete table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_delete’,
’ExamplePackage.ExampleClass.uploadDeleteTable’)

Following is the sample Java method uploadDeleteTable. It dynamically
generates an UPLOAD statement.

public string uploadDeleteTable()
{ return(genUD(_curTable)); }

214

Chapter 3. Synchronization Events

.NET example The following stored procedure call registers a .NET method called
UploadDelete as the script for the upload_delete table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_delete’,
’TestScripts.Test.UploadDelete’

)

Following is the C# signature for the call UploadDelete.

public string UploadDelete(object pk1)

215

upload_fetch table event
Function Provides an event that the MobiLink synchronization server uses to identify

update conflicts during statement-based processing of the upload stream.

Parameters

Item Parameter

1 primary key 1

2 primary key 2

.

Default action None.

Description The statement-based upload_fetch script fetches rows from a synchronized
table for the purposes of conflict detection. It is a companion to the
upload_update event.

The columns of the result set must match the number of columns being
uploaded from the remote database for this table. If the values returned do
not match the before image in the uploaded row, a conflict is identified.

You can have one upload_fetch script for each table in the remote database.

See also “resolve_conflict table event” on page 199

“upload_delete table event” on page 214

“upload_insert table event” on page 218

“upload_update table event” on page 231

SQL example The following SQL script is taken from the Contact sample and can be found
in Samples\MobiLink\Contact\build_consol.sql. It is used to identify
conflicts that occur when rows updated in the remote database Product table
are uploaded. This script selects rows from a table also named Product, but
depending on your consolidated and remote database schema, the two table
names may not match.

SELECT id, name, size, quantity, unit_price
FROM Product WHERE id=?

Java example This script must return valid SQL.

The following stored procedure call registers a Java method called
uploadFetchTable as the script for the upload_fetch table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

216

Chapter 3. Synchronization Events

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_fetch’,
’ExamplePackage.ExampleClass.uploadFetchTable’)

Following is the sample Java method uploadFetchTable. It dynamically
generates an UPLOAD statement.

public string uploadFetchTable()
{ return(genUF(_curTable)); }

217

upload_insert table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows inserted into the remote
database.

Parameters

Item Parameter

1 column 1

2 column 2

.

Default action None.

Description The statement based upload_insert script performs direct inserts of column
values.

You can have one upload_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also “upload_delete table event” on page 214

“upload_update table event” on page 231

“upload_fetch table event” on page 216

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles inserts made on the
Customer table in the remote database. The script inserts the values into a
table named Customer in the consolidated database. The final column of the
table identifies the Customer as active. The final column does not appear in
the remote database.

INSERT INTO Customer(cust_id, name, rep_id, active)
VALUES (?, ?, ?, 1)

Java example The following stored procedure call registers a Java method called
uploadInsertTable as the script for the upload_insert table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_insert’,
’ExamplePackage.ExampleClass.uploadInsertTable’)

218

Chapter 3. Synchronization Events

Following is the sample Java method uploadInsertTable. It dynamically
generates an UPLOAD statement.

public string uploadInsertTable()
{ return("insert into" + _curTable + getCols(_curTable)

+ "values" + getQM(_curTable)); }

.NET example The following stored procedure call registers a .NET method called
UploadInsert as the script for the upload_insert table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_insert’,
’TestScripts.Test.UploadInsert’

)

Following is the C# signature for the call UploadInsert.

public string UploadInsert(string user)

219

upload_new_row_insert table event
Function Conflict resolution scripts for statement-based uploads commonly require

access to the old and new values of rows updated in the remote database.
This event allows you to handle the new values of rows updated rows in the
remote database during conflict resolution.

Parameters

Item Parameter

1 column 1

2 column 2

.

Default action None.

Description You can use this event to assist in developing conflict resolution procedures
for statement-based updates. The event parameters hold the values for the
row in the remote database before the update was carried out. It is also used
to insertINSERTed rows in statement-based, forced-conflict mode.

A typical action for this event is to hold the row in a temporary table for use
by a resolve_conflict script.

You can have one upload_new_row_insert script for each table in the remote
database.

For Java and .NET applications, this script must return valid SQL.

See also “Handling conflicts”[MobiLink Synchronization User’s Guide,page 90]

“resolve_conflict table event” on page 199

“upload_old_row_insert table event” on page 222

“upload_update table event” on page 231

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles updates made on
the product table in the remote database. The script inserts the new value of
the row into a global temporary table named product_conflict. The final
column of the table identifies the row as a new row.

INSERT INTO DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)

VALUES(?, ?, ?, ?, ?, ’N’)

Java example The following stored procedure call registers a Java method called
uploadNewRowInsertTable as the script for the upload_new_row_insert

220

Chapter 3. Synchronization Events

table event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_new_row_insert’,
’ExamplePackage.ExampleClass.uploadNewRowInsertTable’

)

Following is the sample Java method uploadNewRowInsertTable. It
dynamically generates an UPLOAD statement.

public string uploadNewRowInsertTable()
{ return("insert into" + _curTable + "_new" +

getCols(_curTable) + "values" + getQM(_curTable)); }

221

upload_old_row_insert table event
Function Conflict resolution scripts for statement-based uploads commonly require

access to the old and new values of rows updated in the remote database.
This event allows you to handle the new values of rows that were updated in
the remote database during conflict resolution.

Parameters

Item Parameter

1 column 1

2 column 2

.

Default action None.

Description The statement based upload_old_row_insert script performs direct insert of
column values as specified in the upload_old_row_insert statement. You can
have one upload_old_row_insert script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also “Handling conflicts”[MobiLink Synchronization User’s Guide,page 90]

“resolve_conflict table event” on page 199

“upload_new_row_insert table event” on page 220

“upload_update table event” on page 231

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles updates made on
the product table in the remote database. The script inserts the old value of
the row into a global temporary table named product_conflict. The final
column of the table identifies the row as an old row.

insert into DBA.product_conflict(
id, name, size, quantity, unit_price, row_type)
values(?, ?, ?, ?, ?, ’O’)

Java example The following stored procedure call registers a Java method called
uploadOldRowInsertTable as the script for the upload_old_row_insert table
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

222

Chapter 3. Synchronization Events

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_old_row_insert’,
’ExamplePackage.ExampleClass.uploadNewRowInsertTable’

)

Following is the sample Java method uploadOldRowInsertTable. It
dynamically generates an UPLOAD statement.

public string uploadOldRowInsertTable()
{ old" + getCols(_curTable) +

"values" + getQM(_curTable)); }

223

upload_statistics connection event
Function Tracks synchronization statistics for upload operations.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 warnings INTEGER

3 errors INTEGER

4 inserted_rows INTEGER

5 deleted_rows INTEGER

6 updated_rows INTEGER

7 conflicted_inserts INTEGER

8 conflicted_deletes INTEGER

9 conflicted_updates INTEGER

10 ignored_inserts INTEGER

11 ignored_deletes INTEGER

12 ignored_updates INTEGER

13 bytes INTEGER

14 deadlocks INTEGER

Default action None.

Description The upload_statistics event allows you to gather, for any user, statistics on
uploads. The upload_statistics connection script is called just prior to the
commit at the end of the upload transaction.

See also “download_statistics connection event” on page 139

224

Chapter 3. Synchronization Events

“download_statistics table event” on page 142

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“synchronization_statistics table event” on page 205

“time_statistics connection event” on page 207

“time_statistics table event” on page 209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL example The following example comes from an Oracle installation.

INSERT INTO upload_summary_audit (
id, ml_user, warnings, errors, inserted_rows,
deleted_rows, updated_rows, conflicted_inserts,
conflicted_deletes, conflicted_updates,
bytes, ignored_inserts, ignored deletes,
ignored_updates, bytes, deadlocks)
VALUES (usa_audit.nextval,?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics
to monitor your synchronizations and make optimizations where applicable.

Java example The following stored procedure call registers a Java method called
uploadStatisticsConnection as the script for the upload_statistics connection
event when synchronizing the script version ver1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_java_connection_script(
’ver1’,
’upload_statistics’,
’ExamplePackage.ExampleClass.uploadStatisticsConnection’)

Following is the sample Java method uploadStatisticsConnection. It logs
some statistics to the MobiLink output log. (This might be useful at
development time but would slow down a production server.)

public String uploadStatisticsConnection(
String user,
int warnings,
int errors,

int insertedRows,
int deletedRows,
int updatedRows,
int conflictedInserts,
int conflictedDeletes,

225

int conflictedUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,
int deadlocks

)
{ java.lang.System.out.println("updated rows: " +

updatedRows); }

.NET example The following stored procedure call registers a .NET method called
UploadStats as the script for the upload_statistics connection event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_dnet_connection_script(
’ver1’,
’upload_statistics’,
’TestScripts.Test.UploadStats’

)

Following is the C# signature for the call UploadStats.

public void UploadStats(
string user,
int warnings,
int errors,

int insertedRows,
int deletedRows,
int updatedRows,
int conflictInserts,
int conflictDeletes,

int conflictUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,
int deadlocks)

226

Chapter 3. Synchronization Events

upload_statistics table event
Function Tracks synchronization statistics for upload operations for a specific table.

Parameters In the following table, the description provides the SQL data type. If you are
writing your script in Java or .NET, you should use the appropriate
corresponding data type. See “SQL-Java data types”[MobiLink
Synchronization User’s Guide,page 233]and “SQL-.NET data types”[MobiLink
Synchronization User’s Guide,page 261].

Event parameters are optional only if no subsequent parameters are
specified. For example, you must use parameter 1 if you want to use
parameter 2.

Item Parameter Description

1 ml_username VARCHAR(128)

2 table VARCHAR(128)

3 warnings INTEGER

4 errors INTEGER

5 inserted_rows INTEGER

6 deleted_rows INTEGER

7 updated_rows INTEGER

8 conflicted_inserts INTEGER

9 conflicted_deletes INTEGER

10 conflicted_updates INTEGER

11 ignored_inserts INTEGER

12 ignored_deletes INTEGER

13 ignored_updates INTEGER

14 bytes INTEGER

15 deadlocks INTEGER

Default action None.

Description The upload_statistics event allows you to gather, for any user, vital statistics
on synchronization happenings as they apply to any table. The
upload_statistics table script is called just prior to the commit at the end of

227

the upload transaction.

See also “download_statistics connection event” on page 139

“upload_statistics connection event” on page 224

“upload_statistics table event” on page 227

“synchronization_statistics connection event” on page 202

“synchronization_statistics table event” on page 205

“time_statistics connection event” on page 207

“time_statistics table event” on page 209

“MobiLink Monitor” [MobiLink Synchronization User’s Guide,page 297]

SQL Example The following example works with an Adaptive Server Anywhere
consolidated database. It inserts a row into a table used to track upload
statistics.

call ml_add_connection_script(
’ver1’,
’upload_statistics’,
’insert into my_upload_statistics

(user_name, table_name, num_warnings, num_errors,
inserted_rows, deleted_rows, updated_rows,
conflicted_inserts, conflicted_deletes, conflicted_

updates,
ignored_inserts, ignored_deletes, ignored_updates,
bytes, deadlocks)

values(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)’)

The following example works with an Oracle consolidated database.

INSERT INTO upload_tables_audit (
id, user_name, table, warnings, errors,
inserted_rows, deleted_rows, updated_rows,
conflicted_inserts, conflicted_deletes,
conflicted_updates, ignored_inserts, ignored_deletes,
ignored_updates, bytes, deadlocks)
VALUES (ut_audit.nextval,
?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)

Once statistics are inserted into the audit table, you may use these statistics
to monitor your synchronizations and make optimizations where applicable.

Java example The following stored procedure call registers a Java method called
uploadStatisticsTable as the script for the upload_statistics table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

228

Chapter 3. Synchronization Events

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_statistics’,
’ExamplePackage.ExampleClass.uploadStatisticsTable’)

Following is the sample Java method uploadStatisticsTable. It logs some
statistics to the MobiLink output log. (This might be useful at development
time but would slow down a production server.)

public String uploadStatisticsTable(
String user,
int warnings,
int errors,
int insertedRows,
int deletedRows,
int updatedRows,
int conflictedInserts,
int conflictedDeletes,
int conflictedUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,

int deadlocks
)
{ java.lang.System.out.println("updated rows: " +

updatedRows); }

.NET example The following stored procedure call registers a .NET method called
UploadTableStats as the script for the upload_statistics table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_statistics’,
’TestScripts.Test.UploadTableStats’

)

Following is the C# signature for the call UploadTableStats.

229

public void UploadTableStats(
string user,
string table,
int warnings,
int errors,
int insertedRows,
int deletedRows,
int updatedRows,
int conflictInserts,
int conflictDeletes,
int conflictUpdates,
int ignoredInserts,
int ignoredDeletes,
int ignoredUpdates,
int bytes,
int deadlocks)

230

Chapter 3. Synchronization Events

upload_update table event
Function Provides an event that the MobiLink synchronization server uses during

processing of the upload stream to handle rows updated at the remote
database.

Parameters

Clause Parameters

SET column 11

column 22

. . .

WHERE primary key 1

primary key 2

. . .

Default action None.

Description The statement-based upload_update script performs direct update of column
values as specified in the upload_update statement.

The WHERE clause must include all of the primary key columns that are
being synchronized. The SET clause must contain all of the non-primary key
columns that are being synchronized.

You use as many non-primary key columns in your SET clause as exist in
the table, and MobiLink will send the correct number of column values.
Similarly, in the WHERE clause, you can have any number of primary keys,
but all must be specified here, and MobiLink will send the correct values.
MobiLink sends these column values and primary key values in the order the
columns or primary keys appear in a MobiLink report of your schema. You
can use the -vh option to determine the column ordering for this table
schema.

You can have one upload_update script for each table in the remote database.

For Java and .NET applications, this script must return valid SQL.

See also “upload_delete table event” on page 214

“upload_fetch table event” on page 216

“upload_insert table event” on page 218

SQL example This example is taken from the Contact sample and can be found in
Samples\MobiLink\Contact\build_consol.sql. It handles updates made to the
Customer table in the remote database. The script updates the values in a

231

table named Customer in the consolidated database.

UPDATE Customer SET name=?, rep_id=? WHERE cust_id=?

Java example The following stored procedure call registers a Java method called
uploadUpdateTable as the script for the upload_update table event when
synchronizing the script version ver1. This syntax is for Adaptive Server
Anywhere consolidated databases.

call ml_add_java_table_script(
’ver1’,
’table1’,
’upload_update’,
’ExamplePackage.ExampleClass.uploadUpdateTable’)

Following is the sample Java method uploadUpdateTable. It dynamically
generates an UPLOAD statement.

public string uploadUpdateTable()
{ return(genUU(_curTable)); }

.NET example The following stored procedure call registers a .NET method called
UploadUpdate as the script for the upload_update table event when
synchronizing the script version ver1 and the table table1. This syntax is for
Adaptive Server Anywhere consolidated databases.

call ml_add_dnet_table_script(
’ver1’,
’table1’,
’upload_update’,
’TestScripts.Test.UploadUpdate’

)

Following is the C# signature for the call UploadUpdate.

public string UploadUpdate()

232

CHAPTER 4

SQL Statements

About this chapter This chapter presents detailed descriptions of SQL statements in alphabetical
order.

Contents Topic: page

ALTER PUBLICATION statement 234

ALTER SYNCHRONIZATION SUBSCRIPTION statement [Mo-
biLink]

236

ALTER SYNCHRONIZATION USER statement [MobiLink] 238

CREATE PUBLICATION statement 240

CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]

243

CREATE SYNCHRONIZATION USER statement [MobiLink] 245

DROP PUBLICATION statement 255

DROP SYNCHRONIZATION SUBSCRIPTION statement [Mo-
biLink]

256

DROP SYNCHRONIZATION USER statement [MobiLink] 257

START SYNCHRONIZATION DELETE statement [MobiLink] 258

STOP SYNCHRONIZATION DELETE statement [MobiLink] 260

233

ALTER PUBLICATION statement
Description Use this statement to alter a publication. In MobiLink, a publication

identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

Syntax ALTER PUBLICATION [owner.]publication-name alterpub-clause, . . .

alterpub-clause:
ADD TABLE article-description

| MODIFY TABLE article-description
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

owner , publication-name, table-name : identifier

article-description :
table-name [(column-name, . . .)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Usage This statement is applicable only to MobiLink and SQL Remote.

The ALTER PUBLICATION statement alters a publication in the database.
The contribution to a publication from one table is called anarticle.
Changes can be made to a publication by adding, modifying, or deleting
articles, or by renaming the publication. If an article is modified, the entire
specification of the modified article must be entered.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

Permissions Must have DBA authority, or be the owner of the publication. Requires
exclusive access to all tables referred to in the statement.

Side effects Automatic commit.

See also “CREATE PUBLICATION statement” on page 240

“DROP PUBLICATION statement” on page 255

“ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 236

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 243

“sp_add_article procedure”[SQL Remote User’s Guide,page 379]

234

Chapter 4. SQL Statements

“sp_add_article_col procedure”[SQL Remote User’s Guide,page 381]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact
ADD TABLE customer

235

ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to alter

the properties of a subscription of a MobiLink user to a publication.

Syntax ALTER SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, . . .]
[MODIFY OPTION option=value, . . .]
[DELETE { ALL OPTION | OPTION option, . . . }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Parameters TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user IDs.

Omit the FOR clause to set extended options, sync type and network
parameters for a publication.

☞ For information about how dbmlsync processes options that are
specified in different locations, see “Priority order for extended options and
connection parameters”[MobiLink Synchronization User’s Guide,page 180].

TYPE clause This clause specifies the communication protocol to use for
synchronization. The default protocol istcpip.

ADDRESS clause This clause specifies network parameters, including the
location of the MobiLink synchronization server.

☞ For a complete list of network parameters, see“CREATE
SYNCHRONIZATION USER statement [MobiLink]” on page 245.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

The values for each option cannot contain the characters “=” or “ ,” or “ ;”.

236

Chapter 4. SQL Statements

☞ For a complete list of options, see“CREATE SYNCHRONIZATION
USER statement [MobiLink]” on page 245.

Usage Use this statement to alter a synchronization subscription within a MobiLink
remote or reference database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also “CREATE PUBLICATION statement” on page 240

“CREATE SYNCHRONIZATION USER statement [MobiLink]” on
page 245

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ’ml_user1’
OPTION memory=’3m’;

237

ALTER SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to alter

the properties of a MobiLink user.

Syntax ALTER SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, . . .]
[MODIFY OPTION option=value, . . .]
[DELETE { ALL OPTION | OPTION option }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Parameters TYPE clause This clause specifies the communication protocol to use for
synchronization.

ADDRESS clause This clause specifies network parameters, including the
location of the MobiLink synchronization server.

☞ For a complete list of network parameters, see“CREATE
SYNCHRONIZATION USER statement [MobiLink]” on page 245.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

☞ For a complete list of options, see“CREATE SYNCHRONIZATION
USER statement [MobiLink]” on page 245.

Usage Use this statement to alter the properties of a synchronization user within a
MobiLink remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 236

“CREATE SYNCHRONIZATION USER statement [MobiLink]” on

238

Chapter 4. SQL Statements

page 245

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 243

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

239

CREATE PUBLICATION statement
Description Use this statement to create a publication. In MobiLink, a publication

identifies synchronized data in UltraLite or Adaptive Server Anywhere
remote databases. In SQL Remote, publications identify replicated data in
both consolidated and remote databases.

Syntax CREATE PUBLICATION [owner.]publication-name
(TABLE article-description, . . .)

owner , publication-name : identifier

article-description :
table-name [(column-name, . . .)]

[WHERE search-condition]
[SUBSCRIBE BY expression]

Parameters article-description Publications are built from articles. Each article is a
table or part of a table. An article may be a vertical partition of a table (a
subset of the table’s columns), a horizontal partition (a subset of the table’s
rows) or a vertical and horizontal partition.

WHERE clause The WHERE clause is a way of defining the subset of
rows of a table to be included in an article. It is useful if the same subset is to
be received by all subscribers to the publication.

SUBSCRIBE BY clause In SQL Remote, one way of defining a subset of
rows of a table to be included in an article is to use a SUBSCRIBE BY
clause. This clause allows many different subscribers to receive different
rows from a table in a single publication definition. This clause is ignored
during MobiLink synchronization.

You can combine WHERE and SUBSCRIBE BY clauses in an article
definition, but the SUBSCRIBE BY clause is used only by SQL Remote.

Usage This statement is applicable only to MobiLink and SQL Remote.

The CREATE PUBLICATION statement creates a publication in the
database. A publication can be created for another user by specifying an
owner name.

In MobiLink, publications are required in Adaptive Server Anywhere remote
databases, and are optional in UltraLite databases. These publications and
the subscriptions to them determine which data will be uploaded to the
MobiLink synchronization server. You can construct a remote database by
creating publications and subscriptions directly. Alternatively, you can
create publications and subscriptions in an Adaptive Server Anywhere
reference database, which acts as a template for the remote databases, and

240

Chapter 4. SQL Statements

then construct the remote databases using the MobiLink extraction utility.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

In SQL Remote, publishing is a two-way operation, as data can be entered at
both consolidated and remote databases. In a SQL Remote installation, any
consolidated database and all remote databases must have the same
publication defined. Running the SQL Remote extraction utility from a
consolidated database automatically executes the correct CREATE
PUBLICATION statement in the remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Side effects Automatic commit.

See also “ALTER PUBLICATION statement” on page 234

“DROP PUBLICATION statement” on page 255

“ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 236

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 243

“sp_create_publication procedure”[SQL Remote User’s Guide,page 384]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement publishes all columns and rows of two tables.

CREATE PUBLICATION pub_contact (
TABLE contact,
TABLE company

)

The following statement publishes only some columns of one table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city)

)

The following statement publishes only the active customer rows by
including a WHERE clause that tests the status column of the customer table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
WHERE status = ’active’

)

241

The following statement publishes only some rows by providing a
subscribe-by value. This method can be used only with SQL Remote.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
SUBSCRIBE BY state

)

The subscribe-by value is used as follows when you create a SQL Remote
subscription.

CREATE SUBSCRIPTION TO pub_customer (’NY’)
FOR jsmith

242

Chapter 4. SQL Statements

CREATE SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to

subscribe a MobiLink user to a publication.

Syntax CREATE SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, . . .]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Parameters TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user names.ml_usernameis a
name identifying a remote database. This name must be unique.

☞ For more information about synchronization user names, see “About
MobiLink users”[MobiLink Synchronization User’s Guide,page 104].

Omit the FOR clause to set extended options, sync type and network
parameters for a publication.

☞ For information about how dbmlsync processes options that are
specified in different locations, see “Priority order for extended options and
connection parameters”[MobiLink Synchronization User’s Guide,page 180].

TYPE clause This clause specifies the communication protocol to use for
synchronization. The default protocol istcpip.

ADDRESS clause This clause specifies network parameters, including the
location of the MobiLink synchronization server.

☞ For a complete list of network parameters, see“CREATE
SYNCHRONIZATION USER statement [MobiLink]” on page 245.

OPTION clause This clause allows you to set extended options for the
subscription. If no FOR clause is provided, the extended options act as
default settings for the publication, and are overridden by any extended
options set for a synchronization user.

243

☞ For a complete list of options, see“-e extended options” on page 44.

Usage Use this statement to create a synchronization subscription within a
MobiLink remote or reference database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also “CREATE PUBLICATION statement” on page 240

“CREATE SYNCHRONIZATION USER statement [MobiLink]” on
page 245

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION memory=’3m’;

244

Chapter 4. SQL Statements

CREATE SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to

create a synchronization user.

Syntax CREATE SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, . . .]

ml_username: identifier

sync-type: tcpip | http | https | ActiveSync

network-parameters: string

value: string | integer

Parameters ml_username A name identifying a remote database. This name must be
unique.

☞ For more information about synchronization user names, see “About
MobiLink users”[MobiLink Synchronization User’s Guide,page 104].

TYPE clause This clause specifies the communication protocol to use for
synchronization. The options aretcpip, http , https, andActiveSync. The
default protocol istcpip.

ADDRESS clause This clause specifiesnetwork-parametersin the form
keyword=value, separated by semi-colons. Which settings you supply
depends on the communication protocol you are using (TCP/IP, HTTP,
HTTPS, or ActiveSync).

♦ TCP/IP parameters If you specify the tcpip protocol, you can
optionally specify the followingnetwork-parameters:
• client_port=nnnnn or client_port=nnnnn-mmmmm A range of

client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall

• host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value islocalhost. For Windows CE, the default value is the value of
ipaddr in the registry folderComm\Tcpip\Hosts\ppp_peer. This allows
a Windows CE device to connect to a MobiLink synchronization server

245

executing on the desktop machine where the Windows CE device’s
cradle is connected.

For the Palm Computing Platform, the default value of localhost refers
to the device. It is recommended that an explicit host name or IP
address be specified.

• liveness_timeout=n The amount of time, in seconds, after a client
stops communicating before MobiLink recovers the connection. A
value of 0 means that there is no timeout. This option is only effective
if download acknowledgement on the client if set to off (the default).
The default is 120 seconds.

• port=portnumber The socket port number. The port number must be
a decimal number that matches the port the MobiLink synchronization
server is setup to monitor. The default is 2439, which is the IANA
registered port number for the MobiLink synchronization server.

• network_name=name Specify the network name so that you can use
MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run dbmlsync
without manually dialing a connection. The name should be the
network name that you have specified in the dropdown list in Settings
➤ Connections➤ Connections (Pocket PC) or Network & Dialup
Connections (Windows).

☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

• network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

• network_leave_open={0|1} When you specify network_name, you
can optionally specify that the connection should be left open after the
synchronization finishes (1). The default behavior is to close the
connection (0).

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted using the cipher suite specified. The
cipher can be one ofecc_tlsor rsa_tls. These refer to elliptic-curve
and RSA certification. For backwards compatibility,ecc_tlscan also
be specified ascerticom_tls.

246

Chapter 4. SQL Statements

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

The following security keywords are supported.

• certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on
the certificate matches this value.

• certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on
the certificate matches this value.

• certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name field
on the certificate matches this value.

• trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well as
the certificate of the entity that signed it, and so on up to a
self-signed root.
The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which root
certificates to trust. By default, the Sybase certificate is the trusted
root.

♦ HTTP parameters If you specify the http protocol, you can optionally
specify the followingnetwork-parameters:
• buffer_size=number The maximum body size for a fixed content

length message, in bytes. Changing the option will decrease or increase
the amount of memory allocated for sending content. The default is 65
535, except on UltraLite and Pocket PC, in which case it is 1 024.

• client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

• host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value islocalhost. For Windows CE, the default value is the value of
ipaddr in the registry folderComm\Tcpip\Hosts\ppp_peer. This allows

247

a Windows CE device to connect to a MobiLink synchronization server
executing on the desktop machine where the Windows CE device’s
cradle is connected.

For the Palm Computing Platform, the default value of localhost refers
to the device. It is recommended that an explicit host name or
IP address be specified.

• network_name=name Specify the network name so that you can use
MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run dbmlsync
without manually dialing a connection. The name should be the
network name that you have specified in the dropdown list in Settings
➤ Connections➤ Connections (Pocket PC) or Network & Dialup
Connections (Windows).

☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

• network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

• network_leave_open={0|1} When you specify network_name, you
can optionally specify that the connection should be left open after the
synchronization finishes (1). The default behavior is to close the
connection (0).

• persistent={0|1} 1 means that the client will attempt to use the same
TCP/IP connection for all HTTP requests in a synchronization. A
setting of 0 is more compatible with intermediate agents. The default is
1, except on Palm devices it is 0.

Note: Except on Palm devices, you should only set persistent to 1 if
you are connecting directly to MobiLink. If you are connecting
through an intermediate agent such as a proxy or redirector, a
persistent connection may cause problems.

• port=portnumber The socket port number. The port number must be
a decimal number that matches the port the MobiLink synchronization
server is set up to monitor. The default value for the port number is80,
which is the IANA registered port number for the MobiLink
synchronization server.

• proxy_host=proxy_hostname The host name or IP address of the
proxy server. The default value islocalhost.

248

Chapter 4. SQL Statements

• proxy_port=proxy_portnumber The port number of the proxy
server. The default value is80.

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted using the cipher suite specified. The
cipher can be one ofecc_tlsor rsa_tls. These refer to elliptic-curve
and RSA certification. For backwards compatibility,ecc_tlscan also
be specified ascerticom_tls.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

The following security keywords are supported.

• certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on
the certificate matches this value.

• certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on
the certificate matches this value.

• certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name field
on the certificate matches this value.

• trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well as
the certificate of the entity that signed it, and so on up to a
self-signed root.
The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which root
certificates to trust. By default, the Sybase certificate is the trusted
root.

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through a proxy server, the
suffix may be necessary in order to find the MobiLink synchronization
server. The default value isMobiLink .

• version=versionnumber A string specifying the version of HTTP to
use. You have a choice of1.0or 1.1. The default value is1.1.

♦ HTTPS parameters The HTTPS communication stream uses Certicom
RSA security.

249

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

If you specify the HTTPS protocol, you can optionally specify the
following network-parameters:
• buffer_size=number The maximum body size for a fixed content

length message, in bytes. Changing the option will decrease or increase
the amount of memory allocated for sending content. The default is 65
535, except on UltraLite and Pocket PC, in which case it is 1 024.

• client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.
The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

• host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value islocalhost. For Windows CE, the default value is the value of
ipaddr in the registry folderComm\Tcpip\Hosts\ppp_peer. This allows
a Windows CE device to connect to a MobiLink synchronization server
executing on the desktop machine where the Windows CE device’s
cradle is connected.
For the Palm Computing Platform, the default value of localhost refers
to the device. It is recommended that an explicit host name or
IP address be specified.

• network_name=name Specify the network name so that you can use
MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run dbmlsync
without manually dialing a connection. The name should be the
network name that you have specified in the dropdown list in Settings
➤ Connections➤ Connections (Pocket PC) or Network & Dialup
Connections (Windows).
☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

• network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On

250

Chapter 4. SQL Statements

Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

• network_leave_open={0|1} When you specify network_name, you
can optionally specify that the connection should be left open after the
synchronization finishes (1). The default behavior is to close the
connection (0).

• persistent={0|1} 1 means that the client will attempt to use the same
TCP/IP connection for all HTTP requests in a synchronization. A
setting of 0 is more compatible with intermediate agents. The default is
1, except on Palm devices it is 0.
Note: Except on Palm devices, you should only set persistent to 1 if
you are connecting directly to MobiLink. If you are connecting
through an intermediate agent such as a proxy or redirector, a
persistent connection may cause problems.

• port=portnumber The socket port number. The port number must be
a decimal number that matches the port the MobiLink synchronization
server is set up to monitor. The default value for the port parameter
is 443, which is the IANA registered port number for the MobiLink
synchronization server.

• proxy_host=proxy_hostname The host name or IP address of the
proxy server. The default value islocalhost.

• proxy_port=proxy_portnumber The port number of the proxy
server. The default value is443.

• certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on the
certificate matches this value.

• certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on the
certificate matches this value.

• certificate_name If you specify this parameter, the MobiLink client
only accepts server certificates when the common name field on the
certificate matches this value.

• trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink synchronization
server sends its certificate to the client, as well as the certificate of the
entity that signed it, and so on up to a self-signed root.
The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which root
certificates to trust. By default, the Sybase certificate is the trusted root.
☞ For more information about security, see “Transport-Layer
Security” [MobiLink Synchronization User’s Guide,page 337].

251

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTPS request. When synchronizing through a proxy server, the
suffix may be necessary in order to find the MobiLink synchronization
server. The default value isMobiLink .

• version=versionnumber A string specifying the version of HTTP to
use. You have a choice of1.0or 1.1. The default value is1.1.

♦ ActiveSync parameters During ActiveSync synchronization,
ActiveSync is used to exchange data with the MobiLink provider for
ActiveSync, which resides on the desktop machine. The ActiveSync
parameters describe the communications between the MobiLink provider
for ActiveSync and the MobiLink synchronization server.

The address string for ActiveSync takes the following form:

stream= desktop-stream;[desktop-stream-params]

where:

• desktop-stream is the synchronization stream to use between the
MobiLink provider for ActiveSync and the MobiLink synchronization
server. It can behttp , https, or tcpip. The default setting istcpip.

• desktop-stream-paramsare TCP/IP, HTTP, or HTTPS parameters, as
described in the lists above.

☞ For more information, see“ActiveSync provider installation
utility” on page 300.

OPTION clause The OPTION clause allows you to set options using
option=valuein a comma-separated list.

The values for each option cannot contain equal signs or semicolons. The
database server accepts any option that you enter without checking for its
validity. Therefore, if you misspell an option or enter an invalid value, no
error message appears until you run the dbmlsync command to perform
synchronization.

Options set for a synchronization user can be overridden in individual
subscriptions or on the dbmlsync command line.

For complete information about extended options, see“-e extended options”
on page 44.

Description Thesync-type, network-parameters, andoptionscan be set in several places:

♦ on the dbmlsync command line using the -e or -eu options

♦ in Sybase Central

♦ using the following SQL statements:

252

Chapter 4. SQL Statements

• CREATE SYNCHRONIZATION SUBSCRIPTION

• ALTER SYNCHRONIZATION SUBSCRIPTION

• CREATE SYNCHRONIZATION USER

• ALTER SYNCHRONIZATION USER

• CREATE SYNCHRONIZATION SUBSCRIPTION without specifying
a synchronization user (this associates the values with a publication)

When you store extended options and connection parameters in the database,
dbmlsync reads the information from the database. If values are specified in
both the database and the command line, the value strings are combined. If
conflicting values are specified, dbmlsync resolves them as follows, where
values occurring earlier in the list take precedence over those occurring later
in the list.

♦ dbmlsync extended option -eu

♦ dbmlsync extended option -e

♦ specified on the subscription (whether by a SQL statement or in Sybase
Central)

♦ specified on the MobiLink user (whether by a SQL statement or in
Sybase Central)

♦ specified on the publication (whether by a SQL statement or in Sybase
Central)

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “ALTER SYNCHRONIZATION USER statement [MobiLink]” on page 238

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 243

“CREATE PUBLICATION statement” on page 240

“-e extended options” on page 44

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Examples The following example creates a user named SSinger, who synchronizes
over TCP/IP with a server machine named mlserver.mycompany.com using
the password Sam. The use of a password in the user definition isnot secure.

253

CREATE SYNCHRONIZATION USER SSinger
TYPE http
ADDRESS ’host=mlserver.mycompany.com’
OPTION MobiLinkPwd=’Sam’

The following creates a synchronization user called factory014 that will
cause dbmlsync to hover and synchronize via Certicom-encrypted TCP/IP at
a random time in every 8-hour interval. The randomness helps prevent
performance degradation at the MobiLink server due to multiple
simultaneous synchronizations:

CREATE SYNCHRONIZATION USER factory014
TYPE tcpip
ADDRESS ’host=mycompany.manufacturing.mobilink1;security=certico

m_tls(certificate=mycompany_mobilink.crt;certificate_
password=thepassword)’

OPTION Schedule=’EVERY:08:00’

The following creates a synchronization user called sales5322 that will be
used to synchronize with HTTP. In this example, the MobiLink
synchronization server runs behind the corporate firewall, and
synchronization requests are redirected to it using the Redirector (a reverse
proxy to an NSAPI Web server).

CREATE SYNCHRONIZATION USER sales5322
TYPE https
ADDRESS ’host=www.mycompany.com;port=80;url_

suffix=mlredirect/ml/’

254

Chapter 4. SQL Statements

DROP PUBLICATION statement
Description Use this statement to drop a publication. In MobiLink a publication

identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

Syntax DROP PUBLICATION [owner.]publication-name

owner , publication-name : identifier

Usage This statement is applicable only to MobiLink and SQL Remote.

Permissions Must have DBA authority.

Side effects Automatic commit. All subscriptions to the publication are dropped.

See also “ALTER PUBLICATION statement” on page 234

“CREATE PUBLICATION statement” on page 240

“sp_drop_publication procedure”[SQL Remote User’s Guide,page 385]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact

255

DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement to drop a synchronization subscription within a MobiLink

remote database or a MobiLink reference database. You can also use it to
drop a default subscription, which contains default subscription values, for
the specified publication.

Syntax DROP SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]

Parameters TO clause Specify the name of a publication.

FOR clause Specify one more MobiLink users.

Omitting this clause drops the default subscription for the publication.
MobiLink users subscribed to a publication inherit as defaults the values in a
default publication.

Usage Drop a synchronization subscription in a MobiLink remote or reference
database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side Effects Automatic commit.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Unsubscribe MobiLink user ml_user1 to the sales publication.

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR "ml_user1"

Drop the default subscription, which contains default subscription values,
for the sales publication (by omitting the FOR clause).

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication

256

Chapter 4. SQL Statements

DROP SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement to drop a synchronization user from a MobiLink remote

database.

Syntax DROP SYNCHRONIZATION USER ml_username, . . .

ml_username: identifier

Usage Drop one or more synchronization users from a MobiLink remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side Effects All subscriptions associated with the user are also deleted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example Remove MobiLink user ml_user1 from the database.

DROP SYNCHRONIZATION USER ml_user1

257

START SYNCHRONIZATION DELETE statement
[MobiLink]
Description Use this statement to restart logging of deletes for MobiLink

synchronization.

Syntax START SYNCHRONIZATION DELETE

Usage Ordinarily, Adaptive Server Anywhere automatically logs any changes made
to tables or columns that are part of a synchronization template and uploads
these changes to the consolidated database during the next synchronization.
You can temporarily suspend automatic logging of delete operations using
the STOP SYNCHRONIZATION DELETE statement. The START
SYNCHRONIZATION DELETE statement allows you to restart the
automatic logging.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations executed on that connection will be synchronized.
The effect continues until a START SYNCHRONIZATION DELETE
statement is executed. The effects do not nest; that is, subsequent execution
of stop synchronization delete after the first will have no additional effect.
A single START SYNCHRONIZATION DELETE statement restarts the
logging, regardless of the number of STOP SYNCHRONIZATION
DELETE statements preceding it.

Permissions Must have DBA authority.

Side effects None.

See also “STOP SYNCHRONIZATION DELETE statement [MobiLink]” on
page 260

“StartSynchronizationDelete method”[UltraLite Static C++ User’s Guide,
page 86]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following sequence of SQL statements illustrates how to use START
SYNCHRONIZATION DELETE and STOP SYNCHRONIZATION
DELETE.

258

Chapter 4. SQL Statements

-- Prevent deletes from being sent
-- to the consolidated database
STOP SYNCHRONIZATION DELETE;

-- Remove all records older than 1 month
-- from the remote database,
-- NOT the consolidated database
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1)

-- Re-enable all deletes to be sent
-- to the consolidated database
-- DO NOT FORGET to start this
START SYNCHRONIZATION DELETE;

-- Commit the entire operation,
-- otherwise rollback everything
-- including the stopping of the deletes
commit;

259

STOP SYNCHRONIZATION DELETE statement
[MobiLink]
Description Use this statement to temporarily stop logging of deletes for MobiLink

synchronization.

Syntax STOP SYNCHRONIZATION DELETE

Usage Ordinarily, Adaptive Server Anywhere automatically logs any changes made
to tables or columns that are part of a synchronization template and uploads
these changes to the consolidated database during the next synchronization.
This statement allows you to temporarily suspend logging of changes to an
Adaptive Server Anywhere remote database.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the subsequent delete operations executed on that connection will be
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. The effects do not nest; that is, subsequent
execution of stop synchronization delete after the first will have no
additional effect. A single START SYNCHRONIZATION DELETE
statement restarts the logging, regardless of the number of STOP
SYNCHRONIZATION DELETE statements preceding it.

This command can be useful to make corrections to a remote database, but
should be used with caution as it effectively disables MobiLink
synchronization.

Permissions Must have DBA authority.

Side Effects None.

See also “StartSynchronizationDelete method”[UltraLite Static C++ User’s Guide,
page 86]

“StopSynchronizationDelete method”[UltraLite Static C++ User’s Guide,
page 86]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example ☞ For an example, see“START SYNCHRONIZATION DELETE
statement [MobiLink]” on page 258.

260

CHAPTER 5

Stored Procedures

About this chapter This chapter provides information about the MobiLink pre-defined stored
procedures. There are two types of stored procedure:

♦ Server stored procedures facilitate management of synchronization
scripts using SQL statements. They are stored in the consolidated
database.

♦ Client stored procedures perform specific tasks during
synchronization on an Adaptive Server Anywhere client. These are called
client event-hook procedures.

