
Adaptive Server® Anywhere
SQL User’s Guide

Part number: 38124-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual ix
SQL Anywhere Studio documentation x
Documentation conventions . xiii
The Adaptive Server Anywhere sample database xv
Finding out more and providing feedback xvi

I Designing and Creating Databases 1

1 Designing Your Database 3
Introduction . 4
Database design concepts . 5
The design process . 11
Designing the database table properties 23

2 Working with Database Objects 25
Introduction . 26
Working with databases . 27
Working with tables . 37
Working with views . 50
Working with indexes . 58
Working with temporary tables . 72
Copying database objects in Sybase Central 73

3 Ensuring Data Integrity 75
Data integrity overview . 76
Using column defaults . 79
Using table and column constraints 85
Using domains . 89
Enforcing entity and referential integrity 92
Integrity rules in the system tables 97

4 Using Transactions and Isolation Levels 99
Introduction to transactions . 100
Isolation levels and consistency . 104
Transaction blocking and deadlock 110
Choosing isolation levels . 112
Isolation level tutorials . 116
How locking works . 131

iii

Particular concurrency issues . 145
Replication and concurrency . 148
Summary . 151

5 Monitoring and Improving Performance 153
Performance analysis tools . 154
Top performance tips . 161
Using the cache to improve performance 176
Using indexes to improve performance 181
Using keys to improve query performance 182
Sorting query results . 184
Use of work tables in query processing 185
Monitoring database performance . 187
Fragmentation . 193
Profiling database procedures . 197

II Querying and Modifying Data 205

6 Queries: Selecting Data from a Table 207
Query overview . 208
The SELECT list: specifying columns 211
The FROM clause: specifying tables 218
The WHERE clause: specifying rows 219

7 Summarizing, Grouping and Sorting Query Results 231
Summarizing query results using aggregate functions 232
The GROUP BY clause: organizing query results into groups 237
Understanding GROUP BY . 238
The HAVING clause: selecting groups of data 242
The ORDER BY clause: sorting query results 244
The ROLLUP operation: adding summary information to GROUP BY

queries . 247
Performing set operations on query results with UNION, INTER-

SECT, and EXCEPT . 251
Standards and compatibility . 258

8 Joins: Retrieving Data from Several Tables 261
Sample database schema . 262
How joins work . 263
Joins overview . 264
Explicit join conditions (the ON phrase) 269
Cross joins . 272
Inner and outer joins . 274

iv

Specialized joins . 281
Natural joins . 288
Key joins . 292

9 Common Table Expressions 305
About common table expressions . 306
Typical applications of common table expressions 310
Recursive common table expressions 314
Parts explosion problems . 317
Datatype declarations in recursive common table expressions 320
Least distance problem . 322
Using multiple recursive common table expressions 325

10 Using Subqueries 327
Introduction to subqueries . 328
Using subqueries in the WHERE clause 329
Subqueries in the HAVING clause . 330
Subquery comparison test . 332
Quantified comparison tests with ANY and ALL 333
Testing set membership with IN conditions 336
Existence test . 338
Outer references . 340
Subqueries and joins . 341
Nested subqueries . 343
How subqueries work . 345

11 Adding, Changing, and Deleting Data 355
Data modification statements . 356
Adding data using INSERT . 357
Changing data using UPDATE . 362
Changing data using INSERT . 364
Deleting data using DELETE . 365

12 Query Optimization and Execution 367
The role of the optimizer . 368
How the optimizer works . 369
Query execution algorithms . 379
Physical data organization and access 392
Indexes . 395
Semantic query transformations . 404
Subquery and function caching . 418
Reading access plans . 420

v

III SQL Dialects and Compatibility 437

13 Transact-SQL Compatibility 439
An overview of Transact-SQL support 440
Adaptive Server architectures . 443
Configuring databases for Transact-SQL compatibility 449
Writing compatible SQL statements 458
Transact-SQL procedure language overview 463
Automatic translation of stored procedures 466
Returning result sets from Transact-SQL procedures 467
Variables in Transact-SQL procedures 468
Error handling in Transact-SQL procedures 469

14 Differences from Other SQL Dialects 473
Adaptive Server Anywhere SQL features 474

IV XML in the Database 477

15 Using XML in the Database 479
What is XML? . 480
Storing XML documents in relational databases 481
Exporting relational data as XML . 482
Importing XML documents as relational data 483
Obtaining query results as XML . 490
Using SQL/XML to obtain query results as XML 510

V Remote Data and Bulk Operations 519

16 Importing and Exporting Data 521
Introduction to import and export . 522
Importing and exporting data . 524
Importing . 528
Exporting . 532
Rebuilding databases . 539
Extracting data . 547
Migrating databases to Adaptive Server Anywhere 548
Running SQL command files . 553
Adaptive Server Enterprise compatibility 556

17 Accessing Remote Data 557
Introduction . 558
Basic concepts to access remote data 560

vi

Working with remote servers . 562
Working with external logins . 567
Working with proxy tables . 569
Joining remote tables . 574
Joining tables from multiple local databases 576
Sending native statements to remote servers 577
Using remote procedure calls (RPCs) 578
Transaction management and remote data 581
Internal operations . 583
Troubleshooting remote data access 587

18 Server Classes for Remote Data Access 589
Overview . 590
JDBC-based server classes . 591
ODBC-based server classes . 594

VI Stored Procedures and Triggers 607

19 Using Procedures, Triggers, and Batches 609
Procedure and trigger overview . 611
Benefits of procedures and triggers 612
Introduction to procedures . 613
Introduction to user-defined functions 620
Introduction to triggers . 624
Introduction to batches . 631
Control statements . 633
The structure of procedures and triggers 636
Returning results from procedures 640
Using cursors in procedures and triggers 646
Errors and warnings in procedures and triggers 649
Using the EXECUTE IMMEDIATE statement in procedures 658
Transactions and savepoints in procedures and triggers 660
Tips for writing procedures . 661
Statements allowed in batches . 663
Calling external libraries from procedures 664

20 Debugging Logic in the Database 673
Introduction to debugging in the database 674
Tutorial: Getting started with the debugger 676
Working with breakpoints . 685
Working with variables . 688
Working with connections . 689

vii

Index 691

viii

About This Manual

Subject This book describes how to design and create databases; how to import,
export, and modify data; how to retrieve data; and how to build stored
procedures and triggers.

Audience This manual is for all users of Adaptive Server Anywhere.

Before you begin This manual assumes that you have an elementary familiarity with
database-management systems and Adaptive Server Anywhere in particular.
If you do not have such a familiarity, you should consider readingAdaptive
Server Anywhere Getting Startedbefore reading this manual.

ix

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

x

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

xi

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

xii

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xiii

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xiv

The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file namedasademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

xv

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xvi

PART I

DESIGNING AND CREATING

DATABASES

This part describes key concepts and strategies for designing and building
databases. It covers issues of database design as well as the mechanics of

working with tables, views, and indexes. It also includes material on
referential integrity and transactions.

CHAPTER 1

Designing Your Database

About this chapter This chapter introduces the basic concepts of relational database design and
gives you step-by-step suggestions for designing your own databases. It uses
the expedient technique known as conceptual data modeling, which focuses
on entities and the relationships between them.

Contents Topic: page

Introduction 4

Database design concepts 5

The design process 11

Designing the database table properties 23

3

Introduction
While designing a database is not a difficult task for small and medium sized
databases, it is an important one. Bad database design can lead to an
inefficient and possibly unreliable database system. Because client
applications are built to work on specific parts of a database, and rely on the
database design, a bad design can be difficult to revise at a later date.

For more information, you may also wish to consult an introductory book
such asA Database Primerby C. J. Date. If you are interested in pursuing
database theory, C. J. Date’sAn Introduction to Database Systemsis an
excellent textbook on the subject.

4

Chapter 1. Designing Your Database

Database design concepts
In designing a database, you plan what things you want to store information
about, and what information you will keep about each one. You also
determine how these things are related. In the common language of database
design, what you are creating during this step is aconceptual database
model.

Entities and relationships The distinguishable objects or things that you want to store information
about are calledentities. The associations between them are called
relationships. In the language of database description, you can think of
entities as nouns and relationships as verbs.

Conceptual models are useful because they make a clean distinction between
the entities and relationships. These models hide the details involved in
implementing a design in any particular database-management system. They
allow you to focus on fundamental database structure. Hence, they also form
a common language for the discussion of database design.

Entity-relationship
diagrams

The main component of a conceptual database model is a diagram that
shows the entities and relationships. This diagram is commonly called an
entity-relationship diagram. In consequence, many people use the name
entity-relationship modeling to refer to the task of creating a conceptual
database model.

Conceptual database design is a top-down design method. There are now
sophisticated tools such as Sybase PowerDesigner that help you pursue this
method, or other approaches. This chapter is an introductory chapter only,
but it does contain enough information for the design of straightforward
databases.

Entities

An entity is the database equivalent of a noun. Distinguishable objects such
as employees, order items, departments and products are all examples of
entities. In a database, a table represents each entity. The entities that you
build into your database arise from the activities for which you will be using
the database, such as tracking sales calls and maintaining employee
information.

Attributes Each entity contains a number ofattributes. Attributes are particular
characteristics of the things that you would like to store. For example, in an
employee entity, you might want to store an employee ID number, first and
last names, an address, and other particular information that pertains to a
particular employee. Attributes are also known as properties.

You depict an entity using a rectangular box. Inside, you list the attributes

5

associated with that entity.

An identifier is one or more attributes on which all the other attributes
depend. It uniquely identifies an item in the entity. Underline the names of
attributes that you wish to form part of an identifier.

In the Employee entity, above, the Employee Number uniquely identifies an
employee. All the other attributes store information that pertains only to that
one employee. For example, an employee number uniquely determines an
employee’s name and address. Two employees might have the same name or
the same address, but you can make sure that they don’t have the same
employee number. Employee Number is underlined to show that it is an
identifier.

It is good practice to create an identifier for each entity. As will be explained
later, these identifiers become primary keys within your tables. Primary key
values must be unique and cannot be null or undefined. They identify each
row in a table uniquely and improve the performance of the database server.

Relationships

A relationship between entities is the database equivalent of a verb. An
employee is a member of a department, or an office is located in a city.
Relationships in a database may appear as foreign key relationships between
tables, or may appear as separate tables themselves. You will see examples
of each in this chapter.

The relationships in the database are an encoding of rules or practices that
govern the data in the entities. If each department has one department head,
you can create a one-to-one relationship between departments and
employees to identify the department head.

Once a relationship is built into the structure of the database, there is no
provision for exceptions. There is nowhere to put a second department head.
Duplicating the department entry would involve duplicating the department
ID, which is the identifier. Duplicate identifiers are not allowed.

6

Chapter 1. Designing Your Database

Tip
Strict database structure can benefit you, because it can eliminate incon-
sistencies, such as a department with two managers. On the other hand,
you as the designer should make your design flexible enough to allow
some expansion for unforeseen uses. Extending a well-designed database
is usually not too difficult, but modifying the existing table structure can
render an entire database and its client applications obsolete.

Cardinality of
relationships

There are three kinds of relationships between tables. These correspond to
thecardinality (number) of the entities involved in the relationship.

♦ One-to-one relationships You depict a relationship by drawing a
line between two entities. The line may have other markings on it such as
the two little circles shown. Later sections explain the purpose of these
marks. In the following diagram, one employee manages one department.

♦ One-to-many relationships The fact that one item contained in
Entity 1 can be associated with multiple entities in Entity 2 is denoted by
the multiple lines forming the attachment to Entity 2. In the following
diagram, one office can have many phones.

♦ Many-to-many relationships In this case, draw multiple lines for the
connections to both entities. This means that one warehouse can hold
many different parts, and one type of part can be stored at many
warehouses.

Roles You can describe each relationship with tworoles. Roles are verbs or
phrases that describe the relationship from each point of view. For example,
a relationship between employees and departments might be described by
the following two roles.

1. An employeeis a member ofa department.

2. A departmentcontainsan employee.

7

Roles are very important because they afford you a convenient and effective
means of verifying your work.

Tip
Whether reading from left-to-right or from right-to-left, the following rule
makes it easy to read these diagrams:Read the 1 name of the first entity, 2
role next to thefirst entity , 3 cardinality from the connection to thesecond
entity , and 4 name of the second entity.

Mandatory elements The little circles just before the end of the line that denotes the relation serve
an important purpose. A circle means that an element can exist in the one
entity without a corresponding element in the other entity.

If a cross bar appears in place of the circle, that entity must containat least
one element for each element in the other entity. An example will clarify
these statements.

This diagram corresponds to the following four statements.

1. A publisher publisheszero or morebooks.

2. A book is published byexactly onepublisher.

3. A book is written byone or moreauthors.

4. An author writeszero or morebooks.

Tip
Think of the little circle as the digit 0 and the cross bar as the number one.
The circle meansat least zero. The cross bar meansat least one.

Reflexive relationships Sometimes, a relationship will exist between entries in a single entity. In this
case, the relationship is said to bereflexive. Both ends of the relationship
attach to a single entity.

8

Chapter 1. Designing Your Database

This diagram corresponds to the following two statements.

1. An employee reports to at most one other employee.

2. An employee manages zero or more employees.

Notice that in the case of this relation, it is essential that the relation be
optional in both directions. Some employees are not managers. Similarly, at
least one employee should head the organization and hence report to no one.

☞ Naturally, you would also like to specify that an employee cannot be his
or her own manager. This restriction is a type ofbusiness rule. Business
rules are discussed later as part of“The design process” on page 11.

Changing many-to-many relationships into entities

When you have attributes associated with arelationship, rather than an
entity, you can change the relationship into an entity. This situation
sometimes arises with many-to-many relationships, when you have attributes
that are particular to the relationship and so you cannot reasonably add them
to either entity.

Suppose that your parts inventory is located at a number of different
warehouses. You have drawn the following diagram.

But you wish to record the quantity of each part stored at each location. This
attribute can only be associated with the relationship. Each quantity depends
on both the parts and the warehouse involved. To represent this situation,
you can redraw the diagram as follows:

Notice the following details of the transformation:

1. Two new relations join the relation entity with each of the two original
entities. They inherit their names from the two roles of the original
relationship:stored atandcontains, respectively.

2. Each entry in the Inventory entity demands one mandatory entry in the
Parts entity and one mandatory entry in the Warehouse entity. These
relationships are mandatory because a storage relationship only makes

9

sense if it is associated with one particular part and one particular
warehouse.

3. The new entity is dependent on both the Parts entity and on the
Warehouse entity, meaning that the new entity is identified by the
identifiers of both of these entities. In this new diagram, one identifier
from the Parts entity and one identifier from the Warehouse entity
uniquely identify an entry in the Inventory entity. The triangles that
appear between the circles and the multiple lines that join the two new
relationships to the new Inventory entity denote the dependencies.

Do not add either a Part Number or Warehouse ID attribute to the Inventory
entity. Each entry in the Inventory entity does depend on both a particular
part and a particular warehouse, but the triangles denote this dependence
more clearly.

10

Chapter 1. Designing Your Database

The design process
There are five major steps in the design process.

♦ “Step 1: Identify entities and relationships” on page 11.

♦ “Step 2: Identify the required data” on page 14.

♦ “Step 3: Normalize the data” on page 15.

♦ “Step 4: Resolve the relationships” on page 19.

♦ “Step 5: Verify the design” on page 21.

☞ For more information about implementing the database design, see
“Working with Database Objects” on page 25.

Step 1:Identify entities and relationships

❖ To identify the entities in your design and their relationship to
each other
1. Define high-level activities Identify the general activities for which

you will use this database. For example, you may want to keep track of
information about employees.

2. Identify entities For the list of activities, identify the subject areas you
need to maintain information about. These subjects will become entities.
For example, hireemployees, assign to adepartment, and determine a
skill level.

3. Identify relationships Look at the activities and determine what the
relationships will be between the entities. For example, there is a
relationship between parts and warehouses. Define two roles to describe
each relationship.

4. Break down the activities You started out with high-level activities.
Now, examine these activities more carefully to see if some of them can
be broken down into lower-level activities. For example, a high-level
activity such asmaintain employee informationcan be broken down into:

♦ Add new employees.

♦ Change existing employee information.

♦ Delete terminated employees.

5. Identify business rules Look at your business description and see what
rules you follow. For example, one business rule might be that a
department has one and only one department head. These rules will be
built into the structure of the database.

11

Entity and relationship example

Example ACME Corporation is a small company with offices in five locations.
Currently, 75 employees work for ACME. The company is preparing for
rapid growth and has identified nine departments, each with its own
department head.

To help in its search for new employees, the personnel department has
identified 68 skills that it believes the company will need in its future
employee base. When an employee is hired, the employee’s level of
expertise for each skill is identified.

Define high-level
activities

Some of the high-level activities for ACME Corporation are:

♦ Hire employees.

♦ Terminate employees.

♦ Maintain personal employee information.

♦ Maintain information on skills required for the company.

♦ Maintain information on which employees have which skills.

♦ Maintain information on departments.

♦ Maintain information on offices.

Identify the entities and
relationships

Identify the entities (subjects) and the relationships (roles) that connect
them. Create a diagram based on the description and high-level activities.

Use boxes to show entities and lines to show relationships. Use the two roles
to label each relationship. You should also identify those relationships that
are one-to-many, one-to-one, and many-to-many using the appropriate
annotation.

Following is a rough entity-relationship diagram. It will be refined
throughout the chapter.

12

Chapter 1. Designing Your Database

Break down the
high-level activities

The following lower-level activities below are based on the high-level
activities listed above:

♦ Add or delete an employee.

♦ Add or delete an office.

♦ List employees for a department.

♦ Add a skill to the skill list.

♦ Identify the skills of an employee.

♦ Identify an employee’s skill level for each skill.

♦ Identify all employees that have the same skill level for a particular skill.

♦ Change an employee’s skill level.

These lower-level activities can be used to identify if any new tables or
relationships are needed.

Identify business rules Business rules often identify one-to-many, one-to-one, and many-to-many
relationships.

The kind of business rules that may be relevant include the following:

♦ There are now five offices; expansion plans allow for a maximum of ten.

♦ Employees can change department or office.

♦ Each department has one department head.

♦ Each office has a maximum of three telephone numbers.

♦ Each telephone number has one or more extensions.

♦ When an employee is hired, the level of expertise in each of several skills
is identified.

13

♦ Each employee can have from three to twenty skills.

♦ An employee may or may not be assigned to an office.

Step 2:Identify the required data

❖ To identify the required data

1. Identify supporting data.

2. List all the data you need to track.

3. Set up data for each entity.

4. List the available data for each entity. The data that describes an entity
(subject) answers the questions who, what, where, when, and why.

5. List any data required for each relationship (verb).

6. List the data, if any, that applies to each relationship.

Identify supporting data The supporting data you identify will become the names of the attributes of
the entity. For example, the data below might apply to the Employee entity,
the Skill entity, and the Expert In relationship.

Employee Skill Expert In

Employee ID Skill ID Skill level

Employee first name Skill name Date skill was acquired

Employee last name Description of skill

Employee department

Employee office

Employee address

If you make a diagram of this data, it will look something like this picture:

Observe that not all of the attributes you listed appear in this diagram. The
missing items fall into two categories:

1. Some are contained implicitly in other relationships; for example,
Employee department and Employee office are denoted by the relations
to the Department and Office entities, respectively.

14

Chapter 1. Designing Your Database

2. Others are not present because they are associated not with either of these
entities, but rather the relationship between them. The above diagram is
inadequate.

The first category of items will fall naturally into place when you draw the
entire entity-relationship diagram.

You can add the second category by converting this many-to-many
relationship into an entity.

The new entity depends on both the Employee and the Skill entities. It
borrows its identifiers from these entities because it depends on both of them.

Notes ♦ When you are identifying the supporting data, be sure to refer to the
activities you identified earlier to see how you will access the data.

For example, you may need to list employees by first name in some
situations and by last name in others. To accommodate this requirement,
create a First Name attribute and a Last Name attribute, rather than a
single attribute that contains both names. With the names separate, you
can later create two indexes, one suited to each task.

♦ Choose consistent names. Consistency makes it easier to maintain your
database and easier to read reports and output windows.

For example, if you choose to use an abbreviated name such as
Emp_status for one attribute, you should not use a full name, such as
Employee_ID, for another attribute. Instead, the names should be
Emp_status and Emp_ID.

♦ At this stage, it is not crucial that the data be associated with the correct
entity. You can use your intuition. In the next section, you’ll apply tests
to check your judgment.

Step 3:Normalize the data

Normalization is a series of tests that eliminate redundancy in the data and
make sure the data is associated with the correct entity or relationship. There
are five tests. This section presents the first three of them. These three tests
are the most important and so the most frequently used.

Why normalize?
The goals of normalization are to remove redundancy and to improve
consistency. For example, if you store a customer’s address in multiple
locations, it is difficult to update all copies correctly when they move.

15

☞ For more information about the normalization tests, see a book on
database design.

Normal forms There are several tests for data normalization. When your data passes the
first test, it is considered to be in first normal form. When it passes the
second test, it is in second normal form, and when it passes the third test, it
is in third normal form.

❖ To normalize data in a database

1. List the data.

♦ Identify at least one key for each entity. Each entity must have an
identifier.

♦ Identify keys for relationships. The keys for a relationship are the keys
from the two entities that it joins.

♦ Check for calculated data in your supporting data list. Calculated data
is not normally stored in a relational database.

2. Put data in first normal form.

♦ If an attribute can have several different values for the same entry,
remove these repeated values.

♦ Create one or more entities or relationships with the data that you
remove.

3. Put data in second normal form.

♦ Identify entities and relationships with more than one key.

♦ Remove data that depends on only one part of the key.

♦ Create one or more entities and relationships with the data that you
remove.

4. Put data in third normal form.

♦ Remove data that depends on other data in the entity or relationship,
not on the key.

♦ Create one or more entities and relationships with the data that you
remove.

Data and identifiers Before you begin to normalize (test your design), simply list the data and
identify a unique identifier each table. The identifier can be made up of one
piece of data (attribute) or several (a compound identifier).

The identifier is the set of attributes that uniquely identifies each row in an
entity. For example, the identifier for the Employee entity is the
Employee ID attribute. The identifier for the Works In relationship consists
of the Office Code and Employee ID attributes.

16

Chapter 1. Designing Your Database

You can make an identifier for each relationship in your database by taking
the identifiers from each of the entities that it connects. In the following
table, the attributes identified with an asterisk are the identifiers for the entity
or relationship.

Entity or Relationship Attributes

Office *Office code

Office address

Phone number

Works in *Office code

*Employee ID

Department *Department ID

Department name

Heads *Department ID

*Employee ID

Member of *Department ID

*Employee ID

Skill *Skill ID

Skill name

Skill description

Expert in *Skill ID

*Employee ID

Skill level

Date acquired

Employee *Employee ID

last name

first name

Social security number

Address

phone number

date of birth

Putting data in first
normal form

♦ To test for first normal form, look for attributes that can have repeating
values.

♦ Remove attributes when multiple values can apply to a single item. Move

17

these repeating attributes to a new entity.

In the entity below, Phone number can repeat—an office can have more than
one telephone number.

Remove the repeating attribute and make a new entity called Telephone. Set
up a relationship between Office and Telephone.

Putting data in second
normal form

♦ Remove data that does not depend on the whole key.

♦ Look only at entities and relationships whose identifier is composed of
more than one attribute. To test for second normal form, remove any data
that does not depend on the whole identifier. Each attribute should
depend on all of the attributes that comprise the identifier.

In this example, the identifier of the Employee and Department entity is
composed of two attributes. Some of the data does not depend on both
identifier attributes; for example, the department name depends on only one
of those attributes, Department ID, and Employee first name depends only
on Employee ID.

Move the identifier Department ID, which the other employee data does not
depend on, to a entity of its own called Department. Also move any
attributes that depend on it. Create a relationship between Employee and
Department.

Putting data in third
normal form

♦ Remove data that doesn’t depend directly on the key.

♦ To test for third normal form, remove any attributes that depend on other
attributes, rather than directly on the identifier.

18

Chapter 1. Designing Your Database

In this example, the Employee and Office entity contains some attributes that
depend on its identifier, Employee ID. However, attributes such as Office
location and Office phone depend on another attribute, Office code. They do
not depend directly on the identifier, Employee ID.

Remove Office code and those attributes that depend on it. Make another
entity called Office. Then, create a relationship that connects Employee with
Office.

Step 4:Resolve the relationships

When you finish the normalization process, your design is almost complete.
All you need to do is to generate thephysical data modelthat corresponds
to your conceptual data model. This process is also known as resolving the
relationships, because a large portion of the task involves converting the
relationships in the conceptual model into the corresponding tables and
foreign-key relationships.

Whereas the conceptual model is largely independent of implementation
details, the physical data model is tightly bound to the table structure and
options available in a particular database application. In this case, that
application is Adaptive Server Anywhere.

Resolving relationships
that do not carry data

In order to implement relationships that do not carry data, you define foreign
keys. Aforeign key is a column or set of columns that contains primary key
values from another table. The foreign key allows you to access data from
more than one table at one time.

A database design tool such as the DataArchitect component of Sybase
PowerDesigner can generate the physical data model for you. However, if
you’re doing it yourself there are some basic rules that help you decide
where to put the keys.

♦ One to many An one-to-many relationship always becomes an entity
and a foreign key relationship.

19

Notice that entities become tables. Identifiers in entities become (at least
part of) the primary key in a table. Attributes become columns. In a
one-to-many relationship, the identifier in theoneentity will appear as a
new foreign key column in themany table.

In this example, the Employeeentity becomes an Employeetable .
Similarly, the Department entity becomes a Department table. A foreign
key called Department ID appears in the Employee table.

♦ One to one In a one-to-one relationship, the foreign key can go into
either table. If the relationship is mandatory on one side, but optional on
the other, it should go on the optional side. In this example, put the
foreign key (Vehicle ID) in the Truck table because a vehicle does not
have to be a truck.

The above entity-relationship model thus resolves the database base
structure, below.

♦ Many to many In a many-to-many relationship, a new table is created
with two foreign keys. This arrangement is necessary to make the
database efficient.

The new Storage Location table relates the Parts and Warehouse tables.

20

Chapter 1. Designing Your Database

Resolving relationships
that carry data

Some of your relationships may carry data. This situation often occurs in
many-to-many relationships.

If this is the case, each entity resolves to a table. Each role becomes a
foreign key that points to another table.

The Inventory entity borrows its identifiers from the Parts and Warehouse
tables, because it depends on both of them. Once resolved, these borrowed
identifiers form the primary key of the Inventory table.

Tip
A conceptual data model simplifies the design process because it hides a
lot of details. For example, a many-to-many relationship always generates
an extra table and two foreign key references. In a conceptual data model,
you can usually denote all of this structure with a single connection.

Step 5:Verify the design

Before you implement your design, you need to make sure that it supports
your needs. Examine the activities you identified at the start of the design
process and make sure you can access all of the data that the activities
require.

♦ Can you find a path to get the information you need?

21

♦ Does the design meet your needs?

♦ Is all of the required data available?

If you can answer yes to all the questions above, you are ready to implement
your design.

Final design Applying steps 1 through 3 to the database for the little company produces
the following entity-relationship diagram. This database is now in third
normal form.

The corresponding physical data model appears below.

22

Chapter 1. Designing Your Database

Designing the database table properties
The database design specifies which tables you have and what columns each
table contains. This section describes how to specify each column’s
properties.

For each column, you must decide the column name, the data type and size,
whether or not NULL values are allowed, and whether you want the
database to restrict the values allowed in the column.

Choosing column names

A column name can be any set of letters, numbers or symbols. However, you
must enclose a column name in double quotes if it contains characters other
than letters, numbers, or underscores, if it does not begin with a letter, or if it
is the same as a keyword.

Choosing data types for columns

Available data types in Adaptive Server Anywhere include the following:

♦ Integer data types

♦ Decimal data types

♦ Floating-point data types

♦ Character data types

♦ Binary data types

♦ Date/time data types

♦ Domains (user-defined data types)

♦ Java class data types

☞ For more information about data types, see “SQL Data Types”[ASA SQL
Reference,page 51].

The long binary data type can be used to store information such as images
(for instance, stored as bitmaps) or word-processing documents in a
database. These types of information are commonly called binary large
objects, or BLOBS.

☞ For more information about each data type, see “SQL Data Types”[ASA
SQL Reference,page 51].

NULL and NOT NULL If the column value is mandatory for a record, you define the column as
being NOT NULL. Otherwise, the column is allowed to contain the NULL

23

value, which represents no value. The default in SQL is to allow NULL
values, but you should explicitly declare columns NOT NULL unless there
is a good reason to allow NULL values.

☞ For more information about the NULL value, see “NULL value”[ASA
SQL Reference,page 48]. For information on its use in comparisons, see
“Search conditions”[ASA SQL Reference,page 22].

Choosing constraints

Although the data type of a column restricts the values that are allowed in
that column (for example, only numbers or only dates), you may want to
further restrict the allowed values.

You can restrict the values of any column by specifying a CHECK
constraint. You can use any valid condition that could appear in a WHERE
clause to restrict the allowed values. Most CHECK constraints use either the
BETWEEN or IN condition.

☞ For more information about valid conditions, see “Search conditions”
[ASA SQL Reference,page 22]. For more information about assigning
constraints to tables and columns, see“Ensuring Data Integrity” on page 75.

Example The sample database has a table called Department, which has columns
named dept_id, dept_name, and dept_head_id. Its definition is as follows:

Column Data Type Size Null/Not Null Constraint

dept_id integer — not null None

dept_name char 40 not null None

dept_head_id integer — null None

If you specify NOT NULL, a column value must be supplied for every row
in the table.

24

CHAPTER 2

Working with Database Objects

About this chapter This chapter describes the mechanics of creating, altering, and deleting
database objects such as tables, views, and indexes.

Contents Topic: page

Introduction 26

Working with databases 27

Working with tables 37

Working with views 50

Working with indexes 58

Working with temporary tables 72

Copying database objects in Sybase Central 73

25

Introduction
With the Adaptive Server Anywhere tools, you can create a database file to
hold your data. Once this file is created, you can begin managing the
database. For example, you can add database objects, such as tables or users,
and you can set overall database properties.

This chapter describes how to create a database and the objects within it. It
includes procedures for Sybase Central, Interactive SQL, and command-line
utilities. If you want more conceptual information before you begin, see the
following chapters:

♦ “Designing Your Database” on page 3

♦ “Ensuring Data Integrity” on page 75

♦ “About Sybase Central”[Introducing SQL Anywhere Studio,page 48]

♦ “Using Interactive SQL”[ASA Getting Started,page 67]

The SQL statements for carrying out the tasks in this chapter are called the
data definition language(DDL). The definitions of the database objects
form the database schema: you can think of the schema as an empty
database.

Procedures and triggers are also database objects, but they are discussed in
“Using Procedures, Triggers, and Batches” on page 609.

Chapter contents This chapter contains the following material:

♦ An introduction to working with database objects (this section)

♦ A description of how to create and work with the database itself

♦ A description of how to create and alter tables, views, and indexes

26

Chapter 2. Working with Database Objects

Working with databases
This section describes how to create and work with a database. As you read
this section, keep in mind the following simple concepts:

♦ The databases that you can create (called relational databases) are a
collection of tables, related by primary and foreign keys. These tables
hold the information in a database, and the tables and keys together
define the structure of the database. A database may be stored in one or
more database files, on one or more devices.

♦ A database file also contains the system tables, which hold the schema
definition as you build your database.

Creating a database

Adaptive Server Anywhere provides a number of ways to create a database:
in Sybase Central, in Interactive SQL, and at the command line. Creating a
database is also called initializing it. Once the database is created, you can
connect to it and build the tables and other objects that you need in the
database.

Transaction log When you create a database, you must decide where to place the transaction
log. This log stores all changes made to a database, in the order in which
they are made. In the event of a media failure on a database file, the
transaction log is essential for database recovery. It also makes your work
more efficient. By default, it is placed in the same directory as the database
file, but this is not recommended for production use.

☞ For more information on placing the transaction log, see “Configuring
your database for data protection”[ASA Database Administration Guide,
page 355].

Database file
compatibility

An Adaptive Server Anywhere database is an operating system file. It can be
copied to other locations just as any other file is copied.

Database files are compatible among all operating systems, except where file
system file size limitations or Adaptive Server Anywhere support for large
files apply. A database created from any operating system can be used from
another operating system by copying the database file(s). Similarly, a
database created with a personal server can be used with a network server.
Adaptive Server Anywhere servers can manage databases created with
earlier versions of the software, but old servers cannot manage newer
databases.

☞ For more information about limitations, see “Size and number
limitations” [ASA Database Administration Guide,page 674].

27

Using other applications
to create databases

Some application design systems, such as Sybase PowerBuilder, contain
tools for creating database objects. These tools construct SQL statements
that are submitted to the server, typically through its ODBC interface. If you
are using one of these tools, you do not need to construct SQL statements to
create tables, assign permissions, and so on.

This chapter describes the SQL statements for defining database objects.
You can use these statements directly if you are building your database from
an interactive SQL tool, such as Interactive SQL. Even if you are using an
application design tool, you may want to use SQL statements to add features
to the database if they are not supported by the design tool.

For more advanced use, database design tools such as Sybase
PowerDesigner provide a more thorough and reliable approach to
developing well-designed databases.

☞ For more information about database design, see“Designing Your
Database” on page 3.

Creating databases (Sybase Central)

You can create a database in Sybase Central using the Create Database
utility. After you have created a database, it appears under its server in the
left pane of Sybase Central.

For more information, see“Creating databases (SQL)” on page 29, and
“Creating databases (command line)” on page 29.

❖ To create a new database (Sybase Central)

1. Choose Tools➤ Adaptive Server Anywhere 9➤ Create Database.

2. Follow the instructions in the wizard.

❖ To create a new database based on a current connection

1. Connect to a database.

2. In the left pane, select the Adaptive Server Anywhere 9 plug-in.

3. In the right pane, click the Utilities tab.

4. In the right pane, double-click Create Database.

5. Follow the instructions in the wizard.

Creating databases for
Windows CE

You can create databases for Windows CE by copying an Adaptive Server
Anywhere database file to the device.

28

Chapter 2. Working with Database Objects

Sybase Central has features to make database creation easy for Windows CE
databases. If you have Windows CE services installed on your Windows or
Windows NT desktop, you have the option to create a Windows CE database
when you create a database from Sybase Central. Sybase Central enforces
the requirements for Windows CE databases, and optionally copies the
resulting database file to your Windows CE machine.

Creating databases (SQL)

In Interactive SQL, you can use the CREATE DATABASE statement to
create databases. You need to connect to an existing database before you can
use this statement.

❖ To create a new database (SQL)

1. Connect to an existing database.

2. Execute a CREATE DATABASE statement.

☞ For more information, see “CREATE DATABASE statement”[ASA SQL
Reference,page 292].

Example Create a database file in thec:\tempdirectory with the database name
temp.db.

CREATE DATABASE ’c:\\temp \\temp.db’

The directory path is relative to the database server. You set the permissions
required to execute this statement on the server command line, using the-gu

command-line option. The default setting requires DBA authority.

The backslash is an escape character in SQL, and must be doubled. For
more information, see “Strings”[ASA SQL Reference,page 8].

Creating databases (command line)

You can create a database from a command line with thedbinit utility. With
this utility, you can include command-line parameters to specify different
options for the database.

❖ To create a new database (command line)

1. Open a command prompt.

2. Run thedbinit utility. Include any necessary parameters.

For example, to create a database calledcompany.dbwith a 4 Kb page
size, type:

29

dbinit -p 4096 company.db

☞ For more information, see “The Initialization utility”[ASA Database
Administration Guide,page 485].

Erasing a database

Erasing a database deletes all tables and data from disk, including the
transaction log that records alterations to the database. All database files are
read-only to prevent accidental modification or deletion of the database files.

In Sybase Central, you can erase a database using the Erase Database utility.
You need to connect to a database to access this utility, but the Erase
Database wizard lets you specify any database for erasing. In order to erase
a non-running database, the database server must be running.

In Interactive SQL, you can erase a database using the DROP DATABASE
statement. Required permissions can be set using the database server-gu

command-line option. The default setting is to require DBA authority.

You can also erase a database from a command line with thedberaseutility.
The database to be erased must not be running when this utility is used.

❖ To erase a database (Sybase Central)

1. In the left pane, select the Adaptive Server Anywhere 9 plug-in.

2. In the right pane, click the Utilities tab.

3. In the right pane, double-click Erase Database.

4. Follow the instructions in the wizard.

❖ To erase a database (SQL)

1. Execute a DROP DATABASE statement.

For example,

DROP DATABASE ’c:\temp \temp.db’

30

Chapter 2. Working with Database Objects

❖ To erase a database (command line)

1. From a command line, run thedberaseutility.

For example,

dberase company.db

☞ For more information, see “DROP DATABASE statement”[ASA SQL
Reference,page 410], and “The Erase utility”[ASA Database Administration
Guide,page 478].

Disconnecting from a database

When you are finished working with a database, you can disconnect from it.
Adaptive Server Anywhere also gives you the ability to disconnect other
users from a given database; for more information about doing this in
Sybase Central, see “Managing connected users”[ASA Database
Administration Guide,page 405].

You can obtain a user’sconnection-idusing theconnection_property
function to request the connection number. The following statement returns
the connection ID of the current connection:

SELECT connection_property(’number’)

❖ To disconnect from a database (Sybase Central)

1. Select a database.

2. Choose Tools➤ Disconnect.

❖ To disconnect from a database (SQL)

1. Execute a DISCONNECT statement.

Example 1 The following statement shows how to use DISCONNECT from
Interactive SQL to disconnect all connections:

DISCONNECT ALL

Example 2 The following statement shows how to use DISCONNECT in Embedded
SQL:

EXEC SQL DISCONNECT :conn_name

31

❖ To disconnect other users from a database (SQL)

1. Connect to an existing database with DBA authority.

2. Execute a DROP CONNECTION statement.

Example The following statement drops the connection with ID number 4.

DROP CONNECTION 4

☞ For more information, see “DISCONNECT statement [ESQL]
[Interactive SQL]”[ASA SQL Reference,page 407], and “DROP
CONNECTION statement”[ASA SQL Reference,page 411].

Setting properties for database objects

Most database objects (including the database itself) have properties that you
can either view or set. Some properties are non-configurable and reflect the
settings chosen when you created the database or object. Other properties
are configurable.

The best way to view and set properties is to use the property sheets in
Sybase Central.

If you are not using Sybase Central, properties can be specified when you
create the object with a CREATE statement. If the object already exists, you
can modify options with a SET OPTION statement.

❖ To view and edit the properties of a database object (Sybase Cen-
tral)

1. In the left pane of Sybase Central, open the folder in which the object
resides.

2. Select the object. The object’s properties appear in the right pane of
Sybase Central.

3. In the right pane, click the appropriate tabs to edit the desired properties.

You can also view and edit properties on the object’s property sheet. To
view the property sheet, right-click the object and choose Properties from
the popup menu.

Setting database options

Database options are configurable settings that change the way the database
behaves or performs. In Sybase Central, all of these options are grouped
together in the Database Options dialog. In Interactive SQL, you can specify
an option in a SET OPTION statement.

32

Chapter 2. Working with Database Objects

❖ To set options for a database (Sybase Central)

1. Open the desired server.

2. Right-click the desired database and choose Options from the popup
menu.

3. Edit the desired values.

❖ To set the options for a database (SQL)

1. Specify the desired properties within a SET OPTION statement.

Tips
With the Database Options dialog, you can also set database options for
specific users and groups (when you open this dialog for a user or group, it
is called the User Options dialog or Group Options dialog respectively).

When you set options for the database itself, you are actually setting options
for the PUBLIC group in that database because all users and groups inherit
option settings from PUBLIC.

Specifying a consolidated database

In Sybase Central, you can specify the consolidated database for
SQL Remote replication. The consolidated database is the one that serves as
the “master” database in the replication setup. The consolidated database
contains all of the data to be replicated, while its remote databases may only
contain their own subsets of the data. In case of conflict or discrepancy, the
consolidated database is considered to have the primary copy of all data.

For more information, see “Consolidated and remote databases”[Introducing
SQL Anywhere Studio,page 21].

❖ To set a consolidated database (Sybase Central)

1. Right-click the desired database and choose Properties from the popup
menu.

2. Click the SQL Remote tab.

3. Select the This Remote Database Has a Corresponding Consolidated
Database option.

4. Configure the desired settings.

33

Displaying system objects in a database

In a database, a table, view, stored procedures, or domain is a system object.
System tables store information about the database itself, while system
views, procedures, and domains largely support Sybase Transact-SQL
compatibility.

In Interactive SQL, you cannot display a list of all system objects, but you
can browse the contents of a system table; for more information, see
“Displaying system tables” on page 48.

❖ To display system objects in a database (Sybase Central)

1. Open the desired server.

2. Right-click the desired connected database and choose Filter Objects by
Owner.

3. SelectSYSanddbo, and then click OK.

The system tables, system views, system procedures, and system domains
appear in their respective folders. For example, system tables appear
alongside normal tables in the Tables folder.

☞ For more information, see “System Tables”[ASA SQL Reference,
page 611].

Logging SQL statements as you work with a database

As you work with a database in Sybase Central, the application
automatically generates SQL statements depending on your actions. You can
keep track of these statements in a separate pane, called Design Details or
save the information to a file. The Design Details pane has a tab for each
database and database server. The tab for database servers contains the same
information as the Server Messages window.

When you work with Interactive SQL, you can also log statements that you
execute.

☞ For information about logging statements in Interactive SQL, see
“Logging commands”[ASA Getting Started,page 86].

34

Chapter 2. Working with Database Objects

❖ To log SQL statements generated by Sybase Central

1. From the View menu, choose Design Details.

The Design Details pane appears at the bottom of the Sybase Central
window.

2. Right-click in the Design Details pane and choose Options from the
popup menu.

The Options dialog appears.

3. In the resulting dialog, specify the desired settings. If you wish to save
the logging information to a file, click the Save button.

Starting a database without connecting

With both Sybase Central and Interactive SQL, you can start a database
without connecting to it.

❖ To start a database on a server without connecting (Sybase Cen-
tral)

1. Right-click the desired server and choose Start Database from the popup
menu.

2. In the Start Database dialog, type the desired values.

The database appears under the server as a disconnected database.

❖ To start a database on a server without connecting (SQL)

1. Start Interactive SQL.

2. Execute a START DATABASE statement.

Example Start the database filec:\asa9\sample_2.dbas sam2 on the server named
sample.

START DATABASE ’c:\asa9 \sample_2.db’
AS sam2
ON sample

☞ For more information, see “START DATABASE statement”[ASA SQL
Reference,page 566].

Installing the jConnect metadata support to an existing database

If a database was created without the jConnect metadata support, you can
use Sybase Central to install it at a later date.

35

❖ To add jConnect metadata support to an existing database
(Sybase Central)

1. Connect to the database you want to upgrade.

2. In the left pane, select the Adaptive Server Anywhere 9 plug-in.

3. In the right pane, click the Utilities tab.

4. In the right pane, double-click Upgrade Database.

5. Click Next on the introductory page of the wizard.

6. Select the database you want to upgrade from the list. Click Next.

7. You can choose to create a backup of the database if you wish. Click
Next.

8. Select the Install jConnect Meta-Information Support option.

9. Follow the remaining instructions in the wizard.

36

Chapter 2. Working with Database Objects

Working with tables
When the database is first created, the only tables in the database are the
system tables. System tables hold the database schema.

This section describes how to create, alter, and delete tables. You can
execute the examples in Interactive SQL, but the SQL statements are
independent of the administration tool you use. When you execute queries in
Interactive SQL, you can edit the values in the result set.

☞ For more information, see “Editing table values in Interactive SQL”
[ASA Getting Started,page 76].

To make it easier for you to re-create the database schema when necessary,
create command files to define the tables in your database. The command
files should contain the CREATE TABLE and ALTER TABLE statements.

☞ For more information about groups, tables, and connecting as another
user, see “Referring to tables owned by groups”[ASA Database Administration
Guide,page 410]and “Database object names and prefixes”[ASA Database
Administration Guide,page 413].

Creating tables

When a database is first created, the only tables in the database are the
system tables, which hold the database schema. You can then create new
tables to hold your actual data, either with SQL statements in
Interactive SQL or with Sybase Central.

There are two types of tables that you can create:

♦ Base table A table that holds persistent data. The table and its data
continue to exist until you explicitly delete the data or drop the table. It is
called a base table to distinguish it from temporary tables and from views.

♦ Temporary table Data in a temporary table is held for a single
connection only. Global temporary table definitions (but not data) are
kept in the database until dropped. Local temporary table definitions and
data exist for the duration of a single connection only.

☞ For more information about temporary tables, see“Working with
temporary tables” on page 72.

Tables consist of rows and columns. Each column carries a particular kind of
information, such as a phone number or a name, while each row specifies a
particular entry.

37

❖ To create a table (Sybase Central)

1. Connect to the database.

2. Open the Tables folder.

3. From the File menu, choose New➤ Table.

The Table Creation wizard appears.

4. In the Table Creation wizard:
♦ Type a name for the new table.

♦ Select an owner for the table.

♦ Create a primary key for the table.

♦ Configure the other desired options.

5. Click Finish.

6. On the Columns tab in the right pane, you can add columns to the table.

7. Choose File➤ Save when finished.

❖ To create a table (SQL)

1. Connect to the database with DBA authority.

2. Execute a CREATE TABLE statement.

Example The following statement creates a new table to describe qualifications of
employees within a company. The table has columns to hold an identifying
number, a name, and a type (technical or administrative) for each skill.

CREATE TABLE skill (
skill_id INTEGER NOT NULL,
skill_name CHAR(20) NOT NULL,
skill_type CHAR(20) NOT NULL

)

☞ For more information, see “CREATE TABLE statement”[ASA SQL
Reference,page 361].

Altering tables

This section describes how to change the structure or column definitions of a
table. For example, you can add columns, change various column attributes,
or delete columns entirely.

In Sybase Central, you can perform these tasks on the SQL tab in the right
pane of Sybase Central. In Interactive SQL, you can perform these tasks
with the ALTER TABLE statement.

38

Chapter 2. Working with Database Objects

If you are working with Sybase Central, you can also manage columns (add
or remove them from the primary key, change their properties, or delete
them) by working with menu commands when you have a column selected
in the Columns folder.

☞ For information on altering database object properties, see“Setting
properties for database objects” on page 32.

☞ For information on granting and revoking table permissions, see
“Granting permissions on tables”[ASA Database Administration Guide,
page 396]and “Revoking user permissions”[ASA Database Administration
Guide,page 402].

Altering tables (Sybase Central)

You can alter tables in Sybase Central on the Columns tab in the right pane.
For example, you can add or delete columns, change column definitions, or
change table or column properties.

❖ To alter an existing table (Sybase Central)

1. Connect to the database.

2. Open the Tables folder.

3. In the left pane, select the table you want to alter.

4. Click the Columns tab in the right right pane and make the necessary
changes.

Tips
You can add columns by selecting a table’s Columns tab and choosing File
➤ Add Column.

You can delete columns by selecting the column on the Columns tab and
choosing File➤ Remove Column.

You can copy a column to a table by selecting the column on the Columns
tab in the right pane and then clicking the Copy button. Select the desired
table, click the Columns tab in the right pane, and then click the Paste
button.

☞ For more information, see “ALTER TABLE statement”[ASA SQL
Reference,page 250].

Altering tables (SQL)

You can alter tables in Interactive SQL using the ALTER TABLE statement.

39

❖ To alter an existing table (SQL)

1. Connect to the database with DBA authority.

2. Execute an ALTER TABLE statement.

Examples The following command adds a column to the skill table to allow space for
an optional description of the skill:

ALTER TABLE skill
ADD skill_description CHAR(254)

This statement adds a column called skill_description that holds up to a few
sentences describing the skill.

You can also modify column attributes with the ALTER TABLE statement.
The following statement shortens the skill_description column of the sample
database from a maximum of 254 characters to a maximum of 80:

ALTER TABLE skill
MODIFY skill_description CHAR(80)

Any current entries that are longer than 80 characters are trimmed to
conform to the 80-character limit, and a warning appears.

The following statement changes the name of the skill_type column to
classification:

ALTER TABLE skill
RENAME skill_type TO classification

The following statement deletes the classification column.

ALTER TABLE skill
DROP classification

The following statement changes the name of the entire table:

ALTER TABLE skill
RENAME qualification

These examples show how to change the structure of the database. The
ALTER TABLE statement can change just about anything pertaining to a
table—you can use it to add or delete foreign keys, change columns from
one type to another, and so on. In all these cases, once you make the change,
stored procedures, views and any other item referring to this table will no
longer work.

☞ For more information, see “ALTER TABLE statement”[ASA SQL
Reference,page 250], and“Ensuring Data Integrity” on page 75.

40

Chapter 2. Working with Database Objects

Deleting tables

This section describes how to delete tables from a database. You can use
either Sybase Central or Interactive SQL to perform this task. In
Interactive SQL deleting a table is also called dropping it.

You cannot delete a table that is being used as an article in a SQL Remote
publication. If you try to do this in Sybase Central, an error appears.

❖ To delete a table (Sybase Central)

1. Connect to the database.

2. Open the Tables folder for that database.

3. Right-click the table and choose Delete from the popup menu.

❖ To delete a table (SQL)

1. Connect to the database with DBA authority.

2. Execute a DROP TABLE statement.

Example The following DROP TABLE command deletes all the records in the skill
table and then removes the definition of the skill table from the database

DROP TABLE skill

Like the CREATE statement, the DROP statement automatically executes a
COMMIT statement before and after dropping the table. This makes
permanent all changes to the database since the last COMMIT or
ROLLBACK. The drop statement also drops all indexes on the table.

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

Browsing the information in tables

You can use Sybase Central or Interactive SQL to browse the data held
within the tables of a database.

If you are working in Sybase Central, view the data in a table by clicking the
Data tab in the right pane.

If you are working in Interactive SQL, execute the following statement:

SELECT * FROM table-name

You can edit the data in the table from the Interactive SQL Results tab or
from Sybase Central.

41

Managing primary keys

Theprimary key is a unique identifier that is comprised of a column or
combination of columns with values that do not change over the life of the
data in the row. Because uniqueness is essential to good database design, it
is best to specify a primary key when you define the table.

This section describes how to create and edit primary keys in your database.
You can use either Sybase Central or Interactive SQL to perform these tasks.

Column order in multi-column primary keys
Primary key column order is determined by the order of the columns during
table creation. It is not based on the order of the columns as specified in
the primary key declaration.

Managing primary keys (Sybase Central)

In Sybase Central, the primary key of a table appears in several places:

♦ On the Columns tab of the table’s property sheet.

♦ On the Columns tab in the right pane when a table is selected in the left
pane.

The lists in both the table property sheet and on the Columns tab display the
primary key columns (along with the non-key columns) in the order that they
were created in the database. This may differ from the actual ordering of
columns in the primary key.

❖ To create and edit the primary key (Sybase Central)

1. Open the Tables folder.

2. In the left pane, select the desired table.

3. In the right pane, click the Columns tab.

4. Change the primary as desired.

To make a column a primary key column, place a checkmark in the
checkbox beside the column name. Clear the checkbox to remote the
column from the primary key.

Managing primary keys (SQL)

You can create and modify the primary key in Interactive SQL using the
CREATE TABLE and ALTER TABLE statements. These statements let you
set many table attributes, including column constraints and checks.

42

Chapter 2. Working with Database Objects

Columns in the primary key cannot contain NULL values. You must specify
NOT NULL on the column in the primary key.

❖ To modify the primary key of an existing table (SQL)

1. Connect to the database with DBA authority.

2. Execute a ALTER TABLE statement.

Example 1 The following statement creates the same skill table as before, except that it
adds a primary key:

CREATE TABLE skill (
skill_id INTEGER NOT NULL,
skill_name CHAR(20) NOT NULL,
skill_type CHAR(20) NOT NULL,
primary key(skill_id)

)

The primary key values must be unique for each row in the table which, in
this case, means that you cannot have more than one row with a given
skill_id. Each row in a table is uniquely identified by its primary key.

Example 2 The following statement adds the columns skill_id and skill_type to the
primary key for the skill table:

ALTER TABLE skill (
ADD PRIMARY KEY ("skill_id", "skill_type")

)

If a PRIMARY KEY clause is specified in an ALTER TABLE statement, the
table must not already have a primary key that was created by the
CREATE TABLE statement or another ALTER TABLE statement.

Example 3 The following statement removes all columns from the primary key for the
skill table. Before you delete a primary key, make sure you are aware of the
consequences in your database.

ALTER TABLE skill
DELETE PRIMARY KEY

☞ For more information, see “ALTER TABLE statement”[ASA SQL
Reference,page 250], and“Managing primary keys (Sybase Central)” on
page 42.

Managing foreign keys

This section describes how to create and edit foreign keys in your database.
You can use either Sybase Central or Interactive SQL to perform these tasks.

43

Foreign keys are used to relate values in a child table (or foreign table) to
those in a parent table (or primary table). A table may have multiple foreign
keys that refer to multiple parent tables linking various types of information.

Managing foreign keys (Sybase Central)

In Sybase Central, the foreign key of a table appears on the Foreign Keys tab
(located on the right pane when a table is selected).

You cannot create a foreign key in a table if the table contains values for the
foreign columns that can’t be matched to values in the primary table’s
primary key.

After you have created a foreign key, you can keep track of it on each table’s
Referencing Tables tab in the right pane; this folder displays any foreign
tables that reference the currently selected table.

❖ To create a new foreign key in a given table (Sybase Central)

1. Select the table for which you wish to create a foreign key.

2. Click the Foreign Keys tab in the right pane.

3. From the File menu, choose New> Foreign Key.

The Foreign Key Creation wizard appears.

4. Follow the instructions in the wizard.

❖ To delete a foreign key (Sybase Central)

1. Select the table for which you wish to delete a foreign key.

2. Click the Foreign Keys tab in the right pane.

3. Right-click the foreign key you want to delete and choose Delete from
the popup menu.

44

Chapter 2. Working with Database Objects

❖ To display which tables have foreign keys that reference a given
table (Sybase Central)

1. In the left pane, select the desired table.

2. In the right pane, click the Referencing Tables tab.

Tips
When you create a foreign key using the wizard, you can set properties
for the foreign key. To view properties after the foreign key is created,
right-click the foreign key on the Foreign Keys tab and choose Properties
from the popup menu.

You can view the properties of a referencing table by right-clicking the
table on the Referencing Tables tab and choosing Properties from the
popup menu.

Managing foreign keys (SQL)

You can create and modify the foreign key in Interactive SQL using the
CREATE TABLE and ALTER TABLE statements. These statements let you
set many table attributes, including column constraints and checks.

A table can only have one primary key defined, but it may have as many
foreign keys as necessary.

❖ To modify the foreign key of an existing table (SQL)

1. Connect to the database with DBA authority.

2. Execute a ALTER TABLE statement.

Example 1 You can create a table named emp_skill, which holds a description of each
employee’s skill level for each skill in which they are qualified, as follows:

CREATE TABLE emp_skill(
emp_id INTEGER NOT NULL,
skill_id INTEGER NOT NULL,
"skill level" INTEGER NOT NULL,
PRIMARY KEY(emp_id, skill_id),
FOREIGN KEY REFERENCES employee,
FOREIGN KEY REFERENCES skill

)

The emp_skill table definition has a primary key that consists of two
columns: the emp_id column and the skill_id column. An employee may
have more than one skill, and so appear in several rows, and several
employees may possess a given skill, so that the skill_id may appear several

45

times. However, there may be no more than one entry for a given employee
and skill combination.

The emp_skill table also has two foreign keys. The foreign key entries
indicate that the emp_id column must contain a valid employee number from
the employee table, and that the skill_id must contain a valid entry from the
skill table.

Example 2 You can add a foreign key called foreignkey to the existing table skill and
reference this foreign key to the primary key in the table contact, as follows:

ALTER TABLE skill
ADD FOREIGN KEY "foreignkey" ("skill_id")
REFERENCES "DBA"."contact" ("id")

This example creates a relationship between the skill_id column of the table
skill (the foreign table) and the id column of the table contact (the primary
table). The “DBA” signifies the owner of the table contact.

Example 3 You can specify properties for the foreign key as you create it. For example,
the following statement creates the same foreign key as in Example 2, but it
defines the foreign key as NOT NULL along with restrictions for when you
update or delete.

ALTER TABLE skill
ADD NOT NULL FOREIGN KEY "foreignkey" ("skill_id")
REFERENCES "DBA"."contact" ("id")
ON UPDATE RESTRICT
ON DELETE RESTRICT

In Sybase Central, you can also specify properties in the Foreign Key
Creation wizard or on the foreign key’s property sheet.

☞ For more information, see “ALTER TABLE statement”[ASA SQL
Reference,page 250], and“Managing foreign keys (Sybase Central)” on
page 44.

Working with computed columns

A computed column is a column whose values are obtained from other
columns. You cannot INSERT or UPDATE values in computed columns.
However, any update that attempts to modify the computed column fires any
triggers associated with the column.

Computed columns are declared in the CREATE TABLE or ALTER TABLE
statement. Computed columns are created automatically when you create an
index on a function.

Creating tables with
computed columns

The following CREATE TABLE statement is used to create the product table

46

Chapter 2. Working with Database Objects

in the Java sample tables:

CREATE TABLE product
(

id INTEGER NOT NULL,
JProd asademo.Product NOT NULL,
name CHAR(15) COMPUTE (JProd>>name),
PRIMARY KEY ("id")

)

Adding computed
columns to tables

The following statement adds a computed column named inventory_value to
the product table:

ALTER TABLE product
ADD inventory_value INTEGER

COMPUTE (JProd.quantity * JProd.unit_price)

Modifying computed
column expressions

You can change the expression used in a computed column with the ALTER
TABLE statement. The following statement changes the expression that a
computed column is based on.

ALTER TABLE table_name
ALTER column-name SET COMPUTE (expression)

The column is recalculated when this statement is executed. If the new
expression is invalid, the ALTER TABLE statement fails.

The following statement stops a column from being a computed column.

ALTER TABLE table_name
ALTER column-name DROP COMPUTE

Existing values in the column are not changed when this statement is
executed, but they are no longer updated automatically.

Inserting and updating computed columns

Computed columns restrict the allowed INSERT and UPDATE statements.

♦ No direct inserts or updates You cannot insert a value directly into a
computed column. If the column called Computed is a computed column,
the following statement fails with aDuplicate Insert Column error:

-- Incorrect statement
INSERT INTO T1 (id, computed)
VALUES(3006, ’bad insert statement’)

Similarly, you cannot use UPDATE statements to directly change the
value of a computed column.

♦ Listing column names You must always explicitly specify column
names in INSERT statements on tables with computed columns.

47

♦ Triggers If you define triggers on a computed column, any INSERT or
UPDATE statement that affects the column fires the triggers.

When computed columns are recalculated

Computed columns are recalculated under the following circumstances:

♦ Any column is deleted, added, or renamed.

♦ The table is renamed.

♦ Any column’s data type or COMPUTE clause is modified.

♦ A row is inserted.

♦ A row is updated.

Computed columns arenot recalculated when queried. If you use a
time-dependent expression, or one that depends on the state of the database
in some other way, then the computed column may not give a proper result.

Copying tables or columns within/between databases

With Sybase Central, you can copy existing tables or columns and insert
them into another location in the same database or into a completely
different database.

☞ If you are not using Sybase Central, see one of the following locations:

♦ To insert SELECT statement results into a given location, see “SELECT
statement”[ASA SQL Reference,page 541].

♦ To insert a row or selection of rows from elsewhere in the database into a
table, see “INSERT statement”[ASA SQL Reference,page 476].

Displaying system tables

In a database, a table, view, stored procedure, or domain is a system object.
System tablesstore the database’s schema, or information about the
database itself. System views, procedures, and domains largely support
Sybase Transact-SQL compatibility.

All the information about tables in a database appears in the system tables.
The information is distributed among several tables.

☞ For more information, see “System Tables”[ASA SQL Reference,
page 611].

48

Chapter 2. Working with Database Objects

❖ To display system tables (Sybase Central)

1. Right-click the desired connected database and choose Filter Objects by
Owner from the popup menu.

2. Select the checkbox beside SYS and click OK.

The system tables, system views, system procedures, and system domains
appear in their respective folders. For example, system tables appear
alongside normal tables in the Tables folder.

❖ To browse system tables (SQL)

1. Connect to a database.

2. Execute a SELECT statement, specifying the system table you want to
browse. The system tables are owned by the SYS user ID.

Example Display the contents of the table sys.systable on the Results tab in the
Results pane.

SELECT *
FROM SYS.SYSTABLE

49

Working with views
Views are computed tables. You can use views to show database users
exactly the information you want to present, in a format you can control.

Similarities between
views and base tables

Views are similar to the permanent tables of the database (a permanent table
is also called a base table) in many ways:

♦ You can assign access permissions to views just as to base tables.

♦ You can perform SELECT queries on views.

♦ You can perform UPDATE, INSERT, and DELETE operations on some
views.

♦ You can create views based on other views.

Differences between
views and permanent
tables

There are some differences between views and permanent tables:

♦ You cannot create indexes on views.

♦ You cannot perform UPDATE, INSERT, and DELETE operations on all
views.

♦ You cannot assign integrity constraints and keys to views.

♦ Views refer to the information in base tables, but do not hold copies of
that information. Views are recomputed each time you invoke them.

Benefits of tailoring
access

Views let you tailor access to data in the database. Tailoring access serves
several purposes:

♦ Improved security By allowing access to only the information that is
relevant.

♦ Improved usability By presenting users and application developers
with data in a more easily understood form than in the base tables.

♦ Improved consistency By centralizing in the database the definition of
common queries.

Creating views

When you browse data, a SELECT statement operates on one or more tables
and produces a result set that is also a table. Just like a base table, a result set
from a SELECT query has columns and rows. A view gives a name to a
particular query, and holds the definition in the database system tables.

Suppose you frequently need to list the number of employees in each
department. You can get this list with the following statement:

50

Chapter 2. Working with Database Objects

SELECT dept_ID, count(*)
FROM employee
GROUP BY dept_ID

You can create a view containing the results of this statement using either
Sybase Central or Interactive SQL.

❖ To create a new view (Sybase Central)

1. Connect to a database.

2. Open the Views folder for that database.

3. From the File menu, choose New➤ View.

The View Creation wizard appears.

4. Follow the instructions in the wizard. When the wizard exits, you can edit
the code on the SQL tab in the right pane.

5. Complete the code by entering the table and the columns you want to use.
For the example above, typeemployeeanddept_ID.

6. From the File menu, choose Save View.

New views appear in the Views folder.

❖ To create a new view (SQL)

1. Connect to a database.

2. Execute a CREATE VIEW statement.

Example Create a view called DepartmentSize that contains the results of the
SELECT statement given at the beginning of this section:

CREATE VIEW DepartmentSize AS
SELECT dept_ID, count(*)
FROM employee
GROUP BY dept_ID

Since the information in a view is not stored separately in the database,
referring to the view executes the associated SELECT statement to retrieve
the appropriate data.

On one hand, this is good because it means that if someone modifies the
employee table, the information in the DepartmentSize view is automatically
brought up to date. On the other hand, complicated SELECT statements may
increase the amount of time SQL requires to find the correct information
every time you use the view.

51

☞ For more information, see “CREATE VIEW statement”[ASA SQL
Reference,page 382].

Using views

Restrictions on SELECT
statements

There are some restrictions on the SELECT statements you can use as views.
In particular, you cannot use an ORDER BY clause in the SELECT query. A
characteristic of relational tables is that there is no significance to the
ordering of the rows or columns, and using an ORDER BY clause would
impose an order on the rows of the view. You can use the GROUP BY
clause, subqueries, and joins in view definitions.

To develop a view, tune the SELECT query by itself until it provides exactly
the results you need in the format you want. Once you have the SELECT
query just right, you can add a phrase in front of the query to create the view.
For example,

CREATE VIEW viewname AS

Updating views UPDATE, INSERT, and DELETE statements are allowed on some views,
but not on others, depending on its associated SELECT statement.

You cannot update views containing aggregate functions, such as
COUNT(*). Nor can you update views containing a GROUP BY clause in
the SELECT statement, or views containing a UNION operation. In all these
cases, there is no way to translate the UPDATE into an action on the
underlying tables.

Copying views In Sybase Central, you can copy views between databases. To do so, select
the view in the right pane of Sybase Central and drag it to the Views folder
of another connected database. A new view is then created, and the original
view’s code is copied to it.

Note that only the view code is copied to the new view. The other view
properties, such as permissions, are not copied.

Using the WITH CHECK OPTION clause

Even when INSERT and UPDATE statements are allowed against a view, it
is possible that the inserted or updated rows in the underlying tables may not
meet the requirements for the view itself. For example, the view has no new
rows even though the INSERT or UPDATE modified the underlying tables.

Examples using the
WITH CHECK OPTION
clause

The following example illustrates the usefulness of the WITH CHECK
OPTION clause. This optional clause is the final clause in the CREATE
VIEW statement.

52

Chapter 2. Working with Database Objects

❖ To create a view displaying the employees in the sales depart-
ment (SQL)

1. Type the following statements:

CREATE VIEW sales_employee
AS SELECT emp_id,

emp_fname,
emp_lname,
dept_id

FROM employee
WHERE dept_id = 200

The contents of this view are as follows:

SELECT *
FROM sales_employee

They appear in Interactive SQL as follows:

emp_id emp_fname emp_lname dept_id

129 Philip Chin 200

195 Marc Dill 200

299 Rollin Overbey 200

467 James Klobucher 200

.

2. Transfer Philip Chin to the marketing department This view
update causes the entry to vanish from the view, as it no longer meets the
view selection criterion.

UPDATE sales_employee
SET dept_id = 400
WHERE emp_id = 129

3. List all employees in the sales department Inspect the view.

SELECT *
FROM sales_employee

Emp_id Emp_fname Emp_lname Dept_id

129 Philip Chin 200

195 Marc Dill 200

299 Rollin Overbey 200

467 James Klobucher 200

.

53

4. List all employees in the sales department Inspect the view.

SELECT *
FROM sales_employee

Emp_id emp_fname emp_lname dept_id

195 Marc Dill 200

299 Rollin Overbey 200

467 James Klobucher 200

641 Thomas Powell 200

.

When you create a view using the WITH CHECK OPTION, any UPDATE
or INSERT statement on the view is checked to ensure that the new row
matches the view condition. If it does not, the operation causes an error and
is rejected.

The following modified sales_employee view rejects the update statement,
generating the following error message:

Invalid value for column ’dept_id’ in table ’employee’

♦ Create a view displaying the employees in the sales department
(second attempt) Use WITH CHECK OPTION this time.

CREATE VIEW sales_employee
AS SELECT emp_id, emp_fname, emp_lname, dept_id

FROM employee
WHERE dept_id = 200

WITH CHECK OPTION

The check option is
inherited

If a view (say V2) is defined on the sales_employee view, any updates or
inserts on V2 that cause the WITH CHECK OPTION criterion on
sales_employee to fail are rejected, even if V2 is defined without a check
option.

Modifying views

You can modify a view using both Sybase Central and Interactive SQL.
When doing so, you cannot rename an existing view directly. Instead, you
must create a new view with the new name, copy the previous code to it, and
then delete the old view.

In Sybase Central, you can edit the code of views, procedures, and functions
on the object’s SQL tab in the right pane. You edit a view in a separate
window by right-clicking the view and choosing Edit In New Window from

54

Chapter 2. Working with Database Objects

the popup menu. In Interactive SQL, you can use the ALTER VIEW
statement to modify a view. The ALTER VIEW statement replaces a view
definition with a new definition, but it maintains the permissions on the view.

☞ For more information on altering database object properties, see
“Setting properties for database objects” on page 32.

☞ For more information on setting permissions, see “Granting permissions
on tables”[ASA Database Administration Guide,page 396]and “Granting
permissions on views”[ASA Database Administration Guide,page 398]. For
information about revoking permissions, see “Revoking user permissions”
[ASA Database Administration Guide,page 402].

❖ To edit a view definition (Sybase Central)

1. Open the Views folder.

2. Select the desired view.

3. In the right pane, click the SQL tab and edit the view’s code.

Tip
If you wish to edit multiple views, you may wish to open separate
windows for each view rather than editing each view on the SQL tab
in the right pane. You can open a separate window by right-clicking a
view and choosing Edit In New Window from the popup menu.

❖ To edit a view definition (SQL)

1. Connect to a database with DBA authority or as the owner of the view.

2. Execute an ALTER VIEW statement.

Example Rename the column names of the DepartmentSize view (described in the
“Creating views” on page 50section) so that they have more informative
names.

ALTER VIEW DepartmentSize
(Dept_ID, NumEmployees)

AS
SELECT dept_ID, count(*)
FROM Employee
GROUP BY dept_ID

☞ For more information, see “ALTER VIEW statement”[ASA SQL
Reference,page 259].

Deleting views

You can delete a view in both Sybase Central and Interactive SQL.

55

❖ To delete a view (Sybase Central)

1. Open the Views folder.

2. Right-click the desired view and choose Delete from the popup menu.

❖ To delete a view (SQL)

1. Connect to a database with DBA authority or as the owner of the view.

2. Execute a DROP VIEW statement.

Examples Remove a view called DepartmentSize.

DROP VIEW DepartmentSize

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

Browsing the information in views

To browse the data held within the views, you can use the Interactive SQL
utility. This utility lets you execute queries to identity the data you want to
view. For more information about using these queries, see“Queries:
Selecting Data from a Table” on page 207.

If you are working in Sybase Central, you can right-click a view on which
you have permission and choose View Data in Interactive SQL from the
popup menu. This command opens Interactive SQL with the view contents
displayed on the Results tab in the Results pane. To browse the view,
Interactive SQL executes aselect * from owner.view statement.

Views in the system tables

All the information about views in a database is held in the system table
SYS.SYSTABLE. The information is presented in a more readable format in
the system view SYS.SYSVIEWS. For more information about these, see
“SYSTABLE system table”[ASA SQL Reference,page 678], and “SYSVIEWS
system view”[ASA SQL Reference,page 700].

You can use Interactive SQL to browse the information in these tables. Type
the following statement in the SQL Statements pane to see all the columns in
the SYS.SYSVIEWS view:

SELECT *
FROM SYS.SYSVIEWS

To extract a text file containing the definition of a specific view, use a
statement such as the following:

56

Chapter 2. Working with Database Objects

SELECT viewtext FROM SYS.SYSVIEWS
WHERE viewname = ’DepartmentSize’;

OUTPUT TO viewtext.sql
FORMAT ASCII

57

Working with indexes
Performance is an important consideration when designing and creating your
database. Indexes can dramatically improve the performance of statements
that search for a specific row or a specific subset of the rows. On the other
hand, indexes take up additional disk space and may slow inserts, updates,
and deletes.

Choosing a set of indexes

Choosing an appropriate set of indexes for a database is an important part of
optimizing performance. Identifying an appropriate set can also be a
demanding problem. The performance benefits from some indexes may be
significant, but there are also costs associated with indexes, in both storage
space and in overhead when modifying data.

The Index Consultant is a tool to assist you in proper selection of indexes. It
analyzes either a single query or a set of operations, and recommends which
indexes to add to your database. It also notifies you of indexes that are
unused.

☞ For more information about the Index Consultant, see“Starting the
Index Consultant” on page 65.

When to use indexes

An index provides an ordering on the rows in a column or columns of a table.
An index is like a telephone book that initially sorts people by surname, and
then sorts identical surnames by first names. This ordering speeds up
searches for phone numbers for a particular surname, but it does not provide
help in finding the phone number at a particular address. In the same way, a
database index is useful only for searches on a specific column or columns.

Indexes get more useful as the size of the table increases. The average time
to find a phone number at a given address increases with the size of the
phone book, while it does not take much longer to find the phone number of,
say, K. Kaminski, in a large phone book than in a small phone book.

The database server query optimizer automatically uses an index when a
suitable index exists and when using one will improve performance.

Use indexes for frequently-searched columns

Indexes require extra space and may slightly reduce the performance of
statements that modify the data in the table, such as INSERT, UPDATE, and
DELETE statements. However, they can improve search performance

58

Chapter 2. Working with Database Objects

dramatically and are highly recommended whenever you search data
frequently.

☞ For more information about performance, see“Using indexes” on
page 163.

Adaptive Server Anywhere automatically indexes primary key and foreign
key columns. Thus, manually creating an index on a key column is not
necessary and generally not recommended. If a column is only part of a key,
an index may help.

Adaptive Server Anywhere automatically uses indexes to improve the
performance of any database statement whenever it can. There is no need to
explicitly refer to indexes once they are created. Also, the index is updated
automatically when rows are deleted, updated or inserted.

☞ For information on altering database object properties, see“Setting
properties for database objects” on page 32.

Using clustered indexes

Although standard indexes can dramatically improve the performance of
statements that search for a specific row or a specific subset of the rows, two
rows appearing sequentially in the index do not necessarily appear on the
same page in the database.

However, you can further improve the performance of indexes by creating
clustered indexes. Clustered indexes in Adaptive Server Anywhere store the
table rows in approximately the same order as they appear in the
corresponding index.

Using the clustered index feature increases the chance that the two rows will
appear on the same page in the database. This can lead to performance
benefits by further reducing the number of times each page needs to be read
into memory.

For example, in a case where you select two rows that appear sequentially in
a clustered index, it is possible that you are retrieving two rows that appear
sequentially on the same page, thus reducing the number of pages to read
into memory by half.

The clustering of indexes in Adaptive Server Anywhere is approximate.
While the server attempts to preserve the key order, total clustering is not
guaranteed. As well, the clustering degrades over time, as more and more
rows are inserted into your database.

You can implement one clustered index per table, using the following
statements:

59

♦ The CREATE TABLE statement

♦ The ALTER TABLE statement

♦ The CREATE INDEX statement

♦ The DECLARE LOCAL TEMPORARY TABLE statement

Several statements work in conjunction with each other to allow you to
maintain and restore the clustering effect:

♦ The UNLOAD TABLE statement allows you to unload a table in the
order of the index key.

♦ The LOAD TABLE statement inserts rows into the table in the order of
the index key.

♦ The INSERT statement attempts to put new rows on the same table page
as the one containing adjacent rows as per the primary key order.

♦ The REORGANIZE table statement can restore the clustering by
rearranging the rows according to the clustering index. On tables where
clustering is not specified, tables are ordered using the primary key.

The Optimizer assumes that the table rows are stored in key order and costs
index scans accordingly.

Creating indexes

Indexes are created on one or more columns of a specified table. You can
create indexes on base tables or temporary tables, but you cannot create an
index on a view. To create an individual index, you can use either Sybase
Central or Interactive SQL. You can use the Index Consultant to guide you in
a proper selection of indexes for your database.

❖ To create a new index for a given table (Sybase Central)

1. Open the Indexes folder.

2. From the File menu, choose New➤ Index.

The Index Creation wizard appears.

3. Name the index and select the table from the list. Click Next.

4. Follow the instructions in the wizard.

New indexes appear in the Indexes folder.

60

Chapter 2. Working with Database Objects

❖ To create a new index for a given table (SQL)

1. Connect to a database with DBA authority or as the owner of the table on
which the index is created.

2. Execute a CREATE INDEX statement.

☞ In addition to creating indexes on one or more columns in a table, you
can create indexes on a built-in function using a computed column. For more
information, see “CREATE INDEX statement”[ASA SQL Reference,page 319].

Example To speed up a search on employee surnames in the sample database, you
could create an index called EmpNames with the following statement:

CREATE INDEX EmpNames
ON employee (emp_lname, emp_fname)

☞ For more information, see “CREATE INDEX statement”[ASA SQL
Reference,page 319], and“Monitoring and Improving Performance” on
page 153.

Validating indexes

You can validate an index to ensure that every row referenced in the index
actually exists in the table. For foreign key indexes, a validation check also
ensures that the corresponding row exists in the primary table, and that their
hash values match. This check complements the validity checking carried
out by the VALIDATE TABLE statement.

❖ To validate an index (Sybase Central)

1. Connect to a database with DBA authority or as the owner of the table on
which the index is created.

2. In the left pane, open the Indexes folder.

3. Right-click the desired index and choose Validate from the popup menu.

❖ To validate an index (SQL)

1. Connect to a database with DBA authority or as the owner of the table on
which the index is created.

2. Execute a VALIDATE INDEX statement.

61

❖ To validate an index (command line)

1. Open a command prompt.

2. Run thedbvalid utility.

Examples Validate an index called EmployeeIndex. If you supply a table name instead
of an index name, the primary key index is validated.

VALIDATE INDEX EmployeeIndex

Validate an index called EmployeeIndex. The-i switch specifies that each
object name given is an index.

dbvalid -i EmployeeIndex

☞ For more information, see “VALIDATE INDEX statement”[ASA SQL
Reference,page 602], and “The Validation utility”[ASA Database Administration
Guide,page 547].

Dropping indexes

If an index is no longer required, you can remove it from the database in
Sybase Central or in Interactive SQL.

❖ To drop an index (Sybase Central)

1. Connect to a database with DBA authority or as the owner of the table on
which the index is created.

2. In the left pane, open the Indexes folder.

3. Right-click the desired index and choose Delete from the popup menu.

❖ To drop an index (SQL)

1. Connect to a database with DBA authority or as the owner of the table
associated with the index.

2. Execute a DROP INDEX statement.

Example The following statement removes the index from the database:

DROP INDEX EmpNames

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

62

Chapter 2. Working with Database Objects

Index Consultant overview

The selection of a proper set of indexes can make a big difference to the
performance of your database. To help you in the task of selecting such a set
of indexes, Adaptive Server Anywhere includes an Index Consultant. The
Index Consultant guides you through the process of selecting indexes for a
single query or for a set of database requests (called aworkload). It creates
many different sets of virtual indexes. For each set, the Index Consultant
optimizes queries and other requests as if those virtual indexes were present.
The Index Consultant then gathers the results of these explorations into a set
of recommendations.

There are several stages in the Index Consultant’s work. Understanding
these stages helps you make the most of the tool.

1. Starting the Index Consultant.

You can run the Index Consultant from either Interactive SQL or from
Sybase Central. Access the Index Consultant from Interactive SQL to
analyze indexes for a single query, and from Sybase Central to analyze
indexes for a workload.

☞ For information on how to start the Index Consultant, see“Starting
the Index Consultant” on page 65.

2. Capturing a workload.

A workload is a set of queries or other data manipulation statements over
which the Index Consultant tries to optimize performance. Depending on
your goals, you may wish to make your workload a representative set of
operations, or you may wish to identify a set of key bottleneck
operations. The Index Consultant can capture one or more workloads,
and can store them for later analysis.

For more information, see“Understanding workloads” on page 66.

3. Analyzing the workload.

The Index Consultant analyzes a workload or single query by generating
candidate indexes and exploring their effect on performance. To explore
the effect of different candidate indexes, the Index Consultant repeatedly
re-optimizes the queries in the workload under different sets of indexes.
It does not execute the queries.

The Index Consultant can also store the results of multiple analyses on
any workload, using different settings.

When analyzing a workload, the Index Consultant presents you with a set
of options:

63

♦ Recommend clustered indexes If this option is selected, the Index
Consultant analyzes the effect of clustered indexes as well as
unclustered indexes.

Properly selected clustered indexes can provide significant
performance improvements over unclustered indexes for some
workloads, but you must reorganize the table (using the
REORGANIZE TABLE statement) for them to be effective. In
addition, the analysis takes longer if the effects of clustered indexes are
considered.

☞ For more information about clustered indexes, see“Using
clustered indexes” on page 59.

♦ Keep existing secondary indexes The Index Consultant can carry
out its analysis by either maintaining the existing set of secondary
indexes in the database, or by ignoring the existing secondary indexes.
A secondary index is an index that is not a unique constraint or a
primary or foreign key. Indexes that are present to enforce referential
integrity constraints are always considered when selecting access
plans.

The analysis includes the following steps:

♦ Generate candidate indexes For each workload, the Index
Consultant generates a set of candidate indexes. Creating a real index
on a large table can be a time consuming operation, so the Index
Consultant creates its candidates as virtual indexes. A virtual index
cannot be used to actually execute queries, but the query optimizer can
use virtual indexes to estimate the cost of execution plans as if such an
index were available. Virtual indexes allow the Index Consultant to
carry out “what-if” analysis without the expense of creating and
managing real indexes. Virtual indexes have a limit of four columns.

♦ Testing the benefits and costs of candidate indexes The Index
Consultant asks the Adaptive Server Anywhere query optimizer to
estimate the cost of executing the queries in the workload, with and
without different combinations of candidate indexes.

♦ Generating recommendations The Index Consultant assembles the
results of the query costs and sorts the indexes by the total benefit they
provide. It provides a SQL script, which you can run to carry out the
recommendations or which you can save for your own review and
analysis.

☞ For more information, see“Understanding the analysis” on page 67.

4. Implementing the recommendations.

The Index Consultant provides a SQL script that you can run to
implement its recommendations. Before doing so, you may wish to

64

Chapter 2. Working with Database Objects

assess the recommendations in the light of your own knowledge of your
database.

Using the Index Consultant with Interactive SQL
The Index Consultant can only analyze one statement at at time from
ISQL.

☞ For more information, see“Assessing the recommendations” on
page 69, and“Implementing the recommendations” on page 70.

Starting the Index Consultant

The Index Consultant guides you in the proper selection of indexes. You can
use the Index Consultant in the following ways:

♦ Interactive SQL You can use the Index Consultant from
Interactive SQL to analyze the benefits of indexes for an individual
query.

♦ Sybase Central You can use the Index Consultant from Sybase Central
to analyze the benefits of indexes for a workload, or set of database
requests.

❖ To start the Index Consultant (Sybase Central)

1. In the left pane of Sybase Central, right-click the Indexes folder.

2. From the popup menu, choose Index Consultant.

❖ To start the Index Consultant (Interactive SQL)

1. Enter a query that you wish to analyze into the SQL Statements pane of
Interactive SQL.

2. Choose Tools➤ Index Consultant.

Stopping the Index Consultant

The Index Consultant does have an impact on database performance while it
is capturing a workload for analysis. For this reason, the database server
window displays an informational message while the Index Consultant is
capturing a workload.

Usually, the Index Consultant is stopped from the Sybase Central user
interface. There may be occasions when it is necessary to stop the Index
Consultant from another machine: for example, if the Index Consultant is
inadvertantly left running.

65

To pause or stop the capturing of a workload, call the
sa_pause_workload_capture procedure or the sa_stop_workload_capture,
respectively:

call sa_pause_workload_capture;
call sa_stop_workload_capture;

To stop the Index Consultant, call the sa_stop_index_consultant system
stored procedure:

call sa_stop_index_consultant

Understanding the Index Consultant

Selecting the best set of indexes for a database is not a problem that has a
single well-defined answer. The recommendations of the Index Consultant
are based on an extensive search of the outcomes of alternative indexing
schemes, and careful analysis of the costs and benefits associated with
indexes. Nevertheless, the nature of the problem is such that the Index
Consultant recommendations cannot be guaranteed to always lead to an
optimal set of indexes.

This section describes some aspects of how the Index Consultant works. The
goal of the section is to provide information that enables you to better judge
the recommendations it provides.

Understanding workloads

The first step of Index Consultant operation is to capture a workload of data
manipulation and query operations. It does this by capturing information as
an application or set of applications carries out operations on the database.

The workload consists of all SELECT, INSERT, UPDATE, and DELETE
statements executed during the capture step. The context of these operations
is not captured as part of the workload. For example, although queries
executed as part of a stored procedure, trigger, or event handler are captured
as part of a workload, the surrounding code is not captured. This leads to the
following consequences:

♦ Parameters are not captured.

Parameterized SQL statements are stored by substituting an appropriate
literal value with the statement definition. For example, if a query with a
parameter in the WHERE clause is executed 15 times with different
values for the parameter, the Index Consultant captures 15 distinct
queries, each with a separate constant instead of the parameter.

♦ Queries against temporary tables cannot be analyzed.

66

Chapter 2. Working with Database Objects

Although queries against temporary tables are collected as part of the
workload, the data present in the temporary table is not captured.
Consequently, the query cannot be analyzed during the analysis step. The
Index Consultant cannot provide recommendations for suitable indexes
on temporary tables.

♦ Connection state is not entirely captured.

The connection state includes the set of database options in effect when a
query is executed. The OPTIMIZATION_GOAL option often has a
major effect on the execution plan chosen by the optimizer, and is stored
along with the query. Other options are not stored, however.

♦ Server state is not captured.

The server state includes whether data is available in cache or whether it
must be fetched from disk. It also includes the effect of concurrent
operations.

Caution
Do not change the database schema during the workload capture step. Do
not change the database schema between the capture step and the analysis
step. Such changes invalidate the Index Consultant recommendations.

Understanding the analysis

The analysis step is carried out by repeatedly carrying out the following set
of operations:

1. Create a candidate set of virtual indexes.

A virtual index contains no actual data and cannot be used for actual
query execution. It can be used by the optimizer when selecting an
appropriate execution plan for a query. The Index Consultant generates
many alternative sets of virtual indexes.

2. Optimize the workload operations for this candidate set of virtual indexes.

The Index Consultant retrieves the plan for each statement in the
workload, as chosen by the Adaptive Server Anywhere query optimizer.
The optimizer considers applicable virtual indexes from the candidate set
for each statement. However, the statements are not executed. The Index
Consultant does not modify user data.

For each query, the query optimizer compares the execution cost of many
alternative execution plans. It estimates the execution cost based on an
internal cost model. One important choice that influences the cost of each
execution plan is which tables to access using an index, and which to

67

access without using an index. Each set of virtual indexes opens up new
execution plan alternatives and closes others.

The cost model depends on the state of the database server. Specifically,
although the Index Consultant itself does not read data from disk or
execute operations against the database, the cost model depends on which
data is in cache and which must be accessed from disk. Therefore,
running the Index Consultant may not generate the same
recommendations each time you run an analysis on a particular workload.
For example, running the Index Consultant on a database server that has
just started up (and so has no data in cache) may provide different
recommendations to running it on a database server that has been in
operation for some time.

☞ For more information about the cost model, see“Optimizer
estimates” on page 369.

Understanding the recommendations

The Index Consultant provides a set of tabs with the results of a given
analysis. The results of an analysis can be saved for later review.

Summary tab The Summary tab provides an overview of the workload and the analysis,
including such information as the number of queries in the workload, the
number of recommended indexes, the number of pages required for the
recommended indexes, and the benefit that the recommended indexes are
expected to yield. The benefit number is measured in internal units of cost.

Recommended Indexes
tab

The Recommended Indexes tab contains data about each of the
recommended indexes. Among the information provided is the following:

♦ Clustered Each table can have at most one clustered index. In some
cases, a clustered index can provide significantly more benefit than an
unclustered index.

For more information about clustered indexes, see“Using clustered
indexes” on page 59.

♦ Pages The estimated number of database pages required to hold the
index if you choose to create it.

For more information about database page sizes, see “The Initialization
utility” [ASA Database Administration Guide,page 485].

♦ Relative Benefit A number from one to ten, indicating the estimated
overall benefit of creating the specified index. A higher number indicates
a greater estimated benefit.

The relative benefit is computed using an internal algorithm, separately
from the Total Cost Benefit column. There are several factors included in

68

Chapter 2. Working with Database Objects

estimating the relative benefit that do not appear in the total cost benefit.
For example, it can happen that the presence of one index dramatically
affects the benefits associated with a second index. In this case, the
relative benefit attempts to estimate the separate impact of each index.

☞ For more information, see“Assessing the recommendations” on
page 69.

♦ Total Benefit The cost decrease associated with the index, summed
over all operations in the workload, measured in internal units of cost.

For more information on the cost model, see“Optimizer estimates” on
page 369.

♦ Update Cost Adding an index introduces cost, both in additional
storage space and in extra work required when data is modified. The
Update Cost column is an estimate of the additional maintenance cost
associated with an index. It is measured in internal units of cost.

♦ Total Cost Benefit The total benefit minus the update cost associated
with the index.

Requests tab The Requests tab provides a breakdown of the impact of the
recommendations for individual requests within the workload. The
information includes the estimated cost before and after applying the
recommended indexes, as well as the virtual indexes used by the query. A
button enables you to view the best execution plan found for the request.

Updates tab The Updates tab provides a breakdown of the impact of the
recommendations.

Unused Indexes tab The Unused Indexes tab lists indexes that already exist in the database that
were not used in the execution of any requests in the workload. Only
secondary indexes are listed: that is, neither indexes on primary keys and
foreign keys nor unique constraints are listed.

Log tab The Log tab lists activities that have been completed for this analysis.

Assessing the recommendations

Although the Index Consultant recommendations are based on an extensive
search of available options, it is good practice to evaluate the
recommendations before implementing them in a production database. For
example, you may wish to carry out checks such as the following:

♦ Do the proposed indexes match your own expectations? If you
know the data in your database well, and you know the queries being run
against the database, you may wish to check the usefulness of the
proposed indexes against your own knowledge. Perhaps a proposed index

69

only affects a single query that is run rarely, or perhaps it is on a small
table and makes relatively little overall impact. Perhaps an index that the
Index Consultant suggests should be dropped is used for some other task
that was not included in your workload.

♦ Are there strong correlations between the effects of proposed
indexes? The index recommendations attempt to evaluate the relative
benefit of each index separately. It may be the case, however, that two
indexes are of use only if both exist (a query may use both if they exist,
and none if either is missing). You may want to study the Requests tab
and inspect the query plans to see how the proposed indexes are being
used.

♦ Are you able to re-organize a table when creating a clustered index?
To take full advantage of a clustered index, you should reorganize the

table on which it is created using the REORGANIZE TABLE statement.
If the Index Consultant recommends many clustered indexes, you may
have to unload and reload your database to get the full benefit. Unloading
and reloading tables can be a time-consuming operation and can require
large disk space resources. You may want to confirm that you have the
time and resources you need to implement the recommendations.

♦ Do the server and connection state during the analysis reflect a
realistic state during product operation? The results of the analysis
depend on the state of the server, including which data is in the cache.
They also depend on the state of the connection, including some database
option settings. As the analysis creates only virtual indexes, and does not
execute requests, the state of the server is essentially static during the
analysis (except for changes introduced by other connections). If the state
does not represent the typical operation of your database, you may wish
to rerun the analysis under different conditions.

Implementing the recommendations

The Index Consultant provides its recommendations as a SQL script. You
can implement the recommendations from the Index Consultant, or you can
save the script for later use.

The names of the proposed indexes are generated from the name of the
analysis. You may wish to rename them before creating the indexes in the
database.

☞ For information on running command files from Interactive SQL, see
“Running SQL command files” on page 553.

70

Chapter 2. Working with Database Objects

Indexes in the system tables

All the information about indexes in a database is held in the system tables
SYS.SYSINDEX and SYS.SYSIXCOL. The information is presented in a
more readable format in the system view SYS.SYSINDEXES. You can use
Sybase Central or Interactive SQL to browse the information in these tables.

71

Working with temporary tables
Temporary tables, whether local or global, serve the same purpose:
temporary storage of data. The difference between the two, and the
advantages of each, however, lies in the duration each table exists.

A local temporary table exists only for the duration of a connection or, if
defined inside a compound statement, for the duration of the compound
statement.

☞ For more information, see “DECLARE LOCAL TEMPORARY TABLE
statement”[ASA SQL Reference,page 397].

The definition of theglobal temporary table remains in the database
permanently, but the rows exist only within a given connection. When you
close the database connection, the data in the global temporary table
disappears. However, the table definition remains with the database for you
to access when you open your database next time.

Temporary tables are stored in the temporary file. Like any other dbspace,
pages from the temporary file can be cached. Operations on temporary
tables are never written to the transaction log.

☞ For more information, see “CREATE TABLE statement”[ASA SQL
Reference,page 361].

72

Chapter 2. Working with Database Objects

Copying database objects in Sybase Central
In Sybase Central, you can copy existing database objects and insert them
into another location in the same database or in a completely different
database.

To copy an object, select the object in the left pane of Sybase Central and
drag it to the appropriate folder or container, or copy the object and then
paste it in the appropriate folder or container. A new object is created, and
the original object’s code is copied to the new object. When copying objects
within the same database, you must rename the new object.

You can also paste objects onto other objects in the database. For example, if
you paste a table onto a user, this gives the user permissions on the table.

Copying a database
object’s code for use in
other applications

In Sybase Central, when you copy any of the objects from the following list,
the SQL for the object is copied to the clipboard so it can be pasted into
other applications, such as Interactive SQL or a text editor. For example, if
you copy an index in Sybase Central and paste it into a text editor, the
CREATE INDEX statement for that index appears.

♦ Articles

♦ Check constraints

♦ Columns (Copy button only)

♦ Domains

♦ Events

♦ External logins

♦ Foreign keys

♦ Indexes

♦ Message types

♦ Procedures and functions

♦ Publications

♦ Remote servers

♦ System triggers

♦ Tables

♦ Triggers

73

♦ UltraLite projects

♦ UltraLite statements

♦ Unique constraints

♦ Users

♦ Views

♦ Web services

74

CHAPTER 3

Ensuring Data Integrity

About this chapter Building integrity constraints right into the database is the surest way to
make sure your data stays in good shape. This chapter describes the facilities
in Adaptive Server Anywhere for ensuring that the data in your database is
valid and reliable.

You can enforce several types of integrity constraints. For example, you can
ensure individual entries are correct by imposing constraints and CHECK
constraints on tables and columns. Setting column properties by choosing an
appropriate data type or setting special default values assists this task.

The SQL statements in this chapter use the CREATE TABLE and ALTER
TABLE statements, basic forms of which were introduced in“Working with
Database Objects” on page 25.

Contents Topic: page

Data integrity overview 76

Using column defaults 79

Using table and column constraints 85

Using domains 89

Enforcing entity and referential integrity 92

Integrity rules in the system tables 97

75

Data integrity overview
If data has integrity, the data is valid—correct and accurate—and the
relational structure of the database is intact. Referential integrity constraints
enforce the relational structure of the database. These rules maintain the
consistency of data between tables.

Adaptive Server Anywhere supports stored procedures, which give you
detailed control over how data enters the database. You can also create
triggers, or customized stored procedures invoked automatically when a
certain action, such as an update of a particular column, occurs.

☞ For more information on procedures and triggers see“Using Procedures,
Triggers, and Batches” on page 609.

How data can become invalid

Here are a few examples of how the data in a database may become invalid if
proper checks are not made. You can prevent each of these examples from
occurring using facilities described in this chapter.

Incorrect information ♦ An operator types the date of a sales transaction incorrectly.

♦ An employee’s salary becomes ten times too small because the operator
missed a digit.

Duplicated data ♦ Two different people add the same new department (withdept_id 200) to
the department table of the organization’s database.

Foreign key relations
invalidated

♦ The department identified bydept_id 300 closes down and one employee
record inadvertently remains unassigned to a new department.

Integrity constraints belong in the database

To ensure the validity of data in a database, you need to formulate checks to
define valid and invalid data, and design rules to which data must adhere
(also known as business rules). Together, checks and rules become
constraints.

Build integrity constraints
into database

Constraints that are built into the database itself are more reliable than
constraints that are built into client applications or that are spelled out as
instructions to database users. Constraints built into the database become
part of the definition of the database itself, and the database enforces them
consistently across all applications. Setting a constraint once in the database
imposes it for all subsequent interactions with the database.

In contrast, constraints built into client applications are vulnerable every
time the software changes, and may need to be imposed in several
applications, or in several places in a single client application.

76

Chapter 3. Ensuring Data Integrity

How database contents change

Changes occur to information in database tables when you submit SQL
statements from client applications. Only a few SQL statements actually
modify the information in a database. You can:

♦ Update information in a row of a table using the UPDATE statement.

♦ Delete an existing row of a table using the DELETE statement.

♦ Insert a new row into a table using the INSERT statement.

Data integrity tools

To maintain data integrity, you can use defaults, data constraints, and
constraints that maintain the referential structure of the database.

Defaults You can assign default values to columns to make certain kinds of data entry
more reliable. For example:

♦ A column can have a current date default value for recording the date of
transactions with any user or client application action.

♦ Other types of default values allow column values to increment
automatically without any specific user action other than entering a new
row. With this feature, you can guarantee that items (such as purchase
orders for example) are unique, sequential numbers.

☞ For more information on these and other column defaults, see“Using
column defaults” on page 79.

Constraints You can apply several types of constraints to the data in individual columns
or tables. For example:

♦ A NOT NULL constraint prevents a column from containing a null entry.

♦ A CHECK constraint assigned to a column can ensure that every item in
the column meets a particular condition. For example, you can ensure
that salary column entries fit within a specified range and thus protect
against user error when typing in new values.

♦ CHECK constraints can be made on the relative values in different
columns. For example, you can ensure that a date_returned entry is later
than a date_borrowed entry in a library database.

♦ Triggers can enforce more sophisticated CHECK conditions. For more
information on triggers, see“Using Procedures, Triggers, and Batches”
on page 609.

77

As well, column constraints can be inherited from domains. For more
information on these and other table and column constraints, see“Using
table and column constraints” on page 85.

Entity and referential
integrity

Relationships, defined by the primary keys and foreign keys, tie together the
information in relational database tables. You must build these relations
directly into the database design. The following integrity rules maintain the
structure of the database:

♦ Entity integrity Keeps track of the primary keys. It guarantees that
every row of a given table can be uniquely identified by a primary key
that guarantees IS NOT NULL.

♦ Referential integrity Keeps track of the foreign keys that define the
relationships between tables. It guarantees that all foreign key values
either match a value in the corresponding primary key or contain the
NULL value if they are defined to allow NULL.

☞ For more information about enforcing referential integrity, see
“Enforcing entity and referential integrity” on page 92. For more
information about designing appropriate primary and foreign key relations,
see“Designing Your Database” on page 3.

Triggers for advanced
integrity rules

You can also use triggers to maintain data integrity. Atrigger is a procedure
stored in the database and executed automatically whenever the information
in a specified table changes. Triggers are a powerful mechanism for database
administrators and developers to ensure that data remains reliable.

☞ For more information about triggers, see“Using Procedures, Triggers,
and Batches” on page 609.

SQL statements for implementing integrity constraints

The following SQL statements implement integrity constraints:

♦ CREATE TABLE statement This statement implements integrity
constraints during creation of the database.

♦ ALTER TABLE statement This statement adds integrity constraints
to an existing database, or modifies constraints for an existing database.

♦ CREATE TRIGGER statement This statement creates triggers that
enforce more complex business rules.

♦ CREATE DOMAIN statement This statement creates a user-defined
data type. The definition of the data type can include constraints.

☞ For more information about the syntax of these statements, see “SQL
Statements”[ASA SQL Reference,page 213].

78

Chapter 3. Ensuring Data Integrity

Using column defaults
Column defaults automatically assign a specified value to particular columns
whenever someone enters a new row into a database table. The default value
assigned requires no any action on the part of the client application, however
if the client application does specify a value for the column, the new value
overrides the column default value.

Column defaults can quickly and automatically fill columns with
information, such as the date or time a row is inserted, or the user ID of the
person typing the information. Using column defaults encourages data
integrity, but does not enforce it. Client applications can always override
defaults.

Supported default values SQL supports the following default values:

♦ A string specified in the CREATE TABLE statement or ALTER TABLE
statement

♦ A number specified in the CREATE TABLE statement or ALTER
TABLE statement

♦ An automatically incremented number: one more than the previous
highest value in the column

♦ Universally Unique Identifiers (UUIDs) and Globally Unique Identifiers
(GUIDs) generated using the NEWID function.

♦ The current date, time, or timestamp

♦ The current user ID of the database user

♦ A NULL value

♦ A constant expression, as long as it does not reference database objects

Creating column defaults

You can use the CREATE TABLE statement to create column defaults at the
time a table is created, or the ALTER TABLE statement to add column
defaults at a later time.

Example The following statement adds a condition to an existing column namedid in
thesales_ordertable, so that it automatically increments (unless a client
application specifies a value):

ALTER TABLE sales_order
MODIFY id DEFAULT AUTOINCREMENT

79

☞ Each of the other default values is specified in a similar manner. For
more information, see “ALTER TABLE statement”[ASA SQL Reference,
page 250]and “CREATE TABLE statement”[ASA SQL Reference,page 361].

Modifying and deleting column defaults

You can change or remove column defaults using the same form of the
ALTER TABLE statement you used to create defaults. The following
statement changes the default value of a column namedorder_date from its
current setting to CURRENT DATE:

ALTER TABLE sales_order
MODIFY order_date DEFAULT CURRENT DATE

You can remove column defaults by modifying them to be NULL. The
following statement removes the default from theorder_datecolumn:

ALTER TABLE sales_order
MODIFY order_date DEFAULT NULL

Working with column defaults in Sybase Central

You can add, alter, and delete column defaults in Sybase Central using the
Value tab of the column properties sheet.

❖ To display the property sheet for a column

1. Connect to the database.

2. Open the Tables folder for that database.

3. Double-click the table holding the column you want to change.

4. In the right pane, click the Columns tab.

5. Select the desired column.

6. Choose File➤ Properties.

The column’s property sheet appears.

Current date and time defaults

For columns with the DATE, TIME, or TIMESTAMP data type, you can use
the current date, current time, or current timestamp as a default. The default
you choose must be compatible with the column’s data type.

Useful examples of
current date default

A current date default might be useful to record:

♦ dates of phone calls in a contact database

80

Chapter 3. Ensuring Data Integrity

♦ dates of orders in a sales entry database

♦ the date a patron borrows a book in a library database

Current timestamp The current timestamp is similar to the current date default, but offers
greater accuracy. For example, a user of a contact management application
may have several contacts with a single customer in one day: the current
timestamp default would be useful to distinguish these contacts.

Since it records a date and the time down to a precision of millionths of a
second, you may also find the current timestamp useful when the sequence
of events is important in a database.

For more information about timestamps, times, and dates, see “SQL Data
Types” [ASA SQL Reference,page 51].

The user ID default

Assigning a DEFAULT USER to a column is an easy and reliable way of
identifying the person making an entry in a database. This information may
be required; for example, when salespeople are working on commission.

Building a user ID default into the primary key of a table is a useful
technique for occasionally connected users, and helps to prevent conflicts
during information updates. These users can make a copy of tables relevant
to their work on a portable computer, make changes while not connected to a
multi-user database, and then apply the transaction log to the server when
they return.

The AUTOINCREMENT default

The AUTOINCREMENT default is useful for numeric data fields where the
value of the number itself may have no meaning. The feature assigns each
new row a value of one greater than the previous highest value in the
column. You can use AUTOINCREMENT columns to record purchase
order numbers, to identify customer service calls or other entries where an
identifying number is required.

Autoincrement columns are typically primary key columns or columns
constrained to hold unique values (see“Enforcing entity integrity” on
page 92). For example, autoincrement default is effective when the column
is the first column of an index, because the server uses an index or key
definition to find the highest value.

While using the autoincrement default in other cases is possible, doing so
can adversely affect database performance. For example, in cases where the
next value for each column is stored as an integer (4 bytes), using values

81

greater than 231 – 1 or large double or numeric values may cause
wraparound to negative values.

☞ You can retrieve the most recent value inserted into an autoincrement
column using the @@identity global variable. For more information, see
“@@identity global variable”[ASA SQL Reference,page 45].

Autoincrement and
negative numbers

Autoincrement is intended to work with positive integers.

The initial autoincrement value is set to 0 when the table is created. This
value remains as the highest value assigned when inserts are done that
explicitly insert negative values into the column. An insert where no value is
supplied causes the AUTOINCREMENT to generate a value of 1, forcing
any other generated values to be positive.

In UltraLite applications, the autoincrement value is not set to 0 when the
table is created, and AUTOINCREMENT generates negative numbers when
a signed data type is used for the column.

You should define AUTOINCREMENT columns as unsigned to prevent
negative values from being used.

Autoincrement and the
IDENTITY column

☞ A column with the AUTOINCREMENT default is referred to in
Transact-SQL applications as an IDENTITY column. For information on
IDENTITY columns, see“The special IDENTITY column” on page 456.

The NEWID default

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally
Unique IDentifiers), can be used to uniquely identify rows in a table. The
values are generated such that a value produced on one computer will not
match that produced on another. They can therefore be used as keys in
replication and synchronization environments.

Using UUID values as primary keys has some tradeoffs when you compare
them with using GLOBAL AUTOINCREMENT values. For example,

♦ UUIDs can be easier to set up than GLOBAL AUTOINCREMENT, since
there is no need to assign each remote database a unique database id.
There is also no need to consider the number of databases in the system
or the number of rows in individual tables. The Extraction utility
[dbxtract] can be used to deal with the assignment of database ids. This
isn’t usually a concern for GLOBAL AUTOINCREMENT if the BIGINT
datatype is used, but it needs to be considered for smaller datatypes.

♦ UUID values are considerably larger than those required for GLOBAL
AUTOINCREMENT, and will require more table space in both primary
and foreign tables. Indexes on these columns will also be less efficient

82

Chapter 3. Ensuring Data Integrity

when UUIDs are used. In short, GLOBAL AUTOINCREMENT is likely
to perform better.

♦ UUIDs have no implicit ordering. For example, if A and B are UUID
values, A> B does not imply that A was generated after B, even when A
and B were generated on the same computer. If you require this behavior,
an additional column and index may be necessary.

♦ If UUID values are generated by an application (as opposed to the
server), the values must be inserted as UUID strings and converted using
strtouuid(). Attempting to insert binary values directly may result in
values colliding with those generated by the server or another system.

☞ For more information, see the “NEWID function [Miscellaneous]”[ASA
SQL Reference,page 159], the “STRTOUUID function [STRING]”[ASA SQL
Reference,page 192], the “UUIDTOSTR function [STRING]”[ASA SQL
Reference,page 200], or the “UNIQUEIDENTIFIER data type [Binary]”[ASA
SQL Reference,page 73].

The NULL default

For columns that allow NULL values, specifying a NULL default is exactly
the same as not specifying a default at all. If the client inserting the row does
not explicitly assign a value, the row automatically receives A NULL value.

You can use NULL defaults when information for some columns is optional
or not always available, and when it is not required for the data in the
database be correct.

☞ For more information about the NULL value, see “NULL value”[ASA
SQL Reference,page 48].

String and number defaults

You can specify a specific string or number as a default value, as long as the
column holds a string or number data type. You must ensure that the default
specified can be converted to the column’s data type.

Default strings and numbers are useful when there is a typical entry for a
given column. For example, if an organization has two offices, the
headquarters incity_1 and a small office incity_2, you may want to set a
default entry for a location column tocity_1, to make data entry easier.

Constant expression defaults

You can use a constant expression as a default value, as long as it does not
reference database objects. Constant expressions allow column defaults to

83

contain entries such asthe date fifteen days from today, which would be
entered as

... DEFAULT (dateadd(day, 15, getdate()))

84

Chapter 3. Ensuring Data Integrity

Using table and column constraints
Along with the basic table structure (number, name and data type of
columns, name and location of the table), the CREATE TABLE statement
and ALTER TABLE statement can specify many different table attributes
that allow control over data integrity. Constraints allow you to place
restrictions on the values that can appear in a column, or on the relationship
between values in different columns. Constraints can be either table-wide
constraints, or can apply to individual columns.

Caution
Altering tables can interfere with other users of the database. Although
you can execute the ALTER TABLE statement while other connections
are active, you cannot execute the ALTER TABLE statement if any other
connection is using the table you want to alter. For large tables, ALTER
TABLE is a time-consuming operation, and all other requests referencing
the table being altered are prohibited while the statement is processing.

This section describes how to use constraints to help ensure the accuracy of
data in the table.

Using CHECK constraints on columns

You use a CHECK condition to ensure that the values in a column satisfy
some definite criterion or rule. For example, these rules or criteria may
simply be required for data to be reasonable, or they may be more rigid rules
that reflect organization policies and procedures.

CHECK conditions on individual column values are useful when only a
restricted range of values are valid for that column.

Example 1 ♦ You can enforce a particular formatting requirement. For example, if a
table has a column for phone numbers you may wish to ensure that users
type them all in the same manner. For North American phone numbers,
you could use a constraint such as:

ALTER TABLE customer
MODIFY phone
CHECK (phone LIKE ’(___) ___-____’)

Example 2 ♦ You can ensure that the entry matches one of a limited number of values.
For example, to ensure that acity column only contains one of a certain
number of allowed cities (say, those cities where the organization has
offices), you could use a constraint such as:

ALTER TABLE office
MODIFY city
CHECK (city IN (’city_1’, ’city_2’, ’city_3’))

85

♦ By default, string comparisons are case insensitive unless the database is
explicitly created as a case-sensitive database.

Example 3 ♦ You can ensure that a date or number falls in a particular range. For
example, you may require that thestart_datecolumn of an employee
table must be between the date the organization was formed and the
current date using the following constraint:

ALTER TABLE employee
MODIFY start_date
CHECK (start_date BETWEEN ’1983/06/27’

AND CURRENT DATE)

♦ You can use several date formats. The YYYY/MM/DD format in this
example has the virtue of always being recognized regardless of the
current option settings.

Column CHECK tests only fail if the condition returns a value of FALSE. If
the condition returns a value of UNKNOWN, the change is allowed.

Using CHECK constraints on tables

A CHECK condition applied as a constraint on the table typically ensures
that two values in a row being added or modified have a proper relation to
each other.

When you give a name to the constraint, the constraint is held individually in
the system tables, and you can replace or delete them individually. Since this
is more flexible behavior, it is recommended that you either name a CHECK
constraint or use an individual column constraint wherever possible.

For example, in a library database, thedate_borrowedmust come before
thedate_returned.

ALTER TABLE loan
ADD CONSTRAINT valid_date CHECK(date_returned >= date_borrowed)

☞ For more information, see “ALTER TABLE statement”[ASA SQL
Reference,page 250].

Inheriting column CHECK constraints from domains

You can attach CHECK constraints to domains. Columns defined on those
data types inherit the CHECK constraints. A CHECK constraint explicitly
specified for the column overrides that from the domain.

Any column defined using theposint data type accepts only positive integers
unless the column itself has a CHECK constraint explicitly specified. In the
following example, the domain accepts only positive integers. Since any

86

Chapter 3. Ensuring Data Integrity

variable prefixed with the @ sign is replaced by the name of the column
when the CHECK constraint is evaluated, any variable name prefixed with
@ could be used instead of@col.

CREATE DATATYPE posint INT
CHECK (@col > 0)

An ALTER TABLE statement with the DELETE CHECK clause deletes all
CHECK constraints from the table definition, including those inherited from
domains.

Any changes made to constraint in a domain definition after a column is
defined on that domain arenot applied to the column. The column gets the
constraints from the domain when it is created, but there is no further
between the two.

☞ For more information about domains, see “Domains”[ASA SQL
Reference,page 74].

Working with table and column constraints in Sybase Central

In Sybase Central, you add, alter, and delete column constraints on the
Constraints tab of the table or column property sheet.

❖ To manage constraints

1. Open the Tables folder.

2. In the right pane, double-click the table you want to alter.

3. The right pane has separate tabs for unique constraints and check
constraints.

4. Make the appropriate changes to the constraint you wish to modify. For
example, to add a table or column constraint, click the Check Constraints
tab and choose File➤ New ➤ Table Check Constraint or File➤ New ➤

Column Check Constraint.

Modifying and deleting CHECK constraints

There are several ways to alter the existing set of CHECK constraints on a
table.

♦ You can add a new CHECK constraint to the table or to an individual
column.

♦ You can delete a CHECK constraint on a column by setting it to NULL.
For example, the following statement removes the CHECK constraint on
thephonecolumn in thecustomertable:

87

ALTER TABLE customer
MODIFY phone CHECK NULL

♦ You can replace a CHECK constraint on a column in the same way as
you would add a CHECK constraint. For example, the following
statement adds or replaces a CHECK constraint on thephonecolumn of
thecustomertable:

ALTER TABLE customer
MODIFY phone
CHECK (phone LIKE ’___-___-____’)

♦ You can modify a CHECK constraint defined on the table:

• You can add a new CHECK constraint using ALTER TABLE with an
ADD table-constraintclause.

• If you have defined constraint names, you can modify individual
constraints.

• If you have not defined constraint names, you can delete all existing
CHECK constraints (including column CHECK constraints and
CHECK constraints inherited from domains) using ALTER TABLE
DELETE CHECK, and then add in new CHECK constraints.

To use the ALTER TABLE statement with the DELETE CHECK
clause:

ALTER TABLE table_name
DELETE CHECK

Sybase Central lets you add, modify and delete both table and column
CHECK constraints. For more information, see“Working with table and
column constraints in Sybase Central” on page 87.

Deleting a column from a table does not delete CHECK constraints
associated with the column held in the table constraint. Not removing the
constraints producesa column not found error message upon any
attempt to insert, or even just query, data in the table.

Table CHECK constraints fail only if a value of FALSE is returned. A value
of UNKNOWN allows the change.

88

Chapter 3. Ensuring Data Integrity

Using domains
A domain is a user-defined data type that, together with other attributes, can
restrict the range of acceptable values or provide defaults. A domain extends
one of the built-in data types. The range of permissible values is usually
restricted by a check constraint. In addition, a domain can specify a default
value and may or may not allow nulls.

You can define your own domains for a number of reasons.

♦ A number of common errors can be prevented if inappropriate values
cannot be entered. A constraint placed on a domain ensures that all
columns and variables intended to hold values in a desired range or
format can hold only the intended values. For example, a data type can
ensure that all credit card numbers typed into the database contain the
correct number of digits.

♦ Domains can make it much easier to understand applications and the
structure of a database.

♦ Domains can prove convenient. For example, you may intend that all
table identifiers are positive integers that, by default, auto-increment. You
could enforce this restriction by entering the appropriate constraints and
defaults each time you define a new table, but it is less work to define a
new domain, then simply state that the identifier can take only values
from the specified domain.

☞ For more information about domains, see “SQL Data Types”[ASA SQL
Reference,page 51].

Creating domains (Sybase Central)

You can use Sybase Central to create a domain or assign it to a column.

❖ To create a new domain (Sybase Central)

1. In the left pane, select the Domains folder.

2. Choose File➤ New ➤ Domain.

The Domain Creation wizard appears.

3. Follow the instructions in the wizard.

All domains appear in the Domains folder in Sybase Central.

89

❖ To assign domains to columns (Sybase Central)

1. For the desired table, click the Columns tab in the right pane.

2. In the data type column for the desired column, either:
♦ Select the domain from the dropdown list, or

♦ Click the button next to the dropdown list and choose the domain on
the property sheet.

Creating domains (SQL)

You can use the CREATE DOMAIN statement to create and define domains.

❖ To create a new domain (SQL)

1. Connect to a database.

2. Execute a CREATE DOMAIN statement.

Example 1: Simple
domains

Some columns in the database are to be used for people’s names and others
are to store addresses. You might then define type following domains.

CREATE DOMAIN persons_name CHAR(30)
CREATE DOMAIN street_address CHAR(35)

Having defined these domains, you can use them much as you would the
built-in data types. For example, you can use these definitions to define a
tables as follows.

CREATE TABLE customer (
id INT DEFAULT AUTOINCREMENT PRIMARY KEY
name persons_name
address street_address

)

Example 2: Default
values, check
constraints, and
identifiers

In the above example, the table’s primary key is specified to be of type
integer. Indeed, many of your tables may require similar identifiers. Instead
of specifying that these are integers, it is much more convenient to create an
identifier domain for use in these applications.

When you create a domain, you can specify a default value and provide
check constraint to ensure that no inappropriate values are typed into any
column of this type.

Integer values are commonly used as table identifiers. A good choice for
unique identifiers is to use positive integers. Since such identifiers are likely
to be used in many tables, you could define the following domain.

CREATE DOMAIN identifier INT
DEFAULT AUTOINCREMENT
CHECK (@col > 0)

90

Chapter 3. Ensuring Data Integrity

This check constraint uses the variable @col. Using this definition, you can
rewrite the definition of the customer table, shown above.

CREATE TABLE customer (
id identifier PRIMARY KEY
name persons_name
address street_address

)

Example 3: Built-in
domains

Adaptive Server Anywhere comes with some domains pre-defined. You can
use these pre-defined domains as you would a domain that you created
yourself. For example, the following monetary domain has already been
created for you.

CREATE DOMAIN MONEY NUMERIC(19,4)
NULL

☞ For more information, see “CREATE DOMAIN statement”[ASA SQL
Reference,page 300].

Deleting domains

You can use either Sybase Central or a DROP DOMAIN statement to delete
a domain.

Only the user DBA or the user who created a domain can drop it. In
addition, since a domain cannot be dropped if any variable or column in the
database is an instance of the domain, you need to first drop any columns or
variables of that type before you can drop the domain.

❖ To delete a domain (Sybase Central)

1. Open the Domains folder.

2. Right-click the desired domain and choose Delete from the popup menu.

❖ To delete a domain (SQL)

1. Connect to a database.

2. Execute a DROP DOMAIN statement.

Example The following statement drops the customer_name domain.

DROP DOMAIN customer_name

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

91

Enforcing entity and referential integrity
The relational structure of the database enables the personal server to
identify information within the database, and ensures that all the rows in
each table uphold the relationships between tables (described in the database
structure).

Enforcing entity integrity

When a user inserts or updates a row, the database server ensures that the
primary key for the table is still valid: that each row in the table is uniquely
identified by the primary key.

Example 1 Theemployeetable in the sample database uses an employee ID as the
primary key. When you add a new employee to the table, the database server
checks that the new employee ID value is unique and is not NULL.

Example 2 Thesales_order_itemstable in the sample database uses two columns to
define a primary key.

This table holds information about items ordered. One column contains an
id specifying an order, but there may be several items on each order, so this
column by itself cannot be a primary key. An additionalline_id column
identifies which line corresponds to the item. The columnsid andline_id,
taken together, specify an item uniquely, and form the primary key.