Contents Topic: page

Stored procedures to add or delete scripts 262

Client event-hook procedures 269

261

Stored procedures to add or delete scripts
You must add synchronization scripts to system tables in the consolidated
database before you can use them. The following stored procedures add
synchronization scripts to the consolidated database. They can also be used
to delete scripts.

Notes ♦ When you add a script using a stored procedure, the script is a string.
Any strings within the script need to be escaped. For Adaptive Server
Anywhere, each quotation mark (‘) needs to be doubled so as not to
terminate the string.

♦ You cannot use stored procedures to add scripts longer than 255 bytes to
Adaptive Server Enterprise 11.5 or earlier. Instead, use Sybase Central or
direct insertion to define longer scripts.

♦ IBM DB2 prior to version 6 only supports column names and other
identifiers of 18 characters or less, and so the names are truncated. For
example, ml_add_connection_script is shortened to ml_add_connection_.

ml_add_connection_script

Function Use this stored procedure to add or delete SQL connection scripts in the
consolidated database.

Parameters

Item Parameter Description

1 version CHAR(128)

2 event CHAR(128)

3 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script parameter to NULL.

When you add a script, the script is inserted into the ml_script table and the
appropriate references are defined to associate the script with the event and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also “Adding and deleting scripts in your consolidated database”[MobiLink
Synchronization User’s Guide,page 51]

262

Chapter 5. Stored Procedures

“ml_add_table_script” on page 263

“ml_add_dnet_connection_script” on page 264

“ml_add_dnet_table_script” on page 265

“ml_add_java_connection_script” on page 266

“ml_add_java_table_script” on page 267

Example The following statement adds a connection script associated with the
begin_synchronization event to the script version custdb in an Adaptive
Server Anywhere consolidated database. The script itself is the single
statement that sets the @EmployeeID variable.

call ml_add_connection_script(’custdb’,
’begin_synchronization’,
’set @EmployeeID = ?’)

ml_add_table_script

Function Use this stored procedure to add or delete SQL table scripts in the
consolidated database.

Parameters

Item Parameter Description

1 version VARCHAR(128)

2 table_name VARCHAR(128)

3 event VARCHAR(128)

4 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this
is VARCHAR.

Description To delete a table script, set the script parameter to NULL.

When you add a script, the script is inserted into the ml_script table and the
appropriate references are defined to associate the script with the table, event
and script version that you specify. If the version name is new, it is
automatically inserted into the ml_version table.

See also “Adding and deleting scripts in your consolidated database”[MobiLink
Synchronization User’s Guide,page 51]

263

“ml_add_connection_script” on page 262

“ml_add_dnet_connection_script” on page 264

“ml_add_dnet_table_script” on page 265

“ml_add_java_connection_script” on page 266

“ml_add_java_table_script” on page 267

Example The following command adds a cursor script associated with the
upload_cursor event on the ULCustomer table.

call ml_add_table_script(’custdb’,
’ULCustomer’,
’upload_cursor’,
’SELECT cust_id, cust_name

FROM ULCustomer WHERE cust_id = ?’)

ml_add_dnet_connection_script

Function Use this stored procedure to add or delete .NET connection scripts in the
consolidated database.

Parameters

Item Parameter Description

1 version CHAR(128)

2 event CHAR(128)

3 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the event and script
version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also “Adding and deleting scripts in your consolidated database”[MobiLink
Synchronization User’s Guide,page 51]

“ml_add_dnet_table_script” on page 265

264

Chapter 5. Stored Procedures

“ml_add_connection_script” on page 262

“ml_add_table_script” on page 263

“ml_add_java_table_script” on page 267

“Methods” [MobiLink Synchronization User’s Guide,page 234]

Example The following example assigns the beginDownloadConnection method of
the ExampleClass class to the begin_download event.

call ml_add_dnet_connection_script(’ver1’,
’begin_download’,
’ExamplePackage.ExampleClass.beginDownloadConnection’)

ml_add_dnet_table_script

Function Use this stored procedure to add or delete .NET table scripts in the
consolidated database.

Parameters

Item Parameter Description

1 version VARCHAR(128)

2 table VARCHAR(128)

3 event VARCHAR(128)

4 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the table, event, and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also “Adding and deleting scripts in your consolidated database”[MobiLink
Synchronization User’s Guide,page 51]

“ml_add_dnet_connection_script” on page 264

“ml_add_connection_script” on page 262

265

“ml_add_table_script” on page 263

“ml_add_java_connection_script” on page 266

“Methods” [MobiLink Synchronization User’s Guide,page 234]

Example The following example assigns the empDownloadCursor method of the
EgClass class to the download_cursor event for the table emp.

call ml_add_dnet_table_script(’ver1’, ’emp’,
’download_cursor’,EgPackage.EgClass.empDownloadCursor’)

ml_add_java_connection_script

Function Use this stored procedure to add or delete Java connection scripts in the
consolidated database.

Parameters

Item Parameter Description

1 version CHAR(128)

2 event CHAR(128)

3 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the event and script
version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also “Adding and deleting scripts in your consolidated database”[MobiLink
Synchronization User’s Guide,page 51]

“ml_add_connection_script” on page 262

“ml_add_table_script” on page 263

“ml_add_dnet_connection_script” on page 264

“ml_add_dnet_table_script” on page 265

266

Chapter 5. Stored Procedures

“ml_add_java_table_script” on page 267

“Methods” [MobiLink Synchronization User’s Guide,page 234]

Example The following example is taken from the
Samples\MobiLink\JavaAuthenticationsample. It assigns the
endConnection method of the CustEmpScripts class to the end_connection
event.

call ml_add_java_connection_script(’ver1’,
’end_connection’,
’CustEmpScripts.endConnection’)

ml_add_java_table_script

Function Use this stored procedure to add or delete Java table scripts in the
consolidated database.

Parameters

Item Parameter Description

1 version VARCHAR(128)

2 table VARCHAR(128)

3 event VARCHAR(128)

4 script For Adaptive Server Anywhere and MS
SQL Server, this is TEXT. For ASE, this
is VARCHAR(16384). For ASE prior to
12.5, this is VARCHAR(255). For DB2,
this is VARCHAR(4000). For Oracle, this is
VARCHAR.

Description To delete a connection script, set the script parameter to NULL.

Thescript value is a public method in a class in the MobiLink
synchronization server classpath (for example, MyClass.MyMethod).

When you add a script, the method is associated with the table, event, and
script version that you specify. If the version name is new, it is automatically
inserted into the ml_version table.

See also “Adding and deleting scripts in your consolidated database”[MobiLink
Synchronization User’s Guide,page 51]

“ml_add_connection_script” on page 262

“ml_add_table_script” on page 263

267

“ml_add_dnet_connection_script” on page 264

“ml_add_dnet_table_script” on page 265

“ml_add_java_connection_script” on page 266

“Methods” [MobiLink Synchronization User’s Guide,page 234]

Example The following example is taken from the
Samples\MobiLink\JavaAuthenticationsample. It assigns the
empDownloadCursor method of the CustEmpScripts class to the
download_cursor event for the table emp.

call ml_add_java_table_script(’ver1’, ’emp’,
’download_cursor’,’CustEmpScripts.empDownloadCursor’)

268

Chapter 5. Stored Procedures

Client event-hook procedures
The following stored procedures provide the interface for customizing
synchronization at Adaptive Server Anywhere clients.

Notes ♦ Do not perform any COMMIT or ROLLBACK operations in event-hook
procedures. The procedures are executed on the same connection as the
synchronization, and a COMMIT or ROLLBACK may interfere with
synchronization.

♦ Do not define more than one hook with the same name. If more than one
hook with the same name is created (say by different users), then which
hook is called is undefined.

♦ Hook procedures must be created by a user with DBA authority.

♦ If a *_begin hook executes successfully, the corresponding *_end hook is
called regardless of any error that occurs afterwards. If the *_begin hook
is not defined, but you have defined an *_end hook, then the *_end hook
is called unless an error occurs prior the point in time where the *_begin
hook would normally be called.

☞ For more information about using client event hooks, see
“Customizing the client synchronization process”[MobiLink
Synchronization User’s Guide,page 194].

The #hook_dict table Immediately before a hook is called, dbmlsync creates the #hook_dict table
in the remote database, using the following CREATE statement. The #
before the table name means that the table is temporary.

CREATE TABLE #hook_dict(
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL)

dbmlsync uses the #hook_dict table to pass values to hook functions, and
hook functions use the #hook_dict table to pass values back to dbmlsync.

For example, for the following dbmlsync command line,

dbmlsync -c ’dsn=MyDsn’ -n pub1,pub2 -u MyUser

when the sp_hook_dbmlsync_abort hook is called, the #hook_dict table will
contain the following rows:

Name Value

publication_0 pub1

269

Name Value

publication_1 pub2

MobiLink user MyUser

Abort synchroniza-
tion

false

Your abort hook can retrieve values from the #hook_dict table and use them
to customize behavior. For example, to retrieve the MobiLink user you
would use a SELECT statement like this:

SELECT value
FROM #hook_dict
WHERE name = ’MobiLink user’

In/out parameters can be updated by your hook to modify the behavior of
dbmlsync. For example, your hook could instruct dbmlsync to abort
synchronization by updating the abort synchronization row of the table using
a statement like this:

UPDATE #hook_dict
SET value=’true’
WHERE name=’abort synchronization’

The description of each hook lists the rows in the #hook_dict table.

sp_hook_dbmlsync_abort

Function Use this stored procedure to cancel the synchronization process; or to log
exit codes.

Rows in #hook_dict table

270

Chapter 5. Stored Procedures

Name Values Description

abort synchronization
(in|out)

True | False If you set the abort synchroniza-
tion row of the #hook_dict table
to true, then dbmlsync terminates
immediately after the event.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

return code (in) number When abort synchronization is set
to TRUE, you can use this value to
set the return code for the aborted
synchronization. 0 indicates a
successful synchronization. Any
other number indicates that the
synchronization failed.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at dbmlsync startup, and then
again after each synchronization delay that is caused by the
sp_hook_dbmlsync_delay hook.

If the hook requests an abort by setting the abort synchronization value to
true, the exit code is passed to the sp_hook_dbmlsync_process_exit_code
hook. If no sp_hook_dbmlsync_process_exit_code hook is defined, the exit
code is used as the exit code for the program.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

“sp_hook_dbmlsync_process_return_code” on page 289

Examples The following procedure prevents synchronization during a scheduled
maintenance hour between 19:00 and 20:00 each day.

271

create procedure sp_hook_dbmlsync_abort()
begin

declare down_time_start time;
declare is_down_time varchar(128);
set down_time_start=’19:00’;
if abs(datediff(hour,down_time_start,now(*))) < 1
then

set is_down_time=’true’;
else

set is_down_time=’false’;
end if;
UPDATE #hook_dict
SET value = is_down_time
WHERE name = ’abort synchronization’

end

Suppose you have an abort hook that may abort synchronization for one of
two reasons. One of the reasons indicates normal completion of
synchronization, so you want dbmlsync to have an exit code of 0. The other
reason indicates an error condition, so you want dbmlsync to have a
non-zero exit code. You could achieve this with an
sp_hook_dbmlsync_abort hook defined as follows.

BEGIN
IF [condition that defines the normal abort case] THEN

UPDATE #hook_dict SET value = ’0’ WHERE name = ’return
code’;

UPDATE #hook_dict SET value = ’TRUE’ WHERE name = ’abort
synchronization’;

ELSEIF [condition that defines the error abort case] THEN
UPDATE #hook_dict SET value = ’1’ WHERE name = ’return

code’;
UPDATE #hook_dict SET value = ’TRUE’ WHERE name = ’abort

synchronization’;
END IF;
END;

sp_hook_dbmlsync_begin

Function Use this stored procedure to add custom actions at the beginning of the
synchronization process.

Rows in #hook_dict table

272

Chapter 5. Stored Procedures

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at the beginning of the
synchronization process.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_delay

Function Use this stored procedure to control when synchronization takes place.

Rows in #hook_dict table

273

Name Values Description

delay duration (in|out) number of
seconds

If the procedure sets thedelay du-
ration value to zero, then dbml-
sync synchronization proceeds. A
non-zerodelay_duration value
specifies the number of seconds
before the delay hook is called
again.

maximum accumu-
lated delay(in|out)

number of
seconds

The maximum accumulated delay
specifies the maximum number
of seconds delay before each
synchronization. Dbmlsync keeps
track of the total delay created
by all calls to the delay hook
since the last synchronization. If
no synchronization has occurred
since dbmlsync started running,
the total delay is calculated from
the time dbmlsync started up.
When the total delay exceeds the
value of maximum accumulated
delay, synchronization begins
without any further calls to the
delay hook.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called before
sp_hook_dbmlsync_beginat the beginning of the synchronization process.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

Example The following procedure delays synchronization during a scheduled

274

Chapter 5. Stored Procedures

maintenance hour between 19:00 and 20:00 each day.

create procedure sp_hook_dbmlsync_delay()
begin

declare down_time_start time;
declare is_down_time varchar(128);
set down_time_start=’19:00’;
if abs(datediff(minute,down_time_start,now(*))) <
60 then

set is_down_time=’10’;

else
set is_down_time=’0’;

end if;
UPDATE #hook_dict
SET value = is_down_time
WHERE name = ’delay duration’

end

sp_hook_dbmlsync_download_begin

Function Use this stored procedure to add custom actions at the beginning of the
download stage of the synchronization process.

Rows in #hook_dict table

Name Values Description

publication_n
(in)

publication
name

The publications being synchronized,
wheren is an integer. There is one
publication_n entry for each publica-
tion being uploaded.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you are
synchronizing.

script version
(in)

script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at the beginning of the
download stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_download_com_error

Function Use this stored procedure to add custom actions when communications

275

errors occur while reading the download stream sent by the MobiLink
synchronization server.

Rows in #hook_dict table

Name Values Description

table name(in) table name The table to which operations
were being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is invoked when a communication error
is detected during the download phase of synchronization. The download is
then terminated.

This procedure executes on a separate connection, so that failures can be
logged. Otherwise, the action of logging would be rolled back along with the
synchronization actions. If dbmlsync cannot establish a separate connection,
the procedure is not called.

By default on Windows CE devices, synchronization tables are locked in
exclusive mode, which means that this hook cannot successfully execute if it
requires access to any of the synchronization tables. It also cannot execute if
it needs to access synchronization tables and you set the dbmlsync extended
option LockTables to EXCLUSIVE. For more information, see“LockTables
(lt) extended option” on page 55.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_download_end

Function Use this stored procedure to add custom actions at the end of the download
stage of the synchronization process.

276

Chapter 5. Stored Procedures

Rows in #hook_dict table

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called at the end of the download
stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_download_fatal_sql_error

Function Take action when a synchronization download is about to be rolled back
because of a database error.

Rows in #hook_dict table

277

Name Values Description

table name(in) table name The table to which operations
were being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

SQL error code (in) SQL error
code

Identifies the SQL error code
returned by the database when the
operation failed.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately before a
synchronization download is rolled back because of a database error. This
occurs whenever an SQL error is encountered that cannot be ignored, or
when the sp_hook_dbmlsync_download_SQL_error hook has already been
called and has chosen not to ignore the error.

This procedure executes on a separate connection, so that failures can be
logged. Otherwise, the action of logging would be rolled back along with the
synchronization actions. If dbmlsync cannot establish a separate connection,
the procedure is not called.

By default on Windows CE devices, synchronization tables are locked in
exclusive mode, which means that this hook cannot successfully execute if it
requires access to any of the synchronization tables. It also cannot execute if
it needs to access synchronization tables and you set the dbmlsync extended
option LockTables to EXCLUSIVE. For more information, see“LockTables
(lt) extended option” on page 55.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

“sp_hook_dbmlsync_download_sql_error” on page 282

278

Chapter 5. Stored Procedures

sp_hook_dbmlsync_download_log_ri_violation

Function Logs referential integrity violations in the download process.

Rows in #hook_dict table

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Foreign key table(in) table name The table containing the foreign
key column for which the hook is
being called.

Primary key table (in) table name The table referenced by the for-
eign key for which the hook is
being called.

Role name(in) role name The role name of the foreign key
for which the hook is being called.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description A download RI violation occurs when rows in the download stream violate
foreign key relationships on the remote database. This hook allows you to
log RI violations as they occur so that you can investigate their cause later.

After the download is complete, but before it is committed, dbmlsync checks
for RI violations. If it finds any, it identifies a foreign key that has an RI
violation and calls sp_hook_dbmlsync_download_log_ri_violation (if it is
implemented). It then calls sp_hook_dbmlsync_download_ri_conflict (if it is
implemented). If there is still a conflict, dbmlsync deletes the rows that
violate the foreign key constraint. This process is repeated for remaining
foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that
are currently being synchronized. If there are RI violations involving tables
that are not being synchronized, this hook is not called and the
synchronization fails.

This hook is called on a separate connection from the one that dbmlsync

279

uses for the download. The connection used by the hook has an isolation
level of 0 so that the hook can see the rows that have been applied from the
download stream that are not yet committed. The actions of the hook are
committed immediately after it completes so that changes made by this hook
will be preserved regardless of whether the download stream is committed or
rolled back.

By default on Windows CE devices, synchronization tables are locked in
exclusive mode, which means that this hook cannot successfully execute if it
requires access to any of the synchronization tables. It also cannot execute if
it needs to access synchronization tables and you set the dbmlsync extended
option LockTables to EXCLUSIVE. For more information, see“LockTables
(lt) extended option” on page 55.

Do not attempt to use this hook to correct RI violation problems. It should
be used for logging only. Use sp_hook_dbmlsync_download_ri_violation to
resolve RI violations.

See also “sp_hook_dbmlsync_download_ri_violation” on page 280

sp_hook_dbmlsync_download_ri_violation

Function Allows you to resolve referential integrity violations in the download
process.

Rows in #hook_dict table

280

Chapter 5. Stored Procedures

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

Foreign key table(in) table name The table containing the foreign
key column for which the hook is
being called.

Primary key table (in) table name The table referenced by the for-
eign key for which the hook is
being called.

Role name(in) role name The role name of the foreign key
for which the hook is being called.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description A download RI violation occurs when rows in the download stream violate
foreign key relationships on the remote database. This hook allows you to
attempt to resolve RI violations before dbmlsync deletes the rows that are
causing the conflict.

After the download is complete, but before it is committed, dbmlsync checks
for RI violations. If it finds any, it identifies a foreign key that has an RI
violation and calls sp_hook_dbmlsync_download_log_ri_violation (if it is
implemented). It then calls sp_hook_dbmlsync_download_ri_conflict (if it is
implemented). If there is still a conflict, dbmlsync deletes the rows. This
process is repeated for remaining foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that
are currently being synchronized. If there are RI violations involving tables
that are not being synchronized, this hook is not called and the
synchronization fails.

This hook is called on the same connection that dbmlsync uses for the
download. This hook should not contain any explicit or implicit commits,
because they may lead to inconsistent data in the database. The actions of
this hook are committed or rolled back when the download stream is
committed or rolled back.

Unlike other hook actions, the operations performed during this hook are not

281

uploaded during the next synchronization.

See also “sp_hook_dbmlsync_download_log_ri_violation” on page 279

sp_hook_dbmlsync_download_sql_error

Function Handle database errors reading the download stream sent by the MobiLink
synchronization server.

Rows in #hook_dict table

Name Values Description

table name(in) table name The table to which operations
were being applied when the error
occurred. The value is an empty
string if dbmlsync is unable to
identify the table.

continue (in|out) True|False Indicates whether the error should
be ignored and synchronization
should continue. This parameter
should be set totrue to ignore
the error and continue, orfalse
to call the sp_hook_dbmlsync_-
download_fatal_sql_error hook
and stop synchronization. When
true is returned in this field the
operation that caused the SQL
error is lost.

SQL error code (in) SQL error
code

Identifies the SQL error code
returned by the database when the
operation failed.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is invoked when a database error is
detected during the download phase of synchronization. The procedure is

282

Chapter 5. Stored Procedures

only invoked for errors where it is possible to ignore the error and continue
with synchronization. For fatal errors, the
sp_hook_dbmlsync_download_fatal_SQL_error procedure is called.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

“sp_hook_dbmlsync_download_fatal_sql_error” on page 277

sp_hook_dbmlsync_download_table_begin

Function Use this stored procedure to add custom actions immediately before each
table is downloaded.

Rows in #hook_dict table

Name Values Description

table name(in) table name The table to which operations are about
to be applied.

publication_n
(in)

publication
name

The publications being synchronized,
wheren is an integer. There is one pub-
lication_n entry for each publication
being uploaded.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you are
synchronizing.

script version
(in)

script version
name

The MobiLink script version to be used
for the synchronization.

Description If a procedure of this name exists, it is called for each table immediately
before downloaded operations are applied to that table. Actions of this
procedure are committed or rolled back when the download stream is
committed or rolled back.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_download_table_end

Function Use this stored procedure to add custom actions immediately after each table
is downloaded.

Rows in #hook_dict table

283

Name Values Description

table name(in) table name The table to which operations
have just been applied.

delete count(in) number of
rows

The number of rows in this table
deleted by the download stream.

upsert count (in) number of
rows

The number of rows in this ta-
ble updated or inserted by the
download stream.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately after all
operations in the download stream for a table have been applied.

Actions of this procedure are committed or rolled back when the download
stream is committed or rolled back.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_end

Function Use this stored procedure to add custom actions immediately before
synchronization is complete.

Rows in #hook_dict table

284

Chapter 5. Stored Procedures

Name Values Description

restart (in|out) True|False If set to true then, instead of
shutting down, dbmlsync begins
a new synchronization subject to
the same scheduling parameters
that applied to the synchronization
it just completed. If the field is
false (the default) then dbmlsync
shuts down or restarts according
to its command line arguments.

exit code(in) number If set to anything other than zero
(the default), this represents a
synchronization error.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

upload status(in) retry | com-
mitted | failed

Specifies the status returned by
the MobiLink synchronization
server when dbmlsync attempted
to verify receipt of the upload
stream.

retry The MobiLink synchro-
nization server and dbmlsync had
different values for the log offset
from which the upload stream
should start. The upload stream
was not committed by the Mo-
biLink synchronization server.
The dbmlsync utility will attempt
to send another upload stream
starting from a new log offset.

committed The upload stream
was received by the MobiLink
synchronization server, and com-
mitted.

failed The MobiLink synchro-
nization server did not commit the
upload stream.

285

Name Values Description

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called as the last event during
synchronization.

Actions of this procedure are committed immediately after execution.

There are cases where dbmlsync never terminates after synchronizing the
first publication, so the second will never be synchronized:

If an sp_hook_dbmlsync_end hook is defined so that the hook always sets
the restart parameter to true, and you specify multiple publications on the
dbmlsync command line in the form -n pub1, -n pub2, etc., then dbmlsync
repeatedly synchronizes the first publication and never synchronizes the
second.

See also “Customizing the client synchronization process”[MobiLink Synchronization
User’s Guide,page 194]

“Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_log_rescan

Function Use this stored procedure to programmatically decide when a rescan is
required.

Rows in #hook_dict table

286

Chapter 5. Stored Procedures

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

discarded storage(in) number The number of bytes of discarded
memory after the last synchro-
nization.

rescan(in|out) True|False If set to True by the hook, dbml-
sync performs a complete rescan
before the next synchronization.
On entry, this value is set to False.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description

When no other condition has been met that would force a rescan, this hook is
called immediately after the sp_hook_dbmlsync_end hook. In some cases,
this hook may be called even when dbmlsync is not hovering, but in these
cases, return values from the hook are ignored.

See also “HoverRescanThreshold (hrt) extended option” on page 52

sp_hook_dbmlsync_logscan_begin

Function Use this stored procedure to add custom actions immediately before the
transaction log is scanned for upload.

Rows in #hook_dict table

287

Name Values Description

starting log offset_n
(in)

number The log offset value where scan-
ning is to begin. There is one
value for each publication being
uploaded.

log scan retry (in) True|False If this is the first time the trans-
action log has been scanned for
this synchronization, the value is
false; otherwise it is true. The log
is scanned twice when the Mo-
biLink synchronization server and
dbmlsync have different infor-
mation about where the scanning
should begin.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately before dbmlsync
scans the transaction log to assemble the upload stream.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_logscan_end

Function Use this stored procedure to add custom actions immediately after the
transaction log is scanned for upload.

Rows in #hook_dict table

288

Chapter 5. Stored Procedures

Name Values Description

ending log offset(in) number The log offset value where scan-
ning ended.

starting log offset_n
(in)

number The log offset value where scan-
ning began.

log scan retry (in) True|False If this is the first time the trans-
action log has been scanned for
this synchronization, the value is
false; otherwise it is true. The log
is scanned twice when the Mo-
biLink synchronization server and
dbmlsync have different infor-
mation about where the scanning
should begin.

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately after dbmlsync
has scanned the transaction log to assemble the upload stream.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_process_return_code

Function Use this stored procedure to manage return codes.

Rows in #hook_dict table

Name Values Description

publication_n (in) publication
name

The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for
each publication being uploaded.

289

Name Values Description

MobiLink user (in) MobiLink
user name

The MobiLink user for which you
are synchronizing.

fatal error (in) True|False True when the hook is called
because of an error that will cause
dbmlsync to terminate.

aborted synchroniza-
tion (in)

True|False True when the hook is called be-
cause of an abort request from the
sp_hook_dbmlsync_abort hook.

return code (in) number The return code from the most
recent synchronization attempt.
0 indicates a successful syn-
chronization. Any other value
indicates that the synchroniza-
tion failed. This value can be
set by sp_hook_dbmlsync_abort
when that hook is used to abort
synchronization.

last return code (in) number The value stored in thenew re-
turn code row of the #hook_dict
table the last time this hook was
called, or 0 if this is the first call
to the hook.

new return code
(in|out)

number The desired return code for the
process. When dbmlsync exits,
dblmsync’sreturn code is the
value stored in this row by the last
call to the hook. The value must
be -32768 to 32767.

script version (in) script version
name

The MobiLink script version to be
used for the synchronization.

Description A dbmlsync session can run multiple synchronizations when you use the -n
option, when you use scheduling, or when you use the restart parameter in
the end_hook. In these cases, if one or more of the synchronizations fail, the
default return code does not indicate which failed. Use this hook to define
the return code for the dbmlsync process based on the return codes from the
synchronizations. This hook can also be used to log return codes.

290

Chapter 5. Stored Procedures

Example Suppose that you run dbmlsync to perform five synchronizations and you
want the return code to indicate how many of the synchronizations failed,
with a return code of 0 indicating that there were no failures, a return code of
1 indicating that one synchronization failed, and so on. You can achieve this
by defining the sp_hook_dbmlsync_process_return_code hook as follows. In
this case, if three synchronizations fail, the new return code is 3.

BEGIN
DECLARE rc integer;

SELECT value INTO rc FROM #hook_dict WHERE name = ’return
code’;

IF rc <> 0 THEN
SELECT value INTO rc FROM #hook_dict WHERE name = ’last

return code’;
UPDATE #hook_dict SET value = rc + 1 WHERE name = ’new

return code’;
END IF;

END;

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

“sp_hook_dbmlsync_abort” on page 270

sp_hook_dbmlsync_schema_upgrade

Function Use this stored procedure to run a SQL script that revises your schema.

Rows in #hook_dict table

Name Values Description

publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

script version name of script ver-
sion

The script version that you are
synchronizing.

291

Name Values Description

drop hook (out) never | always | on
success

The values can be:

never - (the default) Do not drop
the sp_hook_dbmlsync_schema_-
upgrade hook from the database.

always - After attempting to run
the hook, ,drop the sp_hook_-
dbmlsync_schema_upgrade hook
from the database.

on success- If the hook runs
successfully, drop the sp_hook_-
dbmlsync_schema_upgrade hook
from the database. On success is
identical to always if the dbml-
sync -eh option is used, or the
dbmlsync extended option Ignore-
HookErrors is set to true.

script version
(in)

script version name The MobiLink script version to be
used for the synchronization.

Description This stored procedure is intended for making schema changes to deployed
remote databases. Using this hook for schema upgrades ensures that all
changes on the remote database are synchronized before the schema is
upgraded, which is required to ensure that the database will continue to be
able to synchronize. When this hook is being used you should not set the
dbmlsync extended option LockTables to off (LockTables is on by default).

During any synchronization where the upload was applied successfully and
acknowledged by MobiLink, this hook is called after the
sp_hook_dbmlsync_download_end hook and before the
sp_hook_dbmlsync_end hook. This hook is not called during download-only
synchronization or when a file-based download is being created or applied.

Actions performed in this hook are committed immediately after the hook
completes.

See also “Schema changes in remote databases”[MobiLink Synchronization User’s
Guide,page 100]

sp_hook_dbmlsync_upload_begin

Function Use this stored procedure to add custom actions immediately before the
transmission of the upload.

292

Chapter 5. Stored Procedures

Rows in #hook_dict table

Name Values Description

publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

script version
(in)

script version name The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately before dbmlsync
sends the upload stream.

Actions of this procedure are committed immediately after execution.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_upload_end

Function Use this stored procedure to add custom actions after dbmlsync has verified
receipt of the upload stream by the MobiLink synchronization server.

Rows in #hook_dict table

Name Values Description

failure cause(in) See range of val-
ues in Description,
below

The cause of failure of an up-
load. For more information, see
Description.

293

Name Values Description

upload status
(in)

retry | committed |
failed

Specifies the status returned by
the MobiLink synchronization
server when dbmlsync attempted
to verify receipt of the upload
stream.

retry The MobiLink synchro-
nization server and dbmlsync had
different values for the log offset
from which the upload stream
should start. The upload stream
was not committed by the Mo-
biLink synchronization server.
The dbmlsync utility will attempt
to send another upload stream
starting from a new log offset.

committed The upload stream
was received by the MobiLink
synchronization server, and com-
mitted.

failed The MobiLink synchro-
nization server did not commit the
upload stream.

publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

script version
(in)

script version name The MobiLink script version to be
used for the synchronization.

Description If a procedure of this name exists, it is called immediately after dbmlsync
has sent the upload stream and received confirmation of it from the
MobiLink synchronization server.

Actions of this procedure are committed immediately after execution.

The range of possible parameter values for the failure cause row in the
#hook_dict table includes:

♦ UPLD_ERR_COMMUNICATIONS_FAILURE A communication error
occurred.

294

Chapter 5. Stored Procedures

♦ UPLD_ERR_LOG_OFFSET_MISMATCH The upload failed because of
conflict between log offset stored on the remote and consolidated
databases.

♦ UPLD_ERR_GENERAL_FAILURE The upload failed for an unknown
reason.

♦ UPLD_ERR_INVALID_USERID_OR_PASSWORD The user ID or
password was incorrect.

♦ UPLD_ERR_USERID_OR_PASSWORD_EXPIRED The user ID or
password expired.

♦ UPLD_ERR_USERID_ALREADY_IN_USE The user ID was already in
use.

♦ UPLD_ERR_DOWNLOAD_NOT_AVAILABLE The upload was
committed on the consolidated but an error occurred that prevented
MobiLink from generating a download stream.

♦ UPLD_ERR_PROTOCOL_MISMATCH Dbmlsyncreceived unexpected
data from the MobiLink synchronization server.

♦ UPLD_ERR_SQLCODE_n Here,n is an integer. A SQL error occurred
in the consolidated database. The integer specified is the SQLCODE for
the error encountered.

See also “Synchronization event hook sequence”[MobiLink Synchronization User’s
Guide,page 194]

sp_hook_dbmlsync_validate_download_file

Function Use this hook to implement custom logic to decide if a download file can be
applied to the remote database.

Rows in #hook_dict table

Name Values Description

publication_n
(in)

publication name The publications being synchro-
nized, wheren is an integer. There
is one publication_n entry for each
publication being uploaded. The
n in publication_n and generation
number_n match.

MobiLink user
(in)

MobiLink user
name

The MobiLink user for which you
are synchronizing.

295

Name Values Description

file last down-
load time (in)

The download file’s last download
time. (The download file contains
all rows that were changed be-
tween its last download time and
its next last download time.)

file next last
download time
(in)

The download file’s next last
download time. (The download
file contains all rows that were
changed between its last download
time and its next last download
time.)

file creation time
(in)

The time when the download file
was created.

file generation
number_n (in)

There is one file generation num-
ber_n for each publication_n en-
try. Then in publication_n and
generation number_n match.

user data(in) The string specified with the dbml-
sync -be option when the down-
load file was created.

apply file (in|out) True|False If true (the default), the down-
load file will be applied only if it
passes dbmlsync’s other validation
checks. If false, the download file
will not be applied to the remote
database.

check generation
number (in|out)

True|False If true (the default), dbmlsync
only applies the download file if
the generation numbers stored in
the file match those in the remote
database. If false, dbmlsync will
apply the file even if the generation
numbers do not match.

296

Chapter 5. Stored Procedures

Name Values Description

setting genera-
tion number (in)

True|False True if the -bg switch was used
when the download file was cre-
ated. If -bg was used, the gen-
eration numbers on the remote
database are updated from the
download file and normal gen-
eration number checks are not
performed.

Description Use this stored procedure to implement custom checks to decide if a
download file can be applied.

If you want to compare the generation numbers or timestamps contained in
the file with those stored in the remote database, they can be queried from
the SYSSYNC and SYSPUBLICATION tables.

This hook is called when the -ba option is specified. It is called after the
sp_hook_dbmlsync_upload_end hook and before the
sp_hook_dbmlsync_download_begin hook.

The actions of this hook are committed immediately after it completes.

See also “-be option” on page 41

“-bg option” on page 41

“File-Based Downloads”[MobiLink Synchronization User’s Guide,page 117]

297

CHAPTER 6

Utilities

About this chapter This chapter describes the MobiLink utility programs that are required to
build and synchronize UltraLite applications.

☞ For information about other Adaptive Server Anywhere utilities, see
“Database Administration Utilities”[ASA Database Administration Guide,
page 455].

Contents Topic: page

ActiveSync provider installation utility 300

MobiLink stop utility 303

MobiLink client database extraction utility (deprecated) 304

MobiLink user authentication utility 308

Certificate reader utility 310

Certificate generation utility 311

299

ActiveSync provider installation utility
Installs a MobiLink provider for ActiveSync, or registers and installs
UltraLite applications on Windows CE devices.

Syntax dbasinst [options] [[src] dst name class [args]]

Options Description

-d Disable the application on creation.

-k path Specify the location of the desktop providerdbasdesk.dll.

-n Register the application but do not copy it to the device.

-u Uninstall the MobiLink ActiveSync provider.

-v path Specify the location of the device providerdbasdev.dll.

Args Description

src The source filename and path for an application.

dst The destination filename and path for an application.

name The name of the application.

class The registered Windows class name of the application.

args Command line arguments to use when ActiveSync starts
the application.

Description This utility installs a MobiLink provider for ActiveSync. The provider
includes both a component that runs on the desktop (dbasdesk.dll) and a
component that is deployed to the Windows CE device (dbasdev.dll). The
dbasinst utility makes a registry entry pointing to the current location of the
desktop provider; and copies the device provider to the device.

If additional arguments are supplied, thedbasinstutility can also be used to
register and install UltraLite applications onto a Windows CE device.
Alternatively, you can register and install UltraLite applications using the
ActiveSync software.

Subject to licensing requirements, you may supply this application, together
with the desktop and device components to end users, so that they can
prepare their copies of your application for use with ActiveSync.

You must be connected to a remote device to install the ActiveSync provider.

☞ For complete instructions on using the ActiveSync provider installation
utility, see “Installing the MobiLink provider for ActiveSync”[MobiLink

300

Chapter 6. Utilities

Synchronization User’s Guide,page 223], and “Registering applications for use
with ActiveSync” [MobiLink Synchronization User’s Guide,page 224].

Options -d By default, an application registered by dbasinst is enabled, meaning
that it is automatically synchronized when ActiveSync begins a
synchronization. With the -d option, the application is still registered, but it
is unchecked in the ActiveSync MobiLink settings dialog.

-k The path to the desktop providerdbasdesk.dll. By default the file is
looked for in the orwin64 subdirectory of your SQL Anywhere directory.
End users (who generally do not have the full SQL Anywhere install) may
need to specify -k when installing the MobiLink ActiveSync provider.

-n In addition to installing the MobiLink ActiveSync provider, register an
application but do not copy it to the device. This is appropriate if the
application includes more than one file (for example, if it is compiled to use
the UltraLite runtime library DLL rather than a static library) or if you have
an alternative method of copying the application to the device.

-u Unregister all applications that have been registered for use with the
MobiLink ActiveSync provider and uninstall the MobiLink ActiveSync
provider. No files are deleted from the desktop machine or the device by this
operation. If the device is not connected to the desktop, an error is reported.

-v The path to the device providerdbasdev.dll. By default the file is looked
for in a platform-specific directory under theCE subdirectory of your
SQL Anywhere directory. End users (who generally do not have the full
SQL Anywhere install) may need to specify -v when installing the
MobiLink ActiveSync provider.

Arguments src The source filename and path for copying an application to the device.
Supply this parameter only if you are registering an application and copying
it to the device: do not supply the parameter if you use the -n option.

dst The destination filename and path on the device for an application.

name The application name. This is the name by which ActiveSync refers
to the application.

class The registered Windows class name for the application.

args Any command line arguments to be used when ActiveSync starts the
application.

Examples The following command installs the MobiLink provider for ActiveSync
using default arguments. It does not register an application. The device must
be connected to your desktop for the installation to succeed.

dbasinst

301

The following command uninstalls the MobiLink provider for ActiveSync.
The device must be connected to your desktop for the uninstall to succeed:

dbasinst -u

The following command installs the MobiLink provider for ActiveSync, if it
is not already installed, and registers the applicationmyapp.exe. It also
copies thec:\My Files\myapp.exefile to \Program Files\myapp.exeon the
device. The -p -x arguments are command line options for myapp.exe when
started by ActiveSync. The command must be entered on a single line:

dbasinst "C: \My Files \myapp.exe" " \Program Files \myapp.exe"
"My Application" MYAPP -p -x

See also “Using ActiveSync synchronization”[MobiLink Synchronization User’s Guide,
page 189]

“Installing the MobiLink provider for ActiveSync”[MobiLink Synchronization
User’s Guide,page 223]

“Registering applications for use with ActiveSync”[MobiLink Synchronization
User’s Guide,page 224]

“Synchronization for UltraLite Applications”[UltraLite Database User’s
Guide,page 143]

“ActiveSync synchronization stream parameters”[UltraLite Database User’s
Guide,page 179]

302

Chapter 6. Utilities

MobiLink stop utility
Stops the MobiLink synchronization server on the local machine.

Syntax dbmlstop [options] [server-name]

Option Description

-f Forced shutdown. Use if a hard shutdown does
not work.

-h Hard shutdown. MobiLink stops all synchro-
nizations and exits. Some remotes may report
an error.

-q Quiet mode. Suppresses the banner.

-t time Soft shutdown, with a hard shutdown done
after the specified time.time is a number
followed by D, H, M, or S (for days, hours,
minutes and seconds). For example,-t 10m

specifies that the server should be shut down in
10 minutes or when current synchronizations
complete, whichever is sooner. D, H, M, and S
are not case sensitive.

-w Waits for the MobiLink synchronization server
to shut down before returning from the com-
mand.

Parameters Server-name If the MobiLink synchronization server is started using the
-zs option, it must be shut down by specifying the same server name.

☞ For more information, see“-zs option” on page 30.

Description By default (if none of -f, -h or -t are specified), dbmlstop does a soft
shutdown. This means that it stops accepting new connections and exits
when the current synchronizations are complete.

303

MobiLink client database extraction utility
(deprecated)

Creates an Adaptive Server Anywhere client database using another
Adaptive Server Anywhere database as a template. This utility is deprecated.
For an alternative way to create client databases, see “Creating a remote
database”[MobiLink Synchronization User’s Guide,page 168].

Syntax mlxtract [additional-options] directory site-name

Option Description

-ac ”keyword=value;
. . .”

Connect to the database specified in the connect
string to do the reload.

-al filename Log file name for this new database.

-an filename Creates a database file with the same settings as
the database being unloaded and automatically
reloads it.

-c ”keyword=value;
. . .”

Supply database connection parameters.

-id Extract schema definition and data.

-it Extract triggers.

-j count Iteration count for view-creation statements.

-l level Perform all extraction operations at specified isola-
tion level.

-o file Output messages to file.

-p character Escape character.

-q Operate quietly: do not print messages or show
windows.