If a client application breaches entity integrity

Entity integrity requires that each value of a primary key be unique within
the table, and that no NULL values exist. If a client application attempts to
insert or update a primary key value, providing values that are not unique
would breach entity integrity. A breach in entity integrity prevents the new
information from being added to the database, and instead sends the client
application an error.

The application programmer should decide how to present this information
to the user and enable the user to take appropriate action. The appropriate
action is usually as simple as asking the user to provide a different, unique
value for the primary key.

Primary keys enforce entity integrity

Once you specify the primary key for each table, maintaining entity integrity
requires no further action by either client application developers or by the
database administrator.

92

Chapter 3. Ensuring Data Integrity

The table owner defines the primary key for a table when they create it. If
they modify the structure of a table at a later date, they can also redefine the
primary key.

Some application development systems and database design tools allow you
to create and alter database tables. If you are using such a system, you may
not have to enter the CREATE TABLE or ALTER TABLE statement
explicitly: the application may generate the statement itself from the
information you provide.

☞ For more information about creating primary keys, see“Managing
primary keys” on page 42. For the detailed syntax of the CREATE TABLE
statement, see “CREATE TABLE statement”[ASA SQL Reference,page 361].
For information about changing table structure, see the “ALTER TABLE
statement”[ASA SQL Reference,page 250].

Enforcing referential integrity

A foreign key (made up of a particular column or combination of columns)
relates the information in one table (theforeign table) to information in
another (referencedor primary) table. For the foreign key relationship to
be valid, the entries in the foreign key must correspond to the primary key
values of a row in the referenced table. Occasionally, some other unique
column combination may be referenced instead of a primary key.

Example 1 The sample database contains an employee table and a department table.
The primary key for the employee table is the employee ID, and the primary
key for the department table is the department ID. In the employee table, the
department ID is called aforeign key for the department table because each
department ID in the employee table corresponds exactly to a department ID
in the department table.

The foreign key relationship is a many-to-one relationship. Several entries in
the employee table have the same department ID entry, but the department
ID is the primary key for the department table, and so is unique. If a foreign
key could reference a column in the department table containing duplicate
entries, or entries with a NULL value, there would be no way of knowing
which row in the department table is the appropriate reference. This is a
mandatory foreign key.

Example 2 Suppose the database also contained an office table listing office locations.
The employee table might have a foreign key for the office table that
indicates which city the employee’s office is in. The database designer can
choose to leave an office location unassigned at the time the employee is
hired, for example, either because they haven’t been assigned to an office
yet, or because they don’t work out of an office. In this case, the foreign key

93

can allow NULL values, and is optional.

Foreign keys enforce referential integrity

Like primary keys, you use the CREATE TABLE or ALTER TABLE
statements to create foreign keys. Once you create a foreign key, the column
or columns in the key can contain only values that are present as primary key
values in the table associated with the foreign key.

☞ For more information about creating foreign keys, see“Managing
primary keys” on page 42.

Losing referential integrity

Your database can lose referential integrity if someone:

♦ updates or deletes a primary key value. All the foreign keys referencing
that primary key would become invalid.

♦ adds a new row to the foreign table, and enters a value for the foreign key
that has no corresponding primary key value. The database would
become invalid.

Adaptive Server Anywhere provides protection against both types of
integrity loss.

If a client application breaches referential integrity

If a client application updates or deletes a primary key value in a table, and if
a foreign key references that primary key value elsewhere in the database,
there is a danger of a breach of referential integrity.

Example If the server allowed the primary key to be updated or deleted, and made no
alteration to the foreign keys that referenced it, the foreign key reference
would be invalid. Any attempt to use the foreign key reference, for example
in a SELECT statement using a KEY JOIN clause, would fail, as no
corresponding value in the referenced table exists.

While Adaptive Server Anywhere handles breaches of entity integrity in a
generally straightforward fashion by simply refusing to enter the data and
returning an error message, potential breaches of referential integrity
become more complicated. You have several options (known as referential
integrity actions) available to help you maintain referential integrity.

Referential integrity actions

Maintaining referential integrity when updating or deleting a referenced

94

Chapter 3. Ensuring Data Integrity

primary key can be as simple as disallowing the update or delete. Often,
however, it is also possible to take a specific action on each foreign key to
maintain referential integrity. The CREATE TABLE and ALTER TABLE
statements allow database administrators and table owners to specify what
action to take on foreign keys that reference a modified primary key when a
breach occurs.

You can specify each of the available referential integrity actions separately
for updates and deletes of the primary key:

♦ RESTRICT Generates an error and prevents the modification if an
attempt to modify a referenced primary key value occurs. This is the
default referential integrity action.

♦ SET NULL Sets all foreign keys that reference the modified primary key
to NULL.

♦ SET DEFAULT Sets all foreign keys that reference the modified primary
key to the default value for that column (as specified in the table
definition).

♦ CASCADE When used with ON UPDATE, this action updates all
foreign keys that reference the updated primary key to the new value.
When used with ON DELETE, this action deletes all rows containing
foreign keys that reference the deleted primary key.

System triggers implement referential integrity actions. The trigger, defined
on the primary table, is executed using the permissions of the owner of the
secondarytable. This behavior means that cascaded operations can take
place between tables with different owners, without additional permissions
having to be granted.

Referential integrity checking

For foreign keys defined to RESTRICT operations that would violate
referential integrity, default checks occur at the time a statement executes. If
you specify a CHECK ON COMMIT clause, then the checks occur only
when the transaction is committed.

Using a database option
to control check time

Setting the WAIT_FOR_COMMIT database option controls the behavior
when a foreign key is defined to restrict operations that would violate
referential integrity. The CHECK ON COMMIT clause can override this
option.

With the default WAIT_FOR_COMMIT set to OFF, operations that would
leave the database inconsistent cannot execute. For example, an attempt to
DELETE a department that still has employees in it is not allowed. The

95

following statement gives the errorprimary key for row in table

’department’ is referenced in another table :

DELETE FROM department
WHERE dept_id = 200

Setting WAIT_FOR_COMMIT to ON causes referential integrity to remain
unchecked until a commit executes. If the database is in an inconsistent
state, the database disallows the commit and reports an error. In this mode, a
database user could delete a department with employees in it, however, the
user cannot commit the change to the database until they:

♦ Delete or reassign the employees belonging to that department.

♦ Redo the search condition on a SELECT statement to select the rows that
violate referential integrity.

♦ Insert thedept_id row back into thedepartment table.

♦ Roll back the transaction to undo the DELETE operation.

96

Chapter 3. Ensuring Data Integrity

Integrity rules in the system tables
All the information about database integrity checks and rules is held in the
following system tables:

System table Description

SYS.SYSTABLE The view_def column of SYS.SYSTABLE
holds CHECK constraints. For views, the
view_defholds the CREATE VIEW command
that created the view. You can check whether
a particular table is a base table or a view by
looking at thetable_type column, which is
BASE or VIEW.

SYS.SYSTRIGGER SYS.SYSTRIGGER holds referential integrity
actions.

The referential_action column holds a single
character indicating whether the action is
cascade (C), delete (D), set null (N), or restrict
(R).

The event column holds a single character
specifying the event that causes the action
to occur: insert, delete (A), insert, update
(B), update (C), a delete (D), delete, update
(E),insert (I), update (U), insert, delete, update
(M).

The trigger_time column shows whether
the action occurs after (A) or before (B) the
triggering event.

SYS.SYSFOREIGNKEYS This view presents the foreign key information
from the two tables SYS.SYSFOREIGNKEY
and SYS.SYSFKCOL in a more readable
format.

SYS.SYSCOLUMNS This view presents the information from the
SYS.SYSCOLUMN table in a more readable
format. It includes default settings and primary
key information for columns.

☞ For more information about the contents of each system table, see
“System Tables”[ASA SQL Reference,page 611]. You can use Sybase Central
or Interactive SQL to browse these tables and views.

97

CHAPTER 4

Using Transactions and Isolation Levels

About this chapter You can group SQL statements into transactions, which have the property
that either all statements are executed or none is executed. You should
design each transaction to perform a task that changes your database from
one consistent state to another.

This chapter describes transactions and how to use them in applications. It
also describes how Adaptive Server Anywhere you can set isolation levels to
limit the interference among concurrent transaction.

Contents Topic: page

Introduction to transactions 100

Isolation levels and consistency 104

Transaction blocking and deadlock 110

Choosing isolation levels 112

Isolation level tutorials 116

How locking works 131

Particular concurrency issues 145

Replication and concurrency 148

Summary 151

99

Introduction to transactions
To ensure data integrity, it is essential that you can identify states in which
the information in your database isconsistent. The concept of consistency is
best illustrated through an example:

Consistency example Suppose you use your database to handle financial accounts, and you wish to
transfer money from one client’s account to another. The database is in a
consistent state both before and after the money is transferred; but it is not in
a consistent state after you have debited money from one account and before
you have credited it to the second. During a transferal of money, the
database is in a consistent state when the total amount of money in the
clients’ accounts is as it was before any money was transferred. When the
money has been half transferred, the database is in an inconsistent state.
Either both or neither of the debit and the credit must be processed.

Transactions are logical
units of work

A transaction is a logical unit of work. Each transaction is a sequence of
logically related commands that accomplish one task and transform the
database from one consistent state into another. The nature of a consistent
state depends on your database.

The statements within a transaction are treated as an indivisible unit: either
all are executed or none is executed. At the end of each transaction, you
commit your changes to make them permanent. If for any reason some of
the commands in the transaction do not process properly, then any
intermediate changes are undone, orrolled back. Another way of saying
this is that transactions areatomic.

Grouping statements into transactions is key both to protecting the
consistency of your data (even in the event of media or system failure), and
to managing concurrent database operations. Transactions may be safely
interleaved and the completion of each transaction marks a point at which
the information in the database is consistent.

In the event of a system failure or database crash during normal operation,
Adaptive Server Anywhere performs automatic recovery of your data when
the database is next started. The automatic recovery process recovers all
completed transactions, and rolls back any transactions that were
uncommitted when the failure occurred. The atomic character of
transactions ensures that databases are recovered to a consistent state.

☞ For more information about database backups and data recovery, see
“Backup and Data Recovery”[ASA Database Administration Guide,page 337].

For more information about concurrent database usage, see“Introduction to
concurrency” on page 102.

100

Chapter 4. Using Transactions and Isolation Levels

Using transactions

Adaptive Server Anywhere expects you to group your commands into
transactions. Knowing which commands or actions signify the start or end of
a transaction lets you take full advantage of this feature.

Starting transactions Transactions start with one of the following events:

♦ The first statement following a connection to a database

♦ The first statement following the end of a transaction

Completing transactions Transactions complete with one of the following events:

♦ A COMMIT statement makes the changes to the database permanent.

♦ A ROLLBACK statement undoes all the changes made by the transaction.

♦ A statement with a side effect of an automatic commit is executed: data
definition commands, such as ALTER, CREATE, COMMENT, and
DROP all have the side effect of an automatic commit.

♦ A disconnection from a database performs an implicit rollback.

♦ ODBC and JDBC have an autocommit setting that enforces a COMMIT
after each statement. By default, ODBC and JDBC require autocommit to
be on, and each statement is a single transaction. If you want to take
advantage of transaction design possibilities, then you should turn
autocommit off.

☞ For more information on autocommit, see “Setting autocommit or
manual commit mode”[ASA Programming Guide,page 47].

♦ Setting the database option CHAINED to OFF is similar to enforcing an
autocommit after each statement. By default, connections that use
jConnect or Open Client applications have CHAINED set to OFF.

☞ For more information, see “Setting autocommit or manual commit
mode” [ASA Programming Guide,page 47], and “CHAINED option
[compatibility]” [ASA Database Administration Guide,page 581].

Options in
Interactive SQL

Interactive SQL lets you control when and how transactions from your
application terminate:

♦ If you set the option AUTO_COMMIT to ON, Interactive SQL
automatically commits your results following every successful statement
and automatically perform a ROLLBACK after each failed statement.

101

♦ The setting of the option COMMIT_ON_EXIT controls what happens to
uncommitted changes when you exit Interactive SQL. If this option is set
to ON (the default), Interactive SQL does a COMMIT; otherwise it
undoes your uncommitted changes with a ROLLBACK statement.

☞ Adaptive Server Anywhere also supports Transact-SQL commands such
as BEGIN TRANSACTION, for compatibility with Sybase Adaptive Server
Enterprise. For further information, see“Transact-SQL Compatibility” on
page 439.

Introduction to concurrency

Concurrency is the ability of the database server to process multiple
transactions at the same time. Were it not for special mechanisms within the
database server, concurrent transactions could interfere with each other to
produce inconsistent and incorrect information.

Example A database system in a department store must allow many clerks to update
customer accounts concurrently. Each clerk must be able to update the status
of the accounts as they assist each customer: they cannot afford to wait until
no one else is using the database.

Who needs to know
about concurrency

Concurrency is a concern to all database administrators and developers.
Even if you are working with a single-user database, you must be concerned
with concurrency if you wish to process instructions from multiple
applications or even from multiple connections from a single application.
These applications and connections can interfere with each other in exactly
the same way as multiple users in a network setting.

Transaction size affects
concurrency

The way you group SQL statements into transactions can have significant
effects on data integrity and on system performance. If you make a
transaction too short and it does not contain an entire logical unit of work,
then inconsistencies can be introduced into the database. If you write a
transaction that is too long and contains several unrelated actions, then there
is greater chance that a ROLLBACK will unnecessarily undo work that
could have been committed quite safely into the database.

If your transactions are long, they can lower concurrency by preventing
other transactions from being processed concurrently.

There are many factors that determine the appropriate length of a
transaction, depending on the type of application and the environment.

Savepoints within transactions

You may identify important states within a transaction and return to them
selectively usingsavepointsto separate groups of related statements.

102

Chapter 4. Using Transactions and Isolation Levels

A SAVEPOINT statement defines an intermediate point during a transaction.
You can undo all changes after that point using a ROLLBACK TO
SAVEPOINT statement. Once a RELEASE SAVEPOINT statement has
been executed or the transaction has ended, you can no longer use the
savepoint.

No locks are released by the RELEASE SAVEPOINT or ROLLBACK TO
SAVEPOINT commands: locks are released only at the end of a transaction.

Naming and nesting
savepoints

Using named, nested savepoints, you can have many active savepoints
within a transaction. Changes between a SAVEPOINT and a RELEASE
SAVEPOINT can be canceled by rolling back to a previous savepoint or
rolling back the transaction itself. Changes within a transaction are not a
permanent part of the database until the transaction is committed. All
savepoints are released when a transaction ends.

Savepoints cannot be used in bulk operations mode. There is very little
additional overhead in using savepoints.

103

Isolation levels and consistency
There are four isolation
levels

Adaptive Server Anywhere allows you to control the degree to which the
operations in one transaction are visible to the operations in other concurrent
transactions. You do so by setting a database option called theisolation
level. Adaptive Server Anywhere has four different isolation levels
(numbered 0 through 3) that prevent some or all inconsistent behavior. Level
3 provides the highest level of isolation. Lower levels allow more
inconsistencies, but typically have better performance. Level 0 is the default
setting.

All isolation levels guarantee that each transaction will execute completely
or not at all, and that no updates will be lost.

Typical types of inconsistency

There are three typical types of inconsistency that can occur during the
execution of concurrent transactions. This list is not exhaustive as other
types of inconsistencies can also occur. These three types are mentioned in
the ISO SQL/92 standard and are important because behavior at lower
isolation levels is defined in terms of them.

♦ Dirty read Transaction A modifies a row, but does not commit or roll
back the change. Transaction B reads the modified row. Transaction A
then either further changes the row before performing a COMMIT, or
rolls back its modification. In either case, transaction B has seen the row
in a state which was never committed.
• For more information about how isolation levels create dirty reads, see

“Dirty read tutorial” on page 116.

♦ Non-repeatable read Transaction A reads a row. Transaction B then
modifies or deletes the row and performs a COMMIT. If transaction A
then attempts to read the same row again, the row will have been changed
or deleted.
• For more information about non-repeatable reads, see“Non-repeatable

read tutorial” on page 119.

♦ Phantom row Transaction A reads a set of rows that satisfy some
condition. Transaction B then executes an INSERT, or an UPDATE on a
row which did not previously meet A’s condition. Transaction B commits
these changes. These newly committed rows now satisfy the condition.
Transaction A then repeats the initial read and obtains a different set of
rows.
• For more information about phantom rows, see“Phantom row tutorial”

on page 123.

104

Chapter 4. Using Transactions and Isolation Levels

Other types of inconsistencies can also exist. These three were chosen for
the ISO SQL/92 standard because they are typical problems and because it
was convenient to describe amounts of locking between transactions in
terms of them.

Isolation levels and dirty
reads, non-repeatable
reads, and phantom rows

The isolation levels are different with respect to the type of inconsistent
behavior that Adaptive Server Anywhere allows. An x means that the
behavior is prevented, and a✔ means that the behavior may occur.

Isolation level Dirty reads Non-repeatable reads Phantom rows

0 ✔ ✔ ✔

1 x ✔ ✔

2 x x ✔

3 x x x

This table demonstrates two points:

♦ Each isolation level eliminates one of the three typical types of
inconsistencies.

♦ Each level eliminates the types of inconsistencies eliminated at all lower
levels.

The four isolation levels have different names under ODBC. These names
are based on the names of the inconsistencies that they prevent, and are
described in“The ValuePtr parameter” on page 107.

Cursor instability

Another significant inconsistency iscursor instability . When this
inconsistency is present, a transaction can modify a row that is being
referenced by another transaction’s cursor. Cursor stability ensures that
applications using cursors do not introduce inconsistencies into the data in
the database.

Example Transaction A reads a row using a cursor. Transaction B modifies that row.
Not realizing that the row has been modified, Transaction A modifies it,
rendering the affected row’s data incorrect.

Eliminating cursor
instability

Adaptive Server Anywhere achievescursor stability at isolation levels 1, 2,
and 3. Cursor stability ensures that no other transactions can modify
information that is contained in the present row of your cursor. The
information in a row of a cursor may be the copy of information contained in
a particular table or may be a combination of data from different rows of

105

multiple tables. More than one table will likely be involved whenever you
use a join or sub-selection within a SELECT statement.

☞ For information on programming SQL procedures and cursors, see
“Using Procedures, Triggers, and Batches” on page 609.

☞ Cursors are used only when you are using Adaptive Server Anywhere
through another application. For more information, see “Using SQL in
Applications” [ASA Programming Guide,page 11].

A related but distinct concern for applications using cursors is whether
changes to underlying data are visible to the application. You can control the
changes that are visible to applications by specifying the sensitivity of the
cursor.

☞ For more information about cursor sensitivity, see “Adaptive Server
Anywhere cursors”[ASA Programming Guide,page 30].

Setting the isolation level

Each connection to the database has its own isolation level. In addition, the
database can store a default isolation level for each user or group. The
PUBLIC setting enables you to set a single default isolation level for the
entire database’s group.

The isolation level is a database option. You change database options using
the SET OPTION statement. For example, the following command sets the
isolation level for the current user to 3, the highest level.

SET OPTION ISOLATION_LEVEL = 3

You can change the isolation of your connection and the default level
associated with your user ID using the SET OPTION command. If you have
permission, you can also change the isolation level for other users or groups.

❖ To set the isolation level for the current user ID

1. Execute the SET OPTION statement. For example, the following
statement sets the isolation level to 3 for the current user:

SET OPTION ISOLATION_LEVEL = 3

106

Chapter 4. Using Transactions and Isolation Levels

❖ To set the isolation level for a user or group

1. Connect to the database as a user with DBA authority.

2. Execute the SET OPTION statement, adding the name of the group and a
period before ISOLATION_LEVEL. For example, the following
command sets the default isolation for the special group PUBLIC to 3.

SET OPTION PUBLIC.ISOLATION_LEVEL = 3

❖ To set the isolation level just for your present session

1. Execute the SET OPTION statement using the TEMPORARY keyword.
For example, the following statement sets the isolation level to 3 for the
duration of your connection:

SET TEMPORARY OPTION ISOLATION_LEVEL = 3

Once you disconnect, your isolation level reverts to its previous value.

Default isolation level When you connect to a database, the database server determines your initial
isolation level as follows:

1. A default isolation level may be set for each user and group. If a level is
stored in the database for your user ID, then the database server uses it.

2. If not, the database server checks the groups to which you belong until it
finds a level. All users are members of the special group PUBLIC. If it
finds no other setting first, then Adaptive Server Anywhere will use the
level assigned to that group.

☞ For more information about users and groups, see “Managing User IDs
and Permissions”[ASA Database Administration Guide,page 389].

☞ For more information about the SET OPTION statement syntax, see
“SET OPTION statement”[ASA SQL Reference,page 556].

☞ You may wish to change the isolation level in mid-transaction if, for
example, just one table or group of tables requires serialized access. For
information about changing the isolation level within a transaction, see
“Changing isolation levels within a transaction” on page 109.

Setting the isolation level from an ODBC-enabled application

ODBC applications callSQLSetConnectAttr with Attribute set to
SQL_ATTR_TXN_ISOLATION andValuePtr set according to the
corresponding isolation level:

The ValuePtr parameter

107

ValuePtr Isolation Level

SQL_TXN_READ_-
UNCOMMITTED

0

SQL_TXN_READ_COMMITTED 1

SQL_TXN_REPEATABLE_READ 2

SQL_TXT_SERIALIZABLE 3

Changing an isolation
level via ODBC

You can change the isolation level of your connection via ODBC using the
functionSQLSetConnectOptionin the libraryODBC32.dll.

TheSQLSetConnectOptionfunction reads three parameters: the value of
the ODBC connection handle, the fact that you wish to set the isolation
level, and the value corresponding to the isolation level. These values appear
in the table below.

String Value

SQL_TXN_ISOLATION 108

SQL_TXN_READ_-
UNCOMMITTED

1

SQL_TXN_READ_COMMITTED 2

SQL_TXN_REPEATABLE_READ 4

SQL_TXT_SERIALIZABLE 8

Do not use the SET OPTION statement to change an isolation level from
within an ODBC application. Since the ODBC driver does not parse the
statements, execution of any statement in ODBC will not be recognized by
the ODBC driver.

Example The following function call sets the isolation level of the connection
MyConnection to isolation level 2:

SQLSetConnectOption(MyConnection.hDbc,
SQL_TXN_ISOLATION,
SQL_TXN_REPEATABLE_READ)

ODBC uses the isolation feature to support assorted database lock options.
For example, in PowerBuilder you can use the Lock attribute of the
transaction object to set the isolation level when you connect to the database.
The Lock attribute is a string, and is set as follows:

SQLCA.lock = "RU"

The Lock option is honored only at the moment the CONNECT occurs.

108

Chapter 4. Using Transactions and Isolation Levels

Changes to the Lock attribute after the CONNECT have no effect on the
connection.

Changing isolation levels within a transaction

Sometimes you will find that different isolation levels are suitable for
different parts of a single transaction. Adaptive Server Anywhere allows you
to change the isolation level of your database in the middle of a transaction.

When you change the ISOLATION_LEVEL option in the middle of a
transaction, the new setting affects only the following:

♦ Any cursors opened after the change

♦ Any statements executed after the change

You may wish to change the isolation level during a transaction, as doing so
affords you control over the number of locks your transaction places. You
may find a transaction needs to read a large table, but perform detailed work
with only a few of the rows. If an inconsistency would not seriously affect
your transaction, set the isolation to a low level while you scan the large
table to avoid delaying the work of others.

You may also wish to change the isolation level in mid transaction if, for
example, just one table or group of tables requires serialized access.

For an example in which the isolation level is changed in the middle of a
transaction, see“Phantom row tutorial” on page 123.

Viewing the isolation level

You can inspect the isolation level of the current connection using the
CONNECTION_PROPERTY function.

❖ To view the isolation level for the current connection

1. Execute the following statement:

SELECT CONNECTION_PROPERTY(’ISOLATION_LEVEL’)

109

Transaction blocking and deadlock
When a transaction is being executed, the database server places locks on
rows to prevent other transactions from interfering with the affected rows.
Locks control the amount and types of interference permitted.

Adaptive Server Anywhere usestransaction blocking to allow transactions
to execute concurrently without interference, or with limited interference.
Any transaction can acquire a lock to prevent other concurrent transactions
from modifying or even accessing a particular row. This transaction
blocking scheme always stops some types of interference. For example, a
transaction that is updating a particular row of a table always acquires a lock
on that row to ensure that no other transaction can update or delete the same
row at the same time.

Transaction blocking

When a transaction attempts to carry out an operation, but is forbidden by a
lock held by another transaction, a conflict arises and the progress of the
transaction attempting to carry out the operation is impeded or blocked.

“Two-phase locking” on page 140describes deadlock, which occurs when
two or more transactions are blocked by each other in such a way that none
can proceed.

Sometimes a set of transactions arrive at a state where none of them can
proceed. For more information, see“Deadlock” on page 111.

The BLOCKING option

If two transactions have each acquired a read lock on a single row, the
behavior when one of them attempts to modify that row depends on the
database setting BLOCKING. To modify the row, that transaction must
block the other, yet it cannot do so while the other transaction has it blocked.

♦ If BLOCKING is ON (the default), then the transaction that attempts to
write waits until the other transaction releases its read lock. At that time,
the write goes through.

♦ If BLOCKING has been set to OFF, then the transaction that attempts to
write receives an error.

When BLOCKING is OFF, the transaction terminates instead of waiting and
any changes it has made are rolled back. In this event, try executing the
transaction again, later.

Blocking is more likely to occur at higher isolation levels because more

110

Chapter 4. Using Transactions and Isolation Levels

locking and more checking is done. Higher isolation levels usually provide
less concurrency. How much less depends on the individual natures of the
concurrent transactions.

For more information about the BLOCKING option, see “BLOCKING
option [database]”[ASA Database Administration Guide,page 581].

Deadlock

Transaction blocking can lead todeadlock, a situation in which a set of
transactions arrive at a state where none of them can proceed.

Reasons for deadlocks A deadlock can arise for two reasons:

♦ A cyclical blocking conflict Transaction A is blocked on transaction
B, and transaction B is blocked on transaction A. Clearly, more time will
not solve the problem, and one of the transactions must be canceled,
allowing the other to proceed. The same situation can arise with more
than two transactions blocked in a cycle.

♦ All active database threads are blocked When a transaction
becomes blocked, its database thread is not relinquished. If the database
is configured with three threads and transactions A, B, and C are blocked
on transaction D which is not currently executing a request, then a
deadlock situation has arisen since there are no available threads.

Adaptive Server Anywhere automatically rolls back the last transaction that
became blocked (eliminating the deadlock situation), and returns an error to
that transaction indicating which form of deadlock occurred.

The number of database threads that the server uses depends on the
individual database’s setting. For information about setting the number of
database threads, see “Controlling threading behavior”[ASA Database
Administration Guide,page 15].

Determining who is
blocked

You can use the sa_conn_info system procedure to determine which
connections are blocked on which other connections. This procedure returns
a result set consisting of a row for each connection. One column of the result
set lists whether the connection is blocked, and if so which other connection
it is blocked on.

☞ For more information, see “sa_conn_info system procedure”[ASA SQL
Reference,page 710].

111

Choosing isolation levels
The choice of isolation level depends on the kind of task an application is
carrying out. This section gives some guidelines for choosing isolation
levels.

When you choose an appropriate isolation level you must balance the need
for consistency and accuracy with the need for concurrent transactions to
proceed unimpeded. If a transaction involves only one or two specific values
in one table, it is unlikely to interfere as much with other processes as one
which searches many large tables and may need to lock many rows or entire
tables and may take a very long time to complete.

For example, if your transactions involve transferring money between bank
accounts or even checking account balances, you will likely want to do your
utmost to ensure that the information you return is correct. On the other
hand, if you just want a rough estimate of the proportion of inactive
accounts, then you may not care whether your transaction waits for others or
not and indeed may be willing to sacrifice some accuracy to avoid interfering
with other users of the database.

Furthermore, a transfer may affect only the two rows which contain the two
account balances, whereas all the accounts must be read in order to calculate
the estimate. For this reason, the transfer is less likely to delay other
transactions.

Adaptive Server Anywhere provides four levels of isolation: levels 0, 1, 2,
and 3. Level 3 provides complete isolation and ensures that transactions are
interleaved in such a manner that the schedule is serializable.

Serializable schedules

To process transactions concurrently, the database server must execute some
component statements of one transaction, then some from other transactions,
before continuing to process further operations from the first. The order in
which the component operations of the various transactions are interleaved
is called theschedule.

Applying transactions concurrently in this manner can result in many
possible outcomes, including the three particular inconsistencies described
in the previous section. Sometimes, the final state of the database also could
have been achieved had the transactions been executed sequentially,
meaning that one transaction was always completed in its entirety before the
next was started. A schedule is calledserializablewhenever executing the
transactions sequentially, in some order, could have left the database in the
same state as the actual schedule.

112

Chapter 4. Using Transactions and Isolation Levels

For more information about how Adaptive Server Anywhere handles
serialization, see“Two-phase locking” on page 140.

Serializability is the commonly accepted criterion for correctness. A
serializable schedule is accepted as correct because the database is not
influenced by the concurrent execution of the transactions.

The isolation level affects a transaction’s serializability. At isolation level 3,
all schedules are serializable. The default setting is 0.

Serializable means that
concurrency has added
no effect

Even when transactions are executed sequentially, the final state of the
database can depend upon the order in which these transactions are
executed. For example, if one transaction sets a particular cell to the value 5
and another sets it to the number 6, then the final value of the cell is
determined by which transaction executes last.

Knowing a schedule is serializable does not settle which order transactions
would best be executed, but rather states that concurrency has added no
effect. Outcomes which may be achieved by executing the set of transactions
sequentially in some order are all assumed correct.

Unserializable schedules
introduce inconsistencies

The inconsistencies introduced in“Typical types of inconsistency” on
page 104are typical of the types of problems that appear when the schedule
is not serializable. In each case, the inconsistency appeared because the
statements were interleaved in such a way as to produce a result that would
not be possible if all transactions were executed sequentially. For example, a
dirty read can only occur if one transaction can select rows while another
transaction is in the middle of inserting or updating data in the same row.

Typical transactions at various isolation levels

Various isolation levels lend themselves to particular types of tasks. Use the
information below to help you decide which level is best suited to each
particular operation.

Typical level 0
transactions

Transactions that involve browsing or performing data entry may last several
minutes, and read a large number of rows. If isolation level 2 or 3 is used,
concurrency can suffer. Isolation level of 0 or 1 is typically used for this kind
of transaction.

For example, a decision support application that reads large amounts of
information from the database to produce statistical summaries may not be
significantly affected if it reads a few rows that are later modified. If high
isolation is required for such an application, it may acquire read locks on
large amounts of data, not allowing other applications write access to it.

Typical level 1
transactions

Isolation level 1 is particularly useful in conjunction with cursors, because

113

this combination ensures cursor stability without greatly increasing locking
requirements. Adaptive Server Anywhere achieves this benefit through the
early release of read locks acquired for the present row of a cursor. These
locks must persist until the end of the transaction at either levels two or three
in order to guarantee repeatable reads.

For example, a transaction that updates inventory levels through a cursor is
particularly suited to this level, because each of the adjustments to inventory
levels as items are received and sold would not be lost, yet these frequent
adjustments would have minimal impact on other transactions.

Typical level 2
transactions

At isolation level 2, rows that match your criterion cannot be changed by
other transactions. You can thus employ this level when you must read rows
more than once and rely that rows contained in your first result set won’t
change.

Because of the relatively large number of read locks required, you should
use this isolation level with care. As with level 3 transactions, careful design
of your database and indexes reduce the number of locks acquired and hence
can improve the performance of your database significantly.

Typical level 3
transactions

Isolation level 3 is appropriate for transactions that demand the most in
security. The elimination of phantom rows lets you perform multi-step
operations on a set of rows without fear that new rows will appear partway
through your operations and corrupt the result.

However much integrity it provides, isolation level 3 should be used
sparingly on large systems that are required to support a large number of
concurrent transactions. Adaptive Server Anywhere places more locks at
this level than at any other, raising the likelihood that one transaction will
impede the process of many others.

Improving concurrency at isolation levels 2 and 3

Isolation levels 2 and 3 use a lot of locks and so good design is of particular
importance for databases that make regular use of these isolation levels.
When you must make use of serializable transactions, it is important that
you design your database, in particular the indices, with the business rules of
your project in mind. You may also improve performance by breaking large
transactions into several smaller ones, thus shortening the length of time that
rows are locked.

Although serializable transactions have the most potential to block other
transactions, they are not necessarily less efficient. When processing these
transactions, Adaptive Server Anywhere can perform certain optimizations
that may improve performance, in spite of the increased number of locks.

114

Chapter 4. Using Transactions and Isolation Levels

For example, since all rows read must be locked whether or not they match
the a search criteria, the database server is free to combine the operation of
reading rows and placing locks.

Reducing the impact of locking

You should avoid running transactions at isolation level 3 whenever
practical. They tend to place large number of locks and hence impact the
efficient execution of other concurrent transactions.

When the nature of an operation demands that it run at isolation level 3, you
can lower its impact on concurrency by designing the query to read as few
rows and index entries as possible. These steps will help the level 3
transaction run more quickly and, of possibly greater importance, will
reduce the number of locks it places.

In particular, you may find that adding an index may greatly help speed up
transactions, particularly when at least one of them must execute at isolation
level 3. An index can have two benefits:

♦ An index enables rows to be located in an efficient manner

♦ Searches that make use of the index may need fewer locks.

☞ For more information about the details of the locking methods employed
by Adaptive Server Anywhere is located in“How locking works” on
page 131.

☞ For more information on performance and how Adaptive Server
Anywhere plans its access of information to execute your commands, see
“Monitoring and Improving Performance” on page 153.

115

Isolation level tutorials
The different isolation levels behave in very different ways, and which one
you will want to use depends on your database and on the operations you are
carrying out. The following set of tutorials will help you determine which
isolation levels are suitable for different tasks.

Dirty read tutorial

The following tutorial demonstrates one type of inconsistency that can occur
when multiple transactions are executed concurrently. Two employees at a
small merchandising company access the corporate database at the same
time. The first person is the company’s Sales Manager. The second is the
Accountant.

The Sales Manager wants to increase the price of tee shirts sold by their firm
by $0.95, but is having a little trouble with the syntax of the SQL language.
At the same time, unknown to the Sales Manager, the Accountant is trying to
calculate the retail value of the current inventory to include in a report he
volunteered to bring to the next management meeting.

Tip:
Before altering your database in the following way, it is prudent to test the
change by using SELECT in place of UPDATE.

In this example, you will play the role of two people, both using the
demonstration database concurrently.

1. Start Interactive SQL.

2. Connect to the sample database as the Sales Manager:
♦ In the Connect dialog, choose the ODBC data source ASA 9.0 Sample.

♦ On the Advanced tab, type the following string to make the window
easier to identify:

ConnectionName=Sales Manager

Click OK to connect.

3. Start a second instance of Interactive SQL.

4. Connect to the sample database as the Accountant:
♦ In the Connect dialog, choose the ODBC data source ASA 9.0 Sample.

♦ On the Advanced tab, type the following string to make the window
easier to identify:

ConnectionName=Accountant

116

Chapter 4. Using Transactions and Isolation Levels

♦ Click OK to connect.

5. As the Sales Manager, raise the price of all the tee shirts by $0.95:

♦ In the window labeled Sales Manager, execute the following
commands:

SELECT id, name, unit_price
FROM product;
UPDATE PRODUCT
SET unit_price = unit_price + 95
WHERE NAME = ’Tee Shirt’

The result is:

id name unit_price

300 Tee Shirt 104.00

301 Tee Shirt 109.00

302 Tee Shirt 109.00

400 Baseball Cap 9.00

.

You observe immediately that you should have entered 0.95 instead
of 95, but before you can fix your error, the Accountant accesses the
database from another office.

6. The company’s Accountant is worried that too much money is tied up in
inventory. As the Accountant, execute the following commands to
calculate the total retail value of all the merchandise in stock:

SELECT SUM(quantity * unit_price)
AS inventory

FROM product

The result is:

inventory

21453.00

Unfortunately, this calculation is not accurate. The Sales Manager
accidentally raised the price of the visor $95, and the result reflects this
erroneous price. This mistake demonstrates one typical type of
inconsistency known as adirty read . You, as the Accountant, accessed
data which the Sales Manager has entered, but has not yet committed.

117

☞ You can eliminate dirty reads and other inconsistencies explained in
“Isolation levels and consistency” on page 104.

7. As the Sales Manager, fix the error by rolling back your first changes and
entering the correct UPDATE command. Check that your new values are
correct.

ROLLBACK;
UPDATE product
SET unit_price = unit_price + 0.95
WHERE NAME = ’Tee Shirt’;

id name unit_price

300 Tee Shirt 9.95

301 Tee Shirt 14.95

302 Tee Shirt 14.95

400 Baseball Cap 9.00

.

8. The Accountant does not know that the amount he calculated was in
error. You can see the correct value by executing his SELECT statement
again in his window.

SELECT SUM(quantity * unit_price)
AS inventory

FROM product;

inventory

6687.15

9. Finish the transaction in the Sales Manager’s window. She would enter a
COMMIT statement to make his changes permanent, but you may wish
to enter a ROLLBACK, instead, to avoid changing the copy of the
demonstration database on your machine.

ROLLBACK;

The Accountant unknowingly receives erroneous information from the
database because the database server is processing the work of both the
Sales Manager and the Accountant concurrently.

118

Chapter 4. Using Transactions and Isolation Levels

Non-repeatable read tutorial

The example in“Dirty read tutorial” on page 116demonstrated the first type
of inconsistency, namely the dirty read. In that example, an Accountant
made a calculation while the Sales Manager was in the process of updating a
price. The Accountant’s calculation used erroneous information which the
Sales Manager had entered and was in the process of fixing.

The following example demonstrates another type of inconsistency:
non-repeatable reads. In this example, you will play the role of the same two
people, both using the demonstration database concurrently. The Sales
Manager wishes to offer a new sales price on plastic visors. The Accountant
wishes to verify the prices of some items that appear on a recent order.

This example begins with both connections at isolation level 1, rather than at
isolation level 0, which is the default for the demonstration database
supplied with Adaptive Server Anywhere. By setting the isolation level to 1,
you eliminate the type of inconsistency which the previous tutorial
demonstrated, namely the dirty read.

1. Start Interactive SQL.

2. Connect to the sample database as the Sales Manager:

♦ In the Connect dialog, choose the ODBC data source ASA 9.0 Sample.

♦ On the Advanced tab, enter the following string to make the window
easier to identify:

ConnectionName=Sales Manager

♦ Click OK to connect.

3. Start a second instance of Interactive SQL.

4. Connect to the sample database as the Accountant:

♦ In the Connect dialog, choose the ODBC data source ASA 9.0 Sample.

♦ On the Advanced tab, enter the following string to make the window
easier to identify:

ConnectionName=Accountant

♦ Click OK to connect.

5. Set the isolation level to 1 for the Accountant’s connection by executing
the following command.

SET TEMPORARY OPTION ISOLATION_LEVEL = 1

119

6. Set the isolation level to 1 in the Sales Manager’s window by executing
the following command:

SET TEMPORARY OPTION ISOLATION_LEVEL = 1

7. The Accountant decides to list the prices of the visors. As the
Accountant, execute the following command:

SELECT id, name, unit_price FROM product

id name unit_price

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00

.

8. The Sales Manager decides to introduce a new sale price for the plastic
visor. As the Sales Manager, execute the following command:

SELECT id, name, unit_price FROM product
WHERE name = ’Visor’;
UPDATE product
SET unit_price = 5.95 WHERE id = 501;
COMMIT;

id name unit_price

500 Visor 7.00

501 Visor 5.95

9. Compare the price of the visor in the Sales Manager window with the
price for the same visor in the Accountant window. The Accountant
window still displays the old price, even though the Sales Manager has
entered the new price and committed the change.

This inconsistency is called anon-repeatable read, because if the
Accountant did the same SELECT a second time in thesame transaction
, he wouldn’t get the same results. Try it for yourself. As the Accountant,
execute the select command again. Observe that the Sales Manager’s sale
price now displays.

SELECT id, name, price
FROM product

120

Chapter 4. Using Transactions and Isolation Levels

id name unit_price

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00

.

Of course if the Accountant had finished his transaction, for example by
issuing a COMMIT or ROLLBACK command before using SELECT
again, it would be a different matter. The database is available for
simultaneous use by multiple users and it is completely permissible for
someone to change values either before or after the Accountant’s
transaction. The change in results is only inconsistent because it happens
in the middle of his transaction. Such an event makes the schedule
unserializable.

10. The Accountant notices this behavior and decides that from now on he
doesn’t want the prices changing while he looks at them. Repeatable
reads are eliminated at isolation level 2. Play the role of the Accountant:

SET TEMPORARY OPTION ISOLATION_LEVEL = 2;
SELECT id, name, unit_price
FROM product

11. The Sales Manager decides that it would be better to delay the sale on the
plastic visor until next week so that she won’t have to give the lower price
on a big order that she’s expecting will arrive tomorrow. In her window,
try to execute the following statements. The command will start to
execute, and then his window will appear to freeze.

UPDATE product
SET unit_price = 7.00
WHERE id = 501

The database server must guarantee repeatable reads at isolation level 2.
To do so, it places a read lock on each row of the product table that the
Accountant reads. When the Sales Manager tries to change the price
back, her transaction must acquire a write lock on the plastic visor row of
the product table. Since write locks are exclusive, her transaction must
wait until the Accountant’s transaction releases its read lock.

12. The Accountant is finished looking at the prices. He doesn’t want to risk
accidentally changing the database, so he completes his transaction with
a ROLLBACK statement.

ROLLBACK

121

Observe that as soon as the database server executes this statement, the
Sales Manager’s transaction completes.

id name unit_price

500 Visor 7.00

501 Visor 7.00

13. The Sales Manager can finish now. She wishes to commit her change to
restore the original price.

COMMIT

Types of Locks and
different isolation levels

When you upgraded the Accountant’s isolation from level 1 to level 2, the
database server used read locks where none had previously been acquired. In
general, each isolation level is characterized by the types of locks needed
and by how locks held by other transactions are treated.

At isolation level 0, the database server needs only write locks. It makes use
of these locks to ensure that no two transactions make modifications that
conflict. For example, a level 0 transaction acquires a write lock on a row
before it updates or deletes it, and inserts any new rows with a write lock
already in place.

Level 0 transactions perform no checks on the rows they are reading. For
example, when a level 0 transaction reads a row, it doesn’t bother to check
what locks may or may not have been acquired on that row by other
transactions. Since no checks are needed, level 0 transactions are
particularly fast. This speed comes at the expense of consistency. Whenever
they read a row which is write locked by another transaction, they risk
returning dirty data.

At level 1, transactions check for write locks before they read a row.
Although one more operation is required, these transactions are assured that
all the data they read is committed. Try repeating the first tutorial with the
isolation level set to 1 instead of 0. You will find that the Accountant’s
computation cannot proceed while the Sales Manager’s transaction, which
updates the price of the tee shirts, remains incomplete.

When the Accountant raised his isolation to level 2, the database server
began using read locks. From then on, it acquired a read lock for his
transaction on each row that matched his selection.

Transaction blocking In the above tutorial, the Sales Manager window froze during the execution
of her UPDATE command. The database server began to execute her
command, then found that the Accountant’s transaction had acquired a read
lock on the row that the Sales Manager needed to change. At this point, the
database server simply paused the execution of the UPDATE. Once the

122

Chapter 4. Using Transactions and Isolation Levels

Accountant finished his transaction with the ROLLBACK, the database
server automatically released his locks. Finding no further obstructions, it
then proceeded to complete execution of the Sales Manager’s UPDATE.

In general, a locking conflict occurs when one transaction attempts to
acquire an exclusive lock on a row on which another transaction holds a
lock, or attempts to acquire a shared lock on a row on which another
transaction holds an exclusive lock. One transaction must wait for another
transaction to complete. The transaction that must wait is said to beblocked
by another transaction.

When the database server identifies a locking conflict which prohibits a
transaction from proceeding immediately, it can either pause execution of
the transaction, or it can terminate the transaction, roll back any changes,
and return an error. You control the route by setting the BLOCKING option.
When BLOCKING is ON the second transaction waits, as in the above
tutorial.

☞ For more information about the blocking option, see“The BLOCKING
option” on page 110.

Phantom row tutorial

The following tutorial continues the same scenario. In this case, the
Accountant views the department table while the Sales Manager creates a
new department. You will observe the appearance of a phantom row.

If you have not done so, do steps 1 through 4 of the previous tutorial,
“Non-repeatable read tutorial” on page 119, so that you have two instances
of Interactive SQL.

1. Set the isolation level to 2 in the Sales Manager window by executing the
following command.

SET TEMPORARY OPTION ISOLATION_LEVEL = 2;

2. Set the isolation level to 2 for the Accountant window by executing the
following command.

SET TEMPORARY OPTION ISOLATION_LEVEL = 2;

3. In the Accountant window, enter the following command to list all the
departments.

SELECT * FROM department
ORDER BY dept_id;

123

dept_id dept_name dept_head_id

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

.

4. The Sales Manager decides to set up a new department to focus on the
foreign market. Philip Chin, who has emp_id 129, will head the new
department.

INSERT INTO department
(dept_id, dept_name, dept_head_id)
VALUES(600, ’Foreign Sales’, 129);

The final command creates the new entry for the new department. It
appears as a new row at the bottom of the table in the Sales Manager’s
window.

5. The Accountant, however, is not aware of the new department. At
isolation level 2, the database server places locks to ensure that no row
changes, but places no locks that stop other transactions from inserting
new rows.

The Accountant will only discover the new row if he executes his
SELECT command again. In the Accountant’s window, execute the
SELECT statement again. You will see the new row appended to the
table.

SELECT *
FROM department
ORDER BY dept_id;

dept_id dept_name dept_head_id

100 R & D 501

200 Sales 902

300 Finance 1293

500 Shipping 703

.

The new row that appears is called aphantom row because, from the
Accountant’s point of view, it appears like an apparition, seemingly from
nowhere. The Accountant is connected at isolation level 2. At that level,

124

Chapter 4. Using Transactions and Isolation Levels

the database server acquires locks only on the rows that he is using. Other
rows are left untouched and hence there is nothing to prevent the Sales
Manager from inserting a new row.

6. The Accountant would prefer to avoid such surprises in future, so he
raises the isolation level of his current transaction to level 3. Enter the
following commands for the Accountant.

SET TEMPORARY OPTION ISOLATION_LEVEL = 3
SELECT *
FROM department
ORDER BY dept_id

7. The Sales Manager would like to add a second department to handle sales
initiative aimed at large corporate partners. Execute the following
command in the Sales Manager’s window.

INSERT INTO department
(dept_id, dept_name, dept_head_id)

VALUES(700, ’Major Account Sales’, 902)

The Sales Manager’s window will pause during execution because the
Accountant’s locks block the command. Click the Interrupt the SQL
Statement button on the toolbar (or choose Stop from the SQL menu) to
interrupt this entry.

8. To avoid changing the demonstration database that comes with Adaptive
Server Anywhere, you should roll back the insertion of the new
departments. Execute the following command in the Sales Manager’s
window:

ROLLBACK

When the Accountant raised his isolation to level 3 and again selected all
rows in the department table, the database server placed anti-insert locks on
each row in the table, and one extra phantom lock to avoid insertion at the
end of the table. When the Sales Manager attempted to insert a new row at
the end of the table, it was this final lock that blocked her command.

Notice that the Sales Manager’s command was blocked even though the
Sales Manager is still connected at isolation level 2. The database server
places anti-insert locks, like read locks, as demanded by the isolation level
and statements of each transactions. Once placed, these locks must be
respected by all other concurrent transactions.

☞ For more information on locking, see“How locking works” on
page 131.

125

Practical locking implications tutorial

The following continues the same scenario. In this tutorial, the Accountant
and the Sales Manager both have tasks that involve the sales order and sales
order items tables. The Accountant needs to verify the amounts of the
commission checks paid to the sales employees for the sales they made
during the month of April 2001. The Sales Manager notices that a few
orders have not been added to the database and wants to add them.

Their work demonstrates phantom locking. Aphantom lock is a shared
lock placed on an indexed scan position to prevent phantom rows. When a
transaction at isolation level 3 selects rows which match a given criterion,
the database server places anti-insert locks to stop other transactions from
inserting rows which would also match. The number of locks placed on your
behalf depends both on the search criterion and on the design of your
database.

If you have not done so, do steps 1 through 3 of the previous tutorial which
describe how to start two instances of Interactive SQL.

1. Set the isolation level to 2 in both the Sales Manager window and the
Accountant window by executing the following command.

SET TEMPORARY OPTION ISOLATION_LEVEL = 2

2. Each month, the sales representatives are paid a commission, which is
calculated as a percentage of their sales for that month. The Accountant
is preparing the commission checks for the month of April 2001. His first
task is to calculate the total sales of each representative during this month.

Enter the following command in the Accountant’s window. Prices, sales
order information, and employee data are stored in separate tables. Join
these tables using the foreign key relationships to combine the necessary
pieces of information.

SELECT emp_id, emp_fname, emp_lname,
SUM(sales_order_items.quantity * unit_price)

AS "April sales"
FROM employee

KEY JOIN sales_order
KEY JOIN sales_order_items
KEY JOIN product

WHERE ’2001-04-01’ <= order_date
AND order_date < ’2001-05-01’

GROUP BY emp_id, emp_fname, emp_lname

126

Chapter 4. Using Transactions and Isolation Levels

emp_id emp_fname emp_lname April sales

129 Philip Chin 2160.00

195 Marc Dill 2568.00

299 Rollin Overbey 5760.00

467 James Klobucher 3228.00

.

3. The Sales Manager notices that a big order sold by Philip Chin was not
entered into the database. Philip likes to be paid his commission
promptly, so the Sales manager enters the missing order, which was
placed on April 25.

In the Sales Manager’s window, enter the following commands. The
Sales order and the items are entered in separate tables because one order
can contain many items. You should create the entry for the sales order
before you add items to it. To maintain referential integrity, the database
server allows a transaction to add items to an order only if that order
already exists.

INSERT into sales_order
VALUES (2653, 174, ’2001-04-22’, ’r1’,

’Central’, 129);
INSERT into sales_order_items
VALUES (2653, 1, 601, 100, ’2001-04-25’);
COMMIT;

4. The Accountant has no way of knowing that the Sales Manager has just
added a new order. Had the new order been entered earlier, it would have
been included in the calculation of Philip Chin’s April sales.

In the Accountant’s window, calculate the April sales totals again. Use
the same command, and observe that Philip Chin’s April sales changes to
$4560.00.

emp_id emp_fname emp_lname April sales

129 Philip Chin 4560.00

195 Marc Dill 2568.00

299 Rollin Overbey 5760.00

467 James Klobucher 3228.00

.

Imagine that the Accountant now marks all orders placed in April to
indicate that commission has been paid. The order that the Sales Manager

127

just entered might be found in the second search and marked as paid,
even though it was not included in Philip’s total April sales!

5. At isolation level 3, the database server places anti-insert locks to ensure
that no other transactions can add a row which matches the criterion of a
search or select.

First, roll back the insertion of Philip’s missing order: Execute the
following statement in the Sales Manager’s window.

ROLLBACK

6. In the Accountant’s window, execute the following two statements.

ROLLBACK;
SET TEMPORARY OPTION ISOLATION_LEVEL = 3;

7. In the Sales Manager’s window, execute the following statements to
remove the new order.

DELETE
FROM sales_order_items
WHERE id = 2653;
DELETE
FROM sales_order
WHERE id = 2653;
COMMIT;

8. In the Accountant’s window, execute same query as before.

SELECT emp_id, emp_fname, emp_lname,
SUM(sales_order_items.quantity * unit_price)

AS "April sales"
FROM employee

KEY JOIN sales_order
KEY JOIN sales_order_items
KEY JOIN product

WHERE ’2001-04-01’ <= order_date
AND order_date < ’2001-05-01’

GROUP BY emp_id, emp_fname, emp_lname

Because you set the isolation to level 3, the database server will
automatically place anti-insert locks to ensure that the Sales Manager
can’t insert April order items until the Accountant finishes his transaction.

9. Return to the Sales Manager’s window. Again attempt to enter Philip
Chin’s missing order.

INSERT INTO sales_order
VALUES (2653, 174, ’2001-04-22’,

’r1’,’Central’, 129)

128

Chapter 4. Using Transactions and Isolation Levels

The Sales Manager’s window will hang; the operation will not complete.
Click the Interrupt the SQL Statement button on the toolbar (or choose
Stop from the SQL menu) to interrupt this entry.

10. The Sales Manager can’t enter the order in April, but you might think that
she could still enter it in May.

Change the date of the command to May 05 and try again.

INSERT INTO sales_order
VALUES (2653, 174, ’2001-05-05’, ’r1’,

’Central’, 129)

The Sales Manager’s window will hang again. Click the Interrupt the
SQL Statement button on the toolbar (or choose Stop from the SQL
menu) to interrupt this entry. Although the database server places no
more locks than necessary to prevent insertions, these locks have the
potential to interfere with a large number of other transactions.

The database server places locks in table indices. For example, it places a
phantom lock in an index so a new row cannot be inserted immediately
before it. However, when no suitable index is present, it must lock every
row in the table.

In some situations, anti-insert locks may block some insertions into a
table, yet allow others.

11. The Sales Manager wishes to add a second item to order 2651. Use the
following command.

INSERT INTO sales_order_items
VALUES (2651, 2, 302, 4, ’2001-05-22’)

All goes well, so the Sales Manager decides to add the following item to
order 2652 as well.

INSERT INTO sales_order_items
VALUES (2652, 2, 600, 12, ’2001-05-25’)

The Sales Manager’s window will hang. Click the Interrupt the SQL
Statement button on the toolbar (or choose Stop from the SQL menu) to
interrupt this entry.

12. Conclude this tutorial by undoing any changes to avoid changing the
demonstration database. Enter the following command in the Sales
Manager’s window.

ROLLBACK

Enter the same command in the Accountant’s window.

ROLLBACK

129

You may now close both windows.

130

Chapter 4. Using Transactions and Isolation Levels

How locking works
When the database server processes a transaction, it can lock one or more
rows of a table. The locks maintain the reliability of information stored in
the database by preventing concurrent access by other transactions. They
also improve the accuracy of result queries by identifying information which
is in the process of being updated.

The database server places these locks automatically and needs no explicit
instruction. It holds all the locks acquired by a transaction until the
transaction is completed, for example by either a COMMIT or ROLLBACK
statement, with a single exception noted in“Early release of read locks” on
page 142.

The transaction that has access to the row is said to hold the lock. Depending
on the type of lock, other transactions may have limited access to the locked
row, or none at all.

Obtaining information
about locks on a table

You can use the sa_locks system procedure to list information about locks
that are held in the database. For more information, see “sa_locks system
procedure”[ASA SQL Reference,page 721].

You can also view locks in Sybase Central. Select the database in the left
pane, and a tab called Table Locks appears in the right pane. For each lock,
this tab shows you the connection ID, user ID, table name, lock type, and
lock name.

Objects that can be locked

Adaptive Server Anywhere places locks on the following objects.

♦ Rows in tables A transaction can lock a particular row to prevent
another transaction from changing it. A transaction must place a write
lock on a row if it intends to modify the row.

♦ Insertion points between rows Transactions typically scan rows using
the ordering imposed by an index, or scan rows sequentially. In either
case, a lock can be placed on the scan position. For example, placing a
lock in an index can prevent another transaction from inserting a row with
a specific value or range of values.

♦ Table schemas A transaction can lock the schema of a table,
preventing other transactions from modifying the table’s structure.

Of these objects, rows are likely the most intuitive. It is understandable that
a transaction reading, updating, deleting, or inserting a row should limit the
simultaneous access to other transactions. Similarly, a transaction changing

131

the structure of a table, perhaps inserting a new column, could greatly
impact other transactions. In such a case, it is essential to limit the access of
other transactions to prevent errors.

Row orderings You can use an index to order rows based on a particular criterion
established when the index was constructed.

When there is no index, Adaptive Server Anywhere orders rows by their
physical placement on disk. In the case of a sequential scan, the specific
ordering is defined by the internal workings of the database server. You
should not rely on the order of rows in a sequential scan. From the point of
view of scanning the rows, however, Adaptive Server Anywhere treats the
request similarly to an indexed scan, albeit using an ordering of its own
choosing. It can place locks on positions in the scan as it would were it using
an index.

Through locking a scan position, a transaction prevents some actions by
other transactions relating to a particular range of values in that ordering of
the rows. Insert and anti-insert locks are always placed on scan positions.

For example, a transaction might delete a row, hence deleting a particular
primary key value. Until this transaction either commits the change or rolls
it back, it must protect its right to do either. In the case of a deleted row, it
must ensure that no other transaction can insert a row using the same
primary key value, hence making a rollback operation impossible. A lock on
the scan position this row occupied reserves this right while having the least
impact on other transactions.

Types of locks

Adaptive Server Anywhere uses four distinct types of locks to implement its
locking scheme and ensure appropriate levels of isolation between
transactions:

♦ read lock (shared)

♦ phantom lock or anti-insert lock (shared)

♦ write lock (exclusive)

♦ anti-phantom lock or insert lock (shared)

Remember that the database server places these locks automatically and
needs no explicit instruction.

Each of these locks has a separate purpose, and they all work together. Each
prevents a particular set of inconsistencies that could occur in their absence.

132

Chapter 4. Using Transactions and Isolation Levels

Depending on the isolation level you select, the database server will use
some or all of them to maintain the degree of consistency you require.

The above types of locks have the following uses:

♦ A transaction acquires awrite lock whenever it inserts, updates, or
deletes a row. No other transaction can obtain either a read or a write lock
on the same row when a write lock is set. A write lock is an exclusive
lock.

♦ A transaction can acquire aread lock when it reads a row. Several
transactions can acquire read locks on the same row (a read lock is a
shared or nonexclusive lock). Once a row has been read locked, no other
transaction can obtain a write lock on it. Thus, a transaction can ensure
that no other transaction modifies or deletes a row by acquiring a read
lock.

♦ An anti-insert lock, or phantom lock, is a shared lock placed on an
indexed scan position to prevent phantom rows. It prevents other
transactions from inserting a row into a table immediately before the row
which is anti-insert locked. Anti-insert locks for lookups using indexes
require a read lock on each row that is read, and one extra read lock to
prevent insertions into the index at the end of the result set. Phantom
rows for lookups that do not use indexes require a read lock on all rows in
a table to prevent insertions from altering the result set, and so can have a
bad effect on concurrency.

♦ An insert lock, or anti-phantom lock, is a shared lock placed on an
indexed scan position to reserve the right to insert a row. Once one
transaction acquires an insert lock on a row, no other transaction can
acquire an anti-insert lock on the same row. A read lock on the
corresponding row is always acquired at the same time as an insert lock
to ensure that no other process can update or destroy the row, thereby
bypassing the insert lock.

Adaptive Server Anywhere uses these four types of locks as necessary to
ensure the level of consistency that you require. You do not need to
explicitly request the use of a particular lock. Instead, you control the level
of consistency, as is explained in the next section. Knowledge of the types of
locks will guide you in choosing isolation levels and understanding the
impact of each level on performance.

Exclusive versus shared
locks

These four types of locks each fall into one of two categories:

♦ Exclusive locks Only one transaction can hold an exclusive lock on a
row of a table at one time. No transaction can obtain an exclusive lock
while any other transaction holds a lock of any type on the same row.

133

Once a transaction acquires an exclusive lock, requests to lock the row by
other transactions will be denied.

Write locks are exclusive.

♦ Shared locks Any number of transactions may acquire shared locks on
any one row at the same time. Shared locks are sometimes referred to as
non-exclusive locks.

Read locks, insert locks, and anti-insert locks are shared.

Only one transaction should change any one row at one time. Otherwise,
two simultaneous transactions might try to change one value to two different
new ones. Hence, it is important that a write lock be exclusive.

By contrast, no difficulty arises if more than one transaction wants to read a
row. Since neither is changing it, there is no conflict of interest. Hence, read
locks may be shared.

You may apply similar reasoning to anti-insert and insert locks. Many
transactions can prevent the insertion of a row in a particular scan position
by each acquiring an anti-insert lock. Similar logic applies for insert locks.
When a particular transaction requires exclusive access, it can easily achieve
exclusive access by obtaining both an anti-insert and an insert lock on the
same row. These locks do not conflict when they are held by the same
transaction.

Which specific locks
conflict?

The following table identifies the combination of locks that conflict.

read write anti-insert insert

read conflict

write conflict conflict

anti-insert conflict

insert conflict

These conflicts arise only when the locks are held by different transactions.
For example, one transaction can obtain both anti-insert and insert locks on a
single scan position to obtain exclusive access to a location.

Locking during queries

The locks that Adaptive Server Anywhere uses when a user enters a
SELECT statement depend on the transaction’s isolation level.

SELECT statements at
isolation level 0

No locking operations are required when executing a SELECT statement at

134

Chapter 4. Using Transactions and Isolation Levels

isolation level 0. Each transaction is not protected from changes introduced
by other transactions. It is the responsibility of the programmer or database
user to interpret the result of these queries with this limitation in mind.

SELECT statements at
isolation level 1

You may be surprised to learn that Adaptive Server Anywhere uses almost
no more locks when running a transaction at isolation level 1 than it does at
isolation level 0. Indeed, the database server modifies its operation in only
two ways.

The first difference in operation has nothing to do with acquiring locks, but
rather with respecting them. At isolation level 0, a transaction is free to read
any row, whether or not another transaction has acquired a write lock on it.
By contrast, before reading each row an isolation level 1 transaction must
check whether a write lock is in place. It cannot read past any write-locked
rows because doing so might entail reading dirty data.

The second difference in operation creates cursor stability. Cursor stability is
achieved by acquiring a read lock on the current row of a cursor. This read
lock is released when the cursor is moved. More than one row may be
affected if the contents of the cursor is the result of a join. In this case, the
database server acquires read locks on all rows which have contributed
information to the cursor’s current row and removes all these locks as soon
as another row of the cursor is selected as current. A read lock placed to
ensure cursor stability is the only type of lock that does not persist until the
end of a transaction.

SELECT statements at
isolation level 2

At isolation level 2, Adaptive Server Anywhere modifies its procedures to
ensure that your reads are repeatable. If your SELECT command returns
values from every row in a table, then the database server acquires a read
lock on each row of the table as it reads it. If, instead, your SELECT
contains a WHERE clause, or another condition which restricts the rows to
selected, then the database server instead reads each row, tests the values in
the row against your criterion, and then acquires a read lock on the row if it
meets your criterion.

As at all isolation levels, the locks acquired at level 2 include all those set at
levels 1 and 0. Thus, cursor stability is again ensured and dirty reads are not
permitted.

SELECT statements at
isolation level 3

When operating at isolation level 3, Adaptive Server Anywhere is obligated
to ensure that all schedules are serializable. In particular, in addition to the
requirements imposed at each of the lower levels, it must eliminate phantom
rows.

To accommodate this requirement, the database server uses read locks and
anti-insert locks. When you make a selection, the database server acquires a
read lock on each row that contributes information to your result set. Doing

135

so ensures that no other transactions can modify that material before you
have finished using it.

This requirement is similar to the procedures that the database server uses at
isolation level 2, but differs in that a lock must be acquired for each row
read,whether or not it meets any attached criteria. For example, if you
select the names of all employees in the sales department, then the server
must lock all the rows which contain information about a sales person,
whether the transaction is executing at isolation level 2 or 3. At isolation
level 3, however, it must also acquire read locks on each of the rows of
employees which arenot in the sales department. Otherwise, someone else
accessing the database could potentially transfer another employee to the
sales department while you were still using your results.

The fact that a read lock must be acquired on each row whether or not it
meets your criteria has two important implications.

♦ The database server may need to place many more locks than would be
necessary at isolation level 2.

♦ The database server can operate a little more efficiently: It can
immediately acquire a read lock on each row at as it reads it, since the
locks must be placed whether or not the information in the row is
accepted.

The number of anti-insert locks the server places can very greatly and
depends upon your criteria and on the indexes available in the table.
Suppose you select information about the employee with Employee ID 123.
If the employee ID is the primary key of the employee table, then the
database server can economize its operations. It can use the index, which is
automatically built for a primary key, to locate the row efficiently. In
addition, there is no danger that another transaction could change another
Employee’s ID to 123 because primary key values must be unique. The
server can guarantee that no second employee is assigned that ID number
simply by acquiring a read lock on only the one row containing information
about the employee with that number.

By contrast, the database server would acquire more locks were you instead
to select all the employees in the sales department. Since any number of
employees could be added to the department, the server will likely have to
read every row in the employee table and test whether each person is in
sales. If this is the case, both read and anti-insert locks must be acquired for
each row.

Locking during inserts

INSERT operations create new rows. Adaptive Server Anywhere employs

136

Chapter 4. Using Transactions and Isolation Levels

the following procedure to ensure data integrity.

For more information about how locks are used during inserts, see
“Anti-insert locks” on page 139.

1. Make a location in memory to store the new row. The location is initially
hidden from the rest of the database, so there is as yet no concern that
another transaction could access it.

2. Fill the new row with any supplied values.

3. Write lock the new row.

4. Place an insert lock in the table to which the row is being added. Recall
that insert locks are exclusive, so once the insert lock is acquired, no
other transaction can block the insertion by acquiring an anti-insert lock.

5. Insert the row into the table. Other transactions can now, for the first
time, see that the new row exists. They can’t modify or delete it, though,
because of the write lock acquired earlier.

6. Update all affected indexes and verify both referential integrity and
uniqueness, where appropriate. Verifying referential integrity means
ensuring that no foreign key points to a primary key that does not exist.
Primary key values must be unique. Other columns may also be defined
to contain only unique values, and if any such columns exist, uniqueness
is verified.

7. The transaction can be committed provided referential integrity will not
be violated by doing so: record the operation in the transaction log file
and release all locks.

8. Insert other rows as required, if you have selected the cascade option, and
fire triggers.

Uniqueness You can ensure that all values in a particular column, or combination of
columns, are unique. The database server always performs this task by
building an index for the unique column, even if you do not explicitly create
one.

In particular, all primary key values must be unique. The database server
automatically builds an index for the primary key of every table. Thus, you
should not ask the database server to create an index on a primary key, as
that index would be a redundant index.

Orphans and referential
integrity

A foreign key is a reference to a primary key, usually in another table. When
that primary key doesn’t exist, the offending foreign key is called an
orphan. Adaptive Server Anywhere automatically ensures that your

137

database contains no orphans. This process is referred to asverifying
referential integrity . The database server verifies referential integrity by
counting orphans.

WAIT FOR COMMIT You can ask the database server to delay verifying referential integrity to the
end of your transaction. In this mode, you can insert one row which contains
a foreign key, then insert a second row which contains the missing primary
key. You must perform both operations in the same transaction. Otherwise,
the database server will not allow your operations.

To request that the database server delay referential integrity checks until
commit time, set the value of the option WAIT_FOR_COMMIT to ON. By
default, this option is OFF. To turn it on, issue the following command:

SET OPTION WAIT_FOR_COMMIT = ON;

Before committing a transaction, the database server verifies that referential
integrity is maintained by checking the number of orphans your transaction
has created. At the end of every transaction, that number must be zero.

Even if the necessary primary key exists at the time you insert the row, the
database server must ensure that it still exists when you commit your results.
It does so by placing a read lock on the target row. With the read lock in
place, any other transaction is still free to read that row, but none can delete
or alter it.

Locking during updates

The database server modifies the information contained in a particular record
using the following procedure.

1. Write lock the affected row.

2. If any entries changed are included in an index, delete each index entry
corresponding to the old values. Make a record of any orphans created by
doing so.

3. Update each of the affected values.

4. If indexed values were changed, add new index entries. Verify
uniqueness where appropriate and verify referential integrity if a primary
or foreign key was changed.

5. The transaction can be committed provided referential integrity will not
be violated by doing so: record the operation in the transaction log file,
including the previous values of all entries in the row, and release all
locks.

138

Chapter 4. Using Transactions and Isolation Levels

6. Cascade the insert or delete operations, if you have selected this option
and primary or secondary keys are affected.

You may be surprised to see that the deceptively simple operation of
changing a value in a table can necessitate a rather large number of
operations. The amount of work that the database server needs to do is much
less if the value you are changing is not part of a primary or foreign key. It is
lower still if it is not contained in an index, either explicitly or implicitly
because you have declared that attribute unique.

The operation of verifying referential integrity during an UPDATE operation
is no less simple than when the verification is performed during an INSERT.
In fact, when you change the value of a primary key, you may create
orphans. When you insert the replacement value, the database server must
check for orphans once more.

Locking during deletes

The DELETE operation follows almost the same steps as the INSERT
operation, except in the opposite order.

1. Write lock the affected row.

2. Delete each index entry present for the any values in the row.
Immediately prior to deleting each index entry, acquire one or more
anti-insert locks as necessary to prevent another transaction inserting a
similar entry before the delete is committed. In order to verify referential
integrity, the database server also keeps track of any orphans created as a
side effect of the deletion.

3. Remove the row from the table so that it is no longer visible to other
transactions. The row cannot be destroyed until the transaction is
committed because doing so would remove the option of rolling back the
transaction.

4. The transaction can be committed provided referential integrity will not
be violated by doing so: record the operation in the transaction log file
including the values of all entries in the row, release all locks, and destroy
the row.

5. Cascade the delete operation, if you have selected this option and have
modified a primary or foreign key.

Anti-insert locks The database server must ensure that the DELETE operation can be rolled
back. It does so in part by acquiring anti-insert locks. These locks are not
exclusive; however, they deny other transactions the right to insert rows that
make it impossible to roll back the DELETE operation. For example, the

139

row deleted may have contained a primary key value, or another unique
value. Were another transaction allowed to insert a row with the same value,
the DELETE could not be undone without violating the uniqueness property.

Adaptive Server Anywhere enforces uniqueness constraints through indexes.
In the case of a simple table with only a one-attribute primary key, a single
phantom lock may suffice. Other arrangements can quickly escalate the
number of locks required. For example, the table may have no primary key
or other index associated with any of the attributes. Since the rows in a table
have no fundamental ordering, the only way of preventing inserts may be to
anti-insert lock the entire table.

Deleting a row can mean acquiring a great many locks. You can minimize
the effect on concurrency in your database in a number of ways. As
described earlier, indexes and primary keys reduce the number of locks
required because they impose an ordering on the rows in the table. The
database server automatically takes advantage of these orderings. Instead of
acquiring locks on every row in the table, it can simply lock thenext row.
Without the index, the rows have no order and thus the concept of a next row
is meaningless.

The database server acquires anti-insert locks on the row following the row
deleted. Should you delete the last row of a table, the database server simply
places the anti-insert lock on an invisible end row. In fact, if the table
contains no index, the number of anti-insert locks required is one more than
the number of rows in the table.

Anti-insert locks and
read locks

While one or more anti-insert locks exclude an insert lock and one or more
read locks exclude a write lock, no interaction exists between
anti-insert/insert locks and read/write locks. For example, although a write
lock cannot be acquired on a row that contains a read lock, it can be acquired
on a row that has only an anti-insert lock. More options are open to the
database server because of this flexible arrangement, but it means that the
server must generally take the extra precaution of acquiring a read lock
when acquiring an anti-insert lock. Otherwise, another transaction could
delete the row.

Two-phase locking

Often, the general information about locking provided in the earlier sections
will suffice to meet your needs. There are times, however, when you may
benefit from more knowledge of what goes on inside the database server
when you perform basic types of operations. This knowledge will provide
you with a better basis from which to understand and predict potential
problems that users of your database may encounter.

140

Chapter 4. Using Transactions and Isolation Levels

Two-phase locking is important in the context of ensuring that schedules are
serializable. Thetwo-phase locking protocolspecifies a procedure each
transaction follows.

This protocol is important because, if observed by all transactions, it will
guarantee a serializable, and thus correct, schedule. It may also help you
understand why some methods of locking permit some types of
inconsistencies.

The two-phase locking
protocol

1. Before operating on any row, a transaction must acquire a lock on that
row.

2. After releasing a lock, a transaction must never acquire any more locks.

In practice, a transaction normally holds locks until it terminates with either
a COMMIT or ROLLBACK statement. Releasing locks before the end of
the transaction disallows the operation of rolling back the changes whenever
doing so would necessitate operating on rows to return them to an earlier
state.

The two-phase locking protocol allows the statement of the following
important theorem:

The two-phase locking theorem
If all transactions obey the two-phase locking protocol, then all possible
interleaved schedules are serializable.

In other words, if all transactions follow the two-phase locking protocol,
then none of the inconsistencies mentioned above are possible.

This protocol defines the operations necessary to ensure complete
consistency of your data, but you may decide that some types of
inconsistencies are permissible during some operations on your database.
Eliminating all inconsistency often means reducing the efficiency of your
database.

Write locks are placed on modified, inserted, and deleted rows regardless of
isolation level. They are always held until commit and rollback.

Read locks at different
isolation levels

141

Isolation level Read locks

0 None

1 On rows that appear in the result
set; they are held only when a
cursor is positioned on a row.

2 On rows that appear in the result
set; they are held until the user
executes a COMMIT or a ROLL-
BACK.

3 On all rows read and all insertion
points crossed in the computation
of a result set

☞ For more information, see“Serializable schedules” on page 112

The details of locking are best broken into two sections: what happens
during an INSERT, UPDATE, DELETE or SELECT and how the various
isolation levels affect the placement of read, anti-insert, and insert locks.

Although you can control the amount of locking that takes place within the
database server by setting the isolation level, there is a good deal of locking
that occurs at all levels, even at level 0. These locking operations are
fundamental. For example, once one transaction updates a row, no other
transaction can modify the same row before the first transaction completes.
Without this precaution, you could not rollback the first transaction.

The locking operations that the database server performs at isolation level 0
are the best to learn first exactly because they represent the foundation. The
other levels add locking features, but do not remove any present in the lower
levels. Thus, moving to higher isolation level adds operations not present at
lower levels.

Early release of read locks

At isolation level 3, a transaction acquires a read lock on every row it reads.
Ordinarily, a transaction never releases a lock before the end of the
transaction. Indeed, it is essential that a transaction does not release locks
early if the schedule is to be serializable.

Adaptive Server Anywhere always retains write locks until a transaction
completes. If it were to release a lock sooner, another transaction could
modify that row making it impossible to roll back the first transaction.

Read locks are released only in one, special circumstance. Under isolation

142

Chapter 4. Using Transactions and Isolation Levels

level 1, transactions acquire a read lock on a row only when it becomes the
current row of a cursor. Under isolation level 1, however, when that row is
no longer current, the lock is released. This behavior is acceptable because
the database server does not need to guarantee repeatable reads at isolation
level 1.

☞ For more information about isolation levels, see“Choosing isolation
levels” on page 112.

Special optimizations

The previous sections describe the locks acquired when all transactions are
operating at a given isolation level. For example, when all transactions are
running at isolation level 2, locking is performed as described in the
appropriate section, above.

In practice, your database is likely to need to process multiple transactions
that are at different levels. A few transactions, such as the transfer of money
between accounts, must be serializable and so run at isolation level 3. For
other operations, such as updating an address or calculating average daily
sales, a lower isolation level will often suffice.

While the database server is not processing any transactions at level 3, it
optimizes some operations so as to improve performance. In particular,
many extra anti-insert and insert locks are often necessary to support a
level 3 transaction. Under some circumstances, the database server can avoid
either placing or checking for some types of locks when no level 3
transactions are present.

For example, the database server uses anti-insert locks to guard against two
distinct types of circumstances:

1. Ensure that deletes in tables with unique attributes can be rolled back.

2. Eliminate phantom rows in level 3 transactions.

If no level 3 transactions are using a particular table, then the database server
need not place anti-insert locks in the index of a table that contains no
unique attributes. If, however, even one level 3 transaction is present, all
transactions, even those at level 0, must place anti-insert locks so that the
level 3 transactions can identify their operations.

Naturally, the database server always attaches notes to a table when it
attempts the types of optimizations described above. Should a level 3
transaction suddenly start, you can be confident that the necessary locks will
be put in place for it.

You may have little control over the mix of isolation levels in use at one time

143

as so much will depend on the particular operations that the various users of
your database wish to perform. Where possible, however, you may wish to
select the time that level 3 operations execute because they have the potential
to cause significant slowing of database operations. The impact is magnified
because the database server is forced to perform extra operations for
lower-level operations.

144

Chapter 4. Using Transactions and Isolation Levels

Particular concurrency issues
This section discusses the following particular concurrency issues:

♦ “Primary key generation” on page 145

♦ “Data definition statements and concurrency” on page 146

Primary key generation

You will encounter situations where the database should automatically
generate a unique number. For example, if you are building a table to store
sales invoices you might prefer that the database assign unique invoice
numbers automatically, rather than require sales staff to pick them.

There are many methods for generating such numbers.

Example For example, invoice numbers could be obtained by adding 1 to the previous
invoice number. This method will not work when there is more than one
person adding invoices to the database. Two people may decide to use the
same invoice number.

There is more than one solution to the problem:

♦ Assign a range of invoice numbers to each person who adds new invoices.

You could implement this scheme by creating a table with the columns
user name and invoice number. The table would have one row for each
user that adds invoices. Each time a user adds an invoice, the number in
the table would be incremented and used for the new invoice. In order to
handle all tables in the database, the table should have three columns:
table name, user name, and last key value. You should periodically check
that each person still has a sufficient supply of numbers.

♦ Create a table with the columns: table name and last key value.

One row in this table would contain the last invoice number used. Each
time someone adds an invoice, establish a new connection, increment the
number in the table, and commit the change immediately. The
incremented number can be used for the new invoice. Other users will be
able to grab invoice numbers because you updated the row with a
separate transaction that only lasted an instant.

♦ Use a column with a default value of NEWID in conjunction with the
UNIQUEIDENTIFIER binary data type to generate a universally unique
identifier.

UUID and GUID values can be used to uniquely identify rows in a table.
The values are generated such that a value produced on one computer

145

will not match that produced on another. They can therefore be used as
keys in replication and synchronization environments.

For more information about generating unique identifiers, see“The
NEWID default” on page 82.

♦ Use a column with a default value of AUTOINCREMENT.

For example,

CREATE TABLE orders (
order_id INTEGER NOT NULL DEFAULT AUTOINCREMENT,
order_date DATE,
primary key(order_id)

)

On inserts into the table, if a value is not specified for the autoincrement
column, a unique value is generated. If a value is specified, it will be
used. If the value is larger than the current maximum value for the
column, that value will be used as a starting point for subsequent inserts.
The value of the most recently inserted row in an autoincrement column
is available as the global variable@@identity.

Unique values in replicated databases
Different techniques are required if you replicate your database and more
than one person can add entries which must later be merged. For more
information, see“Replication and concurrency” on page 148.

Data definition statements and concurrency

Data definition statements that change an entire table, such as CREATE
INDEX, ALTER TABLE, and TRUNCATE TABLE, are prevented
whenever the statement table is currently being used by another connection.
These data definition statements can be time consuming and the database
server will not process requests referencing the same table while the
command is being processed.

The CREATE TABLE statement does not cause any concurrency conflicts.

The GRANT statement, REVOKE statement, and SET OPTION statement
also do not cause concurrency conflicts. These commands affect any new
SQL statements sent to the database server, but do not affect existing
outstanding statements.

GRANT and REVOKE for a user are not allowed if that user is connected to
the database.

146

Chapter 4. Using Transactions and Isolation Levels

Data definition statements and replicated databases
Using data definition statements in replicated databases requires special
care. For more information see the separate manual entitledData Replica-
tion with SQL Remote.

147

Replication and concurrency
Some computers on your network might be portable computers that people
take away from the office or which are occasionally connected to the
network. There may be several database applications that they would like to
use while not connected to the network.

Database replication is the ideal solution to this problem. Using
SQL Remote or MobiLink synchronization, you can publish information in a
consolidated, or master, database to any number of other computers. You
can control precisely the information replicated on any particular computer.
Any person can receive particular tables, or even portions of the rows or
columns of a table. By customizing the information each receives, you can
ensure that their copy of the database is no larger than necessary to contain
the information they require.

☞ Extensive information on SQL Remote replication and MobiLink
synchronization is provided in the separate manuals entitledSQL Remote
User’s GuideandMobiLink Synchronization User’s Guide. The information
in this section is, thus, not intended to be complete. Rather, it introduces
concepts related directly to locking and concurrency considerations.

SQL Remote and MobiLink allow replicated databases to be updated from a
central, consolidated database, as well as updating this same central data as
the results of transactions processed on the remote machine. Since updates
can occur in either direction, this ability is referred to asbi-directional
replication.

Since the results of transactions can affect the consolidated database,
whether they are processed on the central machine or on a remote one, the
effect is that of allowing concurrent transactions.

Transactions may happen at the same time on different machines. They may
even involve the same data. In this case, though, the machines may not be
physically connected. No means may exist by which the remote machine can
contact the consolidated database to set any form of lock or identify which
rows have changed. Thus, locks can not prevent inconsistencies as they do
when all transactions are processed by a single server.

An added complication is introduced by the fact that any given remote
machine may not hold a full copy of the database. Consider a transaction
executed directly on the main, consolidated database. It may affect rows in
two or more tables. The same transaction might not execute on a remote
database, as there is no guarantee that one or both of the affected tables is
replicated on that machine. Even if the same tables exist, they may not
contain exactly the same information, depending upon how recently the

148

Chapter 4. Using Transactions and Isolation Levels

information in the two databases has been synchronized.

To accommodate the above constraints, replication is not based on
transactions, but rather on operations. Anoperation is a change to one row
in a table. This change could be the result of an UPDATE, INSERT, or
DELETE statement. An operation resulting from an UPDATE or DELETE
identifies the initial values of each column and a transaction resulting from
an INSERT or UPDATE records the final values.

A transaction may result in none, one, or more than one operation. One
operation will never result from two or more transactions. If two transactions
modify a table, then two or more corresponding operations will result.

If an operation results from a transaction processed on a remote computer,
then it must be passed to the consolidated database so that the information
can be merged. If, on the other hand, an operation results from a transaction
on the consolidated computer, then the operation may need to be sent to
someremote sites, but not others. Since each remote site may contain a
replica of a portion of the complete database, SQL Remote knows to pass the
operation to a remote site only when it affects that portion of the database.

Transaction log based
replication

SQL Remote uses atransaction log basedreplication mechanism. When
you activate SQL Remote on a machine, it scans the transaction log to
identify the operations it must transfer and prepares one or more messages.

SQL Remote can pass these messages between computers using a number of
methods. It can create files containing the messages and store them in a
designated directory. Alternatively, SQL Remote can pass messages using
any of the most common messaging protocols. You likely can use your
present e-mail system.

Conflicts may arise when merging operations from remote sites into the
consolidated database. For example, two people, each at a different remote
site, may have changed the same value in the same table. Whereas the
locking facility built into Adaptive Server Anywhere can eliminate conflict
between concurrent transactions handled by the same server, it is impossible
to automatically eliminate all conflicts between two remote users who both
have permission to change the same value.

As the database administrator, you can avoid this potential problem through
suitable database design or by writing conflict resolution algorithms. For
example, you can decide that only one person will be responsible for
updating a particular range of values in a particular table. If such a
restriction is impractical, then you can instead use the conflict resolution
facilities of SQL Remote to implement triggers and procedures which
resolve conflicts in a manner appropriate to the data involved.

149

☞ SQL Remote provides the tools and programming facilities you need to
take full advantage of database replication. For further information, see the
SQL Remote User’s Guideand theMobiLink Synchronization User’s Guide.

150

Chapter 4. Using Transactions and Isolation Levels

Summary
Transactions and locking are perhaps second only in importance to relations
between tables. The integrity and performance of any database can benefit
from the judicious use of locking and careful construction of transactions.
Both are essential to creating databases that must execute a large number of
commands concurrently.

Transactions group SQL statements into logical units of work. You may end
each by either rolling back any changes you have made or by committing
these changes and so making them permanent.

Transactions are essential to data recovery in the event of system failure.
They also play a pivotal role in interweaving statements from concurrent
transactions.

To improve performance, multiple transactions must be executed
concurrently. Each transaction is composed of component SQL statements.
When two or more transactions are to be executed concurrently, the database
server must schedule the execution of the individual statements. Concurrent
transactions have the potential to introduce new, inconsistent results that
could not arise were these same transactions executed sequentially.

Many types of inconsistencies are possible, but four typical types are
particularly important because they are mentioned in the ISO SQL/92
standard and the isolation levels are defined in terms of them.

♦ Dirty read One transaction reads data modified, but not yet
committed, by another.

♦ Non-repeatable read A transaction reads the same row twice and gets
different values.

♦ Phantom row A transaction selects rows, using a certain criterion,
twice and finds new rows in the second result set.

♦ Lost Update One transaction’s changes to a row are completely lost
because another transaction is allowed to save an update based on earlier
data.

A schedule is called serializable whenever the effect of executing the
statements according to the schedule is the same as could be achieved by
executing each of the transactions sequentially. Schedules are said to be
correct if they are serializable. A serializable schedule will cause none of
the above inconsistencies.

Locking controls the amount and types of interference permitted. Adaptive
Server Anywhere provides you with four levels of locking: isolation levels 0,

151

1, 2, and 3. At the highest isolation, level 3, Adaptive Server Anywhere
guarantees that the schedule is serializable, meaning that the effect of
executing all the transactions is equivalent to running them sequentially.

Unfortunately, locks acquired by one transaction may impede the progress of
other transactions. Because of this problem, lower isolation levels are
desirable whenever the inconsistencies they may allow are tolerable.
Increased isolation to improve data consistency frequently means lowering
the concurrency, the efficiency of the database at processing concurrent
transactions. You must frequently balance the requirements for consistency
against the need for performance to determine the best isolation level for
each operation.

Conflicting locking requirements between different transactions may lead to
blocking or deadlock. Adaptive Server Anywhere contains mechanisms for
dealing with both these situations, and provides you with options to control
them.

Transactions at higher isolation levels do not, however,alwaysimpact
concurrency. Other transactions will be impeded only if they require access
to locked rows. You can improve concurrency through careful design of your
database and transactions. For example, you can shorten the time that locks
are held by dividing one transaction into two shorter ones, or you might find
that adding an index allows your transaction to operate at higher isolation
levels with fewer locks.

The increased popularity of portable computers will frequently mean that
your database may need to be replicated. Replication is an extremely
convenient feature of Adaptive Server Anywhere, but it introduces new
considerations related to concurrency. These topics are covered in a separate
manual.

152

CHAPTER 5

Monitoring and Improving Performance

About this chapter This chapter describes how to monitor and improve the performance of your
database.

Contents Topic: page

Performance analysis tools 154

Top performance tips 161

Using the cache to improve performance 176

Using indexes to improve performance 181

Using keys to improve query performance 182

Sorting query results 184

Use of work tables in query processing 185

Monitoring database performance 187

Fragmentation 193

Profiling database procedures 197

153

Performance analysis tools
While improving database performance doesn’t have to be labour-intensive,
it’s always best to start with a plan. Evaluate the current performance of your
database, and consider all your options before changing anything. By
re-evaluating your database schema using Adaptive Server Anywhere’s
performance features and performance analysis tools, you can diagnose and
correct performance problems and keep your database performing at its
optimum.

Ultimately, how well your database performs depends heavily on the design
of its bones. And so, one of the most basic of ways of improving
performance is with good schema design. The database schema is the
skeleton of your database, and includes definitions of such things as tables,
views, triggers, and the relationships between them. Re-evaluate your
database schema and make note of the following areas where small changes
can offer impressive gains.

A variety of tools are available to help you analyze and monitor the current
performance of your Adaptive Server Anywhere database. Tools include
request-level logging, procedure profiling, graphical plans, the Performance
Monitor and timing utilities.

Request-level logging

Request-level logging is a good starting point for performance analysis of a
specific application when it is not obvious whether the server or the client is
at fault. It is also useful in determining the specific request to the server that
might be responsible for problems.

Request level logging logs individual requests received from and responses
sent to an application. It’s most useful for determining what the server is
being asked to do by the application.

Logged information includes timestamps, connection ids, and request type,
for example. You can use the -zr database server option to specify what type
of information is logged. You can redirect the output to a file for further
analysis using the -zo option.

Thesa_get_request_times ([request_log_filename [, connection_id]])
stored procedure reads a request-level log and populates a global temporary
tablesatmp_request_timewith statements from the log and their execution
times. The time recorded is straightforward for INSERT/UPDATE/DELETE
statements. For queries, the time recorded is the total elapsed time from
PREPARE to DROP (describe/open/fetch/close). That means you need to be
aware of any open cursors.

154

Chapter 5. Monitoring and Improving Performance

Analyzesatmp_request_timefor candidates. Statements that are cheap but
frequently executed may represent performance problems

You can use sa_get_request_profile([request_log_filename [, connection_id
]]) to call sa_get_request_times()and summarize the resulting
satmp_request_timeinto another global temporary table
satmp_request_profile. This procedure also groups statements together and
provides the number of calls, execution times, and so on.

Filtering request-level
logs

Output to the request-level log can be filtered to include only requests from a
specific connection or from a specific database. This can help reduce the size
of the log when monitoring a server with many active connections or
multiple databases.

❖ To filter according to a connection

1. Use the following syntax:

call sa_server_option(’requests_for_connection’,connection-
id)

whereconnection-idcan be obtained fromsa_conn_info().

❖ To filter according to a database

1. Use the following syntax:

call sa_server_option(’requests_for_database’,database-id)

The database-id can be obtained from
connection_property(’ DBNumber’) when connected to that database.
Filtering remains in effect until explicitly reset, or until the server is shut
down.

❖ To reset filtering

1. Use either of the following two statements, to reset either by connection
or by database:

call sa_server_option(’requests_for_connection’,-1)

call sa_server_option(’requests_for_database’,-1)

Outputting host variables
to request-level logs

Host variable values can be output to a request log.

155

❖ To include host variable values

1. To include host variable values in the request-level log:

♦ use the -zr server command line option with a value ofsql+hostvars

♦ execute the following:

call sa_server_option(’request_level_
logging’,’sql+host’)

The request log analysis procedure,sa_get_request_timesrecognizes host
variables in the log and adds them to the global temporary table
satmp_request_hostvar. For database versions before 9.0.0 where this
temporary table does not exist, host variable values are ignored.

Index Consultant

The Index Consultant recommends indexes that can help improve
performance for large workloads or complex queries. It takes as input either
a single query or a workload of queries, and recommends indexes to add to
the database as well as unused indexes to drop.

The Index Consultant creates a set of virtual indexes in the database. It
estimates query execution costs using those indexes to see which indexes
lead to improved execution plans. The Index Consultant evaluates multiple
column indexes as well as single-column indexes, and also investigates the
impact of clustered or unclustered indexes.

☞ For more information about the Index Consultant, see“Index Consultant
overview” on page 63.

Procedure profiling

Procedure profiling shows you how long it takes your stored procedures,
functions, events, and triggers to execute. You can also view the execution
time for each line of a procedure. Using the database profiling information,
you can determine which procedures can be fine-tuned to improve
performance within your database.

Procedure profiling can help you analyze specific database procedures
(including stored procedures, functions, events and triggers) found to be
expensive via request level logging. It can also help you discover expensive,
hidden, procedures, for example triggers, events, and nested stored
procedure calls. As well, it can help pin-point potential problem areas within
the body of a procedure

You can use stored procedures to view procedure profiling information that
has been gathered by the server. Thesa_procedure_profile_summary

156

Chapter 5. Monitoring and Improving Performance

stored procedure provides information about all of the procedures within the
database. You can use this procedure to view the profiling data for stored
procedures, functions, events, and triggers within the same result set.
However, a better way to examine this information is to use Sybase Central.

Profiling can be enabled/disabled dynamically and the data it generates is
transient, stored in memory by the server. You can view it using the Profile
tab in Sybase Central. Once profiling is enabled, the database gathers
profiling information until you disable profiling or until the server is shut
down. Profiling information is cumulative, and accurate to 1 ms.

Graphical plan

The graphical plan feature in Interactive SQL displays the execution plan for
a query. It is useful for diagnosing performance issues with specific queries.
For example, the information in the plan may help you decide where to add
an index to your database.

The graphical plan provides a great deal more information than the short or
long plans. You can choose to see the graphical plan either with or without
statistics. Both allow you to quickly view which parts of the plan have been
estimated as the most expensive. The graphical plan with statistics, though
more expensive to view, also provides the actual query execution statistics as
monitored by the server when the query is executed, and permits direct
comparison between the estimates used by the query optimizer in
constructing the access plan with the actual statistics monitored during
execution. Note, however, that the optimizer is often unable to precisely
estimate a query’s cost, so expect there to be differences. The graphical plan
is the default format for access plans.

You can obtain detailed information about the nodes in the plan by clicking
the node in the graphical diagram. The graphical plan with statistics shows
you all the estimates that are provided with the graphical plan, but also
shows actual runtime costs of executing the statement. To do this, the
statement must actually be executed. This means that there may be a delay
in accessing the plan for expensive queries. It also means that any parts of
your query such as deletes or updates are actually executed, although you
can perform a rollback to undo these changes.

Use the graphical plan with statistics when you are having performance
problems, and the estimated row count or run time differs from your
expectations. The graphical plan with statistics provides estimates and actual
statistics for you to compare. A large difference between actual and estimate
is a warning sign that the optimizer might not have sufficient information to
prepare correct estimates.

157

Following are some of the key statistics you can check in the graphical plan
with statistics, and some possible remedies:

♦ Row count measures the rows in the result set. If the estimated row count
is significantly different from the actual row count, the selectivity of
underlying predicates is probably incorrect.

♦ Accurate selectivity estimates are critical for the proper operation of the
query optimizer. For example, if the optimizer mistakenly estimates a
predicate to be highly selective (with, say, a selectivity of 5%), but in
reality, the predicate is much less selective (for example, 50%), then
performance may suffer. In general, estimates may not be precise.
However, a significantly large error does indicate a possible problem. If
the predicate is over a base column for which there does not exist a
histogram, executing a CREATE STATISTICS statement to create a
histogram may correct the problem. If selectivity error remains a problem
then, as a last resort, you may wish to consider specifying a user estimate
of selectivity along with the predicate in the query text.

♦ Runtime measures the time to execute the query. If the runtime is
incorrect for a table scan or index scan, you may improve performance by
executing the REORGANIZE TABLE statement. You can use the
sa_table_fragmentation and the sa_index_density function to determine
whether the table or index are fragmented.

♦ When the source of the estimate is Guess, the optimizer has no
information to use, which may indicate a problem. If the estimate source
is Index and the selectivity estimate is incorrect, your problem may be
that the index is skewed: you may benefit from defragmenting the index
with the REORGANIZE INDEX statement.

♦ If the number of cache reads and cache hits are exactly the same, then
your entire database is in cache—an excellent thing. When reads are
greater than hits, it means that the server is attempting to go to cache but
failing, and that it must read from disk. In some cases, such as hash joins,
this is expected. In other cases, such as nested loops joins, a poor
cache-hit ratio may indicate a performance problem, and you may benefit
from increasing your cache size.

Performance Monitor

The Performance Monitor is useful for tracking detailed information about
database server actions, including disk and memory access.

With the Sybase Central Performance Monitor, you can graph a variety of
statistics of any Adaptive Server Anywhere database server that you can

158

Chapter 5. Monitoring and Improving Performance

connect to in Sybase Central. All statistics in Sybase Central are shown in
the Statistics folder.

Features of the Performance Monitor include:

♦ Real-time updates (at adjustable intervals)

♦ A color-coded and resizable legend

♦ Configurable appearance properties

When you’re using the Sybase Central Performance Monitor, note that it
uses actual queries against the server to gather its statistics, so the monitor
itself affects some statistics (such as Cache Reads/sec). As a more precise
alternative, you can graph server statistics using the Windows Performance
Monitor.

The Windows monitor has two advantages:

♦ It offers more performance statistics (mainly those concerned with
network communications).

♦ Unlike the Sybase Central monitor, the Windows monitor is
non-intrusive. It uses a shared-memory scheme instead of performing
queries against the server, so it does not affect the statistics themselves.

If you run multiple versions of Adaptive Server Anywhere simultaneously, it
is also possible to run multiple versions of the Performance Monitor
simultaneously

Timing utilities

Some performance testing utilities, including fetchtst, instest, and trantest,
are available in the<installation dir>\samples\asa\directory. Complete
documentation can be found in theReadme.txtfile in the same folder as the
utility. These tools will give you more accurate timings than the graphical
plan with statistics. These utilities can provide an indication of the best
achievable performance (for example, throughput) for a given server and
database configuration.

Fetchtst measures fetch rates for an arbitrary query. Instest determines the
time required for rows to be inserted into a table. Trantest measures the load
that can be handled by a given server configuration given a database design
and a set of transactions.

Concurrency

When the database server processes a transaction, it can lock one or more
rows of a table. The locks maintain the reliability of information stored in

159

the database by preventing concurrent access by other transactions. They
also improve the accuracy of result queries by identifying information which
is in the process of being updated.

The database server places these locks automatically and needs no explicit
instruction. It holds all the locks acquired by a transaction until the
transaction is completed. The transaction that has access to the row is said to
hold the lock. Depending on the type of lock, other transactions may have
limited access to the locked row, or none at all.

Performance can be compromised if a row or rows are frequently accessed
by a number of users simultaneously. If you suspect locking problems,
consider using thesa_locksprocedure to obtain information on locks in the
database. If lock issues are identified, information on the connection
processes involved can be found using the AppInfo connection property.

160

Chapter 5. Monitoring and Improving Performance

Top performance tips
Adaptive Server Anywhere provides excellent performance automatically.
However, the following tips will help you achieve the most from the product.

Always use a transaction log

You might think that Adaptive Server Anywhere would run faster without a
transaction log because it would have to maintain less information on disk.
Yet, the opposite is actually true. Not only does a transaction log provide a
large amount of protection, it can dramatically improve performance.

Operating without a transaction log, Adaptive Server Anywhere must
perform a checkpoint at the end of every transaction. Writing these changes
consumes considerable resources.

With a transaction log, however, Adaptive Server Anywhere need only write
notes detailing the changes as they occur. It can choose to write the new
database pages all at once, at the most efficient time.Checkpointsmake
sure information enters the database file, and that it is consistent and up to
date.

Tip
Always use a transaction log. It helps protect your dataand it greatly
improves performance.

If you can store the transaction log on a different physical device than the
one containing the main database file, you can further improve performance.
The extra drive head does not generally have to seek to get to the end of the
transaction log.

Increase the cache size

Adaptive Server Anywhere stores recently used pages in a cache. Should a
request need to access the page more than once, or should another
connection require the same page, it may find it already in memory and
hence avoid having to read information from disk. This is especially an issue
for encrypted databases, which require a larger cache than unencrypted.

If your cache is too small, Adaptive Server Anywhere cannot keep pages in
memory long enough to reap these benefits.

On UNIX, Windows NT/2000/XP, and Windows 95/98/Me, the database
server dynamically changes cache size as needed. However, the cache is still
limited by the amount of memory that is physically available, and by the
amount used by other applications.

161

On Windows CE and Novell NetWare, the size of the cache is set on the
command line when you launch the database server. Be sure to allocate as
much memory to the database cache as possible, given the requirements of
the other applications and processes that run concurrently. In particular,
databases using Java objects benefit greatly from larger cache sizes. If you
use Java in your database, consider a cache of at least 8 Mb.

Tip
Increasing the cache size can often improve performance dramatically,
since retrieving information from memory is many times faster than
reading it from disk. You may find it worthwhile to purchase more RAM
to allow a larger cache.

☞ For more information, see“Using the cache to improve performance” on
page 176.

Normalize your table structure

In general, the information in each column of a table should depend solely
on the value of the primary key. If this is not the case, then one table may
contain multiple copies of the same information, and your table may need to
be normalized.

Normalization reduces duplication in a relational database. For example,
suppose the people in your company work at a number of offices. To
normalize the database, consider placing information about the offices (such
as its address and main telephone numbers) in a separate table, rather than
duplicating all this information for every employee.

You can, however, take the generally good notion of normalization too far. If
the amount of duplicate information is small, you may find it better to
duplicate the information and maintain its integrity using triggers or other
constraints.

Use indexes effectively

When executing a query, Adaptive Server Anywhere chooses how to access
each table. Indexes greatly speed up the access. When the database server
cannot find a suitable index, it instead resorts to scanning the table
sequentially—a process that can take a long time.

For example, suppose you need to search a large database for people, but
you only know either their first or their last name, but not both. If no index
exists, Adaptive Sever Anywhere scans the entire table. If however, you
created two indexes (one that contains the last names first, and a second that
contains the first names first), Adaptive Sever Anywhere scans the indexes

162

Chapter 5. Monitoring and Improving Performance

first, and can generally return the information to you faster.

Using indexes Although indexes let Adaptive Server Anywhere locate information very
efficiently, exercise some caution when adding them. Each index creates
extra work every time you insert, delete, or update a row because Adaptive
Server Anywhere must also update all affected indexes.

Consider adding an index when it will allow Adaptive Server Anywhere to
access data more efficiently. In particular, add an index when it eliminates
unnecessarily accessing a large table sequentially. If, however, you need
better performance when you add rows to a table, and finding information
quickly is not an issue, use as few indexes as possible.

You may wish to use the Index Consultant to guide you through the selection
of an effective set of indexes for your database. For more information, see
“Index Consultant overview” on page 63.

Clustered indexes Using clustered indexes stores rows in a table in approximately the same
order as they appear in the index.

☞ For more information, see“Indexes” on page 395and“Using clustered
indexes” on page 59.

Place different files on different devices

Disk drives operate much more slowly than modern processors or RAM.
Often, simply waiting for the disk to read or write pages is the reason that a
database server is slow.

You almost always improve database performance when you put different
physical database files on different physical devices. For example, while one
disk drive is busy swapping database pages to and from the cache, another
device can be writing to the log file.

Notice that to gain these benefits, the devices must be independent. A single
disk, partitioned into smaller logical drives, is unlikely to yield benefits.

Adaptive Server Anywhere uses four types of files:

1. database (.db)

2. transaction log (.log)

3. transaction log mirror (.mlg)

4. temporary file (.tmp)

Thedatabase fileholds the entire contents of your database. A single file
can contain a single database, or you can add up to 12 dbspaces, which are

163

additional files holding the same database. You choose a location for it,
appropriate to your needs.

Thetransaction log file is required for recovery of the information in your
database in the event of a failure. For extra protection, you can maintain a
duplicate in a third type of file called atransaction log mirror file .
Adaptive Server Anywhere writes the same information at the same time to
each of these files.

Tip
By placing the transaction log mirror file (if you use one) on a physically
separate drive, you gain better protection against disk failure, and Adaptive
Server Anywhere runs faster because it can efficiently write to the log
and log mirror files. To specify the location of the transaction log and
transaction log mirror files, use thedblog command line utility, or the
Change Log File Settings utility in Sybase Central.

Adaptive Server Anywhere may need more space than is available to it in the
cache for such operations as sorting and forming unions. When it needs this
space, it generally uses it intensively. The overall performance of your
database becomes heavily dependent on the speed of the device containing
the fourth type of file, thetemporary file.

Tip
If the temporary file is on a fast device, physically separate from the one
holding the database file, Adaptive Server Anywhere will run faster. This
is because many of the operations that necessitate using the temporary
file also require retrieving a lot of information from the database. Placing
the information on two separate disks allows the operations to take place
simultaneously.

Choose the location of your temporary file carefully. Adaptive Server
Anywhere examines the following environment variables, in the order
shown, to determine the directory in which to place the temporary file.

1. ASTMP

2. TMP

3. TMPDIR

4. TEMP

If none of these is defined, Adaptive Server Anywhere places its temporary
file in the current directory—not a good location for the best performance.

164

Chapter 5. Monitoring and Improving Performance

If an environment variable is not defined, Adaptive Server Anywhere places
its temporary file in the/tmp/.SQLAnywheredirectory for UNIX, and in the
current directory for Windows.

If your machine has a sufficient number of fast devices, you can gain even
more performance by placing each of these files on a separate device. You
can even divide your database into multiple dbspaces, located on separate
devices. In such a case, group tables in the separate dbspaces so that
common join operations read information from different files.

A similar strategy involves placing the temporary and database files on a
RAID device or a Windows NT stripe set. Although such devices act as a
logical drive, they dramatically improve performance by distributing files
over many physical drives and accessing the information using multiple
heads.

☞ For more information about work tables, see“Use of work tables in
query processing” on page 185.

☞ For information about data recovery, see “Backup and Data Recovery”
[ASA Database Administration Guide,page 337].

☞ For information about transaction logs and thedbccutility, see
“Transaction log utility options”[ASA Database Administration Guide,
page 529].

Turn off autocommit mode

If your application runs inautocommit mode, then Adaptive Server
Anywhere treats each of your statements as a separate transaction. In effect,
it is equivalent to appending a COMMIT statement to the end of each of
your commands.

Instead of running in autocommit mode, consider grouping your commands
so each group performs one logical task. If you do disable autocommit, you
must execute an explicit commit after each logical group of commands.
Also, be aware that if logical transactions are large, blocking and deadlock
can happen.

The cost of using autocommit mode is particularly high if you are not using
a transaction log file. Every statement forces a checkpoint—an operation
that can involve writing numerous pages of information to disk.

Each application interface has its own way of setting autocommit behavior.
For the Open Client, ODBC, and JDBC interfaces, Autocommit is the
default behavior.

☞ For more information about autocommit, see “Setting autocommit or

165

manual commit mode”[ASA Programming Guide,page 47].

Use bulk operations methods

If you find yourself loading huge amounts of information into your database,
you can benefit from the special tools provided for these tasks.

If you are loading large files, it is more efficient to create indexes on the
table after the data is loaded.

☞ For information on improving bulk operation performance, see
“Performance considerations of moving data” on page 522.

Use the WITH EXPRESS CHECK option when validating tables

If you find that validating large databases with a small cache takes a long
time, you can use one of two options to reduce the amount of time it takes.
Using the WITH EXPRESS CHECK option with the VALIDATE TABLE
statement, or the-fx option with the Validation utility can significantly
increase the speed at which your tables validate.

☞ For information on improving performance when validating databases,
see “Improving performance when validating databases”[ASA Database
Administration Guide,page 365].

Try using Adaptive Server Anywhere’s compression features

Enabling compression for one connection or for all connections, and
adjusting the minimum size limit at which packets are compressed can offer
significant improvements to Adaptive Server Anywhere performance under
some circumstances.

To determine if enabling compression will help in your particular situation,
we recommend that you conduct a performance analysis on your particular
network and using your particular application before using communication
compression in a production environment.

☞ Enabling compression increases the quantity of information stored in
data packets, thereby reducing the number of packets required to transmit a
particular set of data. By reducing the number of packets, the data can be
transmitted more quickly.

☞ Specifying the compression threshold allows you to choose the
minimum size of data packets that you want compressed. The optimal value
for the compression threshold may be affected by a variety of factors,
including the type and speed of network you are using.

166

Chapter 5. Monitoring and Improving Performance

☞ For information about using compression to improve performance, see
“Adjusting communication compression settings to improve performance”
[ASA Database Administration Guide,page 102].

☞ For more information about compression settings, see the “Compress
connection parameter [COMP]”[ASA Database Administration Guide,page 181]
and the “CompressionThreshold connection parameter [COMPTH]”[ASA
Database Administration Guide,page 182].

Reduce the number of requests between client and server

If you find yourself in a situation where your:

♦ network exhibits poor latency

♦ application sends many cursor open and close requests

you can use the LazyClose and PrefetchOnOpen network communication
parameters to reduce the number of requests between the client and server
and thereby improve performance.

☞ For information about these parameters, see the “LazyClose connection
parameter [LCLOSE]”[ASA Database Administration Guide,page 193]and the
“PreFetchOnOpen communication parameter”[ASA Database Administration
Guide,page 214].

Reduce table widths

Tables with a large number of columns are known as wide tables. When the
number of columns in a table causes the size of individual rows to exceed
the database page size, each row is split across two or more database pages.
The more pages a row takes up, the longer it takes to read each row. If you
find performance lacking, and you know you have tables with many
columns, consider normalizing your tables to reduce the number of columns.
If that is not possible, a larger database page size may be helpful, especially
if most tables are wide.

Reduce primary key width

Wide primary keys are composed of two or more columns. The more
columns contained in your primary key, the more demand there is on the
server. Reducing the number of columns in your primary keys can improve
performance.

Declare constraints

Undeclared primary key-foreign key relationships exist between tables when

167

there is an implied relationship between the values of columns in different
tables. It is true that not declaring the relationship can save time on index
maintenance, however, declaring the relationship can improve performance
of queries when joins take place because the cost model is able to do a better
job of estimation.

Use appropriate data types

Data types store information about specific sets of data, including ranges of
values, the operations that can be performed on those values, and how the
values are stored in memory. You can improve performance by using the
appropriate data type for your data. For instance, avoid assigning a data type
of char or string to values that only contain numeric data. And whenever
possible, choose economical data types over the more expensive numeric
and string types.

Use AUTOINCREMENT to create primary keys

Primary key values must be unique. Although there are a variety of ways to
create unique values for primary keys, the most efficient method is setting
the default column value to be AUTOINCREMENT ON. You can use this
default for any column in which you want to maintain unique values. Using
the AUTOINCREMENT feature to generate primary key values is faster
than other methods because the value is generated by the server.

Replace expensive triggers

Evaluate the use of triggers to see if some of the triggers could be replaced
by features available in the server. For instance, triggers to update columns
with the latest update time and user information can be replaced with the
corresponding special values in the server. As well, using the default settings
on existing triggers can also improve performance.

Minimize cascading referential actions

Cascading referential actions are costly in terms of performance, because
they cause updates to multiple tables for every transaction. For example, if
the foreign key fromemployeeto departmentwere defined with ON
UPDATE CASCADE, then updating the department ID would automatically
update the employee table. While cascading referential actions are
convenient, sometimes it might be more efficient to implement them in
application logic.

168

Chapter 5. Monitoring and Improving Performance

Pay attention to the order of columns

Columns in a row are accessed in a sequential manner in the order of their
creation. For example, in order to access columns at the end of a row,
Adaptive Server Anywhere has to skip over any columns that appear earlier
in the row. Primary key columns are always stored at the beginning of rows.
For this reason, it is important to create tables such that small and/or
frequently accessed columns are placed before seldom accessed columns in
the table.

Upgrade to take advantage of new features

Adaptive Server Anywhere is constantly being evaluated and enhanced in
terms of performance features and usability. With each subsequent release,
you can take advantage of new features and behavior changes that will help
you optimize performance.

While you can simply run a database created with an older version of
Adaptive Server Anywhere on a newer release, many of the new features are
only available if the database is upgraded. Running the Upgrade utility adds
and modifies system tables, system procedures and database options to
upgrade a database from an older version of Adaptive Server Anywhere to a
newer version.

Rebuild your database

Rebuilding your database is the process of unloading and reloading your
entire database. It is sometimes called upgrading your database file format.

Rebuilding removes all the information, including data and schema, and puts
it all back in a uniform fashion, thus filling space and improving
performance much like defragmenting your disk drive. It also gives you the
opportunity to change certain settings. In comparison, using the upgrade
utility is quicker than rebuilding, and it does not affect the storage of your
files.

When you upgrade your database, rebuilding also gives you access to all new
features and performance enhancements in the latest version of the software.

Examine your database and server configurations

Go over your database/server configuration, and make sure that your
hardware and file space are appropriate for your usage.

169

Use an appropriate page size

The page size you choose can affect the performance of your database.
Adaptive Server Anywhere supports page sizes of (in bytes) 1024, 2048,
4096, 8192, 16384, or 32768, with 2048 being the default. There are
advantages and disadvantages to whichever page size you choose.

While smaller pages hold less information and may force less efficient use of
space, particularly if you insert rows that are slightly more than half a page
in size. However, small page sizes allow Adaptive Server Anywhere to run
with fewer resources because it can store more pages in a cache of the same
size. Small pages are particularly useful if your database must run on small
machines with limited memory. They can also help in situations when you
use your database primarily to retrieve small pieces of information from
random locations.

By contrast, a larger page sizes help Adaptive Server Anywhere read
databases more efficiently. Large page sizes also tend to benefit large
databases, and queries that perform sequential table scans. Often, the
physical design of disks permits them to retrieve fewer large blocks more
efficiently than many small ones. Other benefits of large page sizes include
improving the fan-out of your indexes, thereby reducing the number of index
levels, and allowing tables to include more columns.

Keep in mind that larger page sizes have additional memory requirements.
And since the maximum number of rows stored on a page is 255, tables with
small rows will not fill each page and therefore use space inefficiently. As
well, extremely large page sizes (16 kb or 32 kb) are not recommended for
most applications unless you can be sure that a large database server cache is
always available. Investigate the effects of increased memory and disk space
on performance characteristics before using 16 kb or 32 kb page sizes.

The server’s memory usage is proportional to the number of databases
loaded, and the page size of the databases. It is strongly recommended that
you do performance testing (and testing in general) when choosing a page
size. Then choose the smallest page size (>= 4K) that gives satisfactory
results. It is particularly important to pick the correct (and reasonable) page
size if a large number of databases are going to be started on the same server.

You cannot change the page size of an existing database. Instead you must
create a new database and use the-p option ofdbinit to specify the page
size. For example, the following command creates a database with 4K pages.

dbinit -p 4096 new.db

☞ For more information about larger page sizes, see “Setting a maximum

170

Chapter 5. Monitoring and Improving Performance

page size”[ASA Database Administration Guide,page 12].

Scattered reads If you are working with a Windows NT Service Patch 2 or higher system, or
with a Windows 2000/XP system, a page size of at least 4K allows the
database server to read a large contiguous region of database pages on disk
directly into the appropriate place in cache, bypassing the 64K buffer
entirely. This feature can significantly improve performance.

Examine file, table, and index fragmentation

Fragmentation occurs naturally as you make changes to your database.
Performance can suffer if your files, tables, or indexes are excessively
fragmented. This becomes more important as your database increases in
size. Adaptive Server Anywhere contains stored procedures that generate
information about the fragmentation of files, tables, and indexes.

If the decrease in performance is significant, consider

♦ rebuilding your database to reduce table and/or index fragmentation

♦ putting the database on a disk partition by itself to reduce file
fragmentation

♦ running one of the available Windows utilities periodically to reduce file
fragmentation

♦ reorganizing your tables to reduce database fragmentation

♦ rebuilding your database if you have performed extensive
delete/update/insert activity on a number of tables

♦ using the REORGANIZE TABLE statement to defragment rows in a
table, or to compress indexes which may have become sparse due to
DELETEs. Reorganizing tables can reduce the total number of pages
used to store a table and its indexes, and it may reduce the number of
levels in an index tree as well.

☞ For more information about detecting and fixing file, table, and index
fragmentation, see“Fragmentation” on page 193.

Eliminate operating
system file fragmentation

To eliminate operating system file fragmentation problems, periodically run
one of the available disk defragmentation utilities. File fragmentation can
have a detrimental impact on performance.

The database server determines the number of file fragments in the database
file when you start a database on Windows NT/2000/XP, and displays the
following information in the server message window when the number of
fragments is greater than one:

171

Database file " mydatabase.db" consists of nnn fragments

You can also obtain the number of database file fragments using the
DBFileFragments database property.

Minimize index
fragmentation

Indexes are designed to speed up searches on particular columns, but they
can become fragmented if many DELETEs are performed on the indexed
table. This may result in reduced performance if the index is accessed
frequently and the cache is not large enough to hold all of the index.

Thesa_index_densitystored procedure provides information about the
degree of fragmentation in a database’s indexes. You must have DBA
authority to run this procedure. The following statement calls the
sa_index_densitystored procedure:

CALL sa_index_density ([’ table_name’ [,’ owner_name’]])

If your index is highly fragmented, you can run REORGANIZE TABLE.
You can also drop the index and recreate it. However, if the index is a
primary key, you will also have to drop and recreate the foreign key indexes.

As well, you can improve performance by creating a clustered index on a
table. Clustered indexes cause table rows to be stored in approximately the
same order as they appear in the index.

Minimize table
fragmentation

Table fragmentation occurs when rows are not stored contiguously, or when
rows are split between multiple pages. Performance decreases because these
rows require additional page accesses.

Adaptive Server Anywhere reserves extra room on each page to allow rows
to grow slightly. When an update to a row causes it to grow beyond the
space available on the current page reserve, the row is split and the initial
row location contains a pointer to another page where the continuous row is
stored. For example, filling empty rows with UPDATE statements or
inserting new columns into a table can lead to severe row splitting. As more
rows are stored on separate pages, more time is required to access the
additional pages.

You can use thesa_table_fragmentationstored procedure to obtain
information about the degree of fragmentation of your database tables. The
following statement calls thesa_table_fragmentationstored procedure:

CALL sa_table_fragmentation ([’ table_name’ [,’ owner_name’]])

There are three ways to minimize table fragmentation:

♦ You can specify the percentage of space in a table page that should be
reserved for future updates. This PCTFREE specification can be set with

172

Chapter 5. Monitoring and Improving Performance

CREATE TABLE, ALTER TABLE, DECLARE LOCAL TEMPORARY
TABLE, or LOAD TABLE.

♦ You can reorganize specific tables. To defragment particular tables or
parts of tables, you can run REORGANIZE TABLE. Reorganizing tables
does not disrupt database access.

♦ You can rebuild the entire the database. Rebuilding is more
comprehensive in that it defragments all tables, including system tables.
Additionally, it rearranges the table rows so they appear in the order
specified by the clustered index and primary keys

Acquire adequate hardware

When running on a PC, make sure your server meets Adaptive Server
Anywhere’s minimum CPU, memory and disk requirements:

♦ Adaptive Server Anywhere can run with as little as 4 Mb of memory. If
you use Java in the database, Adaptive Server Anywhere requires 8 Mb of
memory. If you are using the administration tools, Adaptive Server
Anywhere requires at least 32 Mb of RAM. Your computer must have this
much memory in addition to the requirements for the operating system.

♦ Enough disk space to hold your database and log files.

♦ Keep in mind that these are the minimums. If you are meeting only the
minimum hardware requirements, and find that performance is suffering,
consider upgrading some or all of your hardware. In general, evaluate the
hardware configuration to see if it is adequate for the kind of work load
being placed on the server.

Choose the Optimizer’s priority

The OPTIMIZATION_GOAL option controls whether Adaptive Server
Anywhere optimizes SQL statements for response time (first-row) or for
total resource consumption (all-rows). In simpler terms, you can pick
whether to optimize query processing towards returning the first row
quickly, or towards minimizing the cost of returning the complete result set.

If the option is set to first-row, Adaptive Server Anywhere chooses an access
plan that is intended to reduce the time to fetch the first row of the query’s
result, possibly at the expense of total retrieval time. In particular, the
Adaptive Server Anywhere optimizer will typically avoid, if possible, access
plans that require the materialization of results in order to reduce the time to
return the first row. With this setting, for example, the optimizer favors

173

access plans that utilize an index to satisfy a query’s ORDER BY clause,
rather than plans that require an explicit sorting operation.

You can use the FASTFIRSTROW table hint in a query’s FROM clause to
set the optimization goal for a specific query to first-row, without having to
change the OPTIMIZATION_GOAL setting.

If the option is set to all-rows (the default), then Adaptive Server Anywhere
optimizes a query so as to choose an access plan with the minimal estimated
total retrieval time. Setting OPTIMIZATION_GOAL to all-rows may be
appropriate for applications that intend to process the entire result set, such
as PowerBuilder DataWindow applications.

Specify the correct cursor type

Specifying the correct cursor type can improve performance. For example, if
a cursor is read-only, then declaring it as read-only allows for faster
optimization and execution, since there is less material to build (no check
constraints, and so on). If the cursor is updateable, some rewrites can be
skipped. Also, if a query is updateable, then depending on the execution
plan chosen by the optimizer, the execution engine must use a keyset driven
approach. Keep in mind that key-set cursors are more expensive.

Consider collecting statistics on small tables

Adaptive Server Anywhere uses statistical information to determine the most
efficient strategy for executing each statement. Adaptive Server Anywhere
automatically gathers and updates these statistics, and stores them
permanently in the database. Statistics gathered while processing one
statement are available when searching for efficient ways to execute
subsequent statements.

To avoid collecting statistics when they may not be very useful, Adaptive
Server Anywhere does not, by default, collect statistics on small tables. The
definition of a small table is governed by the min_table_size_for_histogram
database option, whose default value is 1000. Sometimes it is useful to
collect statistics on a small table. In order to create statistics on a small table,
use the CREATE STATISTICS statement. Once created, the statistics are
automatically maintained by Adaptive Server Anywhere. It is also possible
to get Adaptive Server Anywhere to automatically create statistics on all
small tables by setting the option min_table_size_for_histogram to a smaller
value. However, it is not necessary—and not recommended—to do so.

174

Chapter 5. Monitoring and Improving Performance

Use user-estimates sparingly

Occasionally, statistics may become inaccurate. This condition is most likely
to arise when only a few queries have been executed since a large amount of
data was added, updated, or deleted. Inaccurate or unavailable statistics can
impede performance. If Adaptive Server Anywhere is taking too long to
update the statistics, try executing CREATE STATISTICS or DROP
STATISTICS to refresh them. As well, in newer versions of the server
(version 9.0 or later), Adaptive Server Anywhere will try to update statistics
not only on LOAD TABLE and during query execution, but also on update
DML statement.

In unusual circumstances, however, these measures may prove ineffective. If
you know that a condition has a success rate that differs from the optimizer’s
estimate, you can explicitly supply a user estimate in the search condition.

Although user defined estimates can sometimes improve performance, avoid
supplying explicit user-defined estimates in statements that are to be used on
an ongoing basis. Should the data change, the explicit estimate may become
inaccurate and may force the optimizer to select poor plans.

If you have used selectivity estimates that are inaccurate as a workaround to
performance problems where the software-selected access plan was poor,
you can set USER_ESTIMATES to OFF to ignore the values.

Reduce expensive user-defined functions

Reducing expensive user-defined functions in queries where they have to be
executed many times can improve performance.

175

Using the cache to improve performance
The database cache is an area of memory used by the database server to
store database pages for repeated fast access. The more pages that are
accessible in the cache, the fewer times the database server needs to read
data from disk. As reading data from disk is a slow operation, the amount of
cache available is often a key factor in determining performance.

You can control the size of the database cache on the database server
command line when the database is started.

Dynamic cache sizing Adaptive Server Anywhere provides automatic resizing of the database
cache. The capabilities are different on different operating systems. On
Windows NT/2000/XP, Windows 95/98/Me, and UNIX operating systems,
the cache grows and shrinks. Details are provided in the following sections.

Full dynamic cache sizinghelps to ensure that the performance of your
database server is not impacted by allocating inadequate memory. The cache
grows when the database server can usefully use more, as long as memory is
available, and shrinks when cache memory is required by other applications,
so that the database server does not unduly impact other applications on the
system. The effectiveness of dynamic cache sizing is limited, of course, by
the physical memory available on your system.

Generally, dynamic cache sizing assesses cache requirements at the rate of
approximately once per minute. However, after a new database is started or
when a file grows significantly, statistics are sampled and the cache may be
resized every five seconds for thirty seconds. After the initial thirty second
period, the sampling rate drops back down to once per minute. Significant
growth of a file is defined as a 1/8 growth since the database started or since
the last growth that triggered an increase in the sampling rate. This change
improves performance further, by adapting the cache size more quickly
when databases are started dynamically and when a lot of data is inserted.

Dynamic cache sizing removes the need for explicit configuration of
database cache in many situations, making Adaptive Server Anywhere even
easier to use.

There is no dynamic cache resizing on Windows CE or Novell NetWare.
When an Address Windowing Extensions (AWE) cache is used, dynamic
cache sizing is disabled.

☞ For more information about AWE caches, see “-cw server option”[ASA
Database Administration Guide,page 138].

176

Chapter 5. Monitoring and Improving Performance

Limiting the memory used by the cache

The initial, minimum, and maximum cache sizes are all controllable from
the database server command line.

♦ Initial cache size You can change the initial cache size by specifying
the database server-c command-line option. The default value is as
follows:
• Windows CE The formula is as follows:

max(600K, min(dbsize , physical-memory))

wheredbsizeis the total size of the database file or files started, and
physical-memoryis 25% of the physical memory on the machine.

• Windows NT/2000/XP, Windows 95/98/Me, NetWare The formula is
as follows:

max(2M, min(dbsize , physical-memory))

wheredbsizeis the total size of the database file or files started, and
physical-memoryis 25% of the physical memory on the machine.
If an AWE cache is used on Windows 2000, Windows XP, or Windows
Server 2003 the formula is as follows:

min(100% of available memory-128MB, dbsize)

An AWE cache is not used if this value is smaller than 2 Mb.
☞ For information about AWE caches, see “-cw server option”[ASA
Database Administration Guide,page 138].

• UNIX At least 8 Mb.
☞ For information about UNIX initial cache size, see“Dynamic
cache sizing (UNIX)” on page 178.

♦ Maximum cache size You can control the maximum cache size by
specifying the database server-ch command-line option. The default is
based on an heuristic that depends on the physical memory in your
machine. On non-UNIX machines, this is usually approximately 90% of
total physical memory, but not more than 256 Mb. On UNIX machines,
this is the greater of the following:

(25% total physical-memory,
25%(available-physical-memory + available-swap-space),
sum-of-file-sizes-on-the-command-line)

but is no more than 256 Mb and is no less than 24 Mb.

♦ Minimum cache size You can control the minimum cache size by
specifying the database server-cl command-line option. By default, the
minimum cache size is the same as the initial cache size.

177

You can also disable dynamic cache sizing by using the-ca command-line
option.

☞ For more information on command-line options, see “The database
server”[ASA Database Administration Guide,page 124].

Dynamic cache sizing (Windows NT/2000/XP, Windows 95/98/Me)

On Windows NT/2000/XP and Windows 95/98/Me, the database server
evaluates cache and operating statistics once per minute and computes an
optimum cache size. The server computes a target cache size that uses all
physical memory currently not in use, except for approximately 5 Mb that is
to be left free for system use. The target cache size is never smaller than the
specified or implicit minimum cache size. The target cache size never
exceeds the specified or implicit maximum cache size, or the sum of the
sizes of all open database and temporary files.

To avoid cache size oscillations, the database server increases the cache size
incrementally. Rather than immediately adjusting the cache size to the target
value, each adjustment modifies the cache size by 75% of the difference
between the current and target cache size.

Windows 2000, Windows XP, and Windows Server 2003 can use Address
Windowing Extensions (AWE) to support large cache sizes by specifying the
-cw command-line option when starting the database server. AWE caches
do not support dynamic cache sizing.

☞ For more information, see “-cw server option”[ASA Database
Administration Guide,page 138].

Dynamic cache sizing (UNIX)

On UNIX, the database server uses swap space and memory to manage the
cache size. The swap space is a system-wide resource on most UNIX
operating systems, but not on all. In this section, the sum of memory and
swap space is called thesystem resources. See your operating system
documentation for details.

On startup, the database allocates the specified maximum cache size from
the system resources. It loads some of this into memory (the initial cache
size) and keeps the remainder as swap space.

The total amount of system resources used by the database server is constant
until the database server shuts down, but the proportion loaded into memory
changes. Each minute, the database server evaluates cache and operating
statistics. If the database server is busy and demanding of resources, it may
move cache pages from swap space into memory. If the server is quiet, it

178

Chapter 5. Monitoring and Improving Performance

may move them out from memory to swap space.

Initial cache size By default, the initial cache size is assigned using an heuristic based on the
available system resources. The initial cache size is always less than 1.1
times the total database size.

If the initial cache size is greater than 3/4 of the available system resources,
the database server exits with aNot Enough Memory error.

You can change the initial cache size using the -c option.

Maximum cache size The maximum cache must be less than the available system resources on the
machine. By default, the maximum cache size is assigned using an heuristic
based on the available system resources and the total physical memory on
the machine.

If you specify a maximum cache size greater than the available system
resources, the server exits with aNot Enough Memory error. If you specify
a maximum cache size greater than the available memory, the server warns
of performance degradation, but does not exit.

The database server allocates all themaximumcache size from the system
resources, and does not relinquish it until the server exits. You should be
sure that you choose a maximum cache size that gives good Adaptive Server
Anywhere performance while leaving space for other applications. The
formula for the default maximum cache size is an heuristic that attempts to
achieve this balance. You only need to tune the value if the default value is
not appropriate on your system.

If you specify a maximum cache size less than 8 Mb, you will not be able to
run Java applications. Low maximum cache sizes will impact performance.

☞ You can use the-ch server option to set the maximum cache size, and
limit automatic cache growth. For more information, see “-ch server option”
[ASA Database Administration Guide,page 136]

Minimum cache size If the -c option is specified, the minimum cache size is the same as the initial
cache size. If no -c option is specified, the minimum cache size on UNIX is
8 Mb.

You can use the-cl server option to adjust the minimum cache size For
more information, see “-cl server option”[ASA Database Administration Guide,
page 136].

Monitoring cache size

The following statistics have been added to the Windows Performance
Monitor and to the database’s property functions.

179

♦ CurrentCacheSize The current cache size in kilobytes

♦ MinCacheSize The minimum allowed cache size in kilobytes

♦ MaxCacheSize The maximum allowed cache size in kilobytes

♦ PeakCacheSize The peak cache size in kilobytes

Note: Windows Performance Monitor is available in Windows NT, Win-
dows 2000, and Windows XP.

☞ For more information on these properties, see “Server-level properties”
[ASA Database Administration Guide,page 657].

☞ For information on monitoring performance, see“Monitoring database
performance” on page 187.

180

Chapter 5. Monitoring and Improving Performance

Using indexes to improve performance
Proper selection of indexes can make a large performance difference.
Creating and managing indexes is described in“Working with indexes” on
page 58.

181

Using keys to improve query performance
Primary keys and foreign keys, while used primarily for validation purposes,
can also improve database performance.

Example The following example illustrates how primary keys can make queries
execute more quickly.

SELECT *
FROM employee
WHERE emp_id = 390

The simplest way for the server to execute this query would be to look at all
75 rows in theemployeetable and check the employee ID number in each
row to see if it is 390. This does not take very long since there are only 75
employees, but for tables with many thousands of entries a sequential search
can take a long time.

The referential integrity constraints embodied by each primary or foreign
key are enforced by Adaptive Server Anywhere through the help of an index,
implicitly created with each primary or foreign key declaration. The emp_id
column is the primary key for the employee table. The corresponding
primary key index permits the retrieval of employee number 390 quickly.
This quick search takes almost the same amount of time whether there are
100 rows or 1,000,000 rows in the employee table.

Using primary keys to improve query performance

A primary key improves performance on the following statement:

SELECT *
FROM employee
WHERE emp_id = 390

Information on the Plan
tab

The Plan tab in the Results pane contains the following information:

employee <employee >

Whenever the name inside the parentheses on the Plan tab PLAN description
is the same as the name of the table, it means that the primary key for the
table is used to improve performance.

Using foreign keys to improve query performance

The following query lists the orders from the customer with customer ID
113:

182

Chapter 5. Monitoring and Improving Performance

SELECT *
FROM sales_order
WHERE cust_id = 113

Information on the Plan
tab

The Plan tab in the Results pane contains the following information:

sales_order <ky_so_customer >

Here ky_so_customer refers to the foreign key that the sales_order table has
for the customer table.

Separate primary and foreign key indexes

Separate indexes are created automatically for primary and foreign keys.
This arrangement allows Adaptive Server Anywhere to perform many
operations more efficiently. This feature was introduced in version 7.0.

183

Sorting query results
Many queries have an ORDER BY clause that ensures that the rows appear
in a predictable order. Indexes order the information quickly. For example,
the following query can use the index on the lname column of the customer
table to access the rows of the customer table in alphabetical order by last
name:

SELECT *
FROM customer
ORDER BY customer.lname

Queries with WHERE
and ORDER BY clauses

A potential problem arises when a query has both a WHERE clause and an
ORDER BY clause.

SELECT *
FROM customer
WHERE id > 300
ORDER BY company_name

Adaptive Server Anywhere must decide between two strategies:

1. Go through the entire customer table in order by company name,
checking each row to see if the customer id is greater than 300.

2. Use the key on the id column to read only the companies with id greater
than 300. The results would then need to be sorted by company name.

If there are very few id values greater than 300, the second strategy is better
because only a few rows need to be scanned and quickly sorted. If most of
the id values are greater than 300, the first strategy is much better because it
requires no sorting.

☞ For more information about sorting, see“The ORDER BY clause:
sorting query results” on page 244, or “The GROUP BY clause: organizing
query results into groups” on page 237.

184

Chapter 5. Monitoring and Improving Performance

Use of work tables in query processing
Work tables are materialized temporary result sets that are created during the
execution of a query. Work tables are used when Adaptive Server Anywhere
determines that the cost of using one is less than alternative strategies.
Generally, the time to fetch the first few rows is higher when a work table is
used, but the cost of retrieving all rows may be substantially lower in some
cases if a work table can be used. Because of this difference, Adaptive
Server Anywhere chooses different strategies based on the
OPTIMIZATION_GOAL setting. The default is all-rows. When it is set to
first-row, Adaptive Server Anywhere tries to avoid work tables. When it is
set to all-rows, Adaptive Server Anywhere uses work tables when they
reduce the total execution cost of a query.

Work tables are used in the following cases:

When work tables occur ♦ When a query has an ORDER BY, GROUP BY, OR DISTINCT clause
and Adaptive Server Anywhere does not use an index for sorting the
rows. If a suitable index exists and the OPTIMIZATION_GOAL setting
is first-row, Adaptive Server Anywhere avoids using a work table.
However, when OPTIMIZATION_GOAL is set to all-rows, it may be
more expensive to fetch all the rows of a query using an index than it is to
build a work table and sort the rows. Adaptive Server Anywhere chooses
the cheaper strategy if the optimization goal is set to all-rows. For
GROUP BY and DISTINCT, the hash-based algorithms use work tables,
but are generally more efficient when fetching all the rows out of a query.

♦ When a hash join algorithm is chosen, work tables are used to store
interim results (if the input doesn’t fit into memory) and a work table is
used to store the results of the join.

♦ When a cursor is opened with sensitive values, a work table is created to
hold the row identifiers and primary keys of the base tables. This work
table is filled in as rows are fetched from the query in the forward
direction. However, if you fetch the last row from the cursor, the entire
table is filled in.

♦ When a cursor is opened with insensitive semantics, a work table is
populated with the results of the query when the query is opened.

♦ When a multiple-row UPDATE is being performed and the column being
updated appears in the WHERE clause of the update or in an index being
used for the update.

♦ When a multiple-row UPDATE or DELETE has a subquery in the
WHERE clause that references the table being modified.

185

♦ When performing an INSERT from a SELECT statement and the
SELECT statement references the insert table.

♦ When performing a multiple row INSERT, UPDATE, or DELETE, and a
corresponding trigger is defined on the table that may fire during the
operation.

In these cases, the records affected by the operation go into the work table.
In certain circumstances, such as keyset-driven cursors, a temporary index is
built on the work table. The operation of extracting the required records into
a work table can take a significant amount of time before the query results
appear. Creating indexes that can be used to do the sorting in the first case,
above, improves the time to retrieve the first few rows. However, the total
time to fetch all rows may be lower if work tables are used, since these
permit query algorithms based on hashing and merge sort. These algorithms
use sequential I/O, which is faster than the random I/O used with an index
scan.

The query optimizer in the database server analyzes each query to determine
whether a work table will give the best performance. Enhancements to the
optimizer in new releases of Adaptive Server Anywhere may improve the
access plan for queries. No user action is required to take advantage of these
optimizations.

Notes The INSERT, UPDATE and DELETE cases above are usually not a
performance problem since they are usually one-time operations. However,
if problems occur, you may be able to rephrase the command to avoid the
conflict and avoid building a work table. This is not always possible.

186

Chapter 5. Monitoring and Improving Performance

Monitoring database performance
Adaptive Server Anywhere provides a set of statistics you can use to monitor
database performance. Accessible from Sybase Central, client applications
can access the statistics as functions. In addition, the server makes these
statistics available to the Windows Performance Monitor.

This section describes how to access performance and related statistics from
client applications, how to monitor database performance using Sybase
Central, how to monitor database performance using the Windows
Performance Monitor, and how to detect file, table, and index fragmentation.

Obtaining database statistics from a client application

Adaptive Server Anywhere provides a set of system functions that can
access information on a per-connection, per-database, or server-wide basis.
The kind of information available ranges from static information (such as the
server name) to detailed performance-related statistics (such as disk and
memory usage).

Functions that retrieve
system information

The following functions retrieve system information:

♦ property function Provides the value of a given property on an
engine-wide basis.

♦ connection_property function Provides the value of a given property
for a given connection, or by default, for the current connection.

♦ db_property function Provides the value of a given property for a
given database, or by default, for the current database.

Supply as an argument only the name of the property you wish to retrieve.
The functions return the value for the current server, connection, or database.

☞ For more information, see “PROPERTY function [System]”[ASA SQL
Reference,page 172], “CONNECTION_PROPERTY function [System]”[ASA
SQL Reference,page 106], and “DB_PROPERTY function [System]”[ASA SQL
Reference,page 122].

For a complete list of the properties available from the system functions, see
“System functions”[ASA SQL Reference,page 92].

Examples The following statement sets a variable named server_name to the name of
the current server:

SET server_name = property(’name’)

The following query returns the user ID for the current connection:

187

SELECT connection_property(’userid’)

The following query returns the filename for the root file of the current
database:

SELECT db_property(’file’)

Improving query
efficiency

For better performance, a client application monitoring database activity
should use the property_number function to identify a named property, and
then use the number to repeatedly retrieve the statistic. The following set of
statements illustrates the process from Interactive SQL:

CREATE VARIABLE propnum INT ;
CREATE VARIABLE propval INT ;
SET propnum = property_number(’cacheread’);
SET propval = property(propnum)

Property names obtained in this way are available for many different
database statistics, from the number of transaction log page write operations
and the number of checkpoints carried out, to the number of reads of index
leaf pages from the memory cache.

You can view many of these statistics in graph form from the Sybase Central
database management tool.

Monitoring database statistics from Sybase Central

With the Sybase Central Performance Monitor, you can graph the statistics
of any Adaptive Server Anywhere database server that you can connect to in
Sybase Central. All statistics in Sybase Central are shown in the Statistics
folder.

Features of the Performance Monitor include:

♦ Real-time updates (at adjustable intervals)

♦ A color-coded and resizable legend

♦ Configurable appearance properties

When you’re using the Sybase Central Performance Monitor, note that it
uses actual queries against the server to gather its statistics, so the monitor
itself affects some statistics (such as Cache Reads/sec). As a more precise
alternative, you can graph server statistics using the Windows Performance
Monitor.

☞ For information on setting properties, see“Setting properties for
database objects” on page 32.

188

Chapter 5. Monitoring and Improving Performance

Opening the Sybase Central Performance Monitor

You can display the Performance Monitor in the right pane of Sybase
Central when you have the Statistics folder open.

❖ To open the Performance Monitor

1. In the left pane, select the desired server.

2. In the right pane, click the Performance Monitor tab.

Note
The Performance Monitor only graphs statistics that you have added to it
ahead of time.

☞ See also

♦ “Adding and removing statistics” on page 189

♦ “Configuring the Sybase Central Performance Monitor” on page 190

♦ “Monitoring database statistics from Windows Performance Monitor” on
page 190

Adding and removing statistics

❖ To add statistics to the Sybase Central Performance Monitor

1. In the left pane, select the desired server.

2. In the right pane, click the Statistics tab.

3. Right-click a statistic that is not currently being graphed and choose Add
to Performance Monitor from the popup menu.

❖ To remove statistics from the Sybase Central Performance Moni-
tor

1. Do one of the following:

♦ If you are working on the Statistic tab in the right pane, right-click a
statistic that is currently being graphed.

♦ If you are working in the Performance Monitor tab in the right pane,
right-click the desired statistic in the legend.

2. From the popup menu, choose Remove from Performance Monitor.

189

Tip
You can also add a statistic to or remove one from the Performance Monitor
on the statistic’s property sheet.

☞ See also

♦ “Opening the Sybase Central Performance Monitor” on page 189

♦ “Configuring the Sybase Central Performance Monitor” on page 190

♦ “Monitoring database statistics from Windows Performance Monitor” on
page 190

Configuring the Sybase Central Performance Monitor

The Sybase Central Performance Monitor is configurable; you can choose
the type of graph it uses and the amount of time between updates to the
graph.

❖ To choose a graph type

1. Choose Tools➤ Options.

2. On the Options dialog, click the Chart tab.

3. Choose a type of graph.

❖ To set the update interval

1. Choose Tools➤ Options.

2. On the Options dialog, click the Chart tab.

3. Move the slider to reflect a new time value (or type the value directly in
the text box provided).

☞ See also

♦ “Opening the Sybase Central Performance Monitor” on page 189

♦ “Adding and removing statistics” on page 189

♦ “Monitoring database statistics from Windows Performance Monitor” on
page 190

Monitoring database statistics from Windows Performance Monitor

As an alternative to using the Sybase Central Performance Monitor, you can
use the Windows Performance Monitor.

190

Chapter 5. Monitoring and Improving Performance

The Windows monitor has two advantages:

♦ It offers more performance statistics (mainly those concerned with
network communications).

♦ Unlike the Sybase Central monitor, the Windows monitor is
non-intrusive. It uses a shared-memory scheme instead of performing
queries against the server, so it does not affect the statistics themselves.

☞ For a complete list of performance statistics you can monitor, see
“Performance Monitor statistics”[ASA Database Administration Guide,
page 638].

Note: Windows Performance Monitor is available in Windows NT, Win-
dows 2000, and Windows XP. If you run multiple versions of Adaptive
Server Anywhere simultaneously, it is also possible to run multiple versions
of the Performance Monitor simultaneously.

❖ To use the Windows Performance Monitor in Windows NT

1. With an Adaptive Server Anywhere engine or database running, start the
Performance Monitor:

♦ Choose Start➤ Programs➤ Administrative Tools (Common)➤
Performance Monitor.

2. Choose Edit➤ Add To Chart, or click the Plus sign button on the toolbar.
The Add To Chart dialog appears.

3. From the Object list, select one of the following:

♦ Adaptive Server Anywhere Connection To monitor performance
for a single connection. Choose a connection to monitor from the
displayed list.

♦ Adaptive Server Anywhere Database To monitor performance for a
single database. Choose a database to monitor from the displayed list.

♦ Adaptive Server Anywhere Engine To monitor performance on a
server-wide basis.

The Counter box displays a list of the statistics you can view.

4. From the Counter list, click a statistic to view. To select multiple
statistics, hold theCTRL or SHIFT keys while clicking.

5. If you selected Adaptive Server Anywhere Connection or Adaptive
Server Anywhere Database, choose an instance from the Instance box.

6. For a description of the selected counter, click Explain.

191

7. To display the counter, click Add.

8. When you have selected all the counters you wish to display, click Done.

For more information about the Windows Performance Monitor, see the
online help for the program.

192

Chapter 5. Monitoring and Improving Performance

Fragmentation
As you make changes to your database, the database file, tables, and indexes
can become fragmented. Fragmentation can decrease performance. Adaptive
Server Anywhere provides information that you can use to assess the level of
fragmentation in files, tables, and indexes.

This section describes how to detect fragmentation in files, tables, and
indexes, and how to defragment them.

File fragmentation

Performance can suffer if your database file is excessively fragmented. This
is disk fragmentation and it becomes more important as your database
increases in size.

The database server determines the number of file fragments in each dbspace
when you start a database on Windows NT/2000/XP. The server displays the
following information in the server message window when the number of
fragments is greater than one:

Database file "mydatabase.db" consists of nnn fragments

You can also obtain the number of database file fragments using the
DBFileFragments database property.

☞ For more information, see “Database-level properties”[ASA Database
Administration Guide,page 664].

❖ To eliminate file fragmentation problems

1. Put the database on a disk partition by itself.

2. Periodically run one of the available Windows disk defragmentation
utilities.

Table fragmentation

When rows are not stored contiguously, or if rows are split onto more than
one page, performance decreases because these rows require additional page
accesses. Table fragmentation is distinct from file fragmentation.

Adaptive Server Anywhere reserves extra room on each page to allow rows
to grow slightly. When an update to a row causes it to grow beyond the
original space allocated for it, the row is split and the initial row location
contains a pointer to another page where the entire row is stored. For
example, filling empty rows with UPDATE statements or inserting new
columns into a table can lead to severe row splitting. As more rows are

193

stored on separate pages, more time is required to access the additional
pages.

You can reduce the amount of fragmentation in your tables by specifying the
percentage of space in a table page that should be reserved for future
updates. This PCTFREE specification can be set with CREATE TABLE,
ALTER TABLE, DECLARE LOCAL TEMPORARY TABLE, or LOAD
TABLE.

☞ For more information, see “CREATE TABLE statement”[ASA SQL
Reference,page 361], “ALTER TABLE statement”[ASA SQL Reference,
page 250], “DECLARE LOCAL TEMPORARY TABLE statement”[ASA
SQL Reference,page 397], and “LOAD TABLE statement”[ASA SQL Reference,
page 486].

You can use the sa_table_fragmentation stored procedure to obtain
information about the degree of fragmentation of your database tables. You
must have DBA authority to run this procedure. The following statement
calls the sa_table_fragmentation stored procedure:

CALL sa_table_fragmentation ([’table_name’ [,’owner_name’]])

☞ For more information, see “sa_table_fragmentation system procedure”
[ASA SQL Reference,page 744].

Defragmenting tables The following procedures are useful when you detect that performance is
poor because a table is highly fragmented. Unloading and reloading the
database is more comprehensive in that it defragments all tables, including
system tables. To defragment particular tables or parts of tables, run
REORGANIZE TABLE. Reorganizing tables does not disrupt database
access.

❖ To defragment all the tables in a database

1. Unload the database.

2. Reload the database to reclaim disk space and improve performance.

☞ For more information about unloading a database, see “Unloading a
database using the dbunload command-line utility”[ASA Database
Administration Guide,page 534].

☞ For more information about rebuilding a database, see “The Rebuild
utility” [ASA Database Administration Guide,page 517].

194

Chapter 5. Monitoring and Improving Performance

❖ To defragment individual tables

1. Execute a REORGANIZE TABLE statement.

☞ For more information, see “REORGANIZE TABLE statement”[ASA
SQL Reference,page 522].

Index fragmentation

Indexes are designed to speed up searches on particular columns, but they
can become fragmented if many DELETEs are performed on the indexed
table. This may result in reduced performance if the index is accessed
frequently and the cache is not large enough to hold all of the index.

The sa_index_density stored procedure provides information about the
degree of fragmentation in a database’s indexes. You must have DBA
authority to run this procedure. The following statement calls the
sa_index_density stored procedure:

CALL sa_index_density ([’table_name’[,’owner_name’]])

If your index is highly fragmented, you can run REORGANIZE TABLE.
You can also drop the index and recreate it. However, if the index is a
primary key, you will also have to drop and recreate the foreign key indexes.

☞ For more information, see “REORGANIZE TABLE statement”[ASA
SQL Reference,page 522].

☞ For more information about dropping an index, see“Dropping indexes”
on page 62.

Monitoring query performance

Adaptive Server Anywhere includes a number of tools for testing the
performance of queries. Complete documentation about each tool can be
found in aReadme.txtfile that is located in the same folder as the tool.

fetchtst Function: Determines the time required for a result set to be retrieved.

Location: SQL Anywhere 9\Samples\Asa\PerformanceFetch

odbcfet Function: Determines the time required for a result set to be retrieved.
This function is similar to festchtst, but with less functionality.

Location: SQL Anywhere 9\Samples\Asa\PerformanceFetch

instest Function: Determines the time required for rows to be inserted into a table.

Location: SQL Anywhere 9\Samples\Asa\PerformanceInsert

195

trantest Function: Measures the load that can be handled by a given server
configuration given a database design and a set of transactions.

Location: SQL Anywhere 9\Samples\Asa\PerformanceTransaction

☞ For information about system procedures that measure query execution
times, see “sa_get_request_profile system procedure”[ASA SQL Reference,
page 717]and “sa_get_request_times system procedure”[ASA SQL Reference,
page 718].

196

Chapter 5. Monitoring and Improving Performance

Profiling database procedures
Procedure profiling shows you how long it takes your stored procedures,
functions, events, and triggers to execute. You can also view the execution
time for each line of a procedure. Using the database profiling information,
you can determine which procedures can be fine-tuned to increase
performance within your database.

When profiling is enabled, Adaptive Server Anywhere monitors which
stored procedures, functions, events, and triggers are used, keeping track of
how long it takes to execute them, and how many times each one is called.

Profiling information is stored in memory by the server and can be viewed in
Sybase Central via the Profile tab or in Interactive SQL. Once profiling is
enabled, the database gathers profiling information until you disable
profiling or until the server is shut down.

☞ For more information about obtaining profiling information in
Interactive SQL, see“Viewing procedure profiling information in Interactive
SQL” on page 202.

Enabling procedure profiling

You can enable profiling in either Sybase Central or Interactive SQL. You
must have DBA authority to enable and use procedure profiling.

❖ To enable profiling (Sybase Central)

1. Connect to your database as a user with DBA authority.

2. Select the database in the left pane.

3. From the File menu, choose Properties.

The Database property sheet appears.

4. On the Profiling tab, select Enable Profiling on This Database.

5. Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to enable profiling.
From the popup menu, choose Profiling➤ Start Profiling.

197

❖ To enable profiling (SQL)

1. Connect to your database as a user with DBA authority.

2. Call the sa_server_option stored procedure with the ON setting.

For example, enter:

CALL sa_server_option (’procedure_profiling’, ’ON’)

Resetting procedure profiling

When you reset profiling, the database clears the old information and
immediately starts collecting new information about procedures, functions,
events, and triggers.

The following sections assume that you are already connected to your
database as a user with DBA authority and that procedure profiling is
enabled.

❖ To reset profiling (Sybase Central)

1. Select the database in the left pane.

2. From the File menu, choose Properties.

The Database property sheet appears.

3. On the Profiling tab, click Reset Now.

4. Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to reset profiling.
From the popup menu, click Profiling➤ Reset Profiling Information.

❖ To reset profiling (SQL)

1. Call the sa_server_option stored procedure with the RESET setting.

For example, enter:

CALL sa_server_option (’procedure_profiling’, ’RESET’)

Disabling procedure profiling

Once you are finished with the profiling information, you can either disable
profiling or you can clear profiling. If you disable profiling, the database
stops collecting profiling information and the information that it has
collected to that point remains on the Profile tab in Sybase Central. If you
clear profiling, the database turns profiling off and removes all the profiling
data from the Profile tab in Sybase Central.

198

Chapter 5. Monitoring and Improving Performance

❖ To disable profiling (Sybase Central)

1. Select the database in the left pane.

2. From the File menu, choose Properties.

The Database property sheet appears.

3. On the Profiling tab, clear the Enable Profiling on This Database option.

4. Click OK to close the property sheet.

Note You can also right click your database in Sybase Central to disable profiling.
From the popup menu, choose Profiling➤ Stop Profiling.

❖ To disable profiling (SQL)

1. Call the sa_server_option stored procedure with the OFF setting.

For example, enter:

CALL sa_server_option (’procedure_profiling’, ’OFF’)

❖ To clear profiling (Sybase Central)

1. Select the database in the left pane.

2. From the File menu, choose Properties.

The Database property sheet appears.

3. On the Profiling tab, click Clear Now.

You can only clear profiling if profiling is enabled.

4. Click OK to close the property sheet.

❖ To clear profiling (SQL)

1. Call the sa_server_option stored procedure with the CLEAR setting.

For example, enter:

CALL sa_server_option (’procedure_profiling’, ’CLEAR’)

Viewing procedure profiling information in Sybase Central

Procedure profiling provides you with different information depending
whether you choose to look at information for your entire database, a
specific type of object, or a particular procedure. The information can be
displayed in the following ways:

♦ details for all profiled objects within the database

199

♦ details for all stored procedures and functions

♦ details for all events

♦ details for all triggers

♦ details for individual profiled objects

You must be connected to your database and have profiling enabled to view
profiling information.

When you view profiling information for your entire database, the following
columns appear:

♦ Name lists the name of the object.

♦ Owner lists the owner of the object.

♦ Object Type lists the type of object, for example, a procedure.

♦ Table lists which table a trigger belongs to (this column only appears on
the database Profile tab).

♦ Milliseconds lists the total execution time for each object.

♦ Calls lists the number times each object has been called.

These columns provide a summary of the profiling information for all of the
procedures that have been executed within the database. One procedure can
call other procedures, so there may be more items listed than those users call
specifically.

❖ To view summary profiling information for stored procedures and
functions
1. Select the Procedures & Functions folder in the left pane.

2. Click the Profile tab in the right pane.

Profiling information about all the stored procedures and functions within
your database appears on the Profile tab.

❖ To view summary profiling information for events

1. Open the Events folder in the left pane.

A list of all the events in your database appears on the Events tab in the
right pane.

2. Click the Profile tab in the right pane.

Profiling information about all of the events within your database appears
on the Profile tab.

200

Chapter 5. Monitoring and Improving Performance

❖ To view summary profiling information for triggers

1. Open the Triggers folder in the left pane.

A list of all the triggers in your database appears on the Triggers tab.

2. Select the Tables folder in the left pane.

3. Click the Profile tab in the right pane.

Profiling information about all of the triggers in your database appears on
the Profile tab.

Viewing profiling information for a specific procedure

Adaptive Server Anywhere provides procedure profiling information about
individual stored procedures, functions, events, and triggers. Sybase Central
displays different information about individual procedures than it does about
all of the stored procedures, functions, events, or triggers within a database.

When you look at the profiling information for a specific procedure, the
following columns appear:

♦ Calls lists the number of times the object has been called.

♦ Milliseconds lists the total execution time for each object.

♦ Line lists the line number beside each line of the procedure.

♦ Source displays the SQL procedure, line by line.

The procedure is broken down line by line and you can examine it to see
which lines have longer execution times and therefore might benefit from
changes to improve the procedure’s performance. You must be connected to
the database, have profiling enabled, and have DBA authority to access
procedure profiling information.

❖ To view the profiling information for a stored procedure or func-
tion
1. Expand the database in the left pane.

2. Select the Procedures and Functions folder in the left pane.

A list of all the stored procedures and functions within your database
appears on the Procedures & Functions tab in the right pane.

3. Click the stored procedure or function you want to profile in the left pane.

4. Click the Profile tab in the right pane.

Profiling information about the specific stored procedure or function
appears on the Profile tab in the right pane.

201

❖ To view profiling information for an event

1. Expand the database in the left pane.

2. Select the Events folder in the left pane.

A list of all the events within your database appears on the Events tab in
the right pane.

3. Click the event you want to profile in the left pane.

4. Click the Profile tab in the right pane.

Profiling information about the specific event appears on the Profile tab in
the right pane.

❖ To view profiling information for triggers

1. Expand the database in the left pane.

2. Open the Triggers folder in the left pane.

A list of all the triggers within the table appears on the Triggers tab in the
right pane.

3. Click the trigger you want to profile in the left pane.

4. Click the Profile tab in the right pane.

Profiling information about the specific trigger appears on the Profile tab
in the right pane.

Viewing procedure profiling information in Interactive SQL

You can use stored procedures to view procedure profiling information. The
profiling information is the same whether you view it in Sybase Central or in
Interactive SQL.

The sa_procedure_profile_summary stored procedure provides information
about all of the procedures within the database. You can use this procedure
to view the profiling data for stored procedures, functions, events, and
triggers within the same result set. The following parameters restrict the
rows the procedure returns.

♦ p_object_name specify the name of an object to profile.

♦ p_owner_name specify the owner whose objects you want to profile.

♦ p_table_name specify which table you want to profile triggers for.

202

Chapter 5. Monitoring and Improving Performance

♦ p_object_type specify the type of object to profile. You can choose
from the following four options. Choosing one of these values restricts
the result set to only objects of the specified type.
• P stored procedure

• F function

• T trigger

• E event

♦ p_ordering specify the sort order of the result set.

Keep in mind that there may be more items listed than those called
specifically by users because one procedure can call another procedure.

The following sections assume that you are already connected to your
database as a user with DBA authority and that you have procedure profiling
enabled.

❖ To view summary profiling information for all procedures

1. Execute the sa_procedure_profile_summary stored procedure.

For example, enter:

CALL sa_procedure_profile_summary

2. From the SQL menu, choose Execute.

A result set with information about all of the procedures in your database
appears on the Results tab in the Results pane.

☞ For more information about the sa_procedure_profile_summary stored
procedure, see “sa_procedure_profile_summary system procedure”[ASA
SQL Reference,page 736].

Viewing profiling information for a specific procedure in Interactive SQL

The sa_procedure_profile stored procedure provides information about
individual lines within specific procedures. The result set includes the line
number, execution time, and percentage of total execution time for lines
within procedures. You can use the following parameters to restrict the rows
the procedure returns:

♦ p_object_name specify the name of an object to profile.

♦ p_owner_name specify the owner whose objects you want to profile.

♦ p_table_name specify which table you want to profile triggers for.

If you do not include any parameters in your query, the procedure returns
profiling information for all the procedures that have been called.

203

❖ To view profiling information for specific lines within procedures

1. Execute the sa_procedure_profile stored procedure.

For example, enter:

CALL sa_procedure_profile

2. From the SQL menu, choose Execute.

A result set with profiling information for individual procedure lines
appears on the Results tab in the Results pane.

☞ For more information about the sa_procedure_profile stored procedure,
see “sa_procedure_profile system procedure”[ASA SQL Reference,page 735].

204

PART II

QUERYING AND MODIFYING

DATA

This part describes how to query and modify data. It includes several
chapters on queries, from simple to complex, as well as material on

inserting, deleting, and updating data.

CHAPTER 6

Queries: Selecting Data from a Table

About this chapter The SELECT statement retrieves data from the database. You can use it to
retrieve a subset of the rows in one or more tables and to retrieve a subset of
the columns in one or more tables.

This chapter focuses on the basics of single-table SELECT statements.
Advanced uses of SELECT are described later in this manual.

Contents Topic: page

Query overview 208

The SELECT list: specifying columns 211

The FROM clause: specifying tables 218

The WHERE clause: specifying rows 219

207

Query overview
A query requests data from the database and receives the results. This
process is also known as data retrieval. All SQL queries are expressed using
the SELECT statement.

Queries are made up of clauses

You construct SELECT statements from clauses. In the following SELECT
syntax, each new line is a separate clause. Only the more common clauses
are listed here.

SELECT select-list
[FROM table-expression]
[WHERE search-condition]
[GROUP BY column-name]
[HAVING search-condition]
[ORDER BY { expression | integer }]

The clauses in the SELECT statement are as follows:

♦ The SELECT clause specifies the columns you want to retrieve. It is the
only required clause in the SELECT statement.

♦ The FROM clause specifies the tables from which columns are pulled. It
is required in all queries that retrieve data from tables. SELECT
statements without FROM clauses have a different meaning, and this
chapter does not discuss them.

Although most queries operate on tables, queries may also retrieve data
from other objects that have columns and rows, including views, other
queries (derived tables) and stored procedure result sets. For more
information, see “FROM clause”[ASA SQL Reference,page 445].

♦ The ON clause specifies how tables in the FROM clause are to be joined.
It is used only for multi-table queries and is not discussed in this chapter.

☞ For information on multi-table queries, see“Joins: Retrieving Data
from Several Tables” on page 261.

♦ The WHERE clause specifies the rows in the tables you want to see.

♦ The GROUP BY clause allows you to aggregate data.

♦ The HAVING clause specifies rows on which aggregate data is to be
collected.

♦ The ORDER BY clause sorts the rows in the result set. (By default, rows
are returned from relational databases in an order that has no meaning.)

208

Chapter 6. Queries: Selecting Data from a Table

For information on GROUP BY, HAVING, and ORDER BY clauses, see
“Summarizing, Grouping and Sorting Query Results” on page 231.

Most of the clauses are optional, but if they are included then they must
appear in the correct order.

☞ For more information about the SELECT statement syntax, see
“SELECT statement”[ASA SQL Reference,page 541].

SQL queries

In this manual, SELECT statements and other SQL statements appear with
each clause on a separate row, and with the SQL keywords in upper case.
This is not a requirement. You can type SQL keywords in any case, and you
can break lines at any point.

Keywords and line
breaks

For example, the following SELECT statement finds the first and last names
of contacts living in California from the Contact table.

SELECT first_name, last_name
FROM Contact
WHERE state = ’CA’

It is equally valid, though not as readable, to enter this statement as follows:

SELECT first_name,
last_name from contact
wHere state

= ’CA’

Case sensitivity of
strings and identifiers

Identifiers (that is, table names, column names, and so on) are case
insensitive in Adaptive Server Anywhere databases.

Strings are case insensitive by default, so that ‘CA’, ‘ca’, ‘cA’, and ‘Ca’ are
equivalent, but if you create a database as case-sensitive then the case of
strings is significant. The sample database is case insensitive.

Qualifying identifiers You can qualify the names of database identifiers if there is ambiguity about
which object is being referred to. For example, the sample database contains
several tables with a column called city, so you may have to qualify
references to city with the name of the table. In a larger database you may
also have to use the name of the owner of the table to identify the table.

SELECT DBA.contact.city
FROM contact
WHERE state = ’CA’

Since the examples in this chapter involve single-table queries, column
names in syntax models and examples are usually not qualified with the
names of the tables or owners to which they belong.

209

These elements are left out for readability; it is never wrong to include
qualifiers.

The remaining sections in this chapter analyze the syntax of the SELECT
statement in more detail.

210

Chapter 6. Queries: Selecting Data from a Table

The SELECT list: specifying columns
The select list The select list commonly consists of a series of column names separated by

commas, or an asterisk as shorthand to represent all columns.

More generally, the select list can include one or more expressions,
separated by commas. The general syntax for the select list looks like this:

SELECT expression [, expression]. . .

If any table or column name in the list does not conform to the rules for valid
identifiers, you must enclose the identifier in double quotes.

The select list expressions can include * (all columns), a list of column
names, character strings, column headings, and expressions including
arithmetic operators. You can also include aggregate functions, which are
discussed in“Summarizing, Grouping and Sorting Query Results” on
page 231.

☞ For more information about what expressions can consist of, see
“Expressions”[ASA SQL Reference,page 15].

The following sections provide examples of the kinds of expressions you can
use in a select list.

Selecting all columns from a table

The asterisk (*) has a special meaning in SELECT statements. It stands for
all the column names in all the tables specified in the FROM clause. You can
use it to save typing time and errors when you want to see all the columns in
a table.

When you use SELECT *, the columns are returned in the order in which
they were defined when the table was created.

The syntax for selecting all the columns in a table is:

SELECT *
FROM table-expression

SELECT * finds all the columns currently in a table, so that changes in the
structure of a table such as adding, removing, or renaming columns
automatically modify the results of SELECT *. Listing the columns
individually gives you more precise control over the results.

Example The following statement retrieves all columns in the department table. No
WHERE clause is included; and so this statement retrieves every row in the
table:

211

SELECT *
FROM department

The results look like this:

dept_id dept_name dept_head_id

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

.

You get exactly the same results by listing all the column names in the table
in order after the SELECT keyword:

SELECT dept_id, dept_name, dept_head_id
FROM department

Like a column name, “*” can be qualified with a table name, as in the
following query:

SELECT department.*
FROM department

Selecting specific columns from a table

To SELECT only specific columns in a table, use this syntax:

SELECT column_name [, column_name]. . .
FROM table-name

You must separate each column name from the column name that follows it
with a comma. For example:

SELECT emp_lname, emp_fname
FROM employee

Rearranging the order of
columns

The order in which you list the column names determines the order in which
the columns are displayed. The two following examples show how to
specify column order in a display. Both of them find and display the
department names and identification numbers from all five of the rows in the
department table, but in a different order.

SELECT dept_id, dept_name
FROM department

212

Chapter 6. Queries: Selecting Data from a Table

dept_id dept_name

100 R & D

200 Sales

300 Finance

400 Marketing

.
SELECT dept_name, dept_id
FROM department

dept_name dept_id

R & D 100

Sales 200

Finance 300

Marketing 400

.

Renaming columns in query results

Query results consist of a set of columns. By default, the heading for each
column is the expression supplied in the select list.

When query results are displayed, each column’s default heading is the name
given to it when it was created. You can specify a different column heading,
or alias, in one of the following ways:

SELECT column-name AS alias

SELECT column-name alias

SELECT alias = column-name

Providing an alias can produce more readable results. For example, you can
change dept_name to Department in a listing of departments as follows:

SELECT dept_name AS Department,
dept_id AS "Identifying Number"

FROM department

213

Department Identifying Number

R & D 100

Sales 200

Finance 300

Marketing 400

.

Using spaces and
keywords in alias

The Identifying Number alias for dept_id is enclosed in double quotes
because it is an identifier. You also use double quotes if you wish to use
keywords in aliases. For example, the following query is invalid without the
quotation marks:

SELECT dept_name AS Department,
dept_id AS "integer"

FROM department

If you wish to ensure compatibility with Adaptive Server Enterprise, you
should use quoted aliases of 30 bytes or less.

Character strings in query results

The SELECT statements you have seen so far produce results that consist
solely of data from the tables in the FROM clause. Strings of characters can
also be displayed in query results by enclosing them in single quotation
marks and separating them from other elements in the select list with
commas.

To enclose a quotation mark in a string, you precede it with another
quotation mark.

For example:

SELECT ’The department’’s name is’ AS "Prefix",
Department = dept_name

FROM department

Prefix Department

The department’s name is R & D

The department’s name is Sales

The department’s name is Finance

The department’s name is Marketing

The department’s name is Shipping

214

Chapter 6. Queries: Selecting Data from a Table

Computing values in the SELECT list

The expressions in the select list can be more complicated than just column
names or strings. For example, you can perform computations with data
from numeric columns in a select list.

Arithmetic operations To illustrate the numeric operations you can carry out in the select list, we
start with a listing of the names, quantity in stock, and unit price of products
in the sample database.

SELECT name, quantity, unit_price
FROM product

name quantity unit_price

Tee Shirt 28 9

Tee Shirt 54 14

Tee Shirt 75 14

Baseball Cap 112 9

.

Suppose the practice is to replenish the stock of a product when there are ten
items left in stock. The following query lists the number of each product that
must be sold before re-ordering:

SELECT name, quantity - 10
AS "Sell before reorder"

FROM product

name Sell before reorder

Tee Shirt 18

Tee Shirt 44

Tee Shirt 65

Baseball Cap 102

.

You can also combine the values in columns. The following query lists the
total value of each product in stock:

SELECT name,
quantity * unit_price AS "Inventory value"

FROM product

215

name Inventory value

Tee Shirt 252

Tee Shirt 756

Tee Shirt 1050

Baseball Cap 1008

.

Arithmetic operator
precedence

When there is more than one arithmetic operator in an expression,
multiplication, division, and modulo are calculated first, followed by
subtraction and addition. When all arithmetic operators in an expression
have the same level of precedence, the order of execution is left to right.
Expressions within parentheses take precedence over all other operations.

For example, the following SELECT statement calculates the total value of
each product in inventory, and then subtracts five dollars from that value.

SELECT name, quantity * unit_price - 5
FROM product

To avoid misunderstandings, it is recommended that you use parentheses.
The following query has the same meaning and gives the same results as the
previous one, but some may find it easier to understand:

SELECT name, (quantity * unit_price) - 5
FROM product

☞ For more information on operator precedence, see “Operator
precedence”[ASA SQL Reference,page 13].

String operations You can concatenate strings using a string concatenation operator. You can
use either || (SQL/92 compliant) or + (supported by Adaptive Server
Enterprise) as the concatenation operator.

The following example illustrates the use of the string concatenation
operator in the select list:

SELECT emp_id, emp_fname || ’ ’ || emp_lname AS Name
FROM employee

216

Chapter 6. Queries: Selecting Data from a Table

emp_id Name

102 Fran Whitney

105 Matthew Cobb

129 Philip Chin

148 Julie Jordan

.

Date and time operations Although you can use operators on date and time columns, this typically
involves the use of functions. For information on SQL functions, see “SQL
Functions”[ASA SQL Reference,page 83].

Eliminating duplicate query results

The optional DISTINCT keyword eliminates duplicate rows from the results
of a SELECT statement.

If you do not specify DISTINCT, you get all rows, including duplicates.
Optionally, you can specify ALL before the select list to get all rows. For
compatibility with other implementations of SQL, Adaptive Server syntax
allows the use of ALL to explicitly ask for all rows. ALL is the default.

For example, if you search for all the cities in the contact table without
DISTINCT, you get 60 rows:

SELECT city
FROM contact

You can eliminate the duplicate entries using DISTINCT. The following
query returns only 16 rows.:

SELECT DISTINCT city
FROM contact

NULL values are not
distinct

The DISTINCT keyword treats NULL values as duplicates of each other. In
other words, when DISTINCT is included in a SELECT statement, only one
NULL is returned in the results, no matter how many NULL values are
encountered.

217

The FROM clause: specifying tables
The FROM clause is required in every SELECT statement involving data
from tables, views, or stored procedures.

☞ The FROM clause can include JOIN conditions linking two or more
tables, and can include joins to other queries (derived tables). For
information on these features, see“Joins: Retrieving Data from Several
Tables” on page 261.

Qualifying table names In the FROM clause, the full naming syntax for tables and views is always
permitted, such as:

SELECT select-list
FROM owner.table_name

Qualifying table, view, and procedure names is necessary only when the
object is owned by a user ID that is not the same as the user ID of the current
connection, or is not the name of a group to which the user iD Of the current
connection belongs.

Using correlation names You can give a table name a correlation name to save typing. You assign the
correlation name in the FROM clause by typing it after the table name, like
this:

SELECT d.dept_id, d.dept_name
FROM Department d

All other references to the Department table, for example in a WHERE
clause,mustuse the correlation name. Correlation names must conform to
the rules for valid identifiers.

☞ For more information about the FROM clause, see “FROM clause”[ASA
SQL Reference,page 445].

Querying from objects
other than tables

The most common elements in a FROM clause are table names. It is also
possible to query rows from other database objects that have a table-like
structure—that is, a well-defined set of rows and columns. In addition to
querying from tables and views, you can use derived tables (which are
SELECT statements) or stored procedures that return result sets.

For example, the following query operates on the result set of a stored
procedure.

SELECT *
FROM sp_customer_products(149)

☞ For more information, see “FROM clause”[ASA SQL Reference,page 445].

218

Chapter 6. Queries: Selecting Data from a Table

The WHERE clause: specifying rows
The WHERE clause in a SELECT statement specifies the search conditions
for exactly which rows are retrieved. The general format is:

SELECT select_list
FROM table_list
WHERE search-condition

Search conditions, also called qualifications or predicates, in the WHERE
clause include the following:

♦ Comparison operators (=, <, >, and so on) For example, you can list
all employees earning more than $50,000:

SELECT emp_lname
FROM employee
WHERE salary > 50000

♦ Ranges (BETWEEN and NOT BETWEEN) For example, you can list
all employees earning between $40,000 and $60,000:

SELECT emp_lname
FROM employee
WHERE salary BETWEEN 40000 AND 60000

♦ Lists (IN, NOT IN) For example, you can list all customers in Ontario,
Quebec, or Manitoba:

SELECT company_name , state
FROM customer
WHERE state IN(’ON’, ’PQ’, ’MB’)

♦ Character matches (LIKE and NOT LIKE) For example, you can list
all customers whose phone numbers start with 415. (The phone number
is stored as a string in the database):

SELECT company_name , phone
FROM customer
WHERE phone LIKE ’415%’

♦ Unknown values (IS NULL and IS NOT NULL) For example, you can
list all departments with managers:

SELECT dept_name
FROM Department
WHERE dept_head_id IS NOT NULL

♦ Combinations (AND, OR) For example, you can list all employees
earning over $50,000 whose first name begins with the letter A.

219

SELECT emp_fname, emp_lname
FROM employee
WHERE salary > 50000
AND emp_fname like ’A%’

In addition, the WHERE keyword can introduce the following:

♦ Transact-SQL join conditions Joins are discussed in“Joins:
Retrieving Data from Several Tables” on page 261.

☞ For more information about search conditions, see “Search conditions”
[ASA SQL Reference,page 22].

☞ The following sections describe how to use WHERE clauses.

Using comparison operators in the WHERE clause

You can use comparison operators in the WHERE clause. The operators
follow the syntax:

WHERE expression comparison-operator expression

☞ For more information about comparison operators, see “Comparison
operators”[ASA SQL Reference,page 10]. For a description of what an
expression can consist of, see “Expressions”[ASA SQL Reference,page 15].

Notes on comparisons ♦ Sort orders In comparing character data,< means earlier in the sort
order and> means later in the sort order. The sort order is determined by
the collation chosen when the database is created. You can find out the
collation by running thedbinfo command-line utility against the
database:

dbinfo -c "uid=DBA;pwd=SQL"

You can also find the collation from Sybase Central. It is on the Extended
Information tab of the database property sheet.

♦ Trailing blanks When you create a database, you indicate whether
trailing blanks are to be ignored or not for the purposes of comparison.

By default, databases are created with trailing blanks not ignored. For
example, ‘Dirk’ is not the same as ‘Dirk ‘. You can create databases with
blank padding, so that trailing blanks are ignored. Trailing blanks are
ignored by default in Adaptive Server Enterprise databases.

♦ Comparing dates In comparing dates,< means earlier and> means
later.

♦ Case sensitivity When you create a database, you indicate whether
string comparisons are case sensitive or not.

220

Chapter 6. Queries: Selecting Data from a Table

By default, databases are created case insensitive. For example, ‘Dirk’ is
the same as ‘DIRK’. You can create databases to be case sensitive, which
is the default behavior for Adaptive Server Enterprise databases.

Here are some SELECT statements using comparison operators:

SELECT *
FROM product
WHERE quantity < 20
SELECT E.emp_lname, E.emp_fname
FROM employee E
WHERE emp_lname > ’McBadden’
SELECT id, phone
FROM contact
WHERE state != ’CA’

The NOT operator The NOT operator negates an expression. Either of the following two
queries will find all Tee shirts and baseball caps that cost $10 or less.
However, note the difference in position between the negative logical
operator (NOT) and the negative comparison operator (!>).

SELECT id, name, quantity
FROM product
WHERE (name = ’Tee Shirt’ OR name = ’BaseBall Cap’)
AND NOT unit_price > 10
SELECT id, name, quantity
FROM product
WHERE (name = ’Tee Shirt’ OR name = ’BaseBall Cap’)
AND unit_price !> 10

Using ranges (between and not between) in the WHERE clause

The BETWEEN keyword specifies an inclusive range, in which the lower
value and the upper value are searched for as well as the values they bracket.

❖ To list all the products with prices between $10 and $15, inclusive

1. Type the following query:

SELECT name, unit_price
FROM product
WHERE unit_price BETWEEN 10 AND 15

name unit_price

Tee Shirt 14

Tee Shirt 14

Baseball Cap 10

Shorts 15

221

You can use NOT BETWEEN to find all the rows that are not inside the
range.

❖ To list all the products cheaper than $10 or more expensive than
$15
1. Execute the following query:

SELECT name, unit_price
FROM product
WHERE unit_price NOT BETWEEN 10 AND 15

name unit_price

Tee Shirt 9

Baseball Cap 9

Visor 7

Visor 7

.

Using lists in the WHERE clause

The IN keyword allows you to select values that match any one of a list of
values. The expression can be a constant or a column name, and the list can
be a set of constants or, more commonly, a subquery.

For example, without in, if you want a list of the names and states of all the
contacts who live in Ontario, Manitoba, or Quebec, you can type this query:

SELECT company_name , state
FROM customer
WHERE state = ’ON’ OR state = ’MB’ OR state = ’PQ’

However, you get the same results if you use IN. The items following the IN
keyword must be separated by commas and enclosed in parentheses. Put
single quotes around character, date, or time values. For example:

SELECT company_name , state
FROM customer
WHERE state IN(’ON’, ’MB’, ’PQ’)

Perhaps the most important use for the IN keyword is in nested queries, also
called subqueries.

Matching character strings in the WHERE clause

The LIKE keyword indicates that the following character string is a

222

Chapter 6. Queries: Selecting Data from a Table

matching pattern. LIKE is used with character, binary, or date and time data.

The syntax for LIKE is:

{ WHERE | HAVING } expression [NOT] LIKE match-expression

The expression to be matched is compared to a match-expression that can
include these special symbols:

Symbols Meaning

% Matches any string of 0 or more characters

_ Matches any one character

[specifier] The specifier in the brackets may take the following forms:

♦ Range A range is of the formrangespec1-rangespec2,
whererangespec1indicates the start of a range of charac-
ters, the hyphen indicates a range, andrangespec2indicates
the end of a range of characters

♦ Set A set can be comprised of any discrete set of values,
in any order. For example, [a2bR].

Note that the range [a-f], and the sets [abcdef] and [fcbdae]
return the same set of values.

[^specifier] The caret symbol (^) preceding a specifier indicates non-
inclusion. [^a-f] means not in the range a-f; [^a2bR] means not
a, 2, b, or R.

You can match the column data to constants, variables, or other columns that
contain the wildcard characters displayed in the table. When using constants,
you should enclose the match strings and character strings in single quotes.

Examples All the following examples use LIKE with the last_name column in the
Contact table. Queries are of the form:

SELECT last_name
FROM contact
WHERE last_name LIKE match-expression

The first example would be entered as

SELECT last_name
FROM contact
WHERE last_name LIKE ’Mc%’

223

Match ex-

pression

Description Returns

‘Mc%’ Search for every name that begins with the
lettersMc

McEvoy

‘%er’ Search for every name that ends wither Brier, Miller,
Weaver, Rayner

‘%en%’ Search for every name containing the
lettersen.

Pettengill,
Lencki, Cohen

‘_ish’ Search for every four-letter name ending
in ish.

Fish

‘Br[iy][ae]r’ Search for Brier, Bryer, Briar, or Bryar. Brier

‘[M-
Z]owell’

Search for all names ending withowell
that begin with a single letter in the range
M to Z.

Powell

‘M[^c]%’ Search for all names beginning with M’
that do not have c as the second letter

Moore, Mulley,
Miller, Masalsky

Wildcards require LIKE Wildcard characters used without LIKE are interpreted asliterals rather than
as a pattern: they represent exactly their own values. The following query
attempts to find any phone numbers that consist of the four characters 415%
only. It does not find phone numbers that start with 415.

SELECT phone
FROM Contact
WHERE phone = ’415%’

Using LIKE with date and
time values

You can use LIKE on date and time fields as well as on character data. When
you use LIKE with date and time values, the dates are converted to the
standard DATETIME format, and then to VARCHAR.

One feature of using LIKE when searching for DATETIME values is that,
since date and time entries may contain a variety of date parts, an equality
test has to be written carefully in order to succeed.

For example, if you insert the value 9:20 and the current date into a column
named arrival_time, the clause:

WHERE arrival_time = ’9:20’

fails to find the value, because the entry holds the date as well as the time.
However, the clause below would find the 9:20 value:

WHERE arrival_time LIKE ’%09:20%’

224

Chapter 6. Queries: Selecting Data from a Table

Using NOT LIKE With NOT LIKE, you can use the same wildcard characters that you can use
with LIKE. To find all the phone numbers in the Contact table that do not
have 415 as the area code, you can use either of these queries:

SELECT phone
FROM Contact
WHERE phone NOT LIKE ’415%’
SELECT phone
FROM Contact
WHERE NOT phone LIKE ’415%’

Character strings and quotation marks

When you enter or search for character and date data, you must enclose it in
single quotes, as in the following example.

SELECT first_name, last_name
FROM contact
WHERE first_name = ’John’

If the quoted_identifier database option is set to OFF (it is ON by default),
you can also use double quotes around character or date data.

Interactive SQL automatically sets quoted_identifier to ON for the duration
of the Interactive SQL session.

❖ To set the quoted_identifier option off for the current user ID

1. Type the following command:

SET OPTION quoted_identifier = ’OFF’

The quoted_identifier option is provided for compatibility with Adaptive
Server Enterprise. By default, the Adaptive Server Enterprise option is
quoted_identifier OFF and the Adaptive Server Anywhere option is
quoted_identifier ON.

Quotation marks in
strings

There are two ways to specify literal quotations within a character entry. The
first method is to use two consecutive quotation marks. For example, if you
have begun a character entry with a single quotation mark and want to
include a single quotation mark as part of the entry, use two single quotation
marks:

’I don’’t understand.’

With double quotation marks (quoted_identifier OFF):

"He said, ""It is not really confusing."""

The second method, applicable only with quoted_identifier OFF, is to

225

enclose a quotation in the other kind of quotation mark. In other words,
surround an entry containing double quotation marks with single quotation
marks, or vice versa. Here are some examples:

’George said, "There must be a better way."’
"Isn’t there a better way?"
’George asked, "Isn’’t there a better way?"’

Unknown Values: NULL

A NULL in a column means that the user or application has made no entry
in that column. A data value for the column is unknown or not available.

NULL does not mean the same as zero (numerical values) or blank
(character values). Rather, NULL values allow you to distinguish between a
deliberate entry of zero for numeric columns or blank for character columns
and a non-entry, which is NULL for both numeric and character columns.

Entering NULL NULL can be entered in a column where NULL values are permitted, as
specified in the create table statement, in two ways:

♦ Default If no data is entered, and the column has no other default
setting, NULL is entered.

♦ Explicit entry You can explicitly enter the value NULL by typing the
word NULL (without quotation marks).

If the word NULL is typed in a character column with quotation marks, it
is treated as data, not as a null value.

For example, the dept_head_id column of the department table allows nulls.
You can enter two rows for departments with no manager as follows:

INSERT INTO department (dept_id, dept_name)
VALUES (201, ’Eastern Sales’)
INSERT INTO department
VALUES (202, ’Western Sales’, null)

When NULLs are
retrieved

When NULLS are retrieved, displays of query results in Interactive SQL
show (NULL) in the appropriate position:

SELECT *
FROM department

226

Chapter 6. Queries: Selecting Data from a Table

dept_id dept_name dept_head_id

100 R & D 501

200 Sales 904

300 Finance 1293

400 Marketing 1576

500 Shipping 703

201 Eastern Sales (NULL)

202 Western Sales (NULL)

Testing a column for NULL

You can use IS NULL in search conditions to compare column values to
NULL and to select them or perform a particular action based on the results
of the comparison. Only columns that return a value of TRUE are selected or
result in the specified action; those that return FALSE or UNKNOWN do
not.

The following example selects only rows for which unit_price is less than
$15 or is NULL:

SELECT quantity , unit_price
FROM product
WHERE unit_price < 15
OR unit_price IS NULL

The result of comparing any value to NULL is UNKNOWN, since it is not
possible to determine whether NULL is equal (or not equal) to a given value
or to another NULL.

There are some conditions that never return true, so that queries using these
conditions do not return result sets. For example, the following comparison
can never be determined to be true, since NULL means having an unknown
value:

WHERE column1 > NULL

This logic also applies when you use two column names in a WHERE
clause, that is, when you join two tables. A clause containing the condition

WHERE column1 = column2

does not return rows where the columns contain NULL.

You can also find NULL or non-NULL with this pattern:

227

WHERE column_name IS [NOT] NULL

For example:

WHERE advance < $5000
OR advance IS NULL

☞ For more information, see “NULL value”[ASA SQL Reference,page 48].

Properties of NULL

The following list expands on the properties of NULL.

♦ The difference between FALSE and UNKNOWN Although neither
FALSE nor UNKNOWN returns values, there is an important logical
difference between FALSE and UNKNOWN, because the opposite of
false (“not false”) is true. For example,

1 = 2

evaluates to false and its opposite,

1 != 2

evaluates to true. But “not unknown” is still unknown. If null values are
included in a comparison, you cannot negate the expression to get the
opposite set of rows or the opposite truth value.

♦ Substituting a value for NULLs Use the ISNULL built-in function to
substitute a particular value for nulls. The substitution is made only for
display purposes; actual column values are not affected. The syntax is:

ISNULL (expression, value)

For example, use the following statement to select all the rows from test,
and display all the null values in column t1 with the value unknown.

SELECT ISNULL(t1, ’unknown’)
FROM test

♦ Expressions that evaluate to NULL An expression with an arithmetic
or bitwise operator evaluates to NULL if any of the operands are null. For
example:

1 + column1

evaluates to NULL if column1 is NULL.

♦ Concatenating strings and NULL If you concatenate a string and
NULL, the expression evaluates to the string. For example:

SELECT ’abc’ || NULL || ’def’

228

Chapter 6. Queries: Selecting Data from a Table

returns the stringabcdef.

Connecting conditions with logical operators

The logical operators AND, OR, and NOT are used to connect search
conditions in WHERE clauses.

Using AND The AND operator joins two or more conditions and returns results only
when all of the conditions are true. For example, the following query finds
only the rows in which the contact’s last name is Purcell and the contact’s
first name is Beth. It does not find the row for Beth Glassmann.

SELECT *
FROM contact
WHERE first_name = ’Beth’

AND last_name = ’Purcell’

Using OR The OR operator also connects two or more conditions, but it returns results
whenany of the conditions is true. The following query searches for rows
containing variants of Elizabeth in the first_name column.

SELECT *
FROM contact
WHERE first_name = ’Beth’

OR first_name = ’Liz’

Using NOT The NOT operator negates the expression that follows it. The following
query lists all the contacts who do not live in California:

SELECT *
FROM contact
WHERE NOT state = ’CA’

When more than one logical operator is used in a statement, AND operators
are normally evaluated before OR operators. You can change the order of
execution with parentheses. For example:

SELECT *
FROM contact
WHERE (city = ’Lexington’

OR city = ’Burlington’)
AND state = ’MA’

229

CHAPTER 7

Summarizing, Grouping and Sorting
Query Results

About this chapter Aggregate functions display summaries of the values in specified columns.
You can also use the GROUP BY clause, HAVING clause, and ORDER BY
clause to group and sort the results of queries using aggregate functions, and
the UNION operator to combine the results of queries.

This chapter describes how to group and sort query results.

Contents Topic: page

Summarizing query results using aggregate functions 232

The GROUP BY clause: organizing query results into groups 237

Understanding GROUP BY 238

The HAVING clause: selecting groups of data 242

The ORDER BY clause: sorting query results 244

The ROLLUP operation: adding summary information to GROUP
BY queries

247

Performing set operations on query results with UNION, INTER-
SECT, and EXCEPT

251

Standards and compatibility 258

231

Summarizing query results using aggregate
functions

You can apply aggregate functions to all the rows in a table, to a subset of
the table specified by a WHERE clause, or to one or more groups of rows in
the table. From each set of rows to which an aggregate function is applied,
Adaptive Server Anywhere generates a single value.

The following are among the available aggregate functions:

♦ avg(expression) The mean of the supplied expression over the
returned rows.

♦ count(expression) The number of rows in the supplied group where
the expression is not NULL.

♦ count(*) The number of rows in each group.

♦ list(string-expr) A string containing a comma-separated list composed
of all the values forstring-exprin each group of rows.

♦ max(expression) The maximum value of the expression, over the
returned rows.

♦ min(expression) The minimum value of the expression, over the
returned rows.

♦ stddev(expression) The standard deviation of the expression, over the
returned rows.

♦ sum(expression) The sum of the expression, over the returned rows.

♦ variance(expression) The variance of the expression, over the
returned rows.

☞ For a complete list of aggregate functions, see “Aggregate functions”
[ASA SQL Reference,page 84].

You can use the optional keyword DISTINCT with AVG, SUM, LIST, and
COUNT to eliminate duplicate values before the aggregate function is
applied.

The expression to which the syntax statement refers is usually a column
name. It can also be a more general expression.

For example, with this statement you can find what the average price of all
products would be if one dollar were added to each price:

SELECT AVG (unit_price + 1)
FROM product

232

Chapter 7. Summarizing, Grouping and Sorting Query Results

Example The following query calculates the total payroll from the annual salaries in
the employee table:

SELECT SUM(salary)
FROM employee

To use aggregate functions, you must give the function name followed by an
expression on whose values it will operate. The expression, which is the
salary column in this example, is the function’s argument and must be
specified inside parentheses.

Where you can use aggregate functions

The aggregate functions can be used in a select list, as in the previous
examples, or in the HAVING clause of a select statement that includes a
GROUP BY clause.

☞ For more information about the HAVING clause, see“The HAVING
clause: selecting groups of data” on page 242.

You cannot use aggregate functions in a WHERE clause or in a JOIN
condition. However, a SELECT statement with aggregate functions in its
select list often includes a WHERE clause that restricts the rows to which
the aggregate is applied.

If a SELECT statement includes a WHERE clause, but not a GROUP BY
clause, an aggregate function produces a single value for the subset of rows
that the WHERE clause specifies.

Whenever an aggregate function is used in a SELECT statement that does
not include a GROUP BY clause, it produces a single value. This is true
whether it is operating on all the rows in a table or on a subset of rows
defined by a where clause.

You can use more than one aggregate function in the same select list, and
produce more than one scalar aggregate in a single SELECT statement.

Aggregate functions and
outer references

Adaptive Server Anywhere version 8 and later follows SQL/99 standards for
clarifying the use of aggregate functions when they appear in a subquery.
These changes affect the behavior of statements written for previous
versions of the software: previously correct queries may now produce error
messages, and result sets may change.

When an aggregate function appears in a subquery, and the column
referenced by the aggregate function is an outer reference, the entire
aggregate function itself is now treated as an outer reference. This means
that the aggregate function is now computed in the outer block, not in the
subquery, and becomes a constant within the subquery.

233

The following restrictions now apply to the use of outer reference aggregate
functions in subqueries:

♦ The outer reference aggregate function can only appear in subqueries that
are in the SELECT list or HAVING clause, and these clauses must be in
the immediate outer block.

♦ Outer reference aggregate functions can only contain one outer column
reference.

♦ Local column references and outer column references cannot be mixed in
the same aggregate function.

Some problems related to the new standards can be circumvented by
rewriting the aggregate function so that it only includes local references. For
example, the subquery(SELECT MAX(S.y + R.y) FROM S) contains
both a local column reference (S.y) and an outer column reference (R.y),
which is now illegal. It can be rewritten as(SELECT MAX(S.y) + R.y

FROM S). In the rewrite, the aggregate function has only a local column
reference. The same sort of rewrite can be used when an outer reference
aggregate function appears in clauses other than SELECT or HAVING.

Example The following query produced the following results in Adaptive Server
Anywhere version 7.

SELECT name, (SELECT SUM(p.quantity)
FROM sales_order_items)

FROM product p

name sum(p.quantity)

Tee shirt 30,716

Tee shirt 59,238

In later versions, the same query produces the error messageASA Error

-149: Function or column reference to ’name’ must also

appear in a GROUP BY. The reason that the statement is no longer valid
is that the outer reference aggregate functionsum(p.quantity) is now
computed in the outer block. In later versions, the query is semantically
equivalent to the following (except that Z does not appear as part of the
result set):

SELECT name,
SUM(p.quantity) as Z,
(SELECT Z FROM sales_order_items)

FROM product p

Since the outer block now computes an aggregate function, the outer block is

234

Chapter 7. Summarizing, Grouping and Sorting Query Results

treated as a grouped query and column name must appear in a GROUP BY
clause in order to appear in the SELECT list.

Aggregate functions and data types

Some aggregate functions have meaning only for certain kinds of data. For
example, you can use SUM and AVG with numeric columns only.

However, you can use MIN to find the lowest value—the one closest to the
beginning of the alphabet—in a character type column:

SELECT MIN(last_lname)
FROM contact

Using COUNT(*)

The COUNT(*) function does not require an expression as an argument
because, by definition, it does not use information about any particular
column. The COUNT(*) function finds the total number of rows in a table.
This statement finds the total number of employees:

SELECT COUNT(*)
FROM employee

COUNT(*) returns the number of rows in the specified table without
eliminating duplicates. It counts each row separately, including rows that
contain NULL.

Like other aggregate functions, you can combine count(*) with other
aggregates in the select list, with where clauses, and so on:

SELECT count(*), AVG(unit_price)
FROM product
WHERE unit_price > 10

count(*) AVG(product.unit_price)

5 18.2

Using aggregate functions with DISTINCT

The DISTINCT keyword is optional with SUM, AVG, and COUNT. When
you use DISTINCT, duplicate values are eliminated before calculating the
sum, average, or count.

For example, to find the number of different cities in which there are
contacts, type:

235

SELECT count(DISTINCT city)
FROM contact

count(distinct contact.city)

16

You can use more than one aggregate function with DISTINCT in a query.
Each DISTINCT is evaluated independently. For example:

SELECT count(DISTINCT first_name) "first names",
count(DISTINCT last_name) "last names"

FROM contact

first names last names

48 60

Aggregate functions and NULL

Any NULLS in the column on which the aggregate function is operating are
ignored for the purposes of the function except COUNT(*), which includes
them. If all the values in a column are NULL, COUNT(column_name)
returns 0.

If no rows meet the conditions specified in the WHERE clause, COUNT
returns a value of 0. The other functions all return NULL. Here are
examples:

SELECT COUNT (DISTINCT name)
FROM product
WHERE unit_price > 50

count(DISTINCT name)

0
SELECT AVG(unit_price)
FROM product
WHERE unit_price > 50

AVG(product.unit_price)

(NULL)

236

Chapter 7. Summarizing, Grouping and Sorting Query Results

The GROUP BY clause: organizing query results
into groups

The GROUP BY clause divides the output of a table into groups. You can
GROUP BY one or more column names, or by the results of computed
columns using numeric data types in an expression.

Using GROUP BY with aggregate functions

A GROUP BY clause almost always appears in statements that include
aggregate functions, in which case the aggregate produces a value for each
group. These values are calledvector aggregates. (Remember that a scalar
aggregate is a single value produced by an aggregate function without a
GROUP BY clause.)

Example The following query lists the average price of each kind of product:

SELECT name, AVG(unit_price) AS Price
FROM product
GROUP BY name

name Price

Tee Shirt 12.333333333

Baseball Cap 9.5

Visor 7

Sweatshirt 24

.

The summary values (vector aggregates) produced by SELECT statements
with aggregates and a GROUP BY appear as columns in each row of the
results. By contrast, the summary values (scalar aggregates) produced by
queries with aggregates and no GROUP BY also appear as columns, but
with only one row. For example:

SELECT AVG(unit_price)
FROM product

AVG(product.unit_price)

13.3

237

Understanding GROUP BY
Understanding which queries are valid and which are not can be difficult
when the query involves a GROUP BY clause. This section describes a way
to think about queries with GROUP BY so that you may understand the
results and the validity of queries better.

How queries with GROUP BY are executed

Consider a single-table query of the following form:

SELECT select-list
FROM table
WHERE where-search-condition
GROUP BY [group-by-expression | ROLLUP (group-by-expression)]
HAVING having-search-condition

This query can be thought of as being executed in the following manner:

1. Apply the WHERE clause This generates an intermediate result that
contains only some of the rows of the table.

WHERE
clause

Table Intermediate
result

2. Partition the result into groups This action generates an intermediate
result with one row for each group as dictated by the GROUP BY clause.
Each generated row contains thegroup-by-expressionfor each group,
and the computed aggregate functions in theselect-listand
having-search-condition.

238

Chapter 7. Summarizing, Grouping and Sorting Query Results

GROUP BY
clause

Second
intermediate

result

Intermediate
result

3. Apply any ROLLUP operation Subtotal rows computed as part of a
ROLLUP operation are added to the result set.

☞ For more information, see“The ROLLUP operation: adding
summary information to GROUP BY queries” on page 247.

4. Apply the HAVING clause Any rows from this second intermediate
result that do not meet the criteria of the HAVING clause are removed at
this point.

5. Project out the results to display This action takes from step 3 only
those columns that need to be displayed in the result set of the query–that
is, it takes only those columns corresponding to the expressions from the
select-list.

Projection

Final
result

Second
intermediate

result

This process makes requirements on queries with a GROUP BY clause:

♦ The WHERE clause is evaluated first. Therefore, any aggregate functions
are evaluated only over those rows that satisfy the WHERE clause.

♦ The final result set is built from the second intermediate result, which
holds the partitioned rows. The second intermediate result holds rows
corresponding to thegroup-by-expression. Therefore, if an expression
that is not an aggregate function appears in theselect-list, then it must
also appear in thegroup-by-expression. No function evaluation can be
carried out during the projection step.

♦ An expression can be included in thegroup-by-expressionbut not in the
select-list. It is projected out in the result.

239

GROUP BY with multiple columns

You can list more than one expression in the GROUP BY clause in order to
nest groups—that is, you can group a table by any combination of
expressions.

The following query lists the average price of products, grouped first by
name and then by size:

SELECT name, size, AVG(unit_price)
FROM product
GROUP BY name, size

name size AVG(product.unit_price)

Tee Shirt Small 9

Tee Shirt Medium 14

Tee Shirt One size fits all 14

Baseball Cap One size fits all 9.5

.

Columns in GROUP BY
that are not in the select
list

A Sybase extension to the SQL/92 standard that is supported by both
Adaptive Server Enterprise and Adaptive Server Anywhere is to allow
expressions to the GROUP BY clause that are not in the select list. For
example, the following query lists the number of contacts in each city:

SELECT state, count(id)
FROM contact
GROUP BY state, city

WHERE clause and GROUP BY

You can use a WHERE clause in a statement with GROUP BY. The
WHERE clause is evaluated before the GROUP BY clause. Rows that do
not satisfy the conditions in the WHERE clause are eliminated before any
grouping is done. Here is an example:

SELECT name, AVG(unit_price)
FROM product
WHERE id > 400
GROUP BY name

Only the rows with id values of more than 400 are included in the groups
that are used to produce the query results.

Example The following query illustrates the use of WHERE, GROUP BY, and

240

Chapter 7. Summarizing, Grouping and Sorting Query Results

HAVING clauses in one query:

SELECT name, SUM(quantity)
FROM product
WHERE name LIKE ’%shirt%’
GROUP BY name
HAVING SUM(quantity) > 100

name SUM(product.quantity)

Tee Shirt 157

In this example:

♦ The WHERE clause includes only rows that have a name including the
wordshirt (Tee Shirt, Sweatshirt).

♦ The GROUP BY clause collects the rows with a common name.

♦ The SUM aggregate calculates the total quantity of products available for
each group.

♦ The HAVING clause excludes from the final results the groups whose
inventory totals do not exceed 100.

241

The HAVING clause: selecting groups of data
The HAVING clause restricts the rows returned by a query. It sets conditions
for the GROUP BY clause similar to the way in which WHERE sets
conditions for the SELECT clause.

The HAVING clause search conditions are identical to WHERE search
conditions except that WHERE search conditions cannot include aggregates,
while HAVING search conditions often do. The example below is legal:

HAVING AVG(unit_price) > 20

But this example is not legal:

WHERE AVG(unit_price) > 20

Using HAVING with
aggregate functions

The following statement is an example of simple use of the HAVING clause
with an aggregate function.

To list those products available in more than one size or color, you need a
query to group the rows in the product table by name, but eliminate the
groups that include only one distinct product:

SELECT name
FROM product
GROUP BY name
HAVING COUNT(*) > 1

name

Tee Shirt

Baseball Cap

Visor

Sweatshirt

☞ For information about when you can use aggregate functions in
HAVING clauses, see“Where you can use aggregate functions” on
page 233.

Using HAVING without
aggregate functions

The HAVING clause can also be used without aggregates.

The following query groups the products, and then restricts the result set to
only those groups for which the name starts with B.

SELECT name
FROM product
GROUP BY name
HAVING name LIKE ’B%’

242

Chapter 7. Summarizing, Grouping and Sorting Query Results

name

Baseball Cap

More than one condition
in HAVING

More than one condition can be included in the HAVING clause. They are
combined with the AND, OR, or NOT operators, as in the following
example.

To list those products available in more than one size or color, for which one
version costs more than $10, you need a query to group the rows in the
product table by name, but eliminate the groups that include only one
distinct product, and eliminate those groups for which the maximum unit
price is under $10.

SELECT name
FROM product
GROUP BY name
HAVING COUNT(*) > 1
AND MAX(unit_price) > 10

name

Tee Shirt

Sweatshirt

243

The ORDER BY clause: sorting query results
The ORDER BY clause allows sorting of query results by one or more
columns. Each sort can be ascending (ASC) or descending (DESC). If
neither is specified, ASC is assumed.

A simple example The following query returns results ordered by name:

SELECT id, name
FROM product
ORDER BY name

id name

400 Baseball Cap

401 Baseball Cap

700 Shorts

600 Sweatshirt

.

Sorting by more than one
column

If you name more than one column in the ORDER BY clause, the sorts are
nested.

The following statement sorts the shirts in the product table first by name in
ascending order, then by quantity (descending) within each name:

SELECT id, name, quantity
FROM product
WHERE name like ’%shirt%’
ORDER BY name, quantity DESC

id name quantity

600 Sweatshirt 39

601 Sweatshirt 32

302 Tee Shirt 75

301 Tee Shirt 54

.

Using the column
position

You can use the position number of a column in a select list instead of the
column name. Column names and select list numbers can be mixed. Both of
the following statements produce the same results as the preceding one.

244

Chapter 7. Summarizing, Grouping and Sorting Query Results

SELECT id, name, quantity
FROM product
WHERE name like ’%shirt%’
ORDER BY 2, 3 DESC
SELECT id, name, quantity
FROM product
WHERE name like ’%shirt%’
ORDER BY 2, quantity DESC

Most versions of SQL require that ORDER BY items appear in the select
list, but Adaptive Server Anywhere has no such restriction. The following
query orders the results by quantity, although that column does not appear in
the select list:

SELECT id, name
FROM product
WHERE name like ’%shirt%’
ORDER BY 2, quantity DESC

ORDER BY and NULL With ORDER BY, NULL sorts before all other values in ascending sort
order.

ORDER BY and case
sensitivity

The effects of an ORDER BY clause on mixed-case data depend on the
database collation and case sensitivity specified when the database is created.

Explicitly limiting the number of rows returned by a query

You can use the FIRST or TOP keywords to limit the number of rows
included in the result set of a query. These keywords are for use with queries
that include an ORDER BY clause.

Examples The following query returns information about the employee that appears
first when employees are sorted by last name:

SELECT FIRST *
FROM employee
ORDER BY emp_lname

The following query returns the first five employees as sorted by last name:

SELECT TOP 5 *
FROM employee
ORDER BY emp_lname

When you use TOP, you can also use START AT to provide an offset. The
following statement lists the fifth and sixth employees sorted in descending
order by last name:

SELECT TOP 2START AT 5 *
FROM employee
ORDER BY emp_lname DESC

245

FIRST and TOP should be used only in conjunction with an ORDER BY
clause to ensure consistent results. Use of FIRST or TOP without an
ORDER BY triggers a syntax warning, and will likely yield unpredictable
results.

ORDER BY and GROUP BY

You can use an ORDER BY clause to order the results of a GROUP BY in a
particular way.

Example The following query finds the average price of each product and orders the
results by average price:

SELECT name, AVG(unit_price)
FROM product
GROUP BY name
ORDER BY AVG(unit_price)

name AVG(product.unit_price)

Visor 7

Baseball Cap 9.5

Tee Shirt 12.333333333

Shorts 15

.

246

Chapter 7. Summarizing, Grouping and Sorting Query Results

The ROLLUP operation: adding summary
information to GROUP BY queries

The ROLLUP operation is a simple online analytical processing feature. The
term OnLine Analytical Processing (OLAP) describes a large set of data
analysis features, of which ROLLUP is one.

ROLLUP adds subtotal rows into the result sets of queries with GROUP BY
clauses.

ROLLUP example The following query illustrates a ROLLUP operation and its result set. The
subtotal rows are highlighted in the result set. Each subtotal row has a NULL
in the column or columns over which the subtotal is computed. One row is
an aggregate over all rows, and has NULL in both Year and Quarter columns.

SELECT year(order_date) Year,
quarter(order_date) Quarter,
count(*) Orders

FROM sales_order
GROUP BYROLLUP (Year, Quarter)
ORDER BY Year, Quarter

Year Quarter Orders

(NULL) (NULL) 648

2000 (NULL) 380

2000 1 87

2000 2 77

2000 3 91

2000 4 125

2001 (NULL) 268

2001 1 139

2001 2 119

2001 3 10

Understanding subtotal
rows

Much of the purpose of ROLLUP operations can be understood from the
example above or by running your own examples. This section gives a
formal description of ROLLUP operations for those cases where examples
are not sufficient.

247

ROLLUP is equivalent to a UNION of a set of GROUP BY queries. The
result sets of the following queries are identical:

-- A ROLLUP query
SELECT A, B, C , SUM(D)
FROM T1
GROUP BY ROLLUP A, B, C;

-- Equivalent query without ROLLUP
SELECT * FROM (

(SELECT A, B, C, SUM(D)
GROUP BY A, B, C)

UNION ALL
(SELECT A, B, NULL, SUM(D)

GROUP BY A, B)
UNION ALL

(SELECT A, NULL, NULL, SUM(D)
GROUP BY A)

UNION ALL
(SELECT NULL, NULL, NULL, SUM(D))

)

The result set of GROUP BY A, B consists of subtotals over all those rows
in which A and B are held constant. To make a union possible, column C is
assigned NULL.

The ROLLUP operation can be thought of as follows:

♦ A list of prefixes is constructed for the query. A prefix is a subset of the
items in thegroup-by-list.

A prefix is constructed by excluding one or more rightmost items from
those in the query’sgroup-by-list. The remaining columns are called the
prefix columns. For example, in the example above thegroup-by-list
includes two items (Year and Quarter).

GROUP BY ROLLUP (Year, Quarter)

There are two prefixes for this query:
• Exclude Quarter. The set of prefix columns contains the single column

Year.

• Exclude both Quarter and Year. There are no prefix columns.
There are the same number of prefixes as there are items in the
group-by-list.

♦ For each prefix, a subtotal row is constructed corresponding to all those
rows in which the prefix columns have the same value.

For example, in the query above, the prefix containing the Year column
leads to a summary row for Year=2000 and a summary row for
Year=2001. There is a single summary row for the prefix that has no
columns, which is a subtotal over all rows in the intermediate result set.

248

Chapter 7. Summarizing, Grouping and Sorting Query Results

The value of each column in a subtotal row is as follows:

• Column included in the prefix The value of the column. For
example, in the query above, the value of the Year column for the
subtotal over rows with Year=2000 is 2000.

• Column excluded from the prefix NULL. For example, the Quarter
column has a value of NULL for the subtotal rows generated by the
prefix consisting of the Year column.

• Aggregate function An aggregate over the values of the excluded
columns.

Subtotal values are computed over the rows in the underlying data, not
over the aggregated rows. In many cases, such as SUM or COUNT, the
result is the same, but the distinction is important in the case of
statistical functions such as AVG, STDDEV, and VARIANCE, for
which the result differs.

The ROLLUP operation
and NULL

When rows in the input to a GROUP BY operation contain NULL, there is
the possibility of confusion between subtotal rows added by the ROLLUP
operation and NULL-containing rows that are part of the GROUP BY result
set.

The GROUPING function distinguishes subtotal rows from others. The
GROUPING function takes a column of the result set as its argument, and
returns 1 if the column is NULL because the row is a subtotal row, and 0
otherwise.

The following example includes GROUPING columns in the result set. The
query is an outer join between the employee table and the sales_order table.
NULL appears in the columns corresponding to those employees who are
not sales representatives (and therefore have no sales).

SELECT year(order_date) Year,
employee.emp_id Employee,
count(*) Orders,
grouping(Year) as GY,
grouping(Employee) as GE

FROM employee left outer join sales_order
ON employee.emp_id = sales_order.sales_rep
GROUP BY ROLLUP (Year, Employee)
ORDER BY Year, Employee

Year Employee Orders GY GE

(NULL) (NULL) 64 0 1

(NULL) (NULL) 712 1 1

(NULL) 102 1 0 0

249

Year Employee Orders GY GE

.

☞ For more information, see “GROUPING function [Aggregate]”[ASA
SQL Reference,page 138].

250

Chapter 7. Summarizing, Grouping and Sorting Query Results

Performing set operations on query results with
UNION, INTERSECT, and EXCEPT

The operators described in this section carry out set operations on the results
of two or more queries. While many of the operations can also be carried out
using operations in the WHERE clause or HAVING clause, there are some
operations that are very difficult to carry out in any way other than using
these set-based operators. For example:

♦ When data is held in an unnormalized manner, you may wish to assemble
seemingly disparate information into a single result set, even though the
tables are unrelated.

♦ NULL is treated differently by set operators than in the WHERE clause
or HAVING clause. In the WHERE clause or HAVING clause, two
null-containing rows with identical non-null entries are not seen as
identical, as the two NULL values are not defined to be identical. The set
operators see two such rows as the same.

For more information on NULL and set operations, see“Set operators
and NULL” on page 254.

For more information, see “EXCEPT operation”[ASA SQL Reference,
page 423], “INTERSECT operation”[ASA SQL Reference,page 482], and
“UNION operation” [ASA SQL Reference,page 586].

Combining sets with the UNION operation

The UNION operator combines the results of two or more queries into a
single result set.

By default, the UNION operator removes duplicate rows from the result set.
If you use the ALL option, duplicates are not removed. The columns in the
result set have the same names as the columns in the first table referenced.
Any number of union operators may be used. For example:

x UNION y UNION z

By default, a statement containing multiple UNION operators is evaluated
from left to right. Parentheses may be used to specify the order of evaluation.

For example, the following two expressions are not equivalent, due to the
way that duplicate rows are removed from result sets:

x UNION ALL (y UNION z)
(x UNION ALL y) UNION z

In the first expression, duplicates are eliminated in the UNION between y

251

and z. In the UNION between that set and x, duplicates are not eliminated.
In the second expression, duplicates are included in the union between x and
y, but are then eliminated in the subsequent union with z.

Using EXCEPT and INTERSECT

The EXCEPT operation lists the differences between two result sets. The
following general construction lists all those rows that appear in the result
set of query-1, but not in the result set of query-2.

query-1
EXCEPT
query-2

The INTERSECT operation lists the rows that appear in each of two result
sets. The following general construction lists all those rows that appear in
the result set of both query-1 and query-2.

query-1
INTERSECT
query-2

Like the UNION operation, both EXCEPT and INTERSECT take the ALL
modifier, which prevents the elimination of duplicate rows from the result
set.

For more information, see “EXCEPT operation”[ASA SQL Reference,
page 423], and “INTERSECT operation”[ASA SQL Reference,page 482].

Rules for set operations

The following rules apply to UNION, EXCEPT, and INTERSECT
operations:

♦ Same number of items in the select lists All select lists in the queries
must have the same number of expressions (such as column names,
arithmetic expressions, and aggregate functions). The following
statement is invalid because the first select list is longer than the second:

-- This is an example of an invalid statement
SELECT store_id, city, state
FROM stores
UNION
SELECT store_id, city
FROM stores_east

♦ Data types must match Corresponding expressions in the SELECT
lists must be of the same data type, or an implicit data conversion must be

252

Chapter 7. Summarizing, Grouping and Sorting Query Results

possible between the two data types, or an explicit conversion should be
supplied.

For example, a UNION, INTERSECT, or EXCEPT is not possible
between a column of the CHAR data type and one of the INT data type,
unless an explicit conversion is supplied. However, a set operation is
possible between a column of the MONEY data type and one of the INT
data type.

♦ Column ordering You must place corresponding expressions in the
individual queries of a set operation in the same order, because the set
operators compare the expressions one to one in the order given in the
individual queries in the SELECT clauses.

♦ Multiple set operations You can string several set operations together,
as in the following example:

SELECT city AS Cities
FROM contact
UNION
SELECT city
FROM customer
UNION
SELECT city
FROM employee

For UNION operations, the order of queries is not important. For
INTERSECT, the order is important when there are two or more queries.
For EXCEPT, the order is always important.

♦ Column headings The column names in the table resulting from a
UNION are taken from the first individual query in the statement. If you
want to define a new column heading for the result set, you can do so in
the select list of the first query, as in the following example:

SELECT city AS Cities
FROM contact
UNION
SELECT city
FROM customer

In the following query, the column heading remains as city, as it is
defined in the first query of the UNION statement.

SELECT city
FROM contact
UNION
SELECT city AS Cities
FROM customer

Alternatively, you can use the WITH clause to define the column names.
For example:

253

WITH V(Cities)
AS (SELECT city

FROM contact
UNION
SELECT city
FROM customer)

SELECT * FROM V

♦ Ordering the results You can use the WITH clause of the SELECT
statement to order the column names in the select list . For example:

WITH V(cityname)
AS (SELECT Cities = city

FROM contact
UNION
SELECT city
FROM customer)

SELECT * FROM V
ORDER BY cityname

Alternatively, you can use a single ORDER BY clause at the end of the
list of queries, but you must use integers rather than column names, as in
the following example:

SELECT Cities = city
FROM contact
UNION
SELECT city
FROM customer
ORDER BY 1

Set operators and NULL

NULL is treated differently by the set operators UNION, EXCEPT, and
INTERSECT than it is in search conditions. This difference is one of the
main reasons to use set operators.

When comparing rows, set operators treat NULL values as equal to each
other. In contrast, when NULL is compared to NULL in a search condition
the result is unknown (not true).

One particularly useful consequence of this difference is that the number of
rows in the result set forquery-1 EXCEPT ALL query-2 is alwaysthe
difference in the number of rows in the result sets of the individual queries.

For example, consider two tables T1 and T2, each with the following
columns:

col1 INT,
col2 CHAR(1)

254

Chapter 7. Summarizing, Grouping and Sorting Query Results

The data in the tables is as follows:

♦ Table T1.

col1 col2

1 a

2 b

3 (NULL)

3 (NULL)

4 (NULL)

4 (NULL)

♦ Table T2

col1 col2

1 a

2 x

3 (NULL)

One query that asks for rows in T1 that also appear in T2 is as follows:

SELECT T1.col1, T1.col2
FROM T1 JOIN T2
ON T1.col1 = T2.col2
AND T1.col2 = T2.col2

T1.col1 T1.col2

1 a

The row (3, NULL) does not appear in the result set, as the comparison
between NULL and NULL is not true. In contrast, approaching the problem
using the INTERSECT operator includes a row with NULL:

SELECT col1, col2
FROM T1
INTERSECT
SELECT col1, col2
FROM T2

col1 col2

1 a

3 (NULL)

255

The following query uses search conditions to list rows in T1 that do not
appear in T2:

SELECT col1, col2
FROM T1
WHERE col1 NOT IN (

SELECT col1
FROM t2
WHERE t1.col2 = t2.col2)

OR col2 NOT IN (
SELECT col2
FROM t2
WHERE t1.col1 = t2.col1)

col1 col2

2 b

3 (NULL)

4 (NULL)

3 (NULL)

4 (NULL)

The NULL-containing rows from T1 are not excluded by the comparison. In
contrast, approaching the problem using EXCEPT ALL excludes
NULL-containing rows that appear in both tables. In this case, the (3,
NULL) row in T2 is identified as the same as the (3, NULL) row in T1.

SELECT col1, col2
FROM T1
EXCEPT ALL
SELECT col1, col2
FROM T2

col1 col2

2 b

3 (NULL)

4 (NULL)

4 (NULL)

The EXCEPT operator is more restrictive still. It eliminates both (3, NULL)
rows from T1 and excludes one of the (4, NULL) rows as a duplicate.

256

Chapter 7. Summarizing, Grouping and Sorting Query Results

SELECT col1, col2
FROM T1
EXCEPT
SELECT col1, col2
FROM T2

col1 col2

2 b

4 (NULL)

257

Standards and compatibility
This section describes standards and compatibility aspects of the Adaptive
Server Anywhere GROUP BY clause.

GROUP BY and the SQL/92 standard

The SQL/92 standard for GROUP BY requires the following:

♦ A column used in an expression of the SELECT clause must be in the
GROUP BY clause. Otherwise, the expression using that column is an
aggregate function.

♦ A GROUP BY expression can only contain column names from the
select list, but not those used only as arguments for vector aggregates.

The results of a standard GROUP BY with vector aggregate functions
produce one row with one value per group.

Adaptive Server Anywhere and Adaptive Server Enterprise support
extensions to HAVING that allow aggregate functions not in the select list
and not in the GROUP BY clause.

Compatibility with Adaptive Server Enterprise

Adaptive Server Enterprise supports several extensions to the GROUP BY
clause that are not supported in Adaptive Server Anywhere. These include
the following:

♦ Non-grouped columns in the select list Adaptive Server Enterprise
permits column names in the select list that do not appear in the group by
clause. For example, the following is valid in Adaptive Server Enterprise:

SELECT name, unit_price
FROM product
GROUP BY name

This syntax is not supported in Adaptive Server Anywhere.

♦ Nested aggregate functions The following query, which nests a vector
aggregate inside a scalar aggregate, is valid in Adaptive Server Enterprise
but not in Adaptive Server Anywhere:

SELECT MAX(AVG(unit_price))
FROM product
GROUP BY name

♦ GROUP BY and ALL Adaptive Server Anywhere does not support the
use of ALL in the GROUP BY clause.

258

Chapter 7. Summarizing, Grouping and Sorting Query Results

♦ HAVING with no GROUP BY Adaptive Server Anywhere does not
support the use of HAVING with no GROUP BY clause unless all the
expressions in the select and having clauses are aggregate functions. For
example, the following query is valid in Adaptive Server Enterprise, but
is not supported in Adaptive Server Anywhere:

--unsupported syntax
SELECT unit_price

FROM product
HAVING COUNT(*) > 8

However, the following statement is valid in Adaptive Server Anywhere,
because the functions MAX and COUNT are aggregate functions:

SELECT MAX(unit_price)
FROM product
HAVING COUNT(*) > 8

♦ HAVING conditions Adaptive Server Enterprise supports extensions to
HAVING that allow non-aggregate functions not in the select list and not
in the GROUP BY clause. Only aggregate functions of this type are
allowed in Adaptive Server Anywhere.

♦ DISTINCT with ORDER BY or GROUP BY Adaptive Server Enterprise
permits the use of columns in the ORDER BY or GROUP BY clause that
do not appear in the select list, even in SELECT DISTINCT queries. This
can lead to repeated values in the SELECT DISTINCT result set.
Adaptive Server Anywhere does not support this behavior.

♦ Column names in UNIONS Adaptive Server Enterprise permits the use
of columns in the ORDER BY clause in unions of queries. In Adaptive
Server Anywhere, the ORDER BY clause must use an integer to mark the
column by which the results are being ordered.

259

CHAPTER 8

Joins: Retrieving Data from Several
Tables

About this chapter When you create a database, you normalize the data by placing information
specific to different objects in different tables, rather than in one large table
with many redundant entries.

A join operation recreates a larger table using the information from two or
more tables (or views). Using different joins, you can construct a variety of
these virtual tables, each suited to a particular task.

Before your start This chapter assumes some knowledge of queries and the syntax of the
select statement. Information about queries appears in“Queries: Selecting
Data from a Table” on page 207.

Contents Topic: page

Sample database schema 262

How joins work 263

Joins overview 264

Explicit join conditions (the ON phrase) 269

Cross joins 272

Inner and outer joins 274

Specialized joins 281

Natural joins 288

Key joins 292

261

Sample database schema
This chapter makes frequent reference to the sample database. In the
following diagram, the sample database is shown with the names of the
foreign keys that relate the tables. The sample database is held in a file
calledasademo.db, and is located in your installation directory.

contact
id <pk> integer
last_name char(15)
first_name char(15)
title char(2)
street char(30)
city char(20)
state char(2)
zip char(5)
phone char(10)
fax char(10)

customer
id <pk> integer
fname char(15)
lname char(20)
address char(35)
city char(20)
state char(2)
zip char(10)
phone char(12)
company_name char(35)

sales_order
id <pk> integer
cust_id <fk> integer
order_date date
fin_code_id <fk> char(2)
region char(7)
sales_rep <fk> integer

fin_code
code <pk> char(2)
type char(10)
description char(50)

fin_data
year <pk> char(4)
quarter <pk> char(2)
code <pk,fk> char(2)
amount numeric(9)

product
id <pk> integer
name char(15)
description char(30)
size char(18)
color char(6)
quantity integer
unit_price numeric(15,2)

sales_order_items
id <pk,fk> integer
line_id <pk> smallint
prod_id <fk> integer
quantity integer
ship_date date

employee
emp_id <pk> integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id <fk> integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department
dept_id <pk> integer
dept_name char(40)
dept_head_id <fk> integer

asademo.db

emp_id = dept_head_id
(ky_dept_head)

dept_id = dept_id
(ky_dept_id)

id = cust_id
(ky_so_customer)

code = code
(ky_code_data)

id = id
(id_fk)

code = fin_code_id
(ky_so_fincode)

emp_id = sales_rep
(ky_so_employee_id)

id = prod_id
(ky_prod_id)

262

Chapter 8. Joins: Retrieving Data from Several Tables

How joins work
A relational database stores information about different types of objects in
different tables. For example, information particular to employees appears in
one table, and information that pertains to departments in another. The
employee table contains information such as employee names and addresses.
The department table contains information about one department, such as
the name of the department and who the department head is.

Most questions can only be answered using a combination of information
from the various tables. For example, you may want to answer the question
“Who manages the Sales department?” To find the name of this person, you
must identify the correct person using information from the department
table, then look up that person’s name in the employee table.

Joins are a means of answering such questions by forming a new virtual
table that includes information from multiple tables. For example, you could
create a list of the department heads by combining the information contained
in the employee table and the department table. You specify which tables
contain the information you need using the FROM clause.

To make the join useful, you must combine the correct columns of each
table. To list department heads, each row of the combined table should
contain the name of a department and the name of the employee who
manages it. You control how columns are matched in the composite table by
either specifying a particular type of join operation or using the ON phrase.

263

Joins overview
A join is an operation that combines the rows in tables by comparing the
values in specified columns. This section is an overview of Adaptive Server
Anywhere join syntax. All of the concepts are explored in greater detail in
later sections.

The FROM clause

Use the FROM clause to specify which base tables, temporary tables, views
or derived tables to join. The FROM clause can be used in SELECT or
UPDATE statements. An abbreviated syntax for the FROM clause is as
follows:

FROM table_expression, . . .

where:

table_expression:
table | view | derived table | joined table | (table_expression, . . .)

table or view :
[userid .] table-or-view-name [[AS] correlation-name]

derived table:
(select-statement) [AS] correlation-name [(column-name, . . .)]

joined table:
table_expression join_operator table_expression [ON join_condition]

join_operator :
[KEY | NATURAL] [join_type] JOIN | CROSS JOIN

join_type:
INNER | FULL [OUTER] | LEFT [OUTER] | RIGHT [OUTER]

Notes You cannot use an ON phrase with CROSS JOIN.

☞ For the complete syntax, see “FROM clause”[ASA SQL Reference,
page 445].

☞ For the syntax of the ON phrase, see “Search conditions”[ASA SQL
Reference,page 22].

Join conditions

Tables can be joined usingjoin conditions. A join condition is simply a
search condition. It chooses a subset of rows from the joined tables based on
the relationship between values in the columns. For example, the following
query retrieves data from the product and sales_order_items tables.

264

Chapter 8. Joins: Retrieving Data from Several Tables

SELECT *
FROM product JOIN sales_order_items

ON product.id = sales_order_items.prod_id

The join condition in this query is

product.id = sales_order_items.prod_id

This join condition means that rows can be combined in the result set only if
they have the same product ID in both tables.

Join conditions can be explicit or generated. Anexplicit join condition is a
join condition that is put in an ON phrase or a WHERE clause. The
following query uses an ON phrase. It produces a cross product of the two
tables (all combinations of rows), but with rows excluded if the id numbers
do not match. The result is a list of customers with details of their orders.

SELECT *
FROM customer JOIN sales_order

ON sales_order.cust_id = customer.id

A generated join condition is a join condition that is automatically created
when you specify KEY JOIN or NATURAL JOIN. In the case of a key join,
the generated join condition is based on the foreign key relationships
between the tables. In the case of a natural join, the generated join condition
is based on columns that have the same name.

Tip: Both key join syntax and natural join syntax are shortcuts: you get
identical results from using the keyword JOINwithout KEY or NATURAL,
and then explicitly stating the same join condition in an ON phrase.

When you use an ON phrase with a key join or natural join, the join
condition that is used is theconjunction of the explicitly specified join
condition with the generated join condition. This means that the join
conditions are combined with the keyword AND.

Joined tables

Adaptive Server Anywhere supports the following classes of joined tables.

♦ CROSS JOIN A cross join of two tables produces all possible
combinations of rows from the two tables. The size of the result set is the
number of rows in the first table multiplied by the number of rows in the
second table. A cross join is also called a cross product or Cartesian
product. You cannot use an ON phrase with a cross join.

♦ KEY JOIN (default) A join condition is automatically generated
based on the foreign key relationships that have been built into the

265

database. Key join is the default when the JOIN keyword is used without
specifying a join type and there is no ON phrase.

♦ NATURAL JOIN A join condition is automatically generated based on
columns having the same name.

♦ Join using an ON phrase You specify an explicit join condition. When
used with a key join or natural join, the join condition contains both the
generated join condition and the explicit join condition. When used with
the keyword JOIN without the keywords KEY or NATURAL, there is no
generated join condition. You cannot use an ON clause with a cross join.

Inner and outer joins Key joins, natural joins and joins with an ON clause may be qualified by
specifying INNER, LEFT OUTER, RIGHT OUTER, or FULL OUTER. The
default is INNER. When using the keywords LEFT, RIGHT or FULL, the
keyword OUTER is optional.

In an inner join, each row in the result satisfies the join condition.

In a left or right outer join, all rows are preserved for one of the tables, and
for the other table nulls are returned for rows that do not satisfy the join
condition. For example, in a right outer join the right side is preserved and
the left side is null-supplying.

In a full outer join, all rows are preserved for both of the tables, and nulls are
supplied for rows that do not satisfy the join condition.

Joining two tables

To understand how a simple inner join is computed, consider the following
query. It answers the question: which product sizes have been ordered in the
same quantity as the quantity in stock?

SELECT DISTINCT name, size,
sales_order_items.quantity

FROM product JOIN sales_order_items
ON product.id = sales_order_items.prod_id

AND product.quantity = sales_order_items.quantity

name size quantity

Baseball Cap One size fits all 12

Visor One size fits all 36

You can interpret the query as follows. Note that this is a conceptual
explanation of the processing of this query, used to illustrate the semantics of
a query involving a join. It does not represent how Adaptive Server
Anywhere actually computes the result set.

266

Chapter 8. Joins: Retrieving Data from Several Tables

♦ Create a cross product of the product table and sales_order_items table.
A cross product contains every combination of rows from the two tables.

♦ Exclude all rows where the product IDs are not identical (because of the
join conditionproduct.id = sales_order_items.prod_id).

♦ Exclude all rows where the quantity is not identical (because of the join
conditionproduct.quantity =

sales_order_items.quantity).

♦ Create a result table with three columns: product.name, product.size, and
sales_order_items.quantity.

♦ Exclude all duplicate rows (because of the DISTINCT keyword).

☞ For a description of how outer joins are computed, see“Outer joins” on
page 274.

Joining more than two tables

With Adaptive Server Anywhere, there is no fixed limit on the number of
tables you can join.

When joining more than two tables, parentheses are optional. If you do not
use parentheses, Adaptive Server Anywhere evaluates the statement from
left to right. Therefore,A JOIN B JOIN C is equivalent to
(A JOIN B) JOIN C . Another example:

SELECT *
FROM A JOIN B JOIN C JOIN D

is equivalent to

SELECT *
FROM ((A JOIN B) JOIN C) JOIN D

Whenever more than two tables are joined, the join involves table
expressions. In the exampleA JOIN B JOIN C, the table expressionA
JOIN B is joined to C. This means, conceptually, that A and B are joined,
and then the result is joined to C.

The order of joins is important if the table expression contains outer joins.
For example,A JOIN B LEFT OUTER JOIN Cis interpreted as(A JOIN

B) LEFT OUTER JOIN C. This means that the table expressionA JOIN B

is joined to C. The table expressionA JOIN B is preserved and table C is
null-supplying.

☞ For more information about outer joins, see“Outer joins” on page 274.

267

☞ For more information about how Adaptive Server Anywhere performs a
key join of table expressions, see“Key joins of table expressions” on
page 295.

☞ For more information about how Adaptive Server Anywhere performs a
natural join of table expressions, see“Natural joins of table expressions” on
page 289.

Join compatible data types

When you join two tables, the columns you compare must have the same or
compatible data types.

☞ For more information about data type conversion in joins, see
“Conversion when using comparison operators”[ASA SQL Reference,page 76].

Using joins in delete, update, and insert statements

You can use joins in DELETE, UPDATE and INSERT statements, as well as
in SELECT statements. You can update some cursors that contain joins if
the ANSI_UPDATE_CONSTRAINTS option is set to OFF. This is the
default for databases created before Adaptive Server Anywhere version 7.
For databases created in version 7 or later, the default is ON.

☞ For more information, see “ANSI_UPDATE_CONSTRAINTS option
[compatibility]” [ASA Database Administration Guide,page 576].

Non-ANSI joins

☞ Adaptive Server Anywhere supports ISO/ANSI standards for joins. It
also supports the following non-standard joins:

♦ “Transact-SQL outer joins (*= or =*)” on page 278

♦ “Duplicate correlation names in joins (star joins)” on page 282

♦ “Key joins” on page 292

♦ “Natural joins” on page 288

☞ You can use the REWRITE function to see the ANSI equivalent of a
non-ANSI join.

☞ For more information, see “REWRITE function [Miscellaneous]”[ASA
SQL Reference,page 177].

268

Chapter 8. Joins: Retrieving Data from Several Tables

Explicit join conditions (the ON phrase)
Instead of, or along with, a key or natural join, you can specify a join using
an explicit join condition. You specify a join condition by inserting an ON
phrase immediately after the join. The join condition always refers to the
join immediately preceding it.

Example In the following query, the first ON phrase is used to join sales_order to
customer. The second ON phrase is used to join the table expression
(sales_order JOIN customer) to the base table sales_order_item.

SELECT *
FROM sales_order JOIN customer

ON sales_order.cust_id = customer.id
JOIN sales_order_items

ON sales_order_items.id = sales_order.id

Tables that can be
referenced

The tables that are referenced in an ON phrase must be part of the join that
the ON phrase modifies. For example, the following is invalid:

FROM (A KEY JOIN B) JOIN (C JOIN D ON A.x = C.x)

The problem is that the join conditionA.x = C.x references table A, which
is not part of the join it modifies (in this case,C JOIN D).

However, as of the ANSI/ISO standard SQL99 and Adaptive Server
Anywhere 7.0, there is an exception to this rule: if you use commas between
table expressions, an ON condition of a join can reference a table that
precedes it syntactically in the FROM clause. Therefore, the following is
valid:

FROM (A KEY JOIN B) , (C JOIN D ON A.x = C.x)

☞ For more information about commas, see“Commas” on page 272.

Generated joins and the ON phrase

Key joins are the default if the keyword JOIN is used and no join type is
specified—unless you use an ON phrase. If you use an ON phrase with an
unspecified JOIN, key join is not the default and no generated join condition
is applied.

For example, the following is a key join, because key join is the default
when the keyword JOIN is used and there is no ON phrase:

SELECT *
FROM A JOIN B

The following is a join between table A and table B with the join condition

269

A.x = B.y . It is not a key join.

SELECT *
FROM A JOIN B ON A.x = B.y

If you specify a KEY JOIN or NATURAL JOINand use an ON phrase, the
final join condition is the conjunction of the generated join condition and the
explicit join condition(s). For example, the following statement has two join
conditions: one generated because of the key join, and one explicitly stated
in the ON phrase.

SELECT *
FROM A KEY JOIN B ON A.x = B.y

If the join condition generated by the key join isA.w = B.z , then the
following statement is equivalent:

SELECT *
FROM A JOIN B

ON A.x = B.y
AND A.w = B.z

☞ For more information about key joins, see“Key joins” on page 292.

Types of explicit join conditions

Most join conditions are based on equality, and so are calledequijoins. For
example,

SELECT *
FROM department JOIN employee

ON department.dept_id = employee.dept_id

However, you do not have to use equality (=) in a join condition. You can
use any search condition, such as conditions containing LIKE, SOUNDEX,
BETWEEN,> (greater than), and != (not equal to).

Example The following example answers the question: For which products has
someone ordered more than the quantity in stock?

SELECT DISTINCT product.name
FROM product JOIN sales_order_items
ON product.id = sales_order_items.prod_id

AND product.quantity > sales_order_items.quantity

For more information about search conditions, see “Search conditions”[ASA
SQL Reference,page 22].

Using the WHERE clause for join conditions

Except when using outer joins, you can specify join conditions in the

270

Chapter 8. Joins: Retrieving Data from Several Tables

WHERE clause instead of the ON phrase. However, you should be aware
that there may be semantic differences between the two if the query contains
outer joins.

The ON phrase is part of the FROM clause, and so is processed before the
WHERE clause. This does not make a difference to results except in the case
of outer joins, where using the WHERE clause can convert the join to an
inner join.

When deciding whether to put join conditions in an ON phrase or WHERE
clause, keep the following rules in mind:

♦ When you specify an outer join, putting a join condition in the WHERE
clause may convert the outer join to an inner join.

☞ For more information about the WHERE clause and outer joins, see
“Outer joins and join conditions” on page 276.

♦ Conditions in an ON phrase can only refer to tables that are in the table
expressions joined by the associated JOIN. However, conditions in a
WHERE clause can refer to any tables, even if they are not part of the
join.

♦ You cannot use an ON phrase with the keywords CROSS JOIN, but you
can always use a WHERE clause.

♦ When join conditions are in an ON phrase, key join is not the default.
However, key join can be the default if join conditions are put in a
WHERE clause.

☞ For more information about the conditions under which key join is
the default, see“When key join is the default” on page 292.

In the examples in this documentation, join conditions are put in an ON
phrase. In examples using outer joins, this is necessary. In other cases it is
done to make it obvious that they are join conditions and not general search
conditions.

271

Cross joins
A cross join of two tables produces all possible combinations of rows from
the two tables. A cross join is also called a cross product or Cartesian
product.

Each row of the first table appears once with each row of the second table.
Hence, the number of rows in the result set is the product of the number of
rows in the first table and the number of rows in the second table, minus any
rows that are omitted because of restrictions in a WHERE clause.

You cannot use an ON phrase with cross joins. However, you can put
restrictions in a WHERE clause.

Inner and outer modifiers
do not apply to cross
joins

Except in the presence of additional restrictions in the WHERE clause, all
rows of both tables always appear in the result set of cross joins. Thus, the
keywords INNER, LEFT OUTER and RIGHT OUTER are not applicable to
cross joins.

For example, the following statement joins two tables.

SELECT *
FROM A CROSS JOIN B

The result set from this query includes all columns in A and all columns in
B. There is one row in the result set for each combination of a row in A and
a row in B. If A hasn rows and B hasm rows, the query returnsn x m rows.

Commas

A comma works like a join operator, but is not one. A comma creates a cross
product exactly as the keyword CROSS JOIN does. However, join keywords
create table expressions, and commas create lists of table expressions.