-r file Specify name of generated reload Interactive SQL
command file (default “reload.sql”).

-s7 Use Adaptive Server Anywhere version 7 syntax for
creating synchronization definitions.

-u Unordered data.

-v Verbose messages.

-x Use external table loads.

304

Chapter 6. Utilities

Option Description

-xh Exclude procedure hooks.

-xf Exclude foreign keys.

-xp Exclude stored procedures.

-xv Exclude views.

-y Overwrite command file without confirmation.

directory The directory to which the files are written. This
option is not needed if you use-an or -ac.

site-name Specify which client database to generate.

Description mlxtract is the MobiLink extraction utility for Adaptive Server Anywhere
client databases. It is run against an Adaptive Server Anywhere reference
database and creates a new client database or a command file for an Adaptive
Server Anywhere client database, depending on the chosen options.

The command line extraction utility creates a command file and a set of
associated data files. The command file can be run against a newly
initialized Adaptive Server Anywhere database to create the database objects
and load the data for the client database.

By default, the command file is namedreload.sql.

Options Reload the data to an existing database (-ac) You can combine the
operation of extracting a database and reloading the results into an existing
database using this option.

For example, the following command (which should be entered all on one
line) loads a copy of the data for the field_user subscriber into an existing
database file namednewdemo.db:

mlxtract -c "uid=DBA;pwd=SQL;dbf=asademo.db" -ac
"uid=DBA;pwd=SQL;dbf=newdemo.db" field_user

If you use this option, no copy of the data is created on disk, so you do not
specify an unload directory on the command line. This provides greater
security for your data, but at some cost for performance.

Reload the data to a new database (-an) You can combine the operations
of extracting a database, creating a new database, and loading the data using
this option.

For example, the following command (which should be entered all on one
line) creates a new database file namedasacopy.dband copies the schema

305

and data for the field_user subscriber ofasademo.dbinto it:

mlxtract -c "uid=DBA;pwd=SQL;dbf=asademo.db" -an asacopy.db
field_user

If you use this option, no copy of the data is created on disk, so you do not
specify an unload directory on the command line. This provides greater
security for your data, but at some cost for performance.

Connection parameters (-c) A set of connection parameters, in a string.

♦ mlxtract connection parameters The user ID should have DBA
authority to ensure that the user has permissions on all the tables in the
database.

For example, the following statement (which should be typed on one line)
extracts a database for MobiLink user ID joe_remote from the ASADemo
database running on the sample_server server, connecting as user ID
DBA with password SQL. The data is unloaded into thec:\extract
directory.

mlxtract -c "eng=sample_server;dbn=sademo;
uid=DBA;pwd=SQL" c: \extract joe_remote

Extract both schema definition and data (-id) By default, only the
schema is extracted. Such a database can be initialized with data upon the
first connection to a MobiLink synchronization server. This option provides
the option of extracting the initial set of data from the reference database.

Extract triggers (-it) By default, triggers are not extracted. This option
provides causes triggers present in the reference database to be extracted.

Iteration count for views (-j) If there are nested views in the consolidated
database, this option specifies the maximum number of iterations to use
when extracting the views.

Perform extraction at a specified isolation level (-l) The default setting is
an isolation level of zero. If you are extracting a database from an active
server, you should run it at isolation level 3 to ensure that data in the
extracted database is consistent with data on the server. Increasing the
isolation level may result in large numbers of locks being used by the
extraction utility, and may restrict database use by other users.

Output messages to file (-o) Outputs the messages from the extraction
process to a file for later review.

Escape character (-p) The default escape character (\) can be replaced by
another character using this option.

Operate quietly (-q) Display no messages except errors.

306

Chapter 6. Utilities

Reload filename (-r) The default name for the reload command file is
reload.sqlin the current directory You can specify a different file name with
this option.

Use ASA v7 syntax (-s7) This option is useful when you are using an
Adaptive Server Anywhere version 8 or higher consolidated database along
with Adaptive Server Anywhere version 7 remote databases. For example,
create a version 9 consolidated database, extract the remote databases using
the -s7 option, and deploy the reload.sql files to the remote.

Output the data unordered (-u) By default the data in each table is
ordered by primary key. Unloads are quicker with the -u option, but loading
the data into the client database is slower.

Verbose mode (-v) The name of the table being unloaded and the number
of rows unloaded are displayed. The SELECT statement used is also
displayed.

Use external loads (-x) In the reload script, the default is to use the LOAD
TABLE statement to load the data into the database. If you choose to use
external loads, the Interactive SQL INPUT statement is used instead. The
LOAD TABLE statement is faster than INPUT.

INPUT takes the path of the data files relative to the client, while LOAD
TABLE takes the path relative to the server.

Exclude foreign key definitions (-xf) You can use this if the client
database contains a subset of the consolidated database schema, and some
foreign key references are not present in the client database.

Exclude stored procedure (-xp) Do not extract stored procedures from
the database.

Exclude views (-xv) Do not extract views from the database.

Operate without confirming actions (-y) Without this option, you are
prompted to confirm the replacement of an existing reloadcommand file.

307

MobiLink user authentication utility
Registers MobiLink users at the consolidated database. For Adaptive Server
Anywhere remotes, the users must have previously been created at the
remote databases with the CREATE SYNCHRONIZATION USER
statement.

Syntax dbmluser [options] -c " connection-string"
{ -f file | -u user [-p password] }

Option Description

-c “keyword=value;. . . ” Supply database connection parameters.
The connection string must give the utility
permission to connect to the consolidated
database using an ODBC data source. This
parameter is required.

-d Deletes the user name(s) specified by -f or
-u.

-dl Display messages in the window or on the
command line and also in the log file, if
specified.

-f filename Read the user names and passwords from
the specified file. The file should be a text
file containing one user name and password
pair on each line, separated by white space.
You must specify either -f or -u.

-o filename Log output messages to the specified file.

-ossize Limit the size of the output file. Thesize
is the maximum file size for logging output
messages, specified in bytes. Use the suffix
k or m to specify units of kilobytes or
megabytes, respectively. By default, there
is no size limit. The minimum size limit is
10 kb.

-ot filename Truncate the log file and then append output
messages to it. The default is to send output
to the screen.

-p password Password to associate with the user. This
option can only be used with -u.

308

Chapter 6. Utilities

Option Description

-pc collation-id Supply a database collation ID for char-
acter set translation of the user name and
password. This should be one of the Adap-
tive Server Anywhere collation labels such
as those listed in “Initialization utility
options” [ASA Database Administration
Guide, page 487]. For machines using
single-byte character sets the default is
1252LATIN1. For machines using multi-
byte character sets, the default is932JPN.

-u ml_username Specify the user name to add (or delete,
if used with -d). Only one user can be
specified on a single command line. This
option is used with -p if passwords are
being used. You must specify either -f or
-u.

Description Given a user/password pair, the dbmluser utility first attempts to add the
user. If the user has already been added to the consolidated database, it
attempts to update the password for that user.

There are alternative ways to register user names in the consolidated
database:

♦ Use Sybase Central.

♦ Specify the -zu+ command line option with dbmlsrv9. In this case, any
existing MobiLink users that have not been added to the consolidated
database are added when they first synchronize.

The MobiLink user must already exist in a remote database. To add users at
the remote, you have the following options:

♦ For Adaptive Server Anywhere remotes, set the name with CREATE
SYNCHRONIZATION USER and synchronize with that user name.

♦ For UltraLite remotes, you can either use the user_name field of the
ul_synch_info structure; or in Java, use the SetUserName() method of the
ULSynchInfo class before synchronizing.

See also “Authenticating MobiLink Users”[MobiLink Synchronization User’s Guide,
page 103]

309

Certificate reader utility
Use thereadcertutility to display values within a certificate and validate the
chain of certificates.

Syntax readcert certificate-name

Description The certificate you specify can be elliptic-curve or RSA.

When synchronization occurs through an ECC_TLS or RSA_TLS
synchronization stream, the MobiLink synchronization server sends its
certificate to the client, as well as the certificate of the entity that signed it,
and so on up to a self-signed root. The client checks that the chain is valid
and that it trusts the root certificate in the chain.

This utility scans an X509 authentication certificate and displays the field
values. It then checks that the chain of certificates is valid. A validation error
is reported if any of the certificates in the chain have expired, are in the
wrong order, or are missing.

See also “Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337]

310

Chapter 6. Utilities

Certificate generation utility
Use the gencert utility to create a new elliptic-curve or RSA certificate, or to
sign a pre-generated certificate request.

☞ For more information about security of MobiLink synchronization, see
“Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337].

Syntax gencert [-c | -s] [-r] [-q]

Option Description

-c Generate a certificate authority certificate.

-q request-file Sign a pre-generated certificate request.

-r Generate a self-signed root certificate.

-s Generate a server identity certificate.

Description This utility creates a new X509 certificate. When first started, it prompts
whether you want to generate an elliptic-curve or RSA certificate.

If you are generating an elliptic-curve certificate, gencert generates an
elliptic-curve key pair. If you are generating an RSA certificate, it prompts
for a key size between 512 and 2028, and then creates a certificate using
RSA.

The gencert utility then requests values for the distinguished fields. These
fields include the country, state or province, locality, organization,
organizational unit, and common name, the serial number, and an expiry
date. It then requests the file name of a certificate that is to sign the new
certificate.

If no certificate name is supplied, the new certificate becomes a root
certificate. If a certificate file name is supplied, gencert reads and validates
the certificate chain and requests the name of the file that contains the
signer’s private key. It then requests the password for that private key.

Then the utility requests the password that is to protect the new private key.

This utility writes three different types of files. One file contains only the
new certificate. Another contains only the encrypted private key, and a third
file contains both the certificate and the encrypted private key.

Often, not all three files are needed. For example, if the certificate is to be a
certificate authority, used to sign other certificates, the file that contains only
the certificates is distributed as a trusted root certificate to clients. The file
containing the encrypted private key is stored securely. In this case, security

311

is improved by storing the private key and the certificate separately, so the
third file is not generated.

If, instead, the certificate is to identify a server, the encrypted private key
should be stored with the certificate, so the utility writes only the file that
contains both pieces of information.

If the signing certificate is not a root certificate, but is instead part of a chain,
gencertreads and validates the entire chain before issuing the new
certificate.

When generating a server identity certificate, the entire chain is always
saved. Otherwise, saving the entire chain is optional.

When signing a pre-generated certificate request, gencert only prompts for a
serial number, expiry date, the certificate and private key of the signer, and
an output file for the signed certificate.

Gencert can sign any request that is generated by the Certicom reqtool utility
or any other third party application that generates certificate requests in the
appropriate format, such as the Microsoft IIS Web server or the Netscape
iPlanet Web server. Following is an example of a certificate that is in the
appropriate format:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBqjCCARMCAQAwajELMAkGA1UEBhMCVDTALBgNVBAgTBHRlc3QxDTALBgNV
BAcTBHRlc3QxDTALBgNVBAoTBHRlc3QxDBgNVBAsTBHRlc3QxHzAdBgNVBAMT
Fm12YW5kZXJwLXBjLnN5YmFzZS5jb20wgDQYJKoZIhvcNAQEBBQADgY0AMIGJ
AoGBAKaD6al5MDIGYNGO1ctjAeFl6VSVglg1z1OEMILjyAW51zDMJolKFaZxc
PtGs0AlKbJH/1EHUeJ4kp7zGuyV4OipEw9NSxzza6mSKewsulR735CY8X07Z/
agfajNGRiYEC39/SD3+bCN7NkDn250xJ6Yxbfcf/1EUTNAgMBAAGgADANBgkq
hkiG9w0BAQQFAAOBgQAvgnKRtSVLEUFIQ/abo959UBf+ZDoZzUCxlvnkUjBrA
G/zVDu2A3rqazsrl7ihP0nRWnr+iFj+vK2Lg6jiFAzBxC/3w3fWYYJ6ImvodX
coYD3EuoXxWcKfiRq6AAB8SlJcdjntz8HXmWm2tNXVUIcXuEZ0OErANOPXQ==
-----END NEW CERTIFICATE REQUEST-----

Options -c Generate a certificate authority certificate. A certificate authority can be
used to sign other certificates. By default, generated certificates cannot be
used as certificate authorities.

-q Sign a pre-generated certificate request. You can specify either an
elliptic-curve or an RSA certificate to be signed.

-r Generate a root certificate. A root certificate is signed only by itself. The
default is to prompt for the name of a file that contains the certificate that is
to sign the new, generated certificate.

-s Generate a server identity certificate, used to identify a MobiLink
synchronization server, rather than a client. A server identity certificate
cannot be a certificate authority, so this option is incompatible with the -c

312

Chapter 6. Utilities

option.

See also “Transport-Layer Security”[MobiLink Synchronization User’s Guide,page 337]

Example The following example signs a certificate request calledcertreq.txt.

c: \>gencert -s -q certreq.txt
Certificate Generation Tool
Serial Number: 01
Certificate valid for how many years: 10
Enter file path of signer’s certificate: rsaroot.crt
Enter file path of signer’s private key: rsaroot.key
Enter password for signer’s private key: test
Enter file path to save certificate: testcert.crt
Save entire chain (y/n): y

313

CHAPTER 7

MobiLink System Tables

About this chapter This chapter describes the MobiLink administration tables.

Contents Topic: page

Introduction 316

315

Introduction
The MobiLink system tables store information about MobiLink users,
subscriptions, tables, scripts, and script versions. They are created when you
run the MobiLink setup scripts for your consolidated database, and are
updated as you use MobiLink. They are not like RDBMS system tables in
that you can alter them directly.

ml_table
table_id integer

ml_table_script
version_id integer

table_id integer
event varchar(128)

ml_script
script_id integer
script text
script_language varchar(128)

ml_script_version
version_id integer
name varchar(128)
description text

ml_subscription
user_id integer

publication_name varchar(128)
progress numeric(20,0)

ml_scripts_modified
last_modified datetime

ml_user
user_id integer
name varchar(128)
commit_state integer

ml_connection_script
version_id integer
event varchar(128)
script_id integer

script_id integer
name varchar(128)

progress numeric(20,0)
hashed_password binary(20)

subscription_id varchar(128)

last_upload_time
last_download_time

timestamp
timestamplast_upload_time

last_download_time
timestamp
timestamp

☞ For more information about how to create these tables, see “Setting up a
consolidated database”[MobiLink Synchronization User’s Guide,page 11].

The MobiLink system tables are stored in the consolidated database. Unlike
most system tables, you can modify them. However, except in rare
circumstances you should not alter them directly.

Adaptive Server Anywhere remote databases also have system tables. For
more information, see “System Tables”[ASA SQL Reference,page 611].
UltraLite databases do not have system tables.

Notes ♦ The following section shows details of the MobiLink system tables. In
some DBMSs, the data types are slightly different.

316

Chapter 7. MobiLink System Tables

♦ IBM DB2 UDB version 5.2 only supports column names and other
identifiers of 18 characters or less. In a DB2 5.2 consolidated database,
MobiLink system tables are truncated where necessary.

ml_connection_script

For a given script version, associates a script with a given event.

Row Description

version_id INTEGER. Primary key. The ver-
sion of the connection script. The
version_id column references the
version_id column of the ml_-
script_version table.

event VARCHAR(128). Primary key.
The event column stores the name
of the event that triggers the con-
nection script.

script_id INTEGER. Foreign key. The
script_id column references the
script_id column of the ml_script
system table. The text of the con-
nection script is stored in the ml_-
script system table.

ml_script

Stores the text of all scripts.

Row Description

script_id INTEGER. Primary key. The
script_id column stores a unique
integer that identifies the script.

script TEXT. The script column stores the
text of the script.

script_language VARCHAR(128). The script_-
language column stores the script-
ing language used for the script.
The scripting language can besql,
java, or dnet.

317

ml_script_version

Stores the name, ID and comment of script associated with each script
version.

Row Description

version_id INTEGER. Primary key. The
version_id column stores a unique
integer that identifies the version.

name VARCHAR(128). The name col-
umn stores the arbitrary name given
to the version.

description TEXT. The description column
stores the arbitrary description
given to the version. The descrip-
tion is not used by MobiLink, but
is useful for application-specific
comments. For example, you could
describe the purpose of a given
script version.

ml_scripts_modified

Stores the last time script tables were changed. MobiLink server checks this
table to determine if it must load new scripts.

Row Description

last_modified DATETIME. Primary key. The
last_modified column stores the last
time when the ml_script_version,
ml_script or ml_connection_script
system table was altered.

ml_subscription

Keeps track of the log offsets per subscription for Adaptive Server
Anywhere remote databases.

318

Chapter 7. MobiLink System Tables

Row Description

user_id INTEGER. Primary key. The
user_id column references the
user_id column of the ml_user
table. This is the ID of a user who
has subscribed to the publication.

subscription_id VARCHAR(128). Primary key.
The subscription_id is a num-
ber that is generated by Adaptive
Server Anywhere on the remote.

publication_name VARCHAR(128). Primary key.
The publication_name stores the
user-defined name for the publica-
tion.

progress NUMERIC(20,0). The progress,
also called the offset, refers to the
point in the remote transaction log
up to which all operations for the
subscription have been uploaded.
This column is used for version 8.0
and up databases. For version 7
databases, the progress is stored in
the ml_user table.

last_download_time TIMESTAMP. Indicates the last
time a download was applied to
the consolidated for a given user or
subscription. The default is January
1, 1900, 00:00:00.

last_upload_time TIMESTAMP. Indicates the last
time an upload was applied to the
consolidated for a given user or
subscription. The default is January
1, 1900, 00:00:00.

ml_table

Stores names of remote tables. This list includes any table marked as a
synchronized table in Sybase Central.

319

Row Description

table_id INTEGER. Primary key. The
table_id column stores a unique
integer identifying the table.

name VARCHAR(128). The name col-
umn stores the arbitrary name given
to the table.

ml_table_script

For a given script version, associates a table script with a given table and
event.

Row Description

version_id INTEGER. Primary key. The
version_id column references the
version_id column of the ml_-
script_version table.

table_id INTEGER. Primary key. The
table_id column references the
table_id column of the ml_table
system table.

event VARCHAR(128). Primary key.
The event column stores the name
of the event.

script_id INTEGER. The script_id column
references the script_id column of
the ml_script table. The script is
stored in the ml_script table.

ml_user

Stores all registered MobiLink users, including their password and their
synchronization state. The state is used only for UltraLite remotes or version
7 Adaptive Server Anywhere remotes.

320

Chapter 7. MobiLink System Tables

Row Description

user_id INTEGER. Primary key. The
user_id column stores a unique
integer identifying the user. This
value is only used internally by
MobiLink.

name VARCHAR(128). The name col-
umn stores the arbitrary name given
to the user.

commit_state INTEGER. The commit_state col-
umn stores the state.

progress NUMERIC(20,0). The progress,
also called the offset, refers to
the point in the transaction log
up to which all operations for
subscriptions have been uploaded
and acknowledged. This column
is used for version 7 databases.
For version 8.0 and up databases,
the progress is stored in the ml_-
subscription table.

hashed_password BINARY(20). The hashed_-
password column stores the Mo-
biLink user’s password in obfus-
cated form. If there is no password,
this value is NULL. (This is not
recommended.)

last_download_time TIMESTAMP. Indicates the last
time a download was applied to
the consolidated for a given user or
subscription. The default is January
1, 1900, 00:00:00.

last_upload_time TIMESTAMP. Indicates the last
time an upload was applied to the
consolidated for a given user or
subscription. The default is January
1, 1900, 00:00:00.

321

CHAPTER 8

DataType Conversions

About this chapter This chapter provides information about the conversion of data types that
must take place when a MobiLink synchronization server communicates
with a consolidated database that is not Adaptive Server Anywhere. The
following tables identify these conversions.

If you are writing synchronization scripts in .NET languages or in Java, you
may need to know how to map SQL data types to Java and .NET data types.
For more information, see “SQL-.NET data types”[MobiLink Synchronization
User’s Guide,page 261]and “SQL-Java data types”[MobiLink Synchronization
User’s Guide,page 233].

Note
Only supported data types are presented in this chapter.

Contents Topic: page

Sybase Adaptive Server Enterprise 324

IBM DB2 326

Oracle 328

Microsoft SQL Server 330

323

Sybase Adaptive Server Enterprise
The following table identifies how Adaptive Server Anywhere data types are
mapped to Adaptive Server Enterprise data types.

Adaptive Server Anywhere data

type

Adaptive Server Enterprise data

type

bit bit

tinyint tinyint

smallint smallint

int int

integer integer

decimal [defaults p=30, s=6] numeric(30,6)

numeric [defaults p=30 s=6] numeric(30,6)

float real

real real

double float

smallmoney numeric(10,4)

money numeric(19,4)

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) varchar(n)

character(n) varchar(n)

varchar(n) varchar(n)

character varying(n) varchar(n)

long varchar text

text text

binary(n) binary(n)

324

Chapter 8. DataType Conversions

Adaptive Server Anywhere data

type

Adaptive Server Enterprise data

type

long binary image

image image

bigint numeric(20,0)

325

IBM DB2
The following table identifies how Adaptive Server Anywhere data types are
mapped to IBM DB2 data types.

Adaptive Server Anywhere data

type

IBM DB2 data type

bit smallint

tinyint smallint

smallint smallint

int int

integer int

bigint decimal(20,0)

char(1–4000) varchar(n)

char(4001–32767) long varchar

character(1–4000) varchar(n)

character(4001–32767) long varchar

varchar(1–4000) varchar(n)

varchar(4001–32767) long varchar

character varying(1–4000) varchar(n)

character varying(4001–32767) long varchar or CLOB(n)

long varchar long varchar or CLOB(n)

text long varchar

binary(1–4000) varchar for bit data or BLOB(n)

binary(4001–32767) long varchar for bit data or BLOB(n)

long binary long varchar for bit data or BLOB(n)

image long varchar for bit data or BLOB(n)

decimal [defaults p=30, s=6] decimal(30,6)

numeric [defaults p=30 s=6] decimal(30,6)

real real

float float

326

Chapter 8. DataType Conversions

Adaptive Server Anywhere data

type

IBM DB2 data type

double float

smallmoney decimal(10,4)

money decimal(19,4)

date date

time time

smalldatetime timestamp

datetime timestamp

timestamp timestamp

327

Oracle
The following table identifies how Adaptive Server Anywhere data types are
mapped to Oracle data types.

Adaptive Server Any-

where data type

Oracle data type

bit number(1,0)

tinyint number(3,0)

smallint number(5,0)

int number(11,0)

bigint number(20,0)

decimal(prec, scale) number(prec, scale)

numeric(prec, scale) number(prec, scale)

float float

real real

smallmoney numeric(10,4)

money number(19,4)

date date

time date

timestamp date

smalldatetime date

datetime date

char(n) varchar(n) or CLOB(n)

varchar(n) varchar(n) or CLOB(n)

long varchar CLOB

binary(n) raw(n) or BLOB(n)

varbinary(n) raw(n) or BLOB(n)

long binary BLOB

328

Chapter 8. DataType Conversions

The LONG data types are deprecated in Oracle 8, 8i and 9i.

For Oracle LONG data types to synchronize properly, you must check the
OracleForce Retrieval of Long ColumnsODBC option in the ODBC data
source configuration dialog.

329

Microsoft SQL Server
The following table identifies how Adaptive Server Anywhere data types are
mapped to Microsoft SQL Server data types.

Adaptive Server Anywhere data

type

Microsoft SQL Server data type

bit bit

tinyint tinyint

smallint smallint

int int

bigint numeric(20,0) or bigint (SQL Server
2000 only)

decimal [defaults p=30, s=6] decimal(30, 6)

numeric [defaults p=30 s=6] numeric(30, 6)

float float

real real

smallmoney smallmoney

money money

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) varchar(n) or text

character(n) varchar(n)

varchar(n) varchar(n) or text

long varchar text

binary(n) binary(n) or image

long binary image

double float

330

CHAPTER 9

Character Set Considerations

About this chapter This chapter describes how to handle international language issues in
MobiLink applications.

Contents Topic: page

Character set considerations 332

331

Character set considerations
Each character of text is represented in one or more bytes. The mapping
from characters to binary codes is called thecharacter set encoding. Some
character sets used for languages with small alphabets, such as European
languages, use a single-byte representation. Others, such as Unicode, use a
double-byte representation. Because they use twice the storage space for
each character, double-byte character sets can represent a much larger
number of characters.

Conversion errors can occur or data can be lost when text using one
character set must be translated to another character set. Not all characters
can be represented in all character sets. In particular, single-byte character
sets can represent a much smaller number of characters than multi-byte
systems because of the limited number of codes available.

When the character set of your MobiLink remote database is the same as
your consolidated database, character translation issues are avoided.

Text often needs to be sorted to build indexes and to prepare ordered result
sets, such as directory listings. Thesort order identifies the order of the
characters. For example, a sort order typically states that the letter “a” comes
before the letter “b” , which comes before the letter “c” .

Each database has acollation sequence. You set the collation sequence
when you create the database, although how you do so can differ between
database systems. The collation sequence defines both the character set and
the sort order for that database.

Tip
Whenever possible, define the collation sequence of your remote database
to be the same as that of your consolidated database. This arrangement
reduces the chance of erroneous translations.

☞ For more information, see “Character sets in UltraLite”[UltraLite
Database User’s Guide,page 40]and “International Languages and Character
Sets”[ASA Database Administration Guide,page 285].

Character-set translation during synchronization: Windows

During synchronization, characters may need to be translated from one
character set to another. The following translations occur as characters are
passed between the remote application and the consolidated database.

Character-set translation
during upload

The MobiLink client sends data to the MobiLink synchronization server
using the character set of the remote database.

332

Chapter 9. Character Set Considerations

1. The MobiLink synchronization server communicates with the
consolidated database using the Unicode ODBC API. To do so, the
MobiLink synchronization server translates all characters received from
the remote database into Unicode.

2. If necessary, the ODBC driver for the consolidated database server
translates the characters from Unicode into the character set of your
consolidated database. This translation is controlled solely by the ODBC
driver for your consolidated database system. Hence, behavior can differ
between two different database systems, particularly systems made by
different manufacturers. MobiLink synchronization works with a number
of database systems. Check the documentation of your particular
consolidated server and ODBC driver for details.

Character-set translation
during download

1. The ODBC driver for the consolidated database system receives
characters in the coding of the consolidated database. It translates these
characters into Unicode to pass them through the Unicode API to the
MobiLink synchronization server. This translation is controlled solely by
the ODBC driver for your consolidated database system. Check the
documentation of your particular consolidated server and ODBC driver
for details.

2. The MobiLink synchronization server receives characters through the
Unicode ODBC API. If the remote database uses a different character set,
the MobiLink synchronization server translates the characters before
downloading them.

Examples ♦ UltraLite applications on Windows CE devices use the Unicode character
set.

When you synchronize a Windows CE application, no character
translation occurs within the MobiLink synchronization server. The
server finds that data arriving from the application is already in Unicode
and passes it directly to the ODBC driver. Similarly, no character-set
translation is necessary when downloading data.

♦ All Adaptive Server Anywhere databases and all UltraLite applications
on platforms other than Windows CE use the character set determined by
the collating sequence of the remote database.

When you synchronize a remote database, the MobiLink synchronization
server performs character set translations between the character set of the
remote database and Unicode.

Controlling ODBC driver character-set translation

Because most consolidated databases are unlikely to use Unicode, it is
important to understand how the ODBC driver for your consolidated

333

database system converts data to and from Unicode. Some ODBC drivers
use the language settings of the machine running MobiLink to determine
what character set to use. In these cases, it is best if the language and
code-page settings of the machine running the MobiLink synchronization
server match those of the consolidated database.

Other ODBC drivers, such as the driver for Sybase Adaptive Server
Enterprise, allow each connection to use a specific character set. To avoid
translation errors, the character set used by MobiLink should be set to match
that of the consolidated database.

☞ For a detailed description of how character-set translations take place in
your consolidated database server’s ODBC driver, consult that product’s
ODBC driver documentation.

Character set translation during synchronization: non-Windows

The ODBC drivers that iAnywhere Solutions provides on non-Windows
platforms do not have a Unicode ODBC API. The MobiLink
synchronization server exchanges data with the ODBC driver using the
character set determined by the collating sequence of the remote database.

When the remote database is an UltraLite application running under
Windows CE, the MobiLink synchronization server performs character-set
translation between Unicode and the character set being used with ODBC.

334

CHAPTER 10

ODBC Drivers

About this appendix This appendix describes the ODBC drivers available for use with MobiLink.

Contents Topic: page

ODBC drivers supported by MobiLink 336

335

ODBC drivers supported by MobiLink
The MobiLink synchronization server can work with a variety of
consolidated databases and ODBC drivers, as shown in the table below.
Some drivers, though compatible for use with MobiLink, may have
functional restrictions associated with their use.

For updated information and complete functional specifications, see
http://www.ianywhere.com/developer/technotes/odbc_mobilink.html.

☞ For information about configuring ODBC drivers, see “Introduction to
ODBC Drivers” [iAnywhere Solutions ODBC Drivers,page 1]. On UNIX, a
standalone version of this book is installed in thedriverssubdirectory of
your SQL Anywhere Studio install directory.

Database ODBC Drivers

Oracle 8i iAnywhere Solutions 8 - Oracle 8, 8i & 9i
ODBC Driver

Merant DataDirect Connect ODBC Driver for
Oracle

Oracle 9i iAnywhere Solutions 8 - Oracle 8, 8i & 9i
ODBC Driver

Oracle 9i ODBC Driver

Microsoft SQL Server
7, Microsoft SQL Server
2000

Microsoft SQL Server ODBC Driver

Merant DataDirect SQL Server Wire Protocol
ODBC Driver

Sybase Adaptive Server
Enterprise 11.5 or later

iAnywhere Solutions 8 - Sybase ASE ODBC
Driver Sybase ASE ODBC Driver

Merant DataDirect Sybase Wire Protocol
ODBC Driver

Merant DataDirect Connect ODBC Driver for
Sybase ASE

Merant Connect ODBC Driver for Sybase ASE

IBM DB2 UDB 7.1, 7.2 IBM DB2 UDB 7.1 ODBC driver

IBM DB2 UDB 7.2 ODBC driver

Merant DataDirect DB2 Wire Protocol ODBC
Driver

Sybase Adaptive Server
Anywhere 9

Adaptive Server Anywhere 9.0 ODBC Driver

336

CHAPTER 11

Deploying MobiLink Applications

About this appendix This appendix describes how to deploy the MobiLink server and MobiLink
clients in a production environment. It identifies the files required for
deployment.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements
in this document override anything in your license agreement. Please check
your license agreement before considering deployment.

Contents Topic: page

Deployment overview 338

Deploying the MobiLink server 339

Deploying Adaptive Server Anywhere MobiLink clients 342

Deploying UltraLite MobiLink clients 344

337

Deployment overview
Deploying MobiLink applications involves the following activities:

♦ Deploy the MobiLink server into a production setting.

♦ Deploy any Adaptive Server Anywhere MobiLink clients.

♦ Deploy any UltraLite MobiLink clients.

This chapter describes the files you need to include in your application’s
install program for each of these items.

338

Chapter 11. Deploying MobiLink Applications

Deploying the MobiLink server
The simplest way to deploy a MobiLink synchronization server into a
production environment is to install a licensed copy of SQL Anywhere
Studio onto the production machine.

However, if you are redistributing a MobiLink synchronization server in a
separate install program (subject to your license agreement), you may
include only a subset of the files. In this case, you need to include the
following files in your installation.

Notes ♦ Test on a clean machine before redistributing.

♦ Files must be installed within the Adaptive Server Anywhere installation
under your deployment location.

♦ The files should be in the same directory, unless otherwise mentioned.

♦ When a location is given, the files must be copied into a directory of the
same name.

Windows applications

Description Windows files

MobiLink synchronization
server

dbmlsrv9.exe, dbmlsv9.dll, dbunic9.dll,
dbmsql9.dll, charsets\unicode

Language library dblgen9.dll1

Windows Performance Moni-
tor support

dbmlctr9.dll2, dbmlctr9.ini, dbmlctr9.h

Synchronization stream li-
braries (deploy the ones you
use)

dbmlsock9.dll, dbmlhttp9.dll, dbmlhttps9.-
dll, dbmlrsa9.dll

Java synchronization logic win32\dbmjava9.dll, win32\mljodbc9.-
dll, java\mlscript.jar, java\jodbc.-
jar, java\mlnotif.jar, java\mailapi.jar,
java\smtp.jar, java\activation.jar

.NET synchronization logic win32\dnetodbc9.dll, win32\iAnywhere.-
MobiLink.dll, win32\iAnywhere.-
MobiLink.Script.dll, win32\dbmdnet9.-
dll, win32\mlDomConfig.xsd,
win32\iAnywhere.MobiLink.Script.xml,
MobiLink\setup\dnet\mlDomConfig.xml

339

Description Windows files

Security option (separately
licensable)

win32\dbmltls9.dll, win32\dbmljtls9.dll

Script files (deploy the ones for
your consolidated database)

MobiLink\setup, MobiLink\upgrade

iAnywhere Solutions ODBC
drivers

\drivers

dbmluser utility dbmluser.exe

dbmlstop utility dbmlstop.exe

error names h\sserror.h

MobiLink Monitor java\mlmon.jar, dbmlmon.-
exe, shared\java\jsyblib14.jar,
shared\java\HelpManager11.jar,
ultralite\java\lib\ulrt.jar

language jar java\dbmaen9.jar

MobiLink Redirector MobiLink\redirector

Sybase Central shared\Sybase Central 4.2

Sybase Central plug-in win32\dbmlput9.dll

Note: Files may be located in thewin32 or win64 directory, depending on
your version of the software.

1 For French, German, Japanese, and Chinese editions, substituteenwith fr ,
de, ja, andzh, respectively.

2 Your setup program must self-register this file.

UNIX applications

Description UNIX files

MobiLink synchronization
server

dbmlsrv9, lib/libdbunic9_r.so, lib/libdbmsql9_-
r.so, lib/libdbtasks9_r.so, charsets/unicode

Language library dblgen9.res1

Windows Performance
Monitor support

N/A

340

Chapter 11. Deploying MobiLink Applications

Description UNIX files

Synchronization stream
libraries (deploy the ones
you use)

lib/libdbmlsock9_r.so, lib/libdbmlhttp9_r.so,
lib/libdbmlhttps9_r.so, lib/libdbmlrsa9_r.so

Java synchronization logic lib/libdbmjava9_r.so, lib/libmljodbc9.so,
java/mlscript.jar, java/jodbc.jar, java/mlnotif.jar,
java/mailapi.jar, java/smtp.jar, java/activation.-
jar

.NET synchronization
logic

N/A

Security option (separately
licensable)

lib/libdbmltls9_r.so, lib/dbmljtls9_r.so

Script files (deploy the
ones for your consolidated
database)

MobiLink/setup, MobiLink/upgrade

iAnywhere Solutions
ODBC drivers

drivers

dbmluser utility dbmluser

dbmlstop utility dbmlstop

error names h/sserror.h

MobiLink Monitor java/mlmon.jar, bin/dbmlmon,
shared/java/jsyblib14.jar,
shared/java/HelpManager11.jar,
ultralite/java/lib/ulrt.jar

language jar java/dbmaen9.jar

MobiLink Redirector redirector/redirector.config, redirector/java

Sybase Central shared/sybcentral42

Sybase Central plug-in dbmlput9.so

1 For French, German, Japanese, and Chinese editions, substituteenwith fr ,
de, ja, andzh, respectively.

341

Deploying Adaptive Server Anywhere MobiLink
clients

For Adaptive Server Anywhere clients, you need to deploy an Adaptive
Server Anywhere database server and the MobiLink client.

☞ For information about deploying Adaptive Server Anywhere databases,
see “Deploying Databases and Applications”[ASA Programming Guide,
page 467].

If you are redistributing MobiLink synchronization clients (subject to your
license agreement) you need to include the following files in your installation
in addition to those required for the Adaptive Server Anywhere database:

The files should be in the same directory, unless otherwise mentioned.

Windows applications

Description Windows files

MobiLink synchronization client dbmlsync.exe, dbtool9.dll,
lib/libdbtasks9.so, lib/libdbtasks9_-
r.so, dblgen9.dll

Synchronization stream libraries
(deploy the ones you use)

lib/libdbmlsock9.so,
lib/libdbmlsock9_r.-
so, lib/libdbmlhttp9.-
so, lib/libdbmlhttp9_r.-
so, lib/libdbmlhttps9.-
so, lib/libdbmlhttps9_r.so,
lib/libdbmlrsa9.so, lib/libdbmlrsa9_r.-
so

Security option (separately licens-
able)

dbmltls9.dll

UNIX applications

342

Chapter 11. Deploying MobiLink Applications

Description UNIX files

MobiLink synchronization client dbmlsync, lib/libdbtool9.so,
lib/libdbtool9_r.so, dblgen9.res

Synchronization stream libraries
(deploy the ones you use)

lib/libdbmlsock9.so,
lib/libdbmlsock9_r.-
so, lib/libdbmlhttp9.-
so, lib/libdbmlhttps9_r.so,
lib/libdbmlrsa9.so, lib/libdbmlrsa9_r.-
so

Security option (separately licens-
able)

lib/libdbmltls9.so, lib/libdbmltls9_r.so

343

Deploying UltraLite MobiLink clients
For UltraLite clients, the UltraLite runtime library or the UltraLite
component includes the required synchronization stream functions. The
UltraLite runtime library is compiled into your application. Deployment is
subject to your license agreement.

☞ For more information, see the see the documentation for the UltraLite
component or development model you are using.

344

PART II

ERROR AND WARNING

MESSAGES

This part describes MobiLink error and warning messages.

CHAPTER 12

MobiLink Communication Error Messages

About this chapter This chapter lists MobiLink client/server communication errors, as well as
their probable causes.

The error messages are written to the MobiLink synchronization server
message log and the MobiLink Adaptive Server Anywhere client message
log. The error codes are returned to UltraLite clients in thess_error_code
member of thestream_error parameter.

Contents Topic: page

Communication error messages sorted by code 348

Communication error messages sorted by message 352

Communication error messages sorted by constant 356

Communication error descriptions 362

347

Communication error messages sorted by code

Error code Error message

0 “No error or unknown error.” on page 370

1 “Invalid parameter ‘%1!s!’.” on page 370

2 “Parameter value ‘%1!s!’ is not an unsigned integer.” on
page 371

3 “Parameter value ‘%1!s!’ is not an unsigned integer value
or range. A range has the form NNN-NNN.” on page 372

4 “Parameter value ‘%1!s!’ is not a valid boolean value. The
value must be 0 or 1.” on page 371

5 “Parameter value ‘%1!s!’ is not a valid hexadecimal
value.” on page 371

6 “Unable to allocate %1!s! bytes.” on page 369

7 “Unable to parse the parameter string ‘%1!s!’.” on
page 372

8 “Unable to read %1!s! bytes.” on page 373

9 “Unable to write %1!s! bytes.” on page 396

10 “An end write failed.” on page 363

11 “An end read failed.” on page 363

12 “Feature not implemented.” on page 370

13 “The operation would cause blocking.” on page 396

14 “Unable to generate a random number.” on page 364

15 “Unable to initialize the random number generator.” on
page 369

16 “Unable to seed the random number generator.” on
page 387

17 “Unable to create a random number object.” on page 362

18 “An error occurred during shutdown.” on page 388

19 “Unable to dequeue from the connection queue.” on
page 363

20 “Invalid root certificate.” on page 380

348

Chapter 12. MobiLink Communication Error Messages

Error code Error message

21 “Unrecognized organization ‘%1!s!’.” on page 376

22 “Invalid certificate chain length (%1!s!).” on page 375

23 “Certificate error (4023).” on page 379

24 “Server certificate not trusted.” on page 379

25 “Unable to duplicate security context.” on page 381

26 “Unable to attach the network layer to the security layer.”
on page 384

27 “Internal error 4027.” on page 384

28 “Internal error 4028.” on page 375

29 “Internal error 4029.” on page 375

30 “Internal error 4030.” on page 381

31 “Internal error 4031.” on page 384

32 “Internal error 4032.” on page 383

33 “Unable to open certificate file ‘%1!s!’.” on page 378

34 “Unable to read certificates.” on page 382

35 “Unable to read the private key.” on page 383

36 “Unable to set the private key.” on page 384

37 “Unable to fetch a certificate expiry date.” on page 378

38 “Unable to copy a certificate.” on page 381

39 “Unable to add a certificate to a certificate chain.” on
page 374

40 “Unable to find the trusted certificate file ‘%1!s!’.” on
page 386

41 “Error reading from the trusted certificate file ‘%1!s!’.” on
page 387

42 “No trusted certificates found.” on page 377

43 “Unable to allocate a certificate.” on page 380

44 “Unable to import a certificate.” on page 382

45 “Internal initialization error 4045.” on page 385

349

Error code Error message

46 “Internal initialization error 4046.” on page 385

47 “Unable to set the protocol side (%1!s!).” on page 385

48 “Unable to add a trusted certificate.” on page 374

49 “Unable to create a private key object.” on page 380

50 “A certificate has expired.” on page 378

51 “Unrecognized organization unit ‘%1!s!’.” on page 377

52 “Unrecognized common name ‘%1!s!’.” on page 376

53 “Handshake error.” on page 382

54 “Unsupported HTTP version: %1!s!” on page 368

55 “Internal initialization error 4055.” on page 386

56 “Internal initialization error 4056.” on page 386

57 “The host name ‘%1!s!’ could not be found.” on page 392

58 “Unable to create a TCP/IP socket.” on page 390

59 “Unable to create a UDP socket.” on page 390

60 “Unable to bind a socket to port %1!s!.” on page 388

61 “Unable to clean up the socket layer.” on page 389

62 “Unable to close a socket.” on page 389

63 “Unable to connect a socket.” on page 389

64 “Unable to get a socket’s local name.” on page 391

65 “Unable to get socket option number %1!s!.” on page 392

66 “Unable to set socket option number %1!s!.” on page 395

67 “Unable to listen on a socket. The backlog is %1!s!.” on
page 393

68 “Unable to shut down a socket.” on page 395

69 “Unable to select a socket status.” on page 394

70 “Unable to initialize the sockets layer.” on page 396

71 “Unable to determine localhost.” on page 394

72 “Unable to get host by address.” on page 391

350

Chapter 12. MobiLink Communication Error Messages

Error code Error message

73 “Unable to load the network interface library.” on page 369

74 “Invalid port number %1!s!. The value must be between
zero and 65535.” on page 394

75 “ActiveSync synchronization cannot be initiated by an
application.” on page 362

76 “ActiveSync provider has not been installed.” on page 362

77 “The content type ‘%1!s!’ is unknown.” on page 366

78 “Client id is not available for use in HTTP header.” on
page 365

79 “The HTTP buffer size specified is out of the valid range.”
on page 364

80 “Extra data found in the HTTP body: %1!s!” on page 367

81 “Failed to read encoded CR LF.” on page 366

82 “Failed to read CR LF.” on page 366

83 “Timed out while waiting for the next HTTP request in
this synchronization.” on page 367

84 “Failed to read encoded chunk length.” on page 365

85 “An unexpected character was read while parsing the
chunk length. %1!s!.” on page 365

86 “An error status was returned: ‘%1!s!’.” on page 364

87 “Unknown transfer encoding: ‘%1!s!’.” on page 368

88 “Unable to parse cookie: ‘%1!s!’.” on page 368

89 “Expected data from remote but current request is not a
POST.” on page 367

200 “Invalid liveness timeout value %1!s!. The value must be
between zero and 65535.” on page 393

201 “Timed out trying to read %1!s! bytes.” on page 374

202 “Timed out trying to write %1!s! bytes.” on page 397

351

Communication error messages sorted by
message

Error code Error message

50 “A certificate has expired.” on page 378

76 “ActiveSync provider has not been installed.” on page 362

75 “ActiveSync synchronization cannot be initiated by an
application.” on page 362

11 “An end read failed.” on page 363

10 “An end write failed.” on page 363

18 “An error occurred during shutdown.” on page 388

86 “An error status was returned: ‘%1!s!’.” on page 364

85 “An unexpected character was read while parsing the
chunk length. %1!s!.” on page 365

23 “Certificate error (4023).” on page 379

78 “Client id is not available for use in HTTP header.” on
page 365

41 “Error reading from the trusted certificate file ‘%1!s!’.” on
page 387

89 “Expected data from remote but current request is not a
POST.” on page 367

80 “Extra data found in the HTTP body: %1!s!” on page 367

82 “Failed to read CR LF.” on page 366

81 “Failed to read encoded CR LF.” on page 366

84 “Failed to read encoded chunk length.” on page 365

12 “Feature not implemented.” on page 370

53 “Handshake error.” on page 382

27 “Internal error 4027.” on page 384

28 “Internal error 4028.” on page 375

29 “Internal error 4029.” on page 375

30 “Internal error 4030.” on page 381

352

Chapter 12. MobiLink Communication Error Messages

Error code Error message

31 “Internal error 4031.” on page 384

32 “Internal error 4032.” on page 383

45 “Internal initialization error 4045.” on page 385

46 “Internal initialization error 4046.” on page 385

55 “Internal initialization error 4055.” on page 386

56 “Internal initialization error 4056.” on page 386

22 “Invalid certificate chain length (%1!s!).” on page 375

200 “Invalid liveness timeout value %1!s!. The value must be
between zero and 65535.” on page 393

1 “Invalid parameter ‘%1!s!’.” on page 370

74 “Invalid port number %1!s!. The value must be between
zero and 65535.” on page 394

20 “Invalid root certificate.” on page 380

0 “No error or unknown error.” on page 370

42 “No trusted certificates found.” on page 377

4 “Parameter value ‘%1!s!’ is not a valid boolean value. The
value must be 0 or 1.” on page 371

5 “Parameter value ‘%1!s!’ is not a valid hexadecimal
value.” on page 371

3 “Parameter value ‘%1!s!’ is not an unsigned integer value
or range. A range has the form NNN-NNN.” on page 372

2 “Parameter value ‘%1!s!’ is not an unsigned integer.” on
page 371

24 “Server certificate not trusted.” on page 379

79 “The HTTP buffer size specified is out of the valid range.”
on page 364

77 “The content type ‘%1!s!’ is unknown.” on page 366

57 “The host name ‘%1!s!’ could not be found.” on page 392

13 “The operation would cause blocking.” on page 396

201 “Timed out trying to read %1!s! bytes.” on page 374

353

Error code Error message

202 “Timed out trying to write %1!s! bytes.” on page 397

83 “Timed out while waiting for the next HTTP request in
this synchronization.” on page 367

39 “Unable to add a certificate to a certificate chain.” on
page 374

48 “Unable to add a trusted certificate.” on page 374

6 “Unable to allocate %1!s! bytes.” on page 369

43 “Unable to allocate a certificate.” on page 380

26 “Unable to attach the network layer to the security layer.”
on page 384

60 “Unable to bind a socket to port %1!s!.” on page 388

61 “Unable to clean up the socket layer.” on page 389

62 “Unable to close a socket.” on page 389

63 “Unable to connect a socket.” on page 389

38 “Unable to copy a certificate.” on page 381

58 “Unable to create a TCP/IP socket.” on page 390

59 “Unable to create a UDP socket.” on page 390

49 “Unable to create a private key object.” on page 380

17 “Unable to create a random number object.” on page 362

19 “Unable to dequeue from the connection queue.” on
page 363

71 “Unable to determine localhost.” on page 394

25 “Unable to duplicate security context.” on page 381

37 “Unable to fetch a certificate expiry date.” on page 378

40 “Unable to find the trusted certificate file ‘%1!s!’.” on
page 386

14 “Unable to generate a random number.” on page 364

64 “Unable to get a socket’s local name.” on page 391

72 “Unable to get host by address.” on page 391

354

Chapter 12. MobiLink Communication Error Messages

Error code Error message

65 “Unable to get socket option number %1!s!.” on page 392

44 “Unable to import a certificate.” on page 382

15 “Unable to initialize the random number generator.” on
page 369

70 “Unable to initialize the sockets layer.” on page 396

67 “Unable to listen on a socket. The backlog is %1!s!.” on
page 393

73 “Unable to load the network interface library.” on page 369

33 “Unable to open certificate file ‘%1!s!’.” on page 378

88 “Unable to parse cookie: ‘%1!s!’.” on page 368

7 “Unable to parse the parameter string ‘%1!s!’.” on
page 372

8 “Unable to read %1!s! bytes.” on page 373

34 “Unable to read certificates.” on page 382

35 “Unable to read the private key.” on page 383

16 “Unable to seed the random number generator.” on
page 387

69 “Unable to select a socket status.” on page 394

66 “Unable to set socket option number %1!s!.” on page 395

36 “Unable to set the private key.” on page 384

47 “Unable to set the protocol side (%1!s!).” on page 385

68 “Unable to shut down a socket.” on page 395

9 “Unable to write %1!s! bytes.” on page 396

87 “Unknown transfer encoding: ‘%1!s!’.” on page 368

52 “Unrecognized common name ‘%1!s!’.” on page 376

21 “Unrecognized organization ‘%1!s!’.” on page 376

51 “Unrecognized organization unit ‘%1!s!’.” on page 377

54 “Unsupported HTTP version: %1!s!” on page 368

355

Communication error messages sorted by
constant

Constant Error message

ACTSYNC NOT INSTALLED “ActiveSync provider has not been in-
stalled.” on page 362

ACTSYNC NO PORT “ActiveSync synchronization cannot be
initiated by an application.” on page 362

CREATE RANDOM OBJECT “Unable to create a random number
object.” on page 362

DEQUEUING CONNECTION “Unable to dequeue from the connection
queue.” on page 363

END READ “An end read failed.” on page 363

END WRITE “An end write failed.” on page 363

GENERATE RANDOM “Unable to generate a random number.”
on page 364

HTTP BAD STATUS CODE “An error status was returned: ‘%1!s!’.”
on page 364

HTTP BUFFER SIZE OUT OF
RANGE

“The HTTP buffer size specified is out of
the valid range.” on page 364

HTTP CHUNK LEN BAD
CHARACTER

“An unexpected character was read while
parsing the chunk length. %1!s!.” on
page 365

HTTP CHUNK LEN EN-
CODED MISSING

“Failed to read encoded chunk length.”
on page 365

HTTP CLIENT ID NOT SET “Client id is not available for use in
HTTP header.” on page 365

HTTP CONTENT TYPE NOT
SPECIFIED

“The content type ‘%1!s!’ is unknown.”
on page 366

HTTP CRLF ENCODED MISS-
ING

“Failed to read encoded CR LF.” on
page 366

HTTP CRLF MISSING “Failed to read CR LF.” on page 366

HTTP EXPECTED POST “Expected data from remote but current
request is not a POST.” on page 367

356

Chapter 12. MobiLink Communication Error Messages

Constant Error message

HTTP EXTRA DATA END
READ

“Extra data found in the HTTP body:
%1!s!” on page 367

HTTP NO CONTD CONNEC-
TION

“Timed out while waiting for the next
HTTP request in this synchronization.”
on page 367

HTTP UNABLE TO PARSE
COOKIE

“Unable to parse cookie: ‘%1!s!’.” on
page 368

HTTP UNKNOWN TRANSFER
ENCODING

“Unknown transfer encoding: ‘%1!s!’.”
on page 368

HTTP VERSION “Unsupported HTTP version: %1!s!” on
page 368

INIT RANDOM “Unable to initialize the random number
generator.” on page 369

LOAD NETWORK LIBRARY “Unable to load the network interface
library.” on page 369

MEMORY ALLOCATION “Unable to allocate %1!s! bytes.” on
page 369

NONE “No error or unknown error.” on
page 370

NOT IMPLEMENTED “Feature not implemented.” on page 370

PARAMETER “Invalid parameter ‘%1!s!’.” on page 370

PARAMETER NOT BOOLEAN “Parameter value ‘%1!s!’ is not a valid
boolean value. The value must be 0 or 1.”
on page 371

PARAMETER NOT HEX “Parameter value ‘%1!s!’ is not a valid
hexadecimal value.” on page 371

PARAMETER NOT UINT32 “Parameter value ‘%1!s!’ is not an
unsigned integer.” on page 371

PARAMETER NOT UINT32
RANGE

“Parameter value ‘%1!s!’ is not an
unsigned integer value or range. A range
has the form NNN-NNN.” on page 372

PARSE “Unable to parse the parameter string
‘%1!s!’.” on page 372

357

Constant Error message

READ “Unable to read %1!s! bytes.” on
page 373

READ TIMEOUT “Timed out trying to read %1!s! bytes.”
on page 374

SECURE ADD CERTIFICATE “Unable to add a certificate to a certificate
chain.” on page 374

SECURE ADD TRUSTED CER-
TIFICATE

“Unable to add a trusted certificate.” on
page 374

SECURE CERTIFICATE
CHAIN FUNC

“Internal error 4028.” on page 375

SECURE CERTIFICATE
CHAIN LENGTH

“Invalid certificate chain length (%1!s!).”
on page 375

SECURE CERTIFICATE
CHAIN REF

“Internal error 4029.” on page 375

SECURE CERTIFICATE COM-
MON NAME

“Unrecognized common name ‘%1!s!’.”
on page 376

SECURE CERTIFICATE COM-
PANY NAME

“Unrecognized organization ‘%1!s!’.” on
page 376

SECURE CERTIFICATE COM-
PANY UNIT

“Unrecognized organization unit
‘%1!s!’.” on page 377

SECURE CERTIFICATE
COUNT

“No trusted certificates found.” on
page 377

SECURE CERTIFICATE EX-
PIRED

“A certificate has expired.” on page 378

SECURE CERTIFICATE EX-
PIRY DATE

“Unable to fetch a certificate expiry
date.” on page 378

SECURE CERTIFICATE FILE
NOT FOUND

“Unable to open certificate file ‘%1!s!’.”
on page 378

SECURE CERTIFICATE NOT
TRUSTED

“Server certificate not trusted.” on
page 379

SECURE CERTIFICATE REF “Certificate error (4023).” on page 379

SECURE CERTIFICATE ROOT “Invalid root certificate.” on page 380

358

Chapter 12. MobiLink Communication Error Messages

Constant Error message

SECURE CREATE CERTIFI-
CATE

“Unable to allocate a certificate.” on
page 380

SECURE CREATE PRIVATE
KEY OBJECT

“Unable to create a private key object.”
on page 380

SECURE DUPLICATE CON-
TEXT

“Unable to duplicate security context.”
on page 381

SECURE ENABLE NON
BLOCKING

“Internal error 4030.” on page 381

SECURE EXPORT CERTIFI-
CATE

“Unable to copy a certificate.” on
page 381

SECURE HANDSHAKE “Handshake error.” on page 382

SECURE IMPORT CERTIFI-
CATE

“Unable to import a certificate.” on
page 382

SECURE READ CERTIFICATE “Unable to read certificates.” on page 382

SECURE READ PRIVATE KEY “Unable to read the private key.” on
page 383

SECURE SET CHAIN NUM-
BER

“Internal error 4032.” on page 383

SECURE SET CIPHER SUITES “Internal error 4031.” on page 384

SECURE SET IO “Unable to attach the network layer to
the security layer.” on page 384

SECURE SET IO SEMANTICS “Internal error 4027.” on page 384

SECURE SET PRIVATE KEY “Unable to set the private key.” on
page 384

SECURE SET PROTOCOL
SIDE

“Unable to set the protocol side (%1!s!).”
on page 385

SECURE SET RANDOM FUNC “Internal initialization error 4046.” on
page 385

SECURE SET RANDOM REF “Internal initialization error 4045.” on
page 385

SECURE SET READ FUNC “Internal initialization error 4055.” on
page 386

359

Constant Error message

SECURE SET WRITE FUNC “Internal initialization error 4056.” on
page 386

SECURE TRUSTED CERTIFI-
CATE FILE NOT FOUND

“Unable to find the trusted certificate file
‘%1!s!’.” on page 386

SECURE TRUSTED CERTIFI-
CATE READ

“Error reading from the trusted certificate
file ‘%1!s!’.” on page 387

SEED RANDOM “Unable to seed the random number
generator.” on page 387

SHUTTING DOWN “An error occurred during shutdown.” on
page 388

SOCKET BIND “Unable to bind a socket to port %1!s!.”
on page 388

SOCKET CLEANUP “Unable to clean up the socket layer.” on
page 389

SOCKET CLOSE “Unable to close a socket.” on page 389

SOCKET CONNECT “Unable to connect a socket.” on
page 389

SOCKET CREATE TCPIP “Unable to create a TCP/IP socket.” on
page 390

SOCKET CREATE UDP “Unable to create a UDP socket.” on
page 390

SOCKET GET HOST BY
ADDR

“Unable to get host by address.” on
page 391

SOCKET GET NAME “Unable to get a socket’s local name.” on
page 391

SOCKET GET OPTION “Unable to get socket option number
%1!s!.” on page 392

SOCKET HOST NAME NOT
FOUND

“The host name ‘%1!s!’ could not be
found.” on page 392

SOCKET LISTEN “Unable to listen on a socket. The
backlog is %1!s!.” on page 393

SOCKET LIVENESS OUT OF
RANGE

“Invalid liveness timeout value %1!s!.
The value must be between zero and
65535.” on page 393

360

Chapter 12. MobiLink Communication Error Messages

Constant Error message

SOCKET LOCALHOST NAME
NOT FOUND

“Unable to determine localhost.” on
page 394

SOCKET PORT OUT OF
RANGE

“Invalid port number %1!s!. The value
must be between zero and 65535.” on
page 394

SOCKET SELECT “Unable to select a socket status.” on
page 394

SOCKET SET OPTION “Unable to set socket option number
%1!s!.” on page 395

SOCKET SHUTDOWN “Unable to shut down a socket.” on
page 395

SOCKET STARTUP “Unable to initialize the sockets layer.”
on page 396

WOULD BLOCK “The operation would cause blocking.”
on page 396

WRITE “Unable to write %1!s! bytes.” on
page 396

WRITE TIMEOUT “Timed out trying to write %1!s! bytes.”
on page 397

361

Communication error descriptions
This section provides a full listing of error messages and descriptions.

Errors with an ODBC state marked “handled by ODBC driver” are not
returned to ODBC applications, as the ODBC driver carries out the required
actions.

ActiveSync provider has not been installed.

Item Value

Error code 76

Constant ACTSYNC_NOT_INSTALLED (Java) STREAM_-
ERROR_ACTSYNC_NOT_INSTALLED (C/C++) ul-
StreamErrorActsyncNotInstalled (Visual Basic)

Probable cause The ActiveSync provider has not been installed. Run dbasinst to install it
(see documentation for details).

ActiveSync synchronization cannot be initiated by an application.

Item Value

Error code 75

Constant ACTSYNC_NO_PORT (Java) STREAM_ERROR_-
ACTSYNC_NO_PORT (C/C++) ulStreamErrorActsync-
NoPort (Visual Basic)

Probable cause ActiveSync synchronization can only be initiated by ActiveSync itself, either
by placing the device in its cradle or by selecting “Synchronize” from the
ActiveSync Manager. To initiate a synchronization from an application, use
the TCP/IP socket synchronization stream.

Unable to create a random number object.

Item Value

Error code 17

Constant CREATE_RANDOM_OBJECT (Java) STREAM_-
ERROR_CREATE_RANDOM_OBJECT (C/C++) ul-
StreamErrorCreateRandomObject (Visual Basic)

Probable cause The secure network layer could not create a random-number-generating

362

Chapter 12. MobiLink Communication Error Messages

object. Free up system resources, reconnect and retry the operation.

Unable to dequeue from the connection queue.

Item Value

Error code 19

Constant DEQUEUING_CONNECTION (Java) STREAM_-
ERROR_DEQUEUING_CONNECTION (C/C++) ul-
StreamErrorDequeuingConnection (Visual Basic)

Probable cause The MobiLink synchronization server encountered an error while attempting
to get a queued connection (synchronization) request. Free up system
resources. If the problem persists, restart the MobiLink synchronization
server.

An end read failed.

Item Value

Error code 11

Constant END_READ (Java) STREAM_ERROR_END_READ
(C/C++) ulStreamErrorEndRead (Visual Basic)

Probable cause Unable to finish a sequence of reads from the network.

See also: READ

An end write failed.

Item Value

Error code 10

Constant END_WRITE (Java) STREAM_ERROR_END_WRITE
(C/C++) ulStreamErrorEndWrite (Visual Basic)

Probable cause Unable to finish a sequence of writes to the network.

See also: WRITE

363

Unable to generate a random number.

Item Value

Error code 14

Constant GENERATE_RANDOM (Java) STREAM_ERROR_-
GENERATE_RANDOM (C/C++) ulStreamErrorGener-
ateRandom (Visual Basic)

Probable cause The secure network layer requires a random number but was unable to
generate one. Free up system resources, reconnect and retry the operation.

An error status was returned: ‘%1!s!’.

Item Value

Error code 86

Constant HTTP_BAD_STATUS_CODE (Java) STREAM_-
ERROR_HTTP_BAD_STATUS_CODE (C/C++) ul-
StreamErrorHttpBadStatusCode (Visual Basic)

Parameter 1 The status line read.

Probable cause Examine the status line to determine the cause of the failure.

The HTTP buffer size specified is out of the valid range.

Item Value

Error code 79

Constant HTTP_BUFFER_SIZE_OUT_OF_RANGE (Java)
STREAM_ERROR_HTTP_BUFFER_SIZE_OUT_OF_-
RANGE (C/C++) ulStreamErrorHttpBufferSizeOut-
OfRange (Visual Basic)

Probable cause Fix the HTTP buffer size. A valid buffer size is positive and not overly large
for the host platform.

364

Chapter 12. MobiLink Communication Error Messages

An unexpected character was read while parsing the chunk length.
%1!s!.

Item Value

Error code 85

Constant HTTP_CHUNK_LEN_BAD_CHARACTER (Java)
STREAM_ERROR_HTTP_CHUNK_LEN_BAD_-
CHARACTER (C/C++) ulStreamErrorHttpChunkLen-
BadCharacter (Visual Basic)

Parameter 1 The unexpected character.

Probable cause Try using a fixed length HTTP body.

Failed to read encoded chunk length.

Item Value

Error code 84

Constant HTTP_CHUNK_LEN_ENCODED_MISSING (Java)
STREAM_ERROR_HTTP_CHUNK_LEN_ENCODED_-
MISSING (C/C++) ulStreamErrorHttpChunkLenEncoded-
Missing (Visual Basic)

Probable cause Try using a fixed length HTTP body.

Client id is not available for use in HTTP header.

Item Value

Error code 78

Constant HTTP_CLIENT_ID_NOT_SET (Java) STREAM_-
ERROR_HTTP_CLIENT_ID_NOT_SET (C/C++) ul-
StreamErrorHttpClientIdNotSet (Visual Basic)

Probable cause The client id was not passed into the HTTP client code. Contact technical
support for a fix.

365

The content type ‘%1!s!’ is unknown.

Item Value

Error code 77

Constant HTTP_CONTENT_TYPE_NOT_SPECIFIED (Java)
STREAM_ERROR_HTTP_CONTENT_TYPE_NOT_-
SPECIFIED (C/C++) ulStreamErrorHttpContentTypeNot-
Specified (Visual Basic)

Parameter 1 The content type.

Probable cause An unknown content type was specified. Refer to the documentation and
change the content type to one of the supported types.

Failed to read encoded CR LF.

Item Value

Error code 81

Constant HTTP_CRLF_ENCODED_MISSING (Java) STREAM_-
ERROR_HTTP_CRLF_ENCODED_MISSING (C/C++)
ulStreamErrorHttpCrlfEncodedMissing (Visual Basic)

Probable cause The proxy you are using may not be compatible with MobiLink. Please
check your configuration.

Failed to read CR LF.

Item Value

Error code 82

Constant HTTP_CRLF_MISSING (Java) STREAM_ERROR_-
HTTP_CRLF_MISSING (C/C++) ulStreamEr-
rorHttpCrlfMissing (Visual Basic)

Probable cause The proxy you are using may not be compatible with MobiLink. Please
check your configuration.

366

Chapter 12. MobiLink Communication Error Messages

Expected data from remote but current request is not a POST.

Item Value

Error code 89

Constant HTTP_EXPECTED_POST (Java) STREAM_ERROR_-
HTTP_EXPECTED_POST (C/C++) ulStreamErrorHttp-
ExpectedPost (Visual Basic)

Probable cause The proxy you are using may not be compatible with MobiLink. Please
check your configuration.

Extra data found in the HTTP body: %1!s!

Item Value

Error code 80

Constant HTTP_EXTRA_DATA_END_READ (Java) STREAM_-
ERROR_HTTP_EXTRA_DATA_END_READ (C/C++)
ulStreamErrorHttpExtraDataEndRead (Visual Basic)

Parameter 1 First few characters in the extra data.

Probable cause Extra data has been introduced into the HTTP body. This may have been
added by a proxy agent. Try eliminating the proxy.

Timed out while waiting for the next HTTP request in this
synchronization.

Item Value

Error code 83

Constant HTTP_NO_CONTD_CONNECTION (Java) STREAM_-
ERROR_HTTP_NO_CONTD_CONNECTION (C/C++)
ulStreamErrorHttpNoContdConnection (Visual Basic)

Probable cause The server timed out while waiting for the next HTTP request from the
remote site. Determine why this request failed to reach the server or try a
persistent connection.

367

Unable to parse cookie: ‘%1!s!’.

Item Value

Error code 88

Constant HTTP_UNABLE_TO_PARSE_COOKIE (Java)
STREAM_ERROR_HTTP_UNABLE_TO_PARSE_-
COOKIE (C/C++) ulStreamErrorHttpUnableToParseC-
ookie (Visual Basic)

Parameter 1 The set cookie header.

Probable cause Determine where the set cookie header is being corrupted.

Unknown transfer encoding: ‘%1!s!’.

Item Value

Error code 87

Constant HTTP_UNKNOWN_TRANSFER_ENCODING (Java)
STREAM_ERROR_HTTP_UNKNOWN_TRANSFER_-
ENCODING (C/C++) ulStreamErrorHttpUnknownTrans-
ferEncoding (Visual Basic)

Parameter 1 The unknown encoding.

Probable cause Determine how the unknown transfer encoding is getting generated.

Unsupported HTTP version: %1!s!

Item Value

Error code 54

Constant HTTP_VERSION (Java) STREAM_ERROR_HTTP_-
VERSION (C/C++) ulStreamErrorHttpVersion (Visual
Basic)

Parameter 1 The requested HTTP version.

Probable cause The requested HTTP version is unsupported. Consult the documentation and
specify a supported HTTP version. At the time of publication the supported
HTTP versions are 1.0 and 1.1.

368

Chapter 12. MobiLink Communication Error Messages

Unable to initialize the random number generator.

Item Value

Error code 15

Constant INIT_RANDOM (Java) STREAM_ERROR_INIT_-
RANDOM (C/C++) ulStreamErrorInitRandom (Visual
Basic)

Probable cause The secure network layer could not initialize its random number generator.
Free up system resources, reconnect and retry the operation.

Unable to load the network interface library.

Item Value

Error code 73

Constant LOAD_NETWORK_LIBRARY (Java) STREAM_-
ERROR_LOAD_NETWORK_LIBRARY (C/C++) ul-
StreamErrorLoadNetworkLibrary (Visual Basic)

Probable cause The network interface library could not be found and/or loaded. Please
check the following:

1) The sockets layer is properly installed. The correct network interface
library (or DLL or shared object) must be present and accessible.

2) There are enough system resources available. Free up system resources if
they are running low.

Unable to allocate %1!s! bytes.

Item Value

Error code 6

Constant MEMORY_ALLOCATION (Java) STREAM_ERROR_-
MEMORY_ALLOCATION (C/C++) ulStreamErrorMem-
oryAllocation (Visual Basic)

Parameter 1 The number of bytes that was requested.

Probable cause The network layer was unable to allocate the given number of bytes of
storage. Free up system memory and retry the operation. The technique used
to free up system memory depends on the operating system and how it is

369

configured. The simplest technique is to reduce the number of active
processes. Consult your operating system documentation for details.

No error or unknown error.

Item Value

Error code 0

Constant NONE (Java) STREAM_ERROR_NONE (C/C++) ul-
StreamErrorNone (Visual Basic)

Probable cause This code indicates there was either no network error, or an unknown
network error occurred.

Feature not implemented.

Item Value

Error code 12

Constant NOT_IMPLEMENTED (Java) STREAM_ERROR_NOT_-
IMPLEMENTED (C/C++) ulStreamErrorNotImplemented
(Visual Basic)

Probable cause An unimplemented internal feature was requested. Please contact technical
support.

Invalid parameter ‘%1!s!’.

Item Value

Error code 1

Constant PARAMETER (Java) STREAM_ERROR_PARAMETER
(C/C++) ulStreamErrorParameter (Visual Basic)

Parameter 1 The invalid parameter value.

Probable cause Network parameters are of the form “name=value;[name2=value2[;. . .]]”.
This code indicates an invalid parameter value. Consult the documentation
for the corresponding parameter name, and correct the parameter value.

370

Chapter 12. MobiLink Communication Error Messages

Parameter value ‘%1!s!’ is not a valid boolean value. The value must be 0
or 1.

Item Value

Error code 4

Constant PARAMETER_NOT_BOOLEAN (Java) STREAM_-
ERROR_PARAMETER_NOT_BOOLEAN (C/C++) ul-
StreamErrorParameterNotBoolean (Visual Basic)

Parameter 1 The invalid parameter value.

Probable cause Network parameters are of the form “name=value;[name2=value2[;. . .]]”.
The parameter value is not a boolean value. Locate the offending parameter
specification and change the value of the parameter to either 0 (for off or
false) or 1 (for on or true).

Parameter value ‘%1!s!’ is not a valid hexadecimal value.

Item Value

Error code 5

Constant PARAMETER_NOT_HEX (Java) STREAM_ERROR_-
PARAMETER_NOT_HEX (C/C++) ulStreamErrorParam-
eterNotHex (Visual Basic)

Parameter 1 The invalid parameter value.

Probable cause Network parameters are of the form “name=value;[name2=value2[;. . .]]”.
The parameter value is not a hexadecimal (base 16) value. Locate the
offending parameter specification and change the value of the parameter to a
hexadecimal value.

Parameter value ‘%1!s!’ is not an unsigned integer.

Item Value

Error code 2

Constant PARAMETER_NOT_UINT32 (Java) STREAM_-
ERROR_PARAMETER_NOT_UINT32 (C/C++) ul-
StreamErrorParameterNotUint32 (Visual Basic)

Parameter 1 The invalid parameter value.

371

Probable cause Network parameters are of the form “name=value;[name2=value2[;. . .]]”.
The parameter value is not an unsigned integer. Locate the offending
parameter specification and change the value of the parameter to an unsigned
integer.

Parameter value ‘%1!s!’ is not an unsigned integer value or range. A
range has the form NNN-NNN.

Item Value

Error code 3

Constant PARAMETER_NOT_UINT32_RANGE (Java)
STREAM_ERROR_PARAMETER_NOT_UINT32_-
RANGE (C/C++) ulStreamErrorParameterNotU-
int32Range (Visual Basic)

Parameter 1 The invalid parameter value.

Probable cause Network parameters are of the form “name=value;[name2=value2[;. . .]]”.
The parameter value is not an unsigned integer value or range. Locate the
offending parameter specification and change the value of the parameter to
an unsigned integer or an unsigned range. An unsigned range has the form:
NNN-NNN.

Unable to parse the parameter string ‘%1!s!’.

Item Value

Error code 7

Constant PARSE (Java) STREAM_ERROR_PARSE (C/C++) ul-
StreamErrorParse (Visual Basic)

Parameter 1 The parameter string that could not be parsed.

Probable cause Network parameters are of the form “name=value;[name2=value2[;. . .]]”.
Optionally, the entire list of parameters may be enclosed in parentheses. The
given string does not follow this convention. Inspect the string, fix any
formatting problems, and retry the operation.

372

Chapter 12. MobiLink Communication Error Messages

Unable to read %1!s! bytes.

Item Value

Error code 8

Constant READ (Java) STREAM_ERROR_READ (C/C++) ul-
StreamErrorRead (Visual Basic)

Parameter 1 The number of bytes that could not be read.

Probable cause Unable to read the given number of bytes from the network layer. Note that
reads may occur as part of any larger network operation. For example, some
network layers have sub-layers that perform several reads and writes as part
of a basic operation in the upper layer.

The cause of a read error is usually one of the following:

1) The network had a problem that caused the read to fail.

Reconnect and retry the operation.

2) The connection timed out.

Reconnect and retry the operation.

3) The other side of the connection cleanly terminated the connection.

Consult the client and/or server logs for errors that indicate why the
connection has been dropped.

Consult the output-log errors and fix the cause, then retry the operation.

4) The process at the other side of the connection was aborted.

Consult the client and/or server output logs for errors that indicate why the
process was aborted.

If the process was shut down by other than normal means, there may not be
any errors in its output log.

Reconnect and retry the operation.

5) The system is low on resources, and cannot perform the read.

Free up system resources, reconnect and retry the operation. If subsequent
retry attempts fail, consult your network administrator.

373

Timed out trying to read %1!s! bytes.

Item Value

Error code 201

Constant READ_TIMEOUT (Java) STREAM_ERROR_READ_-
TIMEOUT (C/C++) ulStreamErrorReadTimeout (Visual
Basic)

Parameter 1 The number of bytes that could not be read.

Probable cause Unable to read the given number of bytes from the network layer in the
given time.

Check that the network is functioning correctly, and that the sending
application is still running.

Unable to add a certificate to a certificate chain.

Item Value

Error code 39

Constant SECURE_ADD_CERTIFICATE (Java) STREAM_-
ERROR_SECURE_ADD_CERTIFICATE (C/C++) ul-
StreamErrorSecureAddCertificate (Visual Basic)

Probable cause The secure network layer was unable to add a certificate to a certificate
chain. Free up system resources and retry the operation.

Unable to add a trusted certificate.

Item Value

Error code 48

Constant SECURE_ADD_TRUSTED_CERTIFICATE (Java)
STREAM_ERROR_SECURE_ADD_TRUSTED_-
CERTIFICATE (C/C++) ulStreamErrorSecureAddTrusted-
Certificate (Visual Basic)

Probable cause The secure network layer was unable to add a trusted certificate to a
certificate chain. The most likely cause is a shortage of system resources.
Free up system resources and retry the operation.

374

Chapter 12. MobiLink Communication Error Messages

Internal error 4028.

Item Value

Error code 28

Constant SECURE_CERTIFICATE_CHAIN_FUNC (Java)
STREAM_ERROR_SECURE_CERTIFICATE_CHAIN_-
FUNC (C/C++) ulStreamErrorSecureCertificateChainFunc
(Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

Invalid certificate chain length (%1!s!).

Item Value

Error code 22

Constant SECURE_CERTIFICATE_CHAIN_LENGTH (Java)
STREAM_ERROR_SECURE_CERTIFICATE_CHAIN_-
LENGTH (C/C++) ulStreamErrorSecureCertificateChain-
Length (Visual Basic)

Parameter 1 The certificate chain length.

Probable cause The certificate chain has the wrong length. This is an internal error that
should never occur. Please contact technical support.

Internal error 4029.

Item Value

Error code 29

Constant SECURE_CERTIFICATE_CHAIN_REF (Java)
STREAM_ERROR_SECURE_CERTIFICATE_CHAIN_-
REF (C/C++) ulStreamErrorSecureCertificateChainRef
(Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

375

Unrecognized common name ‘%1!s!’.

Item Value

Error code 52

Constant SECURE_CERTIFICATE_COMMON_NAME (Java)
STREAM_ERROR_SECURE_CERTIFICATE_-
COMMON_NAME (C/C++) ulStreamErrorSecureCer-
tificateCommonName (Visual Basic)

Parameter 1 The common name.

Probable cause The given common name is not in the certificate chain. Check the following:

1) The common name was properly entered.

2) The correct certificate file was specified.

3) The common name is in the certificate chain. You can verify this with the
readcert utility.

Unrecognized organization ‘%1!s!’.

Item Value

Error code 21

Constant SECURE_CERTIFICATE_COMPANY_NAME (Java)
STREAM_ERROR_SECURE_CERTIFICATE_-
COMPANY_NAME (C/C++) ulStreamErrorSecureCer-
tificateCompanyName (Visual Basic)

Parameter 1 The organization name.

Probable cause The given organization name is not in the certificate chain. Check the
following:

1) The organization name was properly entered.

2) The correct certificate file was specified.

3) The organization name is in the certificate chain. You can verify this with
the readcert utility.

376

Chapter 12. MobiLink Communication Error Messages

Unrecognized organization unit ‘%1!s!’.

Item Value

Error code 51

Constant SECURE_CERTIFICATE_COMPANY_UNIT (Java)
STREAM_ERROR_SECURE_CERTIFICATE_-
COMPANY_UNIT (C/C++) ulStreamErrorSecureCer-
tificateCompanyUnit (Visual Basic)

Parameter 1 The organization unit name.

Probable cause The given organization unit is not in the certificate chain. Check the
following:

1) The in company name was properly entered.

2) The correct certificate file was specified.

3) The company name is in the certificate chain. You can verify this with the
readcert utility.

No trusted certificates found.

Item Value

Error code 42

Constant SECURE_CERTIFICATE_COUNT (Java) STREAM_-
ERROR_SECURE_CERTIFICATE_COUNT (C/C++)
ulStreamErrorSecureCertificateCount (Visual Basic)

Probable cause The given file does not contain a certificate. Check the following:

1) The certificate file name was properly specified.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

377

A certificate has expired.

Item Value

Error code 50

Constant SECURE_CERTIFICATE_EXPIRED (Java) STREAM_-
ERROR_SECURE_CERTIFICATE_EXPIRED (C/C++)
ulStreamErrorSecureCertificateExpired (Visual Basic)

Probable cause A certificate in the certificate chain has expired. Obtain a new certificate
with a later expiry date and retry the operation.

Unable to fetch a certificate expiry date.

Item Value

Error code 37

Constant SECURE_CERTIFICATE_EXPIRY_DATE (Java)
STREAM_ERROR_SECURE_CERTIFICATE_-
EXPIRY_DATE (C/C++) ulStreamErrorSecureCertifi-
cateExpiryDate (Visual Basic)

Probable cause A certificate’s expiry date could not be read. Check the following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Unable to open certificate file ‘%1!s!’.

Item Value

Error code 33

Constant SECURE_CERTIFICATE_FILE_NOT_FOUND (Java)
STREAM_ERROR_SECURE_CERTIFICATE_FILE_-
NOT_FOUND (C/C++) ulStreamErrorSecureCertificate-
FileNotFound (Visual Basic)

Parameter 1 The certificate file name.

Probable cause The certificate file could not be opened. Check the following:

378

Chapter 12. MobiLink Communication Error Messages

1) The certificate file name was properly specified.

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

5) The program attempting to open the certificate file has sufficient
privileges to read the file. This only applies to operating systems having user
and/or file permissions.

Server certificate not trusted.

Item Value

Error code 24

Constant SECURE_CERTIFICATE_NOT_TRUSTED (Java)
STREAM_ERROR_SECURE_CERTIFICATE_NOT_-
TRUSTED (C/C++) ulStreamErrorSecureCertificateNot-
Trusted (Visual Basic)

Probable cause The server’s certificate was not signed by a trusted authority. Check the
following:

1) The certificate file name was properly specified.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The client’s list of trusted root certificates includes the server’s root
certificate.

Certificate error (4023).

Item Value

Error code 23

Constant SECURE_CERTIFICATE_REF (Java) STREAM_-
ERROR_SECURE_CERTIFICATE_REF (C/C++) ul-
StreamErrorSecureCertificateRef (Visual Basic)

Probable cause This is an internal error in the secure network layer. This is an internal error
that should never occur. Please contact technical support.

379

Invalid root certificate.

Item Value

Error code 20

Constant SECURE_CERTIFICATE_ROOT (Java) STREAM_-
ERROR_SECURE_CERTIFICATE_ROOT (C/C++) ul-
StreamErrorSecureCertificateRoot (Visual Basic)

Probable cause The root certificate in the chain is invalid. At the time of publication, this
error was defined but not used.

Unable to allocate a certificate.

Item Value

Error code 43

Constant SECURE_CREATE_CERTIFICATE (Java) STREAM_-
ERROR_SECURE_CREATE_CERTIFICATE (C/C++)
ulStreamErrorSecureCreateCertificate (Visual Basic)

Probable cause The secure network layer was unable to allocate storage for a certificate.
Free up system resources and retry the operation.

Unable to create a private key object.