In the following simple inner join of two tables, a comma and the keywords
CROSS JOIN are equivalent:

Select *
FROM A CROSS JOIN B CROSS JOIN C
WHERE A.x = B.y

and

Select *
FROM A, B, C
WHERE A.x = B.y

Generally, you can use a comma instead of the keywords CROSS JOIN. The
comma syntax is equivalent to cross join syntax, except in the case of
generated join conditions in table expressions using commas.

272

Chapter 8. Joins: Retrieving Data from Several Tables

☞ For information about how commas work with generated join
conditions, see“Key joins of table expressions” on page 295.

☞ In the syntax of star joins, commas have a special use. For more
information, see“Duplicate correlation names in joins (star joins)” on
page 282.

273

Inner and outer joins
The keywords INNER, LEFT OUTER, RIGHT OUTER, and FULL
OUTER may be used to modify key joins, natural joins, and joins with an
ON phrase. The default is INNER. The keyword OUTER is optional. These
modifiers do not apply to cross joins.

Inner joins

By default, joins areinner joins. This means that rows are included in the
result set only if they satisfy the join condition.

Example For example, each row of the result set of the following query contains the
information from one customer row and one sales_order row, satisfying the
key join condition. If a particular customer has placed no orders, the
condition is not satisfied and the result set does not contain the row
corresponding to that customer.

SELECT fname, lname, order_date
FROM customer KEY INNER JOIN sales_order
ORDER BY order_date

fname lname order_date

Hardy Mums 1/2/00

Aram Najarian 1/3/00

Tommie Wooten 1/3/00

Alfredo Margolis 1/6/00

.

Because inner joins and key joins are the defaults, you obtain the same result
using the following FROM clause.

FROM customer JOIN sales_order

Outer joins

A left or right outer join of two tables preserves all the rows in one table,
and supplies nulls for the other table when it does not meet the join
condition. Aleft outer join preserves every row in the left-hand table, and a
right outer join preserves every row in the right-hand table. In afull outer
join , all rows from both tables are preserved.

The table expressions on either side of a left or right outer join are referred

274

Chapter 8. Joins: Retrieving Data from Several Tables

to aspreservedandnull-supplying. In a left outer join, the left-hand table
expression is preserved and the right-hand table expression is null-supplying.

☞ For information about creating outer joins with Transact-SQL syntax,
see“Transact-SQL outer joins (*= or =*)” on page 278.

Example For example, the following statement includes all customers, whether or not
they have placed an order. If a particular customer has placed no orders,
each column in the result that corresponds to order information contains the
NULL value.

SELECT lname, order_date, city
FROM customer LEFT OUTER JOIN sales_order

ON customer.id = sales_order.cust_id
WHERE customer.state = ’NY’
ORDER BY order_date

lname order_date city

Thompson (NULL) Bancroft

Reiser 2000-01-22 Rockwood

Clarke 2000-01-27 Rockwood

Mentary 2000-01-30 Rockland

.

You can interpret the outer join in this statement as follows. Note that this is
a conceptual explanation, and does not represent how Adaptive Server
Anywhere actually computes the result set.

♦ Return one row for every sales order placed by a customer. More than
one row is returned when the customer placed two or more sales orders,
because a row is returned for each sales order. This is the same result as
an inner join. The ON condition is used to match customer and sales
order rows. The WHERE clause is not used for this step.

♦ Include one row for every customer who has not placed any sales orders.
This ensures that every row in the customer table is included. For all of
these rows, the columns from sales_order are filled with nulls. These
rows are added because the keyword OUTER is used, and would not have
appeared in an inner join. Neither the ON condition nor the WHERE
clause is used for this step.

♦ Exclude every row where the customer does not live in New York, using
the WHERE clause.

275

Outer joins and join conditions

A common mistake with outer joins is the placement of the join condition.
In most cases, if you place restrictions on the null-supplying table in a
WHERE clause, the join is equivalent to an inner join.

The reason for this is that most search conditions cannot evaluate to TRUE
when any of their inputs are NULL. The WHERE clause restriction on the
null-supplying table compares values to null, resulting in the elimination of
the row from the result set. The rows in the preserved table are not preserved
and so the join is an inner join.

The exception to this is comparisons that can evaluate to true when any of
their inputs are NULL. These include IS NULL, IS UNKNOWN, IS FALSE,
IS NOT TRUE, and expressions involving ISNULL or COALESCE.

Example For example, the following statement computes a left outer join.

SELECT *
FROM customer KEY LEFT OUTER JOIN sales_order

ON sales_order.order_date < ’2000-01-03’

In contrast, the following statement creates an inner join.

SELECT lname, order_date
FROM customer KEY LEFT OUTER JOIN sales_order

WHERE sales_order.order_date < ’2000-01-03’

The first of these two statements can be thought of as follows: First,
left-outer join the customer table to the sales_order table. The result set
includes every row in the customer table. For those customers who have no
orders prior to January 3 2000, fill the sales order fields with nulls.

In the second statement, first left-outer join customer and sales_order. The
result set includes every row in the customer table. For those customers who
have no orders, fill the sales order fields with nulls. Next, apply the WHERE
condition by selecting only those rows in which the customer has placed an
order since January 3 2000. For those customers who have not placed
orders, these values are NULL. Comparing any value to NULL evaluates to
UNKNOWN. Hence, these rows are eliminated and the statement reduces to
an inner join.

☞ For more information about search conditions, see “Search conditions”
[ASA SQL Reference,page 22].

Understanding complex outer joins

The order of joins is important when a query includes table expressions

276

Chapter 8. Joins: Retrieving Data from Several Tables

using outer joins. For example,A JOIN B LEFT OUTER JOIN Cis
interpreted as(A JOIN B) LEFT OUTER JOIN C. This means that the
table expression(A JOIN B) is joined to C. The table expression
(A JOIN B) is preserved and table C is null-supplying.

Consider the following statement, in which A, B and C are tables:

SELECT *
FROM A LEFT OUTER JOIN B RIGHT OUTER JOIN C

To understand this statement, first remember that Adaptive Server Anywhere
evaluates statements from left to right, adding parentheses. This results in

SELECT *
FROM (A LEFT OUTER JOIN B) RIGHT OUTER JOIN C

Next, you may want to convert the right outer join to a left outer join so that
both joins are the same type. To do this, simply reverse the position of the
tables in the right outer join, resulting in:

SELECT *
FROM C LEFT OUTER JOIN (A LEFT OUTER JOIN B)

A is the preserved table and B is the null-supplying table for the nested outer
join. C is the preserved table for the first outer join.

You can interpret this join as follows:

♦ Join A to B, preserving all rows in A.

♦ Next, join C to the results of the join of A and B, preserving all rows in C.

The join does not have an ON phrase, and so is by default a key join. The
way Adaptive Server Anywhere generates join conditions for this type of
join is explained in“Key joins of table expressions that do not contain
commas” on page 296.

In addition, the join condition for an outer join must only include tables that
have previously been referenced in the FROM clause. This restriction is
according to the ANSI/ISO standard, and is enforced to avoid ambiguity. For
example, the following two statements are syntactically incorrect, because C
is referenced in the join condition before the table itself is referenced.

SELECT *
FROM (A LEFT OUTER JOIN B ON B.x = C.x) JOIN C

and

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = C.x, C

277

Outer joins of views and derived tables

Outer joins can also be specified for views and derived tables.

The statement

SELECT *
FROM V LEFT OUTER JOIN A ON (V.x = A.x)

can be interpreted as follows:

♦ Compute the view V.

♦ Join all the rows from the computed view V with A by preserving all the
rows from V, using the join conditionV.x = A.x .

Example The following example defines a view called V that returns the employee
IDs and department names of women who make over $60 000.

CREATE VIEW V AS
SELECT employee.emp_id, dept_name

FROM employee JOIN department
ON employee.dept_id = department.dept_id

WHERE sex = ’F’ and salary > 60000

Next, use this view to add a list of the departments where the women work
and the regions where they have sold. The view V is preserved and
sales_order is null-supplying.

SELECT DISTINCT V.emp_id, region, V.dept_name
FROM V LEFT OUTER JOIN sales_order

ON V.emp_id = sales_order.sales_rep

emp_id region dept_name

243 (NULL) R & D

316 (NULL) R & D

529 (NULL) R & D

902 Eastern Sales

.

Transact-SQL outer joins (*= or =*)

In accordance with ANSI/ISO SQL standards, Adaptive Server Anywhere
supports the LEFT OUTER, RIGHT OUTER, and FULL OUTER
keywords. For compatibility with Adaptive Server Enterprise prior to
version 12, Adaptive Server Anywhere also supports the Transact-SQL

278

Chapter 8. Joins: Retrieving Data from Several Tables

counterparts of these keywords, *= and =*. However, there are some
limitations and potential problems with the Transact-SQL semantics.

For a detailed discussion of Transact-SQL outer joins, see the whitepaper
Semantics and Compatibility of Transact-SQL Outer Joins, which is
available athttp://www.ianywhere.com/whitepapers/tsql.html.

Warning: When you are creating outer joins, donot mix *= syntax with
ON phrase syntax. This also applies to views that are referenced in the
query.

In the Transact-SQL dialect, you create outer joins by supplying a
comma-separated list of tables in the FROM clause, and using the special
operators *= or =* in the WHERE clause. In Adaptive Server Enterprise
prior to version 12, the join condition must appear in the WHERE clause
(ON was not supported).

Example For example, the following left outer join lists all customers and finds their
order dates (if any):

SELECT fname, lname, order_date
FROM customer, sales_order
WHERE customer.id *= sales_order.cust_id
ORDER BY order_date

This statement is equivalent to the following statement, in which ANSI/ISO
syntax is used:

SELECT fname, lname, order_date
FROM customer LEFT OUTER JOIN sales_order
ON customer.id = sales_order.cust_id
ORDER BY order_date

Transact-SQL outer join limitations

There are several restrictions for Transact-SQL outer joins:

♦ If you specify an outer join and a qualification on a column from the
null-supplying table of the outer join, the results may not be what you
expect. The qualification in the query does not exclude rows from the
result set, but rather affects the values that appear in the rows of the result
set. For rows that do not meet the qualification, a null value appears in
the null-supplying table.

♦ You cannot mix ANSI/ISO SQL syntax and Transact-SQL outer join
syntax in a single query. If a view is defined using one dialect for an outer
join, you must use the same dialect for any outer-join queries on that
view.

279

♦ A null-supplying table cannot participate in both a Transact-SQL outer
join and a regular join or two outer joins. For example, the following
WHERE clause is not allowed, because table S violates this limitation.

WHERE R.x *= S.x
AND S.y = T.y

When you cannot rewrite your query to avoid using a table in both an
outer join and a regular join clause, you must divide your statement into
two separate queries, or use only ANSI/ISO SQL syntax.

♦ You cannot use a subquery that contains a join condition involving the
null-supplying table of an outer join. For example, the following
WHERE clause is not allowed:

WHERE R.x *= S.y
AND EXISTS (SELECT *

FROM T
WHERE T.x = S.x)

Using views with Transact-SQL outer joins

If you define a view with an outer join, and then query the view with a
qualification on a column from the null-supplying table of the outer join, the
results may not be what you expect. The query returns all rows from the
null-supplying table. Rows that do not meet the qualification show a NULL
value in the appropriate columns of those rows.

The following rules determine what types of updates you can make to
columns through views that contain outer joins:

♦ INSERT and DELETE statements are not allowed on outer join views.

♦ UPDATE statements are allowed on outer join views. If the view is
defined WITH CHECK option, the update fails if any of the affected
columns appears in the WHERE clause in an expression that includes
columns from more than one table.

How NULL affects Transact-SQL joins

NULL values in tables or views being joined never match each other in a
Transact-SQL outer join. The result of comparing a NULL value with any
other NULL value is FALSE.

280

Chapter 8. Joins: Retrieving Data from Several Tables

Specialized joins
This section describes how to create some specialized joins such as
self-joins, star joins, and joins using derived tables.

Self-joins

In aself-join, a table is joined to itself by referring to the same table using a
different correlation name.

Example 1 The following self-join produces a list of pairs of employees. Each
employee name appears in combination with every employee name.

SELECT a.emp_fname, a.emp_lname,
b.emp_fname, b.emp_lname

FROM employee AS a CROSS JOIN employee AS b

emp_fname emp_lname emp_fname emp_lname

Fran Whitney Fran Whitney

Fran Whitney Matthew Cobb

Fran Whitney Philip Chin

Fran Whitney Julie Jordan

.

Since the employee table has 75 rows, this join contains 75 x 75 = 5 625
rows. It includes, as well, rows that list each employee with themselves. For
example, it contains the row

emp_fname emp_lname emp_fname emp_lname

Fran Whitney Fran Whitney

If you want to exclude rows that contain the same name twice, add the join
condition that the employee IDs should not be equal to each other.

SELECT a.emp_fname, a.emp_lname,
b.emp_fname, b.emp_lname

FROM employee AS a CROSS JOIN employee AS b
WHERE a.emp_id != b.emp_id

Without these duplicate rows, the join contains 75 x 74 = 5 550 rows.

This new join contains rows that pair each employee with every other
employee, but because each pair of names can appear in two possible orders,
each pair appears twice. For example, the result of the above join contains

281

the following two rows.

emp_fname emp_lname emp_fname emp_lname

Matthew Cobb Fran Whitney

Fran Whitney Matthew Cobb

If the order of the names is not important, you can produce a list of the
(75 x 74)/2 = 2 775 unique pairs.

SELECT a.emp_fname, a.emp_lname,
b.emp_fname, b.emp_lname

FROM employee AS a CROSS JOIN employee AS b
WHERE a.emp_id < b.emp_id

This statement eliminates duplicate lines by selecting only those rows in
which the emp_id of employee a is less than that of employee b.

Example 2 The following self-join uses the correlation names report and manager to
distinguish two instances of the employee table, and creates a list of
employees and their managers.

SELECT report.emp_fname, report.emp_lname,
manager.emp_fname, manager.emp_lname

FROM employee AS report JOIN employee AS manager
ON (report.manager_id = manager.emp_id)

ORDER BY report.emp_lname, report.emp_fname

This statement produces the result shown partially below. The employee
names appear in the two left-hand columns, and the names of their managers
are on the right.

emp_fname emp_lname emp_fname emp_lname

Alex Ahmed Scott Evans

Joseph Barker Jose Martinez

Irene Barletta Scott Evans

Jeannette Bertrand Jose Martinez

.

Duplicate correlation names in joins (star joins)

The reason for using duplicate table names is to create astar join . In a star
join, one table or view is joined to several others.

To create a star join, you use the same table name, view name, or correlation
name more than once in the FROM clause. This is an extension to the

282

Chapter 8. Joins: Retrieving Data from Several Tables

ANSI/ISO SQL standard. The ability to use duplicate names does not add
any additional functionality, but it makes it much easier to formulate certain
queries.

The duplicate names must be in different joins for the syntax to make sense.
When a table name or view name is used twice in the same join, the second
instance is ignored. For example,FROM A,AandFROM A CROSS JOIN A

are both interpreted asFROM A.

The following example, in which A, B and C are tables, is valid in Adaptive
Server Anywhere. In this example, the same instance of table A is joined
both to B and C. Note that a comma is required to separate the joins in a star
join. The use of a comma in star joins is specific to the syntax of star joins.

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = B.x,

A LEFT OUTER JOIN C ON A.y = C.y

The next example is equivalent.

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = B.x,

C RIGHT OUTER JOIN A ON A.y = C.y

Both of these are equivalent to the following standard ANSI/ISO syntax.
(The parentheses are optional.)

SELECT *
FROM (A LEFT OUTER JOIN B ON A.x = B.x)
LEFT OUTER JOIN C ON A.y = C.y

In the next example, table A is joined to three tables: B, C and D.

SELECT *
FROM A JOIN B ON A.x = B.x,

A JOIN C ON A.y = C.y,
A JOIN D ON A.w = D.w

This is equivalent to the following standard ANSI/ISO syntax. (The
parentheses are optional.)

SELECT *
FROM ((A JOIN B ON A.x = B.x)
JOIN C ON A.y = C.y)
JOIN D ON A.w = D.w

With complex joins, it can help to draw a diagram. The previous example
can be described by the following diagram, which illustrates that tables B, C
and D are joined via table A.

283

A

C

DB

Note You can use duplicate table names only if the EXTENDED_JOIN_-
SYNTAX option is ON (the default).

For more information, see the “EXTENDED_JOIN_SYNTAX option
[database]”[ASA Database Administration Guide,page 592].

Example 1 Create a list of the names of the customers who have placed orders with
Rollin Overbey. Notice that one of the tables in the FROM clause, employee,
does not contribute any columns to the results. Nor do any of the columns
that are joined—such as customer.id or employee.id—appear in the results.
Nonetheless, this join is possible only using the employee table in the
FROM clause.

SELECT customer.fname, customer.lname,
sales_order.order_date

FROM sales_order KEY JOIN customer,
sales_order KEY JOIN employee

WHERE employee.emp_fname = ’Rollin’
AND employee.emp_lname = ’Overbey’

ORDER BY sales_order.order_date

fname lname order_date

Tommie Wooten 1/3/00

Michael Agliori 1/8/00

Salton Pepper 1/17/00

Tommie Wooten 1/23/00

.

Following is the equivalent statement in standard ANSI/ISO syntax:

284

Chapter 8. Joins: Retrieving Data from Several Tables

SELECT customer.fname, customer.lname,
sales_order.order_date

FROM sales_order JOIN customer
ON sales_order.cust_id = customer.id

JOIN employee
ON sales_order.sales_rep = employee.emp_id

WHERE employee.emp_fname = ’Rollin’
AND employee.emp_lname = ’Overbey’

ORDER BY sales_order.order_date

Example 2 This example answers the question: How much of each product has each
customer ordered, and who is the manager of the salesperson who took the
order?

To answer the question, start by listing the information you need to retrieve.
In this case, it is product, quantity, customer name, and manager name.
Next, list the tables that hold this information. They are product,
sales_order_items, customer, and employee. When you look at the structure
of the sample database (see“Sample database schema” on page 262), you
will notice that these tables are all related through the sales_order table. You
can create a star join on the sales_order table to retrieve the information
from the other tables.

In addition, you need to create a self-join in order to get the name of the
manager, because the employee table contains ID numbers for managers and
the names of all employees, but not a column listing only manager names.
For more information, see“Self-joins” on page 281.

The following statement creates a star join around the sales_order table. The
joins are all outer joins so that the result set will include all customers. Some
customers have not placed orders, so the other values for these customers are
NULL. The columns in the result set are customer, product, quantity
ordered, and the name of the manager of the salesperson.

SELECT customer.fname, product.name,
SUM(sales_order_items.quantity), m.emp_fname

FROM sales_order
KEY RIGHT OUTER JOIN customer,

sales_order
KEY LEFT OUTER JOIN sales_order_items
KEY LEFT OUTER JOIN product,

sales_order
KEY LEFT OUTER JOIN employee AS e
LEFT OUTER JOIN employee AS m
ON (e.manager_id = m.emp_id)

WHERE customer.state = ’CA’
GROUP BY customer.fname, product.name, m.emp_fname
ORDER BY SUM(sales_order_items.quantity) DESC, customer.fname

285

fname name SUM(sales_order_items.quantity) emp_fname

Sheng Baseball
Cap

240 Moira

Laura Tee Shirt 192 Moira

Moe Tee Shirt 192 Moira

Leilani Sweatshirt 132 Moira

.

Following is a diagram of the tables in this star join. The arrows indicate the
directionality (left or right) of the outer joins. As you can see, the complete
list of customers is maintained throughout all the joins.

sales_order

sales_order_
items

customer

product

employee
AS e

employee
AS m

The following standard ANSI/ISO syntax is equivalent to the star join in
Example 2.

286

Chapter 8. Joins: Retrieving Data from Several Tables

SELECT customer.fname, product.name,
SUM(sales_order_items.quantity), m.emp_fname

FROM sales_order LEFT OUTER JOIN sales_order_items
ON sales_order.id = sales_order_items.id

LEFT OUTER JOIN product
ON sales_order_items.prod_id = product.id

LEFT OUTER JOIN employee as e
ON sales_order.sales_rep = e.emp_id

LEFT OUTER JOIN employee as m
ON e.manager_id = m.emp_id

RIGHT OUTER JOIN customer
ON sales_order.cust_id = customer.id

WHERE customer.state = ’CA’
GROUP BY customer.fname, product.name, m.emp_fname
ORDER BY SUM(sales_order_items.quantity) DESC, customer.fname

Joins involving derived tables

Derived tables allow you to nest queries within a FROM clause. With
derived tables, you can perform grouping of groups, or you can construct a
join with a group, without having to create a view.

In the following example, the inner SELECT statement (enclosed in
parentheses) creates a derived table, grouped by customer id values. The
outer SELECT statement assigns this table the correlation name
sales_order_counts and joins it to the customer table using a join condition.

SELECT lname, fname, number_of_orders
FROM customer JOIN

(SELECT cust_id, count(*)
FROM sales_order
GROUP BY cust_id)

AS sales_order_counts (cust_id, number_of_orders)
ON (customer.id = sales_order_counts.cust_id)

WHERE number_of_orders > 3

The result is a table of the names of those customers who have placed more
than three orders, including the number of orders each has placed.

☞ For an explanation of key joins of derived tables, see“Key joins of
views and derived tables” on page 301.

☞ For an explanation of natural joins of derived tables, see“Natural joins
of views and derived tables” on page 290.

☞ For an explanation of outer joins of derived tables, see“Outer joins of
views and derived tables” on page 278.

287

Natural joins
When you specify a natural join, Adaptive Server Anywhere generates a join
condition based on columns with the same name. For this to work in a
natural join of base tables, there must be at least one pair of columns with
the same name, with one column from each table. If there is no common
column name, an error is issued.

If table A and table B have one column name in common, and that column is
called x, then

SELECT *
FROM A NATURAL JOIN B

is equivalent to the following:

SELECT *
FROM A JOIN B

ON A.x = B.x

If table A and table B have two column names in common, and they are
called a and b, thenA NATURAL JOIN Bis equivalent to the following:

A JOIN B
ON A.a = B.a
AND A.b = B.b

Example For example, you can join the employee and department tables using a
natural join because they have a column name in common, the dept_id
column.

SELECT emp_fname, emp_lname, dept_name
FROM employee NATURAL JOIN department
ORDER BY dept_name, emp_lname, emp_fname

emp_fname emp_lname dept_name

Janet Bigelow Finance

Kristen Coe Finance

James Coleman Finance

Jo Ann Davidson Finance

.

The following statement is equivalent. It explicitly specifies the join
condition that was generated in the previous example.

288

Chapter 8. Joins: Retrieving Data from Several Tables

SELECT emp_fname, emp_lname, dept_name
FROM employee JOIN department

ON (employee.dept_id = department.dept_id)
ORDER BY dept_name, emp_lname, emp_fname

Natural joins with an ON phrase

When you specify a NATURAL JOINand put a join condition in an ON
phrase, the result is the conjunction of the two join conditions.

For example, the following two queries are equivalent. In the first query,
Adaptive Server Anywhere generates the join condition
employee.dept_id = department.dept_id . The query also
contains an explicit join condition.

SELECT emp_fname, emp_lname, dept_name
FROM employee NATURAL JOIN department

ON employee.manager_id = department.dept_head_id

The next query is equivalent. In it, the natural join condition that was
generated in the previous query is specified in the ON phrase.

SELECT emp_fname, emp_lname, dept_name
FROM employee JOIN department

ON employee.manager_id = department.dept_head_id
AND employee.dept_id = department.dept_id

Natural joins of table expressions

When there is a multiple-table expression on at least one side of a natural
join, Adaptive Server Anywhere generates a join condition by comparing the
set of columns for each side of the join operator, and looking for columns
that have the same name.

For example, in the statement

SELECT *
FROM (A JOIN B) NATURAL JOIN (C JOIN D)

there are two table expressions. The column names in the table expression
A JOIN B are compared to the column names in the table expression
C JOIN D, and a join condition is generated for each unambiguous pair of
matching column names. Anunambiguous pair of matching columnsmeans
that the column name occurs in both table expressions, but does not occur
twice in the same table expression.

If there is a pair of ambiguous column names, an error is issued. However, a
column name may occur twice in the same table expression, as long as it

289

doesn’t also match the name of a column in the other table expression.

Natural joins of lists When a list of table expressions is on at least one side of a natural join, a
separate join condition is generated for each table expression in the list.

Consider the following tables:

♦ table A consists of columns called a, b and c

♦ table B consists of columns called a and d

♦ table C consists of columns called d and c

In this case, the join(A,B) NATURAL JOIN C causes Adaptive Server
Anywhere to generate two join conditions:

ON A.c = C.c
AND B.d = C.d

If there is no common column name for A-C or B-C, an error is issued.

If table C consists of columns a, d, and c, then the join(A,B) NATURAL

JOIN C is invalid. The reason is that column a appears in all three tables,
and so the join is ambiguous.

Example The following example answers the question: for each sale, provide
information about what was sold and who sold it.

SELECT *
FROM (employee KEY JOIN sales_order)

NATURAL JOIN (sales_order_items KEY JOIN product)

This is equivalent to

SELECT *
FROM (employee KEY JOIN sales_order)

JOIN (sales_order_items KEY JOIN product)
ON sales_order.id = sales_order_items.id

Natural joins of views and derived tables

An extension to the ANSI/ISO SQL standard is that you can specify views
or derived tables on either side of a natural join. In the following statement,

SELECT *
FROM View1 NATURAL JOIN View2

the columns in View1 are compared to the columns in View2. If, for
example, a column called emp_id is found to occur in both views, and there
are no other columns that have identical names, then the generated join
condition is(View1.emp_id = View2.emp_id) .

290

Chapter 8. Joins: Retrieving Data from Several Tables

Example The following example illustrates that a view used in a natural join can
include expressions, and not just columns, and they are treated the same way
in the natural join. First, create the view V with a column called x, as
follows:

CREATE VIEW V(x) AS
SELECT R.y + 1
FROM R

Next, create a natural join of the view to a derived table. The derived table
has a correlation name T with a column called x.

SELECT *
FROM V NATURAL JOIN (SELECT P.y FROM P) as T(x)

This join is equivalent to the following:

SELECT *
FROM V JOIN (SELECT P.y FROM P) as T(x) ON (V.x = T.x)

291

Key joins
When you specify a key join, Adaptive Server Anywhere generates a join
condition based on the foreign key relationships in the database. To use a
key join, there must be a foreign key relationship between the tables, or an
error is issued.

The key join is a Sybase extension to the ANSI/ISO SQL standard. It does
not provide any greater functionality, but it makes it easier to formulate
certain queries.

When key join is the
default

Key join is the default in Adaptive Server Anywhere when all of the
following apply:

♦ the keyword JOIN is used.

♦ the keywords CROSS, NATURAL or KEY arenot specified.

♦ there is no ON phrase.

Example For example, the following query is a simple key join that joins the tables
product and sales_order_items based on the foreign key relationship in the
database.

SELECT *
FROM product KEY JOIN sales_order_items

The next query is equivalent. It leaves out the word KEY, but by default a
JOIN without an ON phrase is a KEY JOIN.

SELECT *
FROM product JOIN sales_order_items

The next query is also equivalent, because the join condition specified in the
ON phrase happens to be the same as the join condition that Adaptive Server
Anywhere generates for these tables based on their foreign key relationship
in the sample database.

SELECT *
FROM product JOIN sales_order_items
ON sales_order_items.prod_id = product.id

Key joins with an ON phrase

When you specify a KEY JOINand put a join condition in an ON phrase,
the result is the conjunction of the two join conditions. For example,

SELECT *
FROM A KEY JOIN B
ON A.x = B.y

292

Chapter 8. Joins: Retrieving Data from Several Tables

If the join condition generated by the key join of A and B is A.w = B.z,
then this query is equivalent to

SELECT *
FROM A JOIN B
ON A.x = B.y AND A.w = B.z

Key joins when there are multiple foreign key relationships

When Adaptive Server Anywhere attempts to generate a join condition based
on a foreign key relationship, it sometimes finds more than one relationship.
In these cases, Adaptive Server Anywhere determines which foreign key
relationship to use by matching the role name of the foreign key to the
correlation name of the primary key table that the foreign key references.

☞ The following sections describe how Adaptive Server Anywhere
generates join conditions for key joins. This information is summarized in
“Rules describing the operation of key joins” on page 303.

Correlation name and
role name

A correlation name is the name of a table or view that is used in the FROM
clause of the query—either its original name, or an alias that is defined in the
FROM clause.

A role name is the name of the foreign key. It must be unique for a given
foreign (child) table.

If you do not specify a role name for a foreign key, the name is assigned as
follows:

♦ If there is no foreign key with the same name as the primary table name,
the primary table name is assigned as the role name.

♦ If the primary table name is already being used by another foreign key,
the role name is the primary table name concatenated with a zero-padded
three-digit number unique to the foreign table.

If you don’t know the role name of a foreign key, you can find it in Sybase
Central by expanding the database container in the left pane. Select the table
in left pane, and then click the Foreign Keys tab in the right pane. A list of
foreign keys for that table appears in the right pane.

☞ See“Sample database schema” on page 262for a diagram that includes
the role names of all foreign keys in the sample database.

Generating join
conditions

Adaptive Server Anywhere looks for a foreign key that has the same role
name as the correlation name of the primary key table:

♦ If there is exactly one foreign key with the same name as a table in the
join, Adaptive Server Anywhere uses it to generate the join condition.

293

♦ If there is more than one foreign key with the same name as a table, the
join is ambiguous and an error is issued.

♦ If there is no foreign key with the same name as the table, Adaptive
Server Anywhere looks for any foreign key relationship, even if the
names don’t match. If there is more than one foreign key relationship, the
join is ambiguous and an error is issued.

Example 1 In the sample database, two foreign key relationships are defined between
the tables employee and department: the foreign key ky_dept_id in the
employee table references the department table; and the foreign key
ky_dept_head in the department table references the employee table.

emp_id = dept_head_id
(ky_dept_head)

dept_id = dept_id
(ky_dept_id)

employee
emp_id <pk> integer
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id <fk> integer
street char(40)
city char(20)
state char(4)
zip_code char(9)
phone char(10)
status char(1)
ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)
bene_life_ins char(1)
bene_day_care char(1)
sex char(1)

department
dept_id <pk> integer
dept_name char(40)
dept_head_id <fk> integer

The following query is ambiguous because there are two foreign key
relationships and neither has the same role name as the primary key table
name. Therefore, attempting this query results in the syntax error
SQLE_AMBIGUOUS_JOIN (-147) .

SELECT employee.emp_lname, department.dept_name
FROM employee KEY JOIN department

Example 2 This query modifies the query in Example 1 by specifying the correlation
name ky_dept_id for the department table. Now, the foreign key ky_dept_id
has the same name as the table it references, and so it is used to define the
join condition. The result includes all the employee last names and the
departments where they work.

SELECT employee.emp_lname, ky_dept_id.dept_name
FROM employee KEY JOIN department AS ky_dept_id

The following query is equivalent. It is not necessary to create an alias for
the department table in this example. The same join condition that was
generated above is specified in the ON phrase in this query:

294

Chapter 8. Joins: Retrieving Data from Several Tables

SELECT employee.emp_lname, department.dept_name
FROM employee JOIN department

ON department.dept_id = employee.dept_id

Example 3 If the intent was to list all the employees that are the head of a department,
then the foreign key ky_dept_head should be used and Example 1 should be
rewritten as follows. This query imposes the use of the foreign key
ky_dept_head by specifying the correlation name ky_dept_head for the
primary key table employee.

SELECT ky_dept_head.emp_lname, department.dept_name
FROM employee AS ky_dept_head KEY JOIN department

The following query is equivalent. The join condition that was generated
above is specified in the ON phrase in this query:

SELECT employee.emp_lname, department.dept_name
FROM employee JOIN department

ON department.dept_head_id = employee.emp_id

Example 4 A correlation name is not needed if the foreign key role name is identical to
the primary key table name. For example, we can define the foreign key
department for the employee table:

ALTER TABLE employee ADD FOREIGN KEY department (dept_id)
REFERENCES department (dept_id)

Now, this foreign key relationship is the default join condition when a KEY
JOIN is specified between the two tables. If the foreign key department is
defined, then the following query is equivalent to Example 3.

SELECT employee.emp_lname, department.dept_name
FROM employee KEY JOIN department

Note If you try this example in Interactive SQL, you should reverse the change to
the sample database with the following statement:

ALTER TABLE employee DROP FOREIGN KEY department

Key joins of table expressions

Adaptive Server Anywhere generates join conditions for the key join of table
expressions by examining the foreign key relationship of each pair of tables
in the statement.

The following example joins four pairs of tables.

SELECT *
FROM (A NATURAL JOIN B) KEY JOIN (C NATURAL JOIN D)

295

The table-pairs are A-C, A-D, B-C and B-D. Adaptive Server Anywhere
considers the relationship within each pair and then creates a generated join
condition for the table expression as a whole. How Adaptive Server
Anywhere does this depends on whether the table expressions use commas
or not. Therefore, the generated join conditions in the following two
examples are different.A JOIN B is atable expression that does not contain
commas, and(A,B) is atable expression list.

SELECT *
FROM (A JOIN B) KEY JOIN C

is semantically different from

SELECT *
FROM (A,B) KEY JOIN C

The two types of join behavior are explained in the following sections:

♦ “Key joins of table expressions that do not contain commas” on page 296

♦ “Key joins of table expression lists” on page 297

Key joins of table expressions that do not contain commas

When both of the two table expressions being joined do not contain commas,
Adaptive Server Anywhere examines the foreign key relationships in the
pairs of tables in the statement, and generates asingle join condition.

For example, the following join has two table-pairs, A-C and B-C.

(A NATURAL JOIN B) KEY JOIN C

Adaptive Server Anywhere generates a single join condition for joining C
with (A NATURAL JOIN B) by looking at the foreign key relationships
within the table-pairs A-C and B-C. It generates one join condition for the
two pairs according to the rules for determining key joins when there are
multiple foreign key relationships:

♦ First, it looks at both A-C and B-C for a single foreign key that has the
same role name as the correlation name of one of the primary key tables
it references. If there is exactly one foreign key meeting this criterion, it
uses it. If there is more than one foreign key with the same role name as
the correlation name of a table, the join is considered to be ambiguous
and an error is issued.

♦ If there is no foreign key with the same name as the correlation name of a
table, Adaptive Server Anywhere looks for any foreign key relationship
between the tables. If there is one, it uses it. If there is more than one, the
join is considered to be ambiguous and an error is issued.

296

Chapter 8. Joins: Retrieving Data from Several Tables

♦ If there is no foreign key relationship, an error is issued.

☞ For more information, see“Key joins when there are multiple foreign
key relationships” on page 293.

Example The following query finds all the employees who are sales representatives,
and their departments.

SELECT employee.emp_lname, ky_dept_id.dept_name
FROM (employee KEY JOIN department as ky_dept_id)

KEY JOIN sales_order

You can interpret this query as follows.

♦ Adaptive Server Anywhere considers the table expression(employee

KEY JOIN department as ky_dept_id) and generates the join
conditionemployee.dept_id = ky_dept_id.dept_id based on
the foreign key ky_dept_id.

♦ Adaptive Server Anywhere then considers the table-pairs
employee-sales_order and ky_dept_id-sales_order. Note that only one
foreign key can exist between the tables sales_order and employeeand
between sales_order and ky_dept_id, or the join is ambiguous. As it
happens, there is exactly one foreign key relationship between the tables
sales_order and employee (ky_so_employee_id), and no foreign key
relationship between sales_order and ky_dept_id. Hence, the generated
join condition issales_order.emp_id = employee.sales_rep .

The following query is therefore equivalent to the previous query:

SELECT employee.emp_lname, department.dept_name
FROM (employee JOIN department

ON (employee.dept_id = department.dept_id))
JOIN sales_order

ON (employee.emp_id = sales_order.sales_rep)

Key joins of table expression lists

To generate a join condition for the key join of two table expression lists,
Adaptive Server Anywhere examines the pairs of tables in the statement, and
generates a join condition foreach pair. The final join condition is the
conjunction of the join conditions for each pair. There must be a foreign key
relationship between each pair.

The following example joins two table-pairs, A-C and B-C.

SELECT *
FROM (A,B) KEY JOIN C

Adaptive Server Anywhere generates a join condition for joining C with

297

(A,B) by generating a join condition for each of the two pairs A-C and B-C.
It does so according to the rules for key joins when there are multiple foreign
key relationships:

♦ For each pair, Adaptive Server Anywhere looks for a foreign key that has
the same role name as the correlation name of the primary key table. If
there is exactly one foreign key meeting this criterion, it uses it. If there is
more than one, the join is considered to be ambiguous and an error is
issued.

♦ For each pair, if there is no foreign key with the same name as the
correlation name of the table, Adaptive Server Anywhere looks for any
foreign key relationship between the tables. If there is one, it uses it. If
there is more than one, the join is considered to be ambiguous and an
error is issued.

♦ For each pair, if there is no foreign key relationship, an error is issued.

♦ If Adaptive Server Anywhere is able to determine exactly one join
condition for each pair, it combines the join conditions using AND.

☞ For more information, see“Key joins when there are multiple foreign
key relationships” on page 293.

Example The following query returns the names of all salespeople who have sold at
least one order to a specific region.

SELECT DISTINCT employee.emp_lname,
ky_dept_id.dept_name, sales_order.region

FROM (sales_order, department AS ky_dept_id)
KEY JOIN employee

emp_lname dept_name region

Chin Sales Eastern

Chin Sales Western

Chin Sales Central

.

This query deals with two pairs of tables: sales_order and employee; and
department AS ky_dept_id and employee.

For the pair sales_order and employee, there is no foreign key with the same
role name as one of the tables. However, there is a foreign key
(ky_so_employee_id) relating the two tables. It is the only foreign key
relating the two tables, and so it is used, resulting in the generated join
condition(employee.emp_id = sales_order.sales_rep) .

298

Chapter 8. Joins: Retrieving Data from Several Tables

For the pair department AS ky_dept_id and employee, there is one foreign
key that has the same role name as the primary key table. It is ky_dept_id,
and it matches the correlation name given to the department table in the
query. There are no other foreign keys with the same name as the correlation
name of the primary key table, so ky_dept_id is used to form the join
condition for the table-pair. The join condition that is generated is
(employee.dept_id = ky_dept_id.dept_id) . Note that there is
another foreign key relating the two tables, but as it has a different name
from either of the tables, it is not a factor.

The final join condition adds together the join condition generated for each
table-pair. Therefore, the following query is equivalent:

SELECT DISTINCT employee.emp_lname, department.dept_name, sales_
order.region

FROM (sales_order, department)
JOIN employee
ON employee.emp_id = sales_order.sales_rep
AND employee.dept_id = department.dept_id

Key joins of lists and table expressions that do not contain commas

When table expression lists are joined via key join with table expressions
that do not contain commas, Adaptive Server Anywhere generates a join
condition for each table in the table expression list.

For example, the following statement is the key join of a table expression list
with a table expression that does not contain commas. This example
generates a join condition for table A with table expression
C NATURAL JOIN D, and for table B with table expression
C NATURAL JOIN D.

SELECT *
FROM (A,B) KEY JOIN (C NATURAL JOIN D)

(A,B) is a list of table expressions andC NATURAL JOIN Dis a table
expression. Adaptive Server Anywhere must therefore generate two join
conditions: it generates one join condition for the pairs A-C and A-D, and a
second join condition for the pairs B-C and B-D. It does so according to the
rules for key joins when there are multiple foreign key relationships:

♦ For each set of table-pairs, Adaptive Server Anywhere looks for a foreign
key that has the same role name as the correlation name of one of the
primary key tables. If there is exactly one foreign key meeting this
criterion, it uses it. If there is more than one, the join is ambiguous and an
error is issued.

♦ For each set of table-pairs, if there is no foreign key with the same name

299

as the correlation name of a table, Adaptive Server Anywhere looks for
any foreign key relationship between the tables. If there is exactly one
relationship, it uses it. If there is more than one, the join is ambiguous
and an error is issued.

♦ For each set of pairs, if there is no foreign key relationship, an error is
issued.

♦ If Adaptive Server Anywhere is able to determine exactly one join
condition for each set of pairs, it combines the join conditions with the
keyword AND.

Example 1 Consider the following join of five tables:

((A,B) JOIN (C NATURAL JOIN D) ON A.x = D.y) KEY JOIN E

☞ In this case, Adaptive Server Anywhere generates a join condition for
the key join to E by generating a conditioneitherbetween(A,B) and Eor
betweenC NATURAL JOIN Dand E. This is as described in“Key joins of
table expressions that do not contain commas” on page 296.

☞ If Adaptive Server Anywhere generates a join condition between(A,B)

and E, it needs to create two join conditions, one for A-E and one for B-E. It
must find a valid foreign key relationship within each table-pair. This is as
described in“Key joins of table expression lists” on page 297.

☞ If Adaptive Server Anywhere creates a join condition betweenC

NATURAL JOIN Dand E, it creates only one join condition, and so must
find only one foreign key relationship in the pairs C-E and D-E. This is as
described in“Key joins of table expressions that do not contain commas” on
page 296.

Example 2 The following is an example of a key join of a table expression and a list of
table expressions. The example provides the name and department of
employees who are sales representatives and also managers.

SELECT DISTINCT employee.emp_lname, ky_dept_id.dept_name
FROM (sales_order, department AS ky_dept_id)

KEY JOIN (employee JOIN department AS d
ON employee.emp_id = d.dept_head_id)

Adaptive Server Anywhere generates two join conditions:

♦ There must be exactly one foreign key relationship between the
table-pairs sales_order-employee and sales_order-d. There is; it is
sales_order.sales_rep = employee.emp_id .

♦ There must be exactly one foreign key relationship between the
table-pairs ky_dept_id-employee and ky_dept_id-d. There is; it is
ky_dept_id.dept_id = employee.dept_id .

300

Chapter 8. Joins: Retrieving Data from Several Tables

This example is equivalent to the following. In the following version, it is
not necessary to create the correlation namedepartment AS

ky_dept_id , because that was only needed to clarify which of two foreign
keys should be used to join employee and department.

SELECT DISTINCT employee.emp_lname, department.dept_name
FROM (sales_order, department)

JOIN (employee JOIN department AS d
ON employee.emp_id = d.dept_head_id)

ON sales_order.sales_rep = employee.emp_id
AND department.dept_id = employee.dept_id

Key joins of views and derived tables

When you include a view or derived table in a key join, Adaptive Server
Anywhere follows the same basic procedure as with tables, but with these
differences:

♦ For each key join, Adaptive Server Anywhere considers the pairs of
tables in the FROM clause of the query and the view, and generatesone
join condition for the set of all pairs, regardless of whether the FROM
clause in the view contains commas or join keywords.

♦ Adaptive Server Anywhere joins the tables based on the foreign key that
has the same role name as the correlation name of the view or derived
table.

♦ When you include a view or derived table in a key join, the view cannot
contain UNION, ORDER BY, DISTINCT, GROUP BY, or an aggregate
function. If it contains any of those items, an error is issued.

A derived table works identically to a view. The only difference is that
instead of referencing a predefined view, the definition for the table is
included in the statement.

Example 1 For example, in the following statement, View1 is a view.

SELECT *
FROM View1 KEY JOIN B

The definition of View1 can be any of the following and result in the same
join condition to B. (The result set will differ, but the join conditions will be
identical.)

SELECT *
FROM C CROSS JOIN D

or

SELECT *
FROM C,D

301

or

SELECT *
FROM C JOIN D ON (C.x = D.y)

In each case, to generate a join condition for the key join of View1 and B,
Adaptive Server Anywhere considers the table-pairs C-B and D-B, and
generates a single join condition. It generates the join condition based on the
rules for multiple foreign key relationships described in“Key joins of table
expressions” on page 295, except that it looks for a foreign key with the
same name as the correlation name of the view (rather than a table
referenced in the view).

Using any of the view definitions above, you can interpret the processing of
View1 KEY JOIN B as follows:

Adaptive Server Anywhere generates a single join condition by considering
the table-pairs C-B and D-B. It generates the join condition according to the
rules for determining key joins when there are multiple foreign key
relationships:

♦ First, it looks at both C-B and D-B for a single foreign key that has the
same role name as the correlation name of the view. If there is exactly
one foreign key meeting this criterion, it uses it. If there is more than one
foreign key with the same role name as the correlation name of the view,
the join is considered to be ambiguous and an error is issued.

♦ If there is no foreign key with the same name as the correlation name of
the view, Adaptive Server Anywhere looks for any foreign key
relationship between the tables. If there is one, it uses it. If there is more
than one, the join is considered to be ambiguous and an error is issued.

♦ If there is no foreign key relationship, an error is issued.

Assume this generated join condition isB.y = D.z . We can now expand
the original join.

SELECT *
FROM View1 KEY JOIN B

is equivalent to

SELECT *
FROM View1 JOIN B ON B.y = View1.z

☞ For more information, see“Key joins when there are multiple foreign
key relationships” on page 293.

Example 2 The following view contains all the employee information about the
manager of each department.

302

Chapter 8. Joins: Retrieving Data from Several Tables

CREATE VIEW V AS
SELECT department.dept_name, employee.*
FROM employee JOIN department

ON employee.emp_id = department.dept_head_id

The following query joins the view to a table expression.

SELECT *
FROM V KEY JOIN (sales_order, department ky_dept_id)

This is equivalent to

SELECT *
FROM V JOIN (sales_order, department ky_dept_id)
ON (V.emp_id = sales_order.sales_rep
AND V.dept_id = ky_dept_id.dept_id)

Rules describing the operation of key joins

The following rules summarize the information provided above.

Rule 1: key join of two
tables

This rule applies toA KEY JOIN B, where A and B are base or temporary
tables.

1. Find all foreign keys from A referencing B.

If there exists a foreign key whose role name is the correlation name of
table B, then mark it as a preferred foreign key.

2. Find all foreign keys from B referencing A.

If there exists a foreign key whose role name is the correlation name of
table A, then mark it as a preferred foreign key.

3. If there is more than one preferred key, the join is ambiguous. The syntax
errorSQLE_AMBIGUOUS_JOIN (-147) is issued.

4. If there is a single preferred key, then this foreign key is chosen to define
the generated join condition for this KEY JOIN expression.

5. If there is no preferred key, then other foreign keys between A and B are
used:

♦ If there is more than one foreign key between A and B, then the join is
ambiguous. The syntax errorSQLE_AMBIGUOUS_JOIN (-147) is
issued.

♦ If there is a single foreign key, then this foreign key is chosen to define
the generated join condition for this KEY JOIN expression.

♦ If there is no foreign key, then the join is invalid and an error is
generated.

303

Rule 2: key join of table
expressions that do not
contain commas

This rule applies toA KEY JOIN B, where A and B are table expressions
that do not contain commas.

1. For each pair of tables; one from expression A and one from expression
B, list all foreign keys, and mark all preferred foreign keys between the
tables. The rule for determining a preferred foreign key is given in Rule
1, above.

2. If there is more than one preferred key, then the join is ambiguous. The
syntax errorSQLE_AMBIGUOUS_JOIN (-147) is issued.

3. If there is a single preferred key, then this foreign key is chosen to define
the generated join condition for this KEY JOIN expression.

4. If there is no preferred key, then other foreign keys between pairs of
tables are used:

♦ If there is more than one foreign key, then the join is ambiguous. The
syntax errorSQLE_AMBIGUOUS_JOIN (-147) is issued.

♦ If there is a single foreign key, then this foreign key is chosen to define
the generated join condition for this KEY JOIN expression.

♦ If there is no foreign key, then the join is invalid and an error is
generated.

Rule 3: key join of table
expression lists

This rule applies to(A1, A2, ...) KEY JOIN (B1, B2, ...)

where A1, B1, and so on are table expressions that do not contain commas.

1. For each pair of table expressions Ai and Bj, find a unique generated join
condition for the table expression(Ai KEY JOIN Bj) by applying Rule
1 or 2. If any KEY JOIN for a pair of table expressions is ambiguous by
Rule 1 or 2, a syntax error is generated.

2. The generated join condition for this KEY JOIN expression is the
conjunction of the join conditions found in step 1.

Rule 4: key join of lists
and table expressions
that do not contain
commas

This rule applies to(A1, A2, ...) KEY JOIN (B1, B2, ...)

where A1, B1, and so on are table expressions that may contain commas.

1. For each pair of table expressions Ai and Bj, find a unique generated join
condition for the table expression(Ai KEY JOIN Bj) by applying Rule
1, 2, or 3. If any KEY JOIN for a pair of table expressions is ambiguous
by Rule 1, 2, or 3, then a syntax error is generated.

2. The generated join condition for this KEY JOIN expression is the
conjunction of the join conditions found in step 1.

304

CHAPTER 9

Common Table Expressions

About this chapter The WITH prefix to the SELECT statements affords you the opportunity to
define common table expressions. These can be used like temporary views
within your query. This chapter describes how to use them.

Contents Topic: page

About common table expressions 306

Typical applications of common table expressions 310

Recursive common table expressions 314

Parts explosion problems 317

Datatype declarations in recursive common table expressions 320

Least distance problem 322

Using multiple recursive common table expressions 325

305

About common table expressions
Common table expressions are temporary views that are known only within
the scope of a single SELECT statement. They permit you to write queries
more easily, and to write queries that could not otherwise be expressed.

Common table expressions are useful or may be necessary if a query
involves multiple aggregate functions or defines a view within a stored
procedure that references program variables. Common table expressions
also provide a convenient means to temporarily store sets of values.

Recursive common table expressions permit you to query tables that
represent hierarchical information, such as reporting relationships within a
company. They can also be used to solve parts explosion problems and least
distance problems.

☞ For information about recursive queries, see“Recursive common table
expressions” on page 314.

For example, consider the problem of determining which department has the
most number of employees. The employee table in the sample database lists
all the employees in a fictional company and specifies in which department
each works. The following query lists the department ID codes and the total
number of employees in each department.

SELECT dept_id, count(*) AS n
FROM employee
GROUP BY dept_id

This query can be used to extract the department with the most employees as
follows:

SELECT dept_id, n
FROM (SELECT dept_id, count(*) AS n

FROM employee GROUP BY dept_id) AS a
WHERE a.n =

(SELECT max(n)
FROM (SELECT dept_id, count(*) AS n

FROM employee GROUP BY dept_id) AS b)

While this statement provides the correct result, it has some disadvantages.
The first disadvantage is that the repeated subquery makes this statement
clumsy. The second is that this statement provides no clear link between the
subqueries.

One way around these problems is to create a view, then use it to re-express
the query. This approach avoids the problems mentioned above.

306

Chapter 9. Common Table Expressions

CREATE VIEW CountEmployees(dept_id, n) AS
SELECT dept_id, count(*) AS n
FROM employee GROUP BY dept_id;

SELECT dept_id, n
FROM CountEmployees
WHERE n = (SELECT max(n)

FROM CountEmployees);

The disadvantage of this approach is that some overhead is required, as the
engine must update the system tables when creating the view. If the view
will be used frequently, this approach is reasonable. However, in cases
where the view is used only once within a particular SELECT statement, the
preferred method is to instead use a common table expression.

Using common table
expressions

Common table expressions are defined using the WITH clause, which
precedes the SELECT keyword in a SELECT statement. The content of the
clause defines one or more temporary views that may then be referenced
elsewhere in the statement. The syntax of this clause mimics that of the
CREATE VIEW statement. Using common table expressions, you can
express the previous query as follows.

WITH CountEmployees(dept_id, n) AS
(SELECT dept_id, count(*) AS n

FROM employee GROUP BY dept_id)
SELECT dept_id, n
FROM CountEmployees
WHERE n = (SELECT max(n)

FROM CountEmployees)

Instead searching for the department with the fewest employees
demonstrates that such queries may return multiple rows.

WITH CountEmployees(dept_id, n) AS
(SELECT dept_id, count(*) AS n

FROM employee GROUP BY dept_id)
SELECT dept_id, n
FROM CountEmployees
WHERE n = (SELECT min(n)

FROM CountEmployees)

In the sample database, two departments share the minimum number of
employees, which is 9.

Multiple correlation
names

Just as when using tables, you can give different correlation names to
multiple instances of a common table expression. Doing so permits you to
join a common table expression to itself. For example, the query below
produces pairs of departments that have the same number of employees,
although there are only two departments with the same number of
employees in the sample database.

307

WITH CountEmployees(dept_id, n) AS
(SELECT dept_id, count(*) AS n

FROM employee GROUP BY dept_id)
SELECT a.dept_id, a.n, b.dept_id, b.n
FROM CountEmployees AS a JOIN CountEmployees AS b
ON a.n = b.n AND a.dept_id < b.dept_id

Multiple table
expressions

A single WITH clause may define more than one common table expression.
These definitions must be separated by commas. The following example
lists the department that has the smallest payroll and the department that has
the largest number of employees.

WITH
CountEmployees(dept_id, n) AS

(SELECT dept_id, count(*) AS n
FROM employee GROUP BY dept_id),

DeptPayroll(dept_id, amt) AS
(SELECT dept_id, sum(salary) AS amt

FROM employee GROUP BY dept_id)
SELECT count.dept_id, count.n, pay.amt
FROM CountEmployees AS count JOIN DeptPayroll AS pay
ON count.dept_id = pay.dept_id
WHERE count.n = (SELECT max(n) FROM CountEmployees)

OR pay.amt = (SELECT min(amt) FROM DeptPayroll)

Where common table expressions are permitted

Common table expressions can be used only in three situations.

♦ Top-level SELECT statement Common table expressions are permitted
within top-level SELECT statements, but not within subqueries.

WITH DeptPayroll(dept_id, amt) AS
(SELECT dept_id, sum(salary) AS amt

FROM employee GROUP BY dept_id)
SELECT dept_id, amt
FROM DeptPayroll
WHERE amt = (SELECT max(amt)

FROM DeptPayroll)

♦ The top-level SELECT statement in a view definition Common table
expressions are permitted within the top-level SELECT statement that
defines a view, but not within subqueries within the definition.

308

Chapter 9. Common Table Expressions

CREATE VIEW LargestDept (dept_id, size, pay) AS
WITH

CountEmployees(dept_id, n) AS
(SELECT dept_id, count(*) AS n

FROM employee GROUP BY dept_id),
DeptPayroll(dept_id, amt) AS

(SELECT dept_id, sum(salary) AS amt
FROM employee GROUP BY dept_id)

SELECT count.dept_id, count.n, pay.amt
FROM CountEmployees count JOIN DeptPayroll pay
ON count.dept_id = pay.dept_id
WHERE count.n = (SELECT max(n) FROM CountEmployees)

OR pay.amt = (SELECT max(amt) FROM DeptPayroll)

♦ A top-level SELECT statement in an INSERT statement Common
table expressions are permitted within a top-level SELECT statement in
an INSERT statement, but not within subqueries within the INSERT
statement.

INSERT INTO LargestPayrolls (dept_id, payroll, date)
WITH DeptPayroll(dept_id, amt) AS

(SELECT dept_id, sum(salary) AS amt
FROM employee
GROUP BY dept_id)

SELECT dept_id, amt, CURRENT TIMESTAMP
FROM DeptPayroll
WHERE amt = (SELECT max(amt)

FROM DeptPayroll)

309

Typical applications of common table expressions
In general, common table expressions are useful whenever a table expression
must appear multiple times within a single query. The following typical
situations are suited to common table expressions.

♦ Queries that involve multiple aggregate functions.

♦ Views within a procedure that must contain a reference to a program
variable.

♦ Queries that use temporary views to store a set of values.

This list is not exhaustive. You may encounter many other situations in
which common table expressions are useful.

Multiple aggregate
functions

Common table expressions are useful whenever multiple levels of
aggregation must appear within a single query. This is the case in the
example used in the previous section. The task was to retrieve the
department ID of the department that has the most employees. To do so, the
count aggregate function is used to calculate the number of employees in
each department and the max function is used to select the largest
department.

A similar situation arises when writing a query to determine which
department has the largest payroll. The sum aggregate function is used to
calculate each department’s payroll and the max function to determine
which is largest. The presence of both functions in the query is a clue that a
common table expression may be helpful.

WITH DeptPayroll(dept_id, amt) AS
(SELECT dept_id, sum(salary) AS amt

FROM employee GROUP BY dept_id)
SELECT dept_id, amt
FROM DeptPayroll
WHERE amt = (SELECT max(amt)

FROM DeptPayroll)

Views that reference
program variables

Sometimes, it can be convenient to create a view that contains a reference to
a program variable. For example, you may define a variable within a
procedure that identifies a particular customer. You want to query the
customer’s purchase history, and as you will be accessing similar
information multiple times or perhaps using multiple aggregate functions,
you want to create a view that contains information about that specific
customer.

You cannot create a view that references a program variable because there is
no way to limit the scope of a view to that of your procedure. Once created,
a view can be used by in other contexts. You can, however, use a common

310

Chapter 9. Common Table Expressions

table expressions within the queries in your procedure. As the scope of a
common table expression is limited to the statement, the variable reference
creates no ambiguity and is thus permitted.

The following statement selects the gross sales of the various sales
representatives in the sample database.

SELECT emp_fname || ’ ’ || emp_lname AS sales_rep_name,
sales_rep AS sales_rep_id,
sum(p.unit_price * i.quantity) AS total_sales

FROM employee LEFT OUTER JOIN sales_order AS o
INNER JOIN sales_order_items AS i
INNER JOIN product AS p

WHERE ’2000-01-01’ <= order_date
AND order_date < ’2001-01-01’

GROUP BY sales_rep, emp_fname, emp_lname

The above query is the basis of the common table expression that appears in
the following procedure. The ID number of the sales representative and the
year in question are incoming parameters. As this procedure demonstrates,
the procedure parameters and any declared local variables can be referenced
within the WITH clause.

311

CREATE PROCEDURE sales_rep_total (
IN rep INTEGER,
IN yyyy INTEGER)

BEGIN
DECLARE start_date DATE;
DECLARE end_date DATE;
SET start_date = YMD(yyyy, 1, 1);
SET end_date = YMD(yyyy, 12, 31);
WITH total_sales_by_rep (sales_rep_name,

sales_rep_id,
month,
order_year,
total_sales) AS

(SELECT emp_fname || ’ ’ || emp_lname AS sales_rep_name,
sales_rep AS sales_rep_id, month(order_date),
year(order_date),
sum(p.unit_price * i.quantity) AS total_sales

FROM employee LEFT OUTER JOIN sales_order o
INNER JOIN sales_order_items i
INNER JOIN product p

WHERE start_date <= order_date AND
order_date <= end_date AND

sales_rep = rep
GROUP BY year(order_date), month(order_date),

emp_fname, emp_lname, sales_rep)
SELECT sales_rep_name,

monthname(YMD(yyyy, month, 1)) AS month_name,
order_year,
total_sales

FROM total_sales_by_rep
WHERE total_sales =

(SELECT max(total_sales) FROM total_sales_by_rep)
ORDER BY order_year ASC, month ASC;

END;

The following statement demonstrates how to call the above procedure.

CALL sales_rep_total(129, 2000);

Views that store values Sometimes, it can be useful to store a particular set of values within a
SELECT statement or within a procedure. For example, suppose a company
prefers to analyze the results of its sales staff by thirds of a year, instead of
by quarter. Since there is no built-in date part for thirds, as there is for
quarters, it is necessary to store the dates within the procedure.

312

Chapter 9. Common Table Expressions

WITH thirds (q_name, q_start, q_end) AS
(SELECT ’T1’, ’2000-01-01’, ’2000-04-30’ UNION

SELECT ’T2’, ’2000-05-01’, ’2000-08-31’ UNION
SELECT ’T3’, ’2000-09-01’, ’2000-12-31’)

SELECT q_name,
sales_rep,
count(*) AS num_orders,
sum(p.unit_price * i.quantity) AS total_sales

FROM thirds LEFT OUTER JOIN sales_order AS o
ON q_start <= order_date AND order_date <= q_end

INNER JOIN sales_order_items AS i
INNER JOIN product AS p

GROUP BY q_name, sales_rep
ORDER BY q_name, sales_rep

This method should be used with care, as the values may need periodic
maintenance. For example, the above statement must be modified if it is to
be used for any other year.

You can also apply this technique within procedures. The following example
declares a procedure that takes the year in question as an argument.

CREATE PROCEDURE sales_by_third (IN y INTEGER)
BEGIN

WITH thirds (q_name, q_start, q_end) AS
(SELECT ’T1’, YMD(y, 01, 01), YMD(y, 04, 30) UNION

SELECT ’T2’, YMD(y, 05, 01), YMD(y, 08, 31) UNION
SELECT ’T3’, YMD(y, 09, 01), YMD(y, 12, 31))

SELECT q_name,
sales_rep,
count(*) AS num_orders,
sum(p.unit_price * i.quantity) AS total_sales

FROM thirds JOIN sales_order AS o
ON q_start <= order_date AND order_date <= q_end

KEY JOIN sales_order_items AS i
KEY JOIN product AS p

GROUP BY q_name, sales_rep
ORDER BY q_name, sales_rep;

END;

CALL sales_by_third (2000);

313

Recursive common table expressions
Common table expressions may be recursive. Common table expressions are
recursive when the RECURSIVE keyword appears immediately after WITH.
A single WITH clause may contain multiple recursive expressions, and may
contain both recursive and non-recursive common table expressions.

Recursive common table expressions provide a convenient way to write
queries that return relationships to an arbitrary depth. For example, given a
table that represents the reporting relationships within a company, you can
readily write a query that returns all the employees that report to one
particular person.

Depending on how you write the query, you can either limit the number of
levels of recursion or you can provide no limit. Limiting the number of
levels permits you to return only the top levels of management, for example,
but may exclude some employees if the chains of command are longer than
you anticipated. Providing no restriction on the number of levels ensures no
employees will be excluded, but can introduce infinite recursion should the
graph contain any cycles; for example, if an employee directly or indirectly
reports to himself. This situation could arise within a company’s
management hierarchy if, for example, an employee within the company
also sits on the board of directors.

Recursion provides a much easier means of traversing tables that represent
tree or tree-like data structures. The only way to traverse such a structure in
a single statement without using recursive expressions is to join the table to
itself once for each possible level. For example, if a reporting hierarchy
contains at most seven levels, you must join the employee table to itself
seven times. If the company reorganizes and a new management level is
introduced, you must rewrite the query.

Recursive common table expressions contain aninitial subquery, or seed,
and arecursive subquerythat during each iteration appends additional rows
to the result set. The two parts can be connected only with the operator
UNION ALL. The initial subquery is an ordinary non-recursive query and is
processed first. The recursive portion contains a reference to the rows added
during the previous iteration. Recursion stops automatically whenever an
iteration generates no new rows. There is no way to reference rows selected
prior to the previous iteration.

The select list of the recursive subquery must match that of the initial
subquery in number and datatype. If automatic translation of datatypes
cannot be performed, explicitly cast the results of one subquery so that they
match those in the other subquery.

314

Chapter 9. Common Table Expressions

Selecting hierarchical data

The following query demonstrates how to list the employees by management
level. Level 0 represents employees with no managers. Level 1 represents
employees who report directly to one of the level 0 managers, level 2
represents employees who report directly to a level 1 manager, and so on.

WITH RECURSIVE
manager (emp_id, manager_id,

emp_fname, emp_lname, mgmt_level) AS
((SELECT emp_id, manager_id, -- initial subquery

emp_fname, emp_lname, 0
FROM employee AS e
WHERE manager_id = emp_id)

UNION ALL
(SELECT e.emp_id, e.manager_id, -- recursive subquery

e.emp_fname, e.emp_lname, m.mgmt_level + 1
FROM employee AS e JOIN manager AS m

ON e.manager_id = m.emp_id
AND e.manager_id <> e.emp_id
AND m.mgmt_level < 20))

SELECT * FROM manager
ORDER BY mgmt_level, emp_lname, emp_fname

The condition within the recursive query that restricts the management level
to less than 20 is an important precaution. It prevents infinite recursion in the
event that the table data contains a cycle.

The
MAX_RECURSIVE_-
ITERATIONS
option

The option MAX_RECURSIVE_ITERATIONS is designed to catch
runaway recursive queries. The default value of this option is 100. Recursive
queries that exceed this number of levels of recursion terminate, but cause an
error.

Although this option may seem to diminish the importance of a stop
condition, this is not usually the case. The number of rows selected during
each iteration may grow exponentially, seriously impacting database
performance before the maximum is reached. Stop conditions within
recursive queries provide a means of setting appropriate limits in each
situation.

Restrictions on recursive common table expressions

The following restrictions apply to recursive common table expressions.

♦ References to other recursive common table expressions cannot appear
within the definition of recursive common table expressions. Thus,
recursive common table expressions cannot be mutually recursive.
However, non-recursive common table expressions can contain

315

references to recursive ones, and recursive common table expressions can
contain references to non-recursive ones.

♦ The only set operator permitted between the initial subquery and the
recursive subquery is UNION ALL. No other set operators are permitted.

♦ Within the definition of a recursive subquery, a self-reference to the
recursive table expression can appear only within the FROM clause of the
recursive subquery.

♦ When a self-reference appears within the FROM clause of the recursive
subquery, the reference to the recursive table cannot appear on the
null-supplying side of an outer join.

♦ The recursive subquery cannot contain DISTINCT, or a GROUP BY or
an ORDER BY clause.

♦ The recursive subquery can not make use of any aggregate function.

♦ To prevent runaway recursive queries, an error is generated if the number
of levels of recursion exceeds the current setting of the
MAX_RECURSIVE_ITERATIONS option. The default value of this
option is 100.

316

Chapter 9. Common Table Expressions

Parts explosion problems
The parts explosion problem is a classic application of recursion. In this
problem, the components necessary to assemble a particular object are
represented by a graph. The goal is to represent this graph using a database
table, then to calculate the total number of the necessary elemental parts.

For example, the following graph represents the components of a simple
bookshelf. The bookshelf is made up of three shelves, a back, and four feet
that are held on by four screws. Each shelf is a board held on with four
screws. The back is another board held on by eight screws.

bookcase

back shelf

screw

plank

side foot

43

11

141

backboard

8

1 2

4

The information in the table below represents the edges of the bookshelf
graph. The first column names a component, the second column names one
of the subcomponents of that component, and the third column specifies how
many of the subcomponents are required.

component subcomponent quantity

bookcase back 1

bookcase side 2

bookcase shelf 3

bookcase foot 4

bookcase screw 4

back backboard 1

317

component subcomponent quantity

back screw 8

side plank 1

shelf plank 1

shelf screw 4

The following statements create the bookcase table and insert the data shown
in the above table.

CREATE TABLE bookcase (
component VARCHAR(9),
subcomponent VARCHAR(9),

quantity integer,
PRIMARY KEY (component, subcomponent)

);

INSERT INTO bookcase
SELECT ’bookcase’, ’back’, 1 UNION
SELECT ’bookcase’, ’side’, 2 UNION
SELECT ’bookcase’, ’shelf’, 3 UNION
SELECT ’bookcase’, ’foot’, 4 UNION
SELECT ’bookcase’, ’screw’, 4 UNION
SELECT ’back’, ’backboard’, 1 UNION
SELECT ’back’, ’screw’, 8 UNION
SELECT ’side’, ’plank’, 1 UNION
SELECT ’shelf’, ’plank’, 1 UNION
SELECT ’shelf’, ’screw’, 4;

After you have created the bookcase table, you can recreate the table of its
parts, shown above, with the following query..

SELECT * FROM bookcase
ORDER BY component, subcomponent;

With this table constructed, you can generate a list of the primitive parts and
the quantity of each required to construct the bookcase.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT component, subcomponent, quantity

FROM bookcase WHERE component = ’bookcase’
UNION ALL

SELECT b.component, b.subcomponent, p.quantity * b.quantity
FROM parts p JOIN bookcase b ON p.subcomponent = b.component)

SELECT subcomponent, sum(quantity) AS quantity
FROM parts
WHERE subcomponent NOT IN (SELECT component FROM bookcase)
GROUP BY subcomponent
ORDER BY subcomponent;

318

Chapter 9. Common Table Expressions

The results of this query are shown below.

subcomponent quantity

backboard 1

foot 4

plank 5

screw 24

Alternatively, you can rewrite this query to perform an additional level of
recursion, thus avoiding the need for the subquery in the main SELECT
statement:

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT component, subcomponent, quantity

FROM bookcase WHERE component = ’bookcase’
UNION ALL

SELECT p.subcomponent, b.subcomponent,
IF b.quantity IS NULL
THEN p.quantity
ELSE p.quantity * b.quantity
ENDIF

FROM parts p LEFT OUTER JOIN bookcase b
WHERE p.subcomponent = b.component AND

p.subcomponent IS NOT NULL
)

SELECT component, sum(quantity) FROM parts
WHERE subcomponent IS NULL
GROUP BY component
ORDER BY component;

The results of this query are identical to those of the previous query.

319

Datatype declarations in recursive common table
expressions

The datatypes of the columns in the temporary view are defined by those of
the initial subquery. The datatypes of the columns from the recursive
subquery must match. The database server automatically attempts to convert
the values returned by the recursive subquery to match those of the initial
query. If this is not possible, or if information may be lost in the conversion,
an error is generated.

In general, explicit casts are often required when the initial subquery returns
a literal value or NULL. Explicit casts may also be required when the initial
subquery selects values from different columns than the recursive subquery.

Casts may be required if the columns of the initial subquery do not have the
same domains as those of the recursive subquery. Casts must always be
applied to NULL values in the initial subquery.

For example, the bookshelf parts explosion sample works correctly because
the initial subquery returns rows from the bookcase table, and thus inherits
the datatypes of the selected columns.

☞ For more information, see“Parts explosion problem” on page 317.

If this query is rewritten as follows, explicit casts are required.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT NULL, ’bookcase’, 1 -- ERROR! Wrong domains!

UNION ALL
SELECT b.component, b.subcomponent,

p.quantity * b.quantity
FROM parts p JOIN bookcase b

ON p.subcomponent = b.component)
SELECT * FROM parts
ORDER BY component, subcomponent

Without casts, errors result for the following reasons:

♦ The correct datatype for component names is VARCHAR, but the first
column is NULL.

♦ The digit 1 is assumed to be a short integer, but the datatype of the
quantity column is INT.

No cast is required for the second column because this column of the initial
query is already a string.

Casting the datatypes in the initial subquery allows the query to behave as
intended:

320

Chapter 9. Common Table Expressions

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT CAST(NULL AS VARCHAR), -- CASTs must be used

’bookcase’, -- to declare the
CAST(1 AS INT) -- correct datatypes

UNION ALL
SELECT b.component, b.subcomponent,

p.quantity * b.quantity
FROM parts p JOIN bookcase b

ON p.subcomponent = b.component)
SELECT * FROM parts
ORDER BY component, subcomponent

321

Least distance problem
You can use recursive common table expressions to find desirable paths on a
directed graph. Each row in a database table represents a directed edge.
Each row specifies an origin, a destination, and a cost of traveling from the
origin to the destination. Depending on the problem, the cost may represent
distance, travel time, or some other measure. Recursion permits you to
explore possible routes through this graph. From the set of possible routes,
you can then select the ones that interest you.

For example, consider the problem of finding desirable way to drive between
the cities of Kitchener and Pembroke. There are quite a few possible routes,
each of which takes you through a different set of intermediate cities. The
goal is to find the shortest routes, and to compare them to reasonable
alternatives.

Kitchener

Barrie

Toronto Belleville

Ottawa

North Bay

PembrokeHuntsville

155

105 190
230

23
0

90

12
5

245

13
0 220

150

First, define a table to represent the edges of this graph and insert one row
for each edge. Since all the edges of this graph happen to be bi-directional,
the edges that represent the reverse directions must be inserted also. This is
done by selecting the initial set of rows, but interchanging the origin and
destination. For example, one row must represent the trip from Kitchener to
Toronto, and another row the trip from Toronto back to Kitchener.

CREATE TABLE travel (
origin AS VARCHAR(10),
destination AS VARCHAR(10),
distance AS INT,

PRIMARY KEY (origin, destination)
);

322

Chapter 9. Common Table Expressions

INSERT INTO travel
SELECT ’Kitchener’, ’Toronto’, 105 UNION
SELECT ’Kitchener’, ’Barrie’, 155 UNION
SELECT ’North Bay’, ’Pembroke’, 220 UNION
SELECT ’Pembroke’, ’Ottawa’, 150 UNION
SELECT ’Barrie’, ’Toronto’, 90 UNION
SELECT ’Toronto’, ’Belleville’, 190 UNION
SELECT ’Belleville’, ’Ottawa’, 230 UNION
SELECT ’Belleville’, ’Pembroke’, 230 UNION
SELECT ’Barrie’, ’Huntsville’, 125 UNION
SELECT ’Huntsville’, ’North Bay’, 130 UNION
SELECT ’Huntsville’, ’Pembroke’, 245;

INSERT INTO travel -- Insert the return trips
SELECT destination, origin, distance
FROM travel;

The next task is to write the recursive common table expression. Since the
trip will start in Kitchener, the initial subquery begins by selecting all the
possible paths out of Kitchener, along with the distance of each.

The recursive subquery extends the paths. For each path, it adds segments
that continue along from the destinations of the previous segments, adding
the length of the new segments so as to maintain a running total cost of each
route. For efficiency, routes are terminated if they meet either of the
following conditions:

♦ The path returns to the starting location.

♦ The path returns to the previous location.

♦ The path reaches the desired destination.

In the current example, no path should return to Kitchener and all paths
should be terminated if they reach Pembroke.

It is particularly important to guarantee that recursive queries will terminate
properly when using them to explore cyclic graphs. In this case, the above
conditions are insufficient, as a route may include an arbitrarily large
number of trips back and forth between two intermediate cities. The
recursive query below guarantees termination by limiting the maximum
number of segments in any given route to seven.

Since the point of the example query is to select a practical route, the main
query selects only those routes that are less than 50 percent longer than the
shortest route.

323

WITH RECURSIVE
trip (route, destination, previous, distance, segments) AS

(SELECT CAST(origin || ’, ’ || destination AS VARCHAR(256)),
destination, origin, distance, 1

FROM travel
WHERE origin = ’Kitchener’

UNION ALL
SELECT route || ’, ’ || v.destination,

v.destination, -- current endpoint
v.origin, -- previous endpoint
t.distance + v.distance, -- total distance
segments + 1 -- total number of segments

FROM trip t JOIN travel v ON t.destination = v.origin
WHERE v.destination <> ’Kitchener’ -- Don’t return to start

AND v.destination <> t.previous -- Prevent backtracking
AND v.origin <> ’Pembroke’ -- Stop at the end
AND segments -- TERMINATE RECURSION!

< (SELECT count(*)/2 FROM travel))
SELECT route, distance, segments FROM trip
WHERE destination = ’Pembroke’ AND

distance < 1.5 * (SELECT min(distance)
FROM trip
WHERE destination = ’Pembroke’)

ORDER BY distance, segments, route;

When run with against the above data set, this statement yields the following
results.

route distance segments

Kitchener, Barrie, Huntsville, Pembroke 525 3

Kitchener, Toronto, Belleville, Pembroke 525 3

Kitchener, Toronto, Barrie, Huntsville, Pem-
broke

565 4

Kitchener, Barrie, Huntsville, North Bay, Pem-
broke

630 4

Kitchener, Barrie, Toronto, Belleville, Pembroke665 4

Kitchener, Toronto, Barrie, Huntsville, North
Bay, Pembroke

670 5

Kitchener, Toronto, Belleville, Ottawa, Pem-
broke

675 4

324

Chapter 9. Common Table Expressions

Using multiple recursive common table
expressions

A recursive query may include multiple recursive queries, as long as they are
disjoint. It may also include a mix of recursive and non-recursive common
table expressions. The RECURSIVE keyword must be present if at least one
of the common table expressions is recursive.

For example, the following query—which returns the same result as the
previous query—uses a second, non-recursive common table expression to
select the length of the shortest route. The definition of the second common
table expression is separated from the definition of the first by a comma.

WITH RECURSIVE
trip (route, destination, previous, distance, segments) AS

(SELECT CAST(origin || ’, ’ || destination AS
VARCHAR(256)),

destination, origin, distance, 1
FROM travel
WHERE origin = ’Kitchener’
UNION ALL
SELECT route || ’, ’ || v.destination,

v.destination,
v.origin,
t.distance + v.distance,
segments + 1

FROM trip t JOIN travel v ON t.destination = v.origin
WHERE v.destination <> ’Kitchener’

AND v.destination <> t.previous
AND v.origin <> ’Pembroke’
AND segments

< (SELECT count(*)/2 FROM travel)),
shortest (distance) AS -- Additional,

(SELECT min(distance) -- non-recursive
FROM trip -- common table
WHERE destination = ’Pembroke’) -- expression

SELECT route, distance, segments FROM trip
WHERE destination = ’Pembroke’ AND

distance < 1.5 * (SELECT distance FROM shortest)
ORDER BY distance, segments, route;

Like non-recursive common table expressions, recursive expressions, when
used within stored procedures, may contain references to local variables or
procedure parameters. For example, the best_routes procedure, defined
below, identifies the shortest routes between the two named cities.

325

CREATE PROCEDURE best_routes (
IN initial VARCHAR(10),
IN final VARCHAR(10)

)
BEGIN

WITH RECURSIVE
trip (route, destination, previous, distance, segments) AS

(SELECT CAST(origin || ’, ’ || destination AS VARCHAR(256)),
destination, origin, distance, 1

FROM travel
WHERE origin = initial

UNION ALL
SELECT route || ’, ’ || v.destination,

v.destination, -- current endpoint
v.origin, -- previous endpoint
t.distance + v.distance, -- total distance
segments + 1 -- total number of segments

FROM trip t JOIN travel v ON t.destination = v.origin
WHERE v.destination <> initial -- Don’t return to start

AND v.destination <> t.previous -- Prevent backtracking
AND v.origin <> final -- Stop at the end
AND segments -- TERMINATE RECURSION!

< (SELECT count(*)/2 FROM travel))
SELECT route, distance, segments FROM trip
WHERE destination = final AND

distance < 1.4 * (SELECT min(distance)
FROM trip
WHERE destination = final)

ORDER BY distance, segments, route;
END;

CALL best_routes (’Pembroke’, ’Kitchener’);

326

CHAPTER 10

Using Subqueries

About this chapter When you create a query, you use WHERE and HAVING clauses to restrict
the rows that the query returns.

Sometimes, the rows you select depend on information stored in more than
one table. A subquery in the WHERE or HAVING clause allows you to
select rows from one table according to specifications obtained from another
table. Additional ways to do this can be found in“Joins: Retrieving Data
from Several Tables” on page 261.

Before your start This subquery chapter assumes some knowledge of queries and the syntax of
the select statement. Information about queries appears in“Queries:
Selecting Data from a Table” on page 207.

Contents Topic: page

Introduction to subqueries 328

Using subqueries in the WHERE clause 329

Subqueries in the HAVING clause 330

Subquery comparison test 332

Quantified comparison tests with ANY and ALL 333

Testing set membership with IN conditions 336

Existence test 338

Outer references 340

Subqueries and joins 341

Nested subqueries 343

How subqueries work 345

327

Introduction to subqueries
A relational database stores information about different types of objects in
different tables. For example, you should store information particular to
products in one table, and information that pertains to sales orders in another.
The product table contains the information about the various products. The
sales order items table contains information about customers’ orders.

In general, only the simplest questions can be answered using only one table.
For example, if the company reorders products when there are fewer than 50
of them in stock, then it is possible to answer the question “Which products
are nearly out of stock?” with this query:

SELECT id, name, description, quantity
FROM product
WHERE quantity < 50

However, if “nearly out of stock” depends on how many items of each type
the typical customer orders, the number “50” will have to be replaced by a
value obtained from the sales_order_items table.

Structure of the subquery A subquery is structured like a regular query, and appears in the main
query’s SELECT, FROM, WHERE, or HAVING clause. Continuing with
the previous example, you can use a subquery to select the average number
of items that a customer orders, and then use that figure in the main query to
find products that are nearly out of stock. The following query finds the
names and descriptions of subquery the products which number less than
twice the average number of items of each type that a customer orders.

SELECT name, description
FROM product WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items
)

In the WHERE clause, subqueries help select the rows from the tables listed
in the FROM clause that appear in the query results. In the HAVING clause,
they help select the row groups, as specified by the main query’s
GROUP BY clause, that appear in the query results.

328

Chapter 10. Using Subqueries

Using subqueries in the WHERE clause
Subqueries in the WHERE clause work as part of the row selection process.
You use a subquery in the WHERE clause when the criteria you use to select
rows depend on the results of another table.

Example Find the products whose in-stock quantities are less than double the average
ordered quantity.

SELECT name, description
FROM product WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items)

This is a two-step query: first, find the average number of items requested
per order; and then find which products in stock number less than double
that quantity.

The query in two steps The quantity column of the sales_order_items table stores thenumberof
items requested per item type, customer, and order. The subquery is

SELECT avg(quantity)
FROM sales_order_items

It returns the average quantity of items in the sales_order_items table, which
is 25.851413.

The next query returns the names and descriptions of the items whose
in-stock quantities are less than twice the previously-extracted value.

SELECT name, description
FROM product
WHERE quantity < 2*25.851413

Using a subquery combines the two steps into a single operation.

Purpose of a subquery in
the WHERE clause

A subquery in the WHERE clause is part of a search condition. The chapter
“Queries: Selecting Data from a Table” on page 207describes simple search
conditions you can use in the WHERE clause.

329

Subqueries in the HAVING clause
Although you usually use subqueries as search conditions in the WHERE
clause, sometimes you can also use them in the HAVING clause of a query.
When a subquery appears in the HAVING clause, like any expression in the
HAVING clause, it is used as part of the row group selection.

Here is a request that lends itself naturally to a query with a subquery in the
HAVING clause: “Which products’ average in-stock quantity is more than
double the average number of each item ordered per customer?”

Example SELECT name, avg(quantity)
FROM product
GROUP BY name
HAVING avg(quantity) > 2* (

SELECT avg(quantity)
FROM sales_order_items
)

name avg(product.quantity)

Tee Shirt 52.333333

Baseball Cap 62

Shorts 80

The query executes as follows:

♦ The subquery calculates the average quantity of items in the
sales_order_items table.

♦ The main query then goes through the product table, calculating the
average quantity product, grouping by product name.

♦ The HAVING clause then checks if each average quantity is more than
double the quantity found by the subquery. If so, the main query returns
that row group; otherwise, it doesn’t.

♦ The SELECT clause produces one summary row for each group,
displaying the name of each product and its in-stock average quantity.

You can also use outer references in a HAVING clause, as shown in the
following example, a slight variation on the one above.

Example ”Find the product ID numbers and line ID numbers of those products whose
average ordered quantities is more than half the in-stock quantities of those
products.”

330

Chapter 10. Using Subqueries

SELECT prod_id, line_id
FROM sales_order_items
GROUP BY prod_id, line_id
HAVING 2* avg(quantity) > (

SELECT quantity
FROM product
WHERE product.id = sales_order_items.prod_id)

prod_id line_id

401 2

401 1

401 4

501 3

.

In this example, the subquery must produce the in-stock quantity of the
product corresponding to the row group being tested by the HAVING clause.
The subquery selects records for that particular product, using the outer
reference sales_order_items.prod_id.

A subquery with a
comparison returns a
single value

This query uses the comparison “>”, suggesting that the subquery must
return exactly one value. In this case, it does. Since the id field of the
product table is a primary key, there is only one record in the product table
corresponding to any particular product id.

Subquery tests

The chapter“Queries: Selecting Data from a Table” on page 207describes
simple search conditions you can use in the HAVING clause. Since a
subquery is just an expression that appears in the WHERE or HAVING
clauses, the search conditions on subqueries may look familiar.

They include:

♦ Subquery comparison test Compares the value of an expression to a
single value produced by the subquery for each record in the table(s) in
the main query.

♦ Quantified comparison test Compares the value of an expression to
each of the set of values produced by a subquery.

♦ Subquery set membership test Checks if the value of an expression
matches one of the set of values produced by a subquery.

♦ Existence test Checks if the subquery produces any rows.

331

Subquery comparison test
The subquery comparison test (=,<>, <. <=, >, >=) is a modified version
of the simple comparison test. The only difference between the two is that in
the former, the expression following the operator is a subquery. This test is
used to compare a value from a row in the main query to asinglevalue
produced by the subquery.

Example This query contains an example of a subquery comparison test:

SELECT name, description, quantity
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items)

name description quantity

Tee Shirt Tank Top 28

Baseball Cap Wool cap 12

Visor Cloth Visor 36

Visor Plastic Visor 28

.

The following subquery retrieves a single value—the average quantity of
items of each type per customer’s order—from the sales_order_items table.

SELECT avg(quantity)
FROM sales_order_items

Then the main query compares the quantity of each in-stock item to that
value.

A subquery in a
comparison test returns
one value

A subquery in a comparison test must return exactly one value. Consider this
query, whose subquery extracts two columns from the sales_order_items
table:

SELECT name, description, quantity
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity), max (quantity)
FROM sales_order_items)

It returns the errorSubquery allowed only one select list item.

332

Chapter 10. Using Subqueries

Quantified comparison tests with ANY and ALL
The quantified comparison test has two categories, the ALL test and the
ANY test:

The ANY test

The ANY test, used in conjunction with one of the SQL comparison
operators (=,<>, <, <=, >, >=), compares a single value to the column of
data values produced by the subquery. To perform the test, SQL uses the
specified comparison operator to compare the test value to each data value in
the column. Ifany of the comparisons yields a TRUE result, the ANY test
returns TRUE.

A subquery used with ANY must return a single column.

Example Find the order and customer IDs of those orders placed after the first product
of the order #2005 was shipped.

SELECT id, cust_id
FROM sales_order
WHERE order_date > ANY (

SELECT ship_date
FROM sales_order_items
WHERE id=2005)

id cust_id

2006 105

2007 106

2008 107

2009 108

.

In executing this query, the main query tests the order dates for each order
against the shipping dates ofeveryproduct of the order #2005. If an order
date is greater than the shipping date foroneshipment of order #2005, then
that id and customer id from the sales_order table are part of the result set.
The ANY test is thus analogous to the OR operator: the above query can be
read, “Was this sales order placed after the first product of the order #2005
was shipped, or after the second product of order #2005 was shipped, or. . . ”

Understanding the ANY
operator

The ANY operator can be a bit confusing. It is tempting to read the query as
“Return those orders placed after any products of order #2005 were
shipped.” But this means the query will return the order IDs and customer

333

IDs for the orders placed afterall products of order #2005 were
shipped—which is not what the query does.

Instead, try reading the query like this: “Return the order and customer IDs
for those orders placed afterat least oneproduct of order #2005 was
shipped.” Using the keyword SOME may provide a more intuitive way to
phrase the query. The following query is equivalent to the previous query.

SELECT id, cust_id
FROM sales_order
WHERE order_date > SOME (

SELECT ship_date
FROM sales_order_items
WHERE id=2005)

The keyword SOME is equivalent to the keyword ANY.

Notes about the ANY
operator

There are two additional important characteristics of the ANY test:

♦ Empty subquery result set If the subquery produces an empty result
set, the ANY test returns FALSE. This makes sense, since if there are no
results, then it is not true that at least one result satisfies the comparison
test.

♦ NULL values in subquery result set Assume that there is at least
one NULL value in the subquery result set. If the comparison test is false
for all non-NULL data values in the result set, the ANY search returns
NULL. This is because in this situation, you cannot conclusively state
whether there is a value for the subquery for which the comparison test
holds. There may or may not be a value, depending on the “correct”
values for the NULL data in the result set.

The ALL test

Like the ANY test, the ALL test is used in conjunction with one of the six
SQL comparison operators (=,<>, <, <=, >, >=) to compare a single
value to the data values produced by the subquery. To perform the test, SQL
uses the specified comparison operator to compare the test value to each data
value in the result set. Ifall of the comparisons yield TRUE results, the ALL
test returns TRUE.

Example Here is a request naturally handled with the ALL test: “Find the order and
customer IDs of those orders placed after all products of order #2001 were
shipped.”

334

Chapter 10. Using Subqueries

SELECT id, cust_id
FROM sales_order
WHERE order_date > ALL (

SELECT ship_date
FROM sales_order_items
WHERE id=2001)

id cust_id

2002 102

2003 103

2004 104

2005 101

.

In executing this query, the main query tests the order dates for each order
against the shipping dates ofeveryproduct of order #2001. If an order date
is greater than the shipping date foreveryshipment of order #2001, then the
id and customer id from the sales_order table are part of the result set. The
ALL test is thus analogous to the AND operator: the above query can be
read, “Was this sales order placed before the first product of order #2001 was
shipped, and before the second product of order #2001 was shipped, and. . . ”

Notes about the ALL
operator

There are three additional important characteristics of the ALL test:

♦ Empty subquery result set If the subquery produces an empty result
set, the ALL test returns TRUE. This makes sense, since if there are no
results, then it is true that the comparison test holds for every value in the
result set.

♦ NULL values in subquery result set If the comparison test is false for
any values in the result set, the ALL search returns FALSE. It returns
TRUE if all values are true. Otherwise, it returns UNKNOWN—for
example, this can occur if there is a NULL value in the subquery result
set but the search condition is TRUE for all non-NULL values.

♦ Negating the ALL test The following expressions arenot equivalent.

NOT a = ALL (subquery)
a <> ALL (subquery)

☞ For more information about this test, see“Quantified comparison
test” on page 347.

335

Testing set membership with IN conditions
You can use the subquery set membership test to compare a value from the
main query to more than one value in the subquery.

The subquery set membership test compares a single data value for each row
in the main query to the single column of data values produced by the
subquery. If the data value from the main query matchesoneof the data
values in the column, the subquery returns TRUE.

Example Select the names of the employees who head the Shipping or Finance
departments:

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id IN (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ or dept_name = ’Shipping’))

emp_fname emp_lname

Jose Martinez

Mary Anne Shea

The subquery in this example

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ OR dept_name = ’Shipping’)

extracts from the department table the id numbers that correspond to the
heads of the Shipping and Finance departments. The main query then
returns the names of the employees whose id numbers match one of the two
found by the subquery.

Set membership test is
equivalent to =ANY test

The subquery set membership test is equivalent to the =ANY test. The
following query is equivalent to the query from the above example.

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id =ANY (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ or dept_name = ’Shipping’))

Negation of the set
membership test

You can also use the subquery set membership test to extract those rows
whose column values are not equal to any of those produced by a subquery.
To negate a set membership test, insert the word NOT in front of the

336

Chapter 10. Using Subqueries

keyword IN.

Example The subquery in this query returns the first and last names of the employees
that are not heads of the Finance or Shipping departments.

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id NOT IN (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ OR dept_name = ’Shipping’))

337

Existence test
Subqueries used in the subquery comparison test and set membership test
both return data values from the subquery table. Sometimes, however, you
may be more concerned with whether the subquery returnsany results,
rather thanwhich results. The existence test (EXISTS) checks whether a
subquery produces any rows of query results. If the subquery produces one
or more rows of results, the EXISTS test returns TRUE. Otherwise, it returns
FALSE.

Example Here is an example of a request expressed using a subquery: “Which
customers placed orders after July 13, 2001?”

SELECT fname, lname
FROM customer
WHERE EXISTS (

SELECT *
FROM sales_order
WHERE (order_date > ’2001-07-13’) AND

(customer.id = sales_order.cust_id))

fname lname

Almen de Joie

Grover Pendelton

Ling Ling Andrews

Bubba Murphy

Explanation of the
existence test

Here, for each row in the customer table, the subquery checks if that
customer ID corresponds to one that has placed an order after July 13, 2001.
If it does, the query extracts the first and last names of that customer from
the main table.

The EXISTS test does not use the results of the subquery; it just checks if
the subquery produces any rows. So the existence test applied to the
following two subqueries return the same results. These are subqueries and
cannot be processed on their own, because they refer to the customer table
which is part of the main query, but not part of the subquery.

☞ For more information, see“Correlated subqueries” on page 345.

338

Chapter 10. Using Subqueries

SELECT *
FROM sales_order
WHERE (order_date > ’2001-07-13’) AND (customer.id = sales_

order.cust_id)
SELECT ship_date
FROM sales_order
WHERE (order_date > ’2001-07-13’) AND (customer.id = sales_

order.cust_id)

It does not matter which columns from the sales_order table appear in the
SELECT statement, though by convention, the “SELECT *” notation is
used.

Negating the existence
test

You can reverse the logic of the EXISTS test using the NOT EXISTS form.
In this case, the test returns TRUE if the subquery produces no rows, and
FALSE otherwise.

Correlated subqueries You may have noticed that the subquery contains a reference to the id
column from the customer table. A reference to columns or expressions in
the main table(s) is called anouter referenceand the subquery is said to be
correlated. Conceptually, SQL processes the above query by going through
the customer table, and performing the subquery for each customer. If the
order date in the sales_order table is after July 13, 2001, and the customer ID
in the customer and sales_order tables match, then the first and last names
from the customer table appear. Since the subquery references the main
query, the subquery in this section, unlike those from previous sections,
returns an error if you attempt to run it by itself.

339

Outer references
Within the body of a subquery, it is often necessary to refer to the value of a
column in the active row of the main query. Consider the following query:

SELECT name, description
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items
WHERE product.id = sales_order_items.prod_id)

This query extracts the names and descriptions of the products whose
in-stock quantities are less than double the average ordered quantity of that
product—specifically, the product being tested by the WHERE clause in the
main query. The subquery does this by scanning the sales_order_items table.
But the product.id column in the WHERE clause of the subquery refers to a
column in the table named in the FROM clause of themain query—not the
subquery. As SQL moves through each row of the product table, it uses the
id value of the current row when it evaluates the WHERE clause of the
subquery.

Description of an outer
reference

The product.id column in this subquery is an example of an outer reference.
A subquery that uses an outer reference is a correlated subquery. An outer
reference is a column name that does not refer to any of the columns in any
of the tables in the FROM clause of the subquery. Instead, the column name
refers to a column of a table specified in the FROM clause of the main query.
As the above example shows, the value of a column in an outer reference
comes from the row currently being tested by the main query.

340

Chapter 10. Using Subqueries

Subqueries and joins
The subquery optimizer automatically rewrites as joins many of the queries
that make use of subqueries.

Example Consider the request, “When did Mrs. Clarke and Suresh place their orders,
and by which sales representatives?” It can be answered with the following
query:

SELECT order_date, sales_rep
FROM sales_order
WHERE cust_id IN (

SELECT id
FROM customer
WHERE lname = ’Clarke’ OR fname = ’Suresh’)

Order_date sales_rep

2001-01-05 1596

2000-01-27 667

2000-11-11 467

2001-02-04 195

.

The subquery yields a list of customer IDs that correspond to the two
customers whose names are listed in the WHERE clause, and the main query
finds the order dates and sales representatives corresponding to those two
people’s orders.

Replacing a subquery
with a join

The same question can be answered using joins. Here is an alternative form
of the query, using a two-table join:

SELECT order_date, sales_rep
FROM sales_order, customer
WHERE cust_id=customer.id AND

(lname = ’Clarke’ OR fname = ’Suresh’)

This form of the query joins the sales_order table to the customer table to
find the orders for each customer, and then returns only those records for
Suresh and Clarke.

Some joins cannot be
written as subqueries

Both of these queries find the correct order dates and sales representatives,
and neither is more right than the other. Many people will find the subquery
form more natural, because the request doesn’t ask for any information
about customer IDs, and because it might seem odd to join the sales_order
and customer tables together to answer the question.

341

If, however, the request changes to include some information from the
customer table, the subquery form no longer works. For example, the
request “When did Mrs. Clarke and Suresh place their orders, and by which
representatives, and what are their full names?”, it is necessary to include the
customer table in the main WHERE clause:

SELECT fname, lname, order_date, sales_rep
FROM sales_order, customer
WHERE cust_id=customer.id AND (lname = ’Clarke’ OR fname =

’Suresh’)

fname lname order_date sales_rep

Belinda Clarke 1/5/01 1596

Belinda Clarke 1/27/00 667

Belinda Clarke 11/11/00 467

Belinda Clarke 2/4/01 195

.

Some subqueries cannot
be written as joins

Similarly, there are cases where a subquery will work but a join will not. For
example:

SELECT name, description, quantity
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items)

name description quantity

Tee Shirt Tank Top 28

Baseball Cap Wool cap 12

Visor Cloth Visor 36

.

In this case, the inner query is a summary query and the outer query is not,
so there is no way to combine the two queries by a simple join.

For more information on joins, see“Joins: Retrieving Data from Several
Tables” on page 261.

342

Chapter 10. Using Subqueries

Nested subqueries
As we have seen, subqueries always appear in the HAVING clause or the
WHERE clause of a query. A subquery may itself contain a WHERE clause
and/or a HAVING clause, and, consequently, a subquery may appear in
another subquery. Subqueries inside other subqueries are callednested
subqueries.

Examples List the order IDs and line IDs of those orders shipped on the same day
when any item in the fees department was ordered.

SELECT id, line_id
FROM sales_order_items
WHERE ship_date = ANY (

SELECT order_date
FROM sales_order
WHERE fin_code_id IN (

SELECT code
FROM fin_code
WHERE (description = ’Fees’)))

id line_id

2001 1

2001 2

2001 3

2002 1

.

Explanation of the
nested subqueries

♦ In this example, the innermost subquery produces a column of financial
codes whose descriptions are “Fees”:

SELECT code
FROM fin_code
WHERE (description = ’Fees’)

♦ The next subquery finds the order dates of the items whose codes match
one of the codes selected in the innermost subquery:

SELECT order_date
FROM sales_order
WHERE fin_code_id IN (subquery)

♦ Finally, the outermost query finds the order IDs and line IDs of the orders
shipped on one of the dates found in the subquery.

SELECT id, line_id
FROM sales_order_items
WHERE ship_date = ANY (subquery)

343

Nested subqueries can also have more than three levels. Though there is no
maximum number of levels, queries with three or more levels take
considerably longer to run than do smaller queries.

344

Chapter 10. Using Subqueries

How subqueries work
Understanding which queries are valid and which ones aren’t can be
complicated when a query contains a subquery. Similarly, figuring out what
a multi-level query does can also be very involved, and it helps to understand
how Adaptive Server Anywhere processes subqueries. For general
information about processing queries, see“Summarizing, Grouping and
Sorting Query Results” on page 231.

Correlated subqueries

In a simple query, the database server evaluates and processes the query’s
WHERE clause once for each row of the query. Sometimes, though, the
subquery returns only one result, making it unnecessary for the database
server to evaluate it more than once for the entire result set.

Uncorrelated subqueries Consider this query:

SELECT name, description
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items)

In this example, the subquery calculates exactly one value: the average
quantity from the sales_order_items table. In evaluating the query, the
database server computes this value once, and compares each value in the
quantity field of the product table to it to determine whether to select the
corresponding row.

Correlated subqueries When a subquery contains an outer reference, you cannot use this shortcut.
For instance, the subquery in the query

SELECT name, description
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items
WHERE product.id=sales_order_items.prod_id)

returns a value dependent upon the active row in the product table. Such a
subquery is called a correlated subquery. In these cases, the subquery might
return a different value for each row of the outer query, making it necessary
for the database server to perform more than one evaluation.

Converting subqueries in the WHERE clause to joins

The Adaptive Server Anywhere query optimizer converts some multi-level

345

queries to use joins. The conversion is carried out without any user action.
This section describes which subqueries can be converted to joins so you can
understand the performance of queries in your database.

Example The question “When did Mrs. Clarke and Suresh place their orders, and by
which sales representatives?” can be written as a two-level query:

SELECT order_date, sales_rep
FROM sales_order
WHERE cust_id IN (

SELECT id
FROM customer
WHERE lname = ’Clarke’ OR fname = ’Suresh’)

An alternate, and equally correct way to write the query uses joins:

SELECT fname, lname, order_date, sales_rep
FROM sales_order, customer
WHERE cust_id=customer.id AND

(lname = ’Clarke’ OR fname = ’Suresh’)

The criteria that must be satisfied in order for a multi-level query to be able
to be rewritten with joins differ for the various types of operators. Recall that
when a subquery appears in the query’s WHERE clause, it is of the form

SELECT select-list
FROM table
WHERE
[NOT] expression comparison-operator (subquery)
| [NOT] expression comparison-operator { ANY | SOME } (subquery)
| [NOT] expression comparison-operator ALL (subquery)
| [NOT] expression IN (subquery)
| [NOT] EXISTS (subquery)
GROUP BY group-by-expression
HAVING search-condition

Whether a subquery can be converted to a join depends on a number of
factors, such as the type of operator and the structures of the query and of
the subquery.

Comparison operators

A subquery that follows a comparison operator (=,<>, <, <=, >, >=) must
satisfy certain conditions if it is to be converted into a join. Subqueries that
follow comparison operators are valid only if they return exactly one value
for each row of the main query. In addition to this criterion, a subquery is
converted to a join only if the subquery

♦ does not contain a GROUP BY clause

346

Chapter 10. Using Subqueries

♦ does not contain the keyword DISTINCT

♦ is not a UNION query

♦ is not an aggregate query

Example Suppose the request “When were Suresh’s products ordered, and by which
sales representative?” were phrased as the subquery

SELECT order_date, sales_rep
FROM sales_order
WHERE cust_id = (

SELECT id
FROM customer
WHERE fname = ’Suresh’)

This query satisfies the criteria, and therefore, it would be converted to a
query using a join:

SELECT order_date, sales_rep
FROM sales_order, customer
WHERE cust_id=customer.id AND (lname = ’Clarke’ OR fname =

’Suresh’)

However, the request, “Find the products whose in-stock quantities are less
than double the average ordered quantity” cannot be converted to a join, as
the subquery contains the aggregate function avg:

SELECT name, description
FROM product
WHERE quantity < 2 * (

SELECT avg(quantity)
FROM sales_order_items)

Quantified comparison test

A subquery that follows one of the keywords ALL, ANY and SOME is
converted into a join only if it satisfies certain criteria.

♦ The main query does not contain a GROUP BY clause, and is not an
aggregate query, or the subquery returns exactly one value.

♦ The subquery does not contain a GROUP BY clause.

♦ The subquery does not contain the keyword DISTINCT.

♦ The subquery is not a UNION query.

♦ The subquery is not an aggregate query.

♦ The conjunct ‘expression comparison-operator ANY/SOME (subquery)’
must be negated.

347

♦ The conjunct ‘expression comparison-operator ALL (subquery)’ must not
be negated.

The first four of these conditions are relatively straightforward.

Example The request “When did Ms. Clarke and Suresh place their orders, and by
which sales representatives?” can be handled in subquery form:

SELECT order_date, sales_rep
FROM sales_order
WHERE cust_id = ANY (

SELECT id
FROM customer
WHERE lname = ’Clarke’ OR fname = ’Suresh’)

Alternately, it can be phrased in join form

SELECT fname, lname, order_date, sales_rep
FROM sales_order, customer
WHERE cust_id=customer.id AND (lname = ’Clarke’ OR fname =

’Suresh’)

However, the request, “When did Ms. Clarke, Suresh, and any employee
who is also a customer, place their orders?” would be phrased as a union
query, and thus cannot be converted to a join:

SELECT order_date, sales_rep
FROM sales_order
WHERE cust_id = ANY (

SELECT id
FROM customer
WHERE lname = ’Clarke’ OR fname = ’Suresh’
UNION
SELECT emp_id
FROM employee)

Similarly, the request “Find the order IDs and customer IDs of those orders
that were not placed after all products of order #2001 were shipped,” is
naturally expressed with a subquery:

SELECT id, cust_id
FROM sales_order
WHERE NOT order_date > ALL (

SELECT ship_date
FROM sales_order_items
WHERE id=2001)

It would be converted to the join:

SELECT sales_order.id, cust_id
FROM sales_order, sales_order_items
WHERE (sales_order_items.id=2001) and (order_date <= ship_date)

348

Chapter 10. Using Subqueries

However, the request “Find the order IDs and customer IDs of those orders
not shipped after the first shipping dates of all the products” would be
phrased as the aggregate query:

SELECT id, cust_id
FROM sales_order
WHERE NOT order_date > ALL (

SELECT first (ship_date)
FROM sales_order_items)

Therefore, it would not be converted to a join.

Negating subqueries with
the ANY and ALL
operators

The fifth criterion is a little more puzzling: queries of the form

SELECT select-list
FROM table
WHERE NOT expression comparison-operator ALL(subquery)
are converted to joins, as are queries of the form

SELECT select-list
FROM table
WHERE expression comparison-operator ANY(subquery)

but the queries

SELECT select-list
FROM table
WHERE expression comparison-operator ALL(subquery)

and

SELECT select-list
FROM table
WHERE NOT expression comparison-operator ANY(subquery)

are not.

Logical equivalence of
ANY and ALL
expressions

This is because the first two queries are in fact equivalent, as are the last two.
Recall that the any operator is analogous to the OR operator, but with a
variable number of arguments; and that the ALL operator is similarly
analogous to the AND operator. Just as the expression

NOT ((X > A) AND (X > B))

is equivalent to the expression

(X <= A) OR (X <= B)

the expression

NOT order_date > ALL (
SELECT first (ship_date)
FROM sales_order_items)

349

is equivalent to the expression

order_date <= ANY (
SELECT first (ship_date)
FROM sales_order_items)

Negating the ANY and
ALL expressions

In general, the expression

NOT column-name operator ANY(subquery)

is equivalent to the expression

column-name inverse-operator ALL(subquery)

and the expression

NOT column-name operator ALL(subquery)

is equivalent to the expression

column-name inverse-operator ANY(subquery)

whereinverse-operatoris obtained by negatingoperator, as shown in the
table:

Table of operators and
their inverses

The following table lists the inverse of each operator.

Operator inverse-operator

= <>

< =>

> =<

=< >

=> <

<> =

Set membership test

A query containing a subquery that follows the keyword
IN is converted into a join only if:

♦ The main query does not contain a GROUP BY clause, and is not an
aggregate query, or the subquery returns exactly one value.

♦ The subquery does not contain a GROUP BY clause.

♦ The subquery does not contain the keyword DISTINCT.

350

Chapter 10. Using Subqueries

♦ The subquery is not a UNION query.

♦ The subquery is not an aggregate query.

♦ The conjunct ‘expression IN (subquery)’ must not be negated.

Example So, the request “Find the names of the employees who are also department
heads”, expressed by the query:

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id IN (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ or dept_name = ’Shipping’))

would be converted to a joined query, as it satisfies the conditions. However,
the request, “Find the names of the employees who are either department
heads or customers” would not be converted to a join if it were expressed by
the UNION query.

A UNION query following
the IN operator can’t be
converted

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id IN (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ or dept_name = ’Shipping’)
UNION
SELECT cust_id
FROM sales_order)

Similarly, the request “Find the names of employees who are not department
heads” is formulated as the negated subquery

SELECT emp_fname, emp_lname
FROM employee

WHERE NOT emp_id IN (
SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ OR dept_name = ’Shipping’))

and would not be converted.

The conditions that must be fulfilled for a subquery that follows the IN
keyword and the ANY keyword to be converted to a join are identical. This
is not a coincidence, and the reason for this is that the expression

A query with an IN
operator can be
converted to one with an
ANY operator

WHERE column-name IN(subquery)

is logically equivalent to the expression

WHERE column-name = ANY(subquery)

351

So the query

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id IN (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ or dept_name = ’Shipping’))

is equivalent to the query

SELECT emp_fname, emp_lname
FROM employee
WHERE emp_id = ANY (

SELECT dept_head_id
FROM department
WHERE (dept_name=’Finance’ or dept_name = ’Shipping’))

Conceptually, Adaptive Server Anywhere converts a query with the IN
operator to one with an ANY operator, and decides accordingly whether to
convert the subquery to a join.

Existence test

A subquery that follows the keyword EXISTS is converted to a join only if it
satisfies the following two conditions:

♦ The main query does not contain a GROUP BY clause, and is not an
aggregate query, or the subquery returns exactly one value.

♦ The conjunct ‘EXISTS (subquery)’ is not negated.

♦ The subquery is correlated; that is, it contains an outer reference.

Example Therefore, the request, “Which customers placed orders after July 13,
2001?”, which can be formulated by this query whose non-negated subquery
contains the outer referencecustomer.id= sales_order.cust_id, could be
converted to a join.

SELECT fname, lname
FROM customer
WHERE EXISTS (

SELECT *
FROM sales_order
WHERE (order_date > ’2001-07-13’)

AND (customer.id = sales_order.cust_id))

The EXISTS keyword essentially tells the database server to check for
empty result sets. When using inner joins, the database server automatically
displays only the rows where there is data from all of the tables in the FROM
clause. So, this query returns the same rows as does the one with the
subquery:

352

Chapter 10. Using Subqueries

SELECT fname, lname
FROM customer, sales_order
WHERE (sales_order.order_date > ’2001-07-13’)
AND (customer.id = sales_order.cust_id)

353

CHAPTER 11

Adding, Changing, and Deleting Data

About this chapter This chapter describes how to modify the data in a database.

Most of the chapter is devoted to the INSERT, UPDATE, and DELETE
statements, as well as statements for bulk loading and unloading.

Contents Topic: page

Data modification statements 356

Adding data using INSERT 357

Changing data using UPDATE 362

Changing data using INSERT 364

Deleting data using DELETE 365

355

Data modification statements
The statements you use to add, change, or delete data are calleddata
modification statements. The most common such statements include:

♦ Insert adds new rows to a table

♦ Update changes existing rows in a table

♦ Delete removes specific rows from a table

Any single INSERT, UPDATE, or DELETE statement changes the data in
only one table or view.

In addition to the common statements, the LOAD TABLE and TRUNCATE
TABLE statements are especially useful for bulk loading and deleting of
data.

Sometimes, the data modification statements are collectively known as the
data modification language(DML) part of SQL.

Permissions for data modification

You can only execute data modification statements if you have the proper
permissions on the database tables you want to modify. The database
administrator and the owners of database objects use the GRANT and
REVOKE statements to decide who has access to which data modification
functions.

☞ Permissions can be granted to individual users, groups, or the public
group. For more information on permissions, see “Managing User IDs and
Permissions”[ASA Database Administration Guide,page 389].

Transactions and data modification

When you modify data, the transaction log stores a copy of the old and new
state of each row affected by each data modification statement. This means
that if you begin a transaction, realize you have made a mistake, and roll the
transaction back, you also restore the database to its previous condition.

☞ For more information about transactions, see“Using Transactions and
Isolation Levels” on page 99.

356

Chapter 11. Adding, Changing, and Deleting Data

Adding data using INSERT
You add rows to the database using the INSERT statement. The INSERT
statement has two forms: you can use the VALUES keyword or a SELECT
statement:

INSERT using values The VALUES keyword specifies values for some or all of the columns in a
new row. A simplified version of the syntax for the INSERT statement using
the VALUES keyword is:

INSERT [INTO] table-name [(column-name, . . .)]
VALUES (expression , . . .)

You can omit the list of column names if you provide a value for each
column in the table, in the order in which they appear when you execute a
query using SELECT *.

INSERT from SELECT You can use SELECT within an INSERT statement to pull values from one
or more tables. If the table you are inserting data into has a large number of
columns, you can also use WITH AUTO NAME to simplify the syntax.
Using WITH AUTO NAME, you only need to specify the column names in
the SELECT statement, rather than in both the INSERT and the SELECT
statements. The names in the SELECT statement must be column references
or aliased expressions.

A simplified version of the syntax for the INSERT statement using a select
statement is:

INSERT [INTO] table-name
WITH AUTO NAME select-statement

☞ For more information about the INSERT statement, see the “INSERT
statement”[ASA SQL Reference,page 476].

Inserting values into all columns of a row

The following INSERT statement adds a new row to the department table,
giving a value for every column in the row:

INSERT INTO department
VALUES (702, ’Eastern Sales’, 902)

Notes ♦ Type the values in the same order as the column names in the original
CREATE TABLE statement, that is, first the ID number, then the name,
then the department head ID.

♦ Surround the values by parentheses.

♦ Enclose all character data in single quotes.

357

♦ Use a separate insert statement for each row you add.

Inserting values into specific columns

You can add data to some columns in a row by specifying only those
columns and their values. Define all other columns not included in the
column list must to allow NULL or have defaults. If you skip a column that
has a default value, the default appears in that column.

Adding data in only two columns, for example, dept_id and dept_name,
requires a statement like this:

INSERT INTO department (dept_id, dept_name)
VALUES (703, ’Western Sales’)

The dept_head_id column has no default, but can allow NULL. A NULL is
assigned to that column.

The order in which you list the column names must match the order in which
you list the values. The following example produces the same results as the
previous one:

INSERT INTO department (dept_name, dept_id)
VALUES (’Western Sales’, 703)

Values for unspecified
columns

When you specify values for only some of the columns in a row, one of four
things can happen to the columns with no values specified:

♦ NULL entered NULL appears if the column allows NULL and no
default value exists for the column.

♦ A default value entered The default value appears if a default exists for
the column.

♦ A unique, sequential value entered A unique, sequential value
appears if the column has the AUTOINCREMENT default or the
IDENTITY property.

♦ INSERT rejected, and an error message appears An error message
appears if the column does not allow NULL and no default exists.

By default, columns allow NULL unless you explicitly state NOT NULL in
the column definition when creating tables. You can alter the default using
the ALLOW_NULLS_BY_DEFAULT option.

Restricting column data
using constraints

You can create constraints for a column or domain. Constraints govern the
kind of data you can or cannot add.

☞ For more information on constraints, see“Using table and column
constraints” on page 85.

358

Chapter 11. Adding, Changing, and Deleting Data

Explicitly inserting NULL You can explicitly insert NULL into a column by typing NULL. Do not
enclose this in quotes, or it will be taken as a string.

For example, the following statement explicitly inserts NULL into the
dept_head_id column:

INSERT INTO department
VALUES (703, ’Western Sales’, NULL)

Using defaults to supply
values

You can define a column so that, even though the column receives no value,
a default value automatically appears whenever a row is inserted. You do
this by supplying a default for the column.

☞ For more information about defaults, see“Using column defaults” on
page 79.

Adding new rows with SELECT

To pull values into a table from one or more other tables, you can use a
SELECT clause in the INSERT statement. The select clause can insert
values into some or all of the columns in a row.

Inserting values for only some columns can come in handy when you want
to take some values from an existing table. Then, you can use update to add
the values for the other columns.

Before inserting values for some, but not all, columns in a table, make sure
that either a default exists, or you specify NULL for the columns for which
you are not inserting values. Otherwise, an error appears.

When you insert rows from one table into another, the two tables must have
compatible structures—that is, the matching columns must be either the
same data types or data types between which Adaptive Server automatically
converts.

Example If the columns are in the same order in their create table statements, you do
not need to specify column names in either table. Suppose you have a table
named newproduct that contains some rows of product information in the
same format as in the product table. To add to product all the rows in
newproduct:

INSERT product
SELECT *
FROM newproduct

You can use expressions in a SELECT statement inside an INSERT
statement.

Inserting data into some
columns

You can use the SELECT statement to add data to some, but not all, columns

359

in a row just as you do with the VALUES clause. Simply specify the
columns to which you want to add data in the INSERT clause.

Inserting Data from the
Same Table

You can insert data into a table based on other data in the same table.
Essentially, this means copying all or part of a row.

For example, you can insert new products, based on existing products, into
the product table. The following statement adds new Extra Large Tee Shirts
(of Tank Top, V-neck, and Crew Neck varieties) into the product table. The
identification number is ten greater than the existing sized shirt:

INSERT INTO product
SELECT id+ 10, name, description,

’Extra large’, color, 50, unit_price
FROM product
WHERE name = ’Tee Shirt’

Inserting documents and images

If you want to store documents or images in LONG BINARY columns in
your database, you can write an application that reads the contents of the file
into a variable, and supplies that variable as a value for an INSERT
statement.

☞ For more information about adding INSERT statements to applications,
see “How to use prepared statements”[ASA Programming Guide,page 15], and
“SET statement”[ASA SQL Reference,page 548].

☞ You can also use the xp_read_file system function to insert file contents
into a table. This function is useful if you want to insert file contents from
Interactive SQL, or some other environment that does not provide a full
programming language.

☞ DBA authority is required to use this external function.

Example In this example, you create a table, and insert an image into a column of the
table. You can carry out these steps from Interactive SQL.

1. Create a table to hold some images.

CREATE TABLE pictures
(c1 INT DEFAULT AUTOINCREMENT PRIMARY KEY,

filename VARCHAR(254),
picture LONG BINARY)

2. Insert the contents ofportrait.gif , in the current working directory of the
database server, into the table.

INSERT INTO pictures (filename, picture)
VALUES (’portrait.gif’,

xp_read_file(’portrait.gif’))

360

Chapter 11. Adding, Changing, and Deleting Data

☞ For more information, see “xp_read_file system procedure”[ASA SQL
Reference,page 761].

361

Changing data using UPDATE
You can use the UPDATE statement, followed by the name of the table or
view, to change single rows, groups of rows, or all rows in a table. As in all
data modification statements, you can change the data in only one table or
view at a time.

The UPDATE statement specifies the row or rows you want changed and the
new data. The new data can be a constant or an expression that you specify
or data pulled from other tables.

If an UPDATE statement violates an integrity constraint, the update does not
take place and an error message appears. For example, if one of the values
being added is the wrong data type, or if it violates a constraint defined for
one of the columns or data types involved, the update does not take place.

UPDATE syntax A simplified version of the UPDATE syntax is:

UPDATE table-name
SET column_name = expression
WHERE search-condition

If the company Newton Ent. (in the customer table of the sample database)
is taken over by Einstein, Inc., you can update the name of the company
using a statement such as the following:

UPDATE customer
SET company_name = ’Einstein, Inc.’
WHERE company_name = ’Newton Ent.’

You can use any expression in the WHERE clause. If you are not sure how
the company name was spelled, you could try updating any company called
Newton, with a statement such as the following:

UPDATE customer
SET company_name = ’Einstein, Inc.’
WHERE company_name LIKE ’Newton%’

The search condition need not refer to the column being updated. The
company ID for Newton Entertainments is 109. As the ID value is the
primary key for the table, you could be sure of updating the correct row
using the following statement:

UPDATE customer
SET company_name = ’Einstein, Inc.’
WHERE id = 109

The SET clause The SET clause specifies the columns to be updated, and their new values.
The WHERE clause determines the row or rows to be updated. If you do not
have a WHERE clause, the specified columns of all rows are updated with

362

Chapter 11. Adding, Changing, and Deleting Data

the values given in the SET clause.

You can provide any expression of the correct data type in the SET clause.

The WHERE clause The WHERE clause specifies the rows to be updated. For example, the
following statement replaces the One Size Fits All Tee Shirt with an Extra
Large Tee Shirt

UPDATE product
SET size = ’Extra Large’
WHERE name = ’Tee Shirt’

AND size = ’One Size Fits All’

The FROM clause You can use a FROM clause to pull data from one or more tables into the
table you are updating.

363

Changing data using INSERT
You can use the ON EXISTING clause of the INSERT statement to update
existing rows in a table (based on primary key lookup) with new values. This
clause can only be used on tables that have a primary key. Attempting to use
this clause on tables without primary keys or on proxy tables generates a
syntax error.

Specifying the ON EXISTING clause causes the server to do a primary key
lookup for each input row. If the corresponding row does not exist, it inserts
the new row. For rows already existing in the table, you can choose to:

♦ generate an error for duplicate key values. This is the default behavior if
the ON EXISTING clause is not specified.

♦ silently ignore the input row, without generating any errors.

♦ update the existing row with the values in the input row

☞ For more information, see the “INSERT statement”[ASA SQL Reference,
page 476].

364

Chapter 11. Adding, Changing, and Deleting Data

Deleting data using DELETE
Simple DELETE statements have the following form:

DELETE [FROM] table-name
WHERE column-name = expression

You can also use a more complex form, as follows

DELETE [FROM] table-name
FROM table-list
WHERE search-condition

The WHERE clause Use the WHERE clause to specify which rows to remove. If no WHERE
clause appears, the DELETE statement remove all rows in the table.

The FROM clause The FROM clause in the second position of a DELETE statement is a
special feature allowing you to select data from a table or tables and delete
corresponding data from the first-named table. The rows you select in the
FROM clause specify the conditions for the delete.

Example This example uses the sample database. To execute the statements in the
example, you should set the option WAIT_FOR_COMMIT to OFF. The
following statement does this for the current connection only:

SET TEMPORARY OPTION WAIT_FOR_COMMIT = ’OFF’

This allows you to delete rows even if they contain primary keys referenced
by a foreign key, but does not permit a COMMIT unless the corresponding
foreign key is deleted also.

The following view displays products and the value of that product that has
been sold:

CREATE VIEW ProductPopularity as
SELECT product.id,

SUM(product.unit_price * sales_order_items.quantity) as
"Value Sold"

FROM product JOIN sales_order_items
ON product.id = sales_order_items.prod_id
GROUP BY product.id

Using this view, you can delete those products which have sold less than
$20,000 from the product table.

DELETE
FROM product
FROM product NATURAL JOIN ProductPopularity
WHERE "Value Sold" < 20000

You should roll back your changes when you have completed the example:

365

ROLLBACK

Deleting all rows from a table

You can use the TRUNCATE TABLE statement as a fast method of deleting
all the rows in a table. It is faster than a DELETE statement with no
conditions, because the delete logs each change, while the transaction log
does not record truncate table operations individually.

The table definition for a table emptied with the TRUNCATE TABLE
statement remains in the database, along with its indexes and other
associated objects, unless you execute a DROP TABLE statement.

You cannot use TRUNCATE TABLE if another table has rows that reference
it through a referential integrity constraint. Delete the rows from the foreign
table, or truncate the foreign table and then truncate the primary table.

TRUNCATE TABLE
syntax

The syntax of truncate table is:

TRUNCATE TABLE table-name

For example, to remove all the data in the sales_order table, type the
following:

TRUNCATE TABLE sales_order

A TRUNCATE TABLE statement does not fire triggers defined on the table.

366

CHAPTER 12

Query Optimization and Execution

About this chapter Once each query is parsed, the optimizer analyzes it and decides on an
access plan that will compute the result using as few resources as possible.
This chapter describes the steps the optimizer goes through to optimize a
query. It documents the assumptions that underlie the design of the
optimizer, and discusses selectivity estimation, cost estimation, and the other
steps of optimization.

Although update, insert, and delete statements must also be optimized, the
focus of this chapter is on select queries. The optimization of these other
commands follows similar principles.

Contents Topic: page

The role of the optimizer 368

How the optimizer works 369

Query execution algorithms 379

Physical data organization and access 392

Indexes 395

Semantic query transformations 404

Subquery and function caching 418

Reading access plans 420

367

The role of the optimizer
The role of the optimizer is to devise an efficient way to execute SQL
statements. The optimizer expresses its chosen method in the form of an
access plan. The access plan describes which tables to scan, which index, if
any, to use for each table, which join strategy to use, and what order to read
the tables in. Often, a great number of plans exist that all accomplish the
same goal. Other variables may further enlarge the number of possible
access plans.

Cost based The optimizer begins selecting for the choices available using efficient, and
in some cases proprietary, algorithms. It bases its decisions on predictions of
the resources each query requires. The optimizer takes into account both the
cost of disk access operations and the estimated CPU cost of each operation.

Syntax independent Most commands may be expressed in many different ways using the SQL
language. These expressions are semantically equivalent in that they
accomplish the same task, but may differ substantially in syntax. With few
exceptions, the Adaptive Server Anywhere optimizer devises a suitable
access plan based only on the semantics of each statement.

Syntactic differences, although they may appear to be substantial, usually
have no effect. For example, differences in the order of predicates, tables,
and attributes in the query syntax have no affect on the choice of access plan.
Neither is the optimizer affected by whether or not a query contains a view.

A good plan, not
necessarily the best plan

The goal of the optimizer is to find a good access plan. Ideally, the optimizer
would identify the most efficient access plan possible, but this goal is often
impractical. Given a complicated query, a great number of possibilities may
exist.

However efficient the optimizer, analyzing each option takes time and
resources. The optimizer compares the cost of further optimization with the
cost of executing the best plan it has found so far. If a plan has been devised
that has a relatively low cost, the optimizer stops and allows execution of
that plan to proceed. Further optimization might consume more resources
than would execution of an access plan already found.

In the case of expensive and complicated queries, the optimizer works
longer. In the case of very expensive queries, it may run long enough to
cause a discernible delay.

368

Chapter 12. Query Optimization and Execution

How the optimizer works
The Adaptive Server Anywhere optimizer must decide the order in which to
access tables in a query, and whether or not to use an index for each table.
The optimizer attempts to pick the best strategy.

The best strategy for executing each query is the one that gets the results in
the shortest period of time, with the least cost. The optimizer determines the
cost of each strategy by estimating the number of disk reads and writes
required, and chooses the strategy with the lowest cost.

The optimizer uses a generic disk access cost model to differentiate the
relative performance differences between random and sequential retrieval on
the database file. It is possible to calibrate a database for a particular
hardware configuration using an ALTER DATABASE statement. The
particulars of a specific cost model can be determined with the sa_get_dtt()
stored procedure.

By default, query processing is optimized towards returning the complete
result set. You can change this, using the OPTIMIZATION_GOAL option,
to minimize the cost of returning the first row quickly.

You can view the access plan for any query in Interactive SQL by opening
the Plan tab in the Results pane. To change the degree of detail that is
displayed, change the setting in the Plan tab of the Options dialog (available
from the Tools menu).

☞ For more information about optimization goals, see
“OPTIMIZATION_GOAL option [database]”[ASA Database Administration
Guide,page 613].

☞ For more information about reading access plans, see“Reading access
plans” on page 420.

Optimizer estimates

The optimizer chooses a strategy for processing a statement based on
histograms that are stored in the database and heuristics (educated guesses).

Histograms, also called column statistics, store information about the
distribution of values in a column. In Adaptive Server Anywhere, a
histogram represents the data distribution for a column by dividing the
domain of the column into a set of consecutive value ranges (also called
buckets) and by remembering, for each value range (or bucket), the number
of rows in the table for which the column value falls in the bucket.

Adaptive Server Anywhere pays particular attention to single column values

369

that are represented in a large number of rows in the table. Significant single
value selectivities are maintained in singleton histogram buckets (for
example, buckets that encompass a single value in the column domain).
ASA tries to maintain a minimum number of singleton buckets in each
histogram, usually between 10 and 100 depending upon the size of the table.
Additionally, all single values with selectivities greater than 1% are kept as
singleton buckets. As a result, a histogram for a given column remembers
the top N single value selectivities for the column where the value of N is
dependent upon the size of the table and the number of single value
selectivities that are greater than 1%.

Once the minimum number of value ranges have been met, low-selectivity
frequencies are replaced by large-selectivity frequencies as they come along.
The histogram will only have more than the minimum number of singleton
value ranges after it has seen enough values with a selectivity of greater than
1%.

Given the histogram on a column, Adaptive Server Anywhere attempts to
estimate the number of rows satisfying a given query predicate on the
column by adding up the number of rows in all value ranges that overlap the
values satisfying the specified predicate. For value ranges in the histograms
that are partially contained in the query result set, Adaptive Server
Anywhere uses interpolation within the value range.

Adaptive Server Anywhere uses an implementation of histograms that
causes the histograms to be more refined as a byproduct of query execution.
As queries are executed, Adaptive Server Anywhere compares the number of
rows estimated by the histograms for a given predicate with the number of
rows actually found to satisfy the predicate, and then adjusts the values in
the histogram to reduce the margin of error for subsequent optimizations.

For each table in a potential execution plan, the optimizer estimates the
number of rows that will form part of the results. The number of rows
depends on the size of the table and the restrictions in the WHERE clause or
the ON clause of the query.

In many cases, the optimizer uses more sophisticated heuristics. For
example, the optimizer uses default estimates only in cases where better
statistics are unavailable. As well, the optimizer makes use of indexes and
keys to improve its guess of the number of rows. The following are a few
single-column examples:

♦ Equating a column to a value: estimate one row when the column has a
unique index or is the primary key.

♦ A comparison of an indexed column to a constant: probe the index to
estimate the percentage of rows that satisfy the comparison.

370

Chapter 12. Query Optimization and Execution

♦ Equating a foreign key to a primary key (key join): use relative table sizes
in determining an estimate. For example, if a 5000 row table has a
foreign key to a 1000 row table, the optimizer guesses that there are five
foreign key rows for each primary key row.

☞ For more information about column statistics, see “SYSCOLSTAT
system table”[ASA SQL Reference,page 627].

☞ For information about obtaining the selectivities of predicates and the
distribution of column values, see:

♦ “sa_get_histogram system procedure”[ASA SQL Reference,page 717]

♦ “The Histogram utility” [ASA Database Administration Guide,page 481]

♦ “ESTIMATE function [Miscellaneous]”[ASA SQL Reference,page 125]

♦ “ESTIMATE_SOURCE function [Miscellaneous]”[ASA SQL Reference,
page 125]

Updating column statistics

Column statistics are stored permanently in the database in the system table
SYSCOLSTAT. Statistics are automatically updated if a significant amount
of data is changed using the INSERT, UPDATE or DELETE statements.

If you suspect that performance is suffering because your statistics
inaccurately reflect the current column values, you may want to execute the
statements DROP STATISTICS or CREATE STATISTICS. CREATE
STATISTICS deletes old statistics and creates new ones, while DROP
STATISTICS just deletes the existing statistics.

With more accurate statistics available to it, the optimizer can compute
better estimates, thus improving the performance of subsequent queries.
However, incorrect estimates are only a problem if they lead to poorly
optimized queries.

When you execute LOAD TABLE, statistics are created for the table.
However, when rows are inserted, deleted or updated in a table, the statistics
are not updated.

For small tables, a histogram does not significantly improve the optimizer’s
ability to choose an efficient plan. You can specify the minimum table size
for which histograms are created. The default is 1000 rows. However, when
a CREATE STATISTICS statement is executed, a histogram is created for
every table, regardless of the number of rows.

☞ For more information, see “MIN_TABLE_SIZE_FOR_HISTOGRAM
option [database]”[ASA Database Administration Guide,page 609].

371

☞ For more information about column statistics, see:

♦ “SYSCOLSTAT system table”[ASA SQL Reference,page 627]

♦ “DROP STATISTICS statement”[ASA SQL Reference,page 418]

♦ “CREATE STATISTICS statement”[ASA SQL Reference,page 346]

Automatic performance tuning

One of the most common constraints in a query is equality with a column
value. The following example tests for equality of the sex column.

SELECT *
FROM employee
WHERE sex = ’f’

Queries often optimize differently at the second execution. For the above
type of constraint, Adaptive Server Anywhere learns from experience,
automatically allowing for columns that have an unusual distribution of
values. The database stores this information permanently unless you
explicitly delete it using the DROP STATISTICS command. Note that
subsequent queries with predicates over that column may cause the server to
recreate a histogram on the column.

Underlying assumptions

A number of assumptions underlie the design direction and philosophy of
the Adaptive Server Anywhere query optimizer. You can improve the quality
or performance of your own applications through an understanding of the
optimizer’s decisions. These assumptions provide a context in which you
may understand the information contained in the remaining sections.

Minimal administration work

Traditionally, high performance database servers have relied heavily on the
presence of a knowledgeable, dedicated, database administrator. This person
spent a great deal of time adjusting data storage and performance controls of
all kinds to achieve good database performance. These controls often
required continuing adjustment as the data in the database changed.

Adaptive Server Anywhere learns and adjusts as the database grows and
changes. Each query betters its knowledge of the data distribution in the
database. Adaptive Server Anywhere automatically stores and uses this
information to optimize future queries.

Every query both contributes to this internal knowledge and benefits from it.
Every user can benefit from knowledge that Adaptive Server Anywhere has

372

Chapter 12. Query Optimization and Execution

gained through executing another user’s query.

Statistics-gathering mechanisms are thus an integral part of the database
server, and require no external mechanism. Should you find an occasion
where it would help, you can provide the database server with estimates of
data distributions to use during optimization. If you encode these into a
trigger or procedure, for example, you then assume responsibility for
maintaining these estimates and updating them whenever appropriate.

Optimize for first rows or for entire result set

The OPTIMIZATION_GOAL option allows you to specify whether query
processing should be optimized towards returning the first row quickly, or
minimizing the cost of returning the complete result set. The default is first
row.

☞ For more information, see “OPTIMIZATION_GOAL option [database]”
[ASA Database Administration Guide,page 613].

Statistics are present and correct

The optimizer is self-tuning, storing all the needed information internally.
The system table SYSCOLSTAT is a persistent repository of data
distributions and predicate selectivity estimates. At the completion of each
query, Adaptive Server Anywhere uses statistics gathered during query
execution to update SYSCOLSTAT. In consequence, all subsequent queries
gain access to more accurate estimates.

The optimizer relies heavily on these statistics and, therefore, the quality of
the access plans it generates depends heavily on them. If you recently
inserted a lot of new rows, these statistics may no longer accurately describe
the data. You may find that your subsequent queries execute unusually
slowly.

If you have significantly altered your data, and you find that query execution
is slow, you may want to execute DROP STATISTICS and/or CREATE
STATISTICS.

An index can usually be found to satisfy a predicate

Often, Adaptive Server Anywhere can evaluate predicates with the aid of an
index. Using an index, the optimizer speeds access to data and reduces the
amount of information read. For example, when OPTIMIZATION_GOAL is
set to first-row, the Adaptive Server Anywhere optimizer will try to use
indexes to satisfy ORDER BY and GROUP BY clauses.

When the optimizer cannot find a suitable index, it resorts to a sequential

373

table scan, which can be expensive. An index can improve performance
dramatically when joining tables. Add indexes to tables or rewrite queries
wherever doing so facilitates the efficient processing of common requests.

Virtual Memory is a scarce resource

The operating system and a number of applications frequently share the
memory of a typical computer. Adaptive Server Anywhere treats memory as
a scarce resource. Because it uses memory economically, Adaptive Server
Anywhere can run on relatively small computers. This economy is important
if you wish your database to operate on portable computers or on older
machines.

Reserving extra memory, for example to hold the contents of a cursor, may
be expensive. If the buffer cache is full, one or more pages may have to be
written to disk to make room for new pages. Some pages may need to be
re-read to complete a subsequent operation.

In recognition of this situation, Adaptive Server Anywhere associates a
higher cost with execution plans that require additional buffer cache
overhead. This cost discourages the optimizer from choosing plans that use
work tables.

On the other hand, it is careful to use memory where it improves
performance. For example, it caches the results of subqueries when they will
be needed repeatedly during the processing of the query.

Rewriting subqueries as EXISTS predicates

The assumptions which underlie the design of Adaptive Server Anywhere
require that it conserves memory and that by default it returns the first few
results of a cursor as quickly as possible. In keeping with these objectives,
Adaptive Server Anywhere rewrites all set-operation subqueries, such as IN,
ANY, or SOME predicates, as EXISTS predicates. By doing so, Adaptive
Server Anywhere avoids creating unnecessary work tables and may more
easily identify a suitable index through which to access a table.

Non-correlated subqueriesare subqueries that contain no explicit reference
to the table or tables contained in the rest higher-level portions of the query.

The following is an ordinary query that contains a non-correlated subquery.
It selects information about all the customers who did not place an order on
January 1, 2001.

Non-correlated subquery

374

Chapter 12. Query Optimization and Execution

SELECT *
FROM customer c
WHERE c.id NOT IN

(SELECT o.cust_id
FROM sales_order o
WHERE o.order_date = ’2001-01-01’)

One possible way to evaluate this query is to first read the sales_order table
and create a work table of all the customers who placed orders on January 1,
2001, then read the customer table and extract one row for each customer
listed in the work table.

However, Adaptive Server Anywhere avoids materializing results as work
tables. It also gives preference to plans that return the first few rows of a
result most quickly. Thus, the optimizer rewrites such queries using EXISTS
predicates. In this form, the subquery becomescorrelated: the subquery
now contains an explicit reference to the id column of the customer table.

Correlated subquery SELECT *
FROM customer c
WHERE NOT EXISTS

(SELECT *
FROM sales_order o
WHERE o.order_date = ’2000-01-01’

AND o.cust_id = c.id)

c<seq > : o <key_so_customer >

This query is semantically equivalent to the one above, but when expressed
in this new syntax, two advantages become apparent.

1. The optimizer can choose to use either the index on the cust_id attribute
or the order_date attribute of the sales_order table. (However, in the
sample database, only the id and cust_id columns are indexed.)

2. The optimizer has the option of choosing to evaluate the subquery
without materializing intermediate results as work tables.

Adaptive Server Anywhere can cache the results of this correlated subquery
during processing. This strategy lets Adaptive Server Anywhere reuse
previously computed results. In the case of query above, caching does not
help because customer identification numbers are unique in the customer
table.

☞ Further information on subquery caching is located in“Subquery and
function caching” on page 418.

Access plan caching

Normally, the optimizer selects an access plan for a query every time the

375

query is executed. Optimizing at execution time allows the optimizer to
choose a plan based on current system state, as well as the values of current
selectivity estimates and estimates based on the values of host variables. For
queries that are executed very frequently, the cost of query optimization can
outweigh the benefits of optimizing at execution time. For queries and
INSERT, UPDATE and DELETE statements performed inside stored
procedures, stored functions, and triggers, the optimizer caches execution
plans between executions of the query.

After a statement in a stored procedure, stored function, or trigger has been
executed several times by one connection, the optimizer builds a reusable
plan for the statement. A reusable plan does not use the values of host
variables for selectivity estimation or rewrite optimizations. The reusable
plan may have a higher cost because of this. If the cost of the reusable plan
is close to the best observed cost for the statement, the optimizer will choose
to add the reusable plan to a plan cache. Otherwise, the benefit of optimizing
on each execution outweighs the savings from avoiding optimization, and
the execution plan is not cached.

The plan cache is a per-connection cache of the data structures used to
execute an access plan. Reusing the cached plan involves looking up the
plan in the cache and resetting it to an initial state. This is typically
substantially faster than optimizing the statement. Cached plans may be
stored to disk if they are used infrequently, and they do not increase the
cache usage. The optimizer periodically re-optimizes queries to verify that
the cached plan is still relatively efficient.

You can use the database or connection property QueryCachePages to
determine the number of pages used to cache execution plans. These pages
occupy space in the temporary file, but are not necessarily resident in
memory.

You can use QueryCachedPlans statistic to show how many query execution
plans are currently cached. This property can be retrieved using
CONNECTION_PROPERTY to show how many query execution plans are
cached for a given connection, or DB_PROPERTY can be used to count the
number of cached execution plans across all connections. This property can
be used in combination with QueryCachePages, QueryOptimized,
QueryBypassed, and QueryReused to help determine the best setting for the
MAX_PLANS_CACHED option

The maximum number of plans to cache is specified with the option setting
MAX_PLANS_CACHED. The default is 20. To disable plan caching, set
this option to 0.

☞ For more information, see “MAX_PLANS_CACHED option

376

Chapter 12. Query Optimization and Execution

[database]”[ASA Database Administration Guide,page 606].

Steps in optimization

The steps the Adaptive Server Anywhere optimizer follows in generating a
suitable access plan include the following.

1. The parser converts the SQL query into an internal representation. It may
rewrite the query, converting it to a syntactically different, but
semantically equivalent, form. For example, a subquery may be rewritten
as a join. These conversions make the statement easier to analyze.

2. Optimization proper commences just before execution. If you are using
cursors in your application, optimization commences when the cursor is
opened. Unlike many other commercial database systems, Adaptive
Server Anywhere optimizes each statement just before executing it.

3. The optimizer performs semantic optimization on the statement. It
rewrites each SQL statement whenever doing so leads to better, more
efficient access plans.

4. The optimizer performs join enumeration for each subquery.

5. The optimizer optimizes access order.

Because Adaptive Server Anywhere performs just-in-time optimization of
each statement, the optimizer has access to the values of host variables and
stored procedure variables. Hence, it makes better choices because it
performs better selectivity analysis.

Adaptive Server Anywhere optimizes each query you execute, regardless of
how many times you executed it before, with the exception of queries that
are contained in stored procedures or user-defined functions. For queries
contained in stored procedures or user-defined functions, the optimizer may
cache the access plans so that they can be reused.

☞ For more information, see“Access plan caching” on page 375.

Because Adaptive Server Anywhere saves statistics each time it executes a
query, the optimizer can learn from the experience of executing previous
plans and can adjust its choices when appropriate.

Simple queries If a query is recognized as a simple query, a heuristic rather than cost-based
optimization is used—the optimizer decides whether to use and index scan
or sequential table scan, and builds and executes the access plan
immediately. Steps 4 and 5 are bypassed.

A simple query is a DYNAMIC SCROLL or NO SCROLL cursor that does
not contain any kind of subquery, more than one table, a proxy table, user

377

defined functions, NUMBER(*), UNION, aggregation, DISTINCT, GROUP
BY, or more than one predicate on a single column. Simple queries can
contain ORDER BY only as long as the WHERE clause contains conditions
on each primary key column.

378

Chapter 12. Query Optimization and Execution

Query execution algorithms
The following is an explanation of the algorithms Adaptive Server
Anywhere uses to compute queries.

Accessing tables

The basic ways to access single tables are the index scan and the sequential
table scan.

Index scans

An index scan uses an index to determine which rows satisfy a search
condition. It reads only those pages that satisfy the condition. Indexes can
return rows in sorted order.

Index scans are displayed in the short and long plan as
correlation_name<index_name>, wherecorrelation_nameis the
correlation name specified in the FROM clause, or the table name if none
was specified; andindex_nameis the name of the index.

Indexes provide an efficient mechanism for reading a few rows from a large
table. However, index scans cause pages to be read from the database in
random order, which is more expensive than sequential reads. Index scans
may also reference the same table page multiple times if there are several
rows on the page that satisfy the search condition. If only a few pages are
matched by the index scan, it is likely that the pages will remain in cache,
and multiple access does not lead to extra I/O. However, if many pages are
matched by the search condition, they may not all fit in cache. This can lead
to the index scan reading the same page from disk multiple times.

The optimizer will tend to prefer index scans over sequential table scans if
the OPTIMIZATION_GOAL setting is first-row. This is because indexes
tend to return the first few rows of a query faster than table scans.

Indexes can also be used to satisfy an ordering requirement, either explicitly
defined in an ORDER BY clause, or implicitly needed for a GROUP BY or
DISTINCT clause. Ordered group-by and ordered distinct methods can
return initial rows faster than hash-based grouping and distinct, but they may
be slower at returning the entire result set.

The optimizer uses an index scan to satisfy a search condition if the search
condition is sargable, and if the optimizer’s estimate of the selectivity of the
search condition is sufficiently low for the index scan to be cheaper than a
sequential table scan.

An index scan can also evaluate non-sargable search conditions after rows

379

are fetched from the index. Evaluating conditions in the index scan is
slightly more efficient than evaluating them in a filter after the index scan.

☞ For more information about when Adaptive Server Anywhere can make
use of indexes, see“Predicate analysis” on page 405.

☞ For more information about optimization goals, see
“OPTIMIZATION_GOAL option [database]”[ASA Database Administration
Guide,page 613].

Sequential table scans

A sequential table scan reads all the rows in all the pages of a table in the
order in which they are stored in the database.

Sequential table scans are displayed in the short and long plan as
correlation_name<seq>, wherecorrelation_nameis the correlation name
specified in the FROM clause, or the table name if none was specified.

This type of scan is used when it is likely that a majority of table pages have
a row that match the query’s search condition or a suitable index is not
defined.

Although sequential table scans may read more pages than index scans, the
disk I/O can be substantially cheaper because the pages are read in
contiguous blocks from the disk (this performance improvement is best if the
database file is not fragmented on the disk). Sequential I/O minimizes
overhead due to disk head movement and rotational latency. For large tables,
sequential table scans also read groups of several pages at a time. This
further reduces the cost of sequential table scans relative to index scans.

Although sequential table scans may take less time than index scans that
match many rows, they also cannot exploit the cache as effectively as index
scans if the scan is executed many times. Since index scans are likely to
access fewer table pages, it is more likely that the pages will be available in
the cache, resulting in faster access. Because of this, it is much better to have
an index scan for table accesses that are repeated, such as the right hand side
of a nested loops join.

For isolation level 3, Adaptive Server Anywhere acquires a lock on each row
that is accessed—even if it does not satisfy the search condition. For this
level, sequential table scans acquire locks on all of the rows in the table,
while index scans only acquire locks on the rows that match the search
condition. This means that sequential table scans may substantially reduce
the throughput in multi-user environments. For this reason, the optimizer
prefers indexed access over sequential access at isolation level 3. Sequential
scans can efficiently evaluate simple comparison predicates between table

380

Chapter 12. Query Optimization and Execution

columns and constants during the scan. Other search conditions that refer
only to the table being scanned are evaluated after these simple comparisons,
and this approach is slightly more efficient that evaluating the conditions in a
filter after the sequential scan.

IN list

The IN list algorithm is used in cases where an IN predicate can be satisfied
using an index. For example, in the following query, the optimizer
recognizes that it can access the employee table using its primary key index.

SELECT *
FROM employee
WHERE emp_id in (102, 105, 129)

In order to accomplish this, a join is built with a special IN list table on the
left hand side. Rows are fetched from the IN list and used to probe the
employee table. Multiple IN lists can be satisfied using the same index. If
the optimizer chooses not to use an index to satisfy the IN predicate (perhaps
because another index gives better performance), then the IN list appears as
a predicate in a filter.

Recursive table

A recursive table is a common table expression constructed as a result of a
WITH clause in a query. The WITH clause is used for recursive union
queries. Common table expressions are temporary views that are known
only within the scope of a single SELECT statement.

☞ For more information, see“Common Table Expressions” on page 305.

Join algorithms

Join algorithms are required when more than one table appears in the FROM
clause. You cannot specify which join algorithm is used—the choice is made
by the optimizer.

Nested loops join

The nested loops join computes the join of its left and right sides by
completely reading the right hand side for each row of the left hand side.
(The syntactic order of tables in the query does not matter, because the
optimizer chooses the appropriate join order for each block in the request.)

The optimizer may choose nested loops join if the join condition does not
contain an equality condition, or if it is optimizing for first-row time.

381

Since a nested loops join reads the right hand side many times, it is very
sensitive to the cost of the right hand side. If the right hand side is an index
scan or a small table, then the right hand side can likely be computed using
cached pages from previous iterations. On the other hand, if the right hand
side is a sequential table scan or an index scan that matches many rows, then
the right hand side needs to be read from disk many times. Typically, a
nested loops join is less efficient than other join methods. However, nested
loops join can provide the first matching row quickly compared to join
methods that must compute their entire result before returning.

Nested loops join is the only join algorithm that can provide sensitive
semantics for queries containing joins. This means that sensitive cursors on
joins can only be executed with a nested loops join.

A semijoin fetches only the first matching row from the right hand side. It is
a more efficient version of the nested loops join, but can only be used when
an EXISTS, or sometimes a DISTINCT, keyword is used.

Nested loops semijoin

Similar to the nested loop join described above, the nested loops semijoin
algorithm joins each row of the left-hand side with the right-hand side using
a nested loops algorithm. As with nested loops join, the right-hand side may
be read many times, so for larger inputs an index scan is preferable.
However, nested loops semijoin differs from nested loop join in two
respects. First, semijoin only outputs values from the left-hand side; the
right hand side is used only for restricting which rows of the left-hand side
appear in the result. Second, the nested loops semijoin algorithm stops each
search of the right-hand side as soon as the first match is encountered.
Nested loops semijoin can be used as the join algorithm when join’s inputs
include table expressions from an existentially-quantified (IN, SOME, ANY,
EXISTS) nested query that has been rewritten as a join.

Nested block join and sorted block

The nested block join (also called the block nested loops join) reads a block
of rows from the left hand side, and sorts the rows by the join attributes (the
columns used in the join conditions). The left hand child of a nested block
join is called a sorted block node. For each block of rows with equal join
attributes, the right hand side is scanned once. This algorithm improves on
the nested loops join if there are several rows on the left hand side that join
with each row of the right hand side.

A nested block join will be chosen by the optimizer if the left hand side has
many rows with the same values for join attributes and the right hand side

382

Chapter 12. Query Optimization and Execution

has an index that satisfies the search condition.

Every nested block join has a left child that is a sorted block node. The cost
shown for this node is the cost of reading and sorting the rows from the left
input.

The left hand input is read into memory in blocks. Changes to tables in the
left hand input may not be visible in the results. Because of this, a nested
block join cannot provide sensitive semantics.

Nested block joins locks rows on the left input before they are copied to
memory.

Hash join

The hash join algorithm builds an in-memory hash table of the smaller of its
two inputs, and then reads the larger input and probes the in-memory hash
table to find matches, which are written to a work table. If the smaller input
does not fit into memory, the hash join operator partitions both inputs into
smaller work tables. These smaller work tables are processed recursively
until the smaller input fits into memory.

The hash join algorithm has the best performance if the smaller input fits
into memory, regardless of the size of the larger input. In general, the
optimizer will choose hash join if one of the inputs is expected to be
substantially smaller than the other.

If the hash join algorithm executes in an environment where there is not
enough cache memory to hold all the rows that have a particular value of the
join attributes, then it is not able to complete. In this case, the hash join
method discards the interim results and an indexed-based nested loops join is
used instead. All of the rows of the smaller table are read and used to probe
the work table to find matches. This indexed-based strategy is significantly
slower than other join methods, and the optimizer will avoid generating
access plans using a hash join if it detects that a low memory situation may
occur during query execution. When the nested loops strategy is needed due
to low memory, a performance counter is incremented. You can read this
monitor with the QueryLowMemoryStrategy database/connection property,
or in the “Query: Low Memory Strategies” counter in Windows
Performance Monitor.

Note: Windows Performance Monitor may not be available on Windows
CE, 95, 98, or Me.

☞ For more information, see QueryLowMemoryStrategy in
“Connection-level properties”[ASA Database Administration Guide,page 647].

The hash join algorithm computes all of the rows of its result before

383

returning the first row.

The hash join algorithm uses a work table, which provides insensitive
semantics unless a value-sensitive cursor has been requested.

Hash join locks rows in its inputs before they are copied to memory.

Hash semijoin

The hash semijoin variant of the hash join algorithm performs a semijoin
between the left-hand side and the right-hand side. As with nested loop
semijoin described above, the right-hand side is only used to determine
which rows from the left-hand side appear in the result. With hash semijoin
the right-hand side is read to form an in-memory hash table which is
subsequently probed by each row from the left-hand side. As soon as any
match is found, the left-hand row is output to the result and the match
process starts again for the next left-hand row. At least one equality join
condition must be present in order for hash semijoin to be considered by the
query optimizer. As with nested loop semijoin, hash semijoin will be utilized
in cases where the join’s inputs include table expressions from an
existentially-quantified (IN, SOME, ANY, EXISTS) nested query that has
been rewritten as a join. Hash semijoin will tend to outperform nested loop
semijoin when the join condition includes inequalities, or if a suitable index
does not exist to make indexed retrieval of the right-hand side sufficiently
inexpensive.

As with hash join, the hash semijoin algorithm may revert to a nested loops
semijoin strategy if there is insufficient cache memory to enable the
operation to complete. Should this occur, a performance counter is
incremented. You can read this monitor with the QueryLowMemoryStrategy
database/connection property, or in the Query: Low Memory Strategies
counter in Windows Performance Monitor.

Note: Windows Performance Monitor may not be available on Windows
CE, 95, 98, or Me.

☞ For more information, see QueryLowMemoryStrategy in
“Connection-level properties”[ASA Database Administration Guide,page 647].

Hash antisemijoin

The hash anti-semijoin variant of the hash join algorithm performs an
anti-semijoin between the left-hand side and the right-hand side. As with
nested loop anti-semijoin described above, the right-hand side is only used
to determine which rows from the left-hand side appear in the result. With
hash anti-semijoin the right-hand side is read to form an in-memory hash

384

Chapter 12. Query Optimization and Execution

table which is subsequently probed by each row from the left-hand side.
Each left-hand row is output only if it fails to match any row from the
right-hand side. As with nested loop anti-semijoin, hash anti-semijoin will
be utilized in cases where the join’s inputs include table expressions from a
universally-quantified (NOT IN, ALL, NOT EXISTS) nested query that has
been rewritten as an anti-join. Hash anti-semijoin will tend to outperform
nested loop anti-semijoin when the join condition includes inequalities, or if
a suitable index does not exist to make indexed retrieval of the right-hand
side sufficiently inexpensive.

As with hash join, the hash anti-semijoin algorithm may revert to a nested
loops anti-semijoin strategy if there is insufficient cache memory to enable
the operation to complete. Should this occur, a performance counter is
incremented. You can read this monitor with the QueryLowMemoryStrategy
database/connection property, or in the Query: Low Memory Strategies
counter in Windows Performance Monitor.

Note: Windows Performance Monitor may not be available on Windows
CE, 95, 98, or Me.

☞ For more information, see QueryLowMemoryStrategy in
“Connection-level properties”[ASA Database Administration Guide,page 647].

Merge join

The merge join reads two inputs which are both ordered by the join
attributes. For each row of the left input, the algorithm reads all of the
matching rows of the right input by accessing the rows in sorted order.

If the inputs are not already ordered by the join attributes (perhaps because
of an earlier merge join or because an index was used to satisfy a search
condition), then the optimizer adds a sort to produce the correct row order.
This sort adds cost to the merge join.

One advantage of a merge join compared to a hash join is that the cost of
sorting can be amortized over several joins, provided that the merge joins are
over the same attributes. The optimizer will choose merge join over a hash
join if the sizes of the inputs are likely to be similar, or if it can amortize the
cost of the sort over several operations.

Recursive hash join

The recursive hash join is a variant of the hash join algorithm that is used in
recursive union queries.

☞ For more information, see“Hash join” on page 383, and“Recursive
common table expressions” on page 314.

385

Recursive left outer hash join

The recursive left outer hash join is a variant of the hash join algorithm used
in certain recursive union queries.

☞ For more information, see“Hash join” on page 383, and“Recursive
common table expressions” on page 314.

Duplicate elimination

A duplicate elimination operator produces an output that has no duplicate
rows. Duplicate elimination nodes may be introduced by the optimizer, for
example, when converting a nested query into a join.

☞ For more information, see“Hash distinct” on page 386, “Ordered
distinct” on page 387, and“Indexed distinct” on page 387.

Hash distinct

The hash distinct algorithm reads its input, and builds an in-memory hash
table. If an input row is found in the hash table, it is ignored; otherwise it is
written to a work table. If the input does not completely fit into the
in-memory hash table, it is partitioned into smaller work tables, and
processed recursively.

The hash distinct algorithm works very well if the distinct rows fit into an
in-memory table, irrespective of the total number of rows in the input.

The hash distinct uses a work table, and as such can provide insensitive or
value sensitive semantics.

If the hash distinct algorithm executes in an environment where there is very
little cache memory available, then it will not be able to complete. In this
case, the hash distinct method discards its interim results, and the indexed
distinct algorithm is used instead. The optimizer avoids generating access
plans using the hash distinct algorithm if it detects that a low memory
situation may occur during query execution.

The hash distinct returns a row as soon as it finds one that has not previously
been returned. However, the results of a hash distinct must be fully
materialized before returning from the query. If necessary, the optimizer
adds a work table to the execution plan to ensure this.

Hash distinct locks the rows of its input.

386

Chapter 12. Query Optimization and Execution

Ordered distinct

If the input is ordered by all the columns, then an ordered distinct can be
used. This algorithm reads each row and compares it to the previous row. If
it is the same, it is ignored; otherwise, it is output. The ordered distinct is
effective if rows are already ordered (perhaps because of an index or a merge
join); if the input is not ordered, the optimizer inserts a sort. No work table is
used by the ordered distinct itself, but one is used by any inserted sort.

Indexed distinct

The indexed distinct algorithm maintains a work table of the unique rows
from the input. As rows are read from the input, an index on the work table
is searched to find a previously seen duplicate of the input row. If one is
found, the input row is ignored. Otherwise, the input row is inserted into the
work table. The work table index is created on all the columns of the
SELECT list; in order to improve index performance, a hash expression is
included as the first expression. This hash expression is a computed value
embodying the values of all the columns in the SELECT list.

The indexed distinct method returns distinct rows as they are encountered.
This allows it to return the first few rows quickly compared to other
duplicate elimination methods. The indexed distinct algorithm only stores
two rows in memory at a time, and can work well in extremely low memory
situations. However, if the number of distinct rows is large, the execution
cost of the indexed distinct algorithm is typically worse than hash distinct.
The work table used to store distinct rows may not fit in cache, leading to
rereading work table pages many times in a random access pattern.

Since the indexed distinct method uses a work table, it cannot provide fully
sensitive semantics; however, it also does not provide fully insensitive
semantics, and another work table is required for insensitive cursors.

The indexed distinct method locks the rows of its input.

Grouping

Grouping algorithms compute a summary of their input. They are applicable
only if the query contains a GROUP BY clause, or if the query contains
aggregate functions (such asSELECT COUNT(*) FROM T).

☞ For more information, see“Hash group by” on page 388, “Ordered
group by” on page 388, “Indexed group by” on page 388, and“Single group
by” on page 388.

387

Hash group by

The hash group by algorithm creates an in-memory hash table of group
rows. As rows are read from the input, the group rows are updated. If the
hash table doesn’t fit into memory, the input is partitioned into smaller work
tables which are recursively partitioned until they fit into memory. If there is
not enough memory for the partitions, the optimizer discards the interim
results from the hash group by, and uses an indexed group by algorithm. The
optimizer avoids generating access plans using the hash group by algorithm
if it detects that a low memory situation may occur during query execution.

The hash group by algorithm works very well if the groups fit into memory,
irrespective of the size of the input.

The hash group by algorithm computes all of the rows of its result before
returning the first row, and can be used to satisfy a fully sensitive or values
sensitive cursor. The results of the hash group by must be fully materialized
before returning from the query. If necessary, the optimizer adds a work
table to the execution plan to ensure this.

Ordered group by

The ordered group by reads an input that is ordered by the grouping
columns. As each row is read, it is compared to the previous row. If the
grouping columns match, then the current group is updated; otherwise, the
current group is output and a new group is started.

Indexed group by

The indexed group by algorithm is similar to the indexed distinct algorithm.
It builds a work table containing one row per group. As input rows are read,
the associated group is looked up in the work table using an index. The
aggregate functions are updated, and the group row is rewritten to the work
table. If no group record is found, a new group record is initialized and
inserted into the work table.

Indexed group by is chosen when the optimizer is reasonably certain that the
size of the input is very small.

The indexed group by computes all the rows of its result before returning the
first row, and fully materializes its input. It can be used to satisfy a FULLY
INSENSITIVE requirement.

Single group by

When no GROUP BY is specified, a single row aggregate is produced.

388

Chapter 12. Query Optimization and Execution

Sorting and unions

Sorting algorithms are applicable when the query includes an order by
clause, and union algorithms are applicable for union queries.

☞ For more information, see“Merge sort” on page 389and“Union all” on
page 389.

Merge sort

The sort operator reads its input into memory, sorts it in memory, and then
outputs the sorted results. If the input does not completely fit into memory,
then several sorted runs are created and then merged together. Sort does not
return any rows until it has read all of the input rows. Sort locks its input
rows.

If the merge sort algorithm executes in an environment where there is very
little cache memory available, it may not be able to complete. In this case,
the merge sort orders the remainder of the input using an indexed-based sort
method. Input rows are read and inserted into a work table, and an index is
built on the ordering columns of the work table. In this case, rows are read
from the work table using a complex index scan. This indexed-based
strategy is significantly slower than other join methods. The optimizer
avoids generating access plans using a merge sort algorithm if it detects that
a low memory situation may occur during query execution. When the
index-based strategy is needed due to low memory, a performance counter is
incremented; you can read this monitor with the QueryLowMemoryStrategy
property, or in the “Query: Low Memory Strategies” counter in Windows
Performance Monitor.

Sort performance is affected by the size of the sort key, the row size, and the
total size of the input. For large rows, it may be cheaper to use a VALUES
SENSITIVE cursor. In that case, columns in the SELECT list are not copied
into the work tables used by the sort. While the sort does not write output
rows to a work table, the results of the wort must be materialized before
rows are returned to the application. If necessary, the optimizer adds a work
table to ensure this.

Union all

The union all algorithm reads rows from each of its inputs and outputs them,
regardless of duplicates. This algorithm is used to implement UNION and
UNION ALL clauses. In the UNION case, a duplicate elimination algorithm
is needed to remove any duplicates generated by the union all.

389

Recursive union

The recursive union algorithm is employed during the execution of recursive
union queries.

☞ For more information, see“Recursive common table expressions” on
page 314.

Sort Top N

The Sort Top N algorithm is used for queries that contain a TOP N clause
and an ORDER BY clause. It is an efficient algorithm for sorting only those
rows required in the result set.

☞ For more information, see “SELECT statement”[ASA SQL Reference,
page 541].

Miscellaneous

The following are additional methods that may be used in an access plan.

Filter, pre-filter and hash-filter

Filters apply search conditions. The search conditions appear in the
statement in the WHERE and HAVING clauses and in the ON conditions of
JOINS in the FROM clause.

Pre-filter is the same as filter, except that it doesn’t depend on input. For
example, in the case ofWHERE 1 = 2a pre-filter applies.

A hash-filter can be used when an execution plan fetches all of the rows of
one table before fetching any rows from another table that joins to it. The
hash filter builds an array of bits, and turns one bit on for each row of the
first table that matches search conditions on that table. When accessing the
second table, rows that could not possibly join with the first table are
rejected.

For example, consider the plan:

R<idx> *JH S<seq> JH* T<idx>

Here we are joining R to S and T. We will have read all of the rows of R
before reading any row from T, and we can immediately reject rows of T that
can not possibly join with R. This reduces the number of rows that must be
stored in the second hash join.

☞ For more information, see“The WHERE clause: specifying rows” on
page 219.

390

Chapter 12. Query Optimization and Execution

Lock

Lock indicates that there is a lock at a certain isolation level. For example, at
isolation level 1, a lock is maintained for only one row at a time. If you are
at isolation level 0, no lock is acquired, but the node will still be called Lock.
In this case, the lock node verifies that the row still exists.

☞ For more information, see“How locking works” on page 131.

Row limit

Row limits are set by the TOP n or FIRST clause of the SELECT statement.

☞ For more information, see “SELECT statement”[ASA SQL Reference,
page 541].

Bloom filter

The Bloom filter or hash map is a data structure that represents the
distribution of values in a column or set of columns. It may be used in
queries that satisfy the following conditions:

♦ An operation in the query reads its entire input before returning a row to
later operations. For example, a join of two tables on a single column
requires that all the relevant rows be read to establish whether they meet
the criterion for the join.

♦ A later operation in the query refers to the rows in the result of the
operation. For example, a second join on the same column would use
only those rows that satisfy the first join.

Explode

The Explode algorithm is used during the execution of set operations such as
EXCEPT and INTERSECT. It is a feature of such operations that the
number of rows in the result set is explicitly related to the number of rows in
the two sets being operated on. The Explode algorithm ensures that the
number of rows in the result set is correct.

☞ For more information, see“Performing set operations on query results
with UNION, INTERSECT, and EXCEPT” on page 251.

391

Physical data organization and access
Storage allocations for each table or entry have a large impact on the
efficiency of queries. The following points are of particular importance
because each influence how fast your queries execute.

Disk allocation for inserted rows

Adaptive Server
Anywhere stores rows
contiguously, if possible

Every new row that is smaller than the page size of the database file will
always be stored on a single page. If no present page has enough free space
for the new row, Adaptive Server Anywhere writes the row to a new page.
For example, if the new row requires 600 bytes of space but only 500 bytes
are available on a partially filled page, then Adaptive Server Anywhere
places the row on a new page.

To make table pages more contiguous on the disk, Adaptive Server
Anywhere allocates table pages in blocks of eight pages. For example, when
it needs to allocate a page it allocates eight pages, inserts the page in the
block, and then fills up with the block with the next seven pages. In addition,
it uses a free page bitmap to find contiguous blocks of pages within the
dbspace, and performs sequential scans by reading groups of 64K, using the
bitmap to find relevant pages. This leads to more efficient sequential scans.

Adaptive Server
Anywhere may store
rows in any order

Adaptive Server Anywhere locates space on pages and inserts rows in the
order it receives them in. It assigns each to a page, but the locations it
chooses in the table may not correspond to the order they were inserted in.
For example, the engine may have to start a new page to store a long row
contiguously. Should the next row be shorter, it may fit in an empty location
on a previous page.

The rows of all tables are unordered. If the order that you receive or process
the rows is important, use an ORDER BY clause in your SELECT statement
to apply an ordering to the result. Applications that rely on the order of rows
in a table can fail without warning.

If you frequently require the rows of a table to be in a particular order,
consider creating an index on those columns specified in the query’s
ORDER BY clause.

Space is not reserved for
NULL columns

Whenever Adaptive Server Anywhere inserts a row, it reserves only the
space necessary to store the row with the values it contains at the time of
creation. It reserves no space to store values that are NULL. It reserves no
extra space to accommodate fields, such as text strings, which may enlarge.

Once inserted, rows
identifiers are immutable

Once assigned a home position on a page, a row never moves from that page.
If an update changes any of the values in the row so it no longer fits in its

392

Chapter 12. Query Optimization and Execution

assigned page, then the row splits and the extra information is inserted on
another page.

This characteristic deserves special attention, especially since Adaptive
Server Anywhere allows no extra space when you insert the row. For
example, suppose you insert a large number of empty rows into a table, then
fill in the values, one column at a time, using update statements. The result
would be that almost every value in a single row will be stored on a separate
page. To retrieve all the values from one row, the engine may need to read
several disk pages. This simple operation would become extremely and
unnecessarily slow.

You should consider filling new rows with data at the time of insertion. Once
inserted, they then have sufficient room for the data you expect them to hold.

A database file never
shrinks

As you insert and delete rows from the database, Adaptive Server Anywhere
automatically reuses the space they occupy. Thus, Adaptive Server
Anywhere may insert a row into space formerly occupied by another row.

Adaptive Server Anywhere keeps a record of the amount of empty space on
each page. When you ask it to insert a new row, it first searches its record of
space on existing pages. If it finds enough space on an existing page, it
places the new row on that page, reorganizing the contents of the page if
necessary. If not, it starts a new page.

Over time, however, if you delete a number of rows and don’t insert new
rows small enough to use the empty space, the information in the database
may become sparse. You can reload the table, or use the REORGANIZE
TABLE statement to defragment the table.

☞ For more information, see “REORGANIZE TABLE statement”[ASA
SQL Reference,page 522].

Table and page sizes

The page size you choose for your database can affect the performance of
your database. In general, smaller page sizes are likely to benefit operations
that retrieve a relatively small number of rows from random locations. By
contrast, larger pages tend to benefit queries that perform sequential table
scans, particularly when the rows are stored on pages in the order the rows
are retrieved via an index. In this situation, reading one page into memory to
obtain the values of one row may have the side effect of loading the contents
of the next few rows into memory. Often, the physical design of disks
permits them to retrieve fewer large blocks more efficiently than many small
ones.

Adaptive Server Anywhere creates a bitmap for sufficiently large tables

393

within databases that have at least a 2K page size. Each table’s bitmap
reflects the position of each table page in the entire dbspace file. For
databases of 2K, 4K, or 8K pages, the server utilizes the bitmap to read large
blocks (64K) of table pages instead of single pages at a time, reducing the
total number of I/O operations to disk and hence improving performance.
Users cannot control the server’s criteria for bitmap creation or usage.

Note that bitmaps, also called page maps, are only available for databases
created in version 8.0 and higher. If a database is upgraded from an older
version, the server will not create a bitmap for database tables, even if they
meet its criteria. Bitmaps are not created for work tables or system tables.

Should you choose a larger page size, such as 4 kb, you may wish to
increase the size of the cache. Fewer large pages can fit into the same space.
For example, 1 Mb of memory can hold 1000 pages that are each 1 kb in
size, but only 250 pages that are 4 kb in size. How many pages is enough
depends entirely on your database and the nature of the queries your
application performs. You can conduct performance tests with various cache
sizes. If your cache cannot hold enough pages, performance suffers as
Adaptive Server Anywhere begins swapping frequently-used pages to disk.

Page sizes also affect indexes. By default, index pages have a hash size of 10
bytes: they store approximately the first 10 bytes of data for each index
entry. This allows for a fan-out of roughly 200 using 4K pages, meaning that
each index page holds 200 rows, or 40 000 rows with a two-level index.
Each new level of an index allows for a table 200 times larger. Page size can
significantly affect fan-out, in turn affecting the depth of index required for a
table. Large databases should have 4K pages.

Adaptive Server Anywhere attempts to fill pages as much as possible. Empty
space accumulates only when new objects are too large to fit empty space on
existing pages. Consequently, adjusting the page size may not significantly
affect the overall size of your database.

394

Chapter 12. Query Optimization and Execution

Indexes
Indexes can greatly improve the performance of searches on the indexed
column(s). However, indexes take up space within the database and slow
down insert, update, and delete operations. This section will help you to
determine when you should create an index and tell you how to achieve
maximum performance from your index.

There are many situations in which creating an index improves the
performance of a database. An index provides an ordering of the rows of a
table on the basis of the values in some or all of the columns. An index
allows Adaptive Server Anywhere to find rows quickly. It permits greater
concurrency by limiting the number of database pages accessed. An index
also affords Adaptive Server Anywhere a convenient means of enforcing a
uniqueness constraint on the rows in a table.

The Index Consultant is a tool that assists you in the selection of an
appropriate set of indexes for your database. For more information, see
“Index Consultant overview” on page 63.

When to create an index

There is no simple formula to determine whether or not an index should be
created for a particular column. You must consider the tradeoff of the
benefits of indexed retrieval versus the maintenance overhead of that index.
The following factors may help to determine whether you should create an
index.

♦ Keys and unique columns Adaptive Server Anywhere automatically
creates indexes on primary keys, foreign keys, and unique columns. You
should not create additional indexes on these columns. The exception is
composite keys, which can sometimes be enhanced with additional
indexes.

☞ For more information, see“Composite indexes” on page 397.

♦ Frequency of search If a particular column is searched frequently, you
can achieve performance benefits by creating an index on that column.
Creating an index on a column that is rarely searched may not be
worthwhile.

♦ Size of table Indexes on relatively large tables with many rows provide
greater benefits than indexes on relatively small tables. For example, a
table with only 20 rows is unlikely to benefit from an index, since a
sequential scan would not take any longer than an index lookup.

♦ Number of updates An index is updated every time a row is inserted or
deleted from the table and every time an indexed column is updated. An

395

index on a column slows the performance of inserts, updates and deletes.
A database that is frequently updated should have fewer indexes than one
that is read-only.

♦ Space considerations Indexes take up space within the database. If
database size is a primary concern, you should create indexes sparingly.

♦ Data distribution If an index lookup returns too many values, it is more
costly than a sequential scan. Adaptive Server Anywhere does not make
use of the index when it recognizes this condition. For example, Adaptive
Server Anywhere would not make use of an index on a column with only
two values, such as employee.sex in the sample database. For this reason,
you should not create an index on a column that has only a few distinct
values.

The Index Consultant is a tool that assists you in the selection of an
appropriate set of indexes for your database. For more information, see
“Index Consultant overview” on page 63.

Temporary tables You can create indexes on both local and global temporary tables. You may
want to consider indexing a temporary table if you expect it will be large and
accessed several times in sorted order or in a join. Otherwise, any
improvement in performance for queries is likely to be outweighed by the
cost of creating and dropping the index.

☞ For more information, see“Working with indexes” on page 58.

Improving index performance

If your index is not performing as well as expected, you may want to
consider the following actions.

♦ Reorganize composite indexes.

♦ Increase the page size.

These measures are aimed at increasing index selectivity and index fan-out,
as explained below.

Index selectivity Index selectivity refers to the ability of an index to locate a desired index
entry without having to read additional data.

If selectivity is low, additional information must be retrieved from the table
page that the index references. These retrievals are calledfull compares,
and they have a negative effect on index performance.

The FullCompare property function keeps track of the number of full
compares that have occurred. You can also monitor this statistic using the
Sybase Central Performance monitor or the Windows Performance Monitor.

396

Chapter 12. Query Optimization and Execution

Note: Windows Performance Monitor may not be available on Windows
CE, 95, 98, or Me.

In addition, the number of full compares is provided in the graphical plan
with statistics. For more information, see“Common statistics used in the
plan” on page 422.

☞ For more information on the FullCompare function, see “Database-level
properties”[ASA Database Administration Guide,page 664].

Index structure and index
fan-out

Indexes are organized in a number of levels, like a tree. The first page of an
index, called the root page, branches into one or more pages at the next level,
and each of those pages branch again, until the lowest level of the index is
reached. These lowest level index pages are called leaf pages. To locate a
specific row, an index withn levels requiresn reads for index pages and one
read for the data page containing the actual row. In general, fewer thann
reads from disk are needed, since index pages that are used frequently tend
to be stored in cache.

The index fan-out is the number of index entries stored on a page. An index
with a higher fan-out may have fewer levels than an index with a lower
fan-out. Therefore, higher index fan-out generally means better index
performance.

You can see the number of levels in an index by using the sa_index_levels
system procedure.

☞ For more information, see “sa_index_levels system procedure”[ASA
SQL Reference,page 720].

Composite indexes

An index can contain one, two, or more columns. An index on two or more
columns is called acomposite index. For example, the following statement
creates a two-column composite index:

CREATE INDEX name
ON employee (emp_lname, emp_fname)

A composite index is useful if the first column alone does not provide high
selectivity. For example, a composite index on emp_lname and emp_fname
is useful when many employees have the same last name. A composite index
on emp_id and emp_lname would not be useful because each employee has
a unique ID, so the column emp_lname does not provide any additional
selectivity.

Additional columns in an index can allow you to narrow down your search,
but having a two-column index is not the same as having two separate

397

indexes. A composite index is structured like a telephone book, which first
sorts people by their last names, and then all the people with the same last
name by their first names. A telephone book is useful if you know the last
name, even more useful if you know both the first name and the last name,
but worthless if you only know the first name and not the last name.

The compressed B-tree index method substantially improves performance
for composite indexes.

Column order When you create composite indexes, you should think carefully about the
order of the columns. Composite indexes are useful for doing searches on all
of the columns in the index or on the first columns only; they are not useful
for doing searches on any of the later columns alone.

If you are likely to do many searches on one column only, that column
should be the first column in the composite index. If you are likely to do
individual searches on both columns of a two-column index, you may want
to consider creating a second index that contains the second column only.

Primary keys that have more than one column are always automatically
indexed as composite indexes with their columns in the order that they
appear in the table definition, not in the order that they are specified in the
primary key definition. You should consider the searches that you will
execute involving the primary key to determine which column should come
first. Consider adding an extra index on any later column of the primary key
that is frequently searched.

For example, suppose you create a composite index on two columns. One
column contains employee’s first names, the other their last names. You
could create an index that contains their first name, then their last name.
Alternatively, you could index the last name, then the first name. Although
these two indexes organize the information in both columns, they have
different functions.

CREATE INDEX fname_lname
ON employee emp_fname, emp_lname;

CREATE INDEX lname_fname
ON employee emp_lname, emp_fname;

Suppose you then want to search for the first name John. The only useful
index is the one containing the first name in the first column of the index.
The index organized by last name then first name is of no use because
someone with the first name John could appear anywhere in the index.

If you think it likely that you will need to look up people by first name only
or second name only, then you should consider creating both of these
indexes.

398

Chapter 12. Query Optimization and Execution

Alternatively, you could make two indexes, each containing only one of the
columns. Remember, however, that Adaptive Server Anywhere only uses
one index to access any one table while processing a single query. Even if
you know both names, it is likely that Adaptive Server Anywhere will need
to read extra rows, looking for those with the correct second name.

When you create an index using the CREATE INDEX command, as in the
example above, the columns appear in the order shown in your command.

Primary key indexes and
column order

The order of the columns in a primary key index is enforced to be the same
as the order in which the columns appear in the table’s definition, regardless
as to the ordering of the columns specified in the PRIMARY KEY constraint.
Moreover, Adaptive Server Anywhere enforces an additional constraint that
a table’s primary key columns must be at the beginning of each row. Hence
if a primary key is added to an existing table the server may rewrite the
entire table to ensure that the key columns are at the beginning of each row.

In situations where more than one column appears in a primary key, you
should consider the types of searches needed. If appropriate, switch the
order of the columns in the table definition so the most frequently
searched-for column appears first, or create separate indexes, as required, for
the other columns.

Composite indexes and
ORDER BY

By default, the columns of an index are sorted in ascending order, but they
can optionally be sorted in descending order by specifying DESC in the
CREATE INDEX statement.

Adaptive Server Anywhere can choose to use an index to optimize an
ORDER BY query as long as the ORDER BY clause contains only columns
included in that index. In addition, the columns in the index must be ordered
in exactly the same way, or in exactly the opposite way, as the ORDER BY
clause. For single-column indexes, the ordering is always such that it can be
optimized, but composite indexes require slightly more thought. The table
below shows the possibilities for a two-column index.

399

Index columns Optimizable ORDER BY

queries

Not optimizable ORDER

BY queries

ASC, ASC ASC, ASC or DESC,
DESC

ASC, DESC or DESC,
ASC

ASC, DESC ASC, DESC or DESC,
ASC

ASC, ASC or DESC,
DESC

DESC, ASC DESC, ASC or ASC,
DESC

ASC, ASC or DESC,
DESC

DESC, DESC DESC, DESC or ASC,
ASC

ASC, DESC or DESC,
ASC

An index with more than two columns follows the same general rule as
above. For example, suppose you have the following index:

CREATE INDEX idx_example
ON table1 (col1 ASC, col2 DESC, col3 ASC)

In this case, the following queries can be optimized:

SELECT col1, col2, col3 from table1
ORDER BY col1 ASC, col2 DESC, col3 ASC

and

SELECT col1, col2, col3 from example
ORDER BY col1 DESC, col2 ASC, col3 DESC

The index is not used to optimize a query with any other pattern of ASC and
DESC in the ORDER BY clause. For example:

SELECT col1, col2, col3 from table1
ORDER BY col1 ASC, col2 ASC, col3 ASC

is not optimized.

Other uses for indexes

Adaptive Server Anywhere uses indexes to achieve other performance
benefits. Having an index allows Adaptive Server Anywhere to enforce
column uniqueness, to reduce the number of rows and pages that must be
locked, and to better estimate the selectivity of a predicate.

♦ Enforce column uniqueness Without an index, Adaptive Server
Anywhere has to scan the entire table every time that a value is inserted
to ensure that it is unique. For this reason, Adaptive Server Anywhere
automatically builds an index on every column with a uniqueness
constraint.

400

Chapter 12. Query Optimization and Execution

♦ Reduce locks Indexes reduce the number of rows and pages that must
be locked during inserts, updates, and deletes. This reduction is a result
of the ordering that indexes impose on a table.

☞ For more information on indexes and locking, see“How locking
works” on page 131.

♦ Estimate selectivity Because an index is ordered, the optimizer can
estimate the percentage of values that satisfy a given query by scanning
the upper levels of the index. This action is called a partial index scan.

Types of index

Adaptive Server Anywhere supports two types of index, and automatically
chooses between them depending on the declared width of the indexed
columns. For a total column width that is less than 10 bytes, Adaptive Server
Anywhere uses a B-tree index that contains an order-preserving encoding, or
hash value, that represents the indexed data. Hash B-tree indexes are also
used when the index key length is longer than one-eighth of the page size for
the database or 256 bytes (whichever is lower). For data values whose
combined declared length is between these two bounds, Adaptive Server
Anywhere uses a compressed B-tree index that stores each key in a
compressed form.

Indexes can be stored as either clustered or unclustered. Clustered indexes
may assist performance, but only one index on a table can be clustered.

Hash B-tree indexes

A hash B-tree index does not store the actual row value(s) from the table.
Instead, a hash B-tree index stores an order-preserving encoding of the
original data. The number of bytes in each index entry used to store this hash
value is termed the hash size, and is automatically chosen by the server based
on the declared width of all of the indexed columns. The server compares
these hashed values as it searches through an index to find a particular row.

Hash values Adaptive Server Anywhere must represent values in an index to decide how
to order them. For example, if you index a column of names, then it must
know that Amos comes before Smith.

For each value in your index, Adaptive Server Anywhere creates a
corresponding hash value. It stores the hash value in the index, rather than
the actual value. Adaptive Server Anywhere can perform operations with the
hash value. For example, it can tell when two values are equal or which of
two values is greater.

When you index a small storage type, such as an integer, the hash value that

401

Adaptive Server Anywhere creates takes the same amount of space as the
original value. For example, the hash value for an integer is 4 bytes in size,
the same amount of space as required to store an integer. Because the hash
value is the same size, Adaptive Server Anywhere can use hash values with a
one-to-one correspondence to the actual value. Adaptive Server Anywhere
can always tell whether two values are equal, or which is greater by
comparing their hash values. However, it can retrieve the actual value only
by reading the entry from the corresponding table.

When you index a column containing larger data types, the hash value will
often be shorter than the size of the type. For example, if you index a
column of string values, the hash value used is at most 9 bytes in length.
Consequently, Adaptive Server Anywhere cannot always compare two
strings using only the hash values. If the hash values are equal, Adaptive
Server Anywhere must retrieve and compare the actual two values from the
table.

For example, suppose you index the titles of books, many of which are
similar. If you wish to search for a particular title, the index may identify
only a set of possible rows. In this case, Adaptive Server Anywhere must
retrieve each of the candidate rows and examine the full title.

Composite indexes An ordered sequence of columns is also called a composite index. However,
each index key in these indexes is at most a 9 byte hash value. Hence, the
hash value cannot necessarily identify the correct row uniquely. When two
hash values are equal, Adaptive Server Anywhere must retrieve and compare
the actual values.

Compressed B-tree indexes

Compressed B-tree indexes store a compressed form of each indexed value
in the index’s internal nodes. To do this, compressed B-tree indexes store the
values using Patricia tries, an optimized form of a trie data structure that is
augmented with a skip-count to compress its representation. As a result,
compressed B-tree indexes offer substantial improvements over hash indexes
when the overall data length is reasonably large. More significantly, the
compaction algorithm efficiently handles index values that are identical (or
nearly so), so common substrings within the indexed values have negligible
impact on storage requirements and performance. Compressed B-tree
indexes are chosen automatically if the sum of the declared width of the
indexed columns is between 10 bytes and one-eighth of the database page
size to a maximum of 256 bytes.

Recommended page sizes

The page size of the database can have a significant effect on the index

402

Chapter 12. Query Optimization and Execution

fan-out. The index fan-out approximately doubles as the page size doubles.

Each index lookup requires one page read for each of the levels of the index
plus one page read for the table page, and a single query can require several
thousand index lookups. A large fan-out often means that fewer index levels
are required, which can improve searches considerably. For this reason,
consider using a large page size, such as 4K, to improve index performance.
You may also want to consider using a larger page size when you wish to
index long string columns using compressed B-tree indexes, but the size
limit on smaller page sizes is preventing their creation.

403

Semantic query transformations
To operate efficiently, Adaptive Server Anywhere usually rewrites your
query, possibly in several steps, into a new form. It ensures that the new
version computes the same result, even though it expresses the query in a
new way. In other words, Adaptive Server Anywhere rewrites your queries
into semantically equivalent, but syntactically different, forms.

Adaptive Server Anywhere can perform a number of different rewrite
operations. If you read the access plans, you will frequently find that they do
not correspond to a literal interpretation of your original statement. For
example, the optimizer tries as much as possible to rewrite subqueries with
joins. The fact that the optimizer has the freedom to rewrite your SQL
statements and some of the ways in which it does so, are of importance to
you.

Example Unlike the SQL language definition, some languages mandate strict behavior
for AND and OR operations. Some guarantee that the left-hand condition
will be evaluated first. If the truth of the entire condition can then be
determined, the compiler guarantees that the right-hand condition will not be
evaluated.

This arrangement lets you combine conditions that would otherwise require
two nested IF statements into one. For example, in C you can test whether a
pointer is NULL before you use it as follows. You can replace the nested
conditions

if (X != NULL) {
if (X->var != 0) {

... statements ...
}

}

with the more compact expression

if (X != NULL && X->var != 0) {
... statements ...

}

Unlike C, SQL has no such rules concerning execution order. Adaptive
Server Anywhere is free to rearrange the order of such conditions as it sees
fit. The reordered form is semantically equivalent because the SQL language
specification makes no distinction. In particular, query optimizers are
completely free to reorder predicates in a WHERE, HAVING, and ON
clause.

404

Chapter 12. Query Optimization and Execution

Predicate analysis

A predicate is a conditional expression that, combined with the logical
operators AND and OR, makes up the set of conditions in a WHERE,
HAVING, or ON clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

A predicate that can exploit an index to retrieve rows from a table is called
sargable. This name comes from the phrasesearch argument-able.
Predicates that involve comparisons of a column with constants, other
columns, or expressions may be sargable.

The predicate in the following statement is sargable. Adaptive Server
Anywhere can evaluate it efficiently using the primary index of the
employee table.

SELECT *
FROM employee
WHERE employee.emp_id = 123

employee <employee >

In contrast, the following predicate isnot sargable. Although the emp_id
column is indexed in the primary index, using this index does not expedite
the computation because the result contains all, or all except one, row.

SELECT *
FROM employee
where employee.emp_id <> 123

employee <seq >

Similarly, no index can assist in a search for all employees whose first name
endsin the letter “k”. Again, the only means of computing this result is to
examine each of the rows individually.

Functions In general, a predicate that has a function on the column name is not
sargable. For example, an index would not be used on the following query:

SELECT * from sales_order
WHERE year(order_date)=’2000’

You can sometimes rewrite a query to avoid using a function, thus making it
sargable. For example, you can rephrase the above query:

SELECT * from sales_order
WHERE order_date > ’1999-12-31’
AND order_date < ’2001-01-01’

A query that uses a function becomes sargable if you store the function

405

values in a computed column and build an index on this column. A
computed columnis a column whose values are obtained from other
columns in the table. For example, if you have a column called order_date
that holds the date of an order, you can create a computed column called
order_year that holds the values for the year extracted from the order_date
column.

ALTER TABLE sales_order
ADD order_year INTEGER
COMPUTE year(order_date)

You can then add an index on the column order_year in the ordinary way:

CREATE INDEX idx_year
ON sales_order (order_year)

If you then execute the following statement

SELECT * from sales_order
WHERE year(order_date) = ’2000’

the server recognizes that there is an indexed column that holds that
information and uses that index to answer the query.

The domain of the computed column must be equivalent to the domain of
the COMPUTE expression in order for the column substitution to be made.
In the above example, ifyear(order_date) had returned a string instead
of an integer, the optimizer would not have substituted the computed column
for the expression, and consequently the index idx_year could not have been
used to retrieve the required rows.

☞ For more information about computed columns, see“Working with
computed columns” on page 46.

Examples In each of these examples, attributesx andy are each columns of a single
table. Attributez is contained in a separate table. Assume that an index
exists for each of these attributes.

406

Chapter 12. Query Optimization and Execution

Sargable Non-sargable

x = 10 x <> 10

x IS NULL x IS NOT NULL

x > 25 x = 4 ORy = 5

x = z x = y

x IN (4, 5, 6) x NOT IN (4, 5, 6)

x LIKE ‘pat%’ x LIKE ‘%tern’

x = 20 - 2 x + 2 = 20

Sometimes it may not be obvious whether a predicate is sargable. In these
cases, you may be able to rewrite the predicate so it is sargable. For each
example, you could rewrite the predicatex LIKE ‘pat%’ using the fact that
“u” is the next letter in the alphabet after “t”:x >= ’pat’ andx < ’pau’. In
this form, an index on attributex is helpful in locating values in the
restricted range. Fortunately, Adaptive Server Anywhere makes this
particular transformation for you automatically.

A sargable predicate used for indexed retrieval on a table is amatching
predicate. A WHERE clause can have a number of matching predicates.
Which is most suitable can depend on the join strategy. The optimizer
re-evaluates its choice of matching predicates when considering alternate
join strategies.

Types of semantic transformations

The optimizer can perform a number of transformations in search of more
efficient and convenient representations of your query. Because the
optimizer performs these transformations, the plan may look quite different
from a literal interpretation of your original query. Common manipulations
include:

♦ unnecessary DISTINCT elimination

♦ subquery unnesting

♦ predicate pushdown in UNION or GROUPed views

♦ join elimination

♦ optimization for minimum or maximum functions

♦ OR, in-list optimization

♦ LIKE optimizations

407

♦ conversion of outer joins to inner joins

♦ discovery of exploitable conditions through predicate inference

♦ elimination of unnecessary case translation

The following subsections discuss each of these operations.

Unnecessary DISTINCT elimination

Sometimes a DISTINCT condition is unnecessary. For example, the
properties of one or more column in your result may contain a UNIQUE
condition, either explicitly, or implicitly because it is in fact a primary key.

Examples The distinct keyword in the following command is unnecessary because the
product table contains the primary key p.id, which is part of the result set.

SELECT DISTINCT p.id, p.quantity
FROM product p

p<seq >

The database server actually executes the semantically equivalent query:

SELECT p.id, p.quantity
FROM product p

Similarly, the result of the following query contains the primary keys of both
tables so each row in the result must be distinct.

SELECT DISTINCT *
FROM sales_order o JOIN customer c

ON o.cust_id = c.id
WHERE c.state = ’NY’

c<seq > JNL o<ix_sales_cust >

Subquery unnesting

You may express statements as nested queries, given the convenient syntax
provided in the SQL language. However, rewriting nested queries as joins
often leads to more efficient execution and more effective optimization,
since Adaptive Server Anywhere can take better advantage of highly
selective conditions in a subquery’s WHERE clause.

Examples The subquery in the following example can match at most one row for each
row in the outer block. Because it can match at most one row, Adaptive
Server Anywhere recognizes that it can convert it to an inner join.

408

Chapter 12. Query Optimization and Execution

SELECT s.*
FROM sales_order_items s
WHERE EXISTS

(SELECT *
FROM product p
WHERE s.prod_id = p.id

AND p.id = 300 AND p.quantity > 300)

Following conversion, this same statement is expressed internally using join
syntax:

SELECT s.*
FROM product p JOIN sales_order_items s

ON p.id = s.prod_id
WHERE p.id = 300 AND p.quantity > 20

p<seq > JNL s<ky_prod_id >

Similarly, the following query contains a conjunctive EXISTS predicate in
the subquery. This subquery can match more than one row.

SELECT p.*
FROM product p
WHERE EXISTS

(SELECT *
FROM sales_order_items s
WHERE s.prod_id = p.id

AND s.id = 2001)

Adaptive Server Anywhere converts this query to an inner join, with a
DISTINCT in the SELECT list.

SELECT DISTINCT p.*
FROM product p JOIN sales_order_items s

ON p.id = s.prod_id
WHERE s.id = 2001

DistI[s <id_fk > JNL p<product >]

Adaptive Server Anywhere can also eliminate subqueries in comparisons,
when the subquery can match at most one row for each row in the outer
block. Such is the case in the following query.

SELECT *
FROM product p
WHERE p.id =

(SELECT s.prod_id
FROM sales_order_items s
WHERE s.id = 2001

AND s.line_id = 1)

Adaptive Server Anywhere rewrites this query as follows.

409

SELECT p.*
FROM product p, sales_order_items s
WHERE p.id = s.prod_id

AND s.id = 2001
AND s.line_id = 1

p<seq > JNL s<sales_order_items >

The DUMMY table is treated as a special table when subquery unnesting
rewrite optimizations are performed. Subquery flattening is always done on
subqueries of the formSELECT expression FROM DUMMY, even if the
subquery is not correlated.

Predicate pushdown into GROUPed or UNION views

It is quite common for queries to restrict the result of a view so that only a
few of the records are returned. In cases where the view contains GROUP
BY or UNION, it would be preferable for the server to only compute the
result for the desired rows.

Example Suppose we have the view product_summary defined as

CREATE VIEW product_summary(product_id, num_orders, total_qty)
as

SELECT prod_id, count(*), sum(quantity)
FROM sales_order_items
GROUP BY prod_id

which returns, for each product ordered, a count of the number of orders that
include it, and the sum of the quantities ordered over all of the orders. Now
consider the following query over this view:

SELECT *
FROM product_summary
WHERE product_id = 300

which restricts the output to that for product id 300. The query and the query
from the view could be combined into one semantically equivalent SELECT
statement, namely:

SELECT prod_id, count(*), sum(quantity)
FROM sales_order_items
GROUP BY prod_id
HAVING prod_id = 300.

A naive execution plan for this query would involve computing the
aggregates for each product, and then restricting the result to only the single
row for product ID 300. However, the HAVING predicate on the product_id
column can be pushed into the query’s WHERE clause since it is a grouping
column, yielding

410

Chapter 12. Query Optimization and Execution

SELECT prod_id, count(*), sum(quantity)
FROM sales_order_items
WHERE prod_id = 300
GROUP BY prod_id

which significantly reduces the computation required. If this predicate is
sufficiently selective, the optimizer could now use an index on prod_id to
quickly retrieve only those rows for product 300, rather than sequentially
scanning the sales_order_items table.

The same optimization is also used for views involving UNION or UNION
ALL.

Join elimination

The join elimination rewrite optimization reduces the join degree of the
query by eliminating tables from the query when it is safe to do so.
Typically, this optimization is used when the query contains a primary
key-foreign key join, and only primary key columns from the primary table
are referenced in the query.

Example For example, the query

SELECT s.id, s.line_id, p.id
FROM sales_order_items s KEY JOIN product p

would be rewritten as

SELECT s.id, s.line_id, s.prod_id
FROM sales_order_items s
WHERE s.prod_id IS NOT NULL.

The second query is semantically equivalent to the first because any row
from the sales_order_items table that has a NULL foreign key to product
will not appear in the result.

The join elimination optimization can also apply to tables involved in outer
joins, although the conditions for which the optimization is valid are much
more complex. Under certain other conditions, tables involved in primary
key-primary key joins may also be candidates for elimination.

Users should be aware that when this optimization is used, the result of a
DESCRIBE can differ from the expected result due to the substitution of
columns. In addition, an UPDATE or DELETE WHERE CURRENT request
may fail if the update statement refers to one or more of the eliminated base
tables. To circumvent this problem, either ensure that additional columns
from the eliminated table are present in the query’s SELECT list (to avoid
the optimization in the first place), or update the necessary row(s) using a
separate statement.

411

Optimization for minimum or maximum functions

The min/max rewrite optimization is designed to exploit an existing index to
efficiently compute the result of a simple aggregation query involving the
MAX() or MIN() aggregate functions. The goal of this optimization is to be
able to compute the result with a single-row lookup using the index. To be a
candidate for this optimization, the query:

♦ must not contain a GROUP BY clause

♦ must be over a single table

♦ cannot contain anything other than conjunctive equality conditions in the
WHERE clause

♦ must contain only a single aggregate function (MAX or MIN) in the
query’s SELECT list

Example To illustrate this optimization, assume that an index prod_qty on (prod_id
ASC, quantity ASC) exists on the sales_order_items table. Then the query

SELECT MIN(quantity)
FROM sales_order_items
Where prod_id = 300

is rewritten internally as

SELECT MIN(quantity)
FROM (SELECT FIRST quantity

FROM sales_order_items
WHERE prod_id = 300 and quantity IS NOT NULL
ORDER BY prod_id ASC, quantity ASC) as s(quantity)

The NULL_VALUE_ELIMINATED warning may not be generated for
aggregate queries when this optimization is applied.

The access plan (short form) for the rewritten query is:

GrByS[RL[sales_order_items<prod_qty>]]

IN-list optimization

The Adaptive Server Anywhere optimizer supports a special optimization
for exploiting IN predicates on indexed columns. This optimization also
applies equally to multiple predicates on the same indexed column that are
ORed together, since the two are semantically equivalent. To enable the
optimization, the IN-list must contain only constants.

When the optimizer encounters a qualifying IN-list predicate, and the IN-list
predicate is sufficiently selective to consider indexed retrieval, the optimizer

412

Chapter 12. Query Optimization and Execution

converts the IN-list predicate into a nested-loop join. The following example
illustrates how the optimization works.

Suppose we have the query

SELECT *
FROM sales_order
WHERE sales_rep = 142 or sales_rep = 1596

that lists all of the orders for these two sales reps. This query is semantically
equivalent to

SELECT *
FROM sales_order
WHERE sales_rep IN (142, 1596)

The optimizer estimates the combined selectivity of the IN-list predicate to
be high enough to warrant indexed retrieval. Consequently the optimizer
treats the IN-list as a virtual table, and joins this virtual table to the
sales_order table on the sales_rep attribute. While the net effect of the
optimization is to include an additional “join” in the access plan, the join
degree of the query is not increased, so optimization time should not be
affected.

There are two main advantages of this optimization. First, the IN-list
predicate can be treated as a sargable predicate and exploited for indexed
retrieval. Second, the optimizer can sort the IN-list to match the sort
sequence of the index, leading to more efficient retrieval.

The short form of the access plan for the above query is

IN JNL sales_order<ky_so_employee_id>

LIKE optimizations

LIKE predicates involving patterns that are either literal constants or host
variables are very common. Depending on the pattern, the optimizer may
rewrite the LIKE predicate entirely, or augment it with additional conditions
that could be exploited to perform indexed retrieval on the corresponding
table.

Examples In each of the following examples, assume that the pattern in the LIKE
predicate is a literal constant or host variable, and X is a column in a base
table.

♦ X LIKE ’%’ is rewritten asX IS NOT NULL

♦ X LIKE ’abc’ is rewritten asX = ’abc’

♦ X LIKE ’abc%’ is augmented with the predicatesX < ’abcZ’ andX

413

> = ’abc_’

where Z and _ represent the corresponding high values and low values for
the collating sequence of this database. If the database is configured to store
blank-padded strings, the second comparison operator is>, not>=, to
ensure correct semantics.

Conversion of outer joins to inner joins

For the most part, the optimizer generates a left-deep processing tree for its
access plans. The only exception to this rule is the existence of a right-deep
nested outer join expression. The query execution engine’s algorithms for
computing LEFT or RIGHT OUTER JOINs require that preserved tables
must precede null-supplying tables in any join strategy. Consequently the
optimizer looks for opportunities to convert LEFT or RIGHT outer joins to
inner joins whenever possible, since inner joins are commutable and give the
optimizer greater degrees of freedom when performing join enumeration.

A LEFT or RIGHT OUTER JOIN can be converted to an inner join when a
null-intolerant predicate on the null-supplying table is present in the query’s
WHERE clause. Since this predicate is null-intolerant, any all-NULL row
that would be produced by the outer join will be eliminated from the result,
hence making the query semantically equivalent to an inner join.

Example For example, consider the query

SELECT *
FROM product p KEY LEFT OUTER JOIN sales_order_items s
WHERE s.quantity > 15

which is intended to list all products and their orders for larger quantities; the
LEFT OUTER JOIN is intended to ensure that all products are listed, even if
they have no orders. The problem with this query is that the predicate in the
WHERE clause will eliminate from the result any product with no orders,
because the predicates.quantity > 15 will be interpreted as FALSE if
s.quantity is NULL. Hence the query is semantically equivalent to

SELECT *
FROM product p KEY JOIN sales_order_items s
WHERE s.quantity > 15

and it is this rewritten form of the query that the server will optimize.

In this example, the query is almost certainly written incorrectly; it should
probably read

SELECT *
FROM product p

KEY LEFT OUTER JOIN sales_order_items s
ON s.quantity > 15

414

Chapter 12. Query Optimization and Execution

so that the test of quantity is part of the outer join condition.

While it is rare for this optimization to apply to straightforward outer join
queries, it can often apply when a query refers to one or more views that are
written using outer joins. The query’s WHERE clause may include
conditions that restrict the output of the view such that all null-supplying
rows from one or more table expressions would be eliminated, hence making
this optimization applicable.

Discovery of exploitable conditions

An efficient access strategy for virtually any query relies on the presence of
sargable conditions in the WHERE/ON/HAVING clauses. Indexed retrieval
is possible only by exploiting sargable conditions as matching predicates. In
addition, hash, merge, and block-nested loop joins can only be used when an
equijoin condition is present. For these reasons, Adaptive Server Anywhere
does detailed analysis of the search conditions in the original query text in
order to discover simplified or implied conditions that can be exploited by
the optimizer.

As a preprocessing step, several simplifications are made to predicates in the
original statement once view expansion and merging have taken place. For
example:

♦ X = X is rewritten asX IS NOT NULLif X is nullable; otherwise the
predicate is eliminated.

♦ ISNULL(X,X) is rewritten as simplyX.

♦ X+0 is rewritten asX if X is a numeric column.

♦ AND 1=1is eliminated.

♦ OR 1=0 is eliminated.

♦ IN-list predicates that consist of a single element are converted to simple
equality conditions.

After this preprocessing step, Adaptive Server Anywhere attempts to
normalize the original search condition into conjunctive normal form (CNF).
For an expression to be in CNF, each term in the expression must be ANDed
together. Each term is either made up of a single atomic condition, or a set
of conditions ORed together.

Converting an arbitrary condition into CNF may yield an expression of
similar complexity but with a much larger set of conditions. Adaptive Server
Anywhere recognizes this situation, and refrains from naively converting the
condition into CNF. Instead, Adaptive Server Anywhere analyzes the

415

original expression for exploitable predicates that are implied by the original
search condition, and ANDs these inferred conditions to the query.
Complete normalization is also avoided if this would require duplication of
an expensive predicate (for example, a quantified subquery predicate).
However, the algorithm will merge IN-list predicates together whenever
feasible.

Once the search condition has either been completely normalized or the
exploitable conditions have been found, the optimizer performs transitivity
analysis to discover transitive equality conditions, primarily transitive join
conditions and conditions with a constant. In doing so the optimizer will
increase its degrees of freedom when performing join enumeration during its
cost-based optimization phase, since these transitive conditions may permit
additional alternative join orders.

Example Suppose the original query is

SELECT e.emp_lname, s.id, s.order_date
FROM sales_order s, employee e
WHERE (e.emp_id = s.sales_rep and

(s.sales_rep = 142 or s.sales_rep = 1596)
)

OR
(e.emp_id = s.sales_rep and s.cust_id = 667)

This query has no conjunctive equijoin condition; hence without detailed
predicate analysis the optimizer would fail to discover an efficient access
plan. Fortunately, Adaptive Server Anywhere is able to convert the entire
expression to CNF, yielding the equivalent query

SELECT e.emp_lname, s.id, s.order_date
FROM sales_order as s, employee as e
WHERE e.emp_id = s.sales_rep AND

(s.sales_rep = 142 or s.sales_rep = 1596 or s.cust_id = 667)’

which can now be efficiently optimized as an inner join query.

Elimination of unnecessary case translation

By default, Adaptive Server Anywhere databases support case-insensitive
string comparisons. Occasionally the optimizer may encounter queries
where the user is explicitly forcing text conversion through the use of the
UPPER() or LOWER() built-in functions when such conversion is
unnecessary. Adaptive Server Anywhere will automatically eliminate this
unnecessary conversion when the database’s collating sequence permits it.
Eliminating the case translation may then permit the comparison predicate to
be used for indexed retrieval of the corresponding table.

Example On a case insensitive database, the query

416

Chapter 12. Query Optimization and Execution

SELECT *
FROM customer
WHERE UPPER(lname) = ’SMITH’

is rewritten internally as

SELECT *
FROM customer
WHERE lname = ’SMITH’

and the optimizer can now consider using an index on customer.lname.

417

Subquery and function caching
When Adaptive Server Anywhere processes a subquery, it caches the result.
This caching is done on a request-by-request basis; cached results are never
shared by concurrent requests or connections. Should Adaptive Server
Anywhere need to re-evaluate the subquery for the same set of correlation
values, it can simply retrieve the result from the cache. In this way, Adaptive
Server Anywhere avoids many repetitious and redundant computations.
When the request is completed (the query’s cursor is closed), Adaptive
Server Anywhere releases the cached values.

As the processing of a query progresses, Adaptive Server Anywhere
monitors the frequency with which cached subquery values are reused. If the
values of the correlated variable rarely repeat, then Adaptive Server
Anywhere needs to compute most values only once. In this situation,
Adaptive Server Anywhere recognizes that it is more efficient to recompute
occasional duplicate values, than to cache numerous entries that occur only
once. Hence the server suspends the caching of this subquery for the
remainder of the statement and proceeds to re-evaluate the subquery for each
and every row in the outer query block.

Adaptive Server Anywhere also does not cache if the size of the dependent
column is more than 255 bytes. In such cases, you may wish to rewrite your
query or add another column to your table to make such operations more
efficient.

Function caching Some built-in and user-defined functions are cached in the same way that
subquery results are cached. This can result in a substantial improvement for
expensive functions that are called during query processing with the same
parameters. However, it may mean that a function is called less times than
would otherwise be expected.

For a functions to be cached, it must satisfy two conditions:

♦ It must always return the same result for a given set of parameters.

♦ It must have no side effects on the underlying data.

Functions that satisfy these conditions are calleddeterministic or
idempotent functions.

Built-in functions are treated as deterministic with a few exceptions. The
RAND, NEW_ID, and GET_IDENTITY functions are treated as
non-deterministic, and their results are not cached.

User-defined functions are treated as deterministic unless they are specified
as NOT DETERMINISTIC when created.

418

Chapter 12. Query Optimization and Execution

☞ For more information about user-defined functions, see “CREATE
FUNCTION statement”[ASA SQL Reference,page 315].

419

Reading access plans
The optimizer can tell you the query optimization strategy (plan) it has
chosen in response to any statement.

The optimizer’s job is to understand the semantics of your query and to
construct a plan that computes its result. This plan may not correspond
exactly to the syntax you used. The optimizer is free to rewrite your query in
any semantically equivalent form.

☞ For more information about the rules Adaptive Server Anywhere obeys
when rewriting your query, see“Rewriting subqueries as EXISTS
predicates” on page 374and“Semantic query transformations” on page 404.

☞ For information about the methods that the optimizer uses to implement
your query, see“Query execution algorithms” on page 379.

You can view the plan in Interactive SQL or using SQL functions. You can
choose to retrieve the access plan in several different formats:

♦ Short text

♦ Long text

♦ Graphical

♦ Graphical with statistics

♦ UltraLite (short, long, or graphical)

As well, you can obtain plans for SQL queries with a particular cursor type.

☞ For more information about how to access the plan, see“Accessing the
plan” on page 434. For information about how to read plans, see“Text
plans” on page 427and“Graphical plans” on page 429.

Following is an explanation of the statistics and other items that are
displayed in access plans.

Abbreviations used in the
plan

Following are the abbreviations that are used in short plan, and in the short
name form of the graphical plans:

Name Short Plan / Short name

Hash except all EAH

Hash except EH

Hash group by GrByH

Hash rollup group by GrByHR

420

Chapter 12. Query Optimization and Execution

Name Short Plan / Short name

Ordered group by GrByO

Ordered rollup group by GrByOR

Single row group by GrByS

Indexed group by GrByI

Hash distinct DistH

Indexed distinct DistI

Ordered distinct DistO

Sort Top N StrN

Hash filter HF

Hash intersect all IAH

Hash intersect IH

Exists join JE

Nested loops semijoin JNLS

Hash exists JHE

Hash not exists JHNE

Hash join JH

Sorted block SrtBl

Left outer hash join JHO

Full outer hash join JHFO

Recursive hash join JHR

Left outer recursive hash join JHRO

Nested block join JNB

Left outer nested block join JNBO

Not exists join JNE

Nested loops join JNL

Left outer nested loops join JNLO

Full outer nested loops join JNLFO

Merge join JM

421

Name Short Plan / Short name

Left outer merge join JMO

Full outer merge join JMFO

Merge except EM

Merge except all EAM

Merge intersect IM

Merge intersect all IAM

Row limit RL

Row replicate RR

Recursive table RT. In short plan is rt<seq>

Recursive union RU

Union all UA

Table scan In short plan istablename<seq>. In graphi-
cal plans is just the table name.

Index scan In short plan istablename<indexname>. In
graphical plans is just the table name.

In list IN

☞ For an explanation of the algorithms, see“Query execution algorithms”
on page 379.

Common statistics used
in the plan

The following statistics are actual, measured amounts.

Statistic Explanation

Invocations Number of times a row was requested from the sub
tree.

RowsReturned Number of rows returned for the current node.

RunTime Time required for execution of the sub-tree, including
time for children.

CacheHits Number of successful reads of the cache.

CacheRead Number of database pages that have been looked up
in the cache.

422

Chapter 12. Query Optimization and Execution

Statistic Explanation

CacheReadTable Number of table pages that have been read from the
cache.

CacheReadIndLeaf Number of index leaf pages that have been read from
the cache.

CacheReadIndInt Number of index internal node pages that have been
read from the cache.

DiskRead Number of pages that have been read from disk.

DiskReadTable Number of table pages that have been read from disk.

DiskReadIndLeaf Number of index leaf pages that have been read from
disk.

DiskReadIndInt Number of index internal node pages that have been
read from disk.

DiskWrite Number of pages that have been written to disk (work
table pages or modified table pages).

IndAdd Number of entries that have been added to indexes.

IndLookup Number of entries that have been looked up in in-
dexes.

FullCompare Number of comparisons that have been performed
beyond the hash value in an index.

Common estimates used
in the plan

Statistic Explanation

EstRowCount Estimated number of rows that the node will return
each time it is invoked.

AvgRowCount Average number of rows returned on each invocation.
This is not an estimate, but is calculated as Rows-
Returned / Invocations. If this value is significantly
different from EstRowCount, the selectivity estimates
may be poor.

EstRunTime Estimated time required for execution (sum of Est-
DiskReadTime, EstDiskWriteTime, and EstCpuTime).

AvgRunTime Average time required for execution (measured).

EstDiskReads Estimated number of read operations from the disk.

423

Statistic Explanation

AvgDiskReads Average number of read operations from the disk
(measured).

EstDiskWrites Estimated number of write operations to the disk.

AvgDiskWrites Average number of write operations to the disk (mea-
sured).

EstDiskReadTime Estimated time required for reading rows from the disk.

EstDiskWriteTime Estimated time required for writing rows to the disk.

EstCpuTime Estimated processor time required for execution.

Items in the plan related
to SELECT, INSERT,
UPDATE, and DELETE Item Explanation

Optimization Goal Determines whether query processing is optimized
towards returning the first row quickly, or minimizing
the cost of returning the complete result set.

See “OPTIMIZATION_GOAL option [database]” [ASA
Database Administration Guide,page 613].

ANSI update con-
straints

Controls the range of updates that are permitted (options
are OFF, CURSORS, and STRICT).

See “ANSI_UPDATE_CONSTRAINTS option [com-
patibility]” [ASA Database Administration Guide,
page 576]

Optimization level Reserved for future use.

Select list List of expressions selected by the query.

Items in the plan related
to locks

Item Explanation

Locked tables List of all locked tables and their isolation levels.

Items in the plan related
to scans

424

Chapter 12. Query Optimization and Execution

Item Explanation

Table name Actual name of the table.

Correlation name Alias for the table.

Estimated rows Estimated number of rows in the
table.

Estimated pages Estimated number of pages in the
table.

Estimated row size Estimated row size for the table.

Page maps YES when a page map is used to
read multiple pages.

Items in the plan related
to index scans

Item Explanation

Index name Name of the index.

Key type Can be one of PRIMARY KEY,
FOREIGN KEY, CONSTRAINT
(unique constraint), or UNIQUE
(unique index). The key type is
not displayed if the index is a non-
unique secondary index.

Depth Height of the index.

For more information, see“Table
and page sizes” on page 393.

Estimated leaf pages Estimated number of leaf pages.

Cardinality The cardinality of the index if
it is different from the estimated
number of rows. This applies
only to Adaptive Server Anywhere
databases version 6.0 and earlier.

Selectivity The estimated number of rows that
match the range bounds.

Direction FORWARD or BACKWARD.

Range bounds Range bounds are shown as a list
(col_name=value) or col_name IN
[low, high].

425

Items in the plan related
to joins, filter, and
pre-filter Item Explanation

Predicate The search condition that is evalu-
ated in this node, along with selec-
tivity estimates and measurement.

For more information, see“Selec-
tivity in the plan” on page 433

Items in the plan related
to hash filter

Item Explanation

Build values Estimated number of distinct values
in the input.

Probe values Estimated number of distinct val-
ues in the input when checking the
predicate.

Bits Number of bits selected to build the
hash map.

Pages Number of pages required to store the
hash map.

Items in the plan related
to Union

Item Explanation

Union List The columns involved in a UNION
operation.

Items in the plan related
to GROUP BY

Item Explanation

Aggregates All the aggregate functions.

Group-by list All the columns in the group by
clause.

Items in the plan related
to DISTINCT

Item Explanation

Distinct list All the columns in the distinct
clause.

Items in the plan related
to IN LIST

426

Chapter 12. Query Optimization and Execution

Item Explanation

In List All the expressions in the specified
set.

Expression SQL Expressions to compare to the list.

Items in the plan related
to SORT

Item Explanation

Order-by List of all expressions to sort by.

Items in the plan related
to row limits

Item Explanation

Row limit count Maximum number of rows returned
as specified by FIRST or TOP n.

Text plans

There are two types of text plan: short and long. To choose a plan type in
Interactive SQL, open the Options dialog from the Tools menu, and click the
Plan tab. To use SQL functions to access the plan, see“Accessing the Plan
with SQL functions” on page 435.

Colons separate join
strategies

The following command contains twoquery blocks: the outer select
statement from the sales_order and sales_order_items tables, and the
subquery that selects from the product table.

SELECT *
FROM sales_order AS o

KEY JOIN sales_order_items AS i
WHERE EXISTS

(SELECT *
FROM product p
WHERE p.id = 300)

i <seq > JNL o<sales_order > : p <seq >

Colons separate join strategies. Plans always list the join strategy for the
main block first. Join strategies for other query blocks follow. The order of
join strategies for these other query blocks may not correspond to the order
in your statement nor to the order in which they execute.

Short text plan The short plan is useful when you want to compare plans quickly. It
provides the least amount of information of all the access plan formats, but it
provides it on a single line.

In the following example, the plan starts with the word SORT because the

427

ORDER BY clause causes the entire result set to be sorted. The customer
table is accessed by its primary key index, also called customer. An index
scan is used to satisfy the search condition because the column customer.id
is a primary key. The abbreviation JNL indicates that the optimizer is using a
nested loops join to process the query. Finally, the sales_order table is
accessed using the foreign key index ky_so_customer to find matching rows
in the customer table.

☞ For more information about code words used in the plan, see
“Abbreviations used in the plan” on page 420.

Long text plan The long plan provides a little more information than the short plan, and
provides information in a way that is easy to print and view without scrolling
down.

In the long plan output for the same query, the first line isPlan [I/O

Estimate: 1] . The words Plan or Sub-plan indicate the start of a query
block (in this case, there is only one). The I/O estimates how many I/O are
required for the query (in this case, one). Again, the plan indicates that the
results are sorted, and that a nested loops join is the join algorithm to be
used. On the same line as the algorithm, there is either the word TRUE or
the search condition and selectivity estimate for the algorithm (in this case,
there is none). The WHERE condition is represented on the line starting
with FILTER, followed by the search condition, selectivity estimate for the

428

Chapter 12. Query Optimization and Execution

search condition, and source of the selectivity estimate.

☞ For more information about code words used in the plan, see
“Abbreviations used in the plan” on page 420.

Graphical plans

There are two types of graphical plan: the graphical plan, and the graphical
plan with statistics. To choose a plan type in Interactive SQL, open the
Options dialog from the Tools menu, and click the Plan tab. To access the
plan with SQL functions, see“Accessing the Plan with SQL functions” on
page 435.

Once the graphical plan is displayed, you can configure the way it is
displayed by right-clicking the left pane and choosing Customize.

You can print the graphical plan for later reference. To print the plan,

429

right-click a node and choose Print.

To obtain context-sensitive help for each node in the graphical plan, select
the node, right-click it and choose Help. For example, right-click Nested
Loops Join and choose Help for information about the resources used by that
part of the execution. There is also pop-up information that is available by
hovering your cursor over each element in the graphical plan.

Graphical plan The graphical plan provides a great deal more information than the short or
long plans. You can choose to see either the graphical plan, or the graphical
plan with statistics. Both allow you to quickly view which parts of the plan
have been estimated as the most expensive. The graphical plan with
statistics, though more expensive to view, also provides the actual query
execution statistics as monitored by the server when the query is executed,
and permits direct comparison between the estimates used by the query
optimizer in constructing the access plan with the actual statistics monitored
during execution. Note, however, that the optimizer is often unable to
precisely estimate a query’s cost, so expect there to be differences. The
graphical plan is the default format for access plans.

The graphical plan is designed to provide some key information visually:

♦ Each operation displayed in the graphical plan is displayed in a container.
The container indicates whether the operation materializes data, whether
it is an index scan, whether it is a table scan, or whether it is some other
operation.

♦ The number of rows that an operation passes to the next operation in the
plan is indicated by the thickness of the line joining the operations. This
provides a visual indicator of the operations carried out on most data in
the query.

♦ The container for an operation that is particularly slow is given a red
border.

Each of these display features is customizable.

Following is the same query that was used to describe the short and long text
plans, presented with the graphical plan. The diagram is in the form of a
tree, indicating that each node requests rows from the nodes beneath it. The
Lock node indicates that the result set is materialized, or that a row is
returned to an application. In this case, the sort requires that results are
materialized. At level 0, rows aren’t really locked: Adaptive Server
Anywhere just ensures that the row has not been deleted since it was read
from the base tables. At level 1, a row is locked only until the next row is
accessed. At levels 2 and 3, read locks are applied and held until COMMIT.

430

Chapter 12. Query Optimization and Execution

You can obtain detailed information about the nodes in the plan by clicking
the node in the graphical diagram. In this example, the nested loops join
node is selected. The information in the right pane pertains only to that node.

☞ For more information about abbreviations used in the plan, see
“Abbreviations used in the plan” on page 420.

Graphical plan with
statistics

The graphical plan with statistics shows you all the estimates that are
provided with the graphical plan, but also shows actual runtime costs of
executing the statement. To do this, the statement must actually be executed.
This means that there may be a delay in accessing the plan for expensive
queries. It also means that any parts of your query such as deletes or updates
are actually executed, although you can perform a rollback to undo these
changes.

Use the graphical plan with statistics when you are having performance
problems, and the estimated row count or run time differs from your
expectations. The graphical plan with statistics provides estimates and actual
statistics for you to compare. A large difference between actual and estimate
is a warning sign that the optimizer might not have sufficient information to
prepare correct estimates.

The database options and other global settings that affect query execution
are displayed for the root operator only.

Following are some of the key statistics you can check in the graphical plan
with statistics, and some possible remedies:

431

♦ Row count actuals and estimates Row count measures the rows in the
result set. If the estimated row count is significantly different from the
actual row count, the selectivity is probably incorrect.

♦ Selectivity actuals and estimates Accurate selectivity estimates are
critical for the proper operation of the query optimizer. For example, if
the optimizer mistakenly estimates a predicate to be highly selective
(with, say, a selectivity of 5%), but the actual selectivity is much lower
(for example, 50%), then performance may suffer. In general, estimates
will not be precise. However, a significantly large error does indicate a
possible problem. If the predicate is over a base column for which there
does not exist a histogram, executing a CREATE STATISTICS statement
to create a histogram may correct the problem. If selectivity error remains
a problem then, as a last resort, you may wish to consider specifying a
user estimate of selectivity along with the predicate in the query text.

☞ For more information about selectivity, see“Selectivity in the plan”
on page 433.

☞ For more information about creating statistics, see “CREATE
STATISTICS statement”[ASA SQL Reference,page 346].

☞ For more information about user estimates, see “Explicit selectivity
estimates”[ASA SQL Reference,page 30].

♦ Runtime actuals and estimates Runtime measures the time to execute
the query. If the runtime is incorrect for a table scan or index scan, you
may improve performance by executing the REORGANIZE TABLE
statement.

☞ For more information, see “REORGANIZE TABLE statement”[ASA
SQL Reference,page 522].

♦ Estimate source When the source of the estimate is Guess, the
optimizer has no information to use, which may indicate a problem. If the
estimate source is Index and the selectivity estimate is incorrect, your
problem may be that the index is skewed: you may benefit from
defragmenting the index with the REORGANIZE TABLE statement.

☞ For a complete list of the possible sources of selectivity estimates,
see “ESTIMATE_SOURCE function [Miscellaneous]”[ASA SQL
Reference,page 125].

♦ Cache reads and hits If the number of cache reads and cache hits are
exactly the same, then your entire database is in cache—an excellent
thing. When reads are greater than hits, it means that the server is
attempting to go to cache but failing, and that it must read from disk. In
some cases, such as hash joins, this is expected. In other cases, such as

432

Chapter 12. Query Optimization and Execution

nested loops joins, a poor cache-hit ratio may indicate a performance
problem, and you may benefit from increasing your cache size.

Following is an example of the graphical plan with statistics. Again, the
nested loops join node is selected. The statistics in the right pane indicate the
resources used by that part of the query.

☞ For more information about code words used in the plan, see
“Abbreviations used in the plan” on page 420.

Selectivity in the plan Following is an example of the Predicate showing selectivity of a search
condition. In this example, the Filter node is selected, and the statistics pane
shows the Predicate as the search condition and selectivity statistics.

433

This predicate is

department.dept_name = ’Sales’ : 20% COLUMN

This can be read as follows:

♦ department.dept_name = ’Sales’ is the search condition.

♦ 20% is the optimizer’s estimate of the selectivity. This is the same output
as is provided by the ESTIMATE function. For more information, see
“ESTIMATE function [Miscellaneous]”[ASA SQL Reference,page 125].

♦ The source of the estimate is COLUMN. This is the same output as is
provided by the ESTIMATE_SOURCE function. For a complete list of
the possible sources of selectivity estimates, see “ESTIMATE_SOURCE
function [Miscellaneous]”[ASA SQL Reference,page 125].

Note: If you select the graphical plan, but not the graphical plan with
statistics, the final two statistics are not displayed.

Accessing the plan

You can see the access plan in Interactive SQL, or using SQL functions. The
plan is also displayed from the Index Consultant

Accessing the plan in Interactive SQL

The following types of plan are available in Interactive SQL:

♦ Short plan

434

Chapter 12. Query Optimization and Execution

♦ Long plan

♦ Graphical plan

♦ Graphical plan with statistics

To choose the type of plan you want to see, click Tools➤ Options and select
the Plan tab.

To see the plan, execute a query and then open the Plan tab. The Plan tab is
located at the bottom of the Interactive SQL window.

UltraLite plan You can also view the UltraLite plan for your query. The UltraLite plan does
not include statistics.

To view the UltraLite plan in Interactive SQL, open the Options dialog from
the Tools menu and select Show UltraLite Plan. This option is selected by
default. You control the UltraLite plan type by selecting one of the types
above (graphical, short plan, or long plan). If you choose graphical plan with
statistics, you get the graphical plan.

The UltraLite Plan tab appears at the bottom of the Interactive SQL window.
For some queries, the UltraLite execution plan may differ from the plan
selected for Adaptive Server Anywhere.

☞ For more information, see “GRAPHICAL_ULPLAN function
[Miscellaneous]”[ASA SQL Reference,page 137].

Accessing the Plan with SQL functions

You can access the plan using SQL functions, and retrieve the output in
XML format.

♦ To access the short plan, see the “EXPLANATION function
[Miscellaneous]”[ASA SQL Reference,page 132].

♦ To access the long plan, see the “PLAN function [Miscellaneous]”[ASA
SQL Reference,page 170].

♦ To access the graphical plan, see the “GRAPHICAL_PLAN function
[Miscellaneous]”[ASA SQL Reference,page 135].

♦ To access the UltraLite plan, see the “GRAPHICAL_ULPLAN function
[Miscellaneous]”[ASA SQL Reference,page 137], “SHORT_ULPLAN
function [Miscellaneous]”[ASA SQL Reference,page 181], or
“LONG_ULPLAN function [Miscellaneous]”[ASA SQL Reference,
page 152].

435

436

PART III

SQL D IALECTS AND

COMPATIBILITY

This part describes Transact-SQL compatibility and those features of
Adaptive Server Anywhere that are not commonly found in other SQL

implementations.

CHAPTER 13

Transact-SQL Compatibility

About this chapter Transact-SQL is the dialect of SQL supported by Sybase Adaptive Server
Enterprise.

This chapter is a guide for creating applications that are compatible with
both Adaptive Server Anywhere and Adaptive Server Enterprise. It
describes Adaptive Server Anywhere support for Transact-SQL language
elements and statements, and for Adaptive Server Enterprise system tables,
views, and procedures.

Contents Topic: page

An overview of Transact-SQL support 440

Adaptive Server architectures 443

Configuring databases for Transact-SQL compatibility 449

Writing compatible SQL statements 458

Transact-SQL procedure language overview 463

Automatic translation of stored procedures 466

Returning result sets from Transact-SQL procedures 467

Variables in Transact-SQL procedures 468

Error handling in Transact-SQL procedures 469

439

An overview of Transact-SQL support
Adaptive Server Anywhere supports a large subset ofTransact-SQL, which
is the dialect of SQL supported by Sybase Adaptive Server Enterprise. This
chapter describes compatibility of SQL between Adaptive Server Anywhere
and Adaptive Server Enterprise.

Goals The goals of Transact-SQL support in Adaptive Server Anywhere are as
follows:

♦ Application portability Many applications, stored procedures, and
batch files can be written for use with both Adaptive Server Enterprise
and Adaptive Server Anywhere databases.

♦ Data portability Adaptive Server Anywhere and Adaptive Server
Enterprise databases can exchange and replicate data between each other
with minimum effort.

The aim is to write applications to work with both Adaptive Server
Enterprise and Adaptive Server Anywhere. Existing Adaptive Server
Enterprise applications generally require some changes to run on an
Adaptive Server Anywhere database.

How Transact-SQL is
supported

Transact-SQL support in Adaptive Server Anywhere takes the following
form:

♦ Many SQL statements are compatible between Adaptive Server
Anywhere and Adaptive Server Enterprise.

♦ For some statements, particularly in the procedure language used in
procedures, triggers, and batches, a separate Transact-SQL statement is
supported together with the syntax supported in previous versions of
Adaptive Server Anywhere. For these statements, Adaptive Server
Anywhere supports twodialectsof SQL. In this chapter, we name those
dialects Transact-SQL and Watcom-SQL.

♦ A procedure, trigger, or batch is executed in either the Transact-SQL or
Watcom-SQL dialect. You must use control statements from one dialect
only throughout the batch or procedure. For example, each dialect has
different flow control statements.

The following diagram illustrates how the two dialects overlap.

440

Chapter 13. Transact-SQL Compatibility

Transact-SQL statementsASA-only statements
Statements allowed

in both servers

ASA control statements,
CREATE PROCEDURE

statement, CREATE
TRIGGER statement,...

SELECT, INSERT,
UPDATE, DELETE,...

Transact-SQL control
statements, CREATE

PROCEDURE statement,
CREATE TRIGGER

statement,...

Similarities and
differences

Adaptive Server Anywhere supports a very high percentage of Transact-SQL
language elements, functions, and statements for working with existing data.
For example, Adaptive Server Anywhere supports all of the numeric
functions, all but one of the string functions, all aggregate functions, and all
date and time functions. As another example, Adaptive Server Anywhere
supports Transact-SQL outer joins (using =* and *= operators) and extended
DELETE and UPDATE statements using joins.

Further, Adaptive Server Anywhere supports a very high percentage of the
Transact-SQL stored procedure language (CREATE PROCEDURE and
CREATE TRIGGER syntax, control statements, and so on) and many, but
not all, aspects of Transact-SQL data definition language statements.

There are design differences in the architectural and configuration facilities
supported by each product. Device management, user management, and
maintenance tasks such as backups tend to be system-specific. Even here,
Adaptive Server Anywhere provides Transact-SQL system tables as views,
where the tables that are not meaningful in Adaptive Server Anywhere have
no rows. Also, Adaptive Server Anywhere provides a set of system
procedures for some of the more common administrative tasks.

This chapter looks first at some system-level issues where differences are
most noticeable, before discussing data manipulation and data definition
language aspects of the dialects where compatibility is high.

Transact-SQL only Some SQL statements supported by Adaptive Server Anywhere are part of
one dialect, but not the other. You cannot mix the two dialects within a
procedure, trigger, or batch. For example, Adaptive Server Anywhere
supports the following statements, but as part of the Transact-SQL dialect

441

only:

♦ Transact-SQL control statements IF and WHILE

♦ Transact-SQL EXECUTE statement

♦ Transact-SQL CREATE PROCEDURE and CREATE TRIGGER
statements

♦ Transact-SQL BEGIN TRANSACTION statement

♦ SQL statementsnot separated by semicolons are part of a Transact-SQL
procedure or batch

Adaptive Server
Anywhere only

Adaptive Server Enterprise does not support the following statements:

♦ control statements CASE, LOOP, and FOR

♦ Adaptive Server Anywhere versions of IF and WHILE

♦ CALL statement

♦ Adaptive Server Anywhere versions of the CREATE PROCEDURE,
CREATE FUNCTION, and CREATE TRIGGER statements

♦ SQL statements separated by semicolons

Notes The two dialects cannot be mixed within a procedure, trigger, or batch. This
means that:

♦ You can include Transact-SQL-only statements together with statements
that are part of both dialects in a batch, procedure, or trigger.

♦ You can include statements not supported by Adaptive Server Enterprise
together with statements that are supported by both servers in a batch,
procedure, or trigger.

♦ You cannot include Transact-SQL-only statements together with
Adaptive Server Anywhere-only statements in a batch, procedure, or
trigger.

442

Chapter 13. Transact-SQL Compatibility

Adaptive Server architectures
Adaptive Server Enterprise and Adaptive Server Anywhere are
complementary products, with architectures designed to suit their distinct
purposes. Adaptive Server Anywhere works well as a workgroup or
departmental server requiring little administration, and as a personal
database. Adaptive Server Enterprise works well as an enterprise-level
server for the largest databases.

This section describes architectural differences between Adaptive Server
Enterprise and Adaptive Server Anywhere. It also describes the Adaptive
Server Enterprise-like tools that Adaptive Server Anywhere includes for
compatible database management.

Servers and databases

The relationship between servers and databases is different in Adaptive
Server Enterprise and Adaptive Server Anywhere.

In Adaptive Server Enterprise, each database exists inside a server, and each
server can contain several databases. Users can have login rights to the
server, and can connect to the server. They can then use each database on
that server for which they have permissions. System-wide system tables,
held in a master database, contain information common to all databases on
the server.

No master database in
Adaptive Server
Anywhere

In Adaptive Server Anywhere, there is no level corresponding to the
Adaptive Server Enterprise master database. Instead, each database is an
independent entity, containing all of its system tables. Users can have
connection rights to a database, not to the server. When a user connects, they
connect to an individual database. There is no system-wide set of system
tables maintained at a master database level. Each Adaptive Server
Anywhere database server can dynamically load and unload multiple
databases, and users can maintain independent connections on each.

Adaptive Server Anywhere provides tools in its Transact-SQL support and
in its Open Server support to allow some tasks to be carried out in a manner
similar to Adaptive Server Enterprise. For example, Adaptive Server
Anywhere provides an implementation of the Adaptive Server Enterprise
sp_addloginsystem procedure that carries out the nearest equivalent action:
adding a user to a database.

☞ For information about Open Server support, see “Adaptive Server
Anywhere as an Open Server”[ASA Database Administration Guide,page 109].

File manipulation
statements

Adaptive Server Anywhere does not support the Transact-SQL statements
DUMP DATABASE and LOAD DATABASE. Adaptive Server Anywhere

443

has its own CREATE DATABASE and DROP DATABASE statements with
different syntax.

Device management

Adaptive Server Anywhere and Adaptive Server Enterprise use different
models for managing devices and disk space, reflecting the different uses for
the two products. While Adaptive Server Enterprise sets out a
comprehensive resource management scheme using a variety of
Transact-SQL statements, Adaptive Server Anywhere manages its own
resources automatically, and its databases are regular operating system files.

Adaptive Server Anywhere does not support Transact-SQL DISK
statements, such as DISK INIT, DISK MIRROR, DISK REFIT, DISK
REINIT, DISK REMIRROR, and DISK UNMIRROR.

☞ For information on disk management, see “Working with Database
Files” [ASA Database Administration Guide,page 253]

Defaults and rules

Adaptive Server Anywhere does not support the Transact-SQL CREATE
DEFAULT statement or CREATE RULE statement. The CREATE
DOMAIN statement allows you to incorporate a default and a rule (called a
CHECK condition) into the definition of a domain, and so provides similar
functionality to the Transact-SQL CREATE DEFAULT and CREATE RULE
statements.

In Adaptive Server Enterprise, the CREATE DEFAULT statement creates a
nameddefault. This default can be used as a default value for columns by
binding the default to a particular column or as a default value for all
columns of a domain by binding the default to the data type using the
sp_bindefaultsystem procedure.

The CREATE RULE statement creates a namedrule which can be used to
define the domain for columns by binding the rule to a particular column or
as a rule for all columns of a domain by binding the rule to the data type. A
rule is bound to a data type or column using thesp_bindrule system
procedure.

In Adaptive Server Anywhere, a domain can have a default value and a
CHECK condition associated with it, which are applied to all columns
defined on that data type. You create the domain using the CREATE
DOMAIN statement.

You can define default values and rules, or CHECK conditions, for
individual columns using the CREATE TABLE statement or the ALTER

444

Chapter 13. Transact-SQL Compatibility

TABLE statement.

☞ For a description of the Adaptive Server Anywhere syntax for these
statements, see “SQL Statements”[ASA SQL Reference,page 213].

System tables

In addition to its own system tables, Adaptive Server Anywhere provides a
set of system views that mimic relevant parts of the Adaptive Server
Enterprise system tables. You’ll find a list and individual descriptions in
“Views for Transact-SQL compatibility”[ASA SQL Reference,page 701],
which describes the system catalogs of the two products. This section
provides a brief overview of the differences.

The Adaptive Server Anywhere system tables rest entirely within each
database, while the Adaptive Server Enterprise system tables rest partly
inside each database and partly in the master database. The Adaptive Server
Anywhere architecture does not include a master database.

In Adaptive Server Enterprise, the database owner (user IDdbo) owns the
system tables. In Adaptive Server Anywhere, the system owner (user ID
SYS) owns the system tables. Adbo user ID owns the Adaptive Server
Enterprise-compatible system views provided by Adaptive Server
Anywhere.

Administrative roles

Adaptive Server Enterprise has a more elaborate set of administrative roles
than Adaptive Server Anywhere. In Adaptive Server Enterprise there is a set
of distinct roles, although more than one login account on an Adaptive
Server Enterprise can be granted any role, and one account can possess more
than one role.

Adaptive Server
Enterprise roles

In Adaptive Server Enterprise distinct roles include:

♦ System Administrator Responsible for general administrative tasks
unrelated to specific applications; can access any database object.

♦ System Security Officer Responsible for security-sensitive tasks in
Adaptive Server Enterprise, but has no special permissions on database
objects.

♦ Database Owner Has full permissions on objects inside the database he
or she owns, can add users to a database and grant other users the
permission to create objects and execute commands within the database.

♦ Data definition statements Permissions can be granted to users for
specific data definition statements, such as CREATE TABLE or CREATE

445

VIEW, enabling the user to create database objects.

♦ Object owner Each database object has an owner who may grant
permissions to other users to access the object. The owner of an object
automatically has all permissions on the object.