Item Value

Error code 49

Constant SECURE_CREATE_PRIVATE_KEY_OBJECT (Java)
STREAM_ERROR_SECURE_CREATE_PRIVATE_-
KEY_OBJECT (C/C++) ulStreamErrorSecureCreatePri-
vateKeyObject (Visual Basic)

Probable cause The secure network layer was unable to create a private key object, prior to
loading the private key. The most likely cause is a shortage of system
resources. Free up system resources and retry the operation.

380

Chapter 12. MobiLink Communication Error Messages

Unable to duplicate security context.

Item Value

Error code 25

Constant SECURE_DUPLICATE_CONTEXT (Java) STREAM_-
ERROR_SECURE_DUPLICATE_CONTEXT (C/C++)
ulStreamErrorSecureDuplicateContext (Visual Basic)

Probable cause The secure network layer was unable to duplicate a security context.

Free up system resources and retry the operation.

Internal error 4030.

Item Value

Error code 30

Constant SECURE_ENABLE_NON_BLOCKING (Java)
STREAM_ERROR_SECURE_ENABLE_NON_-
BLOCKING (C/C++) ulStreamErrorSecureEnableNon-
Blocking (Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

Unable to copy a certificate.

Item Value

Error code 38

Constant SECURE_EXPORT_CERTIFICATE (Java) STREAM_-
ERROR_SECURE_EXPORT_CERTIFICATE (C/C++)
ulStreamErrorSecureExportCertificate (Visual Basic)

Probable cause The secure network layer was unable to copy a certificate. Free up system
resources and retry the operation.

381

Handshake error.

Item Value

Error code 53

Constant SECURE_HANDSHAKE (Java) STREAM_ERROR_-
SECURE_HANDSHAKE (C/C++) ulStreamErrorSecure-
Handshake (Visual Basic)

Probable cause The secure handshake failed. Check the following:

1) On the client, the correct host machine and port number were specified.

2) On the server, the correct port number was specified.

3) The correct certificate file was specified, both on the client and on the
server.

Unable to import a certificate.

Item Value

Error code 44

Constant SECURE_IMPORT_CERTIFICATE (Java) STREAM_-
ERROR_SECURE_IMPORT_CERTIFICATE (C/C++)
ulStreamErrorSecureImportCertificate (Visual Basic)

Probable cause The secure network layer was unable to import a certificate. Check the
following:

1) The certificate file name was properly specified.

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

Unable to read certificates.

Item Value

Error code 34

Constant SECURE_READ_CERTIFICATE (Java) STREAM_-
ERROR_SECURE_READ_CERTIFICATE (C/C++) ul-
StreamErrorSecureReadCertificate (Visual Basic)

382

Chapter 12. MobiLink Communication Error Messages

Probable cause The certificate file could not be read. Check the following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Unable to read the private key.

Item Value

Error code 35

Constant SECURE_READ_PRIVATE_KEY (Java) STREAM_-
ERROR_SECURE_READ_PRIVATE_KEY (C/C++) ul-
StreamErrorSecureReadPrivateKey (Visual Basic)

Probable cause The private key could not be read from the certificate file. Check the
following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Internal error 4032.

Item Value

Error code 32

Constant SECURE_SET_CHAIN_NUMBER (Java) STREAM_-
ERROR_SECURE_SET_CHAIN_NUMBER (C/C++)
ulStreamErrorSecureSetChainNumber (Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

383

Internal error 4031.

Item Value

Error code 31

Constant SECURE_SET_CIPHER_SUITES (Java) STREAM_-
ERROR_SECURE_SET_CIPHER_SUITES (C/C++) ul-
StreamErrorSecureSetCipherSuites (Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

Unable to attach the network layer to the security layer.

Item Value

Error code 26

Constant SECURE_SET_IO (Java) STREAM_ERROR_SECURE_-
SET_IO (C/C++) ulStreamErrorSecureSetIo (Visual Basic)

Probable cause The secure network layer was unable to attach to the network layer. Free up
system resources and retry the operation.

Internal error 4027.

Item Value

Error code 27

Constant SECURE_SET_IO_SEMANTICS (Java) STREAM_-
ERROR_SECURE_SET_IO_SEMANTICS (C/C++) ul-
StreamErrorSecureSetIoSemantics (Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

Unable to set the private key.

Item Value

Error code 36

Constant SECURE_SET_PRIVATE_KEY (Java) STREAM_-
ERROR_SECURE_SET_PRIVATE_KEY (C/C++) ul-
StreamErrorSecureSetPrivateKey (Visual Basic)

384

Chapter 12. MobiLink Communication Error Messages

Probable cause The private key could not be used. Check the following:

1) The password was entered correctly.

2) The certificate file contains one or more certificates.

3) The certificate file contains the correct certificate(s).

4) The certificate file is undamaged.

Unable to set the protocol side (%1!s!).

Item Value

Error code 47

Constant SECURE_SET_PROTOCOL_SIDE (Java) STREAM_-
ERROR_SECURE_SET_PROTOCOL_SIDE (C/C++)
ulStreamErrorSecureSetProtocolSide (Visual Basic)

Parameter 1 The server side being set. The value is 1 for server side,
and 2 for client side.

Probable cause The secure network layer was unable to establish the given protocol side.
This is an internal error that should never occur. Please contact technical
support.

Internal initialization error 4046.

Item Value

Error code 46

Constant SECURE_SET_RANDOM_FUNC (Java) STREAM_-
ERROR_SECURE_SET_RANDOM_FUNC (C/C++) ul-
StreamErrorSecureSetRandomFunc (Visual Basic)

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

Internal initialization error 4045.

Item Value

Error code 45

Constant SECURE_SET_RANDOM_REF (Java) STREAM_-
ERROR_SECURE_SET_RANDOM_REF (C/C++) ul-
StreamErrorSecureSetRandomRef (Visual Basic)

385

Probable cause An internal error has occurred in the network layer. Please contact technical
support.

Internal initialization error 4055.

Item Value

Error code 55

Constant SECURE_SET_READ_FUNC (Java) STREAM_-
ERROR_SECURE_SET_READ_FUNC (C/C++) ul-
StreamErrorSecureSetReadFunc (Visual Basic)

Probable cause This initialization error is most likely due to a lack of system resources. Free
up system resources and retry the operation.

Internal initialization error 4056.

Item Value

Error code 56

Constant SECURE_SET_WRITE_FUNC (Java) STREAM_-
ERROR_SECURE_SET_WRITE_FUNC (C/C++) ul-
StreamErrorSecureSetWriteFunc (Visual Basic)

Probable cause This initialization error is most likely due to a lack of system resources. Free
up system resources and retry the operation.

Unable to find the trusted certificate file ‘%1!s!’.

Item Value

Error code 40

Constant SECURE_TRUSTED_CERTIFICATE_FILE_NOT_-
FOUND (Java) STREAM_ERROR_SECURE_-
TRUSTED_CERTIFICATE_FILE_NOT_FOUND
(C/C++) ulStreamErrorSecureTrustedCertificateFileNot-
Found (Visual Basic)

Parameter 1 The trusted certificate file name.

Probable cause The certificate file could not be found. Check the following:

1) The certificate file name was properly specified.

2) The certificate file exists.

386

Chapter 12. MobiLink Communication Error Messages

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

5) The program attempting to open the certificate file has sufficient
privileges to see the file. This only applies to operating systems having user
and/or file permissions.

Error reading from the trusted certificate file ‘%1!s!’.

Item Value

Error code 41

Constant SECURE_TRUSTED_CERTIFICATE_READ
(Java) STREAM_ERROR_SECURE_TRUSTED_-
CERTIFICATE_READ (C/C++) ulStreamErrorSe-
cureTrustedCertificateRead (Visual Basic)

Parameter 1 The trusted certificate file name.

Probable cause The secure network layer was unable to read the trusted certificate file.
Check the following:

1) The certificate file name was properly specified.

2) The certificate file exists.

3) The certificate file contains one or more certificates.

4) The certificate file contains the correct certificate(s).

5) The program attempting to open the certificate file has sufficient
privileges to see the file. This only applies to operating systems having user
and/or file permissions.

Unable to seed the random number generator.

Item Value

Error code 16

Constant SEED_RANDOM (Java) STREAM_ERROR_SEED_-
RANDOM (C/C++) ulStreamErrorSeedRandom (Visual
Basic)

Probable cause The secure network layer could not seed its random number generator. Free
up system resources, reconnect and retry the operation.

387

An error occurred during shutdown.

Item Value

Error code 18

Constant SHUTTING_DOWN (Java) STREAM_ERROR_-
SHUTTING_DOWN (C/C++) ulStreamErrorShutting-
Down (Visual Basic)

Probable cause The MobiLink synchronization server encountered an error in the network
layer during shutdown. It is possible that some network operations pending
at the time of shutdown were affected.

Unable to bind a socket to port %1!s!.

Item Value

Error code 60

Constant SOCKET_BIND (Java) STREAM_ERROR_SOCKET_-
BIND (C/C++) ulStreamErrorSocketBind (Visual Basic)

Parameter 1 The port number.

Probable cause The network layer was unable to bind a socket to the given port. Check the
following.

1) (Server only) Verify that the port isn’t already in use. If the port is in use,
either shut down the application listening on that port, or specify a different
port.

2) (Server only) Verify that there are no firewall restrictions on the use of the
port.

3) (Client only) If the client_port option was used, verify that the given port
isn’t already in use. If only one client port was specified, consider using a
range (eg. NNN-NNN). If a range was specified, consider making it a wider
range, or a different range.

4) (Client only) If the client_port option was used, verify that there are no
firewall restrictions on the use of the port.

388

Chapter 12. MobiLink Communication Error Messages

Unable to clean up the socket layer.

Item Value

Error code 61

Constant SOCKET_CLEANUP (Java) STREAM_ERROR_-
SOCKET_CLEANUP (C/C++) ulStreamErrorSocket-
Cleanup (Visual Basic)

Probable cause The network layer was unable to clean up the socket layer. This error should
only occur after all connections are finished, so no current connections
should be affected.

Unable to close a socket.

Item Value

Error code 62

Constant SOCKET_CLOSE (Java) STREAM_ERROR_SOCKET_-
CLOSE (C/C++) ulStreamErrorSocketClose (Visual Basic)

Probable cause The network layer was unable to close a socket. The network session may or
may not have terminated prematurely, due to pending writes that were not
flushed. Check the following:

1) The other side of the network connection had any errors.

2) The other side of the connection is running normally.

3) The machine is still connected to the network, and the network is
responsive.

Unable to connect a socket.

Item Value

Error code 63

Constant SOCKET_CONNECT (Java) STREAM_ERROR_-
SOCKET_CONNECT (C/C++) ulStreamErrorSocket-
Connect (Visual Basic)

Probable cause The network layer was unable to connect a socket. Check the following:

1) The machine is connected to the network.

2) The socket layer is properly initialized.

389

3) The correct host machine and port were specified.

4) The host server is running normally and listening on the correct port.

5) The host machine is listening for the proper socket type (TCP/IP vs.
UDP).

6) If the client_port option was used, verify that there are no firewall
restrictions on the use of the port.

7) If the device has a limit on the number of open sockets, verify that the
limit has not been reached.

8) There are enough system resources available. Free up system resources if
they are running low.

Unable to create a TCP/IP socket.

Item Value

Error code 58

Constant SOCKET_CREATE_TCPIP (Java) STREAM_ERROR_-
SOCKET_CREATE_TCPIP (C/C++) ulStreamErrorSock-
etCreateTcpip (Visual Basic)

Probable cause The network layer was unable to create a TCP/IP socket. Check the
following:

1) The machine is connected to the network.

2) The socket layer is properly initialized.

5) If the device has a limit on the number of open sockets, verify that the
limit has not been reached.

6) There are enough system resources available. Free up system resources if
they are running low.

Unable to create a UDP socket.

Item Value

Error code 59

Constant SOCKET_CREATE_UDP (Java) STREAM_ERROR_-
SOCKET_CREATE_UDP (C/C++) ulStreamErrorSock-
etCreateUdp (Visual Basic)

Probable cause The network layer was unable to create a UDP socket. Check the following:

390

Chapter 12. MobiLink Communication Error Messages

1) The machine is connected to the network.

2) The socket layer is properly initialized.

3) If the client_port option was used, verify that the given port isn’t already
in use. If only one client port was specified, consider using a range (eg.
NNN-NNN). If a range was specified, consider making it a wider range, or a
different range.

4) If the client_port option was used, verify that there are no firewall
restrictions on the use of the port.

5) If the device has a limit on the number of open sockets, verify that the
limit has not been reached.

6) There are enough system resources available. Free up system resources if
they are running low.

Unable to get host by address.

Item Value

Error code 72

Constant SOCKET_GET_HOST_BY_ADDR (Java) STREAM_-
ERROR_SOCKET_GET_HOST_BY_ADDR (C/C++)
ulStreamErrorSocketGetHostByAddr (Visual Basic)

Probable cause The network layer was unable to get the name of a host using its IP address.
At the time of publication, this error was defined but not used.

Unable to get a socket’s local name.

Item Value

Error code 64

Constant SOCKET_GET_NAME (Java) STREAM_ERROR_-
SOCKET_GET_NAME (C/C++) ulStreamErrorSocket-
GetName (Visual Basic)

Probable cause The network layer was unable to determine a socket’s local name. In a
TCP/IP connection, each end of the connection has a socket exclusively
attached to a port. A socket’s local name includes this port number, which is
assigned by the network at connection time. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

391

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Unable to get socket option number %1!s!.

Item Value

Error code 65

Constant SOCKET_GET_OPTION (Java) STREAM_ERROR_-
SOCKET_GET_OPTION (C/C++) ulStreamErrorSock-
etGetOption (Visual Basic)

Parameter 1 The socket option being retrieved.

Probable cause The network layer was unable to get a socket option. This error may be the
first indication that a connection has been lost. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

The host name ‘%1!s!’ could not be found.

Item Value

Error code 57

Constant SOCKET_HOST_NAME_NOT_FOUND (Java)
STREAM_ERROR_SOCKET_HOST_NAME_NOT_-
FOUND (C/C++) ulStreamErrorSocketHostNameNot-
Found (Visual Basic)

Parameter 1 The name of the host.

Probable cause The given host name could not be found. Check the following:

1) The host name was correctly specified.

2) The host is accessible. Many systems include a “ping” utility that can be
used to verify access to a named host.

3) The Domain Name Server (DNS), or its equivalent, is available. If the
DNS is not available, try specifying the host’s IP number (eg.

392

Chapter 12. MobiLink Communication Error Messages

NNN.NNN.NNN.NNN) instead of the host name.

4) The HOSTS file contains an entry that maps the host name to an IP
number.

Unable to listen on a socket. The backlog is %1!s!.

Item Value

Error code 67

Constant SOCKET_LISTEN (Java) STREAM_ERROR_-
SOCKET_LISTEN (C/C++) ulStreamErrorSocketListen
(Visual Basic)

Parameter 1 The requested listener backlog.

Probable cause The server is unable to listen on a socket. The backlog refers to the
maximum number of queued connection requests that may be pending at any
given time. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) There are no firewall or other restrictions preventing a socket listener
from running on the current machine.

3) The backlog setting is within the limit, if any, on the machine.

4) There are enough system resources available. Free up system resources if
they are running low.

Invalid liveness timeout value %1!s!. The value must be between zero
and 65535.

Item Value

Error code 200

Constant SOCKET_LIVENESS_OUT_OF_RANGE (Java)
STREAM_ERROR_SOCKET_LIVENESS_OUT_OF_-
RANGE (C/C++) ulStreamErrorSocketLivenessOut-
OfRange (Visual Basic)

Parameter 1 The liveness timeout value.

Probable cause An invalid liveness timeout value was specified. The liveness timeout value
must be an integer between zero and 65535.

393

Unable to determine localhost.

Item Value

Error code 71

Constant SOCKET_LOCALHOST_NAME_NOT_FOUND (Java)
STREAM_ERROR_SOCKET_LOCALHOST_NAME_-
NOT_FOUND (C/C++) ulStreamErrorSocketLocalhost-
NameNotFound (Visual Basic)

Probable cause The network layer was unable to determine the IP address of “localhost”.
Check the following:

1) The Domain Name Server (DNS), or its equivalent, is available. If the
DNS is not available, try explicitly specifying the localhost IP number
(usually 127.0.0.1) instead.

2) The HOSTS file contains an entry that maps the “localhost” name to an IP
number.

3) There are enough system resources available. Free up system resources if
they are running low.

Invalid port number %1!s!. The value must be between zero and 65535.

Item Value

Error code 74

Constant SOCKET_PORT_OUT_OF_RANGE (Java) STREAM_-
ERROR_SOCKET_PORT_OUT_OF_RANGE (C/C++)
ulStreamErrorSocketPortOutOfRange (Visual Basic)

Parameter 1 The port number.

Probable cause An invalid port number was specified. The port number must be an integer
between zero and 65535.

Unable to select a socket status.

Item Value

Error code 69

Constant SOCKET_SELECT (Java) STREAM_ERROR_-
SOCKET_SELECT (C/C++) ulStreamErrorSocketSelect
(Visual Basic)

394

Chapter 12. MobiLink Communication Error Messages

Probable cause The network layer encountered an error attempting to wait for a socket to be
ready for reading or writing. Check the following:

1) The machine is connected to the network, and the network is responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Unable to set socket option number %1!s!.

Item Value

Error code 66

Constant SOCKET_SET_OPTION (Java) STREAM_ERROR_-
SOCKET_SET_OPTION (C/C++) ulStreamErrorSocket-
SetOption (Visual Basic)

Parameter 1 The socket option being set.

Probable cause The network layer was unable to set a socket option. This error may be the
first indication that a connection has been lost. Check the following:

1) The machine is still connected to the network, and the network is
responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

Unable to shut down a socket.

Item Value

Error code 68

Constant SOCKET_SHUTDOWN (Java) STREAM_ERROR_-
SOCKET_SHUTDOWN (C/C++) ulStreamErrorSock-
etShutdown (Visual Basic)

Probable cause The network layer was unable to shut down a socket. Check the following:

1) The machine is connected to the network, and the network is responsive.

2) The other side of the connection is running normally.

3) There are enough system resources available. Free up system resources if
they are running low.

395

Unable to initialize the sockets layer.

Item Value

Error code 70

Constant SOCKET_STARTUP (Java) STREAM_ERROR_-
SOCKET_STARTUP (C/C++) ulStreamErrorSocket-
Startup (Visual Basic)

Probable cause The network layer was unable to initialize the socket layer. Check the
following:

1) The sockets layer is properly installed. The correct network interface
library must be present and accessible.

2) The machine is connected to the network, and the network is responsive.

3) There are enough system resources available. Free up system resources if
they are running low.

The operation would cause blocking.

Item Value

Error code 13

Constant WOULD_BLOCK (Java) STREAM_ERROR_WOULD_-
BLOCK (C/C++) ulStreamErrorWouldBlock (Visual Ba-
sic)

Probable cause A requested operation would block where blocking is undesirable or
unexpected.

Unable to write %1!s! bytes.

Item Value

Error code 9

Constant WRITE (Java) STREAM_ERROR_WRITE (C/C++) ul-
StreamErrorWrite (Visual Basic)

Parameter 1 The number of bytes that could not be written.

Probable cause Unable to write the given number of bytes to the network layer. Note that
writes may occur as part of any larger network operation. For example, some
network layers have sub-layers that perform several reads and writes as part

396

Chapter 12. MobiLink Communication Error Messages

of a basic operation in the upper layer.

The cause of a write error is usually one of the following:

1) The network had a problem that caused the write to fail.

Reconnect and retry the operation.

2) The connection timed out.

Reconnect and retry the operation.

3) The other side of the connection cleanly terminated the connection.

Consult the client and/or server logs for errors that indicate why the
connection has been dropped.

Consult the output-log errors and fix the cause, then retry the operation.

4) The process at the other side of the connection was aborted.

Consult the client and/or server output logs for errors that indicate why the
process was aborted.

If the process was shut down by other than normal means, there may not be
any errors in its output log.

Reconnect and retry the operation.

5) The system is low on resources, and cannot perform the write.

Free up system resources, reconnect and retry the operation. If subsequent
retry attempts fail, consult your network administrator.

Timed out trying to write %1!s! bytes.

Item Value

Error code 202

Constant WRITE_TIMEOUT (Java) STREAM_ERROR_WRITE_-
TIMEOUT (C/C++) ulStreamErrorWriteTimeout (Visual
Basic)

Parameter 1 The number of bytes that could not be written.

Probable cause Unable to write the given number of bytes to the network layer in the given
time.

Check that the network is functioning correctly, and that the receiving
application is still running.

397

CHAPTER 13

MobiLink Synchronization Server Error
Messages

About this chapter This chapter lists MobiLink synchronization server communication errors,
as well as their probable causes.

The error messages are written to the MobiLink synchronization server
message log.

Contents Topic: page

MobiLink synchronization server error messages sorted by code 400

MobiLink synchronization server error messages sorted message406

MobiLink synchronization server error descriptions 412

399

MobiLink synchronization server error messages
sorted by code

Error code Error message

–10094 “Expecting %1!ld! authentication parameter(s) from
client, but received %2!ld! for script %3!s!” on page 416

–10093 “There is no download data script defined for table: %1!s!.
If you want to be able to synchronize anyway, with the risk
of potentially losing download data, use the -fr switch” on
page 427

–10092 “There is no upload data script defined for table: %1!s!. If
you want to be able to synchronize anyway, with the risk
of potentially losing upload data, use the -fr switch” on
page 427

–10091 “This connection will be abandoned due to previous
errors” on page 428

–10090 “The client cannot find the consolidated progress offset
from the client transaction log(s)” on page 424

–10089 “Client is unable to process truncate table request for table
‘%1!s!”’ on page 415

–10088 “Unable to load entry points from dll: ‘%1!s!”’ on
page 434

–10087 “Version mismatch with dll : ‘%1!s!’\nExpected version:
%2!d! got version: %3!d!” on page 436

–10086 “Cannot load dll: ‘%1!s!’ for Script Language: ‘%2!s!”’
on page 414

–10085 “LANG: %1!s! = Failed to allocate database connection”
on page 419

–10084 “LANG: %1!s! - Failed to attach worker thread” on
page 419

–10083 “Unable to delete user name ‘%1!s!’ from the ml_user_-
table” on page 430

–10082 “Unable to initialize the resource DLL ‘%1!s!”’ on
page 432

400

Chapter 13. MobiLink Synchronization Server Error Messages

Error code Error message

–10081 “The MobiLink synchronization server DLL version does
not match the data layer DLL version” on page 423

–10080 “Unable to execute script ‘%1!s!”’ on page 431

–10079 “The length of the name of a publication, table, or column
cannot be retrieved from the upload stream” on page 424

–10078 “The publication, table, or column name received from the
client is too long: the length is %1!d!” on page 425

–10077 “The MobiLink synchronization server was unable to
modify the error message using the modify_error_message
script” on page 424

–10076 “The MobiLink synchronization server was unable to
calculate the timestamp precision on the consolidated
database using the ml_scripts_modified table. Timestamp
precision related warnings will not be generated” on
page 423

–10075 “Required ODBC function %1!s! is not supported by the
driver” on page 422

–10074 “Unable to update table ‘%1!s!’ using %2!s!” on page 435

–10073 “Unable to delete from table ‘%1!s!’ using %2!s!” on
page 430

–10072 “Unable to insert into table ‘%1!s!’ using %2!s!” on
page 433

–10071 “Unable to fetch from table ‘%1!s!’ using %2!s!” on
page 431

–10070 “No server connection string specified” on page 420

–10069 “Unable to initialize consolidated database interface” on
page 432

–10068 “Unable to initialize authentication subsystem” on
page 432

–10067 “Unable to allocate a connection” on page 429

–10066 “Unable to initialize ODBC” on page 432

–10065 “Unable to COMMIT Transaction: %1!s! – Attempting to
ROLLBACK” on page 428

401

Error code Error message

–10064 “Unable to ROLLBACK Transaction: %1!s!” on page 428

–10063 “An error occurred while uploading an updated row into
table ‘%1!s!’. The updated column values are as follows:”
on page 413

–10062 “An error occurred while uploading a deleted row into
table ‘%1!s!’. The deleted column values are as follows:”
on page 413

–10061 “An error occurred while uploading an insert row into
table ‘%1!s!’. The inserted column values are as follows:”
on page 413

–10060 “Memory allocation failed” on page 420

–10059 “A protocol error occurred when attempting to retrieve the
remote client’s synchronization log” on page 412

–10058 “Unable to open %1!s!” on page 434

–10057 “Invalid password for user %1!s!” on page 419

–10056 “User name ‘%1!s!’ not found in the ml_user table” on
page 435

–10055 “Unable to authenticate user %1!s!” on page 429

–10054 “Unable to insert user name ‘%1!s!’ into the ml_user
table” on page 433

–10053 “The user name ‘%1!s!’ is already synchronizing. Con-
current synchronizations using the same user name are not
allowed” on page 426

–10052 “The %1!s! script returned %2!ld!” on page 423

–10051 “Internal error: wrong function ‘%1!s!’ called. Please
contact technical support” on page 419

–10050 “Expecting %1!ld! columns in cursor, but found %2!ld!”
on page 417

–10049 “Too many bind parameters in script (expecting %1!ld!
but found %2!ld!): %3!s!” on page 428

–10048 “Expecting at least %1!ld! parameters in script, but only
found %2!ld!: %3!s!” on page 417

402

Chapter 13. MobiLink Synchronization Server Error Messages

Error code Error message

–10047 “Expecting %1!ld! parameters in script, but only found
%2!ld!: %3!s!” on page 417

–10046 “Unable to allocate an input/output cursor” on page 429

–10045 “Cannot directly determine the name of the table refer-
enced by the cursor. The table name is required for inserts,
updates, and deletes when using the Microsoft ODBC
Cursor Library” on page 414

–10044 “INTERNAL ERROR: occurred while storing a BLOB –
write” on page 418

–10043 “INTERNAL ERROR: occurred while retrieving a BLOB
– zero length” on page 418

–10042 “INTERNAL ERROR: occurred while retrieving a BLOB
– null” on page 418

–10041 “INTERNAL ERROR: occurred while retrieving a BLOB
– read” on page 418

–10040 “Extraneous data found in upload stream” on page 417

–10039 “Scripts cannot be defined as NULL” on page 422

–10038 “A downloaded value for table %1!s! (column #%2!ld!)
was either too big or invalid for the remote schema type”
on page 412

–10037 “Unable to launch the command: (%1!s!). The system
error code is %2!d!” on page 433

–10036 “Download stream encountered error in remote database”
on page 416

–10035 “Download failed with client error %1!d!” on page 415

–10034 “No download confirmation from remote database” on
page 420

–10033 “The row is too big. The size (%1!ld! bytes) exceeds the
maximum allowable size (%2!ld! bytes)” on page 425

–10032 “Upload failed with client error %1!d!” on page 435

–10031 “An error occurred when trying to store progress informa-
tion in the consolidated database” on page 413

403

Error code Error message

–10030 “A network read failed. Unable to read data from the
remote client” on page 412

–10029 “Attempt to set non-null column to null” on page 414

–10028 “Unable to connect to the consolidated database. Aborting
the synchronization” on page 429

–10027 “Unable to generate scripts for version ‘%1!s!”’ on
page 431

–10026 “The upload stream is too short: should be at least %1!d!
bytes, but received %2!d! bytes” on page 426

–10025 “The %1!s! cursor is unexpectedly undefined” on page 423

–10024 “Unrecognized domain id %1!d!” on page 435

–10023 “The remote database may have been restored from
backup, or perhaps user name ‘%1!s!’ is being used
by different remote databases. Set ml_user.commit_state
to zero to re-enable synchronizations for this user” on
page 425

–10022 “The synchronization sequence number stored in ml_-
user.commit_state is negative. Set this value to zero (0) to
re-enable synchronizations for user ‘%1!s!”’ on page 426

–10021 “Unable to retry the current transaction after deadlock
in the consolidated database. The retry limit has been
reached” on page 434

–10020 “Unable to flush scripts” on page 431

–10019 “Error fetching table script %1!s!.%2!s!” on page 416

–10018 “Error fetching connection script %1!s!” on page 416

–10017 “Protocol error: there is no publication that contains table
‘%1!s!”’ on page 422

–10016 “Cannot convert ‘%1!s!’ to Unicode” on page 414

–10015 “Protocol error: client requests an unsupported capability
(%1!s!)” on page 421

–10014 “Protocol error: an invalid timestamp precision of %1!d!
was sent from the remote” on page 421

404

Chapter 13. MobiLink Synchronization Server Error Messages

Error code Error message

–10013 “Version ‘%1!s!’ not found in the ml_script_version table.
Cannot synchronize” on page 436

–10012 “There are no registered script versions. Unable to
synchronize a client created prior to version 7.0.0” on
page 427

–10011 “Unable to determine the remote version” on page 430

–10010 “Unable to determine the remote user password” on
page 430

–10009 “Unable to determine the remote user name” on page 430

–10008 “Unable to load UNILIB collation expansion factor: error
%1!d!” on page 434

–10007 “Unable to load UNILIB collation %1!d!: error %2!d!”
on page 433

–10006 “Collation not supported by this server” on page 415

–10005 “Old versions of MobiLink clients cannot ping the Mo-
biLink synchronization server” on page 421

–10004 “Protocol version mismatch” on page 422

–10003 “Memory allocation failed, attempted to allocate %1!lu!
bytes” on page 420

–10002 “Consolidated database server or ODBC error: %1!s!” on
page 415

–10001 “Protocol error” on page 421

0 “No error or unknown error” on page 420

405

MobiLink synchronization server error messages
sorted message

Error code Error message

–10038 “A downloaded value for table %1!s! (column #%2!ld!)
was either too big or invalid for the remote schema type”
on page 412

–10030 “A network read failed. Unable to read data from the
remote client” on page 412

–10059 “A protocol error occurred when attempting to retrieve the
remote client’s synchronization log” on page 412

–10031 “An error occurred when trying to store progress informa-
tion in the consolidated database” on page 413

–10062 “An error occurred while uploading a deleted row into
table ‘%1!s!’. The deleted column values are as follows:”
on page 413

–10061 “An error occurred while uploading an insert row into
table ‘%1!s!’. The inserted column values are as follows:”
on page 413

–10063 “An error occurred while uploading an updated row into
table ‘%1!s!’. The updated column values are as follows:”
on page 413

–10029 “Attempt to set non-null column to null” on page 414

–10016 “Cannot convert ‘%1!s!’ to Unicode” on page 414

–10045 “Cannot directly determine the name of the table refer-
enced by the cursor. The table name is required for inserts,
updates, and deletes when using the Microsoft ODBC
Cursor Library” on page 414

–10086 “Cannot load dll: ‘%1!s!’ for Script Language: ‘%2!s!”’
on page 414

–10089 “Client is unable to process truncate table request for table
‘%1!s!”’ on page 415

–10006 “Collation not supported by this server” on page 415

–10002 “Consolidated database server or ODBC error: %1!s!” on
page 415

406

Chapter 13. MobiLink Synchronization Server Error Messages

Error code Error message

–10035 “Download failed with client error %1!d!” on page 415

–10036 “Download stream encountered error in remote database”
on page 416

–10018 “Error fetching connection script %1!s!” on page 416

–10019 “Error fetching table script %1!s!.%2!s!” on page 416

–10094 “Expecting %1!ld! authentication parameter(s) from
client, but received %2!ld! for script %3!s!” on page 416

–10050 “Expecting %1!ld! columns in cursor, but found %2!ld!”
on page 417

–10047 “Expecting %1!ld! parameters in script, but only found
%2!ld!: %3!s!” on page 417

–10048 “Expecting at least %1!ld! parameters in script, but only
found %2!ld!: %3!s!” on page 417

–10040 “Extraneous data found in upload stream” on page 417

–10042 “INTERNAL ERROR: occurred while retrieving a BLOB
– null” on page 418

–10041 “INTERNAL ERROR: occurred while retrieving a BLOB
– read” on page 418

–10043 “INTERNAL ERROR: occurred while retrieving a BLOB
– zero length” on page 418

–10044 “INTERNAL ERROR: occurred while storing a BLOB –
write” on page 418

–10051 “Internal error: wrong function ‘%1!s!’ called. Please
contact technical support” on page 419

–10057 “Invalid password for user %1!s!” on page 419

–10084 “LANG: %1!s! - Failed to attach worker thread” on
page 419

–10085 “LANG: %1!s! = Failed to allocate database connection”
on page 419

–10060 “Memory allocation failed” on page 420

–10003 “Memory allocation failed, attempted to allocate %1!lu!
bytes” on page 420

407

Error code Error message

–10034 “No download confirmation from remote database” on
page 420

0 “No error or unknown error” on page 420

–10070 “No server connection string specified” on page 420

–10005 “Old versions of MobiLink clients cannot ping the Mo-
biLink synchronization server” on page 421

–10001 “Protocol error” on page 421

–10014 “Protocol error: an invalid timestamp precision of %1!d!
was sent from the remote” on page 421

–10015 “Protocol error: client requests an unsupported capability
(%1!s!)” on page 421

–10017 “Protocol error: there is no publication that contains table
‘%1!s!”’ on page 422

–10004 “Protocol version mismatch” on page 422

–10075 “Required ODBC function %1!s! is not supported by the
driver” on page 422

–10039 “Scripts cannot be defined as NULL” on page 422

–10025 “The %1!s! cursor is unexpectedly undefined” on page 423

–10052 “The %1!s! script returned %2!ld!” on page 423

–10081 “The MobiLink synchronization server DLL version does
not match the data layer DLL version” on page 423

–10076 “The MobiLink synchronization server was unable to
calculate the timestamp precision on the consolidated
database using the ml_scripts_modified table. Timestamp
precision related warnings will not be generated” on
page 423

–10077 “The MobiLink synchronization server was unable to
modify the error message using the modify_error_message
script” on page 424

–10090 “The client cannot find the consolidated progress offset
from the client transaction log(s)” on page 424

–10079 “The length of the name of a publication, table, or column
cannot be retrieved from the upload stream” on page 424

408

Chapter 13. MobiLink Synchronization Server Error Messages

Error code Error message

–10078 “The publication, table, or column name received from the
client is too long: the length is %1!d!” on page 425

–10023 “The remote database may have been restored from
backup, or perhaps user name ‘%1!s!’ is being used
by different remote databases. Set ml_user.commit_state
to zero to re-enable synchronizations for this user” on
page 425

–10033 “The row is too big. The size (%1!ld! bytes) exceeds the
maximum allowable size (%2!ld! bytes)” on page 425

–10022 “The synchronization sequence number stored in ml_-
user.commit_state is negative. Set this value to zero (0) to
re-enable synchronizations for user ‘%1!s!”’ on page 426

–10026 “The upload stream is too short: should be at least %1!d!
bytes, but received %2!d! bytes” on page 426

–10053 “The user name ‘%1!s!’ is already synchronizing. Con-
current synchronizations using the same user name are not
allowed” on page 426

–10012 “There are no registered script versions. Unable to
synchronize a client created prior to version 7.0.0” on
page 427

–10093 “There is no download data script defined for table: %1!s!.
If you want to be able to synchronize anyway, with the risk
of potentially losing download data, use the -fr switch” on
page 427

–10092 “There is no upload data script defined for table: %1!s!. If
you want to be able to synchronize anyway, with the risk
of potentially losing upload data, use the -fr switch” on
page 427

–10091 “This connection will be abandoned due to previous
errors” on page 428

–10049 “Too many bind parameters in script (expecting %1!ld!
but found %2!ld!): %3!s!” on page 428

–10065 “Unable to COMMIT Transaction: %1!s! – Attempting to
ROLLBACK” on page 428

–10064 “Unable to ROLLBACK Transaction: %1!s!” on page 428

409

Error code Error message

–10067 “Unable to allocate a connection” on page 429

–10046 “Unable to allocate an input/output cursor” on page 429

–10055 “Unable to authenticate user %1!s!” on page 429

–10028 “Unable to connect to the consolidated database. Aborting
the synchronization” on page 429

–10073 “Unable to delete from table ‘%1!s!’ using %2!s!” on
page 430

–10083 “Unable to delete user name ‘%1!s!’ from the ml_user_-
table” on page 430

–10009 “Unable to determine the remote user name” on page 430

–10010 “Unable to determine the remote user password” on
page 430

–10011 “Unable to determine the remote version” on page 430

–10080 “Unable to execute script ‘%1!s!”’ on page 431

–10071 “Unable to fetch from table ‘%1!s!’ using %2!s!” on
page 431

–10020 “Unable to flush scripts” on page 431

–10027 “Unable to generate scripts for version ‘%1!s!”’ on
page 431

–10066 “Unable to initialize ODBC” on page 432

–10068 “Unable to initialize authentication subsystem” on
page 432

–10069 “Unable to initialize consolidated database interface” on
page 432

–10082 “Unable to initialize the resource DLL ‘%1!s!”’ on
page 432

–10072 “Unable to insert into table ‘%1!s!’ using %2!s!” on
page 433

–10054 “Unable to insert user name ‘%1!s!’ into the ml_user
table” on page 433

–10037 “Unable to launch the command: (%1!s!). The system
error code is %2!d!” on page 433

410

Chapter 13. MobiLink Synchronization Server Error Messages

Error code Error message

–10007 “Unable to load UNILIB collation %1!d!: error %2!d!”
on page 433

–10008 “Unable to load UNILIB collation expansion factor: error
%1!d!” on page 434

–10088 “Unable to load entry points from dll: ‘%1!s!”’ on
page 434

–10058 “Unable to open %1!s!” on page 434

–10021 “Unable to retry the current transaction after deadlock
in the consolidated database. The retry limit has been
reached” on page 434

–10074 “Unable to update table ‘%1!s!’ using %2!s!” on page 435

–10024 “Unrecognized domain id %1!d!” on page 435

–10032 “Upload failed with client error %1!d!” on page 435

–10056 “User name ‘%1!s!’ not found in the ml_user table” on
page 435

–10013 “Version ‘%1!s!’ not found in the ml_script_version table.
Cannot synchronize” on page 436

–10087 “Version mismatch with dll : ‘%1!s!’\nExpected version:
%2!d! got version: %3!d!” on page 436

411

MobiLink synchronization server error
descriptions

This section provides a full listing of error messages and descriptions.

Errors with an ODBC state marked “handled by ODBC driver” are not
returned to ODBC applications, as the ODBC driver carries out the required
actions.

A downloaded value for table %1!s! (column #%2!ld!) was either too big
or invalid for the remote schema type

Item Value

Error code –10038

Parameter 1 Table name and column index.

Probable cause The column width for the given table may not be defined consistently in the
consolidated and remote databases. Please check the table definition.

A network read failed. Unable to read data from the remote client

Item Value

Error code –10030

Probable cause The MobiLink synchronization server was unable to complete a network
read. Please check the network.

A protocol error occurred when attempting to retrieve the remote client’s
synchronization log

Item Value

Error code –10059

Probable cause There was a protocol error when the MobiLink synchronization server was
retrieving the client error file. Please make sure that the client is supported
by your version of the MobiLink synchronization server.

412

Chapter 13. MobiLink Synchronization Server Error Messages

An error occurred when trying to store progress information in the
consolidated database

Item Value

Error code –10031

Probable cause The MobiLink synchronization server is unable to save the synchronization
status into the consolidated database. Please make sure that the database
server is running and the network is okay.

An error occurred while uploading a deleted row into table ‘%1!s!’. The
deleted column values are as follows:

Item Value

Error code –10062

Parameter 1 The script name.

Probable cause A failure occurred when the MobiLink synchronization server was
uploading a deleted row into the given table in the consolidated database.

An error occurred while uploading an insert row into table ‘%1!s!’. The
inserted column values are as follows:

Item Value

Error code –10061

Parameter 1 The script name.

Probable cause A failure occurred when the MobiLink synchronization server was
uploading an inserted row into the given table in the consolidated database.

An error occurred while uploading an updated row into table ‘%1!s!’. The
updated column values are as follows:

Item Value

Error code –10063

Parameter 1 The script name.

Probable cause A failure occurred when the MobiLink synchronization server was
uploading an updated row into the given table in the consolidated database.

413

Attempt to set non-null column to null

Item Value

Error code –10029

Probable cause The MobiLink synchronization server attempted to download a null into a
non-nullable column.

Cannot convert ‘%1!s!’ to Unicode

Item Value

Error code –10016

Parameter 1 String to be converted.

Probable cause The MobiLink synchronization server was not able to convert the given
string to Unicode using Unilib.