In Adaptive Server Anywhere, the following database-wide permissions
have administrative roles:

♦ The Database Administrator (DBA authority) has, like the Adaptive
Server Enterprise database owner, full permissions on all objects inside
the database (other than objects owned by SYS) and can grant other users
the permission to create objects and execute commands within the
database. The default database administrator is user IDDBA.

♦ The RESOURCE permission allows a user to create any kind of object
within a database. This is instead of the Adaptive Server Enterprise
scheme of granting permissions on individual CREATE statements.

♦ Adaptive Server Anywhere has object owners in the same way that
Adaptive Server Enterprise does. The owner of an object automatically
has all permissions on the object, including the right to grant permissions.

For seamless access to data held in both Adaptive Server Enterprise and
Adaptive Server Anywhere, you should create user IDs with appropriate
permissions in the database (RESOURCE in Adaptive Server Anywhere, or
permission on individual CREATE statements in Adaptive Server
Enterprise) and create objects from that user ID. If you use the same user ID
in each environment, object names and qualifiers can be identical in the two
databases, ensuring compatible access.

Users and groups

There are some differences between the Adaptive Server Enterprise and
Adaptive Server Anywhere models of users and groups.

In Adaptive Server Enterprise, users connect to a server, and each user
requires a login ID and password to the server as well as a user ID for each
database they want to access on that server. Each user of a database can only
be a member of one group.

In Adaptive Server Anywhere, users connect directly to a database and do
not require a separate login ID to the database server. Instead, each user
receives a user ID and password on a database so they can use that database.
Users can be members of many groups, and group hierarchies are allowed.

Both servers support user groups, so you can grant permissions to many
users at one time. However, there are differences in the specifics of groups in

446

Chapter 13. Transact-SQL Compatibility

the two servers. For example, Adaptive Server Enterprise allows each user to
be a member of only one group, while Adaptive Server Anywhere has no
such restriction. You should compare the documentation on users and groups
in the two products for specific information.

Both Adaptive Server Enterprise and Adaptive Server Anywhere have a
public group, for defining default permissions. Every user automatically
becomes a member of the public group.

Adaptive Server Anywhere supports the following Adaptive Server
Enterprise system procedures for managing users and groups.

☞ For the arguments to each procedure, see “Adaptive Server Enterprise
system and catalog procedures”[ASA SQL Reference,page 763].

System procedure Description

sp_addlogin In Adaptive Server Enterprise, this adds a user to the
server. In Adaptive Server Anywhere, this adds a
user to a database.

sp_adduser In Adaptive Server Enterprise and Adaptive Server
Anywhere, this adds a user to a database. While
this is a distinct task fromsp_addloginin Adaptive
Server Enterprise, in Adaptive Server Anywhere,
they are the same.

sp_addgroup Adds a group to a database.

sp_changegroup Adds a user to a group, or moves a user from one
group to another.

sp_droplogin In Adaptive Server Enterprise, removes a user from
the server. In Adaptive Server Anywhere, removes a
user from the database.

sp_dropuser Removes a user from the database.

sp_dropgroup Removes a group from the database.

In Adaptive Server Enterprise, login IDs are server-wide. In Adaptive Server
Anywhere, users belong to individual databases.

Database object
permissions

The Adaptive Server Enterprise and Adaptive Server Anywhere GRANT
and REVOKE statements for granting permissions on individual database
objects are very similar. Both allow SELECT, INSERT, DELETE, UPDATE,
and REFERENCES permissions on database tables and views, and UPDATE
permissions on selected columns of database tables. Both allow EXECUTE
permissions to be granted on stored procedures.

447

For example, the following statement is valid in both Adaptive Server
Enterprise and Adaptive Server Anywhere:

GRANT INSERT, DELETE
ON TITLES
TO MARY, SALES

This statement grants permission to use the INSERT and DELETE
statements on theTITLES table to userMARY and to theSALES group.

Both Adaptive Server Anywhere and Adaptive Server Enterprise support the
WITH GRANT OPTION clause, allowing the recipient of permissions to
grant them in turn, although Adaptive Server Anywhere does not permit
WITH GRANT OPTION to be used on a GRANT EXECUTE statement.

Database-wide
permissions

Adaptive Server Enterprise and Adaptive Server Anywhere use different
models for database-wide user permissions. These are discussed in“Users
and groups” on page 446. Adaptive Server Anywhere employs DBA
permissions to allow a user full authority within a database. The System
Administrator in Adaptive Server Enterprise enjoys this permission for all
databases on a server. However, DBA authority on an Adaptive Server
Anywhere database is different from the permissions of an Adaptive Server
Enterprise Database Owner, who must use the Adaptive Server Enterprise
SETUSERstatement to gain permissions on objects owned by other users.

Adaptive Server Anywhere employs RESOURCE permissions to allow a
user the right to create objects in a database. A closely corresponding
Adaptive Server Enterprise permission is GRANT ALL, used by a Database
Owner.

448

Chapter 13. Transact-SQL Compatibility

Configuring databases for Transact-SQL
compatibility

You can eliminate some differences in behavior between Adaptive Server
Anywhere and Adaptive Server Enterprise by selecting appropriate options
when creating a database or, if you are working on an existing database,
when rebuilding the database. You can control other differences by
connection level options using the SET TEMPORARY OPTION statement
in Adaptive Server Anywhere or the SET statement in Adaptive Server
Enterprise.

Creating a Transact-SQL-compatible database

This section describes choices you must make when creating or rebuilding a
database.

Quick start Here are the steps you need to take to create a Transact-SQL-compatible
database. The remainder of the section describes which options you need to
set.

❖ To create a Transact-SQL compatible database (Sybase Central)

1. Start Sybase Central.

2. Choose Tools➤ Adaptive Server Anywhere 9➤ Create Database.

3. Follow the instructions in the wizard.

4. When you see a button called Emulate Adaptive Server Enterprise, click
it, and then click Next.

5. Follow the remaining instructions in the wizard.

❖ To create a Transact-SQL compatible database (Command line)

1. Enter the following command at a system prompt:

dbinit -b -c -k db-name.db

☞ For more information about these options, see “Initialization utility
options” [ASA Database Administration Guide,page 487].

449

❖ To create a Transact-SQL compatible database (SQL)

1. Connect to any Adaptive Server Anywhere database.

2. Enter the following statement, for example, in Interactive SQL:

CREATE DATABASE ’db-name.db’
ASE COMPATIBLE

In this statement, ASE COMPATIBLE means compatible with Adaptive
Server Enterprise.

Make the database case
sensitive

By default, string comparisons in Adaptive Server Enterprise databases are
case sensitive, while those in Adaptive Server Anywhere are case insensitive.

When building an Adaptive Server Enterprise-compatible database using
Adaptive Server Anywhere, choose the case sensitive option.

♦ If you are using Sybase Central, this option is in the Create Database
wizard.

♦ If you are using thedbinit command-line utility, specify the-c
command-line switch.

Ignore trailing blanks in
comparisons

When building an Adaptive Server Enterprise-compatible database using
Adaptive Server Anywhere, choose the option to ignore trailing blanks in
comparisons.

♦ If you are using Sybase Central, this option is in the Create Database
wizard.

♦ If you are using thedbinit command line utility, specify the-b
command-line switch.

When you choose this option, Adaptive Server Enterprise and Adaptive
Server Anywhere considers the following two strings equal:

’ignore the trailing blanks ’
’ignore the trailing blanks’

If you do not choose this option, Adaptive Server Anywhere considers the
two strings above different.

A side effect of this choosing this option is that strings are padded with
blanks when fetched by a client application.

Remove historical
system views

Older versions of Adaptive Server Anywhere employed two system views
whose names conflict with the Adaptive Server Enterprise system views
provided for compatibility. These views include SYSCOLUMNS and
SYSINDEXES. If you are using Open Client or JDBC interfaces, create

450

Chapter 13. Transact-SQL Compatibility

your database excluding these views. You can do this with thedbinit -k

command-line switch.

If you do not use this option when creating your database, the following two
statements return different results:

SELECT * FROM SYSCOLUMNS ;

SELECT * FROM dbo.syscolumns ;

❖ To drop the Adaptive Server Anywhere system views from an ex-
isting database

1. Connect to the database as a user with DBA authority.

2. Execute the following statements:

DROP VIEW SYS.SYSCOLUMNS ;
DROP VIEW SYS.SYSINDEXES

Caution
Ensure that you do not drop the dbo.syscolumns or dbo.sysindexes
system view.

Setting options for Transact-SQL compatibility

You set Adaptive Server Anywhere database options using the SET OPTION
statement. Several database option settings are relevant to Transact-SQL
behavior.

Set the
allow_nulls_by_default
option

By default, Adaptive Server Enterprise disallows NULLs on new columns
unless you explicitly tell the column to allow NULLs. Adaptive Server
Anywhere permits NULL in new columns by default, which is compatible
with the SQL/92 ISO standard.

To make Adaptive Server Enterprise behave in a SQL/92-compatible
manner, use thesp_dboptionsystem procedure to set the
allow_nulls_by_defaultoption to true.

To make Adaptive Server Anywhere behave in a Transact-SQL-compatible
manner, set theallow_nulls_by_defaultoption to OFF. You can do this
using the SET OPTION statement as follows:

SET OPTION PUBLIC.allow_nulls_by_default = ’OFF’

Set the quoted_identifier
option

By default, Adaptive Server Enterprise treats identifiers and strings
differently than Adaptive Server Anywhere, which matches the SQL/92 ISO
standard.

451

Thequoted_identifier option is available in both Adaptive Server
Enterprise and Adaptive Server Anywhere. Ensure the option is set to the
same value in both databases, for identifiers and strings to be treated in a
compatible manner.

For SQL/92 behavior, set thequoted_identifier option to ON in both
Adaptive Server Enterprise and Adaptive Server Anywhere.

For Transact-SQL behavior, set thequoted_identifier option to OFF in both
Adaptive Server Enterprise and Adaptive Server Anywhere. If you choose
this, you can no longer use identifiers that are the same as keywords,
enclosed in double quotes.

For more information on thequoted_identifier option, see
“QUOTED_IDENTIFIER option [compatibility]”[ASA Database
Administration Guide,page 620].

Set the automatic_
timestamp option to ON

Transact-SQL defines atimestampcolumn with special properties. With the
automatic_timestampoption set to ON, the Adaptive Server Anywhere
treatment oftimestampcolumns is similar to Adaptive Server Enterprise
behavior.

With theautomatic_timestampoption set to ON in Adaptive Server
Anywhere (the default setting is OFF), any new columns with the
TIMESTAMP data type that do not have an explicit default value defined
receive a default value oftimestamp.

☞ For information ontimestampcolumns, see“The special Transact-SQL
timestamp column and data type” on page 454.

Set the string_rtruncation
option

Both Adaptive Server Enterprise and Adaptive Server Anywhere support the
string_rtruncation option, which affects error message reporting when an
INSERT or UPDATE string is truncated. Ensure that each database has the
option set to the same value.

☞ For more information on the STRING_RTRUNCATION option, see
“STRING_RTRUNCATION option [compatibility]”[ASA Database
Administration Guide,page 626].

☞ For more information on database options for Transact-SQL
compatibility, see “Compatibility options”[ASA Database Administration
Guide,page 566].

Case sensitivity

Case sensitivity in databases refers to:

♦ Data The case sensitivity of the data is reflected in indexes, in the

452

Chapter 13. Transact-SQL Compatibility

results of queries, and so on.

♦ Identifiers Identifiers include table names, column names, user IDs,
and so on.

♦ Passwords Case sensitivity of passwords is treated differently to other
identifiers.

Case sensitivity of data You decide the case sensitivity of Adaptive Server Anywhere data in
comparisons when you create the database. By default, Adaptive Server
Anywhere databases are case-insensitive in comparisons, although data is
always held in the case in which you enter it.

Adaptive Server Enterprise’s sensitivity to case depends on the sort order
installed on the Adaptive Server Enterprise system. Case sensitivity can be
changed for single-byte character sets by reconfiguring the Adaptive Server
Enterprise sort order.

Case sensitivity of
identifiers

Adaptive Server Anywhere does not support case sensitive identifiers. In
Adaptive Server Enterprise, the case sensitivity of identifiers follows the
case sensitivity of the data. User IDs are treated like any other identified, and
are always case insensitive. The default user ID for databases is upper case
DBA.

In Adaptive Server Enterprise, domain names are case sensitive. In Adaptive
Server Anywhere, they are case insensitive, with the exception of Java data
types.

User IDs and passwords In Adaptive Server Anywhere, passwords follow the case sensitivity of the
data. Extended characters used in passwords are case sensitive, regardless of
the database’s case sensitivity. The default password for databases is upper
caseSQL.

In Adaptive Server Enterprise, the case sensitivity of user IDs and passwords
follows the case sensitivity of the server.

Ensuring compatible object names

Each database object must have a unique name within a certainname space.
Outside this name space, duplicate names are allowed. Some database
objects occupy different name spaces in Adaptive Server Enterprise and
Adaptive Server Anywhere.

In Adaptive Server Anywhere, indexes and triggers are owned by the owner
of the table on which they are created. Index and trigger names must be
unique for a given owner. For example, while the tables t1 owned by user
user1 and t2 owned by user user2 may have indexes of the same name, no
two tables owned by a single user may have an index of the same name.

453

Adaptive Server Enterprise has a less restrictive name space for index names
than Adaptive Server Anywhere. Index names must be unique on a given
table, but any two tables may have an index of the same name. For
compatible SQL, stay within the Adaptive Server Anywhere restriction of
unique index names for a given table owner.

Adaptive Server Enterprise has a more restrictive name space on trigger
names than Adaptive Server Anywhere. Trigger names must be unique in the
database. For compatible SQL, you should stay within the Adaptive Server
Enterprise restriction and make your trigger names unique in the database.

The special Transact-SQL timestamp column and data type

Adaptive Server Anywhere supports the Transact-SQL special timestamp
column. The timestamp column, together with the tsequal system function,
checks whether a row has been updated.

Two meanings of timestamp
Adaptive Server Anywhere has a TIMESTAMP data type, which holds
accurate date and time information. It is distinct from the special Transact-
SQL TIMESTAMP column and data type.

Creating a Transact-SQL
timestamp column in
Adaptive Server
Anywhere

To create a Transact-SQL timestamp column, create a column that has the
(Adaptive Server Anywhere) data type TIMESTAMP and a default setting of
timestamp. The column can have any name, although the name timestamp is
common.

For example, the following CREATE TABLE statement includes a
Transact-SQL timestamp column:

CREATE TABLE table_name (
column_1 INTEGER ,
column_2 TIMESTAMP DEFAULT TIMESTAMP

)

The following ALTER TABLE statement adds a Transact-SQL timestamp
column to the sales_order table:

ALTER TABLE sales_order
ADD timestamp TIMESTAMP DEFAULT TIMESTAMP

In Adaptive Server Enterprise a column with the name timestamp and no
data type specified automatically receives a TIMESTAMP data type. In
Adaptive Server Anywhere you must explicitly assign the data type yourself.

If you have the AUTOMATIC_TIMESTAMP database option set to ON,
you do not need to set the default value: any new column created with
TIMESTAMP data type and with no explicit default receives a default value

454

Chapter 13. Transact-SQL Compatibility

of timestamp. The following statement sets AUTOMATIC_TIMESTAMP to
ON:

SET OPTION PUBLIC.AUTOMATIC_TIMESTAMP=’ON’

The data type of a
timestamp column

Adaptive Server Enterprise treats a timestamp column as a domain that is
VARBINARY(8), allowing NULL, while Adaptive Server Anywhere treats a
timestamp column as the TIMESTAMP data type, which consists of the date
and time, with fractions of a second held to six decimal places.

When fetching from the table for later updates, the variable into which the
timestamp value is fetched should correspond to the column description.

Timestamping an
existing table

If you add a special timestamp column to an existing table, all existing rows
have a NULL value in the timestamp column. To enter a timestamp value
(the current timestamp) for existing rows, update all rows in the table such
that the data does not change. For example, the following statement updates
all rows in the sales_order table, without changing the values in any of the
rows:

UPDATE sales_order
SET region = region

In Interactive SQL, you may need to set the TIMESTAMP_FORMAT option
to see the differences in values for the rows. The following statement sets
the TIMESTAMP_FORMAT option to display all six digits in the fractions
of a second:

SET OPTION TIMESTAMP_FORMAT=’YYYY-MM-DD HH:NN:ss.SSSSSS’

If all six digits are not shown, some timestamp column values may appear to
be equal: they are not.

Using tsequal for updates With the tsequal system function you can tell whether a timestamp column
has been updated or not.

For example, an application may SELECT a timestamp column into a
variable. When an UPDATE of one of the selected rows is submitted, it can
use the tsequal function to check whether the row has been modified. The
tsequal function compares the timestamp value in the table with the
timestamp value obtained in the SELECT. Identical timestamps means there
are no changes. If the timestamps differ, the row has been changed since the
SELECT was carried out.

A typical UPDATE statement using the tsequal function looks like this:

UPDATE publishers
SET city = ’Springfield’
WHERE pub_id = ’0736’
AND TSEQUAL(timestamp, ’1995/10/25 11:08:34.173226’)

455

The first argument to the tsequal function is the name of the special
timestamp column; the second argument is the timestamp retrieved in the
SELECT statement. In Embedded SQL, the second argument is likely to be
a host variable containing a TIMESTAMP value from a recent FETCH on
the column.

The special IDENTITY column

To create an IDENTITY column, use the following CREATE TABLE
syntax:

CREATE TABLE table-name (
...
column-name numeric(n,0) IDENTITY NOT NULL,
...

)

wheren is large enough to hold the value of the maximum number of rows
that may be inserted into the table.

The IDENTITY column stores sequential numbers, such as invoice numbers
or employee numbers, which are automatically generated. The value of the
IDENTITY column uniquely identifies each row in a table.

In Adaptive Server Enterprise, each table in a database can have one
IDENTITY column. The data type must be numeric with scale zero, and the
IDENTITY column should not allow nulls.

In Adaptive Server Anywhere, the IDENTITY column is a column default
setting. You can explicitly insert values that are not part of the sequence into
the column with an INSERT statement. Adaptive Server Enterprise does not
allow INSERTs into identity columns unless the identity_insert option ison .
In Adaptive Server Anywhere, you need to set the NOT NULL property
yourself and ensure that only one column is an IDENTITY column.
Adaptive Server Anywhere allows any numeric data type to be an
IDENTITY column.

In Adaptive Server Anywhere the identity column and the
AUTOINCREMENT default setting for a column are identical.

Retrieving IDENTITY column values with @@identity

The first time you insert a row into the table, an IDENTITY column has a
value of 1 assigned to it. On each subsequent insert, the value of the column
increases by one. The value most recently inserted into an identity column is
available in the @@identity global variable.

The value of @@identity changes each time a statement attempts to insert a

456

Chapter 13. Transact-SQL Compatibility

row into a table.

♦ If the statement affects a table without an IDENTITY column,
@@identity is set to 0.

♦ If the statement inserts multiple rows, @@identity reflects the last value
inserted into the IDENTITY column.

This change is permanent. @@identity does not revert to its previous value
if the statement fails or if the transaction that contains it is rolled back.

☞ For more information on the behavior of @@identity, see “@@identity
global variable”[ASA SQL Reference,page 45].

457

Writing compatible SQL statements
This section describes general guidelines for writing SQL for use on more
than one database-management system, and discusses compatibility issues
between Adaptive Server Enterprise and Adaptive Server Anywhere at the
SQL statement level.

General guidelines for writing portable SQL

When writing SQL for use on more than one database-management system,
make your SQL statements as explicit as possible. Even if more than one
server supports a given SQL statement, it may be a mistake to assume that
default behavior is the same on each system. General guidelines applicable
to writing compatible SQL include:

♦ Spell out all of the available options, rather than using default behavior.

♦ Use parentheses to make the order of execution within statements
explicit, rather than assuming identical default order of precedence for
operators.

♦ Use the Transact-SQL convention of an @ sign preceding variable names
for Adaptive Server Enterprise portability.

♦ Declare variables and cursors in procedures, triggers, and batches
immediately following a BEGIN statement. Adaptive Server Anywhere
requires this, although Adaptive Server Enterprise allows declarations to
be made anywhere in a procedure, trigger, or batch.

♦ Avoid using reserved words from either Adaptive Server Enterprise or
Adaptive Server Anywhere as identifiers in your databases.

♦ Assume large namespaces. For example, ensure that each index has a
unique name.

Creating compatible tables

Adaptive Server Anywhere supports domains which allow constraint and
default definitions to be encapsulated in the data type definition. It also
supports explicit defaults and CHECK conditions in the CREATE TABLE
statement. It does not, however, support named constraints or named
defaults.

NULL Adaptive Server Anywhere and Adaptive Server Enterprise differ in some
respects in their treatment of NULL. In Adaptive Server Enterprise, NULL
is sometimes treated as if it were a value.

458

Chapter 13. Transact-SQL Compatibility

For example, a unique index in Adaptive Server Enterprise cannot contain
rows that hold null and are otherwise identical. In Adaptive Server
Anywhere, a unique index can contain such rows.

By default, columns in Adaptive Server Enterprise default to NOT NULL,
whereas in Adaptive Server Anywhere the default setting is NULL. You can
control this setting using theallow_nulls_by_defaultoption. Specify
explicitly NULL or NOT NULL to make your data definition statements
transferable.

☞ For information on this option, see“Setting options for Transact-SQL
compatibility” on page 451.

Temporary tables You can create a temporary table by placing a pound sign (#) in front of a
CREATE TABLE statement. These temporary tables are Adaptive Server
Anywhere declared temporary tables, and are available only in the current
connection. For information about declared temporary tables in Adaptive
Server Anywhere, see “DECLARE LOCAL TEMPORARY TABLE
statement”[ASA SQL Reference,page 397].

Physical placement of a table is carried out differently in Adaptive Server
Enterprise and in Adaptive Server Anywhere. Adaptive Server Anywhere
supports theON segment-nameclause, butsegment-namerefers to an
Adaptive Server Anywhere dbspace.

☞ For information about the CREATE TABLE statement, see “CREATE
TABLE statement”[ASA SQL Reference,page 361].

Writing compatible queries

There are two criteria for writing a query that runs on both Adaptive Server
Anywhere and Adaptive Server Enterprise databases:

♦ The data types, expressions, and search conditions in the query must be
compatible.

♦ The syntax of the SELECT statement itself must be compatible.

This section explains compatible SELECT statement syntax, and assumes
compatible data types, expressions, and search conditions. The examples
assume the QUOTED_IDENTIFIER setting is OFF: the default Adaptive
Server Enterprise setting, but not the default Adaptive Server Anywhere
setting.

Adaptive Server Anywhere supports the following subset of the
Transact-SQL SELECT statement.

459

Syntax SELECT [ALL | DISTINCT] select-list
. . . [INTO #temporary-table-name]
. . . [FROM table-spec [HOLDLOCK | NOHOLDLOCK],
. . . table-spec [HOLDLOCK | NOHOLDLOCK], . . .]
. . . [WHERE search-condition]
. . . [GROUP BY column-name, . . .]
. . . [HAVING search-condition]

[ORDER BY { expression | integer }
[ASC | DESC], . . .]

Parameters select-list :
table-name.*

| *
| expression
| alias-name = expression
| expression as identifier
| expression as T_string

table-spec:
[owner .]table-name
. . . [[AS] correlation-name]
. . . [(INDEX index_name [PREFETCH size][LRU | MRU])]

alias-name:identifier :
| ’ string’ | " string"

☞ For a full description of the SELECT statement, see “SELECT
statement”[ASA SQL Reference,page 541].

Adaptive Server Anywhere does not support the following keywords and
clauses of the Transact-SQL SELECT statement syntax:

♦ SHARED keyword

♦ COMPUTE clause

♦ FOR BROWSE clause

♦ GROUP BY ALL clause

Notes ♦ The INTO table_name clause, which creates a new table based on the
SELECT statement result set, is supported only for declared temporary
tables where the table name starts with a #. Declared temporary tables
exist for a single connection only.

♦ Adaptive Server Anywhere does not support the Transact-SQL extension
to the GROUP BY clause allowing references to columns and
expressions that are not used for creating groups. In Adaptive Server
Enterprise, this extension produces summary reports.

460

Chapter 13. Transact-SQL Compatibility

♦ The FOR READ ONLY clause and the FOR UPDATE clause are parsed,
but have no effect.

♦ The performance parameters part of the table specification is parsed, but
has no effect.

♦ The HOLDLOCK keyword is supported by Adaptive Server Anywhere.
It makes a shared lock on a specified table or view more restrictive by
holding it until the completion of a transaction (instead of releasing the
shared lock as soon as the required data page is no longer needed,
whether or not the transaction has been completed). For the purposes of
the table for which the HOLDLOCK is specified, the query is carried out
at isolation level 3.

♦ The HOLDLOCK option applies only to the table or view for which it is
specified, and only for the duration of the transaction defined by the
statement in which it is used. Setting the isolation level to 3 applies a
holdlock for each select within a transaction. You cannot specify both a
HOLDLOCK and NOHOLDLOCK option in a query.

♦ The NOHOLDLOCK keyword is recognized by Adaptive Server
Anywhere, but has no effect.

♦ Transact-SQL uses the SELECT statement to assign values to local
variables:

SELECT @localvar = 42

The corresponding statement in Adaptive Server Anywhere is the SET
statement:

SET localvar = 42

The variable name can optionally be set using the SET statement and the
Transact-SQL convention of an @ sign preceding the name:

SET @localvar = 42

♦ Adaptive Server Enterprise does not support the following clauses of the
SELECT statement syntax:

• INTO host-variable-list

• INTO variable-list.

• Parenthesized queries.

♦ Adaptive Server Enterprise uses join operators in the WHERE clause ,
rather than the FROM clause and the ON condition for joins.

461

Compatibility of joins

In Transact-SQL, joins appear in the WHERE clause, using the following
syntax:

start of select , update, insert , delete, or subquery
FROM { table-list | view-list } WHERE [NOT]
[table-name.| view name.]column-name

join-operator
[table-name.| view-name.]column_name
[{ AND | OR } [NOT]
[table-name.| view-name.]column_name

join-operator
[table-name.| view-name.]column-name]. . .

end of select , update, insert , delete, or subquery

The join-operatorin the WHERE clause may be any of the comparison
operators, or may be either of the followingouter-join operators:

♦ *= Left outer join operator

♦ =* Right outer join operator.

Adaptive Server Anywhere supports the Transact-SQL outer-join operators
as an alternative to the native SQL/92 syntax. You cannot mix dialects within
a query. This rule applies also to views used by a query—an outer-join query
on a view must follow the dialect used by the view-defining query.

Adaptive Server Anywhere also provides a SQL/92 syntax for joins other
than outer joins, in which the joins are placed in the FROM clause rather
than the WHERE clause.

☞ For information about joins in Adaptive Server Anywhere and in the
ANSI/ISO SQL standards, see“Joins: Retrieving Data from Several Tables”
on page 261, and “FROM clause”[ASA SQL Reference,page 445].

☞ For more information on Transact-SQL compatibility of joins, see
“Transact-SQL outer joins (*= or =*)” on page 278.

462

Chapter 13. Transact-SQL Compatibility

Transact-SQL procedure language overview
Thestored procedure languageis the part of SQL used in stored
procedures, triggers, and batches.

Adaptive Server Anywhere supports a large part of the Transact-SQL stored
procedure language in addition to the Watcom-SQL dialect based on
SQL/92.

Transact-SQL stored procedure overview

Based on the ISO/ANSI draft standard , the Adaptive Server Anywhere
stored procedure language differs from the Transact-SQL dialect in many
ways. Many of the concepts and features are similar, but the syntax is
different. Adaptive Server Anywhere support for Transact-SQL takes
advantage of the similar concepts by providing automatic translation
between dialects. However, a procedure must be written exclusively in one
of the two dialects, not in a mixture of the two.

Adaptive Server
Anywhere support for
Transact-SQL stored
procedures

There are a variety of aspects to Adaptive Server Anywhere support for
Transact-SQL stored procedures, including:

♦ Passing parameters

♦ Returning result sets

♦ Returning status information

♦ Providing default values for parameters

♦ Control statements

♦ Error handling

♦ User-defined functions

Transact-SQL trigger overview

Trigger compatibility requires compatibility of trigger features and syntax.
This section provides an overview of the feature compatibility of
Transact-SQL and Adaptive Server Anywhere triggers.

Adaptive Server Enterprise executes triggers after the triggering statement
has completed: they arestatement level, after triggers. Adaptive Server
Anywhere supports bothrow level triggers (which execute before or after
each row has been modified) and statement level triggers (which execute
after the entire statement).

463

Row-level triggers are not part of the Transact-SQL compatibility features,
and are discussed in“Using Procedures, Triggers, and Batches” on page 609.

Description of
unsupported or different
Transact-SQL triggers

Features of Transact-SQL triggers that are either unsupported or different in
Adaptive Server Anywhere include:

♦ Triggers firing other triggers Suppose a trigger carries out an action
that would, if carried out directly by a user, fire another trigger. Adaptive
Server Anywhere and Adaptive Server Enterprise respond slightly
differently to this situation. By default in Adaptive Server Enterprise,
triggers fire other triggers up to a configurable nesting level, which has
the default value of 16. You can control the nesting level with the
Adaptive Server Enterprisenested triggersoption. In Adaptive Server
Anywhere, triggers fire other triggers without limit unless there is
insufficient memory.

♦ Triggers firing themselves Suppose a trigger carries out an action that
would, if carried out directly by a user, fire the same trigger. Adaptive
Server Anywhere and Adaptive Server Enterprise respond slightly
differently to this situation. In Adaptive Server Anywhere,
non-Transact-SQL triggers fire themselves recursively, while
Transact-SQL dialect triggers do not fire themselves recursively.

By default in Adaptive Server Enterprise, a trigger does not call itself
recursively, but you can turn on theself_recursionoption to allow
triggers to call themselves recursively.

♦ ROLLBACK statement in triggers Adaptive Server Enterprise permits
the ROLLBACK TRANSACTION statement within triggers, to roll back
the entire transaction of which the trigger is a part. Adaptive Server
Anywhere does not permit ROLLBACK (or ROLLBACK
TRANSACTION) statements in triggers because a triggering action and
its trigger together form an atomic statement.

Adaptive Server Anywhere does provide the Adaptive Server
Enterprise-compatible ROLLBACK TRIGGER statement to undo actions
within triggers. See “ROLLBACK TRIGGER statement”[ASA SQL
Reference,page 539].

Transact-SQL batch overview

In Transact-SQL, abatch is a set of SQL statements submitted together and
executed as a group, one after the other. Batches can be stored in command
files. The Interactive SQL utility in Adaptive Server Anywhere and theisql
utility in Adaptive Server Enterprise provide similar capabilities for
executing batches interactively.

464

Chapter 13. Transact-SQL Compatibility

The control statements used in procedures can also be used in batches.
Adaptive Server Anywhere supports the use of control statements in batches
and the Transact-SQL-like use of non-delimited groups of statements
terminated with a GO statement to signify the end of a batch.

For batches stored in command files, Adaptive Server Anywhere supports
the use of parameters in command files. Adaptive Server Enterprise does not
support parameters.

☞ For information on parameters, see “PARAMETERS statement
[Interactive SQL]”[ASA SQL Reference,page 506].

465

Automatic translation of stored procedures
In addition to supporting Transact-SQL alternative syntax, Adaptive Server
Anywhere provides aids for translating statements between the Watcom-SQL
and Transact-SQL dialects. Functions returning information about SQL
statements and enabling automatic translation of SQL statements include:

♦ SQLDialect(statement) ReturnsWatcom-SQL or Transact-SQL.

♦ WatcomSQL(statement) Returns the Watcom-SQL syntax for the
statement.

♦ TransactSQL(statement) Returns the Transact-SQL syntax for the
statement.

These are functions, and so can be accessed using a select statement from
Interactive SQL. For example:

select SqlDialect(’select * from employee’)

returns the value Watcom-SQL.

Using Sybase Central to translate stored procedures

Sybase Central has facilities for creating, viewing, and altering procedures
and triggers.

❖ To translate a stored procedure using Sybase Central

1. Connect to a database using Sybase Central, either as owner of the
procedure you wish to change, or as a DBA user.

2. Open the Procedures & Functions folder.

3. Right-click the procedure you want to translate and from the popup menu
choose one of the Translate to commands, depending on the dialect you
want to use.

The procedure appears in the right pane in the selected dialect. If the
selected dialect is not the one in which the procedure is stored, the server
translates it to that dialect. Any untranslated lines appear as comments.

4. Rewrite any untranslated lines as needed.

5. When finished, choose File➤ Save Procedure to save the translated
version to the database. You can also export the text to a file for editing
outside of Sybase Central.

466

Chapter 13. Transact-SQL Compatibility

Returning result sets from Transact-SQL
procedures

Adaptive Server Anywhere uses a RESULT clause to specify returned result
sets. In Transact-SQL procedures, the column names or alias names of the
first query are returned to the calling environment.

Example of
Transact-SQL procedure

The following Transact-SQL procedure illustrates how Transact-SQL stored
procedures returns result sets:

CREATE PROCEDURE showdept (@deptname varchar(30))
AS

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = @deptname
AND department.dept_id = employee.dept_id

Example of Watcom-SQL
procedure

The following is the corresponding Adaptive Server Anywhere procedure:

CREATE PROCEDURE showdept(in deptname varchar(30))
RESULT (lastname char(20), firstname char(20))
BEGIN

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = deptname
AND department.dept_id = employee.dept_id

END

☞ For more information about procedures and results, see“Returning
results from procedures” on page 640

467

Variables in Transact-SQL procedures
Adaptive Server Anywhere uses the SET statement to assign values to
variables in a procedure. In Transact-SQL, values are assigned using either
the SELECT statement with an empty table-list, or the SET statement. The
following simple procedure illustrates how the Transact-SQL syntax works:

CREATE PROCEDURE multiply
@mult1 int,
@mult2 int,
@result int output

AS
SELECT @result = @mult1 * @mult2

This procedure can be called as follows:

CREATE VARIABLE @product int
go
EXECUTE multiply 5, 6, @product OUTPUT
go

The variable@product has a value of 30 after the procedure executes.

☞ For more information on using the SELECT statement to assign
variables, see“Writing compatible queries” on page 459. For more
information on using the SET statement to assign variables, see “SET
statement”[ASA SQL Reference,page 548].

468

Chapter 13. Transact-SQL Compatibility

Error handling in Transact-SQL procedures
Default procedure error handling is different in the Watcom-SQL and
Transact-SQL dialects. By default, Watcom-SQL dialect procedures exit
when they encounter an error, returning SQLSTATE and SQLCODE values
to the calling environment.

Explicit error handling can be built into Watcom-SQL stored procedures
using the EXCEPTION statement, or you can instruct the procedure to
continue execution at the next statement when it encounters an error, using
the ON EXCEPTION RESUME statement.

When a Transact-SQL dialect procedure encounters an error, execution
continues at the following statement. The global variable@@error holds
the error status of the most recently executed statement. You can check this
variable following a statement to force return from a procedure. For
example, the following statement causes an exit if an error occurs.

IF @@error != 0 RETURN

When the procedure completes execution, a return value indicates the
success or failure of the procedure. This return status is an integer, and can
be accessed as follows:

DECLARE @status INT
EXECUTE @status = proc_sample
IF @status = 0

PRINT ’procedure succeeded’
ELSE

PRINT ’procedure failed’

The following table describes the built-in procedure return values and their
meanings:

Value Meaning

0 Procedure executed without error

–1 Missing object

–2 Data type error

–3 Process was chosen as deadlock victim

–4 Permission error

–5 Syntax error

–6 Miscellaneous user error

–7 Resource error, such as out of space

469

Value Meaning

–8 Non-fatal internal problem

–9 System limit was reached

–10 Fatal internal inconsistency

–11 Fatal internal inconsistency

–12 Table or index is corrupt

–13 Database is corrupt

–14 Hardware error

The RETURN statement can be used to return other integers, with their own
user-defined meanings.

Using the RAISERROR statement in procedures

The RAISERROR statement is a Transact-SQL statement for generating
user-defined errors. It has a similar function to the SIGNAL statement.

☞ For a description of the RAISERROR statement, see “RAISERROR
statement [T-SQL]”[ASA SQL Reference,page 515].

By itself, the RAISERROR statement does not cause an exit from the
procedure, but it can be combined with a RETURN statement or a test of the
@@error global variable to control execution following a user-defined error.

If you set the ON_TSQL_ERROR database option to CONTINUE, the
RAISERROR statement no longer signals an execution-ending error.
Instead, the procedure completes and stores the RAISERROR status code
and message, and returns the most recent RAISERROR. If the procedure
causing the RAISERROR was called from another procedure, the
RAISERROR returns after the outermost calling procedure terminates.

You lose intermediate RAISERROR statuses and codes after the procedure
terminates. If, at return time, an error occurs along with the RAISERROR,
then the error information is returned and you lose the RAISERROR
information. The application can query intermediate RAISERROR statuses
by examining@@error global variable at different execution points.

Transact-SQL-like error handling in the Watcom-SQL dialect

You can make a Watcom-SQL dialect procedure handle errors in a
Transact-SQL-like manner by supplying the ON EXCEPTION RESUME

470

Chapter 13. Transact-SQL Compatibility

clause to the CREATE PROCEDURE statement:

CREATE PROCEDURE sample_proc()
ON EXCEPTION RESUME
BEGIN

...
END

The presence of an ON EXCEPTION RESUME clause prevents explicit
exception handling code from being executed, so avoid using these two
clauses together.

471

CHAPTER 14

Differences from Other SQL Dialects

About this chapter Adaptive Server Anywhere complies completely with the SQL-92-based
United States Federal Information Processing Standard Publication (FIPS
PUB) 127.

Adaptive Server Anywhere is entry-level compliant with the ISO/ANSI
SQL-92 standard, and with minor exceptions is compliant with SQL-99 core
specifications.

Complete, detailed information about compliance is provided in the
reference documentation for each feature of Adaptive Server Anywhere.

This chapter describes those features of Adaptive Server Anywhere that are
not commonly found in other SQL implementations.

Contents Topic: page

Adaptive Server Anywhere SQL features 474

473

Adaptive Server Anywhere SQL features
The following features of the SQL supported by Adaptive Server Anywhere
are not found in many other SQL implementations.

Type conversions Full type conversion is implemented. Any data type can be compared with
or used in any expression with any other data type.

Dates Adaptive Server Anywhere has date, time and timestamp types that includes
a year, month and day, hour, minutes, seconds and fraction of a second. For
insertions or updates to date fields, or comparisons with date fields, a free
format date is supported.

In addition, the following operations are allowed on dates:

♦ date + integer Add the specified number of days to a date.

♦ date - integer Subtract the specified number of days from a date.

♦ date - date Compute the number of days between two dates.

♦ date + time Make a timestamp out of a date and time.

Also, many functions are provided for manipulating dates and times. See
“SQL Functions”[ASA SQL Reference,page 83]for a description of these.

Integrity Adaptive Server Anywhere supports both entity and referential integrity.
This has been implemented via the following two extensions to the
CREATE TABLE and ALTER TABLE commands.

PRIMARY KEY (column-name, ...)
[NOT NULL] FOREIGN KEY [role-name]

[(column-name, ...)]
REFERENCES table-name [(column-name, ...)]

[CHECK ON COMMIT]

The PRIMARY KEY clause declares the primary key for the relation.
Adaptive Server Anywhere will then enforce the uniqueness of the primary
key, and ensure that no column in the primary key contains the NULL value.

The FOREIGN KEY clause defines a relationship between this table and
another table. This relationship is represented by a column (or columns) in
this table which must contain values in the primary key of another table. The
system will then ensure referential integrity for these columns - whenever
these columns are modified or a row is inserted into this table, these columns
will be checked to ensure that either one or more is NULL or the values
match the corresponding columns for some row in the primary key of the
other table. For more information, see “CREATE TABLE statement”[ASA
SQL Reference,page 361].

474

Chapter 14. Differences from Other SQL Dialects

Joins Adaptive Server Anywhere allowsautomatic joins between tables. In
addition to the NATURAL and OUTER join operators supported in other
implementations, Adaptive Server Anywhere allows KEY joins between
tables based on foreign key relationships. This reduces the complexity of the
WHERE clause when performing joins.

Updates Adaptive Server Anywhere allows more than one table to be referenced by
the UPDATE command. Views defined on more than one table can also be
updated. Many SQL implementations will not allow updates on joined
tables.

Altering tables The ALTER TABLE command has been extended. In addition to changes for
entity and referential integrity, the following types of alterations are allowed:

ADD column data-type
MODIFY column data-type
DELETE column
RENAME new-table-name
RENAME old-column TO new-column

The MODIFY can be used to change the maximum length of a character
column as well as converting from one data type to another. For more
information, see “ALTER TABLE statement”[ASA SQL Reference,page 250].

Subqueries where
expressions are allowed

Adaptive Server Anywhere allows subqueries to appear wherever
expressions are allowed. Many SQL implementations only allow subqueries
on the right side of a comparison operator. For example, the following
command is valid in Adaptive Server Anywhere but not valid in most other
SQL implementations.

SELECT emp_lname,
birth_date,
(SELECT dept_name

FROM department
WHERE emp_id = employee.emp_ID
AND dept_id = 200)

FROM employee

Additional functions Adaptive Server Anywhere supports several functions not in the ANSI SQL
definition. See “SQL Functions”[ASA SQL Reference,page 83]for a full list of
available functions.

Cursors When using Embedded SQL, cursor positions can be moved arbitrarily on
the FETCH statement. Cursors can be moved forward or backward relative
to the current position or a given number of records from the beginning or
end of the cursor.

475

476

PART IV

XML IN THE DATABASE

This part describes how to use XML in the database.

CHAPTER 15

Using XML in the Database

About this chapter This chapter provides a summary of the XML support in Adaptive Server
Anywhere, including importing, exporting, storing, and querying XML data.

Contents Topic: page

What is XML? 480

Storing XML documents in relational databases 481

Exporting relational data as XML 482

Importing XML documents as relational data 483

Obtaining query results as XML 490

Using SQL/XML to obtain query results as XML 510

479

What is XML?
Extensible Markup Language (XML) represents structured data in text
format. XML was designed specifically for use on the Web.

XML is a simple markup language, like HTML, but is also flexible, like
SGML. XML is hierarchical, and its main purpose is to describe the
structure of data for both humans and computer software to author and read.

Rather than providing a static set of elements which describe various forms
of data, XML lets you define elements. As a result, many types of structured
data can be described with XML. XML documents can optionally use a
document type definition (DTD) or XML schema to define the structure,
elements, and attributes that are used in an XML file.

☞ For more detailed information about XML, see
http://www.w3.org/XML/.

XML and Adaptive Server Anywhere

There are several ways you can use XML with Adaptive Server Anywhere:

♦ Storing XML documents in the database

♦ Exporting relational data as XML

♦ Importing XML into the database

♦ Querying relational data as XML

480

Chapter 15. Using XML in the Database

Storing XML documents in relational databases
Adaptive Server Anywhere supports two data types that can be used to store
XML documents in your database: the XML data type and the LONG
VARCHAR data type. Both of these data types store the XML document as
a string in the database.

Benefits of using the
XML data type

You can cast between the XML data type and any other data type that can be
cast to or from a string. Note that there is no checking that the string is
well-formed when it is cast to XML.

When you generate elements from relational data, any characters that are
invalid in XML are quoted unless the data is of type XML. For example,
suppose you wish to generate a<product> element with the following
content:

<hat>

so that the element content contains less than and greater than signs. If you
write a query that specifies that element content is of type XML, as follows:

SELECT XMLFOREST(CAST(’<hat>’ AS XML) AS product)

then the greater than and less than signs are not quoted and you get the
following result:

<x><y/ ></x>

However, if the query does not specify that element content is of type XML,
for example:

SELECT XMLFOREST(’<hat>’ AS product)

then the less than and greater than signs are quoted as follows:

<x>< y/ > </x>

Note that attribute content is always quoted, regardless of the data type.

☞ For more information about how element content is quoted, see“Invalid
column names” on page 493.

☞ For more information about the XML data type, see “XML data type
[Character]”[ASA SQL Reference,page 55].

481

Exporting relational data as XML
Adaptive Server Anywhere provides two ways to export your relational data
as XML: the Interactive SQL OUTPUT statement and the ADO.NET
DataSet object. Both the OUTPUT statement and the ADO.NET DataSet
object are used to save your relational data as XML.

The FOR XML clause and SQL/XML functions allow you to generate the
results as XML from the relational data in your database. You can then
export the generated XML to a file using the UNLOAD statement or the
xp_write_file system procedure.

Exporting relational data as XML from Interactive SQL

The Interactive SQL OUTPUT statement supports an XML format that
outputs query results to a generated XML file.

This generated XML file is encoded in UTF-8 and contains an embedded
DTD. In the XML file, binary values are encoded in character data (CDATA)
blocks with the binary data rendered as 2-hex-digit strings.

The INPUT statement does not accept XML as a file format.

☞ For more information about exporting XML with the OUTPUT
statement, see “OUTPUT statement [Interactive SQL]”[ASA SQL Reference,
page 501].

Exporting relational data as XML using the DataSet object

The ADO.NET DataSet object allows you to save the contents of the
DataSet in an XML document. Once you have filled the DataSet (for
example, with the results of a query on your database) you can save either
the schema or both the schema and data from the DataSet in an XML file.
The WriteXml method saves both the schema and data in an XML file, while
the WriteXmlSchema method saves only the schema in an XML file. You
can fill a DataSet object using the Adaptive Server Anywhere ADO.NET
data provider.

☞ For information about exporting relational data as XML using a
DataSet, see “Inserting, updating, and deleting rows using the AsaCommand
object” [ASA Programming Guide,page 352].

482

Chapter 15. Using XML in the Database

Importing XML documents as relational data
Adaptive Server Anywhere supports two different ways to import XML into
your database:

♦ using the OPENXML function to generate a result set from an XML
document

♦ using the ADO.NET DataSet object to read the data and/or schema from
an XML document into a DataSet

Importing XML using OPENXML

OPENXML is used in the FROM clause of a query to generate a result set
from an XML document. OPENXML uses a subset of the XPath query
language to select nodes from an XML document.

Using XPath expressions When you use OPENXML, the XML document is parsed and the result is
modeled as a tree. The tree is made up of nodes. XPath expressions are used
to select nodes in the tree. The following list describes some
commonly-used XPath expressions:

♦ / indicates the root node of the XML document

♦ . (single period) indicates the current node of the XML document

♦ // indicates all descendants of the current node, including the current
node

♦ .. indicates the parent node of the current node

♦ ./@attributename indicates the attribute of the current node having the
nameattributename

♦ ./childname indicates the children of the current node that are elements
having the namechildname

Consider the following XML document:

<inventory>
<product id="301" size="Medium">Tee Shirt

<quantity>54</quantity>
</product>
<product id="302" size="One size fits all">Tee Shirt

<quantity>75</quantity>
</product>
<product id="400" size="One size fits all">Baseball Cap

<quantity>112</quantity>
</product>

</inventory>

483

The<inventory> element is the root node. You can refer to it using the
following XPath expression:

/inventory

Suppose that the current node is a<quantity> element. You can refer to this
node using the following XPath expression:

.

To find all the<product> elements that are children of the<inventory>
element, use the following XPath expression:

/inventory/product

If the current node is a<product> element and you want to refer to the size
attribute, use the following XPath expression:

./@size

☞ For a complete list of XPath syntax supported by OPENXML, see
“OPENXML function [String]” [ASA SQL Reference,page 165].

☞ For information about the XPath query language, see
http://www.w3.org/TR/xpath.

Generating a result set
using OPENXML

Each match for the firstxpath-queryargument to OPENXML generates one
row in the result set. The WITH clause specifies the schema of the result set
and how the value is found for each column in the result set. For example,
consider the following query:

SELECT * FROM OPENXML(’<inventory>
<product>Tee Shirt

<quantity>54</quantity>
<color>Orange</color>

</product>
<product>Baseball Cap

<quantity>112</quantity>
<color>Black</color>

</product>
</inventory>’,

’/inventory/product’)
WITH (quantity CHAR(3) ’quantity’,

color CHAR(20) ’color’)

The firstxpath-queryargument is/inventory/product , and there are two
<product> elements in the XML, so two rows are generated by this query.

The WITH clause specifies that there are two columns: quantity and color.
The values for these columns are taken from the<quantity> and<color>
elements. The query above generates the following result:

484

Chapter 15. Using XML in the Database

quantity color

54 Orange

112 Black

☞ For more information, see “OPENXML function [String]”[ASA SQL
Reference,page 165].

Using OPENXML to
generate an edge table

OPENXML can be used to generate an edge table, a table that contains a
row for every element in the XML document. You may wish to generate an
edge table so that you can query the data in the result set using SQL.

The following SQL statement creates a variable, x, that contains an XML
document. The XML generated by the query has a root element called
<root>, which is generated using the XMLELEMENT function, and
elements are generated for each column in the employee, sales_order, and
customer tables using FOR XML AUTO with the ELEMENTS modifier
specified.

☞ For information about the XMLELEMENT function, see
“XMLELEMENT function [String]” [ASA SQL Reference,page 207].

☞ For information about FOR XML AUTO, see“Using FOR XML
AUTO” on page 496.

CREATE VARIABLE x XML;
SET x=(SELECT XMLELEMENT(NAME root,

(SELECT * FROM employee
KEY JOIN sales_order
KEY JOIN customer
FOR XML AUTO, ELEMENTS)));

The generated XML looks as follows:

<root>
<employee>

<emp_id>299</emp_id>
<manager_id>902</manager_id>
<emp_fname>Rollin</emp_fname>
<emp_lname>Overbey</emp_lname>
<dept_id>200</dept_id>
<street>191 Companion Ct.</street>

<city>Kanata</city>
<state>CA</state>
<zip_code>94608</zip_code>
<phone>5105557255</phone>
<status>A</status>
<ss_number>025487133</ss_number>
<salary>39300.000</salary>
<start_date>1987-02-19</start_date>

485

<birth_date>1964-03-15</birth_date>
<bene_health_ins>Y</bene_health_ins>
<bene_life_ins>Y</bene_life_ins>
<bene_day_care>N</bene_day_care>
<sex>M</sex>
<sales_order>

<id>2001</id>
<cust_id>101</cust_id>

<order_date>2000-03-16</order_date>
<fin_code_id>r1</fin_code_id>
<region>Eastern</region>
<sales_rep>299</sales_rep>
<customer>

<id>101</id>
<fname>Michaels</fname>
<lname>Devlin</lname>
<address>114 Pioneer Avenue</address>

<city>Kingston</city>
<state>NJ</state>
<zip>07070</zip>
<phone>2015558966</phone>
<company_name>The Power Group</company_name>

</customer>
</sales_order>

</employee>
...

The following query uses the descendant-or-self (//*) XPath expression to
match every element in the above XML document, and for each element the
id metaproperty is used to obtain an id for the node, and the parent (../)
XPath expression is used with the id metaproperty to get the parent node.
The localname metaproperty is used to obtain the name of each element.

SELECT * FROM OPENXML(x, ’//*’)
WITH (id INT ’@mp:id’,

parent INT ’../@mp:id’,
name CHAR(20) ’@mp:localname’,
text LONG VARCHAR ’text()’)

ORDER BY id

The result set generated by this query shows the id of each node, the id of
the parent node, and the name and content for each element in the XML
document.

486

Chapter 15. Using XML in the Database

id parent name text

5 (NULL) root (NULL)

23 15 emp_id 299

47 15 manager_id 902

74 15 emp_fname Rollin

...

Querying XML in a
column

If you have a table with a column that contains XML, you can use
OPENXML to query all the XML values in the column at once. This can be
done using a lateral derived table.

The following statements create a table with two columns, manager_id and
reports. The reports column contains XML data generated from the
employee table.

CREATE TABLE t (manager_id INT, reports XML);
INSERT INTO t
SELECT manager_id, XMLELEMENT(NAME reports,

XMLAGG(
XMLELEMENT(NAME e, emp_id)))

FROM employee
GROUP BY manager_id;

Execute the following query to view the data in the t table:

SELECT * FROM t;

This query produces the following result:

manager_id reports

1293 <reports>
<e>148</e>
<e>390</e>
<e>586</e>
<e>757</e>
...

</reports>

1576 <reports>
<e>184</e>
<e>207</e>
<e>318</e>
<e>409</e>
...

</reports>

487

manager_id reports

902 <reports>
<e>129</e>
<e>195</e>
<e>299</e>
<e>467</e>
...

</reports>

703 <reports>
<e>191</e>
<e>750</e>
<e>868</e>
<e>921</e>
...

</reports>

... ...

The following query uses a lateral derived table to generate a result set with
two columns: one that lists the id for each manager, and one that lists the id
for each employee that reports to that manager:

SELECT manager_id, eid
FROM t, LATERAL(OPENXML(t.reports, ’//e’)
WITH (eid INT ’.’)) dt

This query generates the following result:

manager_id eid

1293 148

1293 390

1293 586

1293 757

... ...

☞ For more information about lateral derived tables, see “FROM clause”
[ASA SQL Reference,page 445].

Importing XML using the DataSet object

The ADO.NET DataSet object allows you to read the data and/or schema
from an XML document into a DataSet.

488

Chapter 15. Using XML in the Database

♦ The ReadXml method populates a DataSet from an XML document that
contains both a schema and data.

♦ The ReadXmlSchema method reads only the schema from an XML
document. Once the DataSet is filled with data from the XML document,
you can update the tables in your database with the changes from the
DataSet.

DataSet objects can also be manipulated using the Adaptive Server
Anywhere ADO.NET data provider.

☞ For information about using a DataSet to read the data and/or schema
from an XML document using the Adaptive Server Anywhere .NET data
provider, see “Getting data using the AsaDataAdapter object”[ASA
Programming Guide,page 356].

489

Obtaining query results as XML
Adaptive Server Anywhere supports two different ways to obtain query
results from your relational data as XML:

♦ FOR XML clause The FOR XML clause can be used in a SELECT
statement to generate an XML document.

☞ For information about using the FOR XML clause, see“Using the
FOR XML clause to retrieve query results as XML” on page 491and
“SELECT statement”[ASA SQL Reference,page 541].

♦ SQL/XML Adaptive Server Anywhere supports functions based on the
draft SQL/XML standard that generate XML documents from relational
data.

☞ For information about using one or more of these functions in a
query, see“Using SQL/XML to obtain query results as XML” on
page 510.

The FOR XML clause and the SQL/XML functions supported by Adaptive
Server Anywhere give you two alternatives for generating XML from your
relational data. In most cases, you can use either one to generate the same
XML.

For example, this query uses FOR XML AUTO to generate XML,

SELECT id, name
FROM product
WHERE color=’black’
FOR XML AUTO

and this query uses the XMLELEMENT function to generate XML:

SELECT XMLELEMENT(NAME product,
XMLATTRIBUTES(id, name))

FROM product
WHERE color=’black’

Both queries generate the following XML:

<product id="302" name="Tee Shirt"/>
<product id="400" name="Baseball Cap"/>
<product id="501" name="Visor"/>
<product id="700" name="Shorts"/>

Tip If you are generating deeply-nested documents, a FOR XML EXPLICIT
query will likely be more efficient than a SQL/XML query because
EXPLICIT mode queries normally use a UNION to generate nesting, while
SQL/XML uses subqueries to generate the required nesting.

490

Chapter 15. Using XML in the Database

Using the FOR XML clause to retrieve query results as XML

Adaptive Server Anywhere allows you to execute a SQL query against your
database and return the results as an XML document by using the FOR XML
clause in your SELECT statement. The XML document is of type XML.

☞ For information about the XML data type, see “XML data type
[Character]”[ASA SQL Reference,page 55].

The FOR XML clause can be used in any SELECT statement, including
subqueries, queries with a GROUP BY clause or aggregate functions, and
view definitions.

☞ For examples of how the FOR XML clause can be used, see“FOR XML
examples” on page 493.

Adaptive Server Anywhere does not generate a schema for XML documents
generated by the FOR XML clause.

Within the FOR XML clause, you specify one of three XML modes that
control the format of the XML that is generated:

♦ RAW represents each row that matches the query as an XML<row>
element, and each column as an attribute.

☞ For more information, see“Using FOR XML RAW” on page 494.

♦ AUTO returns query results as nested XML elements. Each table
referenced in theselect-listis represented as an element in the XML. The
order of nesting for the elements is based on the order of the tables in the
select-list.

☞ For more information, see“Using FOR XML AUTO” on page 496.

♦ EXPLICIT allows you to write queries that contain information about
the expected nesting so you can control the form of the resulting XML.

☞ For more information, see“Using FOR XML EXPLICIT” on
page 499.

The following sections describe the behavior of all three modes of the FOR
XML clause regarding binary data, NULL values, and invalid XML names,
as well as providing examples of how the FOR XML clause can be used.

FOR XML and binary data

When you use the FOR XML clause in a SELECT statement, regardless of
the mode used, any BINARY, LONG BINARY, IMAGE, and VARBINARY

491

columns are output as attributes or elements that are automatically
represented in base64-encoded format.

If you are using OPENXML to generate a result set from XML, OPENXML
assumes that the types BINARY, LONG BINARY, IMAGE, and
VARBINARY, are base64-encoded and decodes them automatically.

☞ For more information about OPENXML, see “OPENXML function
[String]” [ASA SQL Reference,page 165].

FOR XML and NULL values

By default, elements and attributes that contain NULL values are omitted
from the result. This behavior is controlled by the
FOR_XML_NULL_TREATMENT option.

Consider a table that contains the following data:

id fname lname company_name

100 Robert Michaels NULL

101 Michael Devlin The Power Group

If you execute the following query with the
FOR_XML_NULL_TREATMENT option set to OMIT (the default)

SELECT id, fname, lname, company_name
FROM customer
FOR XML RAW

the company_name attribute is omitted from the result for Robert Michaels:

<row id="100" fname="Robert" lname="Michaels"/>
<row id="101" fname="Michaels" lname="Devlin"

company_name="The Power Group"/>’

If the FOR_XML_NULL_TREATMENT option is set to EMPTY, then an
empty attribute is included in the result:

<row id="100" fname="Robert" lname="Michaels"
company_name="" />

<row id="101" fname="Michaels" lname="Devlin"
company_name="The Power Group"/>’

In this case, an empty company_name attribute is generated for Robert
Michaels.

☞ For information about the FOR_XML_NULL_TREATMENT option,
see “FOR_XML_NULL_TREATMENT option [database]”[ASA Database
Administration Guide,page 594].

492

Chapter 15. Using XML in the Database

Invalid column names

Adaptive Server Anywhere uses the following rules for encoding names that
are not legal XML names (for example, column names that include spaces):

♦ Unicode characters that are not valid XML name characters are escaped
as _xHHHH_, whereHHHH stands for the four digit hexadecimal
codepoint for the character. Characters whose Unicode codepoint value
cannot be specified in 16 bits are encoded.

For example, the following query contains a column name with a space:

SELECT emp_id AS "employee id"
FROM employee
FOR XML RAW

and returns the following result:

<row employee_x0020_id="102"/>
<row employee_x0020_id="105"/>
<row employee_x0020_id="129"/>
<row employee_x0020_id="148"/>
...

♦ Non-Unicode characters are encoded as _xHHHHHHHH_, where
HHHHHHHH stands for stands for the eight digit hexadecimal codepoint
for the character.

♦ Underscores (_) are escaped if they are followed by the character x.

♦ Colons (:) are not escaped so that namespace declarations and qualified
element and attribute names can be generated using a FOR XML query.

☞ For information about the syntax of the FOR XML clause, see
“SELECT statement”[ASA SQL Reference,page 541].

Tip
When executing queries that contain a FOR XML clause in Interac-
tive SQL, you may wish to increase the column length by setting the
TRUNCATION_LENGTH option.

☞ For information about setting the truncation length, see
“TRUNCATION_LENGTH option [ISQL]” [ASA Database Administra-
tion Guide,page 632]and “Options dialog: Results tab”[SQL Anywhere Studio
Help,page 145].

FOR XML examples

The following examples show how the FOR XML clause can be used in a
SELECT statement.

493

♦ The following example shows how the FOR XML clause can be used in a
subquery:

SELECT XMLELEMENT(
NAME root,

(SELECT * FROM employee
FOR XML RAW))

♦ The following example shows how the FOR XML clause can be used in a
query with a GROUP BY clause and aggregate function:

SELECT name, AVG(unit_price) AS Price
FROM product
GROUP BY name
FOR XML RAW

♦ The following example shows how the FOR XML clause can be used in a
view definition:

CREATE VIEW emp_dept
AS SELECT emp_lname, emp_fname, dept_name
FROM employee JOIN department
ON employee.dept_id = department.dept_id
FOR XML AUTO

Using FOR XML RAW

When you specify FOR XML RAW in a query, each row is represented as a
<row> element, and each column is an attribute of the<row> element.

Syntax FOR XML RAW [, ELEMENTS]

Parameters ELEMENTS tells FOR XML RAW to generate an XML element, instead of
an attribute, for each column in the result. If there are NULL values, the
element is omitted from the generated XML document. The following query
generates<emp_id> and<dept_name> elements:

SELECT employee.emp_id, department.dept_name
FROM employee JOIN department

ON employee.dept_id=department.dept_id
FOR XML RAW, ELEMENTS

and gives the following result:

<row>
<emp_id>102</emp_id>
<dept_name>R & D</dept_name>

</row>
<row>

<emp_id>105</emp_id>
<dept_name>R & D</dept_name>

</row>

494

Chapter 15. Using XML in the Database

<row>
<emp_id>160</emp_id>
<dept_name>R & D</dept_name>

</row>
<row>

<emp_id>243</emp_id>
<dept_name>R & D</dept_name>

</row>
...

Usage Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is
automatically returned in base64-encoded format when you execute a query
that contains FOR XML RAW.

By default, NULL values are omitted from the result. This behavior is
controlled by the FOR_XML_NULL_TREATMENT option.

☞ For information about how NULL values are returned in queries that
contain a FOR XML clause, see“FOR XML and NULL values” on
page 492.

FOR XML RAW does not return a well-formed XML document because the
document does not have a single root node. If a<root> element is required,
one way to insert one is to use the XMLELEMENT function. For example,

SELECT XMLELEMENT(NAME root,
(SELECT emp_id AS id, emp_fname AS name
FROM employee FOR XML RAW))

☞ For more information about the XMLELEMENT function, see
“XMLELEMENT function [String]” [ASA SQL Reference,page 207].

The attribute or element names used in the XML document can be changed
by specifying aliases. The following query renames the id attribute to
product_id:

SELECT id AS product_id
FROM product
WHERE color=’black’
FOR XML RAW

and gives the following result:

<row product_id="302"/>
<row product_id="400"/>
<row product_id="501"/>
<row product_id="700"/>

The order of the results depend on the plan chosen by the optimizer, unless
you request otherwise. If you wish the results to appear in a particular order,
you must include an ORDER BY clause in the query, for example,

495

SELECT employee.emp_id, department.dept_name
FROM employee JOIN department

ON employee.dept_id=department.dept_id
ORDER BY emp_id
FOR XML RAW

Example Suppose you want to retrieve information about which department an
employee belongs to, as follows:

SELECT employee.emp_id, department.dept_name
FROM employee JOIN department

ON employee.dept_id=department.dept_id
FOR XML RAW

The following XML document is returned:

<row emp_id="102" dept_name="R & D"/>
<row emp_id="105" dept_name="R & D"/>
<row emp_id="160" dept_name="R & D"/>
<row emp_id="243" dept_name="R & D"/>
...

Using FOR XML AUTO

AUTO mode generates nested elements within the XML document. Each
table referenced in the select list is represented as an element in the
generated XML. The order of nesting is based on the order in which tables
are referenced in the select list. When you specify AUTO mode, an element
is created for each table in the select list, and each column in that table is a
separate attribute.

Syntax FOR XML AUTO [, ELEMENTS]

Parameters ELEMENTS tells FOR XML AUTO to generate an XML element, instead
of an attribute, for each column in the result. For example,

SELECT employee.emp_id, department.dept_name
FROM employee JOIN department

ON employee.dept_id=department.dept_id
ORDER BY emp_id
FOR XML AUTO, ELEMENTS

In this case, each column in the result set is returned as a separate element,
rather than as an attribute of the<employee> element. If there are NULL
values, the element is omitted from the generated XML document.

496

Chapter 15. Using XML in the Database

<employee>
<emp_id>102</emp_id>
<department>

<dept_name>R & D</dept_name>
</department>

</employee>

<employee>
<emp_id>105</emp_id>
<department>

<dept_name>R & D</dept_name>
</department>

</employee>

<employee>
<emp_id>160</emp_id>
<department>
<dept_name>R & D</dept_name>
</department>

</employee>
...

Usage When you execute a query using FOR XML AUTO, data in BINARY,
LONG BINARY, IMAGE, and VARBINARY columns is automatically
returned in base64-encoded format. By default, NULL values are omitted
from the result. You can return NULL values as empty attributes by setting
the FOR_XML_NULL_TREATMENT option to EMPTY.

☞ For information about setting the FOR_XML_NULL_TREATMENT
option, see “FOR_XML_NULL_TREATMENT option [database]”[ASA
Database Administration Guide,page 594].

Unless otherwise requested, the database server returns the rows of a table in
an order that has no meaning. If you wish the results to appear in a particular
order, or for a parent element to have multiple children, you must include an
ORDER BY clause in the query so that all children are adjacent. If you do
not specify an ORDER BY clause, the nesting of the results depends on the
plan chosen by the optimizer and you may not get the nesting you desire.

FOR XML AUTO does not return a well-formed XML document because
the document does not have a single root node. If a<root> element is
required, one way to insert one is to use the XMLELEMENT function. For
example,

SELECT XMLELEMENT(NAME root,
(SELECT emp_id AS id, emp_fname AS name
FROM employee FOR XML AUTO))

☞ For more information about the XMLELEMENT function, see
“XMLELEMENT function [String]” [ASA SQL Reference,page 207].

You can change the attribute or element names used in the XML document

497

by specifying aliases. The following query renames the id attribute to
product_id:

SELECT id AS product_id
FROM product
WHERE color=’black’
FOR XML AUTO

The following XML is generated:

<product product_id="302"/>
<product product_id="400"/>
<product product_id="501"/>
<product product_id="700"/>

You can also rename the table with an alias. The following query renames
the table to product_info:

SELECT id AS product_id
FROM product AS product_info
WHERE color=’black’
FOR XML AUTO

The following XML is generated:

<product_info product_id="302"/>
<product_info product_id="400"/>
<product_info product_id="501"/>
<product_info product_id="700"/>

Example The following query generates XML that contains both<employee> and
<department> elements, and the<employee> element (the table listed first
in the select list) is the parent of the<department> element.

SELECT employee.emp_id, department.dept_name
FROM employee JOIN department

ON employee.dept_id=department.dept_id
ORDER BY emp_id
FOR XML AUTO

The following XML is generated by the above query:

<employee emp_id="102">
<department dept_name="R & D"/>

</employee>
<employee emp_id="105">

<department dept_name="R & D"/>
</employee>

498

Chapter 15. Using XML in the Database

<employee emp_id="160">
<department dept_name="R & D"/>

</employee>
<employee emp_id="243">

<department dept_name="R & D"/>
</employee>
...

If you change the order of the columns in the select list as follows:

SELECT department.dept_name, employee.emp_id
FROM employee JOIN department

ON employee.dept_id=department.dept_id
ORDER BY 1, 2
FOR XML AUTO

the result is nested as follows:

<department dept_name="R & D">
<employee emp_id="102"/>
<employee emp_id="105"/>
<employee emp_id="160"/>
...

</department>

<department dept_name="Sales">
<employee emp_id="129"/>
<employee emp_id="195"/>
<employee emp_id="299"/>
...

</department>
...

Again, the XML generated for the query contains both<employee> and
<department> elements, but in this case the<department> element is the
parent of the<employee> element.

Using FOR XML EXPLICIT

FOR XML EXPLICIT allows you to control the structure of the XML
document returned by the query. The query must be written in a particular
way so that information about the nesting you desire is specified within the
query result. The optional directives supported by FOR XML EXPLICIT
allow you to configure the treatment of individual columns. For example,
you can control whether a column appears as element or attribute content, or
whether a column is used only to order the result, rather than appearing in
the generated XML.

☞ For an example of how to write a query using FOR XML EXPLICIT,
see“Writing an EXPLICIT mode query” on page 502.

499

Parameters In EXPLICIT mode, the first two columns in the SELECT statement must be
namedTag andParent, respectively. Tag and Parent are metadata columns,
and their values are used to determine the parent-child relationship, or
nesting, of the elements in the XML document that is returned by the query.

♦ Tag column This is the first column specified in the select list. The Tag
column stores the tag number of the current element. Permitted values for
tag numbers are 1 to 255.

♦ Parent column This column stores the tag number for the parent of the
current element. If the value in this column is NULL, the row is placed at
the top level of the XML hierarchy.

For example, consider a query that returns the following result set when
FOR XML EXPLICIT is not specified. (The purpose of thefirst_name!1
andid!2 data columns is discussed in the following section,“Adding data
columns to the query” on page 500).

Tag Parent first_name!1 id!2

1 NULL ‘Beth’ NULL

2 NULL NULL ‘102’

In this example, the values in the Tag column are the tag numbers for each
element in the result set. The Parent column for both rows contains the value
NULL. This means that both elements are generated at the top level of the
hierarchy, giving the following result when the query includes the FOR
XML EXPLICIT clause:

<first_name>Beth</first_name>
<id>102</id>

However, if the second row had the value 1 in the Parent column, the result
would look as follows:

<first_name>Beth
<id>102</id>

</first_name>

☞ For an example of how to write a query using FOR XML EXPLICIT,
see“Writing an EXPLICIT mode query” on page 502.

Adding data columns to
the query

In addition to the Tag and Parent columns, the query must also contain one
or more data columns. The names of these data columns control how the
columns are interpreted during tagging. Each column name is split into
fields separated by an exclamation mark (!). The following fields can be
specified for data columns:

ElementName!TagNumber !AttributeName!Directive

500

Chapter 15. Using XML in the Database

ElementName the name of the element. For a given row, the name of the
element generated for the row is taken from theElementNamefield of the
first column with a matching tag number. If there are multiple columns with
the sameTagNumber, theElementNameis ignored for subsequent columns
with the sameTagNumber. In the example above, the first row generates an
element called<first_name>.

TagNumber the tag number of the element. For a row with a given tag
value, all columns with the same value in theirTagNumberfield will
contribute content to the element that corresponds to that row.

AttributeName specifies that the column value is an attribute of the
ElementNameelement. For example, if a data column had the name
prod_id!1!color, then color would appear as an attribute of the<prod_id>
element.

Directive this optional field allows you to control the format of the XML
document further. You can specify any one of the following values for
Directive:

♦ hide indicates that this column is ignored for the purpose of generating
the result. This directive can be used to include columns that are only
used to order the table. The attribute name is ignored and does not appear
in the result.

☞ For an example using thehide directive, see“Using the hide
directive” on page 507.

♦ element indicates that the column value is inserted as a nested element
with the nameAttributeName, rather than as an attribute.

☞ For an example using theelementdirective, see“Using the element
directive” on page 506.

♦ xml indicates that the column value is inserted with no quoting. If the
AttributeNameis specified, the value is inserted as an element with that
name. Otherwise, it is inserted with no wrapping element. If this
directive is not used, then markup characters are quoted unless the
column is of type XML. For example, the value<a/> would be inserted
as<a/> .

☞ For an example using thexml directive, see“Using the xml
directive” on page 508.

♦ cdata indicates that the column value is to be inserted as a CDATA
section. TheAttributeNameis ignored.

☞ For an example using thecdatadirective, see“Using the cdata
directive” on page 509.

501

Usage Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is
automatically returned in base64-encoded format when you execute a query
that contains FOR XML EXPLICIT. By default, any NULL values in the
result set are omitted. You can change this behavior by changing the setting
of the FOR_XML_NULL_TREATMENT option.

☞ For more information about the FOR_XML_NULL_TREATMENT
option, see “FOR_XML_NULL_TREATMENT option [database]”[ASA
Database Administration Guide,page 594]and“FOR XML and NULL values”
on page 492.

Writing an EXPLICIT
mode query

Suppose you want to write a query using FOR XML EXPLICIT that
generates the following XML document:

<employee emp_id=’129’>
<customer cust_id=’107’ region=’Eastern’/>
<customer cust_id=’119’ region=’Western’/>
<customer cust_id=’131’ region=’Eastern’/>

</employee>

<employee emp_id=’195’>
<customer cust_id=’109’ region=’Eastern’/>
<customer cust_id=’121’ region=’Central’/>

</employee>

You do this by writing a SELECT statement that returns the following result
set in the exact order specified, and then appending FOR XML EXPLICIT
to the query.

Tag Parent employee!1!emp_id customer!2!cust_id customer!2!region

1 NULL 129 NULL NULL

2 1 129 107 Eastern

2 1 129 119 Western

2 1 129 131 Central

1 NULL 195 NULL NULL

2 1 195 109 Eastern

2 1 195 121 Central

When you write your query, only some of the columns for a given row
become part of the generated XML document. A column is included in the
XML document only if the value in theTagNumberfield (the second field in
the column name) matches the value in the Tag column.

In the example, the third column is used for the two rows that have the value

502

Chapter 15. Using XML in the Database

1 in their Tag column. In the fourth and fifth columns, the values are used
for the rows that have the value 2 in their Tag column. The element names
are taken from the first field in the column name. In this case,<employee>
and<customer> elements are created.

The attribute names come from the third field in the column name, so an
emp_id attribute is created for<employee> elements, while cust_id and
region attributes are generated for<customer> elements.

The following steps explain how to construct the FOR XML EXPLICIT
query that generates an XML document similar to the one found at the
beginning of this section using the sample database.

❖ To write a FOR XML EXPLICIT query

1. Write a SELECT statement to generate the top-level elements.

In this example, the first SELECT statement in the query generates the
<employee> elements. The first two values in the query must be the Tag
and Parent column values. The<employee> element is at the top of the
hierarchy, so it is assigned a Tag value of 1, and a Parent value of NULL.

Note
If you are writing an EXPLICIT mode query that uses a UNION, then
only the column names specified in the first SELECT statement are
used. Column names that are to be used as element or attribute names
must be specified in the first SELECT statement because column names
specified in subsequent SELECT statements are ignored.

To generate the<employee> elements for the table above, your first
SELECT statement is as follows:

SELECT
1 AS tag,
NULL AS parent,
emp_id AS [employee!1!emp_id],
NULL AS [customer!2!cust_id],
NULL AS [customer!2!region]

FROM employee

2. Write a SELECT statement to generate the child elements.

The second query generates the<customer> elements. Because this is an
EXPLICIT mode query, the first two values specified in all the SELECT
statements must be the Tag and Parent values. The<customer> element
is given the tag number 2, and because it is a child of the<employee>
element, it has a Parent value of 1. The first SELECT statement has
already specified that emp_id, cust_id, and region are attributes.

503

SELECT
2,
1,
emp_id,
cust_id,
region

FROM employee KEY JOIN sales_order

3. Add a UNION ALL to the query to combine the two SELECT statements
together:

SELECT
1 AS tag,
NULL AS parent,
emp_id AS [employee!1!emp_id],
NULL AS [customer!2!cust_id],
NULL AS [customer!2!region]

FROM employee
UNION ALL

SELECT
2,
1,
emp_id,
cust_id,
region

FROM employee KEY JOIN sales_order

4. Add an ORDER BY clause to specify the order of the rows in the result.
The order of the rows is the order that is used in the resulting document.

SELECT
1 AS tag,
NULL AS parent,
emp_id AS [employee!1!emp_id],
NULL AS [customer!2!cust_id],
NULL AS [customer!2!region]

FROM employee
UNION ALL

SELECT
2,
1,
emp_id,
cust_id,
region

FROM employee KEY JOIN sales_order
ORDER BY3, 1
FOR XML EXPLICIT

☞ For information about the syntax of EXPLICIT mode, see“Parameters”
on page 500.

FOR XML EXPLICIT
examples

The following example query retrieves information about the orders placed
by employees. In this example, there are three types of elements:<emp>,

504

Chapter 15. Using XML in the Database

<order>, and<dept>. The<emp> element has id and name attributes, the
<order> element has a name attribute, and the<dept> element has a date
attribute.

SELECT
1 tag,
NULL parent,
emp_id [emp!1!id],
emp_fname [emp!1!name],
NULL [order!2!date],
NULL [dept!3!name]

FROM employee
UNION ALL

SELECT
2,
1,
emp_id,
NULL,
order_date,
NULL

FROM employee KEY JOIN sales_order
UNION ALL

SELECT
3,
1,
emp_id,
NULL,
NULL,
dept_name

FROM employee e JOIN department d
ON e.dept_id=d.dept_id

ORDER BY 3, 1
FOR XML EXPLICIT

You get the following result from this query:

<emp id="102" name="Fran">
<dept name="R & D"/>

</emp>
<emp id="105" name="Matthew">

<dept name="R & D"/>
</emp>

<emp id="129" name="Philip">
<order date="2000-07-24"/>
<order date="2000-07-13"/>
<order date="2000-06-24"/>
<order date="2000-06-08"/>
...
<dept name="Sales"/>

</emp>

<emp id="148" name="Julie">
<dept name="Finance"/>

</emp>
...

505

Using the element
directive

If you wish to generate sub-elements rather than attributes, you can add the
elementdirective to the query, as follows:

SELECT
1 tag,
NULL parent,
emp_id [emp!1!id! element],
emp_fname [emp!1!name! element],
NULL [order!2!date! element],
NULL [dept!3!name! element]

FROM employee

UNION ALL
SELECT

2,
1,
emp_id,
NULL,
order_date,
NULL

FROM employee KEY JOIN sales_order
UNION ALL

SELECT
3,
1,
emp_id,
NULL,
NULL,
dept_name

FROM employee e JOIN department d
ON e.dept_id=d.dept_id

ORDER BY 3, 1
FOR XML EXPLICIT

You get the following result from this query:

<emp>
<id>102</id>
<name>Fran</name>
<dept>

<name>R & D</name>
</dept>

</emp>

<emp>
<id>105</id>
<name>Matthew</name>
<dept>

<name>R & D</name>
</dept>

</emp>

506

Chapter 15. Using XML in the Database

<emp>
<id>129</id>
<name>Philip</name>
<order>

<date>2000-07-24</date>
</order>
<order>

<date>2000-07-13</date>
</order>
<order>

<date>2000-06-24</date>
</order>
...
<dept>

<name>Sales</name>
</dept>

</emp>
...

Using the hide directive In the following query, the employee ID is used to order the result, but the
employee ID does not appear in the result because thehide directive is
specified:

SELECT
1 tag,
NULL parent,
emp_id [emp!1!id! hide],
emp_fname [emp!1!name],
NULL [order!2!date],
NULL [dept!3!name]

FROM employee
UNION ALL

SELECT
2,
1,
emp_id,
NULL,
order_date,
NULL

FROM employee KEY JOIN sales_order
UNION ALL

SELECT
3,
1,
emp_id,
NULL,
NULL,
dept_name

FROM employee e JOIN department d
ON e.dept_id=d.dept_id

ORDER BY 3, 1
FOR XML EXPLICIT

507

This query returns the following result:

<emp name="Fran">
<dept name="R & D"/>

</emp>
<emp name="Matthew">

<dept name="R & D"/>
</emp>

<emp name="Philip">
<order date="2000-07-24"/>
<order date="2000-07-13"/>
<order date="2000-06-24"/>
<order date="2000-06-08"/>
...
<dept name="Sales"/>

</emp>

<emp name="Julie">
<dept name="Finance"/>

</emp>
...

Using the xml directive By default, when the result of a FOR XML EXPLICIT query contains
characters that are not valid XML name characters, the invalid are escaped
(for information see“Invalid column names” on page 493) unless the
column is of type XML. For example, the following query generates XML
that contains an ampersand (&):

SELECT
1 AS tag,
NULL AS parent,
id AS [customer!1!id!element],
company_name AS [customer!1!company_name]

FROM customer
WHERE id = ’115’
FOR XML EXPLICIT

In the result generated by this query, the ampersand is quoted because the
column is not of type XML:

<customer company_name="Sterling & Co.">
<id>115</id>

</customer>

Thexml directive indicates that the column value is inserted into the
generated XML with no quoting. If you execute the same query as above
with thexml directive:

508

Chapter 15. Using XML in the Database

SELECT
1 AS tag,
NULL AS parent,
id AS [customer!1!id!element],
company_name AS [customer!1!company_name! xml]

FROM customer
WHERE id = ’115’
FOR XML EXPLICIT

the ampersand is not quoted in the result:

<customer>
<id>115</id>
<company_name>Sterling & Co.</company_name>

</customer>

Note that this XML is not well-formed because it contains an ampersand,
which is a special character in XML. When XML is generated by a query, it
is your responsibility to ensure that the XML is well-formed and valid:
Adaptive Server Anywhere does not check whether the XML being
generated is well-formed or valid.

When you specify thexml directive, theAttributeNamefield is ignored, and
elements are generated rather than attributes.

Using the cdata directive The following query uses thecdatadirective to return the customer name in
a CDATA section:

SELECT
1 AS tag,
NULL AS parent,
id AS [product!1!id],
description AS [product!1!cdata]

FROM product
FOR XML EXPLICIT

The result produced by this query lists the description for each product in a
CDATA section. Data contained in the CDATA section is not quoted:

<product id="300">
<![CDATA[Tank Top]]>

</product>
<product id="301">

<![CDATA[V-neck]]>
</product>

<product id="302">
<![CDATA[Crew Neck]]>

</product>
<product id="400">

<![CDATA[Cotton Cap]]>
</product>
...

509

Using SQL/XML to obtain query results as XML
SQL/XML is a draft standard that describes a functional integration of XML
into the SQL language: it describes the ways that SQL can be used in
conjunction with XML. The supported functions allow you to write queries
that construct XML documents from relational data.

Invalid names and
SQL/XML

In SQL/XML, expressions that are not legal XML names, for example
expressions that include spaces, are quoted in the same manner as the FOR
XML clause. Element content of type XML is not quoted.

☞ For more information about quoting invalid expressions, see“Invalid
column names” on page 493.

☞ For information about using the XML data type, see“Storing XML
documents in relational databases” on page 481.

Using the XMLAGG function

The XMLAGG function is used to produce a forest of XML elements from a
collection of XML elements. XMLAGG is an aggregate function, and
produces a single aggregated XML result for all the rows in the query.

In the following query, XMLAGG is used to generate a<name> element
for each row, and the<name> elements are ordered by employee name.
The ORDER BY clause is specified to order the XML elements:

SELECT XMLELEMENT(NAME department,
XMLATTRIBUTES (dept_id),
XMLAGG(XMLELEMENT(NAME name,

emp_lname)
ORDER BY emp_lname)

) AS dept_list
FROM employee
GROUP BY dept_id

This query produces the following result:

dept_list

<department dept_id="100">
<name>Breault</name>
<name>Cobb</name>
<name>Diaz</name>
<name>Driscoll</name>
...

</department>

510

Chapter 15. Using XML in the Database

dept_list

<department dept_id="200">
<name>Chao</name>
<name>Chin</name>
<name>Clark</name>
<name>Dill</name>
...

</department>

<department dept_id="300">
<name>Bigelow</name>
<name>Coe</name>
<name>Coleman</name>
<name>Davidson</name>
...

</department>

...

☞ For more information about the XMLAGG function, see “XMLAGG
function [String]” [ASA SQL Reference,page 205].

Using the XMLCONCAT function

The XMLCONCAT function creates a forest of XML elements by
concatenating all the XML values passed in. For example, the following
query concatenates the<first_name> and<last_name> elements for each
employee in the employee table:

SELECT XMLCONCAT(XMLELEMENT(NAME first_name, emp_fname),
XMLELEMENT(NAME last_name, emp_lname)

) AS "Employee_Name"
FROM employee

This query returns the following result:

Employee_Name

<first_name>Fran</first_name>
<last_name>Whitney</last_name>

<first_name>Matthew</first_name>
<last_name>Cobb</last_name>

511

Employee_Name

<first_name>Philip</first_name>
<last_name>Chin</last_name>

<first_name>Julie</first_name>
<last_name>Jordan</last_name>

...

☞ For more information, see “XMLCONCAT function [String]”[ASA SQL
Reference,page 206].

Using the XMLELEMENT function

The XMLELEMENT function constructs an XML element from relational
data. You can specify the content of the generated element and if you wish,
you can also specify attributes and attribute content for the element.

Generating nested
elements

The following query generates nested XML, producing a<product_info>
element for each product, with elements that provide the name, quantity, and
description of each product:

SELECT id,
XMLELEMENT(NAME product_info,
XMLELEMENT(NAME item_name, product.name),
XMLELEMENT(NAME quantity_left, product.quantity),
XMLELEMENT(NAME description, product.size || ’ ’ ||

product.color || ’ ’ ||
product.name)

) AS results
FROM product
WHERE quantity > 30

This query produces the following result:

512

Chapter 15. Using XML in the Database

id results

301 <product_info>
<item_name>Tee Shirt

</item_name>
<quantity_left>54

</quantity_left>
<description>Medium Orange

Tee Shirt</description>
</product_info>

302 <product_info>
<item_name>Tee Shirt

</item_name>
<quantity_left>75

</quantity_left>
<description>One size fits

all Black Tee Shirt
</description>

</product_info>

400 <product_info>
<item_name>Baseball Cap

</item_name>
<quantity_left>112

</quantity_left>
<description>One size fits

all Black Baseball Cap
</description>

</product_info>

... ...

Specifying element
content

The XMLELEMENT function allows you to specify the content of an
element. The following statement produces an XML element with the
content hat.

SELECT id, XMLELEMENT(NAME product_type, ’hat’)
FROM product
WHERE name IN (’Baseball Cap’, ’Visor’)

Generating elements
with attributes

You can add attributes to the elements by including the
attribute-value-expressionargument in your query. This argument specifies
the attribute name and content. The following statement produces an
attribute for the name, color, and unit_price of each item.

513

SELECT id, XMLELEMENT(NAME item_description,
XMLATTRIBUTES(name,

color ,
unit_price)

) AS item_description_element
FROM product
WHERE id > 400

Attributes can be named by specifying theattribute-nameargument:

SELECT id, XMLELEMENT(NAME item_description,
XMLATTRIBUTES (unit_price AS

price),
product.name

) AS products
FROM product
WHERE id > 400

☞ For more information, see “XMLELEMENT function [String]”[ASA
SQL Reference,page 207].

Using the XMLFOREST function

XMLFOREST constructs a forest of XML elements. An element is
produced for each XMLFOREST argument.

The following query produces an<item_description> element, with
<name>, <color>, and<price> elements:

SELECT id, XMLELEMENT(NAME item_description,
XMLFOREST(name,

color,
unit_price AS price)

) AS product_info
FROM product
WHERE id > 400

The following result is generated by this query:

514

Chapter 15. Using XML in the Database

id product_info

401 <item_description>
<name>Baseball Cap</name>
<color>White</color>
<price>10.00</price>

</item_description>

500 <item_description>
<name>Visor</name>
<color>White</color>
<price>7.00</price>

</item_description>

501 <item_description>
<name>Visor</name>
<color>Black</color>
<price>7.00</price>

</item_description>

... ...

☞ For more information, see “XMLFOREST function [String]”[ASA SQL
Reference,page 208].

Using the XMLGEN function

The XMLGEN function is used to generate an XML value based on an
XQuery constructor.

The XML generated by the following query provides information about
customer orders in the sample database. It uses the following variable
references:

♦ {$id} Generates content for the<id> element using values from the id
column in the sales_order table.

♦ {$order_date} Generates content for the<date> element using vaues
from the order_date column in the sales_order table.

♦ {$customer} Generates content for the<customer> element from the
company_name column in the customer table.

515

SELECT XMLGEN (’<order>
<id> {$id} </id>
<date> {$order_date} </date>
<customer> {$customer} </customer>
</order>’,

sales_order.id,
sales_order.order_date,
customer.company_name AS customer)

FROM sales_order JOIN customer
ON customer.id = sales_order.cust_id

This query generates the following result:

order_info

<order>
<id>2131</id>
<date>2000-01-02</date>
<customer>BoSox Club</customer>

</order>

<order>
<id>2126</id>
<date>2000-01-03</date>
<customer>Leisure Time</customer>

</order>

<order>
<id>2065</id>
<date>2000-01-03</date>
<customer>Bloomfield's</custo

mer>
</order>

<order>
<id>2127</id>
<date>2000-01-06</date>
<customer>Creative Customs

Inc.</customer>
</order>

...

Generating attributes If you want the order ID number to appear as an attribute of the<order>
element, you would write query as follows (note that the variable reference
is contained in double quotes because it specifies an attribute value):

516

Chapter 15. Using XML in the Database

SELECT XMLGEN (’<order id= "{$id}" >
<date>{$order_date}</date>
<customer>{$customer}</customer>
</order>’,

sales_order.id,
sales_order.order_date,
customer.company_name AS customer

) AS order_info

FROM sales_order JOIN customer
ON customer.id = sales_order.cust_id
ORDER BY sales_order.order_date

This query generates the following result:

order_info

<order id="2131">
<date>2000-01-02</date>
<customer>BoSox Club</customer>

</order>

<order id="2126">
<date>2000-01-03</date>
<customer>Leisure Time</customer>

</order>

<order id="2065">
<date>2000-01-03</date>
<customer>Bloomfield's</custo

mer>
</order>

<order id="2127">
<date>2000-01-06</date>
<customer>Creative Customs

Inc.</customer>
</order>

...

In both result sets, the customer name Bloomfield’s is quoted as
Bloomfield'sbecause the apostrophe is a special character in XML
and the column the<customer> element was generated from was not of
type XML.

☞ For more information about quoting of invalid characters in XMLGEN,
see“Invalid names and SQL/XML” on page 510.

517

Specifying header
information for XML
documents

The FOR XML clause and the SQL/XML functions supported by Adaptive
Server Anywhere do not include header information in the XML documents
they generate. You can use the XMLGEN function to generate header
information.

SELECT XMLGEN(’<?xml version="1.0"
encoding="ISO-8859-1" ?>

<r>{$x}</r>’,
(SELECT fname, lname FROM customer FOR XML RAW)

AS x)

This produces the following result:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<r>

<row fname="Michaels" lname="Devlin"/>
<row fname="Beth" lname="Reiser"/>
<row fname="Erin" lname="Niedringhaus"/>
<row fname="Meghan" lname="Mason"/>
...

</r>

☞ For more information about the XMLGEN function, see “XMLGEN
function [String]” [ASA SQL Reference,page 209].

518

PART V

REMOTE DATA AND BULK

OPERATIONS

This part describes how to load and unload your database, and how to access
remote data.

CHAPTER 16

Importing and Exporting Data

About this chapter This chapter describes the Adaptive Server Anywhere tools and utilities that
help you achieve your importing and exporting goals, including SQL,
Interactive SQL, thedbunloadutility and Sybase Central wizards.

Contents Topic: page

Introduction to import and export 522

Importing and exporting data 524

Importing 528

Exporting 532

Rebuilding databases 539

Extracting data 547

Migrating databases to Adaptive Server Anywhere 548

Running SQL command files 553

Adaptive Server Enterprise compatibility 556

521

Introduction to import and export
Transferring large amounts of data into and from your database may be
necessary in several situations. For example,

♦ Importing an initial set of data into a new database.

♦ Exporting data from your database for use with other applications, such
as spreadsheets.

♦ Building new copies of a database, perhaps with a modified structure.

♦ Creating extractions of a database for replication or synchronization.

Performance considerations of moving data

The Interactive SQL INPUT and OUTPUT commands are external to the
database (client-side). If ISQL is being run on a different machine than the
database server, paths to files being read or written are relative to the client.
An INPUT is recorded in the transaction log as a separate INSERT statement
for each row read. As a result, INPUT is considerably slower than LOAD
TABLE. This also means that ON INSERT triggers will fire during an
INPUT. Missing values will be inserted as NULL on NULLABLE rows, as 0
(zero) on non-nullable numeric columns, and as an empty string on
non-nullable non-numeric columns. The OUTPUT statement is useful when
compatibility is an issue since it can write out the result set of a SELECT
statement to any one of a number of file formats.

The LOAD TABLE, UNLOAD TABLE and UNLOAD statements, on the
other hand, are internal to the database (server-side). Paths to files being
written or read are relative to the database server. Only the command travels
to the database server, where all processing happens. A LOAD table
statement is recorded in the transaction log as a single command. The data
file must contain the same number of columns as the table to be loaded.
Missing values on columns with a default value will be inserted as NULL,
zero or an empty string if the DEFAULTS option is set to OFF (default), or
as the default value if the DEFAULTS value is set to ON. Internal importing
and exporting only provides access to text and BCP formats, but it is a faster
method.

Although loading large volumes of data into a database can be very time
consuming, there are a few things you can do to save time:

♦ If you use the LOAD TABLE statement, then bulk mode (starting the
server with the-b option) is not necessary.

522

Chapter 16. Importing and Exporting Data

♦ If you are using the INPUT command, run Interactive SQL or the client
application on the same machine as the server. Loading data over the
network adds extra communication overhead. This might mean loading
new data during off hours.

♦ Place data files on a separate physical disk drive from the database. This
could avoid excessive disk head movement during the load.

♦ If you are using the INPUT command, start the server with the-b option
for bulk operations mode. In this mode, the server does not keep a
rollback log or a transaction log, it does not perform an automatic
COMMIT before data definition commands, and it does not lock any
records.

The server allows only one connection when you use the-b option.

Without a rollback log, you cannot use savepoints and aborting a
command always causes transactions to roll back. Without automatic
COMMIT, a ROLLBACK undoes everything since the last explicit
COMMIT.

Without a transaction log, there is no log of the changes. You should back
up the database before and after using bulk operations mode because, in
this mode, your database is not protected against media failure. For more
information, see “Backup and Data Recovery”[ASA Database
Administration Guide,page 337].

If you have data that requires many commits, running with the-b option
may slow database operation. At each COMMIT, the server carries out a
checkpoint; this frequent checkpointing can slow the server.

♦ Extend the size of the database, as described in “ALTER DBSPACE
statement”[ASA SQL Reference,page 229]. This command allows a
database to be extended in large amounts before the space is required,
rather than the normal 256 kb at a time when the space is needed. As well
as improving performance for loading large amounts of data, it also
serves to keep the database more contiguous within the file system.

♦ You can use temporary tables to load data. Local or global temporary
tables are useful when you need to load a set of data repeatedly, or when
you need to merge tables with different structures.

523

Importing and exporting data
You can import individual tables or portions of tables from other database
file formats, or from ASCII files. Depending on the format of the data you
are inserting, there is some flexibility as to whether you create the table
before the import or during the import. You may find importing a useful tool
if you need to add large amounts of data to your database at a time.

You can export individual tables and query results in ASCII format, or in a
variety of formats supported by other database programs. You may find
exporting a useful tool if you need to share large portions of your database,
or extract portions of your database according to particular criteria.

Although Adaptive Server Anywhere import and export procedures work on
one table at a time, you can create scripts that effectively automate the
importing or export procedure, allowing you to import and export data into
or from a number of tables consecutively.

You can insert (append) data into tables, and you can replace data in tables.
In some cases, you can also create new tables at the same time as you import
the data. If you are trying to create a whole new database, however, consider
loading the data instead of importing it, for performance reasons.

You can export query results, table data, or table schema. If you are trying to
export a whole database, however, consider unloading the database instead
of exporting data, for performance reasons.

☞ For more information about loading and unloading complete databases,
see“Rebuilding databases” on page 539.

You can import and export files between Adaptive Server Anywhere and
Adaptive Server Enterprise using the BCP FORMAT clause.

☞ For more information, see“Adaptive Server Enterprise compatibility”
on page 556.

Data formats

Interactive SQL supports the following import and export file formats:

524

Chapter 16. Importing and Exporting Data

File Format Description Available for

Importing

Available for

Exporting

ASCII A text file, one row per line,
with values separated by a
delimiter. String values op-
tionally appear enclosed in
apostrophes (single quotes).
This is the same as the format
used by LOAD TABLE and
UNLOAD TABLE.

✔ ✔

DBASEII DBASE II format ✔ ✔

DBASEIII DBASE III format ✔ ✔

Excel 2.1 Excel format 2.1 ✔ ✔

FIXED Data records appear in fixed
format with the width of each
column either the same as
defined by the column’s type
or specified as a parameter.

✔ ✔

FOXPRO FoxPro format ✔ ✔

HTML HTML (Hyper Text Markup
Language) format

No ✔

LOTUS Lotus workspace format ✔ ✔

SQL State-
ments

The SQL statement format.
This format can be used as an
argument in a READ state-
ment.

Using the
READ state-
ment only

✔

XML The generated XML file is en-
coded in UTF-8 and contains
an embedded DTD. Binary
values are encoded in CDATA
blocks with the binary data
rendered as 2-hex-digit strings.

No ✔

Table structures for import

The structure of the data you want to load into a table does not always match
the structure of the destination table itself, which may present problems

525

during importing. For example, the column data types may be different or in
a different order, or there may be extra values in the import data that do not
match columns in the destination table.

Rearranging the table or
data

If you know that the structure of the data you want to import does not match
the structure of the destination table, you have several options. You can
rearrange the columns in your table using the LOAD TABLE statement; you
can rearrange the import data to fit the table using a variation of the INSERT
statement and a global temporary table; or you can use the INPUT statement
to specify a specific set or order of columns.

Allowing columns to
contain NULLs

If the file you are importing contains data for a subset of the columns in a
table, or if the columns are in a different order, you can also use the LOAD
TABLE statement DEFAULTS option to fill in the blanks and merge
non-matching table structures.

If DEFAULTS is OFF, any column not present in the column list is assigned
NULL. If DEFAULTS is OFF and a non-nullable column is omitted from the
column list, the database server attempts to convert the empty string to the
column’s type. If DEFAULTS is ON and the column has a default value, that
value is used.

For example, to load two columns into the employee table, and set the
remaining column values to the default values if there are any, the LOAD
TABLE statement should look like this:

LOAD TABLE employee (emp_lname, emp_fname)
FROM ’new_employees.txt’
DEFAULTS ON

Merging different table
structures

You can rearrange the import data to fit the table using a variation of the
INSERT statement and a global temporary table.

❖ To load data with a different structure using a global temporary
table
1. In the SQL Statements pane of the Interactive SQL window, create a

global temporary table with a structure matching that of the input file.

You can use the CREATE TABLE statement to create the global
temporary table.

2. Use the LOAD TABLE statement to load your data into the global
temporary table.

When you close the database connection, the data in the global temporary
table disappears. However, the table definition remains. You can use it
the next time you connect to the database.

3. Use the INSERT statement with a FROM SELECT clause to extract and

526

Chapter 16. Importing and Exporting Data

summarize data from the temporary table and put it into one or more
permanent database tables.

Conversion errors during import

When you load data from external sources, there may be errors in the data.
For example, there may be dates that are not valid dates and numbers that are
not valid numbers. The CONVERSION_ERROR database option allows
you to ignore conversion errors by converting them to NULL values.

☞ For more information about setting Interactive SQL database options,
see “SET OPTION statement”[ASA SQL Reference,page 556], or
“CONVERSION_ERROR option [compatibility]”[ASA Database
Administration Guide,page 585].

Outputting NULLs

Users often want to extract data for use in other software products. Since the
other software package may not understand NULL values, there are two
ways of specifying how NULL values are output. You can use either the
Interactive SQL NULLS option, or the IFNULL function. Both options
allow you to output a specific value in place of a NULL value.

Use the Interactive SQL NULLS option to set the default behavior, or to
change the output value for a particular session. Use the IFNULL function
to apply the output value to a particular instance or query.

Specifying how NULL values are output provides for greater compatibility
with other software packages.

❖ To specify NULL value output (Interactive SQL)

1. From the Interactive SQL window, choose Tools➤ Options to display the
Options dialog.

2. Click the Results tab.

3. In the Display Null Values As field, type the value you want to replace
null values with.

4. Click Make Permanent if you want the changes to become the default, or
click OK if you want the changes to be in effect only for this session.

For more information on setting Interactive SQL options, see “SET OPTION
statement”[ASA SQL Reference,page 556].

527

Importing
Following is a summary of import tools, followed by instructions for
importing databases, data, and tables.

Import tools

There are a variety of tools available to help you import your data.

Interactive SQL Import
wizard

You can access the import wizard by choosing Data➤ Import from the
Interactive SQL menu. The wizard provides an interface to allow you to
choose a file to import, a file format, and a destination table to place the data
in. You can choose to import this data into an existing table, or you can use
the wizard to create and configure a completely new table.

Choose the Interactive SQL Import wizard when you prefer using a
graphical interface to import data in a format other than text, or when you
want to create a table at the same time you import the data.

INPUT statement You execute the INPUT statement from the SQL Statements pane of the
Interactive SQL window. The INPUT statement allows you to import data in
a variety of file formats into one or more tables. You can choose a default
input format, or you can specify the file format on each INPUT statement.
Interactive SQL can execute a command file containing multiple INPUT
statements.

If a data file is in DBASE, DBASEII, DBASEIII, FOXPRO, or LOTUS
format and the table does not exist, it will be created. There are performance
impacts associated with importing large amounts of data with the INPUT
statement, since the INPUT statement writes everything to the Transaction
log.

Choose the Interactive SQL INPUT statement when you want to import data
into one or more tables, when you want to automate the import process using
a command file, or when you want to import data in a format other than text.

☞ For more information, see “INPUT statement [Interactive SQL]”[ASA
SQL Reference,page 472].

LOAD TABLE statement The LOAD TABLE statement allows you to import data only, into a table, in
an efficient manner in text/ASCII/FIXED formats. The table must exist and
have the same number of columns as the input file has fields, defined on
compatible data types. The LOAD TABLE statement imports with one row
per line, with values separated by a delimiter.

Use the LOAD TABLE statement when you want to import data in text
format. If you have a choice between using the INPUT statement or the

528

Chapter 16. Importing and Exporting Data

LOAD TABLE statement, choose the LOAD TABLE statement for better
performance.

☞ For more information, see “LOAD TABLE statement”[ASA SQL
Reference,page 486].

INSERT statement Since you include the data you want to place in your table directly in the
INSERT statement, it is considered interactive input. File formats are not an
issue. You can also use the INSERT statement with remote data access to
import data from another database rather than a file.

Choose the INSERT statement when you want to import small amounts of
data into a single table.

☞ For more information, see “INSERT statement”[ASA SQL Reference,
page 476].

Proxy Tables You can import data directly from another database. Using the Adaptive
Server Anywhere remote data access feature, you can create a proxy table,
which represents a table from the remote database, and then use an INSERT
statement with a SELECT clause to insert data from the remote database into
a permanent table in your database.

☞ For more information about remote data access, see“Accessing Remote
Data” on page 557.

Importing databases

You can use either the Interactive SQL Import wizard or the INPUT
statement to create a database by importing one table at a time. You can also
create a script that automates this process. However, for more efficient
results, consider reloading a database whenever possible.

☞ For more information about importing a database that was previously
unloaded, see“Reloading a Database” on page 543.

Importing data

❖ To import data (Interactive SQL Data Menu)

1. From the Interactive SQL window, choose Data➤ Import.

The Open dialog appears.

2. Locate the file you want to import and click Open.

You can import data in text, DBASEII, Excel 2.1, FOXPRO, and Lotus
formats.

The Import wizard appears.

529

3. Specify how the database values are stored in the file you are importing.

4. Select the Use An Existing Table option and then enter the name and
location of the existing table. Click Next.

You can click the Browse button and locate the table you want to import
the data into.

5. Follow the remaining instructions in the wizard.

In this case, importing appends the new data to the existing table. If the
import is successful, the Messages pane displays the amount of time it to
took to import the data. If the import is unsuccessful, a message appears
indicating the import was unsuccessful. The Results tab in the Results
pane displays what execution plan was used.

❖ To import data (INSERT statement)

1. Ensure that the table you want to place the data in exists.

2. Execute an INSERT statement. For example,

INSERT INTO t1
VALUES (...)

Inserting values appends the new data to the existing table.

❖ To import data (Interactive SQL INPUT statement)

1. Ensure that the table you want to place the data in exists.

2. Enter an INPUT statement in the SQL Statements pane of the
Interactive SQL window. For example,

INPUT INTO t1
FROM file1
FORMAT ASCII;

Wheret1 is the name of the table you want to place the data in, andfile1
is the name of the file that holds the data you want to import.

3. Execute the statement.

If the import is successful, the Messages pane displays the amount of
time it to took to import the data. If the import is unsuccessful, a message
appears indicating the import was unsuccessful. The Results tab in the
Results pane displays what execution plan was used.

☞ For more information about using the INPUT statement to import data,
see “INPUT statement [Interactive SQL]”[ASA SQL Reference,page 472].

Importing a table

530

Chapter 16. Importing and Exporting Data

❖ To import a table (Interactive SQL Data Menu)

1. Ensure that the table you want to place the data in exists.

2. From the Interactive SQL window, choose Data➤ Import.

The Open dialog appears.

3. Locate the file you want to import and click Open.

You can import data in text, DBASEII, Excel 2.1, FOXPRO, and Lotus
formats.

The Import wizard appears.

4. Select the Create A New Table With The Following Name option and
enter a name for the new table in the field.

5. Follow the remaining instructions in the wizard.

If the import is successful, the Messages pane displays the amount of
time it to took to import the data. If the import is unsuccessful, a message
appears indicating the import was unsuccessful. The Results tab in the
Results pane displays what execution plan was used.

❖ To import a table (Interactive SQL)

1. In the SQL Statements pane of the Interactive SQL window, create the
table you want to load data into.

You can use the CREATE TABLE statement to create the table.

2. Execute a LOAD TABLE statement. For example,

LOAD TABLE department
FROM ’dept.txt’

The LOAD TABLE statement appends the contents of the file to the
existing rows of the table; it does not replace the existing rows in the
table. You can use the TRUNCATE TABLE statement to remove all the
rows from a table.

Neither the TRUNCATE TABLE statement nor the LOAD TABLE
statement fires triggers, including referential integrity actions such as
cascaded deletes.

The LOAD TABLE statement has an optional STRIP clause. The default
setting (STRIP ON) strips trailing blanks from values before inserting
them. To keep trailing blanks, use the STRIP OFF clause in your LOAD
TABLE statement.

For more information about the LOAD TABLE statement syntax, see
“LOAD TABLE statement”[ASA SQL Reference,page 486].

531

Exporting
Following is a summary of export tools, followed by instructions for
exporting query results, databases, and tables.

Export tools

There are a variety of tools available to help you export your data.

Exporting data from
Interactive SQL

You can export data from Interactive SQL by choosing Export from the Data
menu. This allows you to choose the format of the exported query results.

OUTPUT statement You can export query results, tables or views from your database using the
Interactive SQL OUTPUT statement. The Interactive SQL OUTPUT
statement supports several different file formats. You can either specify the
default output format, or you can specify the file format on each OUTPUT
statement. Interactive SQL can execute a command file containing multiple
OUTPUT statements.

There are performance impacts associated with exporting large amounts of
data with the OUTPUT statement. As well, you should use the OUTPUT
statement on the same machine as the server if possible to avoid sending
large amounts of data across the network.

Choose the Interactive SQL OUTPUT statement when you want to export all
or part of a table or view in a format other than text, or when you want to
automate the export process using a command file.

☞ For more information, see “OUTPUT statement [Interactive SQL]”[ASA
SQL Reference,page 501].

UNLOAD TABLE
statement

You execute the UNLOAD TABLE statement from the SQL Statements
pane of the Interactive SQL window. It allows you to export data only, in an
efficient manner in text/ASCII/FIXED formats. The UNLOAD TABLE
statement exports with one row per line, and values separated by a comma
delimiter. The data exports in order by primary key values to make reloading
quicker.

Choose the UNLOAD TABLE statement when you want to export entire
tables in text format. If you have a choice between using the OUTPUT
statement, UNLOAD statement, or UNLOAD TABLE statement, choose the
UNLOAD TABLE statement for performance reasons.

☞ For more information, see “UNLOAD TABLE statement”[ASA SQL
Reference,page 590].

UNLOAD statement The UNLOAD statement is similar to the OUTPUT statement in that they
both export query results to a file. The UNLOAD statement, however, allows

532

Chapter 16. Importing and Exporting Data

you to export data in a more efficient manner and in text/ASCII/FIXED
formats only. The UNLOAD statement exports with one row per line, with
values separated by a comma delimiter.

To use the UNLOAD statement, the user must have ALTER or SELECT
permission on the table. For more information about controlling who can use
the UNLOAD statement, see “-gl server option”[ASA Database Administration
Guide,page 147].

Choose the UNLOAD statement when you want to export query results if
performance is an issue, and if output in text format is acceptable. The
UNLOAD statement is also a good choice when you want to embed an
export command in an application.

When unloading and reloading a database that has proxy tables, you must
create an external login to map the local user to the remote user, even if the
user has the same password on both the local and remote databases. If you
do not have an external login, the reload may fail because you cannot
connect to the remote server.

☞ For more information, see “UNLOAD statement”[ASA SQL Reference,
page 588].

Dbunload utility Thedbunloadutility and Sybase Central are graphically different, and
functionally equivalent. You can use either one interchangeably to produce
the same results. These tools are different from Interactive SQL statements
in that they can operate on several tables at once. And in addition to
exporting table data, both tools can also export table schema.

If you want to rearrange your tables in the database, you can usedbunloadto
create the necessary command files and modify them as needed. Sybase
Central provides wizards and a GUI interface for unloading one, many, or all
of the tables in a database, and dbunload provides command line options for
the same activities. Tables can be unloaded with structure only, data only or
both structure and data. To unload fewer than all of the tables in a database,
a connection must be established beforehand.

You can also extract one or many tables with or without command files.
These files can be used to create identical tables in different databases.

Choose Sybase Central or thedbunloadutility when you want to export in
text format, when you need to process large amounts of data quickly, when
your file format requirements are flexible, or when your database needs to be
rebuilt or extracted.

☞ For more information, see “Unloading a database using the dbunload
command-line utility”[ASA Database Administration Guide,page 534].

533

Exporting query results

You can export queries (including queries on views) to a file from
Interactive SQL using the Data menu or the OUTPUT statement.

You can import and export files between Adaptive Server Anywhere and
Adaptive Server Enterprise using the BCP FORMAT clause.

☞ For more information, see“Adaptive Server Enterprise compatibility”
on page 556.

❖ To export query results (Interactive SQL Data menu)

1. Enter your query in the SQL Statements pane of the Interactive SQL
window.

2. Click Execute SQL statement(s) to display the result set.

3. Choose Data➤ Export.

The Save As dialog appears.

4. Specify a name and location for the exported data.

5. Specify the file format and click Save.

If the export is successful, the Messages pane displays the amount of time
it to took to export the query result set, the filename and path of the
exported data, and the number of rows written.

If the export is unsuccessful, a message appears indicating the export was
unsuccessful.

❖ To export query results (Interactive SQL OUTPUT statement)

1. Enter your query in the SQL Statements pane of the Interactive SQL
window.

2. At the end of the query, typeOUTPUT TO ‘c :\filename’.

For example, to export the entire employee table to the fileemployee.dbf,
enter the following query:

SELECT *
FROM employee;
OUTPUT TO ’c:\employee.dbf’

3. If you want to export query results and append the results to another file,
add the APPEND statement to the end of the OUTPUT statement.

534

Chapter 16. Importing and Exporting Data

♦ For example,

SELECT *
FROM employee;
OUTPUT TO ’c:\employee.dbf’ APPEND

4. If you want to export query results and include messages, add the
VERBOSE statement to the end of the OUTPUT statement.

For example,

SELECT *
FROM employee;
OUTPUT TO ’c:\employee.dbf’ VERBOSE

5. If you want to specify a format other than ASCII, add a FORMAT clause
to the end of the query.

For example,

SELECT *
FROM employee;
OUTPUT TO ’c:\employee.dbf’
FORMAT dbaseiii;

wherec:\employee.dbfis the path, name, and extension of the new file
anddbaseiii is the file format for this file. You can enclose the string in
single or double quotation marks, but they are only required if the path
contains embedded spaces.

Wheredbaseiii is the file format for this file. If you leave the FORMAT
option out, the file type defaults to ASCII.

6. Execute the statement.

If the export is successful, the Messages pane displays the amount of time
it to took to export the query result set, the filename and path of the
exported data, and the number of rows written. If the export is
unsuccessful, a message appears indicating the export was unsuccessful.

For more information about exporting query results using the OUTPUT
statement, see “OUTPUT statement [Interactive SQL]”[ASA SQL
Reference,page 501].

535

Tips
You can combine the APPEND and VERBOSE statements to append
both results and messages to an existing file. For example, typeOUTPUT

TO ’filename.sql’ APPEND VERBOSE. For more information about
APPEND and VERBOSE, see the “OUTPUT statement [Interactive SQL]”
[ASA SQL Reference,page 501].

The OUTPUT TO, APPEND, and VERBOSE statements are equivalent to
the>#, >>#, >&, and >>& operators of earlier versions of Interactive
SQL. You can still use these operators to redirect data, but the new
Interactive SQL statements allow for more precise output and easier to read
code.

❖ To export query results (UNLOAD statement)

1. Execute an UNLOAD statement. For example,

UNLOAD
SELECT *
FROM employee;
TO ’c: \employee.dbf’

If the export is successful, the Messages pane displays the amount of time
it to took to export the query result set, the filename and path of the
exported data, and the number of rows written. If the export is
unsuccessful, a message appears indicating the export was unsuccessful.

Exporting databases

❖ To unload all or part of a database (Sybase Central)

1. In the left pane, select the Adaptive Server Anywhere 9 plug-in.

2. In the right pane, click the Utilities tab.

All of the operations you can perform on a database appear in the right
pane.

3. Double-click Unload Database in the right pane.

The Unload Database wizard appears.

You can also open the Unload Database wizard by right-clicking the
database in the left pane, and choosing Unload Database from the popup
menu, or by choosing the Tools➤ Adaptive Server Anywhere 9➤
Unload Database command.

4. Follow the instructions in the wizard.

536

Chapter 16. Importing and Exporting Data

❖ To unload all or part of a database (command line)

1. At a command prompt, enter thedbunloadcommand and specify
connection parameters using the-c option.

For example, the following command unloads the entire database to
c:\temp:

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" c: \temp

2. If you want to export data only, add the-d option.

For example, if you want to export data only, your final command would
look like this:

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" -d c: \temp

3. If you want to export schema only, add the-n option instead.

For example, if you want to export schema only, your final command
would look like this:

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" -n c: \temp

4. Press Enter to execute the command.

For more information about additional command line options you can apply
to thedbunloadutility, see “Unloading a database using the dbunload
command-line utility”[ASA Database Administration Guide,page 534].

Exporting tables

In addition to the methods described below, you can also export a table by
selecting all the data in a table and exporting the query results. For more
information, see“Exporting query results” on page 534.

Tip
You can export views just as you would export tables.

❖ To export a table (Command line)

1. At a command prompt, enter the followingdbunloadcommand and press
Enter:

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" -t employee c: \
temp

where-c specifies the database connection parameters and-t specifies
the name of the table(s) you want to export. Thisdbunloadcommand

537

unloads the data from the sample database (assumed to be running on the
default database server with the default database name) into a set of files
in thec:\tempdirectory. A command file to rebuild the database from the
data files is created with the default namereload.SQLin the current
directory.

You can unload more than one table by separating the table names with a
comma (,) delimiter.

❖ To export a table (SQL)

1. Execute an UNLOAD TABLE statement. For example,

UNLOAD TABLE department
TO ’dept.txt’

This statement unloads the department table from the sample database
into the filedept.txt in the server’s current working directory. If you are
running against a network server, the command unloads the data into a
file on the server machine, not the client machine. Also, the file name
passes to the server as a string. Using escape backslash characters in the
file name prevents misinterpretation if a directory of file name begins
with an n (\n is a newline character) or any other special characters.

Each row of the table is output on a single line of the output file, and no
column names are exported. The columns are separated, or delimited, by
a comma. The delimiter character can be changed using the DELIMITED
BY clause. The fields are not fixed-width fields. Only the characters in
each entry are exported, not the full width of the column.

☞ For more information about the UNLOAD TABLE statement syntax,
see “UNLOAD TABLE statement”[ASA SQL Reference,page 590].

538

Chapter 16. Importing and Exporting Data

Rebuilding databases
Rebuilding a database is a specific type of import and export involving
unloading and reloading your entire database. Rebuilding your database
takes all the information out of your database and puts it back in, in a
uniform fashion, thus filling space and improving performance much like
defragmenting your disk drive.

It is good practice to make backups of your database before rebuilding.

Loading and unloading are most useful for improving performance,
reclaiming fragmented space, or upgrading your database to a newer version
of Adaptive Server Anywhere.

Rebuilding is different from exporting in that rebuilding exports and imports
table definitions and schema in addition to the data. The unload portion of
the rebuild process produces ASCII format data files and a ‘reload.SQL‘
file which contains table and other definitions. Running thereload.SQL
script recreates the tables and loads the data into them.

You can carry out this operation from Sybase Central or using thedbunload
command line utility.

When unloading and reloading a database that has proxy tables, you must
create an external login to map the local user to the remote user, even if the
user has the same password on both the local and remote databases. If you
do not have an external login, the reload may fail because you cannot
connect to the remote server.

☞ For more information about external logins, see“Working with external
logins” on page 567.

Consider rebuilding your database if you want to upgrade your database,
reclaim disk space or improve performance. You might consider extracting a
database (creating a new database from an old database) if you are using
SQL Remote or MobiLink.

If you need to defragment your database, and a full rebuild is not possible
due to requirements for continuous access to the database, consider
reorganizing the table instead of rebuilding.