Cannot directly determine the name of the table referenced by the
cursor. The table name is required for inserts, updates, and deletes
when using the Microsoft ODBC Cursor Library

Item Value

Error code –10045

Probable cause The MobiLink synchronization server cannot directly determine the name of
the table referenced by the upload cursor. The table name is required for
inserts, updates, and deletes when using the Microsoft ODBC Cursor
Library.

Cannot load dll: ‘%1!s!’ for Script Language: ‘%2!s!’

Item Value

Error code –10086

Parameter 1 The DLL name and the script language name.

Probable cause Please make sure that the script language is valid. Currently the script
languages supported by the MobiLink synchronization server are SQL (sql),
Java (java) and .NET (dnet).

414

Chapter 13. MobiLink Synchronization Server Error Messages

Client is unable to process truncate table request for table ‘%1!s!’

Item Value

Error code –10089

Parameter 1 The name of a table.

Probable cause The download_delete_cursor script is requesting that the table be truncated.
The client needs to be updated to a newer version in order to process this
action.

Collation not supported by this server

Item Value

Error code –10006

Probable cause Old clients were trying to send Unicode-based strings (strings in UTF8).
Please upgrade the client.

Consolidated database server or ODBC error: %1!s!

Item Value

Error code –10002

Parameter 1 The actual error message sent by the database server
or ODBC driver.

Probable cause This may be a SQL error such as a syntax error.

Download failed with client error %1!d!

Item Value

Error code –10035

Parameter 1 An error number sent by the client.

Probable cause The MobiLink synchronization server aborts the synchronization when the
client indicates there is a problem on the remote site during download.

415

Download stream encountered error in remote database

Item Value

Error code –10036

Probable cause The client indicates that the download failed.

Error fetching connection script %1!s!

Item Value

Error code –10018

Parameter 1 Connection script name.

Probable cause The MobiLink synchronization server was not able to refresh connection
scripts. Please make sure that the database server is running and the network
is okay.

Error fetching table script %1!s!.%2!s!

Item Value

Error code –10019

Parameter 1 Table and script name.

Probable cause The MobiLink synchronization server was not able to refresh table scripts.
Please make sure that the database server is running and the network is okay.

Expecting %1!ld! authentication parameter(s) from client, but received
%2!ld! for script %3!s!

Item Value

Error code –10094

Parameter 1 The number of parameters expected, the number of
parameters passed up from the client, and the script
that needs the parameters.

Probable cause The number of authentication parameters received from the client does not
match the number expected. The number of client parameters should be two
less than the number required by the authenticate_parameters script.

416

Chapter 13. MobiLink Synchronization Server Error Messages

Expecting %1!ld! columns in cursor, but found %2!ld!

Item Value

Error code –10050

Parameter 1 The number of columns expected and the number of
columns found.

Probable cause The number of parameters found in the upload or download script does not
match the number of columns or the number of primary key columns for the
given table. Please check the number of parameters for the given script.

Expecting %1!ld! parameters in script, but only found %2!ld!: %3!s!

Item Value

Error code –10047

Parameter 1 The number of parameters expected, the number of
parameters found, and the script name.

Probable cause There are too many parameters found in the given script. Please check the
number of parameters for the given script.

Expecting at least %1!ld! parameters in script, but only found %2!ld!:
%3!s!

Item Value

Error code –10048

Parameter 1 The minimum number of parameters expected, the
number of parameters found, and the script name.

Probable cause There are not enough parameters found in the given script. Please check the
number of parameters for the given script.

Extraneous data found in upload stream

Item Value

Error code –10040

Probable cause The client has sent extraneous data to the MobiLink synchronization server.
Please check that the client is supported by your MobiLink synchronization

417

server.

INTERNAL ERROR: occurred while retrieving a BLOB – null

Item Value

Error code –10042

Probable cause The MobiLink synchronization server cannot retrieve the upload data from
memory or a temporary file. This is an internal error. Please contact
technical support.

INTERNAL ERROR: occurred while retrieving a BLOB – read

Item Value

Error code –10041

Probable cause The MobiLink synchronization server cannot retrieve the upload data from
memory or a temporary file. This is an internal error. Please contact
technical support.

INTERNAL ERROR: occurred while retrieving a BLOB – zero length

Item Value

Error code –10043

Probable cause The MobiLink synchronization server cannot retrieve the upload data from
memory or a temporary file. This is an internal error. Please contact
technical support.

INTERNAL ERROR: occurred while storing a BLOB – write

Item Value

Error code –10044

Probable cause The MobiLink synchronization server cannot store the upload data to
memory or a temporary file. This is an internal error. Please contact
technical support.

418

Chapter 13. MobiLink Synchronization Server Error Messages

Internal error: wrong function ‘%1!s!’ called. Please contact technical
support

Item Value

Error code –10051

Parameter 1 The function name.

Probable cause This is an internal error. Please contact technical support.

Invalid password for user %1!s!

Item Value

Error code –10057

Parameter 1 The user name.

Probable cause The password sent up from the remote is invalid for the given user. Please
note: passwords are case sensitive.

LANG: %1!s! - Failed to attach worker thread

Item Value

Error code –10084

Parameter 1 The name of the script language.

Probable cause A MobiLink synchronization server worker thread could not attach itself to
the DLL or shared object used to process the given script language. Please
make sure that the MobiLink synchronization server installation contains all
of the required DLLs or shared objects.

LANG: %1!s! = Failed to allocate database connection

Item Value

Error code –10085

Parameter 1 The name of the script language.

Probable cause A connection cannot be made to the database server.

419

Memory allocation failed

Item Value

Error code –10060

Probable cause Your system is running out of memory. You may need to close some
applications or add more memory to your system.

Memory allocation failed, attempted to allocate %1!lu! bytes

Item Value

Error code –10003

Parameter 1 The number of bytes it was trying to allocate.

Probable cause Your system is running out of memory. You may need to close some
applications or add more memory to your system.

No download confirmation from remote database

Item Value

Error code –10034

Probable cause The client attempted to send a confirmation status to the MobiLink
synchronization server after download. The MobiLink synchronization
server did not receive this confirmation. This could happen if the
synchronization is interrupted or if there is a network problem.

No error or unknown error

Item Value

Error code 0

Probable cause This code indicates there was either no error or an unknown error. The
MobiLink synchronization server did not assign an error number.

No server connection string specified

Item Value

Error code –10070

420

Chapter 13. MobiLink Synchronization Server Error Messages

Probable cause There is no server connection string specified in the MobiLink
synchronization server command line. Please specify the connection string
in the MobiLink synchronization server command line using the -c option.

Old versions of MobiLink clients cannot ping the MobiLink
synchronization server

Item Value

Error code –10005

Probable cause Ping is available only from version 8.0.1 and up.

Protocol error

Item Value

Error code –10001

Probable cause The MobiLink synchronization server does not understand the request sent
by the client. This could happen if the client is newer than the MobiLink
synchronization server.

Protocol error: an invalid timestamp precision of %1!d! was sent from
the remote

Item Value

Error code –10014

Parameter 1 Timestamp precision sent by the client.

Probable cause The timestamp precision must be greater than 0 and less than 6.

Protocol error: client requests an unsupported capability (%1!s!)

Item Value

Error code –10015

Parameter 1 Capability bit.

Probable cause The MobiLink synchronization server does not support the capability
requested by the client. Please make sure that you are not using a newer
client to talk to an older MobiLink synchronization server.

421

Protocol error: there is no publication that contains table ‘%1!s!’

Item Value

Error code –10017

Parameter 1 Table name.

Probable cause A table is requested for synchronization by the client. However the table is
not in any publication. Please make sure that the table was not dropped in
the remote database.

Protocol version mismatch

Item Value

Error code –10004

Probable cause The MobiLink synchronization server is communicating with the client
using different protocol versions. If the client sends a version that is not
supported by the MobiLink synchronization server, it will give this error.
Please make sure that you are not using a newer client (DBMLSync or an
UltraLite application) to talk to an older version of the MobiLink
synchronization server.

Required ODBC function %1!s! is not supported by the driver

Item Value

Error code –10075

Parameter 1 The ODBC function name.

Probable cause The MobiLink synchronization server was not able to find the function from
the ODBC driver. Please start the MobiLink synchronization server with the
recommended ODBC drivers.

Scripts cannot be defined as NULL

Item Value

Error code –10039

Probable cause Scripts cannot be defined as NULL or empty string. Please check the script
definitions to make sure that no script is defined as NULL or empty string.

422

Chapter 13. MobiLink Synchronization Server Error Messages

The %1!s! cursor is unexpectedly undefined

Item Value

Error code –10025

Parameter 1 Cursor script name.

Probable cause This is an internal error. Please contact technical support.

The %1!s! script returned %2!ld!

Item Value

Error code –10052

Parameter 1 The user authentication script name and the script
returning value.

Probable cause The user authentication script returned a value greater than 3000.

The MobiLink synchronization server DLL version does not match the
data layer DLL version

Item Value

Error code –10081

Probable cause The MobiLink synchronization server DLL that processes the upload and
download data is not consistent with the version of the data layer DLL
(ODBC) that is used to interact with the databases. Please check your
MobiLink synchronization server installation.

The MobiLink synchronization server was unable to calculate the
timestamp precision on the consolidated database using the
ml_scripts_modified table. Timestamp precision related warnings will
not be generated

Item Value

Error code –10076

423

The MobiLink synchronization server was unable to modify the error
message using the modify_error_message script

Item Value

Error code –10077

Probable cause An error occurred during synchronization, but the MobiLink
synchronization server was unable to modify the error message using the
given script. Please check your modify_error_message script.

The client cannot find the consolidated progress offset from the client
transaction log(s)

Item Value

Error code –10090

Probable cause When the progress offsets in the consolidated and the remote databases are
different, the MobiLink synchronization server may ask the client to redo the
synchronization again with the progress offset from the consolidated
database. However the requested consolidated progress offset cannot be
found in the transaction log(s) of the remote database because the old
transaction logs have been deleted or the requested offset has not been
created yet.

Please find the source that caused this problem, and then rerun dbmlsync
using the -ra or -rb option.

The length of the name of a publication, table, or column cannot be
retrieved from the upload stream

Item Value

Error code –10079

Probable cause The client sent the MobiLink synchronization server the lengths of the
names of publications, tables, and table columns. Please check the network.

424

Chapter 13. MobiLink Synchronization Server Error Messages

The publication, table, or column name received from the client is too
long: the length is %1!d!

Item Value

Error code –10078

Parameter 1 The length of the name.

Probable cause The client sent the MobiLink synchronization server the lengths of the
names of publications, tables, and table columns. These names should be
less than 128 bytes long. Please check the names of publications, table, and
columns.

The remote database may have been restored from backup, or perhaps
user name ‘%1!s!’ is being used by different remote databases. Set
ml_user.commit_state to zero to re-enable synchronizations for this user

Item Value

Error code –10023

Parameter 1 User name.

Probable cause Before doing synchronization, the MobiLink synchronization server
compares the sequence number sent by the client with that stored in the
consolidated database to see if they match. If a remote database is restored
from a backup or the last synchronization was interrupted, the sequence
number may be less than that in the consolidated. Please set
ml_user.commit_state to zero to re-enable synchronizations for this user.

The row is too big. The size (%1!ld! bytes) exceeds the maximum
allowable size (%2!ld! bytes)

Item Value

Error code –10033

Parameter 1 The actual row size to be downloaded and the
maximum row size the

Parameter 2 client is willing to accept.

Probable cause An UltraLite application may have a row size limit. If the row size in the
synchronization table in the consolidated database has exceeded this limit,
the table cannot be downloaded. Please redesign your synchronization table.

425

The synchronization sequence number stored in ml_user.commit_state
is negative. Set this value to zero (0) to re-enable synchronizations for
user ‘%1!s!’

Item Value

Error code –10022

Parameter 1 User name.

Probable cause The sequence number stored in the ml_user table in the consolidated
database is negative. This number is maintained by the MobiLink
synchronization server. In most cases, please do not directly modify this
number.

The upload stream is too short: should be at least %1!d! bytes, but
received %2!d! bytes

Item Value

Error code –10026

Parameter 1 The number of bytes that are expected and the
number of bytes that are actually received.

Probable cause The MobiLink synchronization server received a connection that did not
send enough data. Please check the remote for communication problems.
Also check for an agent that is mistakenly connecting to MobiLink
synchronization server. Also check for an unfriendly agent attempting to
disrupt the MobiLink synchronization server.

The user name ‘%1!s!’ is already synchronizing. Concurrent
synchronizations using the same user name are not allowed

Item Value

Error code –10053

Parameter 1 The user name.

Probable cause The given user name is already synchronizing. Please try the
synchronization later.

426

Chapter 13. MobiLink Synchronization Server Error Messages

There are no registered script versions. Unable to synchronize a client
created prior to version 7.0.0

Item Value

Error code –10012

Probable cause The client-requested script version was not defined in the consolidated
database. Please create the scripts for the specified version in the
consolidated database or use the -za option in the MobiLink synchronization
server command line to allow the MobiLink synchronization server to
generate active scripts.

There is no download data script defined for table: %1!s!. If you want to
be able to synchronize anyway, with the risk of potentially losing
download data, use the -fr switch

Item Value

Error code –10093

Parameter 1 The name of a table.

Probable cause If there is no download data script for a table and synchronization is
download only, there is a risk of potentially losing the download data. To
prevent this situation, the synchronization is aborted. If you do not care
about losing download data, you can use -fr to force the synchronization to
continue.

There is no upload data script defined for table: %1!s!. If you want to be
able to synchronize anyway, with the risk of potentially losing upload
data, use the -fr switch

Item Value

Error code –10092

Parameter 1 The name of a table.

Probable cause If there is no upload data script for a table, there is a risk of potentially
losing the upload data. To prevent this situation, the synchronization is
aborted. If you do not care about losing upload data, you can use -fr to force
the synchronization to continue.

427

This connection will be abandoned due to previous errors

Item Value

Error code –10091

Probable cause Due to the severity of error(s) encountered processing the upload stream,
further work will be futile. This is probably due to an I/O error or a protocol
problem.

Too many bind parameters in script (expecting %1!ld! but found %2!ld!):
%3!s!

Item Value

Error code –10049

Parameter 1 The number of parameters expected, the number of
parameters found, and the script name.

Probable cause There are too many parameters found in the given script. Please check the
number of parameters for the given script.

Unable to COMMIT Transaction: %1!s! – Attempting to ROLLBACK

Item Value

Error code –10065

Parameter 1 The script name.

Probable cause The MobiLink synchronization server was not able to commit the
transaction for the given script. Writing scripts to avoid deadlocks is always
a good practice.

Unable to ROLLBACK Transaction: %1!s!

Item Value

Error code –10064

Parameter 1 The script name.

Probable cause The MobiLink synchronization server was not able to roll back the
transaction.

428

Chapter 13. MobiLink Synchronization Server Error Messages

Unable to allocate a connection

Item Value

Error code –10067

Probable cause The MobiLink synchronization server was not able to allocate a connection.
Please make sure that there is enough memory to start the MobiLink
synchronization server. Also, make sure that the database server is running,
and that the user ID and password are valid.

Unable to allocate an input/output cursor

Item Value

Error code –10046

Probable cause A failure occurred when the MobiLink synchronization server was trying to
allocate memory for upload table scripts. Your system is running out of
memory. You may need to close some applications or add more memory to
your system.

Unable to authenticate user %1!s!

Item Value

Error code –10055

Parameter 1 The user name.

Probable cause The MobiLink synchronization server was not able to authenticate the given
user.

Unable to connect to the consolidated database. Aborting the
synchronization

Item Value

Error code –10028

Probable cause The MobiLink synchronization server was not able to make a connection to
the consolidated database server. Please make sure that the database server is
running and the network is okay.

429

Unable to delete from table ‘%1!s!’ using %2!s!

Item Value

Error code –10073

Parameter 1 The table name and script name.

Probable cause A failure occurred when the MobiLink synchronization server was deleting
row(s) from the given table in the consolidated database.

Unable to delete user name ‘%1!s!’ from the ml_user_table

Item Value

Error code –10083

Parameter 1 The name of the user to be deleted.

Probable cause Please check if the MobiLink user is valid and is not currently in use by
other threads.

Unable to determine the remote user name

Item Value

Error code –10009

Probable cause The user name that the client sent to the MobiLink synchronization server is
invalid. Please make sure that the name is not longer than 128 bytes.

Unable to determine the remote user password

Item Value

Error code –10010

Probable cause The MobiLink synchronization server was not able to read the remote user
password from the stream.

Unable to determine the remote version

Item Value

Error code –10011

Probable cause The MobiLink synchronization server was not able to read the user

430

Chapter 13. MobiLink Synchronization Server Error Messages

synchronization version from the stream.

Unable to execute script ‘%1!s!’

Item Value

Error code –10080

Parameter 1 The name of the script.

Probable cause Please check that the SQL statements in the script are valid.

Unable to fetch from table ‘%1!s!’ using %2!s!

Item Value

Error code –10071

Parameter 1 The table name and script name.

Probable cause A failure occurred when the MobiLink synchronization server was retrieving
row(s) from the given table in the consolidated database.

Unable to flush scripts

Item Value

Error code –10020

Probable cause The MobiLink synchronization server always updates its cached scripts at
the beginning of each synchronization by connecting to the consolidated
database server and querying the ml_scripts_modified table. The MobiLink
synchronization server encountered a problem flushing the scripts.

Unable to generate scripts for version ‘%1!s!’

Item Value

Error code –10027

Parameter 1 User version string.

Probable cause The MobiLink synchronization server was not able to generate example
scripts.

431

Unable to initialize ODBC

Item Value

Error code –10066

Probable cause The MobiLink synchronization server was not able to initialize the ODBC
layer. Please make sure that there is enough memory to start the MobiLink
synchronization server and then start the MobiLink synchronization server
with the recommended ODBC drivers.

Unable to initialize authentication subsystem

Item Value

Error code –10068

Probable cause The MobiLink synchronization server was not able to initialize the user
authentication layer. Your system may be running out of memory. You may
need to close some applications or add more memory to your system.

Unable to initialize consolidated database interface

Item Value

Error code –10069

Probable cause The MobiLink synchronization server was not able to initialize the
consolidated database interface layer. Please make sure that there is enough
memory to start the MobiLink synchronization server and then start the
MobiLink synchronization server with the recommended ODBC drivers.

Unable to initialize the resource DLL ‘%1!s!’

Item Value

Error code –10082

Parameter 1 A string that gives the name of the resource DLL.

Probable cause Please check your MobiLink synchronization server installation.

432

Chapter 13. MobiLink Synchronization Server Error Messages

Unable to insert into table ‘%1!s!’ using %2!s!

Item Value

Error code –10072

Parameter 1 The table name and script name.

Probable cause A failure occurred when the MobiLink synchronization server was inserting
row(s) into the given table in the consolidated database.

Unable to insert user name ‘%1!s!’ into the ml_user table

Item Value

Error code –10054

Parameter 1 The user name.

Probable cause The MobiLink synchronization server was not able to add the given user into
the ml_user table. Please verify that the consolidated database server is
running and that the MobiLink user has permission to modify the ml_user
table.

Unable to launch the command: (%1!s!). The system error code is %2!d!

Item Value

Error code –10037

Parameter 1 Command and system return code.

Probable cause The MobiLink synchronization server allows users to launch something
between upload and download. However, the launch was unsuccessful.

Unable to load UNILIB collation %1!d!: error %2!d!

Item Value

Error code –10007

Parameter 1 Unilib charset ID and Unilib function return code.

Probable cause The MobiLink synchronization server cannot initialize the Unilib converter.

433

Unable to load UNILIB collation expansion factor: error %1!d!

Item Value

Error code –10008

Parameter 1 Unilib function return code.

Probable cause The MobiLink synchronization server cannot determine the character
expansion factor from the Unilib converter.

Unable to load entry points from dll: ‘%1!s!’

Item Value

Error code –10088

Parameter 1 The DLL name.

Probable cause Please check your MobiLink synchronization server installation.

Unable to open %1!s!

Item Value

Error code –10058

Parameter 1 The script name.

Probable cause The MobiLink synchronization server failed to execute the given table script.
Please make sure that the script contains valid SQL.

Unable to retry the current transaction after deadlock in the consolidated
database. The retry limit has been reached

Item Value

Error code –10021

Probable cause The MobiLink synchronization server has retried the current transaction, but
the deadlock problem still occurred. Please redesign your synchronization
logic or use the -r MobiLink synchronization server command line option.

434

Chapter 13. MobiLink Synchronization Server Error Messages

Unable to update table ‘%1!s!’ using %2!s!

Item Value

Error code –10074

Parameter 1 The table name and script name.

Probable cause A failure occurred when the MobiLink synchronization server was updating
row(s) for the given table in the consolidated database.

Unrecognized domain id %1!d!

Item Value

Error code –10024

Parameter 1 Domain ID.

Probable cause The client-requested domain ID (datatype) is not supported. Please make
sure that your MobiLink synchronization server is up-to-date.

Upload failed with client error %1!d!

Item Value

Error code –10032

Parameter 1 An error number sent by the client.

Probable cause The MobiLink synchronization server aborted the synchronization because
the client indicates there is a problem on the remote site during upload.

User name ‘%1!s!’ not found in the ml_user table

Item Value

Error code –10056

Parameter 1 The user name.

Probable cause The MobiLink synchronization server could not find the user from the
ml_user table. Please add this user to the ml_user table using dbmluser or
start the MobiLink synchronization server with the -zu+ option.

435

Version ‘%1!s!’ not found in the ml_script_version table. Cannot
synchronize

Item Value

Error code –10013

Parameter 1 Version string.

Probable cause The client-specified version does not exist in the consolidated database.
Please create a script version.

Version mismatch with dll : ‘%1!s!’\nExpected version: %2!d! got
version: %3!d!

Item Value

Error code –10087

Parameter 1 The DLL name, expected version number and the
actual version number.

Probable cause Please check your MobiLink synchronization server installation.

436

CHAPTER 14

MobiLink Synchronization Server Warning
Messages

About this chapter This chapter lists MobiLink synchronization server warnings, as well as
their probable causes.

The warning messages are written to the MobiLink synchronization server
message log.

Levels can be 1 - 5. The following table explains each level:

Level Description

1 Server or high level ODBC warnings when a MobiLink synchro-
nization server starts or shuts down

2 Synchronization and user level warnings when a synchronization
starts and ends

3 Schema level (including publications and tables) warnings

4 Script and lower level ODBC warnings

5 Table and row level warnings

Contents Topic: page

MobiLink synchronization server warning messages sorted by code438

MobiLink synchronization server warning messages sorted by mes-
sage

443

MobiLink synchronization server warning descriptions 448

437

MobiLink synchronization server warning
messages sorted by code

Warning code Level Warning message

10001 1 “Maximum number of database connections set
to %1!lu! (must be at least the number of worker
threads plus one)” on page 453

10002 1 “If needed, ODBC cursors will be used, via the
Microsoft ODBC Cursor Library, to simulate
SQLSETPOS for inserts, updates, and deletes”
on page 451

10003 1 “ODBC Isolation level (%1!s!) is not supported”
on page 454

10004 1 “ODBC function %1!s! is not supported by the
driver” on page 454

10005 1 “ODBC statement option %1!s! has changed
from %2!s! (%3!lu!) to %4!s! (%5!lu!)” on
page 455

10006 1 “ODBC statement option %1!s! has changed
from %2!lu! to %3!lu!” on page 455

10007 2 “Retrying the begin_connection transaction af-
ter deadlock in the consolidated database” on
page 456

10008 2 “Retry on deadlock is disabled. The MobiLink
synchronization server is using an internal
workaround which requires this setting” on
page 456

10009 2 “MobiLink table ‘%1!s!’ is damaged” on
page 453

10010 2 “No handle_error script is defined. The de-
fault action code (%1!ld!) will decide the error
behavior” on page 454

10011 2 “Unrecognized value (%1!ld!) in ml_user.-
commit_state. The state information for this user
is probably corrupted” on page 467

438

Chapter 14. MobiLink Synchronization Server Warning Messages

Warning code Level Warning message

10012 2 “The consolidated and remote databases disagree
on when the last synchronization took place. The
remote is being asked to send a new upload that
starts at the last known synchronization point”
on page 460

10013 4 “Expecting %1!ld! parameter(s) in cursor, but
found %2!ld!” on page 450

10014 4 “Expecting at most %1!ld! parameter(s) in
cursor, but found %2!ld!” on page 451

10015 3 “Table ‘%1!s!’ has at least one timestamp col-
umn. Due to a timestamp precision mismatch,
uploaded timestamps can lose precision, defeat-
ing download filtering” on page 458

10016 3 “Table ‘%1!s!’ has at least one timestamp
column. Due to a timestamp precision mismatch,
downloaded timestamps can lose precision,
resulting in inconsistent data” on page 458

10017 3 “The consolidated and remote databases have
different timestamp precisions. Consolidated
database timestamps are precise to %1!d!
digit(s) in the fractional second while the re-
mote database timestamps are precise to %2!d!
digit(s)” on page 461

10018 3 “The timestamp precision mismatch may
be resolved by setting the DEFAULT_-
TIMESTAMP_INCREMENT option on the
remote database to %1!d! and TRUNCATE_-
TIMESTAMP_VALUES to ‘On”’ on page 463

10019 3 “The remote database is not capable of matching
the timestamp precision of the consolidated
database. Your application, schema, and scripts
must contain logic that copes with the precision
mismatch” on page 462

10020 3 “The timestamp precision mismatch may affect
upload conflict detection. Use the -zp option to
cause the MobiLink synchronization server to
use the lowest timestamp precision for conflict
detection purposes” on page 462

439

Warning code Level Warning message

10021 3 “The remote and consolidated databases have
different timestamp precisions, and a timestamp
value with a precision higher than the lower-
precision side was used for conflict detection
purposes. Consider using the -zp option” on
page 461

10022 3 “Publication ‘%1!s!’ is not referenced by any
table” on page 455

10023 3 “The upload will be rolled back and the syn-
chronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload” on page 464

10024 3 “Table ‘%1!s!’ has no entry in the %2!s! table”
on page 459

10025 5 “Invalid character data encountered in upload –
substituting ‘?”’ on page 452

10026 5 “Invalid character data encountered in upload –
using NULL” on page 452

10027 5 “Invalid character data encountered in upload –
using empty string” on page 452

10028 5 “Multi-byte characters truncated on upload” on
page 453

10029 5 “Unable to convert character data for download
– substituting ‘?”’ on page 465

10030 5 “Unable to convert character data for download
– using NULL” on page 465

10031 5 “Unable to convert character data for download
– using empty string” on page 466

10032 2 “Unable to open the file to store the client
synchronization logs. The filename is ‘%1!s!”’
on page 466

10033 2 “An error occurred reading the remote client’s
synchronization log” on page 449

10034 2 “Unable to write to the local file that contains
remote synchronization logs” on page 466

440

Chapter 14. MobiLink Synchronization Server Warning Messages

Warning code Level Warning message

10035 2 “The remote client’s synchronization log ended
prematurely, and was probably truncated” on
page 462

10036 2 “Client synchronization logs will be shown in
the MobiLink synchronization server output file
or the console” on page 450

10037 5 “Ignoring updated row (new values)” on
page 451

10038 5 “Ignoring updated row (old values)” on page 452

10039 2 “Error detected while using multi-row cursor –
retrying with single row cursor” on page 450

10040 2 “%1!lu! row(s) were ignored in updating table
%2!s!” on page 448

10041 2 “The upload will be committed and the syn-
chronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload” on page 463

10042 1 “NT Performance Monitor data area failed to
initialize” on page 453

10043 4 “Unable to determine current timestamp from
consolidated database” on page 466

10044 5 “A row in table ‘%1!s!’ could not be updated
because it no longer exists in the consolidated
database” on page 449

10045 2 “Retrying the upload after deadlock in the con-
solidated database” on page 457

10046 2 “Retrying the upload. Working around a known
ODBC driver problem” on page 457

10047 4 “Cannot directly determine the name of the table
referenced by the cursor. The table name is
required for inserts, updates, and deletes when
using the Microsoft ODBC Cursor Library” on
page 449

441

Warning code Level Warning message

10048 2 “Retrying the begin_synchronization transaction
after deadlock in the consolidated database” on
page 456

10049 2 “Retrying the end_synchronization transaction
after deadlock in the consolidated database” on
page 457

10050 4 “%1!s!” on page 448

10051 1 “Unrecognized ODBC driver ‘%1!s!’. The
functionality and quality of ODBC drivers varies
greatly. This driver may lack functionality
required for successful synchronizations. Use at
your own risk” on page 467

10052 1 “The upload_cursor, new_row_cursor, and old_-
row_cursor scripts are deprecated. It is strongly
recommended that you use the statement-based
upload scripts instead” on page 464

10053 1 “The -zac switch is deprecated. It is strongly rec-
ommended that you use the -za switch instead”
on page 459

10054 1 “The -zec switch is deprecated. It is strongly rec-
ommended that you use the -ze switch instead”
on page 459

10055 2 “The client has provided %1!d! authentication
parameter(s), but no authenticate_parameters
script exists” on page 460

10056 4 “There is no download data script defined for
table: %1!s!. Synchronization has the risk of
potentially losing download data” on page 464

10057 4 “There is no upload data script defined for
table: %1!s!. Synchronization has the risk of
potentially losing upload data” on page 465

442

Chapter 14. MobiLink Synchronization Server Warning Messages

MobiLink synchronization server warning
messages sorted by message

Warning code Level Warning message

10040 2 “%1!lu! row(s) were ignored in updating table
%2!s!” on page 448

10050 4 “%1!s!” on page 448

10044 5 “A row in table ‘%1!s!’ could not be updated
because it no longer exists in the consolidated
database” on page 449

10033 2 “An error occurred reading the remote client’s
synchronization log” on page 449

10047 4 “Cannot directly determine the name of the table
referenced by the cursor. The table name is
required for inserts, updates, and deletes when
using the Microsoft ODBC Cursor Library” on
page 449

10036 2 “Client synchronization logs will be shown in
the MobiLink synchronization server output file
or the console” on page 450

10039 2 “Error detected while using multi-row cursor –
retrying with single row cursor” on page 450

10013 4 “Expecting %1!ld! parameter(s) in cursor, but
found %2!ld!” on page 450

10014 4 “Expecting at most %1!ld! parameter(s) in
cursor, but found %2!ld!” on page 451

10002 1 “If needed, ODBC cursors will be used, via the
Microsoft ODBC Cursor Library, to simulate
SQLSETPOS for inserts, updates, and deletes”
on page 451

10037 5 “Ignoring updated row (new values)” on
page 451

10038 5 “Ignoring updated row (old values)” on page 452

10025 5 “Invalid character data encountered in upload –
substituting ‘?”’ on page 452

443

Warning code Level Warning message

10026 5 “Invalid character data encountered in upload –
using NULL” on page 452

10027 5 “Invalid character data encountered in upload –
using empty string” on page 452

10001 1 “Maximum number of database connections set
to %1!lu! (must be at least the number of worker
threads plus one)” on page 453

10009 2 “MobiLink table ‘%1!s!’ is damaged” on
page 453

10028 5 “Multi-byte characters truncated on upload” on
page 453

10042 1 “NT Performance Monitor data area failed to
initialize” on page 453

10010 2 “No handle_error script is defined. The de-
fault action code (%1!ld!) will decide the error
behavior” on page 454

10003 1 “ODBC Isolation level (%1!s!) is not supported”
on page 454

10004 1 “ODBC function %1!s! is not supported by the
driver” on page 454

10006 1 “ODBC statement option %1!s! has changed
from %2!lu! to %3!lu!” on page 455

10005 1 “ODBC statement option %1!s! has changed
from %2!s! (%3!lu!) to %4!s! (%5!lu!)” on
page 455

10022 3 “Publication ‘%1!s!’ is not referenced by any
table” on page 455

10008 2 “Retry on deadlock is disabled. The MobiLink
synchronization server is using an internal
workaround which requires this setting” on
page 456

10007 2 “Retrying the begin_connection transaction af-
ter deadlock in the consolidated database” on
page 456

444

Chapter 14. MobiLink Synchronization Server Warning Messages

Warning code Level Warning message

10048 2 “Retrying the begin_synchronization transaction
after deadlock in the consolidated database” on
page 456

10049 2 “Retrying the end_synchronization transaction
after deadlock in the consolidated database” on
page 457

10045 2 “Retrying the upload after deadlock in the con-
solidated database” on page 457

10046 2 “Retrying the upload. Working around a known
ODBC driver problem” on page 457

10016 3 “Table ‘%1!s!’ has at least one timestamp
column. Due to a timestamp precision mismatch,
downloaded timestamps can lose precision,
resulting in inconsistent data” on page 458

10015 3 “Table ‘%1!s!’ has at least one timestamp col-
umn. Due to a timestamp precision mismatch,
uploaded timestamps can lose precision, defeat-
ing download filtering” on page 458

10024 3 “Table ‘%1!s!’ has no entry in the %2!s! table”
on page 459

10053 1 “The -zac switch is deprecated. It is strongly rec-
ommended that you use the -za switch instead”
on page 459

10054 1 “The -zec switch is deprecated. It is strongly rec-
ommended that you use the -ze switch instead”
on page 459

10055 2 “The client has provided %1!d! authentication
parameter(s), but no authenticate_parameters
script exists” on page 460

10012 2 “The consolidated and remote databases disagree
on when the last synchronization took place. The
remote is being asked to send a new upload that
starts at the last known synchronization point”
on page 460

445

Warning code Level Warning message

10017 3 “The consolidated and remote databases have
different timestamp precisions. Consolidated
database timestamps are precise to %1!d!
digit(s) in the fractional second while the re-
mote database timestamps are precise to %2!d!
digit(s)” on page 461

10021 3 “The remote and consolidated databases have
different timestamp precisions, and a timestamp
value with a precision higher than the lower-
precision side was used for conflict detection
purposes. Consider using the -zp option” on
page 461

10035 2 “The remote client’s synchronization log ended
prematurely, and was probably truncated” on
page 462

10019 3 “The remote database is not capable of matching
the timestamp precision of the consolidated
database. Your application, schema, and scripts
must contain logic that copes with the precision
mismatch” on page 462

10020 3 “The timestamp precision mismatch may affect
upload conflict detection. Use the -zp option to
cause the MobiLink synchronization server to
use the lowest timestamp precision for conflict
detection purposes” on page 462

10018 3 “The timestamp precision mismatch may
be resolved by setting the DEFAULT_-
TIMESTAMP_INCREMENT option on the
remote database to %1!d! and TRUNCATE_-
TIMESTAMP_VALUES to ‘On”’ on page 463

10041 2 “The upload will be committed and the syn-
chronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload” on page 463

10023 3 “The upload will be rolled back and the syn-
chronization aborted. The next time this remote
synchronizes, it will ask what happened to the
previous upload” on page 464

446

Chapter 14. MobiLink Synchronization Server Warning Messages

Warning code Level Warning message

10052 1 “The upload_cursor, new_row_cursor, and old_-
row_cursor scripts are deprecated. It is strongly
recommended that you use the statement-based
upload scripts instead” on page 464

10056 4 “There is no download data script defined for
table: %1!s!. Synchronization has the risk of
potentially losing download data” on page 464

10057 4 “There is no upload data script defined for
table: %1!s!. Synchronization has the risk of
potentially losing upload data” on page 465

10029 5 “Unable to convert character data for download
– substituting ‘?”’ on page 465

10030 5 “Unable to convert character data for download
– using NULL” on page 465

10031 5 “Unable to convert character data for download
– using empty string” on page 466

10043 4 “Unable to determine current timestamp from
consolidated database” on page 466

10032 2 “Unable to open the file to store the client
synchronization logs. The filename is ‘%1!s!”’
on page 466

10034 2 “Unable to write to the local file that contains
remote synchronization logs” on page 466

10051 1 “Unrecognized ODBC driver ‘%1!s!’. The
functionality and quality of ODBC drivers varies
greatly. This driver may lack functionality
required for successful synchronizations. Use at
your own risk” on page 467

10011 2 “Unrecognized value (%1!ld!) in ml_user.-
commit_state. The state information for this user
is probably corrupted” on page 467

447

MobiLink synchronization server warning
descriptions

This section provides a full listing of warning messages and descriptions.

Warnings with an ODBC state marked “handled by ODBC driver” are not
returned to ODBC applications, as the ODBC driver carries out the required
actions.

%1!lu! row(s) were ignored in updating table %2!s!

Item Value

Warning code 10040

Level 2

Parameter 1 The total number of ignored rows and the name of
the table.

Probable cause The MobiLink synchronization server counts all the upload rows that were
not applied to the consolidated database as ignored rows. This can happen if
there are upload inserts from the client, but there is no upload_insert script
for the listed table in the consolidated database.

%1!s!

Item Value

Warning code 10050

Level 4

Parameter 1 A message from the ODBC driver.

Probable cause The MobiLink synchronization server made a successful ODBC call, but the
ODBC driver displayed a warning message.

Avoiding this message depends on the specific warning.

448

Chapter 14. MobiLink Synchronization Server Warning Messages

A row in table ‘%1!s!’ could not be updated because it no longer exists in
the consolidated database

Item Value

Warning code 10044

Level 5

Parameter 1 Table name.

Probable cause An update statement failed because the table in the consolidated database
doesn’t contain the original row.

An error occurred reading the remote client’s synchronization log

Item Value

Warning code 10033

Level 2

Probable cause The MobiLink synchronization server was unable to get the remote error log
from the client. To avoid this warning, please do not kill the client when it is
running and also make sure the network connection is okay.

Cannot directly determine the name of the table referenced by the
cursor. The table name is required for inserts, updates, and deletes
when using the Microsoft ODBC Cursor Library

Item Value

Warning code 10047

Level 4

Probable cause The MobiLink synchronization server was not able to find the table name
referenced by the cursor. To avoid this warning, please use statement-based
synchronization.

449

Client synchronization logs will be shown in the MobiLink
synchronization server output file or the console

Item Value

Warning code 10036

Level 2

Probable cause If an error occurs on the client side during synchronization, the client may
send its output file to the server and the server will store this output file to a
file specified using the server switch -e or -et. However, if the MobiLink
synchronization server could not open this file for writing, it will show this
warning message and will write the remote log into its output file or console.

To avoid this warning, please make sure the MobiLink synchronization
server has the privilege to write the file.

Error detected while using multi-row cursor – retrying with single row
cursor

Item Value

Warning code 10039

Level 2

Probable cause Errors were detected when the MobiLink synchronization server applied the
upload stream using multi-row cursors (bulk operation). It will roll back the
upload stream and retry the upload transaction using single-row cursors.

Expecting %1!ld! parameter(s) in cursor, but found %2!ld!

Item Value

Warning code 10013

Level 4

Parameter 1 The number of parameter(s) expected and the number
of parameter(s) found.

Probable cause The number of parameters is not as expected. Check the script to ensure it is
correct.

450

Chapter 14. MobiLink Synchronization Server Warning Messages

Expecting at most %1!ld! parameter(s) in cursor, but found %2!ld!

Item Value

Warning code 10014

Level 4

Parameter 1 The maximum number of parameter(s) expected and
the number of parameter(s) found.

Probable cause There is a maximum number of parameters for every cursor script in the
MobiLink synchronization server. If the number of parameters for the given
cursor script is larger than the maximum number of parameters, the server
will show this warning.

If needed, ODBC cursors will be used, via the Microsoft ODBC Cursor
Library, to simulate SQLSETPOS for inserts, updates, and deletes

Item Value

Warning code 10002

Level 1

Probable cause The MobiLink synchronization server requires some functionality not
provided by your selected ODBC driver. Updating to a newer driver may
resolve this problem.

Ignoring updated row (new values)

Item Value

Warning code 10037

Level 5

Probable cause There is a conflict-update, but there is no upload_new_row_insert or
new_row_cursor script defined in the consolidated database for the table.

451

Ignoring updated row (old values)

Item Value

Warning code 10038

Level 5

Probable cause There is a conflict-update, but there is no upload_old_row_insert or
old_row_cursor script defined in the consolidated database for the table.

Invalid character data encountered in upload – substituting ‘?’

Item Value

Warning code 10025

Level 5

Probable cause Character data originating from the client needs to be translated before being
entered into the consolidated database. This was not possible for all
characters. A ‘?’ will be substituted for each problematic character.

Invalid character data encountered in upload – using NULL

Item Value

Warning code 10026

Level 5

Probable cause Character data originating from the client needs to be translated before being
entered into the consolidated database. This was not possible. NULL will be
entered instead.