☞ For more information about reorganizing tables, see the
“REORGANIZE TABLE statement”[ASA SQL Reference,page 522].

Rebuilding a database
involved in replication

If a database is participating in replication, particular care needs to be taken
if you wish to rebuild the database.

Replication is based on the offsets in the transaction log. When you rebuild a
database, the offsets in the old transaction log are different than the offsets in

539

the new log, making the old log unavailable For this reason, good backup
practices are especially important when participating in replication.

There are two ways of rebuilding a database involved in replication. The first
method uses thedbunloadutility -ar option to make the unload and reload
occur in a way that does not interfere with replication. The second method is
a manual method of accomplishing the same task.

The rebuild (load/unload) and extract procedures are used to rebuild
databases and to create new databases from part of an old one.

With importing and exporting, the destination of the data is either into your
database or out of your database. Importing reads data into your database.
Exporting writes data out of your database. Often the information is either
coming from or going to another non-Adaptive Server Anywhere database.

Rebuilding, however, combines two functions: loading and unloading.
Loading and Unloading takes data and schema out of an Adaptive Anywhere
database and then places the data and schema back into an Adaptive Server
Anywhere database. The unloading procedure produces fixed format data
files and areload.SQLfile which contains table definitions required to
recreate the table exactly. Running thereload.SQLscript recreates the tables
and loads the data back into them.

Rebuilding a database can be a time consuming operation, and can require a
large amount of disk space. As well, the database is unavailable for use while
being unloaded and reloaded. For these reasons, rebuilding a database is not
advised in a production environment unless you have a definite goal in mind.

Rebuilding a database involved in replication
The procedure for rebuilding a database depends on whether the database
is involved in replication or not. If the database is involved in replication,
you must preserve the transaction log offsets across the operation, as the
Message Agent and Replication Agent require this information. If the
database is not involved in replication, the process is simpler.

Rebuild tools

LOAD/UNLOAD TABLE
statement

UNLOAD TABLE allows you to export data only, in an efficient manner in
text/ASCII/FIXED formats. The UNLOAD TABLE statement exports with
one row per line, with values separated by a comma delimiter. To make
reloading quicker, the data exports in order by primary key values.

To use the UNLOAD TABLE statement, the user must have ALTER or
SELECT permission on the table.

Choose the UNLOAD TABLE statement when you want to export data in

540

Chapter 16. Importing and Exporting Data

text format or when performance is an issue.

☞ For more information, see “UNLOAD statement”[ASA SQL Reference,
page 588].

dbunload/dbisql utilities
and Sybase Central

Thedbunload/dbisqlutilities and Sybase Central are graphically different,
and functionally equivalent. You can use either one interchangeably to
produce the same results.

You can use the Sybase Central Unload Database wizard or thedbunload
utility to unload an entire database in ASCII comma-delimited format and to
create the necessary Interactive SQL command files to completely recreate
your database. This may be useful for creating SQL Remote extractions or
building new copies of your database with the same or a slightly modified
structure. Thedbunloadutility and Sybase Central are useful for exporting
Adaptive Server Anywhere files intended for reuse within Adaptive Server
Anywhere.

Choose Sybase Central or thedbunloadutility when you want to rebuild
your or extract from your database, export in text format, when you need to
process large amounts of data quickly, or when your file format requirements
are flexible.

☞ For more information, see“Rebuilding a database not involved in
replication” on page 543and“Rebuilding a database involved in replication”
on page 544.

Rebuild file formats

From one ASA database
to another

Rebuilding generally takes data out of an Adaptive Server Anywhere
database and then places that data back into an Adaptive Server Anywhere
database. The unloading and reloading are closely tied together since you
usually perform both tasks, rather than just one or the other.

Rebuilding a database You might rebuild your database if you wanted to:

♦ Upgrade your database file format Some new features are made
available by applying the Upgrade utility, but others require a database
file format upgrade, which is carried out by unloading and reloading the
database. The New Features documentation will state if an unload and
reload is required to obtain a particular feature.

♦ Reclaim disk space Databases do not shrink if you delete data.
Instead, any empty pages are simply marked as free so they can be used
again. They are not removed from the database unless you rebuild it.
Rebuilding a database can reclaim disk space if you have deleted a large
amount of data from your database and do not anticipate adding more.

541

♦ Improve performance Rebuilding databases can improve performance
for the following reasons:
• If data on pages within the database is fragmented, unloading and

reloading can eliminate the fragmentation.

• Since the data can be unloaded and reloaded in order by primary keys,
access to related information can be faster, as related rows may appear
on the same or adjacent pages.

Upgrading a database New versions of the Adaptive Server Anywhere database server can be used
without upgrading your database. If you want to use features of the new
version that require access to new system tables or database options, you
must use the upgrade utility to upgrade your database. The upgrade utility
does not unload or reload any data.

If you want to use features of the new version that rely on changes in the
database file format, you must unload and reload your database. You should
back up your database after rebuilding the database.

To upgrade your database file, use the new version of Adaptive Server
Anywhere.

For more information about upgrading your database, see “Upgrading
Adaptive Server Anywhere”[What’s New in SQL Anywhere Studio,page 176].

Exporting table data or table schema

❖ To export table data or table schema (Command line)

1. At a command prompt, enter thedbunloadcommand and specify
connection parameters using the-c option.

2. Specify the table(s) you want to export data or schema for, using the-t

option.

For example, to export part of the employee table, enter

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" -t employee c: \
temp

You can unload more than one table by separating the table names with a
comma delimiter.

3. If you want to export data only, add the-d option.

For example, if you want to export data only, your final command would
look like this:

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" -d -t employee c: \
temp

542

Chapter 16. Importing and Exporting Data

4. If you want to export schema only, add the-n option instead.

For example, if you want to export schema only, your final command
would look like this:

dbunload -c "dbn=asademo;uid=DBA;pwd=SQL" -n -t employee c: \
temp

5. Press Enter to execute the command.

Thedbunloadcommands in these examples unload the data or schema
from the sample database table (assumed to be running on the default
database server with the default database name) into a file in thec:\temp
directory. A command file to rebuild the database from the data files is
created with the default namereload.SQLin the current directory.

Reloading a Database

❖ To reload a database (Command line)

1. At a command prompt, execute thereload.SQLscript.

For example, the following command loads thereload.SQLscript in the
current directory.

dbisql -c "dbn=asademo;uid=DBA;pwd=SQL" reload.SQL

Rebuilding a database not involved in replication

The following procedures should be used only if your database is not
involved in replication.

☞ For instructions about rebuilding a database not involved in replication
from Sybase Central, see “Upgrading the database file format”[What’s New in
SQL Anywhere Studio,page 178].

❖ To rebuild a database not involved in replication (Command line)

1. At a command prompt, execute thedbunloadcommand line utility using
one of the following options:

♦ The-an option rebuilds to a new database.

dbunload -c "dbf=asademo.db;uid=DBA;pwd=SQL"
-an asacopy.db

♦ The-ac option reloads to an existing database.

dbunload -c "dbf=asademo.db;uid=DBA;pwd=SQL"
-ac "uid=DBA;pwd=SQL;dbf=newdemo.db"

543

♦ The-ar option replaces the existing database.

dbunload -c "dbf=asademo.db;uid=DBA;pwd=SQL"
-ar "uid=DBA;pwd=SQL;dbf=newdemo.db"

If you use one these options, no interim copy of the data is created on
disk, so you do not specify an unload directory on the command line.
This provides greater security for your data. The-ar and-an options
should also execute more quickly than Sybase Central, but-ac is slower.

2. Shut down the database and archive the transaction log, before using the
reloaded database.

Notes The-an and-ar options only apply to connections to a personal server, or
connections to a network server over shared memory.

There are additional options available for thedbunloadutility that allow you
to tune the unload, as well as connection parameter options that allow you to
specify a running or non-running database and database parameters.

Rebuilding a database involved in replication

❖ To rebuild a database involved in replication

1. Shut down the database.

2. Perform a full off-line backup by copying the database and transaction
log files to a secure location.

3. At a command prompt, run dbunload to rebuild the database:

dbunload -c connection_string -ar directory

whereconnection_stringis a connection with DBA authority,directory is
the directory used in your replication environment for old transaction
logs, and there are no other connections to the database.

The-ar option only applies to connections to a personal server, or
connections to a network server over shared memory.

☞ For more information, see “Unload utility options”[ASA Database
Administration Guide,page 537].

4. Shut down the new database. Perform validity checks that you would
usually perform after restoring a database.

5. Start the database using any production options you need. You can now
allow user access to the reloaded database.

544

Chapter 16. Importing and Exporting Data

Notes There are additional options available for thedbunloadutility that allow you
to tune the unload, as well as connection parameter options that allow you to
specify a running or non-running database and database parameters.

If the above procedure does not meet your needs, you can manually adjust
the transaction log offsets. The following procedure describes how to carry
out that operation.

❖ To rebuild a database involved in replication, with manual inter-
vention
1. Shut down the database.

2. Perform a full off-line backup by copying the database and transaction
log files to a secure location.

3. Run thedbtranutility to display the starting offset and ending offset of
the database’s current transaction log file. Note the ending offset for later
use.

4. Rename the current transaction log file so that it is not modified during
the unload process, and place this file in the dbremote off-line logs
directory.

5. Rebuild the database.

☞ For information on this step, see“Rebuilding databases” on page 539.

6. Shut down the new database.

7. Erase the current transaction log file for the new database.

8. Usedblog on the new database with the ending offset noted in step 3 as
the-z parameter, and also set the relative offset to zero.

dblog -x 0 -z 137829 database-name.db

9. When you run the Message Agent, provide it with the location of the
original off-line directory on its command line.

10. Start the database. You can now allow user access to the reloaded
database.

Minimizing downtime during rebuilding

The following steps help you rebuild a database while minimizing downtime.
This can be especially useful if your database is in operation 24 hours a day.

It’s wise to do a practice run of steps 1-4, and determine the times required
for each step, prior to beginning the actual backup. You may also want to
save copies of your files at various points during the rebuild.

545

Make sure that no other scheduled backups rename the production database’s
log. If this happens in error, you will need to apply the transactions from
these renamed logs to the rebuilt database in the correct order.

❖ To rebuild a database and minimize the downtime

1. Using DBBACKUP -r, create a backup of the database and log, and
rename the log.

2. Rebuild the backed up database on another machine.

3. Do another DBBACKUP -r on the production server to rename the log.

4. Run DBTRAN on the log from step 3 and apply the transactions to the
rebuilt server.

You now have a rebuilt database that contains all transactions up to the
end of the backup in step 3.

5. Shut down the production server and make copies of the database and log.

6. Copy the rebuilt database onto the production server.

7. Run DBTRAN on the log from step 5.

This should be a relatively small file.

8. Start the server on the rebuilt database, but don’t allow users to connect.

9. Apply the transactions from step 8.

10. Allow users to connect.

546

Chapter 16. Importing and Exporting Data

Extracting data
Extracting removes a remote Adaptive Server Anywhere database from a
consolidated Adaptive Server Enterprise or Adaptive Server Anywhere
database.

You can use the Sybase Central Extract Database wizard or the Extraction
utility to extract databases. The Extraction utility is the recommended way of
creating and synchronizing remote databases from a consolidated database.

For more information about how to perform database extractions, see:

♦ “The Database Extraction utility”[SQL Remote User’s Guide,page 302]

♦ “Using the extraction utility”[SQL Remote User’s Guide,page 191]

♦ “Extraction utility options”[SQL Remote User’s Guide,page 305]

♦ “Extracting groups”[SQL Remote User’s Guide,page 195]

♦ “Deploying remote databases”[MobiLink Synchronization User’s Guide,
page 168]

♦ “Extracting a remote database in Sybase Central”[SQL Remote User’s
Guide,page 302]

547

Migrating databases to Adaptive Server Anywhere
You can import tables from remote Oracle, DB2, Microsoft SQL Server,
Sybase Adaptive Server Enterprise, Adaptive Server Anywhere, and
Microsoft Access databases into Adaptive Server Anywhere using the
sa_migrate set of stored procedures or the Data Migration wizard.

If you do not want to modify the tables in any way, you can use the single
step method. Alternatively, if you would like to remove tables or foreign key
mappings, you can use the extended method.

When using the sa_migrate set of stored procedures, you must complete the
following steps before you can import a remote database:

♦ Create a target database.

☞ For information about creating a database, see“Creating a database”
on page 27.

♦ Create a remote server to connect to the remote database.

☞ For information about creating a remote server, see“Creating remote
servers” on page 562.

♦ Create an external login to connect to the remote database. This is only
required when the user has a different passwords on the target and remote
databases, or when you want to login using a different user ID on the
remote database than the one you are using on the target database.

☞ For information about creating an external login, see“Creating
external logins” on page 567.

♦ Create a local user who will own the migrated tables in the target
database.

☞ For information about creating a user, see “Creating new users”[ASA
Database Administration Guide,page 394].

If you use the Data Migration wizard, you can perform all these steps, except
creating the target database, from the wizard in Sybase Central.

❖ To import remote tables (Sybase Central)

1. From Sybase Central, connect to the target database.

2. In the left pane of the Sybase Central window, select the Adaptive Server
Anywhere 9 plug-in.

3. In the right pane, click the Utilities tab.

All the operations you can perform on a database appear in the right pane.

548

Chapter 16. Importing and Exporting Data

4. Double-click Migrate Database in the right pane.

The Database Migration wizard appears.

You can also open the Database Migration wizard by right-clicking on
the target database in the left pane and choosing Migrate Database from
the popup menu, or by choosing the Tools➤ Adaptive Server Anywhere
9 ➤ Migrate Database command.

5. Select the target database from the list, and then click Next.

6. Select the remote server you want to use to connect to the remote
database from which you want to migrate data, and then click Next.

If you have not already created a remote server, click Create Remote
Server Now to open the Remote Server Creation wizard.

☞ For more information about creating a remote server, see“Creating
remote servers” on page 562.

7. Select the tables that you want to migrate, and then click Next.

8. Select whether you want to migrate the data and the foreign keys from the
remote tables and whether you want to keep the proxy tables that are
created for the migration process, and then click Next.

If the target database is version 8.0.0 or earlier, the Migrate the foreign
keys option is not enabled. You must upgrade the database to version
8.0.1 or later to use this option.

☞ For more information about upgrading, see “Upgrading a database”
[What’s New in SQL Anywhere Studio,page 177].

9. Select the user that will own the tables on the target database, and then
click Finish to complete the migration.

If you have not already created a user, click Create User Now to open the
User Creation wizard.

10. Click Finish.

The following example uses the sa_migrate stored procedure to import all
the tables that belong to one owner on the remote database in one step.

Supplying NULL for both thetable_nameandowner_nameparameters
migrates all the tables in the database, including system tables. As well,
tables that have the same name, but different owners, in the remote database
all belong to one owner in the target database. For these reasons, it is
recommended that you migrate tables associated with one owner at a time.

549

❖ To import remote tables (single step)

1. From Interactive SQL, connect to the target database.

2. In the Interactive SQL Statements pane, run the sa_migrate stored
procedure. For example,

CALL sa_migrate(’local_a’, ’ase’, NULL, l_smith, NULL, 1,
1, 1)

This procedure calls several procedures in turn and migrates all the
remote tables belonging to the user l_smith using the specified criteria.

If you do not want all the migrated tables to be owned by the same user on
the target database, you must run the sa_migrate procedure for each owner
on the target database, specifying thelocal_table_ownerandowner_name
arguments. It is recommended that you migrate tables associated with one
owner at a time.

☞ For more information, see “sa_migrate system procedure”[ASA SQL
Reference,page 724].

For target databases that are version 8.0.0 or earlier, foreign keys are
migrated automatically. If you do not want to migrate the foreign keys, you
must upgrade the database file format to version 8.0.1 or later.

☞ For more information about upgrading, see “Upgrading a database”
[What’s New in SQL Anywhere Studio,page 177].

❖ To import remote tables (with modifications)

1. From Interactive SQL, connect to the target database.

2. Run the sa_migrate_create_remote_table_list stored procedure. For
example,

CALL sa_migrate_create_remote_table_list(’ase’,
NULL, ’remote_a’, ’mydb’)

You must specify a database name for Adaptive Server Enterprise and
Microsoft SQL Server databases.

This populates the dbo.migrate_remote_table_list table with a list of
remote tables to migrate. You can delete rows from this table for remote
tables you do not wish to migrate.

Do not supply NULL for both thetable_nameandowner_name
parameters. Doing so migrates all the tables in the database, including
system tables. As well, tables that have the same name but different
owners in the remote database all belong to one owner in the target

550

Chapter 16. Importing and Exporting Data

database. It is recommended that you migrate tables associated with one
owner at a time.

☞ For more information about the sa_migrate_create_remote_table_list
stored procedure, see “sa_migrate_create_remote_table_list system
procedure”[ASA SQL Reference,page 729].

3. Run the sa_migrate_create_tables stored procedure. For example,

CALL sa_migrate_create_tables(’local_a’,)

This procedure takes the list of remote tables from
dbo.migrate_remote_table_list and creates a proxy table and a base table
for each remote table listed. This procedure also creates all primary key
indexes for the migrated tables.

☞ For more information about the sa_migrate_create_tables stored
procedure, see “sa_migrate_create_tables system procedure”[ASA SQL
Reference,page 731].

4. If you want to migrate the data from the remote tables into the base tables
on the target database, run the sa_migrate_data stored procedure. For
example,

Enter the following stored procedure:

CALL sa_migrate_data(’local_a’)

This procedure migrates the data from each remote table into the base
table created by the sa_migrate_create_tables procedure.

☞ For more information about the sa_migrate_data stored procedure,
see “sa_migrate_data system procedure”[ASA SQL Reference,page 733].

If you do not want to migrate the foreign keys from the remote database,
you can skip to step 7.

5. Run the sa_migrate_create_remote_fks_list stored procedure. For
example,

CALL sa_migrate_create_remote_fks_list(’ase’)

This procedure populates the table dbo.migrate_remote_fks_list with the
list of foreign keys associated with each of the remote tables listed in
dbo.migrate_remote_table_list.

You can remove any foreign key mappings you do not want to recreate on
the local base tables.

☞ For more information about the sa_migrate_create_remote_fks_list
stored procedure, see “sa_migrate_create_remote_fks_list system
procedure”[ASA SQL Reference,page 728].

551

6. Run the sa_migrate_create_fks stored procedure. For example,

CALL sa_migrate_create_fks(’local_a’)

This procedure creates the foreign key mappings defined in
dbo.migrate_remote_fks_list on the base tables.

☞ For more information about the sa_migrate_create_fks stored
procedure, see “sa_migrate_create_fks system procedure”[ASA SQL
Reference,page 727].

7. If you want to drop the proxy tables that were created for migration
purposes, run the sa_drop_proxy_tables stored procedure. For example,

CALL sa_migrate_drop_proxy_tables(’local_a’)

This procedure drops all proxy tables created for migration purposes and
completes the migration process.

☞ For more information about the sa_migrate_drop_proxy_tables
stored procedure, see “sa_migrate_drop_proxy_tables system procedure”
[ASA SQL Reference,page 734].

552

Chapter 16. Importing and Exporting Data

Running SQL command files
This section describes how to process files consisting of a set of commands.

Writing output to a file

In Interactive SQL, the data for each command remains on the Results tab in
the Results pane only until the next command is executed. To keep a record
of your data, you can save the output of each statement to a separate file. If
statement1andstatement2are two SELECT statements, then you can
output them tofile1 andfile2, respectively, as follows:

Statement1; OUTPUT TO
file1;
statement2; OUTPUT TO
file2;

For example, the following command saves the result of a query:

SELECT * FROM EMPLOYEE;
OUTPUT TO "C:\\My Documents \\Employees.txt"

☞ For more information, see “OUTPUT statement [Interactive SQL]”[ASA
SQL Reference,page 501].

Executing command files

You can execute command files in the following ways:

♦ You can use the Interactive SQL READ command to execute command
files.

The following statement executes the filetemp.sql:

READ temp.sql

☞ For more information, see “READ statement [Interactive SQL]”[ASA
SQL Reference,page 517].

♦ You can load a command file into the SQL Statements pane and execute
it directly from there.

You load command files back into the SQL Statements pane by choosing
File ➤ Open. Entertemp.sqlwhen prompted for the file name.

On Windows platforms you can make Interactive SQL the default editor
for .SQL files so that you can double-click the file and it appears in the
SQL Statements pane of Interactive SQL.

☞ For more information about making Interactive SQL the default

553

editor for.SQL files, see “Options dialog: General tab”[SQL Anywhere
Studio Help,page 144].

♦ You can supply a command file as a command-line argument for
Interactive SQL.

Saving, loading, and running command files

You can save the commands currently present in the SQL Statements pane
so that they are available for future Interactive SQL sessions. The file in
which you save them is called a command file.

Command files are text files containing SQL statements. You can use any
editor you like to create command files. You can include comment lines
along with the SQL statements to be executed. Command files are also
commonly calledscripts.

When you begin a new session, you can load the contents of a command file
into the SQL Statements pane, or you can run the contents immediately.

❖ To save the commands from the SQL Statements pane to a file

1. Choose File➤ Save As.

2. In the Save dialog, specify a location, name and format for the file. Click
Save when finished.

❖ To load commands from a file into the SQL Statements pane

1. Choose File➤ Open.

2. In the Open dialog, find and select the file. Click Open when finished.

❖ To run a command file immediately

1. Choose File➤ Run Script.

2. In the Open dialog, find and select the file. Click Open when finished.

The Run Script menu item is the equivalent of a READ statement. For
example, in the SQL Statements pane, you can also run a command file
by typing:

READ ’c: \filename.sql’

wherec:\filename.sqlis the path, name, and extension of the file. Single
quotation marks (as shown) are required only if the path contains spaces.

554

Chapter 16. Importing and Exporting Data

❖ To run a command file in batch mode

1. Supply a command file as a command-line argument for Interactive SQL.

For example, the following command runs the command filemyscript.sql
against the sample database.

dbisql -c "dsn= ASA 9.0 Sample" myscript.sql

555

Adaptive Server Enterprise compatibility
You can import and export files between Adaptive Server Anywhere and
Adaptive Server Enterprise using the BCP FORMAT clause. Simply make
sure the BCP output is in delimited ASCII format. If you are exporting
BLOB data from Adaptive Server Anywhere for use in Adaptive Server
Enterprise, use the BCP format clause with the UNLOAD TABLE statement.

☞ For more information about BCP and the FORMAT clause, see “LOAD
TABLE statement”[ASA SQL Reference,page 486]or “UNLOAD TABLE
statement”[ASA SQL Reference,page 590].

556

CHAPTER 17

Accessing Remote Data

About this chapter Adaptive Server Anywhere can access data located on different servers, both
Sybase and non-Sybase, as if the data were stored on the local server.

This chapter describes how to configure Adaptive Server Anywhere to
access remote data.

Contents Topic: page

Introduction 558

Basic concepts to access remote data 560

Working with remote servers 562

Working with external logins 567

Working with proxy tables 569

Joining remote tables 574

Joining tables from multiple local databases 576

Sending native statements to remote servers 577

Using remote procedure calls (RPCs) 578

Transaction management and remote data 581

Internal operations 583

Troubleshooting remote data access 587

557

Introduction
Adaptive Server Anywhere remote data access give you access to data in
othe data sources. You can use this feature to migrate data into an Adaptive
Server Anywhere database. You can also use the feature to query data across
databases, although performance for such multi-database queries is much
slower than when all the data is in a single Adaptive Server Anywhere
database.

With remote data access you can:

♦ Use Adaptive Server Anywhere to move data from one location to
another using insert-select.

♦ Access data in relational databases such as Sybase, Oracle, and DB2.

♦ Access desktop data such as Excel spreadsheets, MS-Access databases,
FoxPro, and text files.

♦ Access any other data source that supports an ODBC interface.

♦ Perform joins between local and remote data, although performance is
much slower than if all the data is in a single Adaptive Server Anywhere
database.

♦ Perform joins between tables in separate Adaptive Server Anywhere
databases. Performance limitations here are the same as with other
remote data sources.

♦ Use Adaptive Server Anywhere features on data sources that would
normally not have that ability. For instance, you could use a Java function
against data stored in Oracle, or perform a subquery on spreadsheets.
Adaptive Server Anywhere compensates for features not supported by a
remote data source by operating on the data after it is retrieved.

♦ Access remote servers directly using passthrough mode.

♦ Execute remote procedure calls to other servers.

Adaptive Server Anywhere allows access to the following external data
sources:

♦ Adaptive Server Anywhere

♦ Adaptive Server Enterprise

♦ Oracle

♦ IBM DB2

558

Chapter 17. Accessing Remote Data

♦ Microsoft SQL Server

♦ Other ODBC data sources

☞ For platform availability, see “Windows and NetWare operating
systems”[Introducing SQL Anywhere Studio,page 125].

Accessing remote data from PowerBuilder DataWindows

You can access remote data from a PowerBuilder DataWindow by setting the
DBParm Block parameter to 1 on connect.

♦ In the design environment, you can set the Block parameter by accessing
the Transaction tab in the Database Profile Setup dialog and setting the
Retrieve Blocking Factor to 1.

♦ In a connection string, use the following phrase:

DBParm="Block=1"

559

Basic concepts to access remote data
This section describes the basic concepts required to access remote data.

Remote table mappings

Adaptive Server Anywhere presents tables to a client application as if all the
data in the tables were stored in the database to which the application is
connected. Internally, when a query involving remote tables is executed, the
storage location is determined, and the remote location is accessed so that
data can be retrieved.

To have remote tables appear as local tables to the client, you create local
proxy tables that map to the remote data.

❖ To create a proxy table

1. Define the server where the remote data is located. This specifies the type
of server and location of the remote server.

☞ For more information, see“Working with remote servers” on
page 562.

2. Map the local user login information to the remote server user login
information if the logins on the two servers are different.

☞ For more information, see“Working with external logins” on
page 567.

3. Create the proxy table definition. This specifies the mapping of a local
proxy table to the remote table. This includes the server where the remote
table is located, the database name, owner name, table name, and column
names of the remote table.

☞ For more information, see“Working with proxy tables” on page 569.

Administering remote
table mappings

To manage remote table mappings and remote server definitions, you can
use Sybase Central or you can use a tool such as Interactive SQL and
execute the SQL statements directly.

Server classes

A server classis assigned to each remote server. The server class specifies
the access method used to interact with the server. Different types of remote
servers require different access methods. The server classes provide
Adaptive Server Anywhere detailed server capability information. Adaptive
Server Anywhere adjusts its interaction with the remote server based on
those capabilities.

560

Chapter 17. Accessing Remote Data

There are currently two groups of server classes. The first is JDBC-based;
the second is ODBC-based.

The JDBC-based server classes are:

♦ asajdbc for Adaptive Server Anywhere (version 6 and later)

♦ asejdbc for Adaptive Server Enterprise and SQL Server (version 10
and later)

The ODBC-based server classes are:

♦ asaodbc for Adaptive Server Anywhere (version 5.5 and later)

♦ aseodbc for Adaptive Server Enterprise and SQL Server (version 10
and later)

♦ db2odbc for IBM DB2

♦ mssodbc for Microsoft SQL Server

♦ oraodbc for Oracle servers (version 8.0 and later)

♦ odbc for all other ODBC data sources

☞ For a full description of remote server classes, see“Server Classes for
Remote Data Access” on page 589.

561

Working with remote servers
Before you can map remote objects to a local proxy table, you must define
the remote server where the remote object is located. When you define a
remote server, an entry is added to the sysservers table for the remote server.
This section describes how to create, alter, and delete a remote server
definition.

Creating remote servers

Use the CREATE SERVER statement to set up remote server definitions.
You can execute the statements directly, or use Sybase Central.

For ODBC connections, each remote server corresponds to an ODBC data
source. For some systems, including Adaptive Server Anywhere, each data
source describes a database, so a separate remote server definition is needed
for each database.

You must have RESOURCE authority to create a server.

On UNIX platforms, you need to reference the ODBC driver manager as
well.

☞ For a full description of the CREATE SERVER statement, see
“CREATE SERVER statement”[ASA SQL Reference,page 341].

Example 1 The following statement creates an entry in the sysservers table for the
Adaptive Server Enterprise server called ASEserver:

CREATE SERVER ASEserver
CLASS ’ASEJDBC’
USING ’rimu:6666’

where:

♦ ASEserver is the name of the remote server

♦ ASEJDBC is a keyword indicating that the server is Adaptive Server
Enterprise and the connection to it is JDBC-based

♦ rimu:6666 is the machine name and the TCP/IP port number where the
remote server is located

Example 2 The following statement creates an entry in the sysservers table for the
ODBC-based Adaptive Server Anywhere server named testasa:

CREATE SERVER testasa
CLASS ’ASAODBC’
USING ’test4’

where:

562

Chapter 17. Accessing Remote Data

♦ testasa is the name by which the remote server is known within this
database.

♦ ASAODBC is a keyword indicating that the server is Adaptive Server
Anywhere and the connection to it uses ODBC.

♦ test4 is the ODBC data source name.

Example 3 On Unix platforms, the following statement creates an entry in the sysservers
table for the ODBC-based Adaptive Server Anywhere server named remasa:

CREATE SERVER remasa
CLASS ’asaodbc’
USING ’driver=/opt/sybase/SYBSsa9/lib/dbodbc9_r.so;dsn=my_asa_

dsn’

where:

♦ remasa is the name by which the remote server is known within this
database.

♦ ASAODBC is a keyword indicating that the server is Adaptive Server
Anywhere and the connection to it uses ODBC.

♦ USING is the reference to the ODBC driver manager.

Example 4 On Unix platforms the following statement creates an entry in the sysservers
table for the ODBC-based Adaptive Server Enterprise server named remase:

CREATE SERVER remase
CLASS ’aseodbc’
USING ’driver=/opt/sybase/SYBSsa9/drivers/lib/libodbc.so;dsn=my_

ase_dsn’

where:

♦ remase is the name by which the remote server is known within this
database

♦ ASEODBC is a keyword indicating that the server is Adaptive Server
Enterprise and the connection to it uses ODBC

♦ USING is thereference to the ODBC driver manager.

Creating remote servers using Sybase Central

You can create a remote server using a wizard in Sybase Central. For more
information, see“Creating remote servers” on page 562.

563

❖ To create a remote server (Sybase Central)

1. Connect to the host database from Sybase Central.

2. Open the Remote Servers folder for that database.

3. From the File menu, choose New➤ Remote Server.

The Remote Server Creation wizard appears.

4. On the first page of the wizard, enter a name to use for the remote server.
This name simply refers to the remote server from within the local
database; it does not need to correspond with the name the server
supplies. Click Next.

5. Select an appropriate type of server and click Next.

6. Select a data access method (ODBC or JDBC), and supply connection
information.

♦ For ODBC, supply a data source name.

♦ For JDBC, supply a URL in the formmachine-name:port-number
The data access method (JDBC or ODBC) is the method used by
Adaptive Server Anywhere to access the remote database. This is not
related to the method used by Sybase Central to connect to your database.

7. Click Next. Specify whether you want the remote server to be read-only.

8. Click Finish to create the remote server definition.

Deleting remote servers

You can use Sybase Central or a DROP SERVER statement to delete a
remote server from the Adaptive Server Anywhere system tables. All remote
tables defined on that server must already be dropped for this action to
succeed.

You must have DBA authority to delete a remote server.

❖ To delete a remote server (Sybase Central)

1. Connect to the host database from Sybase Central.

2. Open the Remote Servers folder.

3. Right-click the remote server you want to delete and choose Delete from
the popup menu.

564

Chapter 17. Accessing Remote Data

❖ To delete a remote server (SQL)

1. Connect to the host database from Interactive SQL.

2. Execute a DROP SERVER statement.

☞ For more information, see “DROP SERVER statement”[ASA SQL
Reference,page 415].

Example The following statement drops the server named testasa:

DROP SERVER testasa

Altering remote servers

You can use Sybase Central or an ALTER SERVER statement to modify the
attributes of a server. These changes do not take effect until the next
connection to the remote server.

You must have RESOURCE authority to alter a server.

❖ To alter the properties of a remote server (Sybase Central)

1. Connect to the host database from Sybase Central.

2. Open the Remote Servers folder for that database.

3. Right-click the remote server and choose Properties from the popup
menu.

4. Configure the various remote server properties.

❖ To alter the properties of a remote server (SQL)

1. Connect to the host database from Interactive SQL.

2. Execute an ALTER SERVER statement.

Example The following statement changes the server class of the server named
ASEserver to aseodbc. In this example, the Data Source Name for the server
is ASEserver.

ALTER SERVER ASEserver
CLASS ’aseodbc’

The ALTER SERVER statement can also be used to enable or disable a
server’s known capabilities.

☞ For more information, see “ALTER SERVER statement”[ASA SQL
Reference,page 241].

565

Listing the remote tables on a server

It may be helpful when you are configuring Adaptive Server Anywhere to
get a list of the remote tables available on a particular server. The
sp_remote_tables procedure returns a list of the tables on a server.

sp_remote_tables servername
[,tablename]
[, owner]
[, database]

If tablename, owner, or databaseis given, the list of tables is limited to only
those that match.

For example, to get a list of all of the Microsoft Excel worksheets available
from an ODBC data source named excel:

sp_remote_tables excel

Or to get a list of all of the tables in the production database in an ASE
named asetest, owned by ‘fred’:

sp_remote_tables asetest, null, fred, production

☞ For more information, see “sp_remote_tables system procedure”[ASA
SQL Reference,page 749].

Listing remote server capabilities

The sp_servercaps procedure displays information about a remote server’s
capabilities. Adaptive Server Anywhere uses this capability information to
determine how much of a SQL statement can be passed off to a remote
server.

The system tables which contain server capabilities are not populated until
after Adaptive Server Anywhere first connects to the remote server. This
information comes from the SYSCAPABILITY and
SYSCAPABILITYNAME system tables. The servername specified must be
the same servername used in the CREATE SERVER statement.

Issue the stored procedure sp_servercaps as follows:

sp_servercaps servername

☞ For more information, see “sp_servercaps system procedure”[ASA SQL
Reference,page 751].

566

Chapter 17. Accessing Remote Data

Working with external logins
By default, Adaptive Server Anywhere uses the names and passwords of its
clients whenever it connects to a remote server on behalf of those clients.
However, this default can be overridden by creating external logins. External
logins are alternate login names and passwords to be used when
communicating with a remote server.

☞ For more information, see “Using integrated logins”[ASA Database
Administration Guide,page 85].

Creating external logins

You can create an external login using either Sybase Central or the CREATE
EXTERNLOGIN statement.

Only the login-name and the DBA account can add or modify an external
login.

❖ To create an external login (Sybase Central)

1. Connect to the host database from Sybase Central.

2. Open the Remote Servers folder for that database and select the remote
server.

3. From the File menu, choose New➤ External Login.

The External Login Creation wizard appears.

4. Follow the instructions in the wizard.

❖ To create an external login (SQL)

1. Connect to the host database from Interactive SQL.

2. Execute a CREATE EXTERNLOGIN statement.

Example The following statement allows the local userfred to gain access to the
serverASEserver, using the remote loginfrederick with passwordbanana.

CREATE EXTERNLOGIN fred
TO ASEserver
REMOTE LOGIN frederick
IDENTIFIED BY banana

☞ For more information, see “CREATE EXTERNLOGIN statement”[ASA
SQL Reference,page 313].

567

Dropping external logins

You can use either Sybase Central or a DROP EXTERNLOGIN statement to
delete an external login from the Adaptive Server Anywhere system tables.

Only the login-name and the DBA account can delete an external login.

❖ To delete an external login (Sybase Central)

1. Connect to the host database from Sybase Central.

2. Open the Remote Servers folder.

3. In the left pane, select the remote server and then click the External
Logins tab in the right pane.

4. Right-click the external login and choose Delete from the popup menu.

❖ To delete an external login (SQL)

1. Connect to the host database from Interactive SQL.

2. Execute a DROP EXTERNLOGIN statement.

Example The following statement drops the external login for the local user fred
created in the example above:

DROP EXTERNLOGIN fred TO ASEserver

☞ See also

♦ “DROP EXTERNLOGIN statement”[ASA SQL Reference,page 412]

568

Chapter 17. Accessing Remote Data

Working with proxy tables
Location transparency of remote data is enabled by creating a localproxy
table that maps to the remote object. Use one of the following statements to
create a proxy table:

♦ If the table already exists at the remote storage location, use the CREATE
EXISTING TABLE statement. This statement defines the proxy table for
an existing table on the remote server.

♦ If the table does not exist at the remote storage location, use the CREATE
TABLE statement. This statement creates a new table on the remote
server, and also defines the proxy table for that table.

Specifying proxy table locations

The AT keyword is used with both CREATE TABLE and CREATE
EXISTING TABLE to define the location of an existing object. This
location string has four components, each separated by either a period or a
semicolon. The semicolon delimiter allows filenames and extensions to be
used in the database and owner fields.

The syntax of the AT clause is

... AT ’server.database.owner.table-name’

♦ Server This is the name by which the server is known in the current
database, as specified in the CREATE SERVER statement. This field is
mandatory for all remote data sources.

♦ Database The meaning of the database field depends on the data
source. In some cases this field does not apply and should be left empty.
The periods are still required, however.

In Adaptive Server Enterprise,databasespecifies the database where the
table exists. For example master or pubs2.

In Adaptive Server Anywhere, this field does not apply; leave it empty.

In Excel, Lotus Notes, and Access, you must include the name of the file
containing the table. If the file name includes a period, use the semicolon
delimiter.

♦ Owner If the database supports the concept of ownership, this field
represents the owner name. This field is only required when several
owners have tables with the same name.

♦ Table-name This specifies the name of the table. In the case of an Excel
spreadsheet, this is the name of the “sheet” in the workbook. If the table

569

name is left empty, the remote table name is assumed to be the same as
the local proxy table name.

Examples: The following examples illustrate the use of location strings:

♦ Adaptive Server Anywhere:

’testasa..DBA.employee’

♦ Adaptive Server Enterprise:

’ASEServer.pubs2.dbo.publishers’

♦ Excel:

’excel;d: \pcdb \quarter3.xls;;sheet1$’

♦ Access:

’access; \\server1 \production \inventory.mdb;;parts’

Creating proxy tables (Sybase Central)

You can create a proxy table using either Sybase Central or a CREATE
EXISTING TABLE statement.

The CREATE EXISTING TABLE statement creates a proxy table that maps
to an existing table on the remote server. Adaptive Server Anywhere derives
the column attributes and index information from the object at the remote
location.

❖ To create a proxy table (Sybase Central)

1. Connect to the host database from Sybase Central.

2. In the left pane, open the Remote Servers folder.

3. In the right pane, click the Proxy Tables tab.

4. From the File menu choose New➤ Proxy Table.

5. Follow the instructions in the wizard.

Tip
Proxy tables are displayed in the right pane on the Proxy Tables tab when
their remote server is selected in the left pane. They also appear in the
Tables folder. They are distinguished from other tables by a letter P on
their icon.

570

Chapter 17. Accessing Remote Data

Creating proxy tables with the CREATE EXISTING TABLE statement

The CREATE EXISTING TABLE statement creates a proxy table that maps
to an existing table on the remote server. Adaptive Server Anywhere derives
the column attributes and index information from the object at the remote
location.

❖ To create a proxy table with the CREATE EXISTING TABLE state-
ment (SQL)

1. Connect to the host database.

2. Execute a CREATE EXISTING TABLE statement.

☞ For more information, see the “CREATE EXISTING TABLE
statement”[ASA SQL Reference,page 310].

Example 1 To create a proxy table called p_employee on the current server to a remote
table named employee on the server named asademo1, use the following
syntax:

CREATE EXISTING TABLE p_employee
AT ’asademo1..DBA.employee’

employee
table

local server

p_employee
proxy table

asademo1
server

mapping

Example 2 The following statement maps the proxy table a1 to the Microsoft Access
file mydbfile.mdb. In this example, the AT keyword uses the semicolon (;) as
a delimiter. The server defined for Microsoft Access is named access.

CREATE EXISTING TABLE a1
AT’access;d: \mydbfile.mdb;;a1’

Creating a proxy table with the CREATE TABLE statement

The CREATE TABLE statement creates a new table on the remote server,

571

and defines the proxy table for that table when you use the AT option. You
enter the CREATE TABLE statement using Adaptive Server Anywhere data
types. Adaptive Server Anywhere automatically converts the data into the
remote server’s native types.

☞ If you use the CREATE TABLE statement to create both a local and
remote table, and then subsequently use the DROP TABLE statement to
drop the proxy table, then the remote table also gets dropped. You can,
however, use the DROP TABLE statement to drop a proxy table created
using the CREATE EXISTING TABLE statement if you do not want to drop
the remote table.

☞ For more information, see the “CREATE TABLE statement”[ASA SQL
Reference,page 361].

❖ To create a proxy table with the CREATE EXISTING TABLE state-
ment (SQL)

1. Connect to the host database.

2. Execute a CREATE TABLE statement.

☞ For more information, see the “CREATE TABLE statement”[ASA SQL
Reference,page 361].

Example The following statement creates a table named employee on the remote
server asademo1, and creates a proxy table named members that maps to the
remote location:

CREATE TABLE members
(membership_id INTEGER NOT NULL,
member_name CHAR(30) NOT NULL,
office_held CHAR(20) NULL)
AT ’asademo1..DBA.employee’

Listing the columns on a remote table

If you are entering a CREATE EXISTING statement and you are specifying
a column list, it may be helpful to get a list of the columns that are available
on a remote table. The sp_remote_columns system procedure produces a list
of the columns on a remote table and a description of those data types.

sp_remote_columns servername, tablename [, owner]
[, database]

If a table name, owner, or database name is given, the list of columns is
limited to only those that match.

For example, the following returns a list of the columns in the sysobjects

572

Chapter 17. Accessing Remote Data

table in the production database on an Adaptive Server Enterprise server
named asetest:

sp_remote_columns asetest, sysobjects, null, production

☞ For more information, see “sp_remote_columns system procedure”[ASA
SQL Reference,page 746].

573

Joining remote tables
The following figure illustrates the remote Adaptive Server Anywhere tables
employee and department in the sample database mapped to the local server
named testasa.

department
table

testasa server

p_employee
proxy table

asademo1
server

p_department
proxy table

employee
table

emp_fname emp_lname

dept_id dept_name

In real-world cases, you may use joins between tables on different Adaptive
Server Anywhere databases. Here we describe a simple case using just one
database to illustrate the principles.

❖ To perform a join between two remote tables (SQL)

1. Create a new database namedempty.db.

This database holds no data. We will use it only to define the remote
objects, and access the sample database from it.

2. Start a database server running both empty.db and the sample database.
You can do this using the following command line, executed from the
installation directory:

dbeng9 asademo empty

3. Connect toempty.dbfrom Interactive SQL using the user IDDBA and
the passwordSQL.

4. In the new database, create a remote server named testasa. Its server class
is asaodbc, and the connection information is’ ASA 9.0 Sample’ :

CREATE SERVER testasa
CLASS ’asaodbc’
USING ’ASA 9.0 Sample’

5. In this example, we use the same user ID and password on the remote
database as on the local database, so no external logins are needed.

574

Chapter 17. Accessing Remote Data

6. Define the employee proxy table:

CREATE EXISTING TABLE employee
AT ’testasa..DBA.employee’

7. Define the department proxy table:

CREATE EXISTING TABLE department
AT ’testasa..DBA.department’

8. Use the proxy tables in the SELECT statement to perform the join.

SELECT emp_fname, emp_lname, dept_name
FROM employee JOIN department
ON employee.dept_id = department.dept_id
ORDER BY emp_lname

575

Joining tables from multiple local databases
An Adaptive Server Anywhere server may have several local databases
running at one time. By defining tables in other local Adaptive Server
Anywhere databases as remote tables, you can perform cross database joins.

☞ For more information about specifying multiple databases, see“USING
parameter value in the CREATE SERVER statement” on page 592.

Example For example, if you are using database db1 and you want to access data in
tables in database db2, you need to set up proxy table definitions that point
to the tables in database db2. For instance, on an Adaptive Server Anywhere
named testasa, you might have three databases available, db1, db2, and db3.

♦ If using ODBC, create an ODBC data source name for each database you
will be accessing.

♦ Connect to one of the databases that you will be performing joins from.
For example, connect to db1.

♦ Perform a CREATE SERVER for each other local database you will be
accessing. This sets up aloopbackconnection to your Adaptive Server
Anywhere server.

CREATE SERVER local_db2
CLASS ’asaodbc’
USING ’testasa_db2’
CREATE SERVER local_db3
CLASS ’asaodbc’
USING ’testasa_db3’

Alternatively, using JDBC:

CREATE SERVER local_db2
CLASS ’asajdbc’
USING ’mypc1:2638/db2’
CREATE SERVER local_db3
CLASS ’asajdbc’
USING ’mypc1:2638/db3’

♦ Create proxy table definitions using CREATE EXISTING to the tables in
the other databases you want to access.

CREATE EXISTING TABLE employee
AT ’local_db2...employee’

576

Chapter 17. Accessing Remote Data

Sending native statements to remote servers
Use the FORWARD TO statement to send one or more statements to the
remote server in its native syntax. This statement can be used in two ways:

♦ To send a statement to a remote server.

♦ To place Adaptive Server Anywhere into passthrough mode for sending a
series of statements to a remote server.

If a connection cannot be made to the specified server, a message is sent to
the user explaining why. If a connection is made, any results are converted
into a form that can be recognized by the client program.

The FORWARD TO statement can be used to verify that a server is
configured correctly. If you send a statement to the remote server and
Adaptive Server Anywhere does not return an error message, the remote
server is configured correctly.

☞ For more information, see “FORWARD TO statement”[ASA SQL
Reference,page 443].

Example 1 The following statement verifies connectivity to the server named ASEserver
by selecting the version string:

FORWARD TO ASEserver {SELECT @@version}

Example 2 The following statements show a passthrough session with the server named
ASEserver:

FORWARD TO ASEserver
select * from titles
select * from authors
FORWARD TO

577

Using remote procedure calls (RPCs)
Adaptive Server Anywhere users can issue procedure calls to remote servers
that support the feature.

This feature is supported by Sybase Adaptive Server Anywhere, Sybase
Adaptive Server Enterprise, Oracle, and DB2. Issuing a remote procedure
call is similar to using a local procedure call.

Creating remote procedures

You can issue a remote procedure call using either Sybase Central or the
CREATE PROCEDURE statement.

You must have DBA authority to create a remote procedure.

❖ To issue a remote procedure call (Sybase Central)

1. Connect to the host database from Sybase Central.

2. Open the Remote Servers folder.

3. In the left pane, select the remote server for which you want to create a
remote procedure.

4. In the right pane, click the Remote Procedures tab.

5. From the File menu, choose New➤ Remote Procedure.

The Remote Procedure Creation wizard appears.

6. Follow the instructions in the wizard.

❖ To issue a remote procedure call (SQL)

1. First define the procedure to Adaptive Server Anywhere.

The syntax is the same as a local procedure definition except instead of
using SQL statements to make up the body of the call, a location string is
given defining the location where the procedure resides.

CREATE PROCEDURE remotewho ()
AT ’bostonase.master.dbo.sp_who’

2. Execute the procedure as follows:

call remotewho()

578

Chapter 17. Accessing Remote Data

☞ For more information, see “CREATE PROCEDURE statement”[ASA
SQL Reference,page 324].

Example Here is an example with a parameter:

CREATE PROCEDURE remoteuser (IN uname char(30))
AT ’bostonase.master.dbo.sp_helpuser’
call remoteuser(’joe’)

Data types for remote
procedures

The following data types are allowed for RPC parameters. Other data types
are disallowed:

♦ [UNSIGNED] SMALLINT

♦ [UNSIGNED] INT

♦ [UNSIGNED] BIGINT

♦ TINYINT

♦ REAL

♦ DOUBLE

♦ CHAR

♦ BIT

NUMERIC and DECIMAL data types are allowed for IN parameters, but
not for OUT or INOUT parameters.

Dropping remote procedures

You can delete a remote procedure using either Sybase Central or the DROP
PROCEDURE statement.

You must have DBA authority to delete a remote procedure.

❖ To delete a remote procedure (Sybase Central)

1. Open the Remote Servers folder.

2. In the left pane, select the remote server.

3. In the right pane, click the Remote Procedures tab.

4. On the Remote Procedures tab, right-click the remote procedure and
choose Delete from the popup menu.

579

❖ To delete a remote procedure (SQL)

1. Connect to a database.

2. Execute a DROP PROCEDURE statement.

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

Example Delete a remote procedure called remoteproc.

DROP PROCEDURE remoteproc

580

Chapter 17. Accessing Remote Data

Transaction management and remote data
Transactions provide a way to group SQL statements so that they are treated
as a unit—either all work performed by the statements is committed to the
database, or none of it is.

For the most part, transaction management with remote tables is the same as
transaction management for local tables in Adaptive Server Anywhere, but
there are some differences. They are discussed in the following section.

☞ For a general discussion of transactions, see“Using Transactions and
Isolation Levels” on page 99.

Remote transaction management overview

The method for managing transactions involving remote servers uses a
two-phase commit protocol. Adaptive Server Anywhere implements a
strategy that ensures transaction integrity for most scenarios. However, when
more than one remote server is invoked in a transaction, there is still a chance
that a distributed unit of work will be left in an undetermined state. Even
though two-phase commit protocol is used, no recovery process is included.

The general logic for managing a user transaction is as follows:

1. Adaptive Server Anywhere prefaces work to a remote server with a
BEGIN TRANSACTION notification.

2. When the transaction is ready to be committed, Adaptive Server
Anywhere sends a PREPARE TRANSACTION notification to each
remote server that has been part of the transaction. This ensures the that
remote server is ready to commit the transaction.

3. If a PREPARE TRANSACTION request fails, all remote servers are told
to roll back the current transaction.

If all PREPARE TRANSACTION requests are successful, the server
sends a COMMIT TRANSACTION request to each remote server
involved with the transaction.

Any statement preceded by BEGIN TRANSACTION can begin a
transaction. Other statements are sent to a remote server to be executed as a
single, remote unit of work.

Restrictions on transaction management

Restrictions on transaction management are as follows:

♦ Savepoints are not propagated to remote servers.

581

♦ If nested BEGIN TRANSACTION and COMMIT TRANSACTION
statements are included in a transaction that involves remote servers, only
the outermost set of statements is processed. The innermost set,
containing the BEGIN TRANSACTION and COMMIT TRANSACTION
statements, is not transmitted to remote servers.

582

Chapter 17. Accessing Remote Data

Internal operations
This section describes the underlying operations on remote servers
performed by Adaptive Server Anywhere on behalf of client applications.

Query parsing

When a statement is received from a client, it is parsed. An error is raised if
the statement is not a valid Adaptive Server Anywhere SQL statement.

Query normalization

The next step is called query normalization. During this step, referenced
objects are verified and some data type compatibility is checked.

For example, consider the following query:

SELECT *
FROM t1
WHERE c1 = 10

The query normalization stage verifies that table t1 with a column c1 exists
in the system tables. It also verifies that the data type of column c1 is
compatible with the value 10. If the column’s data type is datetime, for
example, this statement is rejected.

Query preprocessing

Query preprocessing prepares the query for optimization. It may change the
representation of a statement so that the SQL statement Adaptive Server
Anywhere generates for passing to a remote server will be syntactically
different from the original statement.

Preprocessing performs view expansion so that a query can operate on tables
referenced by the view. Expressions may be reordered and subqueries may
be transformed to improve processing efficiency. For example, some
subqueries may be converted into joins.

Server capabilities

The previous steps are performed on all queries, both local and remote.

The following steps depend on the type of SQL statement and the
capabilities of the remote servers involved.

Each remote server defined to Adaptive Server Anywhere has a set of
capabilities associated with it. These capabilities are stored in the

583

syscapabilities system table. These capabilities are initialized during the first
connection to a remote server. The generic server class odbc relies strictly on
information returned from the ODBC driver to determine these capabilities.
Other server classes such as db2odbc have more detailed knowledge of the
capabilities of a remote server type and use that knowledge to supplement
what is returned from the driver.

Once syscapabilities is initialized for a server, the capability information is
retrieved only from the system table. This allows a user to alter the known
capabilities of a server.

Since a remote server may not support all of the features of a given SQL
statement, Adaptive Server Anywhere must break the statement into simpler
components to the point that the query can be given to the remote server.
SQL features not passed off to a remote server must be evaluated by
Adaptive Server Anywhere itself.

For example, a query may contain an ORDER BY statement. If a remote
server cannot perform ORDER BY, the statement is sent to the remote server
without it and Adaptive Server Anywhere performs the ORDER BY on the
result returned, before returning the result to the user. The result is that the
user can employ the full range of Adaptive Server Anywhere supported SQL
without concern for the features of a particular back end.

Complete passthrough of the statement

The most efficient way to handle a statement is usually to hand as much of
the original statement as possible off to the remote server involved. Adaptive
Server Anywhere will attempt to pass off as much of the statement as is
possible. In many cases this will be the complete statement as originally
given to Adaptive Server Anywhere.

Adaptive Server Anywhere will hand off the complete statement when:

♦ Every table in the statement resides in the same remote server.

♦ The remote server is capable of processing all of the syntax in the
statement.

In rare conditions, it may actually be more efficient to let Adaptive Server
Anywhere do some of the work instead of passing it off. For example,
Adaptive Server Anywhere may have a better sorting algorithm. In this case
you may consider altering the capabilities of a remote server using the
ALTER SERVER statement.

☞ For more information, see “ALTER SERVER statement”[ASA SQL
Reference,page 241].

584

Chapter 17. Accessing Remote Data

Partial passthrough of the statement

If a statement contains references to multiple servers, or uses SQL features
not supported by a remote server, the query is decomposed into simpler
parts.

Select SELECT statements are broken down by removing portions that cannot be
passed on and letting Adaptive Server Anywhere perform the feature. For
example, let’s say a remote server can not process the atan2() function in the
following statement:

select a,b,c where atan2(b,10) > 3 and c = 10

The statement sent to the remote server would be converted to:

select a,b,c where c = 10

Locally, Adaptive Server Anywhere would apply “where atan2(b,10)> 3” to
the intermediate result set.

Joins When two tables are joined, one table is selected to be the outer table. The
outer table is scanned based on the WHERE conditions that apply to it. For
every qualifying row found, the other table, known as the inner table is
scanned to find a row that matches the join condition.

This same algorithm is used when remote tables are referenced. Since the
cost of searching a remote table is usually much higher than a local table
(due to network I/O), every effort is made to make the remote table the
outermost table in the join.

Update and delete If Adaptive Server Anywhere cannot pass off an UPDATE or DELETE
statement entirely to a remote server, it must change the statement into a
table scan containing as much of the original WHERE clause as possible,
followed by positioned UPDATE or DELETE “where current of cursor”
when a qualifying row is found.

For example, when the functionatan2 is not supported by a remote server:

UPDATE t1
SET a = atan2(b, 10)
WHERE b > 5

Would be converted to the following:

SELECT a,b
FROM t1
WHERE b > 5

Each time a row is found, Adaptive Server Anywhere would calculate the

585

new value of a and issue:

UPDATE t1
SET a = ’new value’
WHERE CURRENT OF CURSOR

If a already has a value that equals the “new value”, a positioned UPDATE
would not be necessary and would not be sent remotely.

In order to process an UPDATE or DELETE that requires a table scan, the
remote data source must support the ability to perform a positioned
UPDATE or DELETE (“where current of cursor”). Some data sources do
not support this capability.

Temporary tables cannot be updated
In this release of Adaptive Server Anywhere, an UPDATE or DELETE
cannot be performed if an intermediate temporary table is required in
Adaptive Server Anywhere. This occurs in queries with ORDER BY and
some queries with subqueries.

586

Chapter 17. Accessing Remote Data

Troubleshooting remote data access
This section provides some hints for troubleshooting remote servers.

Features not supported for remote data

The following Adaptive Server Anywhere features are not supported on
remote data. Attempts to use these features will therefore run into problems:

♦ ALTER TABLE statement against remote tables

♦ Triggers defined on proxy tables will not fire

♦ SQL Remote

♦ Foreign keys that refer to remote tables are ignored

♦ The READTEXT, WRITETEXT, and TEXTPTR functions.

♦ Positioned UPDATE and DELETE

♦ UPDATE and DELETE requiring an intermediate temporary table.

♦ Backwards scrolling on cursors opened against remote data. Fetch
statements must be NEXT or RELATIVE 1.

♦ If a column on a remote table has a name that is a keyword on the remote
server, you cannot access data in that column. Adaptive Server Anywhere
cannot know all of the remote server reserved words. You can execute a
CREATE EXISTING TABLE statement, and import the definition but
you cannot select that column.

Case sensitivity

The case sensitivity setting of your Adaptive Server Anywhere database
should match the settings used by any remote servers accessed.

Adaptive Server Anywhere databases are created case insensitive by default.
With this configuration, unpredictable results may occur when selecting
from a case sensitive database. Different results will occur depending on
whether ORDER BY or string comparisons are pushed off to a remote server
or evaluated by the local Adaptive Server Anywhere.

Connectivity problems

Take the following steps to be sure you can connect to a remote server:

♦ Determine that you can connect to a remote server using a client tool
such as Interactive SQL before configuring Adaptive Server Anywhere.

587

♦ Perform a simple passthrough statement to a remote server to check your
connectivity and remote login configuration. For example:

FORWARD TO testasa {select @@version}

♦ Turn on remote tracing for a trace of the interactions with remote servers.

SET OPTION cis_option = 7

General problems with queries

If you are faced with some type of problem with the way Adaptive Server
Anywhere is handling a query against a remote table, it is usually helpful to
understand how Adaptive Server Anywhere is executing that query. You can
display remote tracing as well as a description of the query execution plan:

SET OPTION cis_option = 7

Queries blocked on themselves

If you access multiple databases on a single Adaptive Server Anywhere
server, you may need to increase the number of threads used by the database
server on Windows using the-gx command-line switch.

You must have enough threads available to support the individual tasks that
are being run by a query. Failure to provide the number of required tasks can
lead to a query becoming blocked on itself.

Managing remote data access connections

If you access remote databases via ODBC, the connection to the remote
server is given a name. The name can be used to drop the connection as one
way to cancel a remote request.

The connections are named ASACIS_conn-name, whereconn-nameis the
connection ID of the local connection. The connection ID can be obtained
from the sa_conn_info stored procedure.

588

CHAPTER 18

Server Classes for Remote Data Access

About this chapter This chapter describes how Adaptive Server Anywhere interfaces with
different classes of servers. It describes

♦ Types of servers that each server class supports

♦ The USING clause value for the CREATE SERVER statement for each
server class

♦ Special configuration requirements

Contents Topic: page

Overview 590

JDBC-based server classes 591

ODBC-based server classes 594

589

Overview
The server class you specify in the CREATE SERVER statement determines
the behavior of a remote connection. The server classes give Adaptive
Server Anywhere detailed server capability information. Adaptive Server
Anywhere formats SQL statements specific to a server’s capabilities.

There are two categories of server classes:

♦ JDBC-based server classes

♦ ODBC-based server classes

Each server class has a set of unique characteristics that database
administrators and programmers need to know to configure the server for
remote data access.

When using this chapter, refer both to the section generic to the server class
category (JDBC-based or ODBC-based), and to the section specific to the
individual server class.

590

Chapter 18. Server Classes for Remote Data Access

JDBC-based server classes
JDBC-based server classes are used when Adaptive Server Anywhere
internally uses a Java virtual machine and jConnect 4.0 to connect to the
remote server. The JDBC-based server classes are:

♦ asajdbc Adaptive Server Anywhere (version 6 and later).

♦ asejdbc Adaptive Server Enterprise and SQL Server (version 10 and
later).

If you are using NetWare, only the asajdbc class is supported.

Configuration notes for JDBC classes

When you access remote servers defined with JDBC-based classes, consider
that:

♦ Your local database must be enabled for Java.

☞ For more information, see “Java-enabling a database”[ASA
Programming Guide,page 84].

♦ The Java virtual machine needs more than the default amount of memory
to load and run jConnect. Set these memory options to at least the
following values:

SET OPTION PUBLIC.JAVA_NAMESPACE_SIZE = 3000000
SET OPTION PUBLIC.JAVA_HEAP_SIZE = 1000000

♦ Since jConnect 4.0 is automatically installed with Adaptive Server
Anywhere, no additional drivers need to be installed.

♦ For optimum performance, Sybase recommends an ODBC-based class
(asaodbc or aseodbc).

♦ Any remote server that you access using the asejdbc or asajdbc server
class must be set up to handle a jConnect 4.x based client. The jConnect
setup scripts areSQL_anywhere.SQLfor Adaptive Server Anywhere or
SQL_server.SQLfor Adaptive Server Enterprise. Run these against any
remote server you will be using.

Server class asajdbc

A server with server class asajdbc is Adaptive Server Anywhere (version 6
and later). No special requirements exist for the configuration of an
Adaptive Server Anywhere data source.

591

USING parameter value in the CREATE SERVER statement

You must perform a separate CREATE SERVER for each Adaptive Server
Anywhere database you intend to access. For example, if an Adaptive Server
Anywhere server named testasa is running on the machine ‘banana’ and
owns three databases (db1, db2, db3), you would configure the local
Adaptive Server Anywhere similar to this:

CREATE SERVER testasadb1
CLASS ’asajdbc’
USING ’banana:2638/db1’
CREATE SERVER testasadb2
CLASS ’asajdbc’
USING ’banana:2638/db2’
CREATE SERVER testasadb2
CLASS ’asajdbc’
USING ’banana:2638/db3’

If you do not specify a/databasenamevalue, the remote connection uses the
remote Adaptive Server Anywhere default database.

☞ For more information about the CREATE SERVER statement, see
“CREATE SERVER statement”[ASA SQL Reference,page 341].

Server class asejdbc

A server with server class asejdbc is Adaptive Server Enterprise, SQL Server
(version 10 and later). No special requirements exist for the configuration of
an Adaptive Server Enterprise data source.

Data type conversions: JDBC and Adaptive Server Enterprise

When you issue a CREATE TABLE statement, Adaptive Server Anywhere
automatically converts the data types to the corresponding Adaptive Server
Enterprise data types. The following table describes the Adaptive Server
Anywhere to Adaptive Server Enterprise data type conversions.

Adaptive Server Anywhere data

type

ASE default data type

bit bit

tinyint tinyint

smallint smallint

int int

integer integer

592

Chapter 18. Server Classes for Remote Data Access

Adaptive Server Anywhere data

type

ASE default data type

decimal [defaults p=30, s=6] numeric(30,6)

decimal(128,128) not supported

numeric [defaults p=30 s=6] numeric(30,6)

numeric(128,128) not supported

float real

real real

double float

smallmoney numeric(10,4)

money numeric(19,4)

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) varchar(n)

character(n) varchar(n)

varchar(n) varchar(n)

character varying(n) varchar(n)

long varchar text

text text

binary(n) binary(n)

long binary image

image image

bigint numeric(20,0)

593

ODBC-based server classes
The ODBC-based server classes include:

♦ asaodbc

♦ aseodbc

♦ db2odbc

♦ mssodbc

♦ oraodbc

♦ odbc

Defining ODBC external servers

☞ The most common way of defining an ODBC-based server bases it on
an ODBC data source. To do this, you must create a data source in the
ODBC Administrator.

Once you have the data source defined, the USING clause in the CREATE
SERVER statement should match the ODBC data source name.

For example, to configure a DB2 server namedmydb2 whose Data Source
Name is alsomydb2, use:

CREATE SERVER mydb2
CLASS ’db2odbc’
USING ’mydb2’

☞ For more information on creating data sources, see “Creating an ODBC
data source”[ASA Database Administration Guide,page 53].

Using connection strings
instead of data sources

An alternative, which avoids using data sources, is to supply a connection
string in the USING clause of the CREATE SERVER statement. To do this,
you must know the connection parameters for the ODBC driver you are
using. For example, a connection to an ASA may be as follows:

CREATE SERVER testasa
CLASS ’asaodbc’
USING ’driver=adaptive server anywhere

9.0;eng=testasa;dbn=sample;links=tcpip{}’

This defines a connection to an Adaptive Server Anywhere database server
namedtestasa, databasesample, and using the TCP-IP protocol.

See also For information specific to particular ODBC server classes, see:

♦ “Server class asaodbc” on page 595

594

Chapter 18. Server Classes for Remote Data Access

♦ “Server class aseodbc” on page 595

♦ “Server class db2odbc” on page 597

♦ “Server class oraodbc” on page 599

♦ “Server class mssodbc” on page 600

♦ “Server class odbc” on page 602

Server class asaodbc

A server with server class asaodbc is Adaptive Server Anywhere version 5.5
or later. No special requirements exist for the configuration of an Adaptive
Server Anywhere data source.

To access Adaptive Server Anywhere servers that support multiple
databases, create an ODBC data source name defining a connection to each
database. Issue a CREATE SERVER statement for each of these ODBC data
source names.

Server class aseodbc

A server with server class aseodbc is Adaptive Server Enterprise,
SQL Server (version 10 and later). Adaptive Server Anywhere requires the
installation of the Adaptive Server Enterprise ODBC driver and Open Client
connectivity libraries to connect to a remote Adaptive Server with class
aseodbc. However, the performance is better than with the asejdbc class.

Notes ♦ Open Client should be version 11.1.1, EBF 7886 or above. Install Open
Client and verify connectivity to the Adaptive Server before you install
ODBC and configure Adaptive Server Anywhere. The Sybase ODBC
driver should be version 11.1.1, EBF 7911 or above.

♦ Configure a User Data Source in the Configuration Manager with the
following attributes:
• Under the General tab:

Enter any value for Data Source Name. This value is used in the
USING clause of the CREATE SERVER statement.
The server name should match the name of the server in the Sybase
interfaces file.

• Under the Advanced tab, check the Application Using Threads box and
check the Enable Quoted Identifiers box.

• Under the Connection tab:
Set the charset field to match your Adaptive Server Anywhere
character set.
Set the language field to your preferred language for error messages.

595

• Under the Performance tab:

Set Prepare Method to “2-Full.”

Set Fetch Array Size as large as possible for best performance. This
increases memory requirements since this is the number of rows that
must be cached in memory. Sybase recommends using a value of 100.

Set Select Method to “0-Cursor.”

Set Packet Size to as large as possible. Sybase recommends using a
value of -1.

Set Connection Cache to 1.

Data type conversions: ODBC and Adaptive Server Enterprise

When you issue a CREATE TABLE statement, Adaptive Server Anywhere
automatically converts the data types to the corresponding Adaptive Server
Enterprise data types. The following table describes the Adaptive Server
Anywhere to Adaptive Server Enterprise data type conversions.

Adaptive Server Anywhere data

type

Adaptive Server Enterprise default

data type

Bit bit

Tinyint tinyint

Smallint smallint

Int int

Integer integer

decimal [defaults p=30, s=6] numeric(30,6)

decimal(128,128) not supported

numeric [defaults p=30 s=6] numeric(30,6)

numeric(128,128) not supported

Float real

Real real

Double float

Smallmoney numeric(10,4)

Money numeric(19,4)

Date datetime

Time datetime

596

Chapter 18. Server Classes for Remote Data Access

Adaptive Server Anywhere data

type

Adaptive Server Enterprise default

data type

Timestamp datetime

Smalldatetime datetime

Datetime datetime

char(n) varchar(n)

Character(n) varchar(n)

varchar(n) varchar(n)

Character varying(n) varchar(n)

long varchar text

Text text

binary(n) binary(n)

long binary image

Image image

Bigint numeric(20,0)

Server class db2odbc

A server with server class db2odbc is IBM DB2

Notes ♦ Sybase certifies the use of IBM’s DB2 Connect version 5, with fix pack
WR09044. Configure and test your ODBC configuration using the
instructions for that product. Adaptive Server Anywhere has no specific
requirements on configuration of DB2 data sources.

♦ The following is an example of a CREATE EXISTING TABLE statement
for a DB2 server with an ODBC data source named mydb2:

CREATE EXISTING TABLE ibmcol
AT ’mydb2..sysibm.syscolumns’

Data type conversions: DB2

When you issue a CREATE TABLE statement, Adaptive Server Anywhere
automatically converts the data types to the corresponding DB2 data types.
The following table describes the Adaptive Server Anywhere to DB2 data
type conversions.

597

Adaptive Server Anywhere data

type

DB2 default data type

Bit smallint

Tinyint smallint

Smallint smallint

Int int

Integer int

Bigint decimal(20,0)

char(1–254) varchar(n)

char(255–4000) varchar(n)

char(4001–32767) long varchar

Character(1–254) varchar(n)

Character(255–4000) varchar(n)

Character(4001–32767) long varchar

varchar(1–4000) varchar(n)

varchar(4001–32767) long varchar

Character varying(1–4000) varchar(n)

Character varying(4001–32767) long varchar

long varchar long varchar

text long varchar

binary(1–4000) varchar for bit data

binary(4001–32767) long varchar for bit data

long binary long varchar for bit data

image long varchar for bit data

decimal [defaults p=30, s=6] decimal(30,6)

numeric [defaults p=30 s=6] decimal(30,6)

decimal(128, 128) NOT SUPPORTED

numeric(128, 128) NOT SUPPORTED

real real

598

Chapter 18. Server Classes for Remote Data Access

Adaptive Server Anywhere data

type

DB2 default data type

float float

double float

smallmoney decimal(10,4)

money decimal(19,4)

date date

time time

smalldatetime timestamp

datetime timestamp

timestamp timestamp

Server class oraodbc

A server with server classoraodbc is Oracle version 8.0 or later.

Notes ♦ Sybase certifies the use of version 8.0.03 of Oracle’s ODBC driver.
Configure and test your ODBC configuration using the instructions for
that product.

♦ The following is an example of a CREATE EXISTING TABLE statement
for an Oracle server named myora:

CREATE EXISTING TABLE employees
AT ’myora.database.owner.employees’

♦ Due to Oracle ODBC driver restrictions, you cannot issue a CREATE
EXISTING TABLE for system tables. A message returns stating that the
table or columns cannot be found.

Data type conversions: Oracle

When you issue a CREATE TABLE statement, Adaptive Server Anywhere
automatically converts the data types to the corresponding Oracle data types.
The following table describes the Adaptive Server Anywhere to Oracle data
type conversions.

Adaptive Server Any-

where data type

Oracle data type

bit number(1,0)

599

Adaptive Server Any-

where data type

Oracle data type

tinyint number(3,0)

smallint number(5,0)

int number(11,0)

bigint number(20,0)

decimal(prec, scale) number(prec, scale)

numeric(prec, scale) number(prec, scale)

float float

real real

smallmoney numeric(13,4)

money number(19,4)

date date

time date

timestamp date

smalldatetime date

datetime date

char(n) if (n > 255) long else varchar(n)

varchar(n) if (n > 2000) long else varchar(n)

long varchar long or clob

binary(n) if (n > 255) long raw else raw(n)

varbinary(n) if (n > 255) long raw else raw(n)

long binary long raw

Server class mssodbc

A server with server classmssodbcis Microsoft SQL Server version 6.5,
Service Pack 4.

Notes ♦ Sybase certifies the use of version 3.60.0319 of Microsoft SQL Server’s
ODBC driver (included in MDAC 2.0 release). Configure and test your
ODBC configuration using the instructions for that product.

600

Chapter 18. Server Classes for Remote Data Access

♦ The following is an example of a CREATE EXISTING TABLE statement
for a Microsoft SQL Server named mymssql:

CREATE EXISTING TABLE accounts,
AT ’mymssql.database.owner.accounts’

Data type conversions: Microsoft SQL Server

When you issue a CREATE TABLE statement, Adaptive Server Anywhere
automatically converts the data types to the corresponding Microsoft
SQL Server data types. The following table describes the Adaptive Server
Anywhere to Microsoft SQL Server data type conversions.

Adaptive Server Anywhere data

type

Microsoft SQL Server default data

type

bit bit

tinyint tinyint

smallint smallint

int int

bigint numeric(20,0)

decimal [defaults p=30, s=6] decimal(prec, scale)

numeric [defaults p=30 s=6] numeric(prec, scale)

float if (prec) float(prec) else float

real real

smallmoney smallmoney

money money

date datetime

time datetime

timestamp datetime

smalldatetime datetime

datetime datetime

char(n) if (length > 255) text else var-
char(length)

character(n) char(n)

601

Adaptive Server Anywhere data

type

Microsoft SQL Server default data

type

varchar(n) if (length > 255) text else var-
char(length)

long varchar text

binary(n) if (length > 255) image else bi-
nary(length)

long binary image

double float

uniqueidentifierstr uniqueidentifier

The SQL Server uniqueidentifier columns is mapped to an Adaptive Server
Anywhere uniqueidentifierstr column. The resulting string can be converted
to a binary UUID value using the STRTOUUID function. See
“STRTOUUID function [STRING]” [ASA SQL Reference,page 192].

Server class odbc

ODBC data sources that do not have their own server class use server class
odbc. You can use any ODBC driver that complies with ODBC version 2.0
compliance level 1 or higher. Sybase certifies the following ODBC data
sources:

♦ “Microsoft Excel (Microsoft 3.51.171300)” on page 602

♦ “Microsoft Access (Microsoft 3.51.171300)” on page 603

♦ “Microsoft FoxPro (Microsoft 3.51.171300)” on page 604

♦ “Lotus Notes SQL 2.0” on page 604

The latest versions of Microsoft ODBC drivers can be obtained through the
Microsoft Data Access Components (MDAC) distribution found at
www.microsoft/data/download.htm. The Microsoft driver versions listed
below are part of MDAC 2.0.

The following sections provide notes on accessing these data sources.

Microsoft Excel (Microsoft 3.51.171300)

With Excel, each Excel workbook is logically considered to be a database
holding several tables. Tables are mapped to sheets in a workbook. When
you configure an ODBC data source name in the ODBC driver manager, you

602

Chapter 18. Server Classes for Remote Data Access

specify a default workbook name associated with that data source. However,
when you issue a CREATE TABLE statement, you can override the default
and specify a workbook name in the location string. This allows you to use a
single ODBC DSN to access all of your excel workbooks.

In this example, an ODBC data source namedexcelwas created. To create a
workbook namedwork1.xlswith a sheet (table) called mywork:

CREATE TABLE mywork (a int, b char(20))
AT ’excel;d: \work1.xls;;mywork’

To create a second sheet (or table) execute a statement such as:

CREATE TABLE mywork2 (x float, y int)
AT ’excel;d: \work1.xls;;mywork2’

You can import existing worksheets into Adaptive Server Anywhere using
CREATE EXISTING, under the assumption that the first row of your
spreadsheet contains column names.

CREATE EXISTING TABLE mywork
AT’excel;d: \work1;;mywork’

If Adaptive Server Anywhere reports that the table is not found, you may
need to explicitly state the column and row range you wish to map to. For
example:

CREATE EXISTING TABLE mywork
AT ’excel;d: \work1;;mywork$’

Adding the $ to the sheet name indicates that the entire worksheet should be
selected.

Note in the location string specified by AT that a semicolon is used instead
of a period for field separators. This is because periods occur in the file
names. Excel does not support the owner name field so leave this blank.

Deletes are not supported. Also some updates may not be possible since the
Excel driver does not support positioned updates.

Microsoft Access (Microsoft 3.51.171300)

Access databases are stored in a.mdb file. Using the ODBC manager, create
an ODBC data source and map it to one of these files. A new.mdb file can
be created through the ODBC manager. This database file becomes the
default if you don’t specify a different default when you create a table
through Adaptive Server Anywhere.

Assuming an ODBC data source named access.

603

CREATE TABLE tab1 (a int, b char(10))
AT ’access...tab1’

or

CREATE TABLE tab1 (a int, b char(10))
AT ’access;d: \pcdb \data.mdb;;tab1’

or

CREATE EXISTING TABLE tab1
AT ’access;d: \pcdb \data.mdb;;tab1’

Access does not support the owner name qualification; leave it empty.

Microsoft FoxPro (Microsoft 3.51.171300)

You can store FoxPro tables together inside a single FoxPro database file
(.dbc), or, you can store each table in its own separate .dbf file. When using
.dbf files, be sure the file name is filled into the location string; otherwise the
directory that Adaptive Server Anywhere was started in is used.

CREATE TABLE fox1 (a int, b char(20))
AT ’foxpro;d: \pcdb;;fox1’

This statement creates a file namedd:\pcdb\fox1.dbfwhen you choose the
“free table directory” option in the odbc driver manager.

Lotus Notes SQL 2.0

You can obtain this driver (version 2.04.0203) from the Lotus Web site.
Read the documentation that comes with it for an explanation of how Notes
data maps to relational tables. You can easily map Adaptive Server
Anywhere tables to Notes forms.

Here is how to set up Adaptive Server Anywhere to access the Address
sample file.

♦ Create an ODBC data source using the NotesSQL driver. The database
will be the sample names file:c:\notes\data\names.nsf. The Map Special
Characters option should be turned on. For this example, the Data Source
Name ismy_notes_dsn.

♦ Create a server in Adaptive Server Anywhere:

CREATE SERVER names
CLASS ’odbc’
USING ’my_notes_dsn’

♦ Map the Person form into an Adaptive Server Anywhere table:

604

Chapter 18. Server Classes for Remote Data Access

CREATE EXISTING TABLE Person
AT ’names...Person’

♦ Query the table

SELECT * FROM Person

Avoiding password
prompts

Lotus Notes does not support sending a user name and password through the
ODBC API. If you try to access Lotus notes using a password protected ID,
a window appears on the machine where Adaptive Server Anywhere is
running, and prompts you for a password. Avoid this behavior in multi-user
server environments.

To access Lotus Notes unattended, without ever receiving a password
prompt, you must use a non-password-protected ID. You can remove
password protection from your ID by clearing it (File➤ Tools➤ User ID➤

Clear Password), unless your Domino administrator required a password
when your ID was created. In this case, you will not be able to clear it.

605

606

PART VI

STORED PROCEDURES

AND TRIGGERS

This part describes how to build logic into your database using SQL stored
procedures and triggers. Storing logic in the database makes it available

automatically to all applications, providing consistency, performance, and
security benefits. The Stored Procedure debugger is a powerful tool for

debugging all kinds of logic.

CHAPTER 19

Using Procedures, Triggers, and Batches

About this chapter Procedures and triggers store procedural SQL statements in the database for
use by all applications. They enhance the security, efficiency, and
standardization of databases. User-defined functions are one kind of
procedures that return a value to the calling environment for use in queries
and other SQL statements. Batches are sets of SQL statements submitted to
the database server as a group. Many features available in procedures and
triggers, such as control statements, are also available in batches.

☞ For many purposes, server-side JDBC provides a more flexible way to
build logic into the database than SQL stored procedures. For information
about JDBC, see “JDBC Programming”[ASA Programming Guide,page 103].

Contents Topic: page

Procedure and trigger overview 611

Benefits of procedures and triggers 612

Introduction to procedures 613

Introduction to user-defined functions 620

Introduction to triggers 624

Introduction to batches 631

Control statements 633

The structure of procedures and triggers 636

Returning results from procedures 640

Using cursors in procedures and triggers 646

Errors and warnings in procedures and triggers 649

Using the EXECUTE IMMEDIATE statement in procedures 658

Transactions and savepoints in procedures and triggers 660

Tips for writing procedures 661

Statements allowed in batches 663

609

Topic: page

Calling external libraries from procedures 664

610

Chapter 19. Using Procedures, Triggers, and Batches

Procedure and trigger overview
Procedures and triggers store procedural SQL statements in a database for
use by all applications. They can include control statements that allow
repetition (LOOP statement) and conditional execution (IF statement and
CASE statement) of SQL statements.

Procedures are invoked with a CALL statement, and use parameters to
accept values and return values to the calling environment. SELECT
statements can also operate on procedure result sets by including the
procedure name in the FROM clause.

Procedures can return result sets to the caller, call other procedures, or fire
triggers. For example, a user-defined function is a type of stored procedure
that returns a single value to the calling environment. User-defined functions
do not modify parameters passed to them, but rather, they broaden the scope
of functions available to queries and other SQL statements.

Triggers are associated with specific database tables. They fire automatically
whenever someone inserts, updates or deletes rows of the associated table.
Triggers can call procedures and fire other triggers, but they have no
parameters and cannot be invoked by a CALL statement.

Procedure debugger ☞ You can debug stored procedures and triggers using the database object
debugger. For more information, see“Debugging Logic in the Database” on
page 673.

☞ You can profile stored procedures to analyze performance characteristics
in Sybase Central. For more information, see“Profiling database
procedures” on page 197.

611

Benefits of procedures and triggers
Definitions for procedures and triggers appear in the database, separately
from any one database application. This separation provides a number of
advantages.

Standardization Procedures and triggers standardize actions performed by more than one
application program. By coding the action once and storing it in the database
for future use, applications need only call the procedure or fire the trigger to
achieve the desired result repeatedly. And since changes occur in only one
place, all applications using the action automatically acquire the new
functionality if the implementation of the action changes.

Efficiency Procedures and triggers used in a network database server environment can
access data in the database without requiring network communication. This
means they execute faster and with less impact on network performance than
if they had been implemented in an application on one of the client
machines.

When you create a procedure or trigger, it is automatically checked for
correct syntax, and then stored in the system tables. The first time any
application calls or fires a procedure or trigger, it is compiled from the
system tables into the server’s virtual memory and executed from there.
Since one copy of the procedure or trigger remains in memory after the first
execution, repeated executions of the same procedure or trigger happen
instantly. As well, several applications can use a procedure or trigger
concurrently, or one application can use it recursively.

Procedures are less efficient if they contain simple queries and have many
arguments. For complex queries, procedures are more efficient.

Security Procedures and triggers provide security by allowing users limited access to
data in tables that they cannot directly examine or modify.

Triggers, for example, execute under the table permissions of the owner of
the associated table, but any user with permissions to insert, update or delete
rows in the table can fire them. Similarly, procedures (including user-defined
functions) execute with permissions of the procedure owner, but any user
granted permissions can call them. This means that procedures and triggers
can (and usually do) have different permissions than the user ID that invoked
them.

612

Chapter 19. Using Procedures, Triggers, and Batches

Introduction to procedures
To use procedures, you need to understand how to:

♦ Create procedures

♦ Call procedures from a database application

♦ Drop or remove procedures

♦ Control who has permissions to use procedures

This section discusses the above aspects of using procedures, as well as
some different applications of procedures.

Creating procedures

Adaptive Server Anywhere provides a number of tools that let you create a
new procedure.

In Sybase Central, you can use a wizard to provide necessary information.
The Procedure Creation wizard also provides the option of using procedure
templates.

Alternatively, you use the CREATE PROCEDURE statement to create
procedures. However, you must have RESOURCE authority. Where you
enter the statement depends on which tool you use.

❖ To create a new procedure (Sybase Central)

1. Connect to a database as a user with DBA or Resource authority.

2. Open the Procedures & Functions folder of the database.

3. From the File menu, choose New➤ Procedure.

The Procedure Creation wizard appears.

4. Follow the instructions in the wizard.

5. When the wizard finishes, you can complete the code of the procedure on
the SQL tab in the right pane.

The new procedure appears in the Procedures & Functions folder.

613

❖ To create a new remote procedure (Sybase Central)

1. Connect to a database as a user with DBA authority.

2. Open the Procedures & Functions folder of the database.

3. From the File menu, choose New➤ Remote Procedure.

The Remote Procedure Creation wizard appears.

4. Follow the instructions in the wizard.

5. When the wizard finishes, you can complete the code on the SQL tab in
the right pane.

The new remote procedure appears in the Procedures and Functions
folder.

❖ To create a procedure using a different tool

1. Follow the instructions for your tool. You may need to change the
command delimiter away from the semicolon before entering the
CREATE PROCEDURE statement.

☞ For more information about connecting, see “Connecting to a Database”
[ASA Database Administration Guide,page 37].

Example The following simple example creates the procedure new_dept, which
carries out an INSERT into the department table of the sample database,
creating a new department.

CREATE PROCEDURE new_dept (
IN id INT,
IN name CHAR(35),
IN head_id INT)

BEGIN
INSERT
INTO DBA.department (dept_id,

dept_name, dept_head_id)
VALUES (id, name, head_id);

END

The body of a procedure is a compound statement. The compound statement
starts with a BEGIN statement and concludes with an END statement. In the
case of new_dept, the compound statement is a single INSERT bracketed by
BEGIN and END statements.

Parameters to procedures are marked as one of IN, OUT, or INOUT. All
parameters to the new_dept procedure are IN parameters, as they are not
changed by the procedure.

614

Chapter 19. Using Procedures, Triggers, and Batches

☞ For more information, see “CREATE PROCEDURE statement”[ASA
SQL Reference,page 324], “ALTER PROCEDURE statement”[ASA SQL
Reference,page 236], and“Using compound statements” on page 634.

Altering procedures

You can modify an existing procedure using either Sybase Central or
Interactive SQL. You must have DBA authority or be the owner of the
procedure.

In Sybase Central, you cannot rename an existing procedure directly.
Instead, you must create a new procedure with the new name, copy the
previous code to it, and then delete the old procedure.

Alternatively, you can use an ALTER PROCEDURE statement to modify an
existing procedure. You must include the entire new procedure in this
statement (in the same syntax as in the CREATE PROCEDURE statement
that created the procedure). You must also reassign user permissions on the
procedure.

☞ For more information on altering database object properties, see
“Setting properties for database objects” on page 32.

☞ For more information on granting or revoking permissions for
procedures, see “Granting permissions on procedures”[ASA Database
Administration Guide,page 400]and “Revoking user permissions”[ASA
Database Administration Guide,page 402].

❖ To alter the code of a procedure (Sybase Central)

1. Open the Procedures & Functions folder.

2. Select the desired procedure. You can then do one of the following:

♦ Edit the code directly on the SQL tab in the right pane.

♦ Translate the code to Watcom-SQL or Transact-SQL prior to editing it:

• Right-click the desired procedure and choose Open as Watcom-SQL
or Open as Transact-SQL from the popup menu.

• Edit the code on the SQL tab in the right pane.

♦ Edit the code in a separate window by right-clicking the procedure in
the right pane and choose Edit In New Window from the popup menu.

Tip
If you wish to copy code between procedures, you can open a separate
window for each procedure.

615

❖ To alter the code of a procedure (SQL)

1. Connect to the database.

2. Execute an ALTER PROCEDURE statement. Include the entire new
procedure in this statement.

☞ For more information, see “ALTER PROCEDURE statement”[ASA SQL
Reference,page 236], “CREATE PROCEDURE statement”[ASA SQL
Reference,page 324], and“Creating procedures” on page 613.

Calling procedures

CALL statements invoke procedures. Procedures can be called by an
application program, or by other procedures and triggers.

☞ For more information, see “CALL statement”[ASA SQL Reference,
page 273].

The following statement calls the new_dept procedure to insert an Eastern
Sales department:

CALL new_dept(210, ’Eastern Sales’, 902);

After this call, you may wish to check the department table to see that the
new department has been added.

All users who have been granted EXECUTE permissions for the procedure
can call the new_dept procedure, even if they have no permissions on the
department table.

☞ For more information about EXECUTE permissions, see “EXECUTE
statement [ESQL]”[ASA SQL Reference,page 425].

Another way of calling a procedure that returns a result set is to call it in a
query. You can execute queries on result sets of procedures and apply
WHERE clauses and other SELECT features to limit the result set.

SELECT t.id, t.quantity_ordered AS q
FROM sp_customer_products(149) t

☞ For more information, see “FROM clause”[ASA SQL Reference,page 445].

Copying procedures in Sybase Central

In Sybase Central, you can copy procedures between databases. To do so,
select the procedure in the left pane of Sybase Central and drag it to the
Procedures & Functions folder of another connected database. A new
procedure is then created, and the original procedure’s code is copied to it.

616

Chapter 19. Using Procedures, Triggers, and Batches

Note that only the procedure code is copied to the new procedure. The other
procedure properties (permissions, etc.) are not copied. A procedure can be
copied to the same database, provided it is given a new name.

Deleting procedures

Once you create a procedure, it remains in the database until someone
explicitly removes it. Only the owner of the procedure or a user with DBA
authority can drop the procedure from the database.

❖ To delete a procedure (Sybase Central)

1. Connect to a database as a user with DBA authority or as the owner of the
procedure.

2. Open the Procedures & Functions folder.

3. Right-click the desired procedure and choose Delete from the popup
menu.

❖ To delete a procedure (SQL)

1. Connect to a database as a user with DBA authority or as the owner of the
procedure.

2. Execute a DROP PROCEDURE statement.

Example The following statement removes the procedure new_dept from the database:

DROP PROCEDURE new_dept

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

Returning procedure results in parameters

Procedures return results to the calling environment in one of the following
ways:

♦ Individual values are returned as OUT or INOUT parameters.

♦ Result sets can be returned.

♦ A single result can be returned using a RETURN statement.

This section describes how to return results from procedures as parameters.

The following procedure on the sample database returns the average salary
of employees as an OUT parameter.

617

CREATE PROCEDURE AverageSalary(OUT avgsal
NUMERIC (20,3))

BEGIN
SELECT AVG(salary)
INTO avgsal
FROM employee;

END

❖ To run this procedure and display its output (SQL)

1. Connect to the sample database from Interactive SQL with a user ID of
DBA and a password ofSQL. For more information about connecting,
see “Connecting to a Database”[ASA Database Administration Guide,
page 37].

2. In the SQL Statements pane, type the above procedure code.

3. Create a variable to hold the procedure output. In this case, the output
variable is numeric, with three decimal places, so create a variable as
follows:

CREATE VARIABLE Average NUMERIC(20,3)

4. Call the procedure using the created variable to hold the result:

CALL AverageSalary(Average)

If the procedure was created and run properly, the Interactive SQL
Messages pane does not display any errors.

5. Execute the SELECT Average statement to inspect the value of the
variable.

Look at the value of the output variable Average. The Results tab in the
Results pane displays the value 49988.623 for this variable, the average
employee salary.

Returning procedure results in result sets

In addition to returning results to the calling environment in individual
parameters, procedures can return information in result sets. A result set is
typically the result of a query. The following procedure returns a result set
containing the salary for each employee in a given department:

CREATE PROCEDURE SalaryList (IN department_id INT)
RESULT ("Employee ID" INT, Salary NUMERIC(20,3))
BEGIN

SELECT emp_id, salary
FROM employee
WHERE employee.dept_id = department_id;

END

618

Chapter 19. Using Procedures, Triggers, and Batches

If Interactive SQL calls this procedure, the names in the RESULT clause are
matched to the results of the query and used as column headings in the
displayed results.

To test this procedure from Interactive SQL, you can CALL it, specifying
one of the departments of the company. In Interactive SQL, the results
appear on the Results tab in the Results pane.

Example To list the salaries of employees in the R & D department (department ID
100), type the following:

CALL SalaryList (100)

Employee ID Salary

102 45700

105 62000

160 57490

243 72995

.

Interactive SQL can only return multiple result sets if you have this option
enabled on the Results tab of the Options dialog. Each result set appears on
a separate tab in the Results pane.

☞ For more information, see“Returning multiple result sets from
procedures” on page 643.

619

Introduction to user-defined functions
User-defined functions are a class of procedures that return a single value to
the calling environment. Adaptive Server Anywhere treats all user-defined
functions asidempotentunless they are declared NOT DETERMINISTIC.

Idempotent functions return a consistent result for the same parameters and
are free of side effects. Two successive calls to an idempotent function with
the same parameters return the same result, and have no unwanted
side-effects on the query’s semantics.

☞ For more information about non-deterministic and deterministic
functions, see“Function caching” on page 418.

This section introduces creating, using, and dropping user-defined functions.

Creating user-defined functions

You use the CREATE FUNCTION statement to create user-defined
functions. However, you must have RESOURCE authority.

The following simple example creates a function that concatenates two
strings, together with a space, to form a full name from a first name and a
last name.

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ’ ’ || lastname;
RETURN (name);

END

❖ To create this example using Interactive SQL

1. Connect to the sample database from Interactive SQL with a user ID of
DBA and a password ofSQL. For more information about connecting,
see “Connecting to a Database”[ASA Database Administration Guide,
page 37].

2. In the SQL Statements pane, type the above function code.

Note
If you are using a tool other than Interactive SQL or Sybase Central, you
may need to change the command delimiter to something other than the
semicolon.

620

Chapter 19. Using Procedures, Triggers, and Batches

For more information, see “CREATE FUNCTION statement”[ASA SQL
Reference,page 315].

The CREATE FUNCTION syntax differs slightly from that of the CREATE
PROCEDURE statement. The following are distinctive differences:

♦ No IN, OUT, or INOUT keywords are required, as all parameters are IN
parameters.

♦ The RETURNS clause is required to specify the data type being returned.

♦ The RETURN statement is required to specify the value being returned.

Calling user-defined functions

A user-defined function can be used, subject to permissions, in any place
you would use a built-in non-aggregate function.

The following statement in Interactive SQL returns a full name from two
columns containing a first and last name:

SELECT fullname (emp_fname, emp_lname)
FROM employee;

fullname (emp_fname, emp_lname)

Fran Whitney

Matthew Cobb

Philip Chin

. . .

The following statement in Interactive SQL returns a full name from a
supplied first and last name:

SELECT fullname (’Jane’, ’Smith’);

fullname (‘Jane’,’Smith’)

Jane Smith

Any user who has been granted EXECUTE permissions for the function can
use the fullname function.

Example The following user-defined function illustrates local declarations of
variables.

The customer table includes some Canadian customers sprinkled among
those from the USA, but there is no country column. The user-defined

621

function nationality uses the fact that the US zip code is numeric while the
Canadian postal code begins with a letter to distinguish Canadian and US
customers.

CREATE FUNCTION nationality(cust_id INT)
RETURNS CHAR(20)
BEGIN

DECLARE natl CHAR(20);
IF cust_id IN (SELECT id FROM customer

WHERE LEFT(zip,1) > ’9’) THEN
SET natl = ’CDN’;

ELSE
SET natl = ’USA’;

END IF;
RETURN (natl);

END

This example declares a variable natl to hold the nationality string, uses a
SET statement to set a value for the variable, and returns the value of the natl
string to the calling environment.

The following query lists all Canadian customers in the customer table:

SELECT *
FROM customer
WHERE nationality(id) = ’CDN’

Declarations of cursors and exceptions are discussed in later sections.

The same query restated without the function would perform better,
especially if an index on zip existed. For example,

Select *
FROM customer
WHERE zip > ’99999’

Notes While this function is useful for illustration, it may perform very poorly if
used in a SELECT involving many rows. For example, if you used the
SELECT query on a table containing 100 000 rows, of which 10 000 are
returned, the function will be called 10 000 times. If you use it in the
WHERE clause of the same query, it would be called 100 000 times.

Dropping user-defined functions

Once you create a user-defined function, it remains in the database until
someone explicitly removes it. Only the owner of the function or a user with
DBA authority can drop a function from the database.

The following statement removes the function fullname from the database:

DROP FUNCTION fullname

622

Chapter 19. Using Procedures, Triggers, and Batches

Permissions to execute user-defined functions

Ownership of a user-defined function belongs to the user who created it, and
that user can execute it without permission. The owner of a user-defined
function can grant permissions to other users with the GRANT EXECUTE
command.

For example, the creator of the function fullname could allow another_user
to use fullname with the statement:

GRANT EXECUTE ON fullname TO another_user

The following statement revokes permissions to use the function:

REVOKE EXECUTE ON fullname FROM another_user

☞ For more information on managing user permissions on functions, see
“Granting permissions on procedures”[ASA Database Administration Guide,
page 400].

623

Introduction to triggers
A trigger is a special form of stored procedure that is executed automatically
when a query that modifies data is executed. You use triggers whenever
referential integrity and other declarative constraints are insufficient.

☞ For more information on referential integrity, see“Ensuring Data
Integrity” on page 75and “CREATE TABLE statement”[ASA SQL Reference,
page 361].

You may want to enforce a more complex form of referential integrity
involving more detailed checking, or you may want to enforce checking on
new data but allow legacy data to violate constraints. Another use for
triggers is in logging the activity on database tables, independent of the
applications using the database.

Trigger execution permissions
Triggers execute with the permissions of the owner of the associated table,
not the user ID whose actions cause the trigger to fire. A trigger can modify
rows in a table that a user could not modify directly.

Trigger events Triggers can be defined on one or more of the following triggering events:

Action Description

INSERT Invokes the trigger whenever a new row is inserted into
the table associated with the trigger

DELETE Invokes the trigger whenever a row of the associated
table is deleted.

UPDATE Invokes the trigger whenever a row of the associated
table is updated.

UPDATE OF
column-list

Invokes the trigger whenever a row of the associated
table is updated such that a column in thecolumn-list
has been modified

You may write separate triggers for each event that you need to handle or, if
you have some shared actions and some actions that depend on the event,
you can create a trigger for all events and use an IF statement to distinguish
the action taking place.

☞ For more information, see “Trigger operation conditions”[ASA SQL
Reference,page 28].

Trigger times Triggers can be eitherrow-level or statement-level:

624

Chapter 19. Using Procedures, Triggers, and Batches

♦ A row-level trigger executes once for each row that is changed.
Row-level triggers execute BEFORE or AFTER the row is changed.

♦ A statement-level trigger executes after the entire triggering statement is
completed.

Flexibility in trigger execution time is particularly useful for triggers that
rely on referential integrity actions such as cascaded updates or deletes being
carried out (or not) as they execute.

If an error occurs while a trigger is executing, the operation that fired the
trigger fails. INSERT, UPDATE, and DELETE are atomic operations (see
“Atomic compound statements” on page 634). When they fail, all effects of
the statement (including the effects of triggers and any procedures called by
triggers) revert back to their pre-operation state.

☞ For a full description of trigger syntax, see “CREATE TRIGGER
statement”[ASA SQL Reference,page 373].

Creating triggers

You create triggers using either Sybase Central or Interactive SQL. In
Sybase Central, you can use a wizard to provide necessary information. In
Interactive SQL, you can use a CREATE TRIGGER statement. For both
tools, you must have DBA or RESOURCE authority to create a trigger and
you must have ALTER permissions on the table associated with the trigger.

The body of a trigger consists of a compound statement: a set of
semicolon-delimited SQL statements bracketed by a BEGIN and an END
statement.

You cannot use COMMIT and ROLLBACK and some ROLLBACK TO
SAVEPOINT statements within a trigger.

☞ For more information, see the list of cross-references at the end of this
section.

❖ To create a new trigger for a given table (Sybase Central)

1. Open the Triggers folder of the desired table.

2. From the File menu, choose New➤ Trigger.

The Trigger Creation wizard appears.

3. Follow the instructions in the wizard.

4. When the wizard finishes, you can complete the code of the trigger on the
SQL tab in the right pane.

625

❖ To create a new trigger for a given table (SQL)

1. Connect to a database.

2. Execute a CREATE TRIGGER statement.

Example 1: A row-level
INSERT trigger

The following trigger is an example of a row-level INSERT trigger. It checks
that the birth date entered for a new employee is reasonable:

CREATE TRIGGER check_birth_date
AFTER INSERT ON Employee

REFERENCING NEW AS new_employee
FOR EACH ROW
BEGIN

DECLARE err_user_error EXCEPTION
FOR SQLSTATE ’99999’;
IF new_employee.birth_date > ’June 6, 2001’ THEN

SIGNAL err_user_error;
END IF;

END

This trigger fires after any row is inserted into the employee table. It detects
and disallows any new rows that correspond to birth dates later than June 6,
2001.

The phrase REFERENCING NEW AS new_employee allows statements in
the trigger code to refer to the data in the new row using the alias
new_employee.

Signaling an error causes the triggering statement, as well as any previous
effects of the trigger, to be undone.

For an INSERT statement that adds many rows to the employee table, the
check_birth_date trigger fires once for each new row. If the trigger fails for
any of the rows, all effects of the INSERT statement roll back.

You can specify that the trigger fires before the row is inserted rather than
after by changing the first line of the example to:

CREATE TRIGGER mytrigger BEFORE INSERT ON Employee

The REFERENCING NEW clause refers to the inserted values of the row; it
is independent of the timing (BEFORE or AFTER) of the trigger.

You may find it easier in some cases to enforce constraints using declaration
referential integrity or CHECK constraints, rather than triggers. For
example, implementing the above example with a column check constraint
proves more efficient and concise:

CHECK (@col <= ’June 6, 2001’)

Example 2: A row-level
DELETE trigger example

The following CREATE TRIGGER statement defines a row-level DELETE

626

Chapter 19. Using Procedures, Triggers, and Batches

trigger:

CREATE TRIGGER mytrigger BEFORE DELETE ON employee
REFERENCING OLD AS oldtable
FOR EACH ROW
BEGIN

...
END

The REFERENCING OLD clause enables the delete trigger code to refer to
the values in the row being deleted using the alias oldtable.

You can specify that the trigger fires after the row is deleted rather than
before, by changing the first line of the example to:

CREATE TRIGGER check_birth_date AFTER DELETE ON employee

The REFERENCING OLD clause is independent of the timing (BEFORE or
AFTER) of the trigger.

Example 3: A
statement-level UPDATE
trigger example

The following CREATE TRIGGER statement is appropriate for
statement-level UPDATE triggers:

CREATE TRIGGER mytrigger AFTER UPDATE ON employee
REFERENCING NEW AS table_after_update

OLD AS table_before_update
FOR EACH STATEMENT
BEGIN

...
END

The REFERENCING NEW and REFERENCING OLD clause allows the
UPDATE trigger code to refer to both the old and new values of the rows
being updated. The table alias table_after_update refers to columns in the
new row and the table alias table_before_update refers to columns in the old
row.

The REFERENCING NEW and REFERENCING OLD clause has a slightly
different meaning for statement-level and row-level triggers. For
statement-level triggers the REFERENCING OLD or NEW aliases are table
aliases, while in row-level triggers they refer to the row being altered.

☞ For more information, see “CREATE TRIGGER statement”[ASA SQL
Reference,page 373], and“Using compound statements” on page 634.

Executing triggers

Triggers execute automatically whenever an INSERT, UPDATE, or
DELETE operation is performed on the table named in the trigger. A
row-level trigger fires once for each row affected, while a statement-level

627

trigger fires once for the entire statement.

When an INSERT, UPDATE, or DELETE fires a trigger, the order of
operation is as follows:

1. BEFORE triggers fire.

2. Referential actions are performed.

3. The operation itself is performed.

4. AFTER triggers fire.

If any of the steps encounter an error not handled within a procedure or
trigger, the preceding steps are undone, the subsequent steps are not
performed, and the operation that fired the trigger fails.

Altering triggers

You can modify an existing trigger using either Sybase Central or
Interactive SQL. You must be the owner of the table on which the trigger is
defined, or be DBA, or have ALTER permissions on the table and have
RESOURCE authority.

In Sybase Central, you cannot rename an existing trigger directly. Instead,
you must create a new trigger with the new name, copy the previous code to
it, and then delete the old trigger.

Alternatively, you can use an ALTER TRIGGER statement to modify an
existing trigger. You must include the entire new trigger in this statement (in
the same syntax as in the CREATE TRIGGER statement that created the
trigger).

☞ For more information on altering database object properties, see
“Setting properties for database objects” on page 32.

❖ To alter the code of a trigger (Sybase Central)

1. Open the Triggers folder.

2. Select the desired trigger. You can then do one of the following:

♦ Edit the code directly on the SQL tab in the right pane.

♦ Translate the code to Watcom-SQL or Transact-SQL prior to editing it:

• Right-click the desired trigger and choose Open as Watcom-SQL or
Open as Transact-SQL from the popup menu.

• Edit the code on the SQL tab in the right pane.

628

Chapter 19. Using Procedures, Triggers, and Batches

♦ Edit the code in a separate window by right-clicking the procedure in
the right pane and choose Edit In New Window from the popup menu.

Tip
If you wish to copy code between triggers, you can open a separate
window for each trigger.

❖ To alter the code of a trigger (SQL)

1. Connect to the database.

2. Execute an ALTER TRIGGER statement. Include the entire new trigger
in this statement.

☞ For more information, see “ALTER TRIGGER statement”[ASA SQL
Reference,page 258].

Dropping triggers

Once you create a trigger, it remains in the database until someone explicitly
removes it. You must have ALTER permissions on the table associated with
the trigger to drop the trigger.

❖ To delete a trigger (Sybase Central)

1. Open the Triggers folder.

2. Right-click the desired trigger and choose Delete from the popup menu.

❖ To delete a trigger (SQL)

1. Connect to a database.

2. Execute a DROP TRIGGER statement.

Example The following statement removes the trigger mytrigger from the database:

DROP TRIGGER mytrigger

☞ For more information, see “DROP statement”[ASA SQL Reference,
page 408].

Trigger execution permissions

You cannot grant permissions to execute a trigger, since users cannot execute
triggers: Adaptive Server Anywhere fires them in response to actions on the
database. Nevertheless, a trigger does have permissions associated with it as
it executes, defining its right to carry out certain actions.

629

Triggers execute using the permissions of the owner of the table on which
they are defined, not the permissions of the user who caused the trigger to
fire, and not the permissions of the user who created the trigger.

When a trigger refers to a table, it uses the group memberships of the table
creator to locate tables with no explicit owner name specified. For example,
if a trigger on user_1.Table_A references Table_B and does not specify the
owner of Table_B, then either Table_B must have been created by user_1 or
user_1 must be a member of a group (directly or indirectly) that is the owner
of Table_B. If neither condition is met, atable not found message results
when the trigger fires.

Also, user_1 must have permissions to carry out the operations specified in
the trigger.

630

Chapter 19. Using Procedures, Triggers, and Batches

Introduction to batches
A simple batch consists of a set of SQL statements, separated by semicolons
or separated by a separate line with just the wordgoon it. The use ofgo is
recommended. For example, the following set of statements form a batch,
which creates an Eastern Sales department and transfers all sales reps from
Massachusetts to that department.

INSERT
INTO department (dept_id, dept_name)
VALUES (220, ’Eastern Sales’)
go
UPDATE employee
SET dept_id = 220
WHERE dept_id = 200
AND state = ’MA’
go
COMMIT
go

You can include this set of statements in an application and execute them
together.

Interactive SQL and batches
Interactive SQL parses a list of semicolon-separated statements, such as
the above, before sending them to the server. In this case, Interactive SQL
sends each statement to the server individually, not as a batch. Unless
you have such parsing code in your application, the statements would be
sent and treated as a batch. Putting a BEGIN and END around a set of
statements causes Interactive SQL to treat them as a batch.

Many statements used in procedures and triggers can also be used in
batches. You can use control statements (CASE, IF, LOOP, and so on),
including compound statements (BEGIN and END), in batches. Compound
statements can include declarations of variables, exceptions, temporary
tables, or cursors inside the compound statement.

The following batch creates a table only if a table of that name does not
already exist:

631

IF NOT EXISTS (
SELECT * FROM SYSTABLE
WHERE table_name = ’t1’) THEN

CREATE TABLE t1 (
firstcol INT PRIMARY KEY,
secondcol CHAR(30)
)
go

ELSE
MESSAGE ’Table t1 already exists’ TO CLIENT;

END IF

If you run this batch twice from Interactive SQL, it creates the table the first
time you run it and displays the message in the Interactive SQL Messages
pane the next time you run it.

632

Chapter 19. Using Procedures, Triggers, and Batches

Control statements
There are a number of control statements for logical flow and decision
making in the body of the procedure or trigger, or in a batch. Available
control statements include:

Control statement Syntax

Compound statements

For more information, see
“BEGIN statement” [ASA SQL
Reference,page 267].

BEGIN [ATOMIC]
Statement-list

END

Conditional execution: IF

For more information, see “IF
statement” [ASA SQL Refer-
ence,page 467].

IF condition THEN
Statement-list

ELSEIF condition THEN
Statement-list

ELSE
Statement-list

END IF

Conditional execution: CASE

For more information, see
“CASE statement” [ASA SQL
Reference,page 275].

CASE expression
WHEN value THEN

Statement-list
WHEN value THEN

Statement-list
ELSE

Statement-list
END CASE

Repetition: WHILE, LOOP

For more information, see
“LOOP statement” [ASA SQL
Reference,page 495].

WHILE condition LOOP
Statement-list

END LOOP

Repetition: FOR cursor loop

For more information, see
“FOR statement” [ASA SQL
Reference,page 441].

FOR loop-name
AS cursor-name
CURSOR FOR select statement

DO
Statement-list

END FOR

Break: LEAVE

For more information, see
“LEAVE statement” [ASA SQL
Reference,page 483].

LEAVE label

633

Control statement Syntax

CALL

For more information, see
“CALL statement” [ASA SQL
Reference,page 273].

CALL procname(arg, ...)

For more information about each statement, see the entries in “SQL
Statements”[ASA SQL Reference,page 213]

Using compound statements

A compound statement starts with the keyword BEGIN and concludes with
the keyword END. The body of a procedure or trigger is acompound
statement. Compound statements can also be used in batches. Compound
statements can be nested, and combined with other control statements to
define execution flow in procedures and triggers or in batches.

A compound statement allows a set of SQL statements to be grouped
together and treated as a unit. Delimit SQL statements within a compound
statement with semicolons.

☞ For more information about compound statements, see the “BEGIN
statement”[ASA SQL Reference,page 267].

Declarations in compound statements

Local declarations in a compound statement immediately follow the BEGIN
keyword. These local declarations exist only within the compound
statement. Within a compound statement you can declare:

♦ Variables

♦ Cursors

♦ Temporary tables

♦ Exceptions (error identifiers)

Local declarations can be referenced by any statement in that compound
statement, or in any compound statement nested within it. Local declarations
are not visible to other procedures called from the compound statement.

Atomic compound statements

An atomic statement is a statement executed completely or not at all. For
example, an UPDATE statement that updates thousands of rows might

634

Chapter 19. Using Procedures, Triggers, and Batches

encounter an error after updating many rows. If the statement does not
complete, all changes revert back to their original state. The UPDATE
statement is atomic.

All non-compound SQL statements are atomic. You can make a compound
statement atomic by adding the keyword ATOMIC after the BEGIN
keyword.

BEGIN ATOMIC
UPDATE employee
SET manager_ID = 501
WHERE emp_ID = 467;
UPDATE employee
SET birth_date = ’bad_data’;

END

In this example, the two update statements are part of an atomic compound
statement. They must either succeed or fail as one. The first update statement
would succeed. The second one causes a data conversion error since the
value being assigned to the birth_date column cannot be converted to a date.

The atomic compound statement fails and the effect of both UPDATE
statements is undone. Even if the currently executing transaction is
eventually committed, neither statement in the atomic compound statement
takes effect.

If an atomic compound statement succeeds, the changes made within the
compound statement take effect only if the currently executing transaction is
committed.

You cannot use COMMIT and ROLLBACK and some ROLLBACK TO
SAVEPOINT statements within an atomic compound statement (see
“Transactions and savepoints in procedures and triggers” on page 660).

There is a case where some, but not all, of the statements within an atomic
compound statement are executed. This happens when an exception handler
within the compound statement deals with an error.

☞ For more information, see“Using exception handlers in procedures and
triggers” on page 654.

635

The structure of procedures and triggers
The body of a procedure or trigger consists of a compound statement as
discussed in“Using compound statements” on page 634. A compound
statement consists of a BEGIN and an END, enclosing a set of SQL
statements. Semicolons delimit each statement.

SQL statements allowed in procedures and triggers

You can use almost all SQL statements within procedures and triggers,
including the following:

♦ SELECT, UPDATE, DELETE, INSERT and SET VARIABLE.

♦ The CALL statement to execute other procedures.

♦ Control statements (see“Control statements” on page 633).

♦ Cursor statements (see“Using cursors in procedures and triggers” on
page 646).

♦ Exception handling statements (see“Using exception handlers in
procedures and triggers” on page 654).

♦ The EXECUTE IMMEDIATE statement.

Some SQL statements you cannot use within procedures and triggers
include:

♦ CONNECT statement

♦ DISCONNECT statement.

You can use COMMIT, ROLLBACK and SAVEPOINT statements within
procedures and triggers with certain restrictions (see“Transactions and
savepoints in procedures and triggers” on page 660).

For more information, see the Usage for each SQL statement in the chapter
“SQL Statements”[ASA SQL Reference,page 213].

Declaring parameters for procedures

Procedure parameters appear as a list in the CREATE PROCEDURE
statement. Parameter names must conform to the rules for other database
identifiers such as column names. They must have valid data types (see
“SQL Data Types”[ASA SQL Reference,page 51]), and must be prefixed with
one of the keywords IN, OUT or INOUT. These keywords have the
following meanings:

♦ IN The argument is an expression that provides a value to the procedure.

636

Chapter 19. Using Procedures, Triggers, and Batches

♦ OUT The argument is a variable that could be given a value by the
procedure.

♦ INOUT The argument is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

You can assign default values to procedure parameters in the CREATE
PROCEDURE statement. The default value must be a constant, which may
be NULL. For example, the following procedure uses the NULL default for
an IN parameter to avoid executing a query that would have no meaning:

CREATE PROCEDURE
CustomerProducts(IN customer_id

INTEGER DEFAULT NULL)
RESULT (product_id INTEGER,

quantity_ordered INTEGER)
BEGIN

IF customer_id IS NULL THEN
RETURN;

ELSE
SELECT product.id,

sum(sales_order_items.quantity)
FROM product,

sales_order_items,
sales_order

WHERE sales_order.cust_id = customer_id
AND sales_order.id = sales_order_items.id
AND sales_order_items.prod_id = product.id
GROUP BY product.id;

END IF;
END

The following statement assigns the DEFAULT NULL, and the procedure
RETURNs instead of executing the query.

CALL customerproducts();

Passing parameters to procedures

You can take advantage of default values of stored procedure parameters
with either of two forms of the CALL statement.

If the optional parameters are at the end of the argument list in the CREATE
PROCEDURE statement, they may be omitted from the CALL statement.
As an example, consider a procedure with three INOUT parameters:

CREATE PROCEDURE SampleProc(INOUT var1 INT
DEFAULT 1,

INOUT var2 int DEFAULT 2,
INOUT var3 int DEFAULT 3)

...

637

We assume that the calling environment has set up three variables to hold the
values passed to the procedure:

CREATE VARIABLE V1 INT;
CREATE VARIABLE V2 INT;
CREATE VARIABLE V3 INT;

The procedure SampleProc may be called supplying only the first parameter
as follows:

CALL SampleProc(V1)

in which case the default values are used forvar2 andvar3.

A more flexible method of calling procedures with optional arguments is to
pass the parameters by name. The SampleProc procedure may be called as
follows:

CALL SampleProc(var1 = V1, var3 = V3)

or as follows:

CALL SampleProc(var3 = V3, var1 = V1)

Passing parameters to functions

User-defined functions are not invoked with the CALL statement, but are
used in the same manner that built-in functions are. For example, the
following statement uses the fullname function defined in“Creating
user-defined functions” on page 620to retrieve the names of employees:

❖ To list the names of all employees

1. Type the following:

SELECT fullname(emp_fname, emp_lname) AS Name
FROM employee

Name

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

. . .

Notes

638

Chapter 19. Using Procedures, Triggers, and Batches

♦ Default parameters can be used in calling functions. However, parameters
cannot be passed to functions by name.

♦ Parameters are passed by value, not by reference. Even if the function
changes the value of the parameter, this change is not returned to the
calling environment.

♦ Output parameters cannot be used in user-defined functions.

♦ User-defined functions cannot return result sets.

639

Returning results from procedures
Procedures can return results in the form of a single row of data, or multiple
rows. Results consisting of a single row of data can be passed back as
arguments to the procedure. Results consisting of multiple rows of data are
passed back as result sets. Procedures can also return a single value given in
the RETURN statement.

For simple examples of how to return results from procedures, see
“Introduction to procedures” on page 613. For more detailed information,
see the following sections.

Returning a value using the RETURN statement

The RETURN statement returns a single integer value to the calling
environment, causing an immediate exit from the procedure. The RETURN
statement takes the form:

RETURN expression

The value of the supplied expression is returned to the calling environment.
To save the return value in a variable, use an extension of the CALL
statement:

CREATE VARIABLE returnval INTEGER ;
returnval = CALL myproc() ;

Returning results as procedure parameters

Procedures can return results to the calling environment in the parameters to
the procedure.

Within a procedure, parameters and variables can be assigned values using:

♦ the SET statement.

♦ a SELECT statement with an INTO clause.

Using the SET statement The following somewhat artificial procedure returns a value in an OUT
parameter assigned using a SET statement:

640

Chapter 19. Using Procedures, Triggers, and Batches

CREATE PROCEDURE greater (IN a INT,
IN b INT,
OUT c INT)

BEGIN
IF a > b THEN

SET c = a;
ELSE

SET c = b;
END IF ;

END

Using single-row
SELECT statements

Single-row queries retrieve at most one row from the database. This type of
query uses a SELECT statement with an INTO clause. The INTO clause
follows the select list and precedes the FROM clause. It contains a list of
variables to receive the value for each select list item. There must be the
same number of variables as there are select list items.

When a SELECT statement executes, the server retrieves the results of the
SELECT statement and places the results in the variables. If the query
results contain more than one row, the server returns an error. For queries
returning more than one row, you must use cursors. For information about
returning more than one row from a procedure, see“Returning result sets
from procedures” on page 642.

If the query results in no rows being selected, arow not found warning
appears.

The following procedure returns the results of a single-row SELECT
statement in the procedure parameters.

❖ To return the number of orders placed by a given customer

1. Type the following:

CREATE PROCEDURE OrderCount (IN customer_ID INT,
OUT Orders INT)

BEGIN
SELECT COUNT(DBA.sales_order.id)

INTO Orders
FROM DBA.customer

KEY LEFT OUTER JOIN "DBA".sales_order
WHERE DBA.customer.id = customer_ID;

END

You can test this procedure in Interactive SQL using the following
statements, which show the number of orders placed by the customer with
ID 102:

CREATE VARIABLE orders INT;
CALL OrderCount (102, orders);
SELECT orders;

641

Notes ♦ Thecustomer_IDparameter is declared as an IN parameter. This
parameter holds the customer ID passed in to the procedure.