Invalid character data encountered in upload – using empty string

Item Value

Warning code 10027

Level 5

Probable cause Character data originating from the client needs to be translated before being
entered into the consolidated database. This was not possible, an empty
string will be entered instead.

452

Chapter 14. MobiLink Synchronization Server Warning Messages

Maximum number of database connections set to %1!lu! (must be at
least the number of worker threads plus one)

Item Value

Warning code 10001

Level 1

Parameter 1 Maximum number of connections.

Probable cause The MobiLink synchronization server makes one connection for each
worker thread and an extra connection for the main thread. Therefore, the
maximum number of connections must be at least the number of worker
threads plus one.

MobiLink table ‘%1!s!’ is damaged

Item Value

Warning code 10009

Level 2

Parameter 1 The MobiLink system table name.

Probable cause The MobiLink synchronization server was unable to get information from
the listed table. Please make sure the table does exist and the database server
is running.

Multi-byte characters truncated on upload

Item Value

Warning code 10028

Level 5

Probable cause This is an internal error, and should never be reported.

NT Performance Monitor data area failed to initialize

Item Value

Warning code 10042

Level 1

453

Probable cause The NT Performance Monitor will not be able to monitor this instance of the
MobiLink synchronization server. Only one instance of the MobiLink
synchronization server may be monitored at a time. The instance that may
be monitored is always the one running the instance that was started at the
earliest time.

Avoid this warning by making sure the MobiLink synchronization server
you want to use with the Performance Monitor is started before any other
MobiLink synchronization server on the same machine.

No handle_error script is defined. The default action code (%1!ld!) will
decide the error behavior

Item Value

Warning code 10010

Level 2

Parameter 1 The error action code.

Probable cause An error occurred in the MobiLink synchronization server during
synchronization. However there is no handle_error script defined in the
consolidated database. The server will take the default action for the error.
To avoid this warning, please define a handle_error script.

ODBC Isolation level (%1!s!) is not supported

Item Value

Warning code 10003

Level 1

Parameter 1 The required isolation level.

Probable cause The required isolation level is not supported by the consolidated database.
Determine if another level is suitable.

ODBC function %1!s! is not supported by the driver

Item Value

Warning code 10004

Level 1

Parameter 1 ODBC function name.

454

Chapter 14. MobiLink Synchronization Server Warning Messages

Probable cause This function is required for the MobiLink synchronization server to
operate. Update your ODBC driver.

ODBC statement option %1!s! has changed from %2!lu! to %3!lu!

Item Value

Warning code 10006

Level 1

Probable cause The option has been changed by the ODBC driver. This may not be
desirable.

ODBC statement option %1!s! has changed from %2!s! (%3!lu!) to %4!s!
(%5!lu!)

Item Value

Warning code 10005

Level 1

Probable cause The option has been changed by the ODBC driver. This may not be
desirable.

Publication ‘%1!s!’ is not referenced by any table

Item Value

Warning code 10022

Level 3

Parameter 1 Publication name.

Probable cause The MobiLink synchronization client sends an upload stream that includes
upload data as well as upload tables, publications, etc. All these publications
must be referenced by at least one of the upload tables. If there are any
publications that are not referenced by any upload table, the server will show
this warning. If this happens, please contact technical support.

455

Retry on deadlock is disabled. The MobiLink synchronization server is
using an internal workaround which requires this setting

Item Value

Warning code 10008

Level 2

Probable cause The MobiLink synchronization server will not retry a synchronization when
deadlock occurs. This warning should only occur when using the Oracle
8.0.5.7 ODBC driver (which is not recommended).

Retrying the begin_connection transaction after deadlock in the
consolidated database

Item Value

Warning code 10007

Level 2

Probable cause Deadlock occurred in the transaction of begin_transaction in the
consolidated database. To avoid this warning, please rewrite your
begin_connection script to avoid deadlocks.

Retrying the begin_synchronization transaction after deadlock in the
consolidated database

Item Value

Warning code 10048

Level 2

Probable cause Deadlock occurred when the MobiLink synchronization server executed the
begin_synchronization script. It will roll back the transaction and retry this
script.

456

Chapter 14. MobiLink Synchronization Server Warning Messages

Retrying the end_synchronization transaction after deadlock in the
consolidated database

Item Value

Warning code 10049

Level 2

Probable cause Deadlock occurred when the MobiLink synchronization server executed the
end_synchronization script. It will roll back the transaction and retry this
script.

Retrying the upload after deadlock in the consolidated database

Item Value

Warning code 10045

Level 2

Probable cause Deadlock occurred when the MobiLink synchronization server was applying
the upload stream. It will roll back the transaction and retry this script.

Avoid this warning by removing contention between synchronization scripts.
There can also be contention between synchronization scripts and other
applications.

Retrying the upload. Working around a known ODBC driver problem

Item Value

Warning code 10046

Level 2

Probable cause A quirk in the ODBC driver requires the MobiLink synchronization server to
retry the upload; otherwise it will not be applied successfully. This warning
should only occur when using the Oracle 8.0.5.7 ODBC driver, which is not
recommended.

457

Table ‘%1!s!’ has at least one timestamp column. Due to a timestamp
precision mismatch, downloaded timestamps can lose precision,
resulting in inconsistent data

Item Value

Warning code 10016

Level 3

Parameter 1 Table name.

Probable cause A remote database is synchronizing a table with at least one timestamp
column while the timestamp precision of the remote database is lower than
that of the consolidated database. The downloaded value will lose precision
after being stored into the remote database.

This situation creates a virtual difference in the synchronized timestamp data
between the consolidated database and the remote database. To avoid this
data inconsistency problem, you should align timestamp precision across all
databases involved in your synchronization system.

Table ‘%1!s!’ has at least one timestamp column. Due to a timestamp
precision mismatch, uploaded timestamps can lose precision, defeating
download filtering

Item Value

Warning code 10015

Level 3

Parameter 1 Table name.

Probable cause A remote database is synchronizing a table with at least one timestamp
column while the timestamp precision on the remote database is higher than
that of the consolidated database. The uploaded value will lose precision
after being stored in the consolidated database. The MobiLink
synchronization server compares upload rows and download rows in order to
filter away redundant download rows.

The loss of precision may create a virtual difference that defeats the
download filtering. This situation can affect download performance. To
avoid this performance penalty, you should align timestamp precision across
all databases involved in your synchronization system.

458

Chapter 14. MobiLink Synchronization Server Warning Messages

Table ‘%1!s!’ has no entry in the %2!s! table

Item Value

Warning code 10024

Level 3

Parameter 1 Table name.

Probable cause The tables ml_table, ml_table_script, ml_script contain the scripts for every
table that participates in synchronization. The MobiLink synchronization
server will show this warning for all the synchronization tables that have no
script or that have no entry in the table ml_table.

The -zac switch is deprecated. It is strongly recommended that you use
the -za switch instead

Item Value

Warning code 10053

Level 1

Probable cause The cursor-based upload scripts will not be supported in future releases of
the MobiLink synchronization server.

The -zec switch is deprecated. It is strongly recommended that you use
the -ze switch instead

Item Value

Warning code 10054

Level 1

Probable cause The cursor-based upload scripts will not be supported in future releases of
the MobiLink synchronization server.

459

The client has provided %1!d! authentication parameter(s), but no
authenticate_parameters script exists

Item Value

Warning code 10055

Level 2

Parameter 1 The number of authentication parameter(s).

Probable cause The MobiLink synchronization client sent the listed number of
authentication parameters. However, there is no authentication parameter
script defined in the consolidated database.

To avoid this warning, please define the authenticate_parameters script in the
consolidated database or do not send authentication parameter(s) from the
client.

The consolidated and remote databases disagree on when the last
synchronization took place. The remote is being asked to send a new
upload that starts at the last known synchronization point

Item Value

Warning code 10012

Level 2

Probable cause The MobiLink synchronization server stores the remote ending log offsets in
its system tables after every synchronization and it compares these ending
log offsets with the remote beginning offsets when a new synchronization
comes in. If the ending offsets do not match the beginning offsets, the server
will show this warning and also inform the client about the mismatching
offsets.

460

Chapter 14. MobiLink Synchronization Server Warning Messages

The consolidated and remote databases have different timestamp
precisions. Consolidated database timestamps are precise to %1!d!
digit(s) in the fractional second while the remote database timestamps
are precise to %2!d! digit(s)

Item Value

Warning code 10017

Level 3

Parameter 1 Timestamp precision of the consolidated database in
terms of number of decimal digits in the fractional
second.

Parameter 2 Timestamp precision of the remote database in terms
of number of decimal digits in the fractional second.

Probable cause Inconsistent timestamp precisions were found between the remote database
and the consolidated database. Align the databases to the same precision to
avoid a performance penalty or inconsistent data.

The remote and consolidated databases have different timestamp
precisions, and a timestamp value with a precision higher than the
lower-precision side was used for conflict detection purposes. Consider
using the -zp option

Item Value

Warning code 10021

Level 3

Probable cause An upload conflict is detected based on a tolerable timestamp difference
while the -zp switch is not used. If you decided not to align precision on the
databases involved in your synchronization system, you may use the -zp
swith to start the MobiLink synchronization server.

If the switch is used, MobiLink synchronization server will tolerate conflict
caused by timestamp differences smaller than the lower precision among the
two databases.

461

The remote client’s synchronization log ended prematurely, and was
probably truncated

Item Value

Warning code 10035

Level 2

Probable cause The MobiLink synchronization server was not able to completely get the
remote error log from the client, so the remote error log may have been
truncated. To avoid this warning, please do not kill the client when it is
running and also make sure the network connection is okay.

The remote database is not capable of matching the timestamp precision
of the consolidated database. Your application, schema, and scripts
must contain logic that copes with the precision mismatch

Item Value

Warning code 10019

Level 3

Probable cause Timestamp precision of the consolidated database is found to be higher than
attainable by the remote database. If possible you may lower the timestamp
precision on the consolidated database in order to avoid inconsistent
timestamp data between the remote and the consolidated database.

Otherwise, you may need to avoid synchronizing timestamps in your
synchronization schema; or you may need to have conflict detection scripts
aware of the virtual difference; or you may need to use the -zp switch to
tolerate the conflict. Your application should also be able to deal with the
inconsistency.

The timestamp precision mismatch may affect upload conflict detection.
Use the -zp option to cause the MobiLink synchronization server to use
the lowest timestamp precision for conflict detection purposes

Item Value

Warning code 10020

Level 3

462

Chapter 14. MobiLink Synchronization Server Warning Messages

Probable cause Timestamp precision mismatch between the remote database and the
consolidated database has been detected. The mismatch can affect upload
conflict detection as the MobiLink synchronization server will compare the
rows for the two databases. If you decided not to align precision on the
databases involved in your synchronization system, you may use the -zp
swith to start the MobiLink synchronization server.

If this switch is used, the MobiLink synchronization server will tolerate
conflict caused by timestamp differences smaller than the lower precision
among the two databases.

The timestamp precision mismatch may be resolved by setting the
DEFAULT_TIMESTAMP_INCREMENT option on the remote database to
%1!d! and TRUNCATE_TIMESTAMP_VALUES to ‘On’

Item Value

Warning code 10018

Level 3

Parameter 1 Timestamp precision of the consolidated database in
terms of number of decimal digits in the fractional
second.

Probable cause This is an advisory on how to align timestamp precision by adjusting
timestamp precision on the ASA client database or the ASA reference
database for UltraLite clients. UltraLite clients need to be regenerated after
the precision is adjusted.

The upload will be committed and the synchronization aborted. The next
time this remote synchronizes, it will ask what happened to the previous
upload

Item Value

Warning code 10041

Level 2

Probable cause This is an internal warning that is primarily used for testing, but may also be
seen as part of technical support engagements.

463

The upload will be rolled back and the synchronization aborted. The next
time this remote synchronizes, it will ask what happened to the previous
upload

Item Value

Warning code 10023

Level 3

Probable cause This is an internal warning that is primarily used for testing, but may also be
seen as part of technical support engagements.

The upload_cursor, new_row_cursor, and old_row_cursor scripts are
deprecated. It is strongly recommended that you use the
statement-based upload scripts instead

Item Value

Warning code 10052

Level 1

Probable cause The cursor-based upload scripts will not be supported in future releases of
the MobiLink synchronization server. To avoid this warning, please convert
all your cursor-based upload scripts into statement-based upload scripts.

There is no download data script defined for table: %1!s!.
Synchronization has the risk of potentially losing download data

Item Value

Warning code 10056

Level 4

Parameter 1 Table name.

Probable cause The listed table is involved in a download-only synchronization. However,
there is no download script for this table in the consolidated database.

To avoid this warning, please define download script(s) for this table in the
consolidated database, or always do full synchronization.

464

Chapter 14. MobiLink Synchronization Server Warning Messages

There is no upload data script defined for table: %1!s!. Synchronization
has the risk of potentially losing upload data

Item Value

Warning code 10057

Level 4

Parameter 1 Table name.

Probable cause The listed table is involved in the synchronization and there are some
changes to this table in the remote data. However, there is no upload script
for this table in the dbmlsync consolidated database.

To avoid this warning, please define upload script(s) for this table in the
consolidated database, or do not make any changes in the remote database
using any other application except the MobiLink synchronization client.

Unable to convert character data for download – substituting ‘?’

Item Value

Warning code 10029

Level 5

Probable cause Character data originating from the consolidated database needs to be
translated before being sent to the client. This was not possible for all
characters. A ‘?’ will be substituted for each problem character.

Unable to convert character data for download – using NULL

Item Value

Warning code 10030

Level 5

Probable cause Character data originating from the consolidated database needs to be
translated before being sent to the client. This was not possible. NULL will
be sent instead.

465

Unable to convert character data for download – using empty string

Item Value

Warning code 10031

Level 5

Probable cause Character data originating from the consolidated database needs to be
translated before being sent to the client. This was not possible. An empty
string will be sent instead.

Unable to determine current timestamp from consolidated database

Item Value

Warning code 10043

Level 4

Probable cause The MobiLink synchronization server was not able to get the current
timestamp from the consolidated database. Please make sure the database
server is running and the network connection is okay.

Unable to open the file to store the client synchronization logs. The
filename is ‘%1!s!’

Item Value

Warning code 10032

Level 2

Probable cause The MobiLink synchronization server was unable to open the local remote
log file given by option -e or -et. Please make sure the file name and path are
valid and the file is writable.

Unable to write to the local file that contains remote synchronization logs

Item Value

Warning code 10034

Level 2

Probable cause The MobiLink synchronization server was unable to write the remote error
log to a local file. To avoid this warning, please make sure the file name and

466

Chapter 14. MobiLink Synchronization Server Warning Messages

path given by option -e or -et are valid and the file is writable.

Unrecognized ODBC driver ‘%1!s!’. The functionality and quality of
ODBC drivers varies greatly. This driver may lack functionality required
for successful synchronizations. Use at your own risk

Item Value

Warning code 10051

Level 1

Parameter 1 The file name of an ODBC driver.

Probable cause The MobiLink synchronization server is very well tested with a set of
ODBC drivers. However, the ODBC driver you are currently using is not on
the list. To avoid this warning, please run the MobiLink synchronization
server with a recommended ODBC driver.

Unrecognized value (%1!ld!) in ml_user.commit_state. The state
information for this user is probably corrupted

Item Value

Warning code 10011

Level 2

Parameter 1 The value of a commit state.

Probable cause The MobiLink synchronization server stores the last synchronization status
for an UltraLite application in the commit_state column in the ml_user table.
However, the server does not recognize the commit state fetched from the
consolidated database. Please do not manually modify the values of the
commit_state in ml_table.

467

468

Index

Symbols
-D option

MobiLink [dbmlsrv9] -sl java 19
-DMLStartClasses

MobiLink [dbmlsrv9] -sl java 19
-MLAutoLoadPath option

MobiLink [dbmlsrv9] -sl dnet 17
-MLDomConfigFile option

MobiLink [dbmlsrv9] -sl dnet 17
-MLStartClasses

MobiLink [dbmlsrv9] -sl dnet 17
-a option

MobiLink [dbmlsrv9] 8
MobiLink [dbmlsync] 40

-ac option
MobiLink [mlxtract] 304

-al option
MobiLink [mlxtract] 304

-an option
MobiLink [mlxtract] 304

-ap option
MobiLink [dbmlsync] 40

-b option
MobiLink [dbmlsrv9] 8

-ba option
MobiLink [dbmlsync] 40

-bc option
MobiLink [dbmlsrv9] 9
MobiLink [dbmlsync] 40

-be option
MobiLink [dbmlsync] 41

-bg option
MobiLink [dbmlsync] 41

-bn option
MobiLink [dbmlsrv9] 10

-c option
MobiLink [dbmlsrv9] 10
MobiLink [dbmlsync] 42
MobiLink [dbmluser] 308
MobiLink [gencert] 311
MobiLink [mlxtract] 304

-classic option

MobiLink [dbmlsrv9] -sl java 19
-classpath option

MobiLink [dbmlsrv9] -sl java 19
-clrConGC option

MobiLink [dbmlsrv9] -sl dnet 17
-clrFlavor option

MobiLink [dbmlsrv9] -sl dnet 17
-clrVersion option

MobiLink [dbmlsrv9] -sl dnet 17
-cn option

MobiLink [dbmlsrv9] 11
-cp option

MobiLink [dbmlsrv9] -sl java 19
-cr option

MobiLink [dbmlsrv9] 11
-ct option

MobiLink [dbmlsrv9] 11
-d option

MobiLink [dbasinst] 300
MobiLink [dbmlsrv9] 11
MobiLink [dbmlsync] 42
MobiLink [dbmluser] 308

-dl option
MobiLink [dbmlsrv9] 12
MobiLink [dbmlsync] 43
MobiLink [dbmluser] 308

-ds option
MobiLink [dbmlsync] 43

-e CommunicationAddress
dbmlsync extended option 45

-e CommunicationType
dbmlsync extended option 46

-e ConflictRetries
dbmlsync extended option 47

-e DisablePolling
dbmlsync extended option 47

-e DownloadBufferSize
dbmlsync extended option 48

-e DownloadOnly
dbmlsync extended option 49

-e ErrorLogSendLimit
dbmlsync extended option 50

469

Index

-e FireTriggers
dbmlsync extended option 51

-e HoverRescanThreshold
dbmlsync extended option 52

-e IgnoreHookErrors
dbmlsync extended option 53

-e IgnoreScheduling
dbmlsync extended option 53

-e Increment
dbmlsync extended option 54

-e LockTables
dbmlsync extended option 55

-e Memory
dbmlsync extended option 56

-e MobiLinkPwd
dbmlsync extended option 56

-e NewMobiLinkPwd
dbmlsync extended option 57

-e OfflineDirectory
dbmlsync extended option 58

-e PollingPeriod
dbmlsync extended option 58

-e Schedule
dbmlsync extended option 59

-e ScriptVersion
dbmlsync extended option 61

-e SendColumnNames
dbmlsync extended option 62

-e SendDownloadACK
dbmlsync extended option 62

-e SendTriggers
dbmlsync extended option 63

-e TableOrder
dbmlsync extended option 64

-e UploadOnly
dbmlsync extended option 65

-e Verbose
dbmlsync extended option 65

-e VerboseHooks
dbmlsync extended option 66

-e VerboseMin
dbmlsync extended option 67

-e VerboseOptions
dbmlsync extended option 68

-e VerboseRowCounts
dbmlsync extended option 68

-e VerboseRowValues

dbmlsync extended option 69
-e VerboseUpload

dbmlsync extended option 70
-e adr

dbmlsync extended option 45
-e cr

dbmlsync extended option 47
-e ctp

dbmlsync extended option 46
-e dbs

dbmlsync extended option 48
-e dir

dbmlsync extended option 58
-e ds

dbmlsync extended option 49
-e eh

dbmlsync extended option 53
-e el

dbmlsync extended option 50
-e ft

dbmlsync extended option 51
-e hrt

dbmlsync extended option 52
-e inc

dbmlsync extended option 54
-e isc

dbmlsync extended option 53
-e lt

dbmlsync extended option 55
-e mem

dbmlsync extended option 56
-e mn

dbmlsync extended option 57
-e mp

dbmlsync extended option 56
-e option

MobiLink [dbmlsrv9] 12
MobiLink [dbmlsync] 44

-e p
dbmlsync extended option 47

-e pp
dbmlsync extended option 58

-e sa
dbmlsync extended option 62

-e sch
dbmlsync extended option 59

-e st

470

Index

dbmlsync extended option 63
-e sv

dbmlsync extended option 61, 62
-e tor

dbmlsync extended option 64
-e uo

dbmlsync extended option 65
-e v

dbmlsync extended option 65
-e vm

dbmlsync extended option 67
-e vn

dbmlsync extended option 68
-e vo

dbmlsync extended option 68
-e vr

dbmlsync extended option 69
-e vs

dbmlsync extended option 66
-e vu

dbmlsync extended option 70
-eh option

MobiLink [dbmlsync] 71
-ek option

MobiLink [dbmlsync] 71
-ep option

MobiLink [dbmlsync] 71
-et option

MobiLink [dbmlsrv9] 12
-eu option

MobiLink [dbmlsync] 71
-f option

MobiLink [dbmlsrv9] 13
MobiLink [dbmlstop] 303
MobiLink [dbmluser] 308

-fr option
MobiLink [dbmlsrv9] 13

-h option
MobiLink [dbmlstop] 303

-hotspot option
MobiLink [dbmlsrv9] -sl java 19

-i option
MobiLink [dbmlsync] 72

-id option
MobiLink [mlxtract] 304

-is option
MobiLink [dbmlsync] 72

-it option
MobiLink [mlxtract] 304

-j option
MobiLink [mlxtract] 304

-jrepath option
MobiLink [dbmlsrv9] -sl java 19

-k option
MobiLink [dbasinst] 300
MobiLink [dbmlsync] 72

-l option
MobiLink [dbmlsync] 72
MobiLink [mlxtract] 304

-mn option
MobiLink [dbmlsync] 73

-mp option
MobiLink [dbmlsync] 73

-n option
MobiLink [dbasinst] 300
MobiLink [dbmlsync] 73

-o option
MobiLink [dbmlsrv9] 13
MobiLink [dbmlsync] 74
MobiLink [dbmluser] 308
MobiLink [mlxtract] 304

-on option
MobiLink [dbmlsrv9] 14

-oq option
MobiLink [dbmlsrv9] 15

-os option
MobiLink [dbmlsrv9] 15
MobiLink [dbmlsync] 74
MobiLink [dbmluser] 308

-ot option
MobiLink [dbmlsrv9] 16
MobiLink [dbmlsync] 75
MobiLink [dbmluser] 308

-p option
MobiLink [dbmlsync] 75
MobiLink [dbmluser] 308
MobiLink [mlxtract] 304

-pc option
MobiLink [dbmluser] 308

-pd option
MobiLink [dbmlsync] 75

-pi option
MobiLink [dbmlsync] 76

-pp option

471

Index

MobiLink [dbmlsync] 77
-ps option

MobiLink [dbmlsrv9] 16
-q option

MobiLink [dbmlsrv9] 16
MobiLink [dbmlstop] 303
MobiLink [dbmluser] 308
MobiLink [gencert] 311
MobiLink [mlxtract] 304
MobiLink client [dbmlsync] 77

-r option
MobiLink [dbmlsrv9] 16
MobiLink [dbmlsync] 77
MobiLink [gencert] 311
MobiLink [mlxtract] 304

-ra option
MobiLink [dbmlsync] 77

-rb option
MobiLink [dbmlsync] 77

-rd option
MobiLink [dbmlsrv9] 17

-s option
MobiLink [dbmlsrv9] 17
MobiLink [gencert] 311

-s7 option
MobiLink [mlxtract] 304

-sc option
MobiLink [dbmlsync] 79

-server option
MobiLink [dbmlsrv9] -sl java 19

-sl dnet option
MobiLink [dbmlsrv9] 17

-sl java option
MobiLink [dbmlsrv9] 19

-t option
MobiLink [dbmlsrv9] 19
MobiLink [dbmlstop] 303

-tt option
MobiLink [dbmlsrv9] 20

-u option
MobiLink [dbasinst] 300
MobiLink [dbmlsrv9] 20
MobiLink [dbmlsync] 79
MobiLink [dbmluser] 308
MobiLink [mlxtract] 304

-ud option
MobiLink [dbmlsrv9] 20

-uo option
MobiLink [dbmlsync] 80

-urc option
MobiLink [dbmlsync] 80

-v option
MobiLink [dbasinst] 300
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80
MobiLink [mlxtract] 304

-v+ option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-vc option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-verbose option
MobiLink [dbmlsrv9] -sl java 19

-vf option
MobiLink [dbmlsrv9] 21

-vh option
MobiLink [dbmlsrv9] 21

-vn option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-vo option
MobiLink [dbmlsync] 80

-vp option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-vr option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-vs option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-vt option
MobiLink [dbmlsrv9] 21

-vu option
MobiLink [dbmlsrv9] 21
MobiLink [dbmlsync] 80

-w option
MobiLink [dbmlsrv9] 22
MobiLink [dbmlstop] 303

-wc option
MobiLink [dbmlsync] 81

-wu option
MobiLink [dbmlsrv9] 23

472

Index

-x option
MobiLink [dbmlsrv9] 24
MobiLink [dbmlsrv9] -sl java 19
MobiLink [dbmlsync] 82
MobiLink [mlxtract] 304

-xf option
MobiLink [mlxtract] 304

-xh option
MobiLink [mlxtract] 304

-xp option
MobiLink [mlxtract] 304

-y option
MobiLink [mlxtract] 304

-za option
MobiLink [dbmlsrv9] 28

-ze option
MobiLink [dbmlsrv9] 29

-zp option
MobiLink [dbmlsrv9] 30

-zs option
MobiLink [dbmlsrv9] 30

-zt option
MobiLink [dbmlsrv9] 31

-zu option
MobiLink [dbmlsrv9] 31

-zw option
MobiLink [dbmlsrv9] 31

-zwd option
MobiLink [dbmlsrv9] 32

-zwe option
MobiLink [dbmlsrv9] 33

.NET CLR
MobiLink options 17

#hook_dict table
dbmlsync 269

A
ActiveSync

class name for dbmlsync 81
installing the MobiLink provider 300
MobiLink ActiveSync provider

[dbasinst] 300
MobiLink clients using 252

ActiveSync provider installation utility
[dbasinst]

syntax 300
Adaptive Server Anywhere clients

dbmlsync 36
Adaptive Server Enterprise

begin_connection_autocommit event
109

conversion of data types in MobiLink
synchronization 324

using DDL in MobiLink 109
adding

elliptic-curve and RSA certificates 311
MobiLink .NET connection scripts264
MobiLink .NET table scripts 265
MobiLink Java connection scripts 266
MobiLink Java table scripts 267
MobiLink SQL connection scripts 262
MobiLink SQL table scripts 263
user names in MobiLink 308

ADDRESS clause
CREATE SYNCHRONIZATION

USER 245
adr

dbmlsync extended option 45
ALTER PUBLICATION statement

SQL syntax 234
ALTER SYNCHRONIZATION

SUBSCRIPTION statement
SQL syntax 236

ALTER SYNCHRONIZATION USER
statement

SQL syntax 238
altering

publications 234
applications

deploying MobiLink applications 337
auth_status synchronization parameter

about 100
authenticate_parameters

connection event 98
authenticate_user

connection event 100
authenticate_user_hashed

connection event 104
authenticating

users in MobiLink 308
auto-dial

MobiLink clients using HTTP 248
MobiLink clients using HTTPS 250
MobiLink clients using TCP/IP 246

473

Index

B
backups

restoring remote databases 77
begin_connection

connection event 107
begin_connection_autocommit

connection event 109
begin_download

connection event 110
table event 112

begin_download_deletes
table event 114

begin_download_rows
table event 116

begin_publication
connection event 118

begin_synchronization
connection event 121
table event 123

begin_upload
connection event 125
table event 127

begin_upload_deletes
table event 129

begin_upload_rows
table event 131

buffer_size stream parameter
MobiLink clients using HTTP 247
MobiLink clients using HTTPS 250

C
C#

MobiLink options 17
cache size

dbmlsync upload stream 56
certificate generation utility [gencert]

syntax 311
certificate reader utility [readcert]

syntax 310
certificate stream parameter

HTTPS synchronization 27
certificate_company stream parameter

MobiLink clients using HTTP 249
MobiLink clients using HTTPS 251
MobiLink clients using TCP/IP 246

certificate_name stream parameter

MobiLink clients using HTTP 249
MobiLink clients using HTTPS 251
MobiLink clients using TCP/IP 246

certificate_password stream parameter
HTTPS synchronization 28

certificate_unit stream parameter
MobiLink clients using HTTP 249
MobiLink clients using HTTPS 251
MobiLink clients using TCP/IP 246

certificates
generating elliptic-curve 311
generating RSA 311
reading elliptic-curve 310
reading RSA 310

character sets
MobiLink synchronization 332

character-set translation
by ODBC drivers 333
during MobiLink synchronization

under other platforms 334
during MobiLink synchronization

under Windows 332
class names

ActiveSync 81
client database extraction utility

[mlxtract]
syntax 304

client event-hook procedures 269
client_port number

default for MobiLink clients using
HTTPS 250

client_port stream parameter
HTTP synchronization 25
MobiLink clients using HTTP 247
MobiLink clients using TCP/IP 245

clients
dbmlsync 36

CLR
MobiLink options 17

collation sequences
MobiLink synchronization 332

command line
starting dbmlsrv9 4
starting dbmlsync 36

command line utilities
dbasinst command line syntax 300
MobiLink certificate generator

474

Index

[gencert] 311
MobiLink client database extraction

[mlxtract] 304
MobiLink stop utility [dbmlstop] 303
MobiLink synchronization 299
MobiLink user authentication

[dbmluser] 308
readcert syntax 310

COMMIT statement
event-hook procedures 269

common language runtime
MobiLink options 17

communication protocols
multiple settings in MobiLink 252

CommunicationAddress
dbmlsync extended option 45

CommunicationType
dbmlsync extended option 46

complete event model
MobiLink 86

ConflictRetries
dbmlsync extended option 47

connection scripts
adding .NET scripts 264
adding Java scripts 266
adding SQL scripts 262
deleting .NET scripts 264
deleting Java scripts 266
deleting SQL scripts 262

consolidated databases
conversion of data types in MobiLink

323
MobiLink system tables 316

contd_timeout stream parameter
HTTP synchronization 25
HTTPS synchronization 27

conventions
documentation x

conversion
of data types in MobiLink

synchronization 323
to Adaptive Server Enterprise data

types in MobiLink
synchronization 324

to IBM DB2 data types in MobiLink
synchronization 326

to Microsoft SQL Server data types in

MobiLink synchronization 330
to Oracle data types in MobiLink

synchronization 328
cr

dbmlsync extended option 47
CREATE PUBLICATION statement

SQL syntax 240
CREATE SYNCHRONIZATION

SUBSCRIPTION statement
SQL syntax 243

CREATE SYNCHRONIZATION USER
statement

SQL syntax 245
creating

MobiLink client databases 304
new certificates 311
publications 240

ctp
dbmlsync extended option 46

D
data types

conversion of in MobiLink
synchronization 323

conversion to Adaptive Server
Enterprise in MobiLink
synchronization 324

conversion to IBM DB2 in MobiLink
synchronization 326

conversion to Microsoft SQL Server in
MobiLink synchronization 330

conversion to Oracle in MobiLink
synchronization 328

database extraction utility
MobiLink 304

DB2
conversion of data types in MobiLink

synchronization 326
maximum identifier length in IBM 316

dbasdesk.dll
installing 300

dbasdev.dll
installing 300

dbasinst utility
options 300
syntax 300

dbmlsrv9

475

Index

options 4
reports error context in output log 13

dbmlstop utility
options 303
syntax 303

dbmlsync extended options 44
dbmlsync utility

#hook_dict table 269
about 35
event hooks 269
extended options 44
options 36
sp_hook_dbmlsync_abort hook 270
sp_hook_dbmlsync_begin 272
sp_hook_dbmlsync_delay 273
sp_hook_dbmlsync_download_begin

275
sp_hook_dbmlsync_download_com_-

error
275

sp_hook_dbmlsync_download_end
276

sp_hook_dbmlsync_download_fatal_-
sql_error
277

sp_hook_dbmlsync_download_log_-
ri_violation
279

sp_hook_dbmlsync_download_ri_-
violation
280

sp_hook_dbmlsync_download_sql_-
error
282

sp_hook_dbmlsync_download_table_-
begin
283

sp_hook_dbmlsync_download_table_-
end
283

sp_hook_dbmlsync_end 284
sp_hook_dbmlsync_log_rescan 286
sp_hook_dbmlsync_logscan_begin287
sp_hook_dbmlsync_logscan_end 288
sp_hook_dbmlsync_process_return_-

code
289

sp_hook_dbmlsync_schema_upgrade
291

sp_hook_dbmlsync_upload_begin 292
sp_hook_dbmlsync_upload_end 293
sp_hook_dbmlsync_validate_-

download_file
295

syntax 36
dbmluser utility

options 308
syntax 308

dbs
dbmlsync extended option 48

deleting
MobiLink .NET connection scripts264
MobiLink .NET table scripts 265
MobiLink Java connection scripts 266
MobiLink Java table scripts 267
MobiLink SQL connection scripts 262
MobiLink SQL table scripts 263

deploying
Adaptive Server Anywhere MobiLink

clients 342
applications and databases 337
MobiLink applications 337
MobiLink synchronization server 339
UltraLite applications 344

dir
dbmlsync extended option 58

DisablePolling
dbmlsync extended option 47

documentation
conventions x
SQL Anywhere Studio viii

download events
MobiLink synchronization 96

download only synchronization
dbmlsync -ds option 43

download stream
-uo option for upload-only

synchronization 80
download-only synchronization

Adaptive Server Anywhere remote
databases 49

download_cursor
cursor event 133

download_delete_cursor

476

Index

cursor event 136
download_statistics

connection event 139
table event 142

DownloadBufferSize
dbmlsync extended option 48

downloading rows
resolving MobiLink RI violations 279

DownloadOnly
dbmlsync extended option 49

drivers
MobiLink ODBC drivers 336

DROP PUBLICATION statement
SQL syntax 255

DROP SYNCHRONIZATION
SUBSCRIPTION statement

SQL syntax 256
DROP SYNCHRONIZATION USER

statement
SQL syntax 257

dropping
publications 255

ds
dbmlsync extended option 49

E
eh

dbmlsync extended option 53
el

dbmlsync extended option 50
elliptic-curve certificates

generating 311
reading 310

end_connection
connection event 145

end_download
connection event 147
table event 149

end_download_deletes
table event 151

end_download_rows
table event 153

end_publication
connection event 155

end_synchronization
connection event 158
table event 160

end_upload
connection event 162
table event 164

end_upload_deletes
table event 166

end_upload_rows
table event 168

error logs
MobiLink server [dbmlsrv9] 12

ErrorLogSendLimit
dbmlsync extended option 50

event hooks
commits not allowed 269
rollbacks not allowed 269
sp_hook_dbmlsync_abort 270
sp_hook_dbmlsync_begin 272
sp_hook_dbmlsync_delay 273
sp_hook_dbmlsync_download_begin

275
sp_hook_dbmlsync_download_com_-

error
275

sp_hook_dbmlsync_download_fatal_-
SQL_error
277

sp_hook_dbmlsync_download_log_-
ri_violation
279

sp_hook_dbmlsync_download_ri_-
violation
280

sp_hook_dbmlsync_download_sql_-
error
282

sp_hook_dbmlsync_download_table_-
begin
283

sp_hook_dbmlsync_download_table_-
end
283

sp_hook_dbmlsync_end 284
sp_hook_dbmlsync_log_rescan 286
sp_hook_dbmlsync_logscan_begin287
sp_hook_dbmlsync_logscan_end 288
sp_hook_dbmlsync_process_return_-

code
289

477

Index

sp_hook_dbmlsync_upload_begin 291,
292

sp_hook_dbmlsync_upload_end 293
sp_hook_dbmlsync_validate_-

download_file
295

synchronization event hooks 269
event-hooks

sp_hook_dbmlsync_begin 275
sp_hook_dbmlsync_download_end

276
events

about MobiLink synchronization 86
MobiLink 83

example_upload_cursor
cursor event 170

example_upload_delete
table event 171

example_upload_insert
table event 172

example_upload_update
table event 173

extended options
dbmlsync 44

extracting
MobiLink client databases 304

extraction utility
MobiLink 304

F
feedback

documentation xiv
providing xiv

file-based downloads
dbmlsync -bc option 40
dbmlsync -be option 41
dbmlsync -bg option 41

FireTriggers
dbmlsync extended option 51

ft
dbmlsync extended option 51

G
gencert utility

options 311
syntax 311

generating

elliptic-curve certificates 311
RSA certificates 311

H
handle_error

connection event 174
handle_odbc_error

connection event 177
hooks

ignoring errors 53
sp_hook_dbmlsync_abort 270
sp_hook_dbmlsync_begin 272
sp_hook_dbmlsync_delay 273
sp_hook_dbmlsync_download_begin

275
sp_hook_dbmlsync_download_com_-

error
275

sp_hook_dbmlsync_download_end
276, 284

sp_hook_dbmlsync_download_fatal_-
sql_error
277

sp_hook_dbmlsync_download_log_-
ri_violation
279

sp_hook_dbmlsync_download_ri_-
violation
280

sp_hook_dbmlsync_download_sql_-
error
282

sp_hook_dbmlsync_download_table_-
begin
283

sp_hook_dbmlsync_download_table_-
end
283

sp_hook_dbmlsync_log_rescan 286
sp_hook_dbmlsync_logscan_begin287
sp_hook_dbmlsync_logscan_end 288
sp_hook_dbmlsync_process_return_-

code
289

sp_hook_dbmlsync_schema_upgrade
291

sp_hook_dbmlsync_upload_begin 292

478

Index

sp_hook_dbmlsync_upload_end 293
sp_hook_dbmlsync_validate_-

download_file
295

synchronization event hooks 269
host stream parameter

HTTP synchronization 26
HTTPS synchronization 27
MobiLink clients using HTTP 247
MobiLink clients using HTTPS 250
MobiLink clients using TCP/IP 245
TCP/IP synchronization 24

HoverRescanThreshold
dbmlsync extended option 52

hrt
dbmlsync extended option 52

HTTP
dbmlsrv9 -x command line option 25
MobiLink clients using 247
synchronization parameters 24

HTTPS
dbmlsrv9 -x command line option 27
MobiLink clients using 249
synchronization parameters 24

I
IBM DB2

conversion of data types in MobiLink
synchronization 326

maximum identifier length in 316
icons

used in manuals xii
identifiers

maximum length in IBM DB2 316
IgnoreHookErrors

dbmlsync extended option 53
IgnoreScheduling

dbmlsync extended option 53
inc

dbmlsync extended option 54
Increment

dbmlsync extended option 54
isc

dbmlsync extended option 53

J
Java VM

MobiLink options 19

L
last download timestamp

modify_last_download_timestamp
connection event 180

modify_next_last_download_-
timestamp connection event
182

liveness_timeout
MobiLink clients using TCP/IP 246

liveness_timeout parameter
TCP/IP synchronization 24

LockTables
dbmlsync extended option 55

logging
dbmlsrv9 -v option 21
dbmlsync -v option 80
MobiLink RI violations 279

logscan polling
about 47

LONG data type
Oracle synchronization 329

lt
dbmlsync extended option 55

M
mem

dbmlsync extended option 56
Memory

dbmlsync extended option 56
Microsoft SQL Server

conversion of data types in MobiLink
synchronization 330

ml_add_connection_script stored
procedure

SQL syntax 262
ml_add_dnet_connection_script stored

procedure
SQL syntax 264

ml_add_dnet_table_script stored
procedure

SQL syntax 265
ml_add_java_connection_script stored

procedure
SQL syntax 266

479

Index

ml_add_java_table_script stored
procedure

SQL syntax 267
ml_add_table_script stored procedure

SQL syntax 263
ml_connection_script

MobiLink system table 317
ml_script

MobiLink system table 317
ml_script_version

MobiLink system table 318
ml_scripts_modified

MobiLink system table 318
ml_subscription

MobiLink system table 318
ml_table

MobiLink system table 319
ml_table_script

MobiLink system table 320
ml_user

MobiLink system table 320
mlxtract utility

options 304
syntax 304

mn
dbmlsync extended option 57

MobiLink
complete event model 86
creating publications 240
events 83
logging RI violations 279
ODBC drivers 336
overview of event process 86
schedule option syntax 59
stopping 303

MobiLink ActiveSync provider
installation utility [dbasinst]

syntax 300
MobiLink certificate generation utility

[gencert]
syntax 311

MobiLink certificate reader utility
[readcert]

syntax 310
MobiLink client database extraction

utility [mlxtract]
syntax 304

MobiLink clients
deploying 342

MobiLink events
listed 83

MobiLink performance
estimate number of upload rows 80

MobiLink security
custom user authentication 104

MobiLink stop utility [dbmlstop]
syntax 303

MobiLink synchronization
overview of events 86
schedule option syntax 59

MobiLink synchronization client
dbmlsync options 36

MobiLink synchronization server
deploying 339
options 4
stopping 303
switches 4
syntax 4

MobiLink system tables
about 316

MobiLink user authentication utility
[dbmluser]

syntax 308
MobiLink utilities

MobiLink ActiveSync provider
[dbasinst] 300

MobiLink certificate generator
[gencert] 311

MobiLink certificate reader [readcert]
310

MobiLink client database extraction
[mlxtract] 304

MobiLink stop utility [dbmlstop] 303
MobiLink user authentication

[dbmluser] 308
MobiLinkPwd

dbmlsync extended option 56
modify_last_download_timestamp

connection event 180
modify_next_last_download_timestamp

connection event 182
modify_user

connection event 184
monitoring

480

Index

logging MobiLink RI violations 279
mp

dbmlsync extended option 56

N
network parameters

on the dbmlsync command line 45
network_connect_timeout stream

parameter
MobiLink clients using HTTP 248
MobiLink clients using HTTPS 250
MobiLink clients using TCP/IP 246

network_leave_open stream parameter
MobiLink clients using HTTP 248
MobiLink clients using HTTPS 250
MobiLink clients using TCP/IP 246

network_name stream parameter
MobiLink clients using HTTP 248
MobiLink clients using HTTPS 250
MobiLink clients using TCP/IP 246

new_row_cursor
cursor event 186

NewMobiLinkPwd
dbmlsync extended option 57

newsgroups
technical support xiv

O
ODBC drivers

for use with MobiLink 336
MobiLink character-set translation by

333
OfflineDirectory

dbmlsync extended option 58
offset

about 77
old_row_cursor

cursor event 189
OPTION clause

CREATE SYNCHRONIZATION
USER 252

options
dbmlsrv9 4
dbmlsync 36
dbmlsync extended options 44
extended options for dbmlsync 44

MobiLink ActiveSync provider
[dbasinst] 300

MobiLink certificate generator
[gencert] 311

MobiLink certificate reader [readcert]
310

MobiLink client [dbmlsync] 36
MobiLink client database extraction

[mlxtract] 304
MobiLink server [dbmlsrv9] 4
MobiLink stop utility [dbmlstop] 303
MobiLink synchronization clients 252
MobiLink user authentication

[dbmluser] 308
Oracle

conversion of data types in MobiLink
synchronization 328

data types 328
ODBC configuration 329
synchronizing LONG data 329

P
p

dbmlsync extended option 47
passwords

MobiLink dbmluser utility 308
persistent stream parameter

MobiLink clients using HTTP 248
MobiLink clients using HTTPS 251

pinging
MobiLink synchronization server 76

polling
dbmlsync logscan polling 47

PollingPeriod
dbmlsync extended option 58

port stream parameter
HTTP synchronization 26
HTTPS synchronization 27
MobiLink clients using HTTP 248
MobiLink clients using HTTPS 251
MobiLink clients using TCP/IP 246
TCP/IP synchronization 25

pp
dbmlsync extended option 58

prepare_for_download
connection event 192

progress

481

Index

about 77
protocols

HTTP synchronization 25
HTTPS synchronization 27
MobiLink clients using ActiveSync

252
MobiLink clients using HTTP 247
MobiLink clients using HTTPS 249
MobiLink clients using TCP/IP 245
TCP/IP synchronization 24

proxy_host stream parameter
MobiLink clients using HTTP 248
MobiLink clients using HTTPS 251

proxy_port stream parameter
MobiLink clients using HTTP 248
MobiLink clients using HTTPS 251

pseudocode
MobiLink events 86

publications
altering 234
creating 240
dropping 255
offsets 77

R
readcert utility

options 310
syntax 310

reading
elliptic-curve certificates 310
RSA certificates 310

referential integrity
resolving MobiLink RI violations 279

remote databases
restoring from backup 77

report_error
connection event 194

report_odbc_error
connection event 196

resolve_conflict
table event 199

restoring
remote databases from backup 77

ROLLBACK statement
event-hook procedures 269

RSA certificates
generating 311

reading 310

S
sa

dbmlsync extended option 62
sch

dbmlsync extended option 59
Schedule

dbmlsync extended option 59
scheduling

ignore for dbmlsync 53
MobiLink schedule option syntax 59

scripts
adding and deleting .NET connection

scripts 264
adding and deleting .NET table scripts

265
adding and deleting Java connection

scripts 266
adding and deleting Java table scripts

267
adding and deleting SQL connection

scripts 262
adding and deleting SQL table scripts

263
MobiLink events 83

ScriptVersion
dbmlsync extended option 61

security
MobiLink custom user authentication

100
security stream parameter

MobiLink clients using HTTP 249
MobiLink clients using TCP/IP 246

SendColumnNames
dbmlsync extended option 62

SendDownloadACK
dbmlsync extended option 62

SendTriggers
dbmlsync extended option 63

server stored procedures
MobiLink 262

signing
elliptic-curve and RSA certificates 311

sort order
characters and MobiLink

synchronization 332

482

Index

sp_hook_dbmlsync_abort stored
procedure

SQL syntax 270
sp_hook_dbmlsync_begin stored

procedure
SQL syntax 272

sp_hook_dbmlsync_delay stored
procedure

SQL syntax 273
sp_hook_dbmlsync_download_begin

stored procedure
SQL syntax 275

sp_hook_dbmlsync_download_com_-
error stored
procedure

SQL syntax 275
sp_hook_dbmlsync_download_end

stored procedure
SQL syntax 276

sp_hook_dbmlsync_download_fatal_-
SQL_error stored
procedure

SQL syntax 277
sp_hook_dbmlsync_download_log_ri_-

violation stored
procedure

SQL syntax 279
sp_hook_dbmlsync_download_ri_-

violation stored
procedure

SQL syntax 280
sp_hook_dbmlsync_download_sql_error

stored procedure
SQL syntax 282

sp_hook_dbmlsync_download_table_-
begin stored
procedure

SQL syntax 283
sp_hook_dbmlsync_download_table_end

stored procedure
SQL syntax 283

sp_hook_dbmlsync_end stored procedure
SQL syntax 284

sp_hook_dbmlsync_log_rescan stored
procedure

SQL syntax 286
sp_hook_dbmlsync_logscan_begin stored

procedure
SQL syntax 287

sp_hook_dbmlsync_logscan_end stored
procedure

SQL syntax 288
sp_hook_dbmlsync_process_return_code

stored procedure
SQL syntax 289

sp_hook_dbmlsync_schema_upgrade
stored procedure

SQL syntax 291
sp_hook_dbmlsync_upload_begin stored

procedure
SQL syntax 292

sp_hook_dbmlsync_upload_end stored
procedure

SQL syntax 293
sp_hook_dbmlsync_validate_download_-

file stored
procedure

SQL syntax 295
SQL Anywhere Studio

documentation viii
SQL Remote

creating publications 240
SQL statements

ALTER PUBLICATION syntax 234
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax 236
ALTER SYNCHRONIZATION USER

syntax 238
CREATE PUBLICATION syntax 240
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax 243
CREATE SYNCHRONIZATION

USER syntax 245
DROP PUBLICATION syntax 255
DROP SYNCHRONIZATION

SUBSCRIPTION syntax 256
DROP SYNCHRONIZATION USER

syntax 257
START SYNCHRONIZATION

DELETE syntax 258
STOP SYNCHRONIZATION

DELETE syntax 260
SQL syntax

ml_add_connection_script stored

483

Index

procedure 262
ml_add_dnet_connection_script stored

procedure 264
ml_add_dnet_table_script stored

procedure 265
ml_add_java_connection_script stored

procedure 266
ml_add_java_table_script stored

procedure 267
ml_add_table_script stored procedure

263
MobiLink server [dbmlsrv9] 4
sp_hook_dbmlsync_abort stored

procedure 270
sp_hook_dbmlsync_begin stored

procedure 272
sp_hook_dbmlsync_delay stored

procedure 273
sp_hook_dbmlsync_download_begin

stored procedure 275
sp_hook_dbmlsync_download_com_-

error stored procedure
275

sp_hook_dbmlsync_download_end
stored procedure 276

sp_hook_dbmlsync_download_fatal_-
SQL_error stored procedure
277

sp_hook_dbmlsync_download_log_-
ri_violation stored procedure
279

sp_hook_dbmlsync_download_ri_-
violation stored procedure
280

sp_hook_dbmlsync_download_sql_-
error stored procedure
282

sp_hook_dbmlsync_download_table_-
begin stored procedure
283

sp_hook_dbmlsync_download_table_-
end stored procedure
283

sp_hook_dbmlsync_end stored
procedure 284

sp_hook_dbmlsync_log_rescan stored
procedure 286

sp_hook_dbmlsync_logscan_begin
stored procedure 287

sp_hook_dbmlsync_logscan_end
stored procedure 288

sp_hook_dbmlsync_process_return_-
code stored procedure
289

sp_hook_dbmlsync_upload_begin
stored procedure 292

sp_hook_dbmlsync_upload_end
stored procedure 293

sp_hook_dbmlsync_upload_schema_-
upgrade procedure
291

sp_hook_dbmlsync_validate_-
download_file stored procedure
295

st
dbmlsync extended option 63

start classes
DMLStartClasses option for Java 19
MLStartClasses option for .NET 17

START SYNCHRONIZATION DELETE
statement

SQL syntax 258
statements

ALTER PUBLICATION syntax 234
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax 236
ALTER SYNCHRONIZATION USER

syntax 238
CREATE PUBLICATION syntax 240
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax 243
CREATE SYNCHRONIZATION

USER syntax 245
DROP PUBLICATION syntax 255
DROP SYNCHRONIZATION

SUBSCRIPTION syntax 256
DROP SYNCHRONIZATION USER

syntax 257
START SYNCHRONIZATION

DELETE syntax 258
STOP SYNCHRONIZATION

DELETE syntax 260
STOP SYNCHRONIZATION DELETE

statement

484

Index

SQL syntax 260
stop utility [dbmlstop]

syntax 303
stopping

MobiLink 303
stored procedures

ml_add_connection_script SQL syntax
262

ml_add_dnet_connection_script SQL
syntax 264

ml_add_dnet_table_script SQL syntax
265

ml_add_java_connection_script SQL
syntax 266

ml_add_java_table_script SQL syntax
267

ml_add_table_script SQL syntax 263
MobiLink 261
MobiLink client procedures 269
MobiLink server 262
sp_hook_dbmlsync_abort SQL syntax

270
sp_hook_dbmlsync_begin SQL syntax

272
sp_hook_dbmlsync_delay SQL syntax

273
sp_hook_dbmlsync_download_begin

SQL syntax 275
sp_hook_dbmlsync_download_com_-

error SQL syntax
275

sp_hook_dbmlsync_download_end
SQL syntax 276

sp_hook_dbmlsync_download_fatal_-
SQL_error SQL syntax
277

sp_hook_dbmlsync_download_log_-
ri_violation
279

sp_hook_dbmlsync_download_ri_-
violation
280

sp_hook_dbmlsync_download_sql_-
error SQL syntax
282

sp_hook_dbmlsync_download_table_-
begin SQL syntax

283
sp_hook_dbmlsync_download_table_-

end SQL syntax
283

sp_hook_dbmlsync_end SQL syntax
284

sp_hook_dbmlsync_log_rescan SQL
syntax 286

sp_hook_dbmlsync_logscan_begin
SQL syntax 287

sp_hook_dbmlsync_logscan_end SQL
syntax 288

sp_hook_dbmlsync_process_return_-
code SQL syntax
289

sp_hook_dbmlsync_schema_upgrade
SQL syntax 291

sp_hook_dbmlsync_upload_begin
SQL syntax 292

sp_hook_dbmlsync_upload_end SQL
syntax 293

sp_hook_dbmlsync_validate_-
download_file SQL syntax
295

SUBSCRIBE BY clause 240
support

newsgroups xiv
sv

dbmlsync extended option 61, 62
switches

MobiLink ActiveSync provider
[dbasinst] 300

MobiLink certificate generator
[gencert] 311

MobiLink certificate reader [readcert]
310

MobiLink client [dbmlsync] 36
MobiLink client database extraction

[mlxtract] 304
MobiLink server [dbmlsrv9] 4
MobiLink user authentication

[dbmluser] 308
Sybase Adaptive Server Enterprise

conversion of data types in MobiLink
synchronization 324

synchronization
conversion of data types in MobiLink

485

Index

323
conversion to Adaptive Server

Enterprise data types in
MobiLink 324

conversion to IBM DB2 data types in
MobiLink 326

conversion to Microsoft SQL Server
data types in MobiLink 330

conversion to Oracle data types in
MobiLink 328

customizing 269
event hooks 269
MobiLink character sets 332
MobiLink character-set translation

under other platforms 334
MobiLink character-set translation

under Windows 332
MobiLink stored procedures 262
MobiLink system tables 316
MobiLink utilities 299
schedule option syntax for MobiLink

59
transactions 269

synchronization errors
troubleshooting 12

synchronization events
about MobiLink synchronization 86
authenticate_parameters 98
authenticate_user 100
authenticate_user_hashed 104
begin_connection 107
begin_connection_autocommit 109
begin_download 110, 112
begin_download_deletes 114
begin_download_rows 116
begin_publication 118
begin_synchronization 121, 123
begin_upload 125, 127
begin_upload_deletes 129
begin_upload_rows 131
download_cursor 133
download_delete_cursor 136
download_statistics 139, 142
end_connection 145
end_download 147, 149
end_download_deletes 151
end_download_rows 153

end_publication 155
end_synchronization 158, 160
end_upload 162, 164
end_upload_deletes 166
end_upload_rows 168
example_upload_cursor 170
example_upload_delete 171
example_upload_insert 172
example_upload_update 173
handle_error 174
handle_odbc_error 177
MobiLink download 96
MobiLink upload 92
modify_last_download_timestamp 180
modify_next_last_download_-

timestamp
182

modify_user 184
new_row_cursor 186
old_row_cursor 189
prepare_for_download 192
report_error 194
report_odbc_error 196
resolve_conflict 199
synchronization_statistics 202, 205
time_statistics 207, 209
upload_cursor 212
upload_delete 214
upload_fetch 216
upload_insert 218
upload_new_row_insert 220
upload_old_row_insert 222
upload_statistics 224, 227
upload_update 231

synchronization parameters
HTTP synchronization 24
HTTPS synchronization 24
TCP/IP synchronization 24

synchronization scripts
MobiLink events 83

synchronization_statistics
connection event 202
table event 205

syntax
MobiLink ActiveSync provider

[dbasinst] 300
MobiLink certificate generator

486

Index

[gencert] 311
MobiLink certificate reader [readcert]

310
MobiLink client database extraction

[mlxtract] 304
MobiLink scripts 83
MobiLink stop utility [dbmlstop] 303
MobiLink stored procedures 262
MobiLink synchronization utilities 299
MobiLink user authentication

[dbmluser] 308
sysservers system table

remote servers for Component
Integration Services 253

system tables
MobiLink synchronization 316

T
table scripts

adding .NET scripts 265
adding Java scripts 267
adding SQL scripts 263
deleting .NET scripts 265
deleting Java scripts 267
deleting SQL scripts 263

TableOrder
dbmlsync extended option 64

TCP/IP
dbmlsrv9 -x command line option 24
MobiLink clients using 245
synchronization parameters 24

technical support
newsgroups xiv

time_statistics
connection event 207
table event 209

tor
dbmlsync extended option 64

translation
character-set by ODBC drivers 333

translation between character sets
MobiLink synchronization under other

platforms 334
MobiLink synchronization under

Windows 332
troubleshooting

restoring the remote database from
backup 77

synchronization errors 12
trusted_certificates stream parameter

MobiLink clients using HTTP 249
MobiLink clients using HTTPS 251
MobiLink clients using TCP/IP 246

TYPE clause
CREATE SYNCHRONIZATION

USER 245

U
UltraLite

deploying 344
unknown_timeout stream parameter

HTTP synchronization 26
HTTPS synchronization 28

uo
dbmlsync extended option 65

upload events
MobiLink synchronization 92

upload only synchronization
dbmlsync -uo option 80

upload stream
-uo option for upload-only

synchronization 80
upload-only synchronization

Adaptive Server Anywhere remote
databases 65

upload_cursor
cursor event 212

upload_delete
table event 214

upload_fetch
table event 216

upload_insert
table event 218

upload_new_row_insert
table event 220

upload_old_row_insert
table event 222

upload_statistics
connection event 224
table event 227

upload_update
table event 231

UploadOnly

487

Index

dbmlsync extended option 65
url_suffix stream parameter

HTTP synchronization 26
HTTPS synchronization 28
MobiLink clients using HTTP 249
MobiLink clients using HTTPS 251

user authentication utility [dbmluser]
syntax 308

user names
MobiLink user authentication utility

[dbmluser] 308
utilities

MobiLink ActiveSync provider
[dbasinst] 300

MobiLink certificate generator
[gencert] 311

MobiLink certificate reader [readcert]
310

MobiLink client database extraction
[mlxtract] 304

MobiLink stop utility [dbmlstop] 303
MobiLink synchronization 299
MobiLink user authentication

[dbmluser] 308

V
v

dbmlsync extended option 65
Verbose

dbmlsync extended option 65
VerboseHooks

dbmlsync extended option 66
VerboseMin

dbmlsync extended option 67
VerboseOptions

dbmlsync extended option 68
VerboseRowCounts

dbmlsync extended option 68
VerboseRowValues

dbmlsync extended option 69
VerboseUpload

dbmlsync extended option 70
verbosity

setting in MobiLink [dbmlsrv9] 21
setting in MobiLink [dbmlsync] 80

verbosity option
MobiLink [dbmlsrv9] 21

MobiLink [dbmlsync] 80
version stream parameter

HTTP synchronization 27
HTTPS synchronization 28
MobiLink clients using HTTP 249
MobiLink clients using HTTPS 252

vm
dbmlsync extended option 67

vn
dbmlsync extended option 68

vo
dbmlsync extended option 68

vr
dbmlsync extended option 69

vs
dbmlsync extended option 66

vu
dbmlsync extended option 70

W
Windows CE

dbmlsync applications 75

X
X509 certificates

generating 311
reading 310

Xusage.txt
location 19

488

	MobiLink Synchronization Reference
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The CustDB sample database
	Finding out more and providing feedback

	MobiLink Reference
	MobiLink Synchronization Server Options
	MobiLink synchronization server
	dbmlsrv9 options
	-a option
	-b option
	-bc option
	-bn option
	-c option
	-cn option
	-cr option
	-ct option
	-d option
	-dl option
	-e option
	-et option
	-f option
	-fr option
	-o option
	-on option
	-oq option
	-os option
	-ot option
	-ps option
	-q option
	-r option
	-rd option
	-s option
	-sl dnet option
	-sl java option
	-t option
	-tt option
	-u option
	-ud option
	-v option
	-w option
	-wu option
	-x option
	-za option
	-ze option
	-zp option
	-zs option
	-zt option
	-zu option
	-zw option
	-zwd option
	-zwe option

	MobiLink Synchronization Client
	MobiLink synchronization client
	dbmlsync options
	-a option
	-ap option
	-ba option
	-bc option
	-be option
	-bg option
	-c option
	-d option
	-dl option
	-ds option
	-e extended options
	CommunicationAddress (adr) extended option
	CommunicationType (ctp) extended option
	ConflictRetries (cr) extended option
	DisablePolling (p) extended option
	DownloadBufferSize (dbs) extended option
	DownloadOnly (ds) extended option
	ErrorLogSendLimit (el) extended option
	FireTriggers (ft) extended option
	HoverRescanThreshold (hrt) extended option
	IgnoreHookErrors (eh) extended option
	IgnoreScheduling (isc) extended option
	Increment (inc) extended option
	LockTables (lt) extended option
	Memory (mem) extended option
	MobiLinkPwd (mp) extended option
	NewMobiLinkPwd (mn) extended option
	OfflineDirectory (dir) extended option
	PollingPeriod (pp) extended option
	Schedule (sch) extended option
	ScriptVersion (sv) extended option
	SendColumnNames (scn) extended option
	SendDownloadACK (sa) extended option
	SendTriggers (st) extended option
	TableOrder (tor) extended option
	UploadOnly (uo) extended option
	Verbose (v) extended option
	VerboseHooks (vs) extended option
	VerboseMin (vm) extended option
	VerboseOptions (vo) extended option
	VerboseRowCounts (vn) extended option
	VerboseRowValues (vr) extended option
	VerboseUpload (vu) extended option

	-eh option
	-ek option
	-ep option
	-eu option
	-i option
	-is option
	-k option
	-l option
	-mn option
	-mp option
	-n option
	-o option
	-os option
	-ot option
	-p option
	-pd option
	-pi option
	-pp option
	-q option
	-r option
	-sc option
	-u option
	-uo option
	-urc option
	-v option
	-wc option
	-x option

	Synchronization Events
	Overview of MobiLink events
	Events during upload
	Events during download

	authenticate_parameters connection event
	authenticate_user connection event
	authenticate_user_hashed connection event
	begin_connection connection event
	begin_connection_autocommit connection event
	begin_download connection event
	begin_download table event
	begin_download_deletes table event
	begin_download_rows table event
	begin_publication connection event
	begin_synchronization connection event
	begin_synchronization table event
	begin_upload connection event
	begin_upload table event
	begin_upload_deletes table event
	begin_upload_rows table event
	download_cursor cursor event
	download_delete_cursor cursor event
	download_statistics connection event
	download_statistics table event
	end_connection connection event
	end_download connection event
	end_download table event
	end_download_deletes table event
	end_download_rows table event
	end_publication connection event
	end_synchronization connection event
	end_synchronization table event
	end_upload connection event
	end_upload table event
	end_upload_deletes table event
	end_upload_rows table event
	example_upload_cursor table event
	example_upload_delete table event
	example_upload_insert table event
	example_upload_update table event
	handle_error connection event
	handle_odbc_error connection event
	modify_last_download_timestamp connection event
	modify_next_last_download_timestamp connection event
	modify_user connection event
	new_row_cursor cursor event (deprecated)
	old_row_cursor cursor event (deprecated)
	prepare_for_download connection event
	report_error connection event
	report_odbc_error connection event
	resolve_conflict table event
	synchronization_statistics connection event
	synchronization_statistics table event
	time_statistics connection event
	time_statistics table event
	upload_cursor cursor event (deprecated)
	upload_delete table event
	upload_fetch table event
	upload_insert table event
	upload_new_row_insert table event
	upload_old_row_insert table event
	upload_statistics connection event
	upload_statistics table event
	upload_update table event

	SQL Statements
	ALTER PUBLICATION statement
	ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	ALTER SYNCHRONIZATION USER statement [MobiLink]
	CREATE PUBLICATION statement
	CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	CREATE SYNCHRONIZATION USER statement [MobiLink]
	DROP PUBLICATION statement
	DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	DROP SYNCHRONIZATION USER statement [MobiLink]
	START SYNCHRONIZATION DELETE statement [MobiLink]
	STOP SYNCHRONIZATION DELETE statement [MobiLink]

	Stored Procedures
	Stored procedures to add or delete scripts
	ml_add_connection_script
	ml_add_table_script
	ml_add_dnet_connection_script
	ml_add_dnet_table_script
	ml_add_java_connection_script
	ml_add_java_table_script

	Client event-hook procedures
	sp_hook_dbmlsync_abort
	sp_hook_dbmlsync_begin
	sp_hook_dbmlsync_delay
	sp_hook_dbmlsync_download_begin
	sp_hook_dbmlsync_download_com_error
	sp_hook_dbmlsync_download_end
	sp_hook_dbmlsync_download_fatal_sql_error
	sp_hook_dbmlsync_download_log_ri_violation
	sp_hook_dbmlsync_download_ri_violation
	sp_hook_dbmlsync_download_sql_error
	sp_hook_dbmlsync_download_table_begin
	sp_hook_dbmlsync_download_table_end
	sp_hook_dbmlsync_end
	sp_hook_dbmlsync_log_rescan
	sp_hook_dbmlsync_logscan_begin
	sp_hook_dbmlsync_logscan_end
	sp_hook_dbmlsync_process_return_code
	sp_hook_dbmlsync_schema_upgrade
	sp_hook_dbmlsync_upload_begin
	sp_hook_dbmlsync_upload_end
	sp_hook_dbmlsync_validate_download_file

	Utilities
	ActiveSync provider installation utility
	MobiLink stop utility
	MobiLink client database extraction utility (deprecated)
	MobiLink user authentication utility
	Certificate reader utility
	Certificate generation utility

	MobiLink System Tables
	Introduction
	ml_connection_script
	ml_script
	ml_script_version
	ml_scripts_modified
	ml_subscription
	ml_table
	ml_table_script
	ml_user

	DataType Conversions
	Sybase Adaptive Server Enterprise
	IBM DB2
	Oracle
	Microsoft SQL Server

	Character Set Considerations
	Character set considerations
	Character-set translation during synchronization: Windows
	Controlling ODBC driver character-set translation

	Character set translation during synchronization: non-Windows

	ODBC Drivers
	ODBC drivers supported by MobiLink

	Deploying MobiLink Applications
	Deployment overview
	Deploying the MobiLink server
	Deploying Adaptive Server Anywhere MobiLink clients
	Deploying UltraLite MobiLink clients

	Error and Warning Messages
	MobiLink Communication Error Messages
	Communication error messages sorted by code
	Communication error messages sorted by message
	Communication error messages sorted by constant
	Communication error descriptions
	ActiveSync provider has not been installed.
	ActiveSync synchronization cannot be initiated by an application.
	Unable to create a random number object.
	Unable to dequeue from the connection queue.
	An end read failed.
	An end write failed.
	Unable to generate a random number.
	An error status was returned: `%1!s!'.
	The HTTP buffer size specified is out of the valid range.
	An unexpected character was read while parsing the chunk length. %1!s!.
	Failed to read encoded chunk length.
	Client id is not available for use in HTTP header.
	The content type `%1!s!' is unknown.
	Failed to read encoded CR LF.
	Failed to read CR LF.
	Expected data from remote but current request is not a POST.
	Extra data found in the HTTP body: %1!s!
	Timed out while waiting for the next HTTP request in this synchronization.
	Unable to parse cookie: `%1!s!'.
	Unknown transfer encoding: `%1!s!'.
	Unsupported HTTP version: %1!s!
	Unable to initialize the random number generator.
	Unable to load the network interface library.
	Unable to allocate %1!s! bytes.
	No error or unknown error.
	Feature not implemented.
	Invalid parameter `%1!s!'.
	Parameter value `%1!s!' is not a valid boolean value. The value must be 0 or 1.
	Parameter value `%1!s!' is not a valid hexadecimal value.
	Parameter value `%1!s!' is not an unsigned integer.
	Parameter value `%1!s!' is not an unsigned integer value or range. A range has the form NNN-NNN.
	Unable to parse the parameter string `%1!s!'.
	Unable to read %1!s! bytes.
	Timed out trying to read %1!s! bytes.
	Unable to add a certificate to a certificate chain.
	Unable to add a trusted certificate.
	Internal error 4028.
	Invalid certificate chain length (%1!s!).
	Internal error 4029.
	Unrecognized common name `%1!s!'.
	Unrecognized organization `%1!s!'.
	Unrecognized organization unit `%1!s!'.
	No trusted certificates found.
	A certificate has expired.
	Unable to fetch a certificate expiry date.
	Unable to open certificate file `%1!s!'.
	Server certificate not trusted.
	Certificate error (4023).
	Invalid root certificate.
	Unable to allocate a certificate.
	Unable to create a private key object.
	Unable to duplicate security context.
	Internal error 4030.
	Unable to copy a certificate.
	Handshake error.
	Unable to import a certificate.
	Unable to read certificates.
	Unable to read the private key.
	Internal error 4032.
	Internal error 4031.
	Unable to attach the network layer to the security layer.
	Internal error 4027.
	Unable to set the private key.
	Unable to set the protocol side (%1!s!).
	Internal initialization error 4046.
	Internal initialization error 4045.
	Internal initialization error 4055.
	Internal initialization error 4056.
	Unable to find the trusted certificate file `%1!s!'.
	Error reading from the trusted certificate file `%1!s!'.
	Unable to seed the random number generator.
	An error occurred during shutdown.
	Unable to bind a socket to port %1!s!.
	Unable to clean up the socket layer.
	Unable to close a socket.
	Unable to connect a socket.
	Unable to create a TCP/IP socket.
	Unable to create a UDP socket.
	Unable to get host by address.
	Unable to get a socket's local name.
	Unable to get socket option number %1!s!.
	The host name `%1!s!' could not be found.
	Unable to listen on a socket. The backlog is %1!s!.
	Invalid liveness timeout value %1!s!. The value must be between zero and 65535.
	Unable to determine localhost.
	Invalid port number %1!s!. The value must be between zero and 65535.
	Unable to select a socket status.
	Unable to set socket option number %1!s!.
	Unable to shut down a socket.
	Unable to initialize the sockets layer.
	The operation would cause blocking.
	Unable to write %1!s! bytes.
	Timed out trying to write %1!s! bytes.

	MobiLink Synchronization Server Error Messages
	MobiLink synchronization server error messages sorted by code
	MobiLink synchronization server error messages sorted message
	MobiLink synchronization server error descriptions
	A downloaded value for table %1!s! (column ##%2!ld!) was either too big or invalid for the remote schema type
	A network read failed. Unable to read data from the remote client
	A protocol error occurred when attempting to retrieve the remote client's synchronization log
	An error occurred when trying to store progress information in the consolidated database
	An error occurred while uploading a deleted row into table `%1!s!'. The deleted column values are as follows:
	An error occurred while uploading an insert row into table `%1!s!'. The inserted column values are as follows:
	An error occurred while uploading an updated row into table `%1!s!'. The updated column values are as follows:
	Attempt to set non-null column to null
	Cannot convert `%1!s!' to Unicode
	Cannot directly determine the name of the table referenced by the cursor. The table name is required for inserts, updates, and deletes when using the Microsoft ODBC Cursor Library
	Cannot load dll: `%1!s!' for Script Language: `%2!s!'
	Client is unable to process truncate table request for table `%1!s!'
	Collation not supported by this server
	Consolidated database server or ODBC error: %1!s!
	Download failed with client error %1!d!
	Download stream encountered error in remote database
	Error fetching connection script %1!s!
	Error fetching table script %1!s!.%2!s!
	Expecting %1!ld! authentication parameter(s) from client, but received %2!ld! for script %3!s!
	Expecting %1!ld! columns in cursor, but found %2!ld!
	Expecting %1!ld! parameters in script, but only found %2!ld!: %3!s!
	Expecting at least %1!ld! parameters in script, but only found %2!ld!: %3!s!
	Extraneous data found in upload stream
	INTERNAL ERROR: occurred while retrieving a BLOB -- null
	INTERNAL ERROR: occurred while retrieving a BLOB -- read
	INTERNAL ERROR: occurred while retrieving a BLOB -- zero length
	INTERNAL ERROR: occurred while storing a BLOB -- write
	Internal error: wrong function `%1!s!' called. Please contact technical support
	Invalid password for user %1!s!
	LANG: %1!s! - Failed to attach worker thread
	LANG: %1!s! = Failed to allocate database connection
	Memory allocation failed
	Memory allocation failed, attempted to allocate %1!lu! bytes
	No download confirmation from remote database
	No error or unknown error
	No server connection string specified
	Old versions of MobiLink clients cannot ping the MobiLink synchronization server
	Protocol error
	Protocol error: an invalid timestamp precision of %1!d! was sent from the remote
	Protocol error: client requests an unsupported capability (%1!s!)
	Protocol error: there is no publication that contains table `%1!s!'
	Protocol version mismatch
	Required ODBC function %1!s! is not supported by the driver
	Scripts cannot be defined as NULL
	The %1!s! cursor is unexpectedly undefined
	The %1!s! script returned %2!ld!
	The MobiLink synchronization server DLL version does not match the data layer DLL version
	The MobiLink synchronization server was unable to calculate the timestamp precision on the consolidated database using the ml_scripts_modified table. Timestamp precision related warnings will not be generated
	The MobiLink synchronization server was unable to modify the error message using the modify_error_message script
	The client cannot find the consolidated progress offset from the client transaction log(s)
	The length of the name of a publication, table, or column cannot be retrieved from the upload stream
	The publication, table, or column name received from the client is too long: the length is %1!d!
	The remote database may have been restored from backup, or perhaps user name `%1!s!' is being used by different remote databases. Set ml_user.commit_state to zero to re-enable synchronizations for this user
	The row is too big. The size (%1!ld! bytes) exceeds the maximum allowable size (%2!ld! bytes)
	The synchronization sequence number stored in ml_user.commit_state is negative. Set this value to zero (0) to re-enable synchronizations for user `%1!s!'
	The upload stream is too short: should be at least %1!d! bytes, but received %2!d! bytes
	The user name `%1!s!' is already synchronizing. Concurrent synchronizations using the same user name are not allowed
	There are no registered script versions. Unable to synchronize a client created prior to version 7.0.0
	There is no download data script defined for table: %1!s!. If you want to be able to synchronize anyway, with the risk of potentially losing download data, use the -fr switch
	There is no upload data script defined for table: %1!s!. If you want to be able to synchronize anyway, with the risk of potentially losing upload data, use the -fr switch
	This connection will be abandoned due to previous errors
	Too many bind parameters in script (expecting %1!ld! but found %2!ld!): %3!s!
	Unable to COMMIT Transaction: %1!s! -- Attempting to ROLLBACK
	Unable to ROLLBACK Transaction: %1!s!
	Unable to allocate a connection
	Unable to allocate an input/output cursor
	Unable to authenticate user %1!s!
	Unable to connect to the consolidated database. Aborting the synchronization
	Unable to delete from table `%1!s!' using %2!s!
	Unable to delete user name `%1!s!' from the ml_user_table
	Unable to determine the remote user name
	Unable to determine the remote user password
	Unable to determine the remote version
	Unable to execute script `%1!s!'
	Unable to fetch from table `%1!s!' using %2!s!
	Unable to flush scripts
	Unable to generate scripts for version `%1!s!'
	Unable to initialize ODBC
	Unable to initialize authentication subsystem
	Unable to initialize consolidated database interface
	Unable to initialize the resource DLL `%1!s!'
	Unable to insert into table `%1!s!' using %2!s!
	Unable to insert user name `%1!s!' into the ml_user table
	Unable to launch the command: (%1!s!). The system error code is %2!d!
	Unable to load UNILIB collation %1!d!: error %2!d!
	Unable to load UNILIB collation expansion factor: error %1!d!
	Unable to load entry points from dll: `%1!s!'
	Unable to open %1!s!
	Unable to retry the current transaction after deadlock in the consolidated database. The retry limit has been reached
	Unable to update table `%1!s!' using %2!s!
	Unrecognized domain id %1!d!
	Upload failed with client error %1!d!
	User name `%1!s!' not found in the ml_user table
	Version `%1!s!' not found in the ml_script_version table. Cannot synchronize
	Version mismatch with dll : `%1!s!'textbackslash nExpected version: %2!d! got version: %3!d!

	MobiLink Synchronization Server Warning Messages
	MobiLink synchronization server warning messages sorted by code
	MobiLink synchronization server warning messages sorted by message
	MobiLink synchronization server warning descriptions
	%1!lu! row(s) were ignored in updating table %2!s!
	%1!s!
	A row in table `%1!s!' could not be updated because it no longer exists in the consolidated database
	An error occurred reading the remote client's synchronization log
	Cannot directly determine the name of the table referenced by the cursor. The table name is required for inserts, updates, and deletes when using the Microsoft ODBC Cursor Library
	Client synchronization logs will be shown in the MobiLink synchronization server output file or the console
	Error detected while using multi-row cursor -- retrying with single row cursor
	Expecting %1!ld! parameter(s) in cursor, but found %2!ld!
	Expecting at most %1!ld! parameter(s) in cursor, but found %2!ld!
	If needed, ODBC cursors will be used, via the Microsoft ODBC Cursor Library, to simulate SQLSETPOS for inserts, updates, and deletes
	Ignoring updated row (new values)
	Ignoring updated row (old values)
	Invalid character data encountered in upload -- substituting `?'
	Invalid character data encountered in upload -- using NULL
	Invalid character data encountered in upload -- using empty string
	Maximum number of database connections set to %1!lu! (must be at least the number of worker threads plus one)
	MobiLink table `%1!s!' is damaged
	Multi-byte characters truncated on upload
	NT Performance Monitor data area failed to initialize
	No handle_error script is defined. The default action code (%1!ld!) will decide the error behavior
	ODBC Isolation level (%1!s!) is not supported
	ODBC function %1!s! is not supported by the driver
	ODBC statement option %1!s! has changed from %2!lu! to %3!lu!
	ODBC statement option %1!s! has changed from %2!s! (%3!lu!) to %4!s! (%5!lu!)
	Publication `%1!s!' is not referenced by any table
	Retry on deadlock is disabled. The MobiLink synchronization server is using an internal workaround which requires this setting
	Retrying the begin_connection transaction after deadlock in the consolidated database
	Retrying the begin_synchronization transaction after deadlock in the consolidated database
	Retrying the end_synchronization transaction after deadlock in the consolidated database
	Retrying the upload after deadlock in the consolidated database
	Retrying the upload. Working around a known ODBC driver problem
	Table `%1!s!' has at least one timestamp column. Due to a timestamp precision mismatch, downloaded timestamps can lose precision, resulting in inconsistent data
	Table `%1!s!' has at least one timestamp column. Due to a timestamp precision mismatch, uploaded timestamps can lose precision, defeating download filtering
	Table `%1!s!' has no entry in the %2!s! table
	The -zac switch is deprecated. It is strongly recommended that you use the -za switch instead
	The -zec switch is deprecated. It is strongly recommended that you use the -ze switch instead
	The client has provided %1!d! authentication parameter(s), but no authenticate_parameters script exists
	The consolidated and remote databases disagree on when the last synchronization took place. The remote is being asked to send a new upload that starts at the last known synchronization point
	The consolidated and remote databases have different timestamp precisions. Consolidated database timestamps are precise to %1!d! digit(s) in the fractional second while the remote database timestamps are precise to %2!d! digit(s)
	The remote and consolidated databases have different timestamp precisions, and a timestamp value with a precision higher than the lower-precision side was used for conflict detection purposes. Consider using the -zp option
	The remote client's synchronization log ended prematurely, and was probably truncated
	The remote database is not capable of matching the timestamp precision of the consolidated database. Your application, schema, and scripts must contain logic that copes with the precision mismatch
	The timestamp precision mismatch may affect upload conflict detection. Use the -zp option to cause the MobiLink synchronization server to use the lowest timestamp precision for conflict detection purposes
	The timestamp precision mismatch may be resolved by setting the DEFAULT_TIMESTAMP_INCREMENT option on the remote database to %1!d! and TRUNCATE_TIMESTAMP_VALUES to `On'
	The upload will be committed and the synchronization aborted. The next time this remote synchronizes, it will ask what happened to the previous upload
	The upload will be rolled back and the synchronization aborted. The next time this remote synchronizes, it will ask what happened to the previous upload
	The upload_cursor, new_row_cursor, and old_row_cursor scripts are deprecated. It is strongly recommended that you use the statement-based upload scripts instead
	There is no download data script defined for table: %1!s!. Synchronization has the risk of potentially losing download data
	There is no upload data script defined for table: %1!s!. Synchronization has the risk of potentially losing upload data
	Unable to convert character data for download -- substituting `?'
	Unable to convert character data for download -- using NULL
	Unable to convert character data for download -- using empty string
	Unable to determine current timestamp from consolidated database
	Unable to open the file to store the client synchronization logs. The filename is `%1!s!'
	Unable to write to the local file that contains remote synchronization logs
	Unrecognized ODBC driver `%1!s!'. The functionality and quality of ODBC drivers varies greatly. This driver may lack functionality required for successful synchronizations. Use at your own risk
	Unrecognized value (%1!ld!) in ml_user.commit_state. The state information for this user is probably corrupted

	Index