♦ TheOrdersparameter is declared as an OUT parameter. It holds the
value of the orders variable that returned to the calling environment.

♦ No DECLARE statement is necessary for theOrdersvariable, as it is
declared in the procedure argument list.

♦ The SELECT statement returns a single row and places it into the
variableOrders.

Returning result sets from procedures

Result sets allow a procedure to return more than one row of results to the
calling environment.

The following procedure returns a list of customers who have placed orders,
together with the total value of the orders placed. The procedure does not list
customers who have not placed orders.

CREATE PROCEDURE ListCustomerValue ()
RESULT ("Company" CHAR(36), "Value" INT)
BEGIN

SELECT company_name,
CAST(sum(sales_order_items.quantity *

product.unit_price)
AS INTEGER) AS value

FROM customer
INNER JOIN sales_order
INNER JOIN sales_order_items
INNER JOIN product

GROUP BY company_name
ORDER BY value DESC;

END

♦ Type the following:

CALL ListCustomerValue ()

Company Value

Chadwicks 8076

Overland Army Navy 8064

Martins Landing 6888

Sterling & Co. 6804

Carmel Industries 6780

.

642

Chapter 19. Using Procedures, Triggers, and Batches

Notes ♦ The number of variables in the RESULT list must match the number of
the SELECT list items. Automatic data type conversion is carried out
where possible if data types do not match.

♦ The RESULT clause is part of the CREATE PROCEDURE statement,
and does not have a command delimiter.

♦ The names of the SELECT list items do not need to match those of the
RESULT list.

♦ When testing this procedure, Interactive SQL displays only the first result
set by default. You can configure Interactive SQL to display more than
one result set by setting the Show multiple result sets option on the
Results tab of the Options dialog.

♦ You can modify procedure result sets, unless they are generated from a
view. The user calling the procedure requires the appropriate permissions
on the underlying table to modify procedure results. This is different than
the usual permissions for procedure execution, where the procedure
ownermust have permissions on the table.

☞ For information about modifying result sets in Interactive SQL, see
“Editing table values in Interactive SQL”[ASA Getting Started,page 76].

Returning multiple result sets from procedures

Before Interactive SQL can return multiple result sets, you need to enable
this option on the Results tab of the Options dialog. By default, this option is
disabled. If you change the setting, it takes effect in newly created
connections (such as new windows).

❖ To enable multiple result set functionality

1. Choose Tools➤ Options.

2. In the resulting Options dialog, click the Results tab.

3. Select the Show Multiple Result Sets checkbox.

After you enable this option, a procedure can return more than one result set
to the calling environment. If a RESULT clause is employed, the result sets
must be compatible: they must have the same number of items in the
SELECT lists, and the data types must all be of types that can be
automatically converted to the data types listed in the RESULT list.

The following procedure lists the names of all employees, customers, and
contacts listed in the database:

643

CREATE PROCEDURE ListPeople()
RESULT (lname CHAR(36), fname CHAR(36))
BEGIN

SELECT emp_lname, emp_fname
FROM employee;
SELECT lname, fname
FROM customer;
SELECT last_name, first_name
FROM contact;

END

Notes ♦ To test this procedure in Interactive SQL, enter the following statement in
the SQL Statements pane:

CALL ListPeople ()

Returning variable result sets from procedures

The RESULT clause is optional in procedures. Omitting the result clause
allows you to write procedures that return different result sets, with different
numbers or types of columns, depending on how they are executed.

If you do not use the variable result sets feature, you should use a RESULT
clause for performance reasons.

For example, the following procedure returns two columns if the input
variable is Y, but only one column otherwise:

CREATE PROCEDURE names(IN formal char(1))
BEGIN

IF formal = ’y’ THEN
SELECT emp_lname, emp_fname
FROM employee

ELSE
SELECT emp_fname
FROM employee

END IF
END

The use of variable result sets in procedures is subject to some limitations,
depending on the interface used by the client application.

♦ Embedded SQL You must DESCRIBE the procedure call after the
cursor for the result set is opened, but before any rows are returned, in
order to get the proper shape of result set.

☞ For more information about the DESCRIBE statement, see
“DESCRIBE statement [ESQL]”[ASA SQL Reference,page 403].

♦ ODBC Variable result set procedures can be used by ODBC
applications. The Adaptive Server Anywhere ODBC driver carries out

644

Chapter 19. Using Procedures, Triggers, and Batches

the proper description of the variable result sets.

♦ Open Client applications Open Client applications can use variable
result set procedures. Adaptive Server Anywhere carries out the proper
description of the variable result sets.

645

Using cursors in procedures and triggers
Cursors retrieve rows one at a time from a query or stored procedure with
multiple rows in its result set. A cursor is a handle or an identifier for the
query or procedure, and for a current position within the result set.

Cursor management overview

Managing a cursor is similar to managing a file in a programming language.
The following steps manage cursors:

1. Declare a cursor for a particular SELECT statement or procedure using
the DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Use the FETCH statement to retrieve results one row at a time from the
cursor.

4. The warningRow Not Found signals the end of the result set.

5. Close the cursor using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on
COMMIT or ROLLBACK statements). Cursors are opened using the WITH
HOLD clause will stay open for subsequent transactions until someone
explicitly closes them.

☞ For more information on positioning cursors, see “Cursor positioning”
[ASA Programming Guide,page 21].

Using cursors on SELECT statements in procedures

The following procedure uses a cursor on a SELECT statement. Based on
the same query used in the ListCustomerValue procedure described in
“Returning result sets from procedures” on page 642, it illustrates several
features of the stored procedure language.

CREATE PROCEDURE TopCustomerValue
(OUT TopCompany CHAR(36),

OUT TopValue INT)
BEGIN

-- 1. Declare the "error not found" exception
DECLARE err_notfound

EXCEPTION FOR SQLSTATE ’02000’;

-- 2. Declare variables to hold
-- each company name and its value
DECLARE ThisName CHAR(36);
DECLARE ThisValue INT;

646

Chapter 19. Using Procedures, Triggers, and Batches

-- 3. Declare the cursor ThisCompany
-- for the query
DECLARE ThisCompany CURSOR FOR
SELECT company_name,

CAST(sum(sales_order_items.quantity *
product.unit_price) AS INTEGER)

AS value
FROM customer

INNER JOIN sales_order
INNER JOIN sales_order_items
INNER JOIN product

GROUP BY company_name;

-- 4. Initialize the values of TopValue
SET TopValue = 0;
-- 5. Open the cursor
OPEN ThisCompany;

-- 6. Loop over the rows of the query
CompanyLoop:
LOOP

FETCH NEXT ThisCompany
INTO ThisName, ThisValue;

IF SQLSTATE = err_notfound THEN
LEAVE CompanyLoop;

END IF;
IF ThisValue > TopValue THEN

SET TopCompany = ThisName;
SET TopValue = ThisValue;

END IF;
END LOOP CompanyLoop;

-- 7. Close the cursor
CLOSE ThisCompany;

END

Notes The TopCustomerValue procedure has the following notable features:

♦ The “error not found” exception is declared. This exception signals, later
in the procedure, when a loop over the results of a query completes.

☞ For more information about exceptions, see“Errors and warnings in
procedures and triggers” on page 649.

♦ Two local variables ThisName and ThisValue are declared to hold the
results from each row of the query.

♦ The cursor ThisCompany is declared. The SELECT statement produces a
list of company names and the total value of the orders placed by that
company.

♦ The value of TopValue is set to an initial value of 0, for later use in the
loop.

♦ The ThisCompany cursor opens.

647

♦ The LOOP statement loops over each row of the query, placing each
company name in turn into the variables ThisName and ThisValue. If
ThisValue is greater than the current top value, TopCompany and
TopValue are reset to ThisName and ThisValue.

♦ The cursor closes at the end of the procedure.

♦ You can also write this procedure without a loop by adding an ORDER
BY value DESC clause to the SELECT statement. Then, only the first
row of the cursor needs to be fetched.

The LOOP construct in the TopCompanyValue procedure is a standard form,
exiting after the last row processes. You can rewrite this procedure in a more
compact form using a FOR loop. The FOR statement combines several
aspects of the above procedure into a single statement.

CREATE PROCEDURE TopCustomerValue2(
OUT TopCompany CHAR(36),
OUT TopValue INT)

BEGIN
-- Initialize the TopValue variable
SET TopValue = 0;
-- Do the For Loop
FOR CompanyFor AS ThisCompany

CURSOR FOR
SELECT company_name AS ThisName ,

CAST(sum(sales_order_items.quantity *
product.unit_price) AS INTEGER)

AS ThisValue
FROM customer

INNER JOIN sales_order
INNER JOIN sales_order_items
INNER JOIN product

GROUP BY ThisName
DO

IF ThisValue > TopValue THEN
SET TopCompany = ThisName;
SET TopValue = ThisValue;
END IF;

END FOR;
END

648

Chapter 19. Using Procedures, Triggers, and Batches

Errors and warnings in procedures and triggers
After an application program executes a SQL statement, it can examine a
status code. This status code (or return code) indicates whether the
statement executed successfully or failed and gives the reason for the failure.
You can use the same mechanism to indicate the success or failure of a
CALL statement to a procedure.

Error reporting uses either the SQLCODE or SQLSTATE status descriptions.
For full descriptions of SQLCODE and SQLSTATE error and warning
values and their meanings, see “Database Error Messages”[ASA Error
Messages,page 1]. Whenever a SQL statement executes, a value appears in
special procedure variables called SQLSTATE and SQLCODE. That value
indicates whether or not there were any unusual conditions encountered
while the statement was being performed. You can check the value of
SQLSTATE or SQLCODE in an IF statement following a SQL statement,
and take actions depending on whether the statement succeeded or failed.

For example, the SQLSTATE variable can be used to indicate if a row is
successfully fetched. The TopCustomerValue procedure presented in section
“Using cursors on SELECT statements in procedures” on page 646used the
SQLSTATE test to detect that all rows of a SELECT statement had been
processed.

Default error handling in procedures and triggers

This section describes how Adaptive Server Anywhere handles errors that
occur during a procedure execution, if you have no error handling built in to
the procedure.

☞ For different behavior, you can use exception handlers, described in
“Using exception handlers in procedures and triggers” on page 654.
Warnings are handled in a slightly different manner from errors: for a
description, see“Default handling of warnings in procedures and triggers”
on page 653.

There are two ways of handling errors without using explicit error handling:

♦ Default error handling The procedure or trigger fails and returns an
error code to the calling environment.

♦ ON EXCEPTION RESUME If the ON EXCEPTION RESUME clause
appears in the CREATE PROCEDURE statement, the procedure carries
on executing after an error, resuming at the statement following the one
causing the error.

☞ The precise behavior for procedures that use ON EXCEPTION

649

RESUME is dictated by the ON_TSQL_ERROR option setting. For
more information, see “ON_TSQL_ERROR option [compatibility]”[ASA
Database Administration Guide,page 612].

Default error handling Generally, if a SQL statement in a procedure or trigger fails, the procedure or
trigger terminates execution and control returns to the application program
with an appropriate setting for the SQLSTATE and SQLCODE values. This
is true even if the error occurred in a procedure or trigger invoked directly or
indirectly from the first one. In the case of a trigger, the operation causing
the trigger is also undone and the error is returned to the application.

The following demonstration procedures show what happens when an
application calls the procedure OuterProc, and OuterProc in turn calls the
procedure InnerProc, which then encounters an error.

CREATE PROCEDURE OuterProc()
BEGIN

MESSAGE ’Hello from OuterProc.’ TO CLIENT;
CALL InnerProc();
MESSAGE ’SQLSTATE set to ’,

SQLSTATE,’ in OuterProc.’ TO CLIENT
END
CREATE PROCEDURE InnerProc()

BEGIN
DECLARE column_not_found

EXCEPTION FOR SQLSTATE ’52003’;
MESSAGE ’Hello from InnerProc.’ TO CLIENT;
SIGNAL column_not_found;

MESSAGE ’SQLSTATE set to ’,
SQLSTATE, ’ in InnerProc.’ TO CLIENT;

END

Notes ♦ The DECLARE statement in InnerProc declares a symbolic name for one
of the predefined SQLSTATE values associated with error conditions
already known to the server.

♦ The MESSAGE statement sends a message to the Interactive SQL
Messages pane.

♦ The SIGNAL statement generates an error condition from within the
InnerProc procedure.

The following statement executes the OuterProc procedure:

CALL OuterProc();

The Interactive SQL Messages pane displays the following:

Hello from OuterProc.

Hello from InnerProc.

650

Chapter 19. Using Procedures, Triggers, and Batches

None of the statements following the SIGNAL statement in InnerProc
execute: InnerProc immediately passes control back to the calling
environment, which in this case is the procedure OuterProc. None of the
statements following the CALL statement in OuterProc execute. The error
condition returns to the calling environment to be handled there. For
example, Interactive SQL handles the error by displaying a message window
describing the error.

The TRACEBACK function provides a list of the statements that were
executing when the error occurred. You can use the TRACEBACK function
from Interactive SQL by typing the following statement:

SELECT TRACEBACK(*)

Error handling with ON EXCEPTION RESUME

If the ON EXCEPTION RESUME clause appears in the CREATE
PROCEDURE statement, the procedure checks the following statement
when an error occurs. If the statement handles the error, then the procedure
continues executing, resuming at the statement after the one causing the
error. It does not return control to the calling environment when an error
occurred.

☞ The behavior for procedures that use ON EXCEPTION RESUME can
be modified by the ON_TSQL_ERROR option setting. For more
information, see “ON_TSQL_ERROR option [compatibility]”[ASA Database
Administration Guide,page 612].

Error-handling statements include the following:

♦ IF

♦ SELECT @variable =

♦ CASE

♦ LOOP

♦ LEAVE

♦ CONTINUE

♦ CALL

♦ EXECUTE

♦ SIGNAL

♦ RESIGNAL

651

♦ DECLARE

♦ SET VARIABLE

The following example illustrates how this works.

Drop the procedures Remember to drop both the InnerProc and OuterProc procedures by entering
the following commands in the SQL Statements pane before continuing with
the tutorial:

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc

The following demonstration procedures show what happens when an
application calls the procedure OuterProc; and OuterProc in turn calls the
procedure InnerProc, which then encounters an error. These demonstration
procedures are based on those used earlier in this section:

CREATE PROCEDURE OuterProc()
ON EXCEPTION RESUME
BEGIN

DECLARE res CHAR(5);
MESSAGE ’Hello from OuterProc.’ TO CLIENT;
CALL InnerProc();
SELECT @res=SQLSTATE;
IF res=’52003’ THEN

MESSAGE ’SQLSTATE set to ’,
res, ’ in OuterProc.’ TO CLIENT;

END IF
END;

CREATE PROCEDURE InnerProc()
ON EXCEPTION RESUME
BEGIN

DECLARE column_not_found
EXCEPTION FOR SQLSTATE ’52003’;

MESSAGE ’Hello from InnerProc.’ TO CLIENT;
SIGNAL column_not_found;
MESSAGE ’SQLSTATE set to ’,
SQLSTATE, ’ in InnerProc.’ TO CLIENT;

END

The following statement executes the OuterProc procedure:

CALL OuterProc();

The Interactive SQL Messages pane then displays the following:

Hello from OuterProc.

Hello from InnerProc.

SQLSTATE set to 52003 in OuterProc.

652

Chapter 19. Using Procedures, Triggers, and Batches

The execution path is as follows:

1. OuterProc executes and calls InnerProc.

2. In InnerProc, the SIGNAL statement signals an error.

3. The MESSAGE statement is not an error-handling statement, so control
is passed back to OuterProc and the message is not displayed.

4. In OuterProc, the statement following the error assigns the SQLSTATE
value to the variable namedres. This is an error-handling statement, and
so execution continues and the OuterProc message appears.

Default handling of warnings in procedures and triggers

Errors and warnings are handled differently. While the default action for
errors is to set a value for the SQLSTATE and SQLCODE variables, and
return control to the calling environment in the event of an error, the default
action for warnings is to set the SQLSTATE and SQLCODE values and
continue execution of the procedure.

Drop the procedures Remember to drop both the InnerProc and OuterProc procedures by entering
the following commands in the SQL Statements pane before continuing with
the tutorial:

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc

The following demonstration procedures illustrate default handling of
warnings. These demonstration procedures are based on those used in
“Default error handling in procedures and triggers” on page 649. In this
case, the SIGNAL statement generates arow not found condition, which
is a warning rather than an error.

CREATE PROCEDURE OuterProc()
BEGIN

MESSAGE ’Hello from OuterProc.’ TO CLIENT;
CALL InnerProc();
MESSAGE ’SQLSTATE set to ’,

SQLSTATE,’ in OuterProc.’ TO CLIENT;
END
CREATE PROCEDURE InnerProc()
BEGIN

DECLARE row_not_found
EXCEPTION FOR SQLSTATE ’02000’;

MESSAGE ’Hello from InnerProc.’ TO CLIENT;
SIGNAL row_not_found;
MESSAGE ’SQLSTATE set to ’,
SQLSTATE, ’ in InnerProc.’ TO CLIENT;

END

653

The following statement executes the OuterProc procedure:

CALL OuterProc();

The Interactive SQL Messages pane then displays the following:

Hello from OuterProc. Hello from InnerProc. SQLSTATE

set to 02000 in InnerProc. SQLSTATE set to 00000 in

OuterProc.

The procedures both continued executing after the warning was generated,
with SQLSTATE set by the warning (02000).

Execution of the second MESSAGE statement in InnerProc resets the
warning. Successful execution of any SQL statement resets SQLSTATE to
00000 and SQLCODE to 0. If a procedure needs to save the error status, it
must do an assignment of the value immediately after execution of the
statement which caused the error warning.

Using exception handlers in procedures and triggers

It is often desirable to intercept certain types of errors and handle them
within a procedure or trigger, rather than pass the error back to the calling
environment. This is done through the use of anexception handler.

You define an exception handler with the EXCEPTION part of a compound
statement (see“Using compound statements” on page 634). Whenever an
error occurs in the compound statement, the exception handler executes.
Unlike errors, warnings do not cause exception handling code to be
executed. Exception handling code also executes if an error appears in a
nested compound statement or in a procedure or trigger invoked anywhere
within the compound statement.

Drop the procedures Remember to drop both the InnerProc and OuterProc procedures by entering
the following commands in the SQL Statements pane before continuing with
the tutorial:

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc

The demonstration procedures used to illustrate exception handling are
based on those used in“Default error handling in procedures and triggers”
on page 649. In this case, additional code handlesthe column not

found error in the InnerProc procedure.

654

Chapter 19. Using Procedures, Triggers, and Batches

CREATE PROCEDURE OuterProc()
BEGIN

MESSAGE ’Hello from OuterProc.’ TO CLIENT;
CALL InnerProc();
MESSAGE ’SQLSTATE set to ’,

SQLSTATE,’ in OuterProc.’ TO CLIENT
END
CREATE PROCEDURE InnerProc()
BEGIN

DECLARE column_not_found
EXCEPTION FOR SQLSTATE ’52003’;
MESSAGE ’Hello from InnerProc.’ TO CLIENT;

SIGNAL column_not_found;
MESSAGE ’Line following SIGNAL.’ TO CLIENT;

EXCEPTION
WHEN column_not_found THEN
MESSAGE ’Column not found handling.’ TO CLIENT;
WHEN OTHERS THEN

RESIGNAL ;
END

The EXCEPTION statement declares the exception handler itself. The lines
following the EXCEPTION statement do not execute unless an error occurs.
Each WHEN clause specifies an exception name (declared with a
DECLARE statement) and the statement or statements to be executed in the
event of that exception. The WHEN OTHERS THEN clause specifies the
statement(s) to be executed when the exception that occurred does not
appear in the preceding WHEN clauses.

In this example, the statement RESIGNAL passes the exception on to a
higher-level exception handler. RESIGNAL is the default action if WHEN
OTHERS THEN is not specified in an exception handler.

The following statement executes the OuterProc procedure:

CALL OuterProc();

The Interactive SQL Messages pane then displays the following:

Hello from OuterProc. Hello from InnerProc. Column not

found handling. SQLSTATE set to 00000 in OuterProc.

Notes ♦ The EXCEPTION statements execute, rather than the lines following the
SIGNAL statement in InnerProc.

♦ As the error encountered was acolumn not found error, the
MESSAGE statement included to handle the error executes, and
SQLSTATE resets to zero (indicating no errors).

♦ After the exception handling code executes, control passes back to
OuterProc, which proceeds as if no error was encountered.

655

♦ You should not use ON EXCEPTION RESUME together with explicit
exception handling. The exception handling code is not executed if ON
EXCEPTION RESUME is included.

♦ If the error handling code for thecolumn not found exception is
simply a RESIGNAL statement, control passes back to the OuterProc
procedure with SQLSTATE still set at the value 52003. This is just as if
there were no error handling code in InnerProc. Since there is no error
handling code in OuterProc, the procedure fails.

Exception handling and
atomic compound
statements

When an exception is handled inside a compound statement, the compound
statement completes without an active exception and the changes before the
exception are not reversed. This is true even for atomic compound
statements. If an error occurs within an atomic compound statement and is
explicitly handled, some but not all of the statements in the atomic
compound statement are executed.

Nested compound statements and exception handlers

The code following a statement that causes an error executes only if an ON
EXCEPTION RESUME clause appears in a procedure definition.

You can use nested compound statements to give you more control over
which statements execute following an error and which do not.

Drop the procedures Remember to drop both the InnerProc and OuterProc procedures by entering
the following commands in the SQL Statements pane before continuing with
the tutorial:

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc

The following demonstration procedure illustrates how nested compound
statements can be used to control flow. The procedure is based on that used
as an example in“Default error handling in procedures and triggers” on
page 649.

656

Chapter 19. Using Procedures, Triggers, and Batches

CREATE PROCEDURE InnerProc()
BEGIN

BEGIN
DECLARE column_not_found

EXCEPTION FOR SQLSTATE VALUE ’52003’;
MESSAGE ’Hello from InnerProc’ TO CLIENT;
SIGNAL column_not_found;

MESSAGE ’Line following SIGNAL’ TO CLIENT
EXCEPTION

WHEN column_not_found THEN
MESSAGE ’Column not found handling’ TO
CLIENT;

WHEN OTHERS THEN
RESIGNAL;

END;
MESSAGE ’Outer compound statement’ TO CLIENT;

END

The following statement executes the InnerProc procedure:

CALL InnerProc();

The Interactive SQL Messages pane then displays the following:

Hello from InnerProc Column not found handling Outer

compound statement

When the SIGNAL statement that causes the error is encountered, control
passes to the exception handler for the compound statement, and theColumn

not found handling message prints. Control then passes back to the
outer compound statement and theOuter compound statement message
prints.

If an error other thancolumn not found is encountered in the inner
compound statement, the exception handler executes the RESIGNAL
statement. The RESIGNAL statement passes control directly back to the
calling environment, and the remainder of the outer compound statement is
not executed.

657

Using the EXECUTE IMMEDIATE statement in
procedures

The EXECUTE IMMEDIATE statement allows statements to be constructed
inside procedures using a combination of literal strings (in quotes) and
variables.

For example, the following procedure includes an EXECUTE IMMEDIATE
statement that creates a table.

CREATE PROCEDURE CreateTableProc(
IN tablename char(30))

BEGIN
EXECUTE IMMEDIATE ’CREATE TABLE ’
|| tablename
|| ’(column1 INT PRIMARY KEY)’

END

The EXECUTE IMMEDIATE statement can be used with queries that return
result sets. For example:

CREATE PROCEDURE DynamicResult(
IN Columns LONG VARCHAR,
IN TableName CHAR(128),
IN Restriction LONG VARCHAR DEFAULT NULL)

BEGIN
DECLARE Command LONG VARCHAR;
SET Command = ’SELECT ’ || Columns || ’ FROM ’ || TableName;
IF ISNULL(Restriction,’’) <> ’’ THEN

SET Command = Command || ’ WHERE ’ || Restriction;
END IF;
EXECUTE IMMEDIATE Command;

END

The following statement calls this procedure:

CALL DynamicResult(
’table_id,table_name’,
’SYSTABLE’,
’table_id <= 10’)

table_id table_name

1 SYSTABLE

2 SYSCOLUMN

3 SYSINDEX

... ...

In ATOMIC compound statements, you cannot use an EXECUTE

658

Chapter 19. Using Procedures, Triggers, and Batches

IMMEDIATE statement that causes a COMMIT, as COMMITs are not
allowed in that context.

☞ For more information about the EXECUTE IMMEDIATE statement, see
“EXECUTE IMMEDIATE statement [SP]”[ASA SQL Reference,page 429].

659

Transactions and savepoints in procedures and
triggers

SQL statements in a procedure or trigger are part of the current transaction
(see“Using Transactions and Isolation Levels” on page 99). You can call
several procedures within one transaction or have several transactions in one
procedure.

COMMIT and ROLLBACK are not allowed within any atomic statement
(see“Atomic compound statements” on page 634). Note that triggers are
fired due to an INSERT, UPDATE, or DELETE which are atomic
statements. COMMIT and ROLLBACK are not allowed in a trigger or in
any procedures called by a trigger.

Savepoints (see“Savepoints within transactions” on page 102) can be used
within a procedure or trigger, but a ROLLBACK TO SAVEPOINT statement
can never refer to a savepoint before the atomic operation started. Also, all
savepoints within an atomic operation are released when the atomic
operation completes.

660

Chapter 19. Using Procedures, Triggers, and Batches

Tips for writing procedures
This section provides some pointers for developing procedures.

Check if you need to change the command delimiter

You do not need to change the command delimiter in Interactive SQL or
Sybase Central when you write procedures. However, if you create and test
procedures and triggers from some other browsing tool, you may need to
change the command delimiter from the semicolon to another character.

Each statement within the procedure ends with a semicolon. For some
browsing applications to parse the CREATE PROCEDURE statement itself,
you need the command delimiter to be something other than a semicolon.

If you are using an application that requires changing the command
delimiter, a good choice is to use two semicolons as the command delimiter
(;;) or a question mark (?) if the system does not permit a multicharacter
delimiter.

Remember to delimit statements within your procedure

You should terminate each statement within the procedure with a semicolon.
Although you can leave off semicolons for the last statement in a statement
list, it is good practice to use semicolons after each statement.

The CREATE PROCEDURE statement itself contains both the RESULT
specification and the compound statement that forms its body. No semicolon
is needed after the BEGIN or END keywords, or after the RESULT clause.

Use fully-qualified names for tables in procedures

If a procedure has references to tables in it, you should always preface the
table name with the name of the owner (creator) of the table.

When a procedure refers to a table, it uses the group memberships of the
procedure creator to locate tables with no explicit owner name specified. For
example, if a procedure created by user_1 references Table_B and does not
specify the owner of Table_B, then either Table_B must have been created
by user_1 or user_1 must be a member of a group (directly or indirectly) that
is the owner of Table_B. If neither condition is met, atable not found

message results when the procedure is called.

You can minimize the inconvenience of long fully qualified names by using
a correlation name to provide a convenient name to use for the table within a
statement. Correlation names are described in “FROM clause”[ASA SQL

661

Reference,page 445].

Specifying dates and times in procedures

When dates and times are sent to the database from procedures, they are sent
as strings. The date part of the string is interpreted according to the current
setting of the DATE_ORDER database option. As different connections may
set this option to different values, some strings may be converted incorrectly
to dates, or the database may not be able to convert the string to a date.

You should use the unambiguous date formatyyyy-mm-dd or yyyy/mm/dd
when using data strings within procedures. The server interprets these
strings unambiguously as dates, regardless of the DATE_ORDER database
option setting.

☞ For more information on dates and times, see “Date and time data types”
[ASA SQL Reference,page 65].

Verifying that procedure input arguments are passed correctly

One way to verify input arguments is to display the value of the parameter in
the Interactive SQL Messages pane using the MESSAGE statement. For
example, the following procedure simply displays the value of the input
parametervar :

CREATE PROCEDURE message_test (IN var char(40))
BEGIN

MESSAGE var TO CLIENT;
END

You can also use the stored procedure debugger.

662

Chapter 19. Using Procedures, Triggers, and Batches

Statements allowed in batches
All SQL statements are acceptable in batches (including data definition
statements such as CREATE TABLE, ALTER TABLE, and so on), with the
exception of the following:

♦ CONNECT or DISCONNECT statement.

♦ ALTER PROCEDURE or ALTER FUNCTION statement.

♦ CREATE TRIGGER statement.

♦ Interactive SQL commands such as INPUT or OUTPUT.

♦ You cannot use host variables in batches.

The CREATE PROCEDURE statement is allowed, but must be the final
statement of the batch. Therefore a batch can contain only a single CREATE
PROCEDURE statement.

Using SELECT statements in batches

You can include one or more SELECT statements in a batch.

The following is a valid batch:

IF EXISTS(SELECT *
FROM SYSTABLE
WHERE table_name=’employee’)

THEN
SELECT emp_lname AS LastName,

emp_fname AS FirstName
FROM employee;
SELECT lname, fname
FROM customer;
SELECT last_name, first_name
FROM contact;

END IF

The alias for the result set is necessary only in the first SELECT statement,
as the server uses the first SELECT statement in the batch to describe the
result set.

A RESUME statement is necessary following each query to retrieve the next
result set.

663

Calling external libraries from procedures
You can call a function in an external library from a stored procedure or
user-defined function. You can call functions in a DLL under Windows
operating systems, in an NLM under NetWare, and in a shared object on
UNIX. You cannot call external functions on Windows CE.

This section describes how to use the external library calls in procedures.

Caution
External libraries called from procedures share the memory of the server.
If you call an external library from a procedure and the external library
contains memory-handling errors, you can crash the server or corrupt your
database. Ensure that you thoroughly test your libraries before deploying
them on production databases.

The API described in this section replaces an older API. Libraries written to
the older API, used in versions before version 7.0, are still supported, but in
new development you should use the new API.

Adaptive Server Anywhere includes a set of system procedures that make
use of this capability, for example to send MAPI e-mail messages.

☞ For more information on system procedures, see “System Procedures
and Functions”[ASA SQL Reference,page 705].

Creating procedures and functions with external calls

This section presents some examples of procedures and functions with
external calls.

DBA authority required
You must have DBA authority to create procedures or functions that
reference external libraries. This requirement is more strict than the
RESOURCE authority required for creating other procedures or functions.

Syntax You can create a procedure that calls a functionfunction_namein DLL
library.dll as follows:

CREATE PROCEDURE dll_proc (parameter-list)
EXTERNAL NAME ’function_name@library.dll’

If you call an external DLL from a procedure, the procedure cannot carry out
any other tasks; it just forms a wrapper around the DLL.

An analogous CREATE FUNCTION statement is as follows:

664

Chapter 19. Using Procedures, Triggers, and Batches

CREATE FUNCTION dll_func (parameter-list)
RETURNS data-type
EXTERNAL NAME ’function_name@library.dll’

In these statements,function_nameis the exported name of a function in the
dynamic link library, andlibrary.dll is the name of the library. The
arguments inparameter-listmust correspond in type and order to the
argument expected by the library function. The library function accesses the
procedure argument using an API described in“External function
prototypes” on page 666.

Any value returned by the external function is in turn returned by the
procedure to the calling environment.

No other statements
permitted

A procedure that references an external function can include no other
statements: its sole purpose is to take arguments for a function, call the
function, and return any value and returned arguments from the function to
the calling environment. You can use IN, INOUT, or OUT parameters in the
procedure call in the same way as for other procedures: the input values get
passed to the external function, and any parameters modified by the function
are returned to the calling environment in OUT or INOUT parameters.

System-dependent calls You can specify operating-system dependent calls, so that a procedure calls
one function when run on one operating system, and another function
(presumably analogous) on another operating system. The syntax for such
calls involves prefixing the function name with the operating system name.
For example:

CREATE PROCEDURE dll_proc (parameter-list)
EXTERNAL NAME
’Windows95:95_fn@95_lib.dll;WindowsNT:nt_fn@nt_lib.dll’

The operating system identifier must be one ofWindowsNT, Windows95,
UNIX , or NetWare.

If the list of functions does not contain an entry for the operating system on
which the server is running, but the list does contain an entry without an
operating system specified, the database server calls the function in that
entry.

NetWare calls have a slightly different format than the other operating
systems. All symbols are globally known under NetWare, so any symbol
(such as a function name) exported must be unique to all NLMs on the
system. Consequently, the NLM name is not necessary in the call as long as
the NLM is already loaded.

It is recommended that you always use the libray name, regardless of
whether the NLM is already loaded. If the NLM isnot already loaded, you

665

mustprovide a library name. The file extension.nlm is optional.

☞ For more information about the CREATE PROCEDURE statement
syntax, see “CREATE PROCEDURE statement”[ASA SQL Reference,
page 324].

☞ For more information about the CREATE FUNCTION statement
syntax, see “CREATE FUNCTION statement”[ASA SQL Reference,page 315].

External function prototypes

This section describes the API for functions in external libraries.

The API is defined by a header file namedextfnapi.h,in theh subdirectory
of your SQL Anywhere Studio installation directory. This header file
handles the platform-dependent features of external function prototypes. The
API supercedes a previous API for functions in external libraries.

Declaring the API version To notify the database server that the external library is not written using the
old API, provide a function as follows:

uint32 extfn_use_new_api()

The function returns an unsigned 32-bit integer. If the return value is
non-zero, the database server assumes that you are not using the old API.

If the function is not exported by the DLL, the database server assumes that
the old API is in use. When using the new API, the returned value must be
the API version number defined inextfnapi.h.

On NetWare, to notify the database server that the external procedure is
written using the new API, your NLM must export either a function called
extfn_use_new_api, or a function calledname_use_new_api, wherenameis
the name of the NLM. For example, an NLM namedexternal.nlmwould
export a function external_use_new_api.

Exportingname_use_new_api avoids export name conflicts when more than
one external NLM is in use at one time. If the NLM exports a function called
name_use_new_api then the CREATE PROCEDURE or CREATE
FUNCTION statement must contain the NLM name.

Function prototypes The name of the function must match that referenced in the CREATE
PROCEDURE or CREATE FUNCTION statement. The function
declaration must be as follows:

void function-name(an_extfn_api * api , void * argument-handle)

The function must return void, and must take as arguments a structure used
to pass the arguments, and a handle to the arguments provided by the SQL

666

Chapter 19. Using Procedures, Triggers, and Batches

procedure.

Thean_extfn_apistructure has the following form:

typedef struct an_extfn_api {
short (SQL_CALLBACK *get_value)(

void * arg_handle,
a_SQL_uint32 arg_num,
an_extfn_value *value
);

short (SQL_CALLBACK *get_piece)(
void * arg_handle,
a_SQL_uint32 arg_num,
an_extfn_value *value,
a_SQL_uint32 offset
);

short (SQL_CALLBACK *set_value)(
void * arg_handle,
a_SQL_uint32 arg_num,
an_extfn_value *value
short append
);

void (SQL_CALLBACK *set_cancel)(
void * arg_handle,
void * cancel_handle
);

} an_extfn_api;

Thean_extfn_valuestructure has the following form:

typedef struct an_extfn_value {
void * data;
a_SQL_uint32 piece_len;
union {

a_SQL_uint32 total_len;
a_SQL_uint32 remain_len;

} len;
a_SQL_data_type type;

} an_extfn_value;

Notes Callingget_valueon an OUT parameter returns the data type of the
argument, and returns data as NULL.

Theget_piecefunction for any given argument can only be called
immediately after theget_valuefunction for the same argument,

To return NULL, setdata to NULL in an_extfn_value.

Theappendfield of set_valuedetermines whether the supplied data
replaces (false) or appends to (true) the existing data. You must call
set_valuewith append=FALSE before calling it withappend=TRUE for the
same argument. Theappendfield is ignored for fixed length data types.

The header file itself contains some additional notes.

667

The following table shows the conditions under which the functions defined
in an_extfn_apireturn false:

Function Returns 0 when the following is

true; else returns 1

get_value() - arg_num is invalid; for example,
arg_num is greater than the num-
ber of arguments inext_fn - It is
called before the external function
call has been properly initialized

get_piece() - arg_num is invalid; for example,
arg_num does not correspond to
the lastget_value. |- The offset is
greater than the total length of the
value for the arg_num argument.
- It is called before the external
function call has been properly
initialized.

set_value() - arg_num is invalid; for exam-
ple, arg_num is greater than the
number of arguments inext_fn. -
arg_num argument is input only.
- The type of value supplied does
not match that of thearg_num
argument. - It is called before
the external function call has been
properly initialized.

☞ For more information about the values you can enter in the
a_sql_data_type field, see “Embedded SQL data types”[ASA Programming
Guide,page 149].

For more information about passing parameters to external functions, see
“Passing parameters to external functions” on page 669.

Implementing cancel
processing

An external function that expects to be canceled must inform the database
server by calling theset_cancelAPI function. You must export a special
function to enable external operations to be canceled. This function must
have the following form:

void an_extfn_cancel(void * cancel_handle)

If the DLL does not export this function, the database server ignores any
user interrupts for functions in the DLL. In this function,cancel_handleis a

668

Chapter 19. Using Procedures, Triggers, and Batches

pointer provided by the function being cancelled to the database server upon
each call to the external function by theset_cancelAPI function listed in the
an_extfn_apistructure, above.

Passing parameters to external functions

Data types The following SQL data types can be passed to an external library:

SQL data type C type

CHAR Character data, with a specified
length

VARCHAR Character data, with a specified
length

LONG VARCHAR Character data, with a specified
length

BINARY Binary data, with a specified length

LONG BINARY Character data, with a specified
length

TINYINT 1-byte integer

[UNSIGNED] SMALLINT [Unsigned] 2-byte integer

[UNSIGNED] INT [Unsigned] 4-byte integer

[UNSIGNED] BIGINT [Unsigned] 8-byte integer

VARBINARY Binary data, with a specified length

REAL Single precision floating point num-
ber

DOUBLE Double precision floating point num-
ber

You cannot use date or time data types, and you cannot use exact numeric
data types.

To provide values for INOUT or OUT parameters, use theset_valueAPI
function. To read IN and INOUT parameters, use theget_valueAPI
function.

Passing NULL You can pass NULL as a valid value for all arguments. Functions in external

669

libraries can supply NULL as a return type for any data type.

External function return
types

The following table lists the supported return types, and how they map to the
return type of the SQL function or procedure.

C data type SQL data type

void Used for external procedures.

char * function returning CHAR().

long function returning INTEGER

float function returning FLOAT

double function returning DOUBLE.

If a function in the external library returns NULL, and the SQL external
function was declared to return CHAR(), then the return value of the SQL
extended function is NULL.

Hiding the contents of procedures, functions, triggers and views

In some cases, you may want to distribute an application and a database
without disclosing the logic contained within procedures, functions, triggers
and views. As an added security measure, you can obscure the contents of
these objects using the SET HIDDEN clause of the ALTER PROCEDURE,
ALTER FUNCTION, ALTER TRIGGER, and ALTER VIEW statements.

The SET HIDDEN clause scrambles the contents of the associated objects
and makes them unreadable, while still allowing the objects to be used. You
can also unload and reload the objects into another database.

The modification is irreversible, and for databases created using version 8.0
or higher, deletes the original text of the object. Preserving the original
source for the object outside the database is required.

Debugging using the stored procedure debugger will not show the procedure
definition, nor will procedure profiling display the source.

Running one of the above statements on an object that is already hidden has
no effect.

To hide the text for all objects of a particular type, you can use a loop similar
to the following:

670

Chapter 19. Using Procedures, Triggers, and Batches

begin
for hide_lp as hide_cr cursor for

select proc_name,user_name
from SYS.SYSPROCEDURE p, SYS.SYSUSERPERM u
where p.creator = u.user_id
and p.creator not in (0,1,3)

do
message ’altering ’ || proc_name;
execute immediate ’alter procedure "’ ||

user_name || ’"."’ || proc_name
|| ’" set hidden’

end for
end

☞ For more information, see the “ALTER FUNCTION statement”[ASA
SQL Reference,page 233], the “ALTER PROCEDURE statement”[ASA SQL
Reference,page 236], the “ALTER TRIGGER statement”[ASA SQL Reference,
page 258], and the “ALTER VIEW statement”[ASA SQL Reference,page 259].

671

CHAPTER 20

Debugging Logic in the Database

About this chapter This chapter describes how to use the Sybase debugger to assist in
developing SQL stored procedures, triggers, and event handlers as well as
Java stored procedures.

Contents Topic: page

Introduction to debugging in the database 674

Tutorial: Getting started with the debugger 676

Working with breakpoints 685

Working with variables 688

Working with connections 689

673

Introduction to debugging in the database
You can use the debugger during the development of the following objects:

♦ SQL stored procedures, triggers, event handlers, and user-defined
functions.

♦ Java stored procedures in the database.

This chapter describes how to set up and use the debugger.

Separately-licensable
component

Java in the database is a separately licensable component and must be
ordered before you can install it. To order this component, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

Debugger features

You can carry out many tasks with the debugger, including the following:

♦ Debug procedures and triggers You can debug SQL stored
procedures and triggers.

♦ Debug event handlers Event handlers are an extension of SQL stored
procedures. The material in this chapter about debugging stored
procedures applies equally to debugging event handlers.

♦ Browse stored procedures and classes You can browse through the
source code of SQL procedures. You can also browser the source code of
installed Java classes as long as the code for those classes is available on
your disk.

♦ Debug Java classes You can debug Java classes that are stored in the
database.

♦ Trace execution Step line by line through the code of a stored
procedure or Java class running in the database. You can also look up and
down the stack of functions that have been called.

♦ Set breakpoints Run the code until you hit a breakpoint, and stop at
that point in the code.

♦ Set break conditions Breakpoints include lines of code, but you can
also specify conditions when the code is to break. For example, you can
stop at a line the tenth time it is executed, or only if a variable has a
particular value. You can also stop whenever a particular exception is
thrown in a Java application.

674

Chapter 20. Debugging Logic in the Database

♦ Inspect and modify local variables When execution is stopped at a
breakpoint, you can inspect the values of local variables and alter their
value.

♦ Inspect and break on expressions When execution is stopped at a
breakpoint, you can inspect the value of a wide variety of expressions.

♦ Inspect and modify row variables Row variables are the OLD and
NEW values of row-level triggers. You can inspect and modify these
values.

♦ Execute queries When execution is stopped at a breakpoint in a SQL
procedure, you can execute queries. This permits you to look at
intermediate results held in temporary tables, as well as to check values
in base tables and to view the query execution plan.

Requirements for using the debugger

You need the following in order to use the debugger:

♦ Permissions In order to use the debugger, you must either have DBA
authority or be granted permissions in the SA_DEBUG group. This
group is added to all databases when they are created.

♦ Source code for Java classes The source code for your application
must be available to the debugger. For Java classes, the source code is
held on a directory on your hard disk. For stored procedures, the source
code is held in the database.

♦ Compilation options To debug Java classes, they must be compiled so
that they contain debugging information. For example, if you are using
the Sun Microsystems JDK compilerjavac.exe, they must be compiled
using the-g command-line option.

675

Tutorial: Getting started with the debugger
This tutorial describes how to start the debugger, how to connect to a
database, how to debug a simple stored procedure, and how to debug a Java
class.

Lesson 1: Connect to a database and start the debugger

This tutorial shows you how to start the debugger, connect to a database, and
attach to a connection for debugging. It uses the Adaptive Server Anywhere
sample database.

Start the debugger

❖ To start the debugger

1. Start Sybase Central:

Choose Start➤ Programs➤ SQL Anywhere 9➤ Sybase Central.

2. Connect to the database.

In this tutorial, you connect to the Adaptive Server Anywhere sample
database.

(a) In the left pane, right click Adaptive Server Anywhere and choose
Connect from the popup menu.

The connection dialog appears.

3. Choose Debug mode.

Sybase Central can be used in Design mode or Debug mode. When
running in Debug mode, debugger breakpoints are active. Also, Sybase
Central shows debugging menus and a Debugger Details pane.

To choose Debug mode, click Task➤ Debug. The Debugger Details pane
appears at the bottom of Sybase Central and the Adaptive Server
Anywhere toolbar displays a set of debugger tools.

676

Chapter 20. Debugging Logic in the Database

Lesson 2: Debug a stored procedure

This tutorial describes a sample session for debugging a stored procedure. It
is a continuation of“Lesson 1: Connect to a database and start the debugger”
on page 676.

This tutorial illustrates how to use the debugger to identify errors in stored
procedures. To set the stage, you introduce a deliberate error into the stored
procedure debugger_tutorial, which is part of the sample database.

The debugger_tutorial procedure should return a result set that contains the
name of the company that has placed the highest value of orders, and the
value of their orders. It computes these values by looping over the result set
of a query that lists companies and orders. (This result could be achieved
without adding the logic into the procedure, by using a SELECT FIRST
query. The procedure is used to create a convenient example.) The procedure
has an intentional bug in it. In this tutorial you diagnose and fix the bug.

Run the debugger_tutorial procedure

The debugger_tutorial procedure should return a result set consisting of the
top company and the value of products they have ordered. As a result of a
bug, it does not return this result set. In this lesson, you run the stored
procedure.

677

❖ To run the debugger_tutorial stored procedure

1. In the Sybase Central left pane, open the Procedures and Functions folder.

2. Execute the procedure.

Right click the debugger_tutorial procedure and choose Execute from
Interactive SQL from the popup menu.

An Interactive SQL window opens and the following result set is
displayed:

top_company top_value

(NULL) (NULL)

This is clearly an incorrect result. The remainder of the tutorial diagnoses
the error that produced this result.

3. Close the Interactive SQL window to clear your workspace.

Diagnose the bug

To diagnose the bug in the procedure, set breakpoints in the procedure and
step through the code, watching the value of variables as the procedure is
executed.

Here, you set a breakpoint at the first executable statement in the procedure.

❖ To diagnose the bug

1. Change Sybase Central to Debug mode.

From the Task menu, choose Debug. Sybase Central displays a Debugger
Details pane at the bottom of the main window.

2. Set a breakpoint at the first executable statement in the procedure.

The statement contains the following text:

open cur_this_cust;

Click to the left of this line in the vertical gray bar to set a breakpoint.
The breakpoint appears as a red circle.

3. Execute the procedure again.

(a) In the left pane, right click the sp_customer_products procedure and
choose Execute from Interactive SQL from the popup menu.

(b) A message box appears, asking if you want to debug the connection
from Interactive SQL. Click Yes.

678

Chapter 20. Debugging Logic in the Database

Execution of the procedure stops at the breakpoint. A yellow arrow in
the source code window indicates the current position, which is at the
breakpoint.

4. Inspect variables.

The Local variables window in the Debugger Details pane displays a list
of variables in the procedure together with their current value and data
type. The top_company, top_value, this_value, and this_company
variables are all uninitialized and are therefore NULL.

5. Step through the code.

PressF11several times to step through the code, until you reach the
following line:

if this_value > top_value then

As you step through the lines of the stored procedure, the value of the
variables changes.

When you are at theif statement, this_value is set to 3000 and top_value
is still NULL.

6. Step into one more statement.

PressF11once more to see which branch the execution takes. The yellow
arrow moves directly back to the label statement at the beginning of the
loop, which contains the following text:

customer loop: loop

The if test did not return true. The test failed because a comparison of
any value to NULL returns NULL. A value of NULL fails the test and the
code inside theif ...end if statement is not executed.

At this point, you may realize that the problem is the fact that top_value
is not initialized.

Confirm the diagnosis and fix the bug

You can test the hypothesis that the problem is the lack of initialization for
top_value right in the debugger, without changing the procedure code.

679

❖ To test the hypothesis

1. Set a value for top_value.

In the Local window, click the Value field of the top_value variable, and
enter a value of 3000.

2. Step through the loop again.

PressF11 to step through the instructions to theif statement and check
the values of this_value and top_value. You may have to step through
several loops until you get a value of top_value greater than 3000.

3. Disable the breakpoint and execute the procedure.
(a) Click the breakpoint so that it turns gray (disabled).

(b) PressF5 to complete execution of the procedure.
The Interactive SQL window appears again. It shows the correct
results.

top_company top_value

Chadwicks 8076

The hypothesis is confirmed. The problem is that the top_value is not
initialized.

❖ To fix the bug

1. From the Task menu, choose Design to leave Debug mode.

2. Immediately after the line containing the following text

open cur_this_cust;

Create a new line that initializes the top_value variable:

set top_value = 0;

3. PressCTRL+S to save the modified procedure.

4. Execute the procedure again, and confirm that Interactive SQL displays
the correct results.

You have now completed the lesson. Close down Sybase Central and any
open Interactive SQL windows.

Lesson 3: Debug a Java class

This lesson describes a sample session for debugging a Java class.

This lesson requires that you have the Java in the database component. Java
in the database is a separately licensable component and must be ordered

680

Chapter 20. Debugging Logic in the Database

before you can install it. To order this component, see the card in your SQL
Anywhere Studio package or seehttp://www.sybase.com/detail?id=1015780.

In this lesson, you call JDBCExamples.Query() from Interactive SQL,
interrupt the execution in the debugger, and trace through the source code for
this method.

The JDBCExamples.Query() method executes the following query against
the sample database:

SELECT id, unit_price
FROM product

It then loops through all the rows of the result set, and returns the one with
the highest unit price.

Compiling Java classes
for debugging

You must compile classes with the javac-g option in order to debug them.
The sample classes are already compiled for debugging.

Prepare the database

To work through this tutorial, you must enable the sample database to use
Java, and installJDBCExamples.classinto the sample database.

For instructions, see “Setting up the Java sample”[ASA Programming Guide,
page 82].

☞ For information about the JDBCExamples class and its methods, see
“JDBC Programming”[ASA Programming Guide,page 103].

Display Java source code in the debugger

The debugger looks in a set of locations for source code files (with.java
extension). You need to add theSamples\ASA\Javasubdirectory of your
installation directory to the list of locations, so that the code for the class
currently being executed in the database is available to the debugger.

❖ To display Java source code in the debugger

1. Start Sybase Central and connect to the sample database (ASA 9.0
Sample ODBC data source).

2. Choose the Sybase Central Debug task.

Choose Task➤ Debug.

3. Set the locations in which to look for Java source code.

(a) From the Debug menu, choose Set Java Source Path. The Java Source
Path window appears.

681

(b) Click Browse Folder. Navigate to the folder where your Java source
code (.javafiles) is stored. To view the source code for the
JDBCExamples class, browse to theSamples\ASA\Javasubdirectory
of your SQL Anywhere installation. If you installed SQL Anywhere in
the default installation directory, you would navigate to the following
directory:

C: \Program Files \Sybase \SQL Anywhere 9 \Samples \ASA\Java

4. Display the source code for the JDBCExamples class:

(a) In the Sybase Central left pane, open the Java Objects folder.

(b) In the right pane, open the All Java Classes folder and locate the JAR
file or class you wish to debug. Depending on your Sybase Central
settings, you may wish to click the Creator column. This sorts the
listing by creator so that classes owned by DBA appear before those
owned by SYS.

(c) Double-click the JDBCExamples class.

(d) In the right pane, click the Source tab. The source code for the class is
displayed.

Set a breakpoint

❖ Set a breakpoint in a Java class

1. In the source code window, page down until you see the beginning of the
Query method. This method is near the end of the class, and starts with
the following line:

public static int Query() {

2. Click the gray column on the the left of the line until it shows a red circle.

int max_price = 0;

Repeatedly clicking the indicator toggles its status.

Run the method

682

Chapter 20. Debugging Logic in the Database

❖ Invoke the method from Interactive SQL

1. Start Interactive SQL. Connect to the sample database as used IDDBA
and passwordSQL.

2. Enter the following command in Interactive SQL to invoke the method:

SELECT JDBCExamples.Query()

The query does not complete. Instead, execution is stopped in the
debugger at the breakpoint. In Interactive SQL, the Interrupt the SQL
Statement button is enabled. In the debugger Source window, the yellow
arrow indicates the current line.

You can now step through source code and carry out debugging activities in
the debugger.

Step through source code

This section illustrates some of the ways you can step through code in the
debugger.

Following the previous section, the debugger should have stopped execution
of JDBCExamples.Queryat the first statement in the method:

Examples Here are some example steps you can try:

1. Step to the next line Choose Debug➤ Step Over, or press F10 to step
to the next line in the current method. Try this two or three times.

2. Run to the cursor Select the following line using the mouse, and
choose Debug➤ Run To Cursor, or press Ctrl+F10 to run to that line and
break:

max_price = price;

The yellow arrow moves to the line.

3. Set a breakpoint and execute to it Put the cursor at the following line
(line 292) and press F9 to set a breakpoint on that line:

return max_price;

A red stop sign appears in the left-hand column to mark the breakpoint.
Press F5 to execute to that breakpoint.

4. Experiment Try different methods of stepping through the code. End
with F5 to complete the execution.

The complete set of options for stepping through source code is available
from the Debug menu.

683

When you have completed the execution, the Interactive SQL Results
pane in the Results tab displays the value 24.

Inspect and modify variables

In this lesson you inspect the values of both local variables (declared in a
method) and class static variables in the debugger.

Inspecting local variables You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening. You must have compiled
the class with the javac-g option to do this.

❖ To inspect and modify the value of a variable

1. Set a breakpoint at the first line of theJDBCExamples.Querymethod.
This line is as follows:

int max_price = 0

2. In Interactive SQL, enter the following statement again to execute the
method:

SELECT JDBCExamples.Query()

The query executes only as far as the breakpoint.

3. Press F10 to step to the next line. Themax_pricevariable has now been
declared and initialized to zero.

4. In the Local tab list, double-click the Value column entry formax_price,
and type in 45 to change the value ofmax_price to 45.

The value 45 is larger than any other price. Instead of returning 24, the
query will now return 45 as the maximum price.

5. Press F10 repeatedly to step through the code. As you do so, the values of
the variables appear in the Local tab list. Step through until thestmt and
result variables have values.

6. Expand theresult object by clicking the icon next to it, or setting the
cursor on the line and pressing Enter. This displays the values of the
fields in the object.

7. When you have experimented with inspecting and modifying variables,
press F5 to complete the execution of the query and finish the tutorial.

Inspecting static
variables

In addition to local variables, you can display class-level variables (static
variables) in the debugger Statics tab, and watch their values in the Watch
tab. For more information, see the debugger online Help.

684

Chapter 20. Debugging Logic in the Database

Working with breakpoints
This section describes how to use breakpoints to control when the debugger
interrupts execution of your source code.

Setting breakpoints

A breakpoint instructs the debugger to interrupt execution at a specified line.

When you set a breakpoint, it applies to all connections. To make a
breakpoint apply to a specific connection only, set a condition on the
breakpoint.

❖ To set a breakpoint

1. With Sybase Central running the Debug task, display the code where you
wish to set a breakpoint.

2. Click in the gray column on the left of the window, or click a line and
press F9 to set the breakpoint. A red circle indicates each line with a
breakpoint.

❖ To set a breakpoint (Debug menu)

1. Display the Breakpoints window.

With Sybase Central running the Debug task, choose Debug➤

Breakpoints.

2. In the Breakpoints window, click New Breakpoint. The New Breakpoint
window is displayed.

3. Choose a Procedure name from the drop down list, and optionally enter
condition and count values.

The Condition is a SQL or Java expression that must evaluate to true for
the breakpoint to interrupt execution. For example, you can set a
breakpoint to apply to a connection made by a specified user, you can
enter the following condition:

CURRENT USER = ’user-name ’

The Count is a number of times the breakpoint is hit before it stops
execution. A value of 0 means that the breakpoint always stops execution.

4. Click OK to set the breakpoint. The breakpoint is set on the first
executable statement in the procedure.

685

Disabling and enabling breakpoints

You can change the status of a breakpoint from the Sybase Central right
pane or from the Breakpoints window.

❖ To change the status of a breakpoint

1. Display the source code for the procedure that contains the breakpoint
whose status you wish to change.

2. Click the breakpoint indicator on the left of the line you wish to edit. The
status of the line switches from being an active breakpoint being a
disabled breakpoint.

❖ To change the status of a breakpoint (Breakpoints window)

1. Open the Breakpoints window.

2. Edit the breakpoint.

3. Alternatively, you can delete a breakpoint by selecting the breakpoint and
pressing Delete.

Editing breakpoint conditions

You can add conditions to breakpoints, to instruct the debugger to interrupt
execution at that breakpoint only when a certain condition or count is
satisfied.

❖ To add a condition or count to a breakpoint

1. Open the Breakpoints window.

For a Java class, the condition must be a Java boolean expression. For
procedures and triggers, it must be a SQL search condition.

Examples In the procedure sp_contacts, you might use the breakpoint

contact.id = contact.old_id

on the line

DELETE FROM contact WHERE contact.id = contact.old_id

In the Java method JDBCExamples.Query(), you might use the breakpoint
condition

(price < 10)

686

Chapter 20. Debugging Logic in the Database

on the line

if (max.price == price) or (price == 10)

687

Working with variables
The debugger lets you view and edit the behavior of your variables while
stepping through your code. The debugger provides a Debugger Details
window to display the different kinds of variables used in stored procedures
and Java classes. The Debugger Details windows appear at the bottom of the
Sybase Central window when Sybase Central is running the Debug task.

Local variables

❖ To watch the values of your variables

1. Set a breakpoint in the procedure whose variables you wish to examine.

☞ For information on setting breakpoints, see“Setting breakpoints” on
page 685.

2. Click the Local tab on the Variables pane of the Debugger Details.

3. Run the procedure. The variables, along with their values, appear in the
Local tab.

Other variables Global variables are defined by Adaptive Server Anywhere and hold
information about the current connection, database, and other settings. They
are displayed on the Globals tab of the Variables window.

☞ For a list of global variables, see “Global variables”[ASA SQL Reference,
page 39].

Row variables are used to hold the values used in triggers. They are
displayed on the Row tab of the Variables window.

☞ For more information on triggers, see“Introduction to triggers” on
page 624.

Static variables are used in Java classes. They are displayed in the Statics tab.

The call stack It is useful to examine the sequence of calls that has been made when you
are debugging nested procedures or Java classes. You can view a listing of
the procedures in the Call Stack tab.

❖ To display the call stack

1. Set a breakpoint in the procedure whose variables you wish to examine.

2. Run the code to the breakpoint.

The names of the procedures appear in the Calls Stack tab. The current
procedure is shown at the top of the list. The procedure that called it is
immediately below, and so on.

688

Chapter 20. Debugging Logic in the Database

Working with connections
The Connection window displays the connections to the database. At any
time, multiple connections may be running. Some may be stopped at a
breakpoint, and others may not.

The source code window displays the state for a single connection. To
switch connections, double-click a connection in the Connections window.

A useful technique is to set a breakpoint so that it interrupts execution for a
single user ID. You can do this by setting a breakpoint condition of the
following form:

CURRENT USER = ’user-name ’

The SQL special value CURRENT USER holds the user ID of the
connection.

☞ For more information, see“Editing breakpoint conditions” on page 686,
and “CURRENT USER special value”[ASA SQL Reference,page 33].

689

690

Index

Symbols
* (asterisk)

SELECT statement 211
*=

Transact-SQL outer joins 278
-gx option

threads 588
=*

Transact-SQL outer joins 278
<

comparison operator 220
>

comparison operator 220

A
abbreviations used in access plans 420
access plans

abbreviations 420
about 368
caching of 375
context sensitive help 430
customizing 429
explanation of statistics 422
graphical plans 429
Interactive SQL 434
long text plans 428
printing 429
reading 420
short text plans 427
SQL functions 434

access plans caching 375
accessing remote data 557

basic concepts 560
accessing remote data from PowerBuilder

DataWindows 559
accessing tables

index scan and sequential scan 379
actions

CASCADE 95
RESTRICT 95
SET DEFAULT 95

SET NULL 95
Adaptive Server Anywhere

differences from other SQL dialects
474

Adaptive Server Anywhere SQL features
474

Adaptive Server architectures 443
Adaptive Server Enterprise

compatibility 440
compatibility in data import/export556
GROUP BY compatibility 258
migrating to Adaptive Server

Anywhere 548
add foreign key wizard

using 44
adding and removing statistics 189
adding data

about 355
adding NULL 358
BLOBs 360
column data INSERT statement 358
constraints 358
defaults 358
into all columns 357
using INSERT 357
with SELECT 359

adding new rows with SELECT 359
adding, changing, and deleting data

about 355
administrator role

Adaptive Server Enterprise 445
aggregate functions

about 232
Adaptive Server Enterprise

compatibility 258
ALL keyword 232
data types 235
DISTINCT keyword 235
DISTINCT keyword and 232
GROUP BY clause 237
NULL 236
order by and group by 246

691

Index

outer references 233
scalar aggregates 233
vector aggregates 237

aggregates
item in access plans 426

aggregation functions
multiple levels 310

algorithms
for query execution 379

aliases
about 213
correlation names 218

ALL
keyword and aggregate functions 232
keyword and UNION clause 251
subquery tests 334, 335

ALL operator
about 334
notes 335

ALLOW_NULLS_BY_DEFAULT
option

setting for Transact-SQL compatibility
451

ALTER TABLE statement
and concurrency 146
CHECK constraints 85
examples 39
foreign keys 45
primary keys 42

altering
columns 39
procedures 615
tables 38, 39
triggers 628
views 54

altering remote servers 565
always use a transaction log 161
analysis

Index Consultant 67
understanding 67

analyzing workloads
Index Consultant 63

AND
using logical operators 229

ANSI
non-ANSI joins 268

SQL/92 standard and inconsistencies
104

ANSI compliance seeSQL standards
ANSI update constraints

in access plans 424
anti-insert

locks 132, 139
anti-semijoin

query execution algorithms 384
ANY operator

about 333
problems 333
subquery tests 333

apostrophes
character strings 225

architecture
Adaptive Server 443

arithmetic
expressions and operator precedence

216
operations 232

AS keyword
aliases 213

asademo.db file
schema 262

asajdbc server class 591
asaodbc server class 595
ascending order

ORDER BY clause 244
ASCII

format for importing and exporting524
asejdbc server class 592
aseodbc server class 595
assigning

data types to columns 89
domains to columns 89

assumptions affecting optimization 372
asterisk (*)

SELECT statement 211
AT clause

CREATE EXISTING TABLE
statement 569

atomic compound statements 634
atomic transactions 100
attributes

choosing 14
definition of 5

692

Index

SQLCA.lock 107
AUTO mode

using 496
autocommit

performance 165
transactions 101

AUTOINCREMENT
default 81
negative numbers 82
signed data types 82
UltraLite applications 82
when to use 146

autoincrement
IDENTITY column 456

automatic joins
and foreign keys 474

automatic performance tuning 372
automatic translation of stored

procedures 466
AUTOMATIC_TIMESTAMP option

setting for Transact-SQL compatibility
451

automation
generating unique keys 145

AvgDiskReads
estimate in access plans 423

AvgDiskReadTime
estimate in access plans 423

AvgDiskWrites
estimate in access plans 423

AvgRowCount
estimate in access plans 423

AvgRunTime
estimate in access plans 423

B
B-tree indexes

about 401
basic concepts to access remote data 560
batch operations

Interactive SQL 554
batches

about 631
control statements 631
data definition statements 631
SQL statements allowed 663
statements allowed 663

Transact-SQL overview 464
using SELECT statements 663
writing 464

BEGIN TRANSACTION statement
remote data access 581

benefits
Index Consultant recommendations 69

benefits of procedures and triggers 612
BETWEEN keyword

range queries 221
bi-directional replication 148
binary large objects

about 23
inserting 360

bitmaps 23
scanning 393

BLOBs
about 23
inserting 360

block nested loops joins
query execution algorithms 382

blocking 110, 122
deadlock 111
transactions 110
troubleshooting 111

BLOCKING option
using 110

Bloom filters
query execution algorithms 391

break conditions
setting 685

breakpoints
about 685
conditions 686
counts 686
debugging 683
disabling 686
enabling 686
setting 685
status 686

browsing
table data 41
views 56

browsing databases
and isolation levels 113

bulk loading
performance 522

693

Index

bulk operations
performance 166

C
cache

about 176
access plans 375
dynamic sizing 176
encrypted databases require larger

cache 161
initial, min and max size 177
Java applications on UNIX 179
monitoring size 179
performance 161
read-hit ratio 433
UNIX 178
Windows 95/98 178
Windows NT 178

cache size
and page size 393
initial, min and max size 177
Java applications on UNIX 179
monitoring 179
UNIX 178
Windows 95/98 178
Windows NT 178

CacheHits
statistic in access plans 422

CacheRead
statistic in access plans 422

CacheReadIndLeaf
statistic in access plans 422

CacheReadTable
statistic in access plans 422

caching
access plans 375
subqueries 418
user-defined functions 418

call stack
debugger 688

CALL statement
about 611
examples 616
parameters 637
syntax 633

calling external libraries from procedures
664

calling procedures 616
calling user-defined functions 621
cancel

external functions 668
canceling request

remote data access 588
candidate indexes

about 64
Index Consultant 64

capturing workloads
Index Consultant 63, 66

cardinality
item in access plans 425
relationships and 7

Cartesian products 272
CASCADE action

about 95
case sensitivity

creating ASE-compatible databases
450

data 453
databases 452
domains 452, 453
identifiers 209, 453
passwords 453
remote access 587
sort order 245
Transact-SQL compatibility 452
user IDs 453

CASE statement
syntax 633

catalog
Adaptive Server Enterprise

compatibility 445
cdata directive

using 509
changing data

about 355
permissions 356
UPDATE statement 362
updating data using more than one

table 363
changing isolation levels within

transactions 109
changing many-to-many relationships

into entities 9
changing the isolation level 106

694

Index

character data
searching for 225

character strings
about 225
quotes 225
select list using 215

character strings and quotation marks 225
character strings in query results 214
CHECK conditions

Transact-SQL 444
CHECK constraints

columns 85
deleting 87
domains 86
modifying 87
tables 86

check constraints
choosing 24
using in domains 90

check if you need to change the
command delimiter

procedures 661
check your file, table, and index

fragmentation 171
checking referential integrity at commit

138
choosing column names 23
choosing constraints 24
choosing data types for columns 23
choosing isolation levels 112
classes

remote servers 589
clauses

about 208
COMPUTE 460
FOR BROWSE 460
FOR READ ONLY 460
FOR UPDATE 460
GROUP BY ALL 460
INTO 641
ON EXCEPTION RESUME 470, 651,

655
clearing procedure profiling

SQL 198
Sybase Central 198

client side loading 522
CLOSE statement

procedures 646
clustered indexes

Index Consultant recommendations 68,
70

using 59
colons separate join strategies 427
column attributes

AUTOINCREMENT 146
generating default values 146
NEWID 145

column CHECK constraints from
domains 86

column statistics
about 369
updating 371

columns
allowing NULL values 23
altering 39
assigning data types and domains 89
constraints 24
data types 23
defaults 79
GROUP BY clause 237
IDENTITY 456
naming 23
properties 23
select list 212
select statements 212
timestamp 454

command delimiter
setting 661

command files
building 553
overview 553
SQL Statements pane 553

commands
loading in Interactive SQL 554
saving in Interactive SQL 554

commas
in star joins 282
table expression lists 272
when joining table expressions 295

COMMIT statement
compound statements 634
procedures and triggers 660
verify referential integrity 138

COMMMIT statement

695

Index

remote data access 581
common estimates used in the plan 423
common statistics used in the plan 422
common table expressions

about 305
common applications 310
datatypes in recursive 320
exploring hierarchical data structures

315
least distance problems 322
multiple aggregation levels 310
parts explosion problems 317
restrictions on recursive 315
storing constant sets 312
where permitted 308

comparison operators
NULL values 227
subqueries 346
symbols 220

comparison test
subqueries 332

comparisons
NULL values 227
trailing blanks 220

compatibility
Adaptive Server Enterprise 440
case sensitivity 452
GROUP BY clause 258
import/export with Adaptive Server

Enterprise 556
non-ANSI joins 268
outputting nulls 527
servers and databases 443
setting options for Transact-SQL

compatibility 451
compatibility of joins 462
complete passthrough of the statement

remote data access 584
completing transactions 101
compliance with SQL standardsseeSQL

standards
composite indexes

about 397
effect of column order 398
hash values 402

compound statements
atomic 634

declarations 634
using 634

compressed B-tree indexes
about 402

compression
performance 166

COMPUTE clause
CREATE TABLE 46
unsupported 460

computed columns
creating 46
indexes 61
INSERT statements 47
limitations 48
making queries using functions

sargable 405
recalculation 48
triggers 47
UPDATE statements 47

computing values in the SELECT list 215
concatenating strings

NULL 228
conceptual data modeling

about 3
conceptual database models

definition of 5
concurrency 102

about 104, 145
and data definition statements 146
benefits of 102
consistency 104
how locking works 131
improving 114
improving and indexes 143
improving using indexes 115
inconsistencies 104
ISO SQL/92 standard 104
performance 102
primary keys 145
replication 148
types of locks 132

concurrent transactions
blocking 110, 122

conditions
connecting with logical operators 229

configuration notes for JDBC classes 591
configuring

696

Index

the Sybase Central Performance
Monitor 190

configuring databases for Transact-SQL
compatibility 449

configuring the Sybase Central
Performance Monitor 190

conflicts
cyclical blocking 111
locking 110
transaction blocking 110, 122

conflicts between locks 134
conformance with SQL standards see

SQL standards
connecting

starting a database without connecting
35

connecting conditions with logical
operators 229

CONNECTION_PROPERTY function
about 187

connections
debugger 689
debugging 676
remote 581

connectivity problems
remote data access 587

consistency
about 100
assuring using locks 131
correctness and scheduling 112
dirty reads 104, 134
dirty reads tutorial 116
during transactions 104
effects of unserializable schedules 113
example of non-repeatable read 120
ISO SQL/92 standard 104
isolation levels 104
phantom rows 104, 123, 135, 142
practical locking implications 126
repeatable reads 104, 119, 135
two-phase locking 140
versus isolation levels 105, 123, 126,

142
versus typical transactions 113

consolidated databases
setting 33

constant expression defaults 83

constraints 87
CHECK constraints 86
columns and tables 24
introduction 77
unique constraints 87

contiguous storage of rows 392
control statements

list 633
conventions

documentation xii
conversion errors during import 527
conversion of outer joins to inner joins

414
converting subqueries in the WHERE

clause to joins 345
copying

data with INSERT 359
database objects in Sybase Central 73
procedures 616
tables 48
views 52

copying database objects in Sybase
Central 73

copying databases
replicating data and concurrency 148

correlated subqueries
about 339, 345
outer references 340

correlation names
about 293
in self-joins 281
in star joins 282
table names 218

cost model
about 369
Index Consultant use of 67

cost-based optimization 368
costs

Index Consultant recommendations 69
COUNT function

about 235
NULL 236

CREATE DATABASE statement
Adaptive Server Enterprise 443
using 29, 30

create database wizard
creating Transact-SQL compatible

697

Index

databases 449
using 28

CREATE DEFAULT statement
unsupported 444

CREATE DOMAIN statement
Transact-SQL compatibility 444
using 89

CREATE EXISTING TABLE statement
using 571

CREATE FUNCTION statement
about 620

CREATE INDEX statement
and concurrency 146

CREATE PROCEDURE statement
examples 613
parameters 636

CREATE RULE statement
unsupported 444

CREATE SERVER statement
JDBC and Adaptive Server Enterprise

592
ODBC and Adaptive Server Enterprise

596
remote servers 592

CREATE TABLE statement
about 37
and concurrency 146
foreign keys 45
primary keys 42
proxy tables 571
Transact-SQL 458

CREATE TRIGGER statement
about 625

CREATE VIEW statement
WITH CHECK OPTION clause 52

creating
column defaults 79
data types 89, 90
database for Windows CE 28
database from SQL 29, 30
database from the command line 29
domains 89, 90
indexes 60
procedures 613
procedures and functions with external

calls 664
remote procedures 613

tables 37
triggers 625
user-defined functions 620
views 50

creating a database 27
creating a proxy table with the CREATE

TABLE statement 571
creating a Transact-SQL-compatible

database 449
creating compatible tables 458
creating databases

Sybase Central 28
creating external logins 567
creating proxy tables in SQL 571
creating proxy tables in Sybase Central

570
creating remote procedures 578
creating remote servers 562
cross joins 272
cross products 272
current date and time defaults 80
cursor instability 105
cursor management

overview 646
cursors

and LOOP statement 646
in procedures 646
instability 105
on SELECT statements 646
procedures and triggers 646
stability 105
updating in joins 268

customizing graphical plans 429
cyclical blocking conflict 111

D
data

adding, changing, and deleting 355
case sensitivity 453
consistency 104
exporting 532
exporting as XML 482
formats for importing and exporting

524
importing 524, 529
importing and exporting 522
integrity and correctness 112

698

Index

invalid 76
permissions required to modify data

356
searching 58
viewing 41

data consistency
assuring using locks 131
correctness 112
dirty reads 104, 134
dirty reads tutorial 116
ISO SQL/92 standard 104
phantom rows 104, 123, 135, 142
practical locking implications 126
repeatable reads 104, 119, 135
two-phase locking 140

data definition
concurrency 145

data definition language
about 26

data definition statements
and concurrency 146

data entry
and isolation levels 113

data formats
for importing and exporting 524

data integrity
about 76
checking 95
column constraints 24
column defaults 79
constraints 78, 85
effects of unserializable schedules on

113
enforcing 92
information in the system tables 97
losing 94
tools 77

data migration wizard
about 548
using 548

data model normalization 15
data modeling

about 3
data modification statements

about 356
data organization

physical 392

data sources
external servers 594

data types
aggregate functions 235
assigning columns 89
choosing 23
creating 89, 90
deleting 91
EXCEPT operation 251
INTERSECT operation 251
remote procedures 579
SQL and C 669
timestamp 454
UNION operation 251
user-defined 89

database administrator
roles 446

database design concepts 5
database files

fragmentation 171, 193
growing 541
growing after deletes 541
performance 163

database objects
copying in Sybase Central 73
editing properties 32

database options
Index Consultant 70
setting for Transact-SQL compatibility

451
database pages

Index Consultant recommendations 68
database procedures

viewing profiling data 197
database statistics

about 191
database threads

blocked 111
databases

case sensitivity 450, 452
creating 27
creating for Windows CE 28
creating from SQL 29, 30
creating from Sybase Central 28
creating from the command line 29
deleting 30
design concepts 5

699

Index

designing 3
disconnecting from databases 31
displaying system objects 34
displaying system tables 48
erasing 30
erasing from the command line 30
exporting 536
file compatibility 27
importing 529
importing XML 483
initializing 27
initializing from SQL 29, 30
initializing from Sybase Central 28
installing jConnect metadata support

35
migrating to Adaptive Server

Anywhere 548
normalizing 15
rebuilding 543
reloading 543
setting a consolidated database 33
setting options 32
starting without connecting 35
storing XML 481
Transact-SQL compatibility 449
transaction log 27
unloading 536
unloading and reloading 539, 543–545
upgrading database file format 541
verifying design 21
viewing and editing properties 32
working with 27
working with objects 25

DataSet
using to export relational data as XML

482
using to import XML 488

datatypes
in recursive subqueries 320

DataWindows
remote data access 559

dates
entry rules 225
procedures and triggers 662
searching for 225

DB2 remote data access 597
db2odbc server class 597

DB_PROPERTY function
about 187

dBASE format for importing and
exporting 524

dberase utility 30
using 30

dbinit utility
using 29

dbisql utility
rebuilding databases 540

dbo user ID
Adaptive Server Enterprise 445

dbspaces
managing 444

dbunload utility 540
exporting data 532

DDL
about 26

deadlocks
about 110
reasons for 111
transaction blocking 111

debugger
about 674
connecting 676
debugging Java classes 680
debugging stored procedures 677
displaying source code 681
examining variables 688
getting started 676
requirements 675
starting 676
tutorial 676
working with breakpoints 685
working with connections 689

debugger features 674
debugger utility

features 674
debugger_tutorial procedure

about 677
debugging

about 673
breakpoints 683
compiling classes 681
features 674
introduction 674
Java 680

700

Index

local variables 684
permissions 675
requirements 675
stored procedures 677
tutorial 677, 680

debugging logic in the database 673
decision support

and isolation levels 113
declarations in compound statements 634
DECLARE statement

compound statements 634
procedures 646, 650

declaring parameters for procedures 636
default error handling in procedures and

triggers 649
default handling of warnings in

procedures and triggers 653
defaults

AUTOINCREMENT 81
column 79
constant expressions 83
creating 79
creating in Sybase Central 80
current date and time 80
INSERT statement and 358
introduction 77
NEWID 82
NULL 83
string and number 83
Transact-SQL 444
user ID 81
using in domains 90
with transactions and locks 146

defragmenting
about 193
all tables in a database 194
hard disk 193
individual tables in a database 195

delaying referential integrity checks 138
DELETE statement

locking during 139
using 365

deleting
column defaults 80
data types 91
database files 30
domains 91

indexes 62
procedures 617
tables 41
triggers 629
user-defined data types 91
views 55

deleting all rows from a table 366
deleting and deleting CHECK constraints

87
deleting data

about 355
DELETE statement 365
TRUNCATE TABLE statement 366

deleting remote servers 564
delimit statements within your procedure

661
depth

item in access plans 425
derived tables

in joins 287
in key joins 301
in natural joins 290
in outer joins 278
using in the FROM clause 218

descending order
ORDER BY clause 244

design details pane
about 34

design process 11
designing databases

about 3
concepts 5
procedure 11

designing the database table properties 23
designing your database 3
deterministic functions

defined 418
devices

managing 444
difference between FALSE and

UNKNOWN 228
differences from other SQL dialects 473
directed graphs 322
direction

item in access plans 425
dirty reads 104, 134

tutorial 116

701

Index

versus isolation levels 105
disabling breakpoints 686

enabling 686
disabling procedure profiling

SQL 198
Sybase Central 198

DISCONNECT statement
using 31

disconnecting
from databases 31
other users from a database 31

discovery of exploitable conditions 415
disk access cost model

about 369
disk allocation for inserted rows 392
disk space

reclaiming 541
DISK statements

unsupported 444
DiskRead

statistic in access plans 422
DiskReadIndInt

statistic in access plans 422
DiskReadIndLeaf

statistic in access plans 422
DiskReadTable

statistic in access plans 422
DiskWrite

statistic in access plans 422
displaying system objects in a database34
displaying system tables 48
DISTINCT clause

SELECT statement 217
unnecessary distinct elimination 408

distinct elimination
about 408

DISTINCT keyword
aggregate functions 232, 235

distinct list
item in access plans 426

DLL
calling from procedures 664
external procedure calls 665

DML
about 356

documentation
conventions xii

SQL Anywhere Studio x
documents

inserting 360
domain creation wizard

using 89
domains

assigning columns 89
case sensitivity 453
CHECK constraints 86
creating 89, 90
deleting 91
examples of uses 89
using 89

double quotes
character strings 225

DROP CONNECTION statement
using 31

DROP DATABASE statement
Adaptive Server Enterprise 443
using 30

DROP statement
and concurrency 146

DROP TABLE statement
example 41

DROP TRIGGER statement
about 629

DROP VIEW statement
example 55

dropping
domains 91
indexes 62
procedures 617
tables 41
triggers 629
views 55

dropping connections
remote data access 588

dropping external logins 568
dropping remote procedures 579
DUMP DATABASE statement

unsupported 443
DUMP TRANSACTION statement

unsupported 443
duplicate correlation names in joins (star

joins) 282
duplicate elimination

query execution algorithms 386

702

Index

duplicate results
eliminating 217

duplicate rows
removing with UNION 251

dynamic cache sizing
about 176
about UNIX 178
about Windows 178

E
early release of locks 113, 141

an exception 142
editing

properties of database objects 32
table data 41

editing breakpoint conditions 686
effects of

transaction scheduling 113
unserializable transaction scheduling

113
efficiency

improving and locks 115
improving using indexes 143

element directive
using 506

eliminating duplicate query results 217
elimination of unnecessary case

translation 416
enabling breakpoints 686
enabling procedure profiling

SQL 197
Sybase Central 197

encryption
cache size 161
hiding objects 670

ending transactions 101
enforcing column uniqueness 400
enforcing entity and referential integrity

92
enforcing referential integrity 93
ensuring compatible object names 453
ensuring data integrity 75
entities

about 5
attributes 5
choosing 11
definition of 5

forcing integrity 92
entity integrity 474

breached by client application 92
introduction 78

entity-relationship diagrams
about 5
reading 8

equals operator
comparison operator 220

equijoins
about 270

erase database wizard
using 30

erase utility
using 30

erasing databases 30
error handling

ON EXCEPTION RESUME 651
procedures and triggers 649

error handling in Transact-SQL
procedures 469

errors
conversion 527
procedures and triggers 649
Transact-SQL 469, 470

errors and warnings in procedures and
triggers 649

EstCpuTime
estimate in access plans 423

EstDiskReads
estimate in access plans 423

EstDiskReadTime
estimate in access plans 423

EstDiskWrites
estimate in access plans 423

estimated leaf pages
item in access plans 425

estimated pages
item in access plans 424

estimated row size
item in access plans 424

estimated rows
item in access plans 424

EstRowCount
estimate in access plans 423

EstRunTime
estimate in access plans 423

703

Index

events
viewing individual profiling

information 201
viewing summary profiling data 200

examining variables
debugger 688

examples
dirty reads 116
implications of locking 126
non-repeatable read 120
non-repeatable reads 119
phantom locks 126
phantom rows 123

Excel and remote access 602
EXCEPT operation

combining queries 251
NULL 254
rules 252
using 252

exception handlers
nested compound statements 656
procedures and triggers 654

exceptions
declaring 650

exclusive locks 132
exclusive versus shared locks 133
EXECUTE IMMEDIATE statement

procedures 658
executing triggers 627
existence test

about 338
negation of 339

EXISTS operator 338
EXISTS predicates

rewriting subqueries as 374
explicit join conditions 264
explicit join conditions (the ON phrase)

269
EXPLICIT mode

syntax 500
using 499
using the cdata directive 509
using the element directive 506
using the hide directive 507
using the xml directive 508
writing queries 502

explode

query execution algorithms 391
export tools 532
exporting

Adaptive Server Enterprise
compatibility 556

file formats 524
introduction 524
NULL values 527
query results 534
schema 542
tables 537

exporting data
about 522
schema 542
tools 532

exporting databases
using 536

exporting relational data as XML 482
exporting relational data as XML from

Interactive SQL 482
exporting relational data as XML using

the DataSet object 482
exporting tables

schema 542
expression SQL

item in access plans 426
expressions

NULL values 228
external calls

creating procedures and functions 664
external functions

canceling 668
passing parameters 669
prototypes 666
return types 670

external loading 522
external logins

about 567
creating 567
dropping 568

external servers
ODBC 594

extract database wizard
about 547

extracting
databases for SQL Remote 547

704

Index

F
FALSE conditions

and NULL 228
features not supported for remote data587
Federal Information Processing Standard

Publication complianceseeSQL
standards

feedback
documentation xvi
providing xvi

FETCH statement
procedures 646

fetchtst 195
file formats

for importing and exporting 524
rebuilding databases 541

file fragmentation
about 193

file types
for importing and exporting 524

files
fragmentation 171
performance 163

filter and pre-filter 390
filters

query execution algorithms 390
finishing transactions 101
FIPS compliance seeSQL standards
FIRST clause

about 245
FIXED format for importing and

exporting 524
FOR BROWSE clause

unsupported 460
FOR clause

obtaining query results as XML 491
using FOR XML AUTO 496
using FOR XML EXPLICIT 499
using FOR XML RAW 494

FOR READ ONLY clause
ignored 460

FOR statement
syntax 633

FOR UPDATE clause
unsupported 460

FOR XML AUTO
using 496

FOR XML clause
BINARY data type 491
EXPLICIT mode syntax 500
IMAGE data type 491
LONG BINARY data type 491
obtaining query results as XML 491
restrictions 491
usage 491
using AUTO mode 496
using EXPLICIT mode 499
using RAW mode 494
VARBINARY data type 491

FOR XML EXPLICIT
syntax 500
using 499
using the cdata directive 509
using the element directive 506
using the hide directive 507
using the xml directive 508

FOR XML RAW
using 494

foreign keys
and integrity 474
creating 44, 45
deleting 44
displaying in Sybase Central 44
in key joins 292
managing 43
mandatory/optional 93
modifying 45
performance 182
referential integrity 94
role name 293

formats
for importing and exporting 524

FORWARD TO statement 577
FoxPro

format for importing and exporting524
remote data access 604

fragmentation
about 193
file 193
indexes 195
of files, tables, and indexes 171
tables 193

FROM clause
derived tables in 218

705

Index

explanation of joins 264
introduction 218
stored procedures in 218

full compares
about 396
statistic in access plans 422

full outer joins
about 274

FullCompare
statistic in access plans 422

functions
caching 418
deterministic 418
external 664
idempotent 418
TRACEBACK 650
tsequal 455
user-defined 620
viewing individual profiling

information 201
viewing summary profiling data 200

G
general guidelines for writing portable

SQL 458
general problems with queries

remote data access 588
generated join conditions 264
generated joins and the ON phrase 269
generating

physical data model 19
generating unique keys 145
global autoincrement

compared to GUIDs and UUIDs 82
global temporary tables 72
global variables

debugger 688
go

batch statement delimiter 631
GRANT statement

and concurrency 146
Transact-SQL 447

graph type
configuring the Performance Monitor

190
graphical plan

description 430

graphical plan with statistics
about 429
Interactive SQL 434
SQL functions 434
viewing 431

graphical plans
about 429
context sensitive help 430
customizing 429
Interactive SQL 434
predicate 433
printing 429
SQL functions 434

graphing
using the Performance Monitor 188

greater than
comparison operator 220
range specification 221

greater than or equal to
comparison operator 220

GROUP BY ALL clause
unsupported 460

GROUP BY clause
about 237
Adaptive Server Enterprise

compatibility 258
aggregate functions 237
execution 238
order by and 246
SQL standard compliance 258
SQL/92 standard 258
WHERE clause 240

group by list
item in access plans 426

group by with multiple columns 240
group reads

tables 393
grouping algorithms

query execution algorithms 387
GROUPING function

NULL 249
ROLLUP operation 249

groups
Adaptive Server Enterprise 446

GUIDs
compared to global autoincrement 82
default column value 82

706

Index

generating 145

H
hash anti-semijoin

query execution algorithms 384
hash B-tree indexes

about 401
hash distinct

query execution algorithms 386
hash group by

query execution algorithms 388
hash joins

query execution algorithms 383, 384
hash maps

query execution algorithms 391
hash not exists

query execution algorithms 384
hash semijoin

query execution algorithms 384
hash values

indexes 401
HAVING clause

GROUP BY and 242
logical operators 243
performance 405
selecting groups of data 242
subqueries 330
with and without aggregates 242

hide directive
using 507

hierarchical data structures 315, 317
histograms

about 369
updating 371

HOLDLOCK keyword
Transact-SQL 461

how data can become invalid 76
how database contents change 77
how joins work 263
how locking is implemented 142
how locking works 131
how NULL affects Transact-SQL outer

joins 280
how queries with group by are executed

238
how subqueries work 345
how the optimizer works 369

I
I/O

scanning bitmaps 393
IBM DB2

migrating to Adaptive Server
Anywhere 548

remote data access to DB2 597
icons

used in manuals xiv
idempotent functions

defined 418
identifiers

case sensitivity 453
qualifying 209
uniqueness 453
using in domains 90

identifying entities and relationships 11
IDENTITY column 456

retrieving values 456
if a client application breaches entity

integrity 92
if a client application breaches referential

integrity 94
IF statement

syntax 633
images

inserting 360
implementation of locking 142
implementing recommendations

Index Consultant 70
import tools 528
import wizard

about 528
using 529

importing
Adaptive Server Enterprise

compatibility 556
databases 529
file formats 524
introduction 524
non-matching table structures 525
NULL values 525
tools 528
using temporary tables 72

importing and exporting data 521
importing data

about 522

707

Index

conversion errors 527
DEFAULTS option 526
from other databases 529
interactively 529
LOAD TABLE statement 530
performance 522
proxy tables 529
temporary tables 525, 526
tools 528

importing XML documents as relational
data 483

importing XML using OPENXML 483
importing XML using the DataSet object

488
improving concurrency at isolation levels

2 and 3 114
improving index performance 396
improving performance 161
IN conditions

subqueries 336
IN keyword

matching lists 222
IN list

algorithm 381
item in access plans 426
optimization 412

IN parameters
defined 636

inconsistencies
avoiding using locks 131
dirty reads 104, 134
dirty reads tutorial 116
effects of unserializable schedules 113
example of non-repeatable read 120
ISO SQL/92 standard 104
phantom rows 104, 123, 135, 142
practical locking implications 126

inconsistencies non-repeatable reads 104,
119, 135

increase the cache size 161
IndAdd

statistic in access plans 422
Index Consultant

about 65
assessing recommendations 69
connection state 70
implementing recommendations 70

introduction 58, 156
recommendations 68
server state 70
starting 65
stopping 65
understanding 63, 66
workloads 63, 66

index creation wizard
using 60

index fragmentation 195
index scans

about 379
index selectivity

about 396
indexed distinct

query execution algorithms 387
indexed group by

query execution algorithms 388
indexes

about 395
assistance 156
B-tree 401
benefits 63
benefits and locking 115
can usually be found to satisfy a

predicate 373
candidate 64
clustered 59
composite 397, 402
compressed B-tree 402
correlations between 70
costs 63
creating 60
deleting 62
effect of column order 398
fan-out and page sizes 402
fragmentation 195
frequently-searched columns 58
hash B-tree 401
hash values 401
HAVING clause performance 405
improving concurrency 143
Index Consultant 58, 63, 65
inspecting 71
leaf pages 397
optimization and 395
performance 162

708

Index

predicate analysis 405
recommended page sizes 402
sargable predicates 405
structure 397
temporary tables 396
Transact-SQL 453
types of index 401
understanding the Index Consultant 66
unused 69
validating 61
virtual 64
when to use 58
WHERE clause performance 405
working with 58

indexes in the system tables 71
indexes:

computed columns 61
IndLookup

statistic in access plans 422
initial cache size 177
initialization utility

using 29
inner and outer joins 274
inner joins

about 274
INOUT parameters

defined 636
INPUT statement

about 528
using 529

inputting
import tools 528
importing data 524, 529
importing databases 529
importing tables 530

INSERT statement
about 357, 528
locking during 136
SELECT 357
using 529

inserting data
adding NULL 358
BLOBs 360
column data INSERT statement 358
constraints 358
defaults 358
into all columns 357

using INSERT 357
with SELECT 359

inserting documents and images 360
inserting values into all columns of a row

357
inserting values into specific columns 358
installing

jConnect metadata support 35
instest 195
integrity

about 76
checking 95
column defaults 79
constraints 78, 85
enforcing 92
information in the system tables 97
losing 94
tools 77
using triggers to maintain 78

integrity constraints belong in the
database 76

integrity rules in the system tables 97
Interactive SQL

batch operations 554
command delimiter 661
command files 553
exporting query results 534
exporting relational data as XML 482
loading commands 554
rebuilding databases 540
running scripts 554
saving commands 554

Interactive SQL import wizard
about 528

interference between transactions 110,
122

interleaving transactions 112
internal loading 522
internal operations

remote data access 583
interrupt

Run menu 685
INTERSECT operation

combining queries 251
NULL 254
rules 252
using 252

709

Index

INTO clause
using 641

invalid data 76
invocations

statistic in access plans 422
IS NULL keyword 228
ISNULL function

about 228
ISO compliance seeSQL standards
ISO SQL/92 standard

concurrency 104
typical inconsistencies and 104

isolation level 0
example 116
SELECT statement locking 134

isolation level 1
example 119
SELECT statement locking 135

isolation level 2
example 123, 126
SELECT statement locking 135

isolation level 3
example 125
SELECT statement locking 135

isolation levels
about 104
changing within a transaction 109
choosing 112
choosing types of locking tutorial 122
implementation at level 0 134
implementation at level 1 135
implementation at level 2 135
implementation at level 3 135
improving concurrency at levels 2 and

3 114
ODBC 107
setting 106
tutorials 116
typical transactions for each 113
versus typical inconsistencies105, 123,

126, 142
versus typical transactions 113
viewing 109

isolation levels and consistency 104

J
Java

about debugging 674
debugging 680

Java debugger
debugging Java classes 680
debugging stored procedures 677
displaying source code 681
requirements 675
starting 676
tutorial 676

jConnect metadata support
installing 35

JDBC-based server classes 591
join algorithms

about 381
join compatible data types 268
join conditions

types 270
join elimination rewrite optimization 411
join operators

Transact-SQL 462
joining more than two tables 267
joining remote tables 574
joining tables from multiple local

databases 576
joining two tables 266
joins

about 264
automatic 474
Cartesian product 272
commas 272
conversion of outer joins to inner joins

414
converting subqueries into 341
converting subqueries to joins 345
cross join 272
data type conversion 268
default is KEY JOIN 265
derived tables 287
duplicate correlation names 282
equijoins 270
FROM clause 264
how an inner join is computed 266
in delete, update and insert statements

268
inner 274
inner and outer 274
join conditions 264

710

Index

join elimination rewrite optimization
411

joined tables 265
key 474
key joins 292
natural 474
natural joins 288
nesting 267
non-ANSI joins 268
null-supplying tables 274
of more than two tables 267
of table expressions 267
of tables in different databases 576
of two tables 266
ON phrase 269
outer 274
preserved tables 274
query execution algorithms 381
remote tables 574
search conditions 270
self-joins 281
star joins 282
Transact-SQL 462
Transact-SQL outer, null values and

280
Transact-SQL outer, restrictions on279
Transact-SQL outer, views and 280
updating cursors 268
WHERE clause 270

K
key joins

about 292
if more than one foreign key 293
of lists and table expressions that do

not contain commas 299
of table expression lists 297
of table expressions 295
of table expressions that do not contain

commas 296
of views and derived tables 301
rules 303
the ON phrase 269
with an ON phrase 292

key type
item in access plans 425

keys

assigning 16
performance 182

keywords
HOLDLOCK 461
NOHOLDLOCK 461
remote servers 587

L
laptop computers

and transactions 148
leaf pages 397
least distance problems 322
LEAVE statement

syntax 633
left outer joins

about 274
less than

comparison operator 220
range specification 221

less than or equal to
comparison operator 220

levels of isolation
about 104
changing 106
changing within a transaction 109
setting default 106

LIKE conditions
LIKE optimizations 413

LIKE operator
wildcards 224

LIKE optimizations 413
limiting rows

FIRST clause 245
TOP clause 245

limiting the memory used by the cache
177

line breaks
SQL 209

listing remote server capabilities 566
listing the columns on a remote table 572
listing the remote tables on a server 566
literal values

NULL 228
LOAD DATABASE statement

unsupported 443
LOAD TABLE statement

about 528

711

Index

using 530
LOAD TRANSACTION statement

unsupported 443
loading

commands in Interactive SQL 554
local temporary tables 72
local variables

debugger 688
locked tables

item in access plans 424
locking

reducing through indexes 400
locking during deletes 139
locking during inserts 136
locking during queries 134
locking during updates 138
locks

about 131
anti-insert 132, 139
blocking 110, 122
choosing isolation levels tutorial 122
conflict handling 110, 122
conflicting types 134
deadlock 111
early release of 113, 141, 142
exclusive 132
implementation at level 0 134
implementation at level 1 135
implementation at level 2 135
implementation at level 3 135
inconsistencies versus typical isolation

levels 105, 142
insert 132
isolation levels 104
nonexclusive 132
objects that can be locked 131
orphans and referential integrity 137
phantom rows versus isolation levels

123, 126
procedure for deletes 139
procedure for inserts 136
procedure for updates 138
query execution algorithms 391
read 132, 140
reducing the impact through indexes

115
shared versus exclusive 133

transaction blocking and deadlock 110
two-phase locking 140
types of 132
typical transactions versus isolation

levels 113
uses 133
viewing in Sybase Central 131
write 132

logging SQL statements 34
logical operators

connecting conditions 229
HAVING clauses 243

logs
rollback log 103

long plans
about 428
Interactive SQL 434
SQL functions 434

LONG VARCHAR data type
storing XML 481

LOOP statement
in procedures 646
syntax 633

losing referential integrity 94
LOTUS file format

format for importing and exporting524
Lotus Notes

passwords 605
remote data access 604

M
maintenance

performance 161
managing

transactions 581
managing foreign keys 43
managing primary keys 42
mandatory

foreign keys 93
mandatory relationships 8
many-to-many relationships

definition of 7
resolving 19, 21

master database
unsupported 443

matching character strings in the
WHERE clause 222

712

Index

materializing result sets
query processing 185

MAX function
rewrite optimization 412

maximum cache size 177
merge joins

query execution algorithms 385
merge sort

query execution algorithms 389
MESSAGE statement

procedures 650
metadata support

installing for jConnect 35
Microsoft Access

migrating to Adaptive Server
Anywhere 548

remote data access 603
Microsoft Excel

remote data access 602
Microsoft FoxPro

remote data access 604
Microsoft SQL Server and remote access

600
Microsoft SQL Server databases

migrating to Adaptive Server
Anywhere 548

migrating databases
about 548

MIN function
rewrite optimization 412

minimal administration work
optimizer 372

minimizing downtime during rebuilding
545

minimum cache size 177
modifying

CHECK constraints 87
column defaults 80
views 54

modifying and deleting CHECK
constraints 87

modifying and deleting column defaults
80

monitor
configuring 190
opening the Sybase Central

Performance Monitor 189

Performance Monitor overview 188
monitoring and improving performance

153
monitoring cache size 179
monitoring database performance 187
monitoring database statistics from

Sybase Central 188
monitoring database statistics from

Windows Performance Monitor
190

monitoring performance
abbreviations used in access plans 420
reading access plans 420
tools to measure queries 195

monitoring query performance 195
more than one transaction at once 102
msodbc server class 600
multiple databases

joins 576
multiple transactions

concurrency 102

N
name spaces

indexes 453
triggers 453

naming and nesting savepoints 103
natural joins

about 288
of table expressions 289
of views and derived tables 290
with an ON phrase 289

nested block join and sorted block 382
nested block joins

query execution algorithms 382
nested compound statements and

exception handlers 656
nested loops joins

query execution algorithms 381
nested loops semijoin

query execution algorithms 382
nested subqueries

about 343
nesting

derived tables in joins 287
in joins 267
in outer joins 276

713

Index

nesting and naming savepoints 103
NetWare

external functions 666
external procedure calls 665

NEWID
when to use 145

NEWID function
default column value 82

newsgroups
technical support xvi

NLM
calling from procedures 664
external functions 666
external procedure calls 665

NOHOLDLOCK keyword
ignored 461

non-ANSI joins 268
non-dirty reads

tutorial 116
non-repeatable reads

about 104
example 120
isolation levels 105, 142
tutorial 119

nonexclusive locks 132
normal forms

first normal form 17
normalizing database designs 15
second normal form 18
third normal form 18

normalization
about 15
performance benefits 162

normalize your table structure 162
NOT

using logical operators 229
not equal to

comparison operator 220
not greater than

comparison operator 220
NOT keyword

search conditions 221
not less than

comparison operator 220
Notes and remote access 604
NULL

about 226

aggregate functions 236
allowing in columns 23
column default 451
column definition 228
comparing 227
default 83
default parameters 227
DISTINCT clause 217
EXCEPT operation 254
INTERSECT operation 254
output 527
properties 228
ROLLUP operation 249
set operators 254
sort order 245
Transact-SQL compatibility 458
Transact-SQL outer joins 280
UNION operation 254

null-supplying tables
in outer joins 274

O
objects

hiding 670
objects that can be locked 131
obtaining database statistics from a client

application 187
obtaining query results as XML 490
occasionally connected users

replicating data and concurrency 148
ODBC

applications 107
applications, and locking 107
external servers 594

ODBC server classes 594, 602
odbcfet 195
OLAP

ROLLUP operation 247
subtotal rows 247

ON clause
joins 269

ON EXCEPTION RESUME clause
about 651
not with exception handling 655
stored procedures 649
Transact-SQL 470

ON phrase

714

Index

joins 269
one-to-many relationships

definition of 7
resolving 19

one-to-one relationships
definition of 7
resolving 19

online analytical processing
ROLLUP operation 247

OPEN statement
procedures 646

opening the Sybase Central Performance
Monitor 189

OPENXML function
using 483

operators
arithmetic 216
connecting conditions 229
NOT keyword 221
precedence 216

optimization
cost based 368
reading access plans 420
using indexes 143

optimization for minimum or maximum
functions 412

optimization goal
in access plans 424

optimization of queries
about 368
assumptions 372
reading access plans 420
rewriting subqueries as EXISTS

predicates 374
steps in 377

optimize for first rows or for entire result
set 373

optimizer
about 368, 369
assumptions 372
predicate analysis 405
role of 368
semantic subquery transformations404
semantic transformations 407

optimizer estimates
about 369

optional foreign keys 93

optional relationships 8
options

BLOCKING 110
DEFAULTS 526
ISOLATION_LEVEL 106
setting database options 32

OR
using logical operators 229

Oracle and remote access 599
Oracle databases

migrating to Adaptive Server
Anywhere 548

oraodbc server class 599
ORDER BY and GROUP BY 246
ORDER BY clause

GROUP BY 246
limiting results 245
performance 184
sorting query results 244

order-by
item in access plans 427

ordered distinct
query execution algorithms 387

ordered group by
query execution algorithms 388

ordering of transactions 112
organization

of data, physical 392
organizing query results into groups 237
orphan and referential integrity 137
other uses for indexes 400
OUT parameters

defined 636
outer joins

about 274
and join conditions 276
complex 276
in Transact-SQL 278
of views and derived tables 278
restrictions 279
star join example 285
Transact-SQL 462
Transact-SQL, restrictions on 279
Transact-SQL, views and 280

outer references
about 340
aggregate functions 233

715

Index

HAVING clause 330
output redirection 534
OUTPUT statement 534

about 532
using to export data as XML 482

outputting
export tools 532
exporting data 524
exporting databases 536
exporting query results 534
exporting tables 537

outputting nulls 527

P
page map

item in access plans 424
page maps

scanning 393
page size

about 393
and indexes 394
disk allocation for inserted rows 392
performance 170

page sizes
and indexes 402

pages
disk allocation for inserted rows 392

parentheses
in arithmetic statements 216
UNION operators 251

partial index scan
about 400

partial passthrough of the statement
remote data access 585

particular concurrency issues 145
parts explosion problems 317
passing parameters to external functions

669
passing parameters to functions 638
passing parameters to procedures 637
passwords

case sensitivity 453
Lotus Notes 605

performance
about 161
autocommit 165
automatic tuning 372

bulk loading 522
bulk operations 166
cache 161
cache read-hit ratio 433
comparing optimizer estimates and

actual statistics 431
compression 166
database design 162
estimate source 432
file fragmentation 171, 193
file management 163
improving 58, 59
improving versus locks 115
index fragmentation 195
indexes 58, 162
keys 182
measuring query speed 195
monitoring 187
monitoring in Windows 190
page size 170
predicate analysis 405
reading access plans 420
recommended page sizes 402
reducing requests 167
runtime actuals and estimates 432
scattered reads 171
selectivity 432
statistics in Windows Performance

Monitor 190
table and page size 393
table fragmentation 193
tips 161
transaction log 161
WITH EXPRESS CHECK 166
work tables 185

performance considerations for moving
data 522

Performance Monitor
adding and removing statistics 189
configuring 190
opening in Sybase Central 189
overview 188
running multiple copies 191
setting the interval time 190
starting 191
Sybase Central 188
Windows 190

716

Index

PerformanceFetch 195
PerformanceInsert 195
PerformanceTraceTime 195
PerformanceTransaction 195
permissions

Adaptive Server Enterprise 446
data modification 356
debugging 675
procedure result sets 642
procedures calling external functions

664
triggers 629
user-defined functions 623

permissions for data modification 356
phantom

rows 104, 135, 142
phantom locks 126
phantom rows

tutorial 123
versus isolation levels 105, 126, 142

physical data model
generating 19

physical data organization 392
place different files on different devices

163
plans

abbreviations used in 420
caching of 375
context sensitive help 430
customizing 429
graphical plans 429
Interactive SQL 434
long text plans 428
printing 429
reading 420
short text plans 427
SQL functions 434

plus operator
NULL values 228

portable computers
replicating databases 148

portable SQL 458
PowerBuilder

remote data access 559
practical locking implications tutorial 126
predicate analysis

about 405

predicate pushdown into grouped or
unioned views 410

predicates
about 405
item in access plans 426
performance 405
reading in access plans 433

prefix columns
ROLLUP operation 247

prefixes
ROLLUP operation 247
subtotal rows 247

PREPARE statement
remote data access 581

preserved tables
in outer joins 274

primary keys
and integrity 474
AUTOINCREMENT 81
concurrency 145
creating 42
entity integrity 92
generation 145
managing 42
modifying 42
performance 182
using NEWID to create UUIDs 82

primary keys enforce entity integrity 92
procedure creation wizard

about 613
using 613

procedure language
overview 463

procedure profiling
clearing in Sybase Central 198
clearing with SQL 198
disabling in Sybase Central 198
disabling with SQL 198
enabling in Sybase Central 197
enabling with SQL 197
events 200, 201
information for individual procedures

201, 203
resetting in Sybase Central 198
resetting with SQL 198
stored procedures and functions 200,

201

717

Index

summary data 199
summary of procedures 202
triggers 200, 202
viewing data in Interactive SQL 202
viewing data in Sybase Central 197,

199
procedures

about 609
adding remote procedures 578
altering 615
benefits of 612
calling 616
command delimiter 661
copying 616
creating 613
cursors 646
dates 662
default error handling 649
deleting 617
deleting remote procedures 579
error handling 469, 470, 649
exception handlers 654
EXECUTE IMMEDIATE statement

658
external functions 664
multiple result sets from 643
overview 611
parameters 636, 637
permissions for result sets 642
result sets 618, 642
return values 469
returning results 640
returning results from 617
savepoints 660
security 612
SQL statements allowed 636
structure 636
table names 661
times 662
tips for writing 661
Transact-SQL 466
Transact-SQL overview 463
translation 466
using 613
using cursors in 646
using in the FROM clause 218
variable result sets from 644

verifying input 662
warnings 653

profiling database procedures 197
profiling information

events 201
stored procedures and functions 201
triggers 202

program variables
in common table expression 310

properties
setting all database object properties32

properties of NULL 228
property

definition of 5
PROPERTY function

about 187
property sheets 32
protocols

two-phase locking 141
prototypes

external functions 666
proxy table creation wizard

using 570
proxy tables

about 560, 569
creating 560, 570, 571
location 569

publications
data replication and concurrency 148

Q
qualifications

about 219
qualified names

database objects 209
quantified comparison test 347

subqueries 333
queries

about 208
access plans 420
common table expressions 305
optimization 368, 369
selecting data from a table 207
set operations 251
Transact-SQL 459

queries blocked on themselves
remote data access 588

718

Index

query execution algorithms 379
abbreviations used in access plans 420
anti-semijoin 384
block nested loops joins 382
Bloom filters 391
duplicate elimination 386
explode 391
filter and pre-filter 390
grouping algorithms 387
hash anti-semijoin 384
hash distinct 386
hash group by 388
hash joins 383, 384
hash not exists 384
hash semijoin 384
IN list 381
index scans 379
indexed distinct 387
indexed group by 388
joins 381
locks 391
merge joins 385
merge sort 389
nested block joins 382
nested loops joins 381
nested loops semijoin 382
ordered distinct 387
ordered group by 388
row limits 391
semijoin 381, 382, 384
sequential table scans 380
single group by 388
sorted block joins 382
sorting and unions 389
union all 389

query normalization
remote data access 583

query optimization and execution 367
query parsing

remote data access 583
query performance

reading access plans 420
query preprocessing

remote data access 583
query results

exporting 534
quotation marks

Adaptive Server Enterprise 225
character strings 225

QUOTED_IDENTIFIER option
about 225
setting for Transact-SQL compatibility

451

R
RAISERROR statement

ON EXCEPTION RESUME 470
Transact-SQL 470

range queries 221
RAW mode

using 494
read locks 132, 140
reading access plans 420
reading entity-relationship diagrams 8
reading the access plan

key statistics 431
rebuild file formats 541
rebuild tools 540
rebuilding 543

databases 543
minimizing downtime 545
purpose 541
replicating databases 544
tools 540

rebuilding databases
about 539

recommendations
Index Consultant 68

recommended page sizes 402
recursive queries

restrictions 315
recursive subqueries

about 305
datatype declarations in 320
least distance problems 322
multiple aggregation levels 310
parts explosion problems 317

recursive tables
algorithm 381

redirecting
output to files 534

reduce the number of requests between
client and server 167

reducing the impact of locking 115

719

Index

references
displaying references from other tables

44
referential integrity 474

about 76
actions 94
breached by client application 94
checking 95
column defaults 79
constraints 78, 85
enforcing 92
information in the system tables 97
introduction 78
losing 94
orphans 137
tools 77
verification at commit 138

referential integrity actions
implemented by system triggers 95

reflexive relationships 8
relationships

about 6
cardinality of 7
changing to an entity 9
choosing 11
definition of 5
mandatory versus optional 8
many-to-many 7
one-to-many 7
one-to-one 7
reflexive 8
resolving 19
roles 7

relative benefit
Index Consultant recommendations 68

reloading
databases 543

reloading databases
about 539

remember to delimit statements within
your procedure 661

remote data
location 569

remote data access
about 557
case sensitivity 587
connection names 588

internal operations 583
introduction 558
passthrough mode 577
performance limitations 558
PowerBuilder DataWindows 559
remote servers 562
SQL Remote unsupported 587
troubleshooting 587
unsupported features 587

remote databases
replication 148

remote procedure calls
about 578

remote procedure creation wizard
using 578, 613

remote procedures
adding 578
calls 578
creating 613
data types 579
deleting 579

remote server creation wizard
using 563

remote servers
about 562
altering 565
classes 589, 590
creating 562
deleting 564
external logins 567
listing properties 566
transaction management 581

remote table mappings 560
remote tables

about 560
accessing 557
listing 566
listing columns 572

remote transaction management overview
581

renaming columns in query results 213
repeatable reads 104, 119, 135
replication

concurrency 148
concurrency issues 145
rebuilding databases 539, 544

replication and concurrency 148

720

Index

requests
reducing number of 167

requests tab
Index Consultant recommendations 69

requirements for using the debugger 675
reserved words

remote servers 587
resetting procedure profiling

SQL 198
Sybase Central 198

RESIGNAL statement
about 655

resolving
relationships 19

RESTRICT action
about 95

restrictions
remote data access 587

restrictions on transaction management
581

result sets
limiting the number of rows 245
multiple 643
permissions 642
procedures 618, 642
Transact-SQL 467
variable 644

retrieving the first few rows of a query245
RETURN statement

about 640
return types

external functions 670
return values

procedures 469
returning a value using the RETURN

statement 640
returning multiple result sets from

procedures 643
returning procedure results in parameters

617
returning procedure results in result sets

618
returning result sets from procedures 642
returning result sets from Transact-SQL

procedures 467
returning results as procedure parameters

640

returning results from procedures 640
returning variable result sets from

procedures 644
REVOKE statement

and concurrency 146
Transact-SQL 447

rewrite optimization
about 407

rewriting subqueries as EXISTS
predicates 374

right outer joins
about 274

role names
about 293

role of the optimizer 368
roles

Adaptive Server Enterprise 445
definition of 7

rollback logs
savepoints 103

ROLLBACK statement
compound statements 634
procedures and triggers 660
triggers 464

rolling back transactions 101
ROLLUP operation

about 247
NULL 249
subtotal rows 247
understanding GROUP BY 239

ROLLUP operation: example 247
row limit count

item in access plans 427
row limits

query execution algorithms 391
rows

copying with INSERT 360
deleting 393
selecting 219

RowsReturned
statistic in access plans 422

rules
Transact-SQL 444

rules describing the operation of key
joins 303

running
command files 553

721

Index

SQL scripts 553, 554
RunTime

statistic in access plans 422

S
SA_DEBUG group

debugger 675
sa_migrate system procedure

about 548
using 549

sa_migrate_create_fks system procedure
using 550

sa_migrate_create_remote_fks_list
system procedure

using 550
sa_migrate_create_remote_table_list

system procedure
using 550

sa_migrate_create_tables system
procedure

using 550
sa_migrate_data system procedure

using 550
sa_migrate_drop_proxy_tables system

procedure
using 550

sa_pause_workload_capture procedure
pausing the Index Consultant 65

sa_stop_index_consultant procedure
stopping the Index Consultant 65

sa_stop_workload_capture procedure
stopping the Index Consultant 65

sample database
schema for asademo.db 262

sargable predicates
about 405

savepoints
nesting and naming 103
procedures and triggers 660
within transactions 102

saving
commands in Interactive SQL 554

saving transaction results 101
scalar aggregates 233
scattered reads

performance 171
schedules

effects of serializability 113
effects of unserializable 113
serializable 112
serializable versus early release of

locks 142
two-phase locking 140

scheduling of transactions 112
schema

exporting 542
scripts

running in Interactive SQL 554
security

hiding objects 670
procedures 612

select list
about 211
aliases 213
calculated columns 215
EXCEPT statements 251
in access plans 424
INTERSECT statements 251
UNION operation 252
UNION statements 251

SELECT statement
about 208
aliases 213
character data 225
column headings 213
column order 212
cursors 646
INSERT from 357
INTO clause 641
keys and query access 182
specifying rows 219
strings in display 214
Transact-SQL 459
variables 461

selecting all columns from a table 211
selecting specific columns from a table

212
selectivity

item in access plans 425
reading in access plans 433

selectivity estimates
reading in access plans 433
using a partial index scan 400

self-joins 281

722

Index

SELF_RECURSION option
Adaptive Server Enterprise 464

semantic query transformations 404
semantic transformations

about 407
semicolon

command delimiter 661
semijoin

query execution algorithms 381, 382,
384

sending native statements to remote
servers 577

separate primary and foreign key indexes
183

sequential scans
about 380
disk allocation and performance 392

sequential table scans
about 380
disk allocation and performance 392

serializable schedules
about 112
effect of 113
two-phase locking 140
versus early release of locks 142

server capabilities
remote data access 583

server classes
about 560
asajdbc 591
asaodbc 595
asejdbc 592
aseodbc 595
db2odbc 597
defining 560
msodbc 600
ODBC 594, 602
oraodbc 599

server classes for remote data access 589
server side loading 522
server state

Index Consultant 70
servers

graphing with the Performance
Monitor 188

starting a database without connecting
35

servers and databases
compatibility 443

SET clause
UPDATE statement 362

SET DEFAULT action
about 95

set membership test 350
=ANY 336
negation of 336

SET NULL action
about 95

set operations
about 251
NULL 254
rules 252

SET OPTION statement
Transact-SQL 451

setting breakpoints
debugger 685

setting database options 32
setting options for Transact-SQL

compatibility 451
setting properties for database objects 32
setting the isolation level 106
setting the isolation level from an

ODBC-enabled application 107
shared objects

calling from procedures 664
shared versus exclusive locks 133
short plans

about 427
Interactive SQL 434
SQL functions 434

SIGNAL statement
procedures 650
Transact-SQL 470

single group by
query execution algorithms 388

sort order
ORDER BY clause 244

sorted block joins
query execution algorithms 382

sorting
query execution algorithms 389
with an index 184

sorting and unions 389
sorting query results 184

723

Index

source code window
setting breakpoints 685

sp_addgroup system procedure
Transact-SQL 447

sp_addlogin system procedure
support 443
Transact-SQL 447

sp_adduser system procedure
Transact-SQL 447

sp_bindefault procedure
Transact-SQL 444

sp_bindrule procedure
Transact-SQL 444

sp_changegroup system procedure
Transact-SQL 447

sp_dboption system procedure
Transact-SQL 451

sp_dropgroup system procedure
Transact-SQL 447

sp_droplogin system procedure
Transact-SQL 447

sp_dropuser system procedure
Transact-SQL 447

special IDENTITY column 456
special Transact-SQL timestamp column

and data type 454
specialized joins 281
specifying a consolidated database 33
specifying dates and times in procedures

662
specifying proxy table locations 569
SQL

differences from other SQL dialects
474

entering 209
SQL 3 compliance seeSQL standards
SQL 92 compliance seeSQL standards
SQL 99 compliance seeSQL standards
SQL Anywhere Studio

documentation x
SQL queries 209
SQL Remote

remote data access 587
replicating and concurrent transactions

148
SQL Server and remote access 600
SQL standards 3

compliance 473
GROUP BY clause 258
non-ANSI joins 268

SQL statements
logging in Sybase Central 34
writing compatible SQL statements

458
SQL statements allowed in procedures

and triggers 636
SQL statements for implementing

integrity constraints 78
SQL-3 compliance seeSQL standards
SQL-92 compliance seeSQL standards
SQL-99 compliance seeSQL standards
SQL/3 compliance seeSQL standards
SQL/92 compliance seeSQL standards
SQL/99 compliance seeSQL standards
SQL/XML

about 490
SQL3 compliance seeSQL standards
SQL_TXN_ISOLATION 108
SQL_TXN_READ_COMMITTED

isolation level 107
SQL_TXN_READ_UNCOMMITTED

isolation level 107
SQL_TXN_REPEATABLE_READ

isolation level 107
SQL_TXT_SERIALIZABLE

isolation level 107
SQLCA.lock

selecting isolation levels 107
versus isolation levels 105

SQLCODE variable
introduction 649

SQLSetConnectOption 108
SQLSTATE variable

introduction 649
standard output

redirecting to files 534
standards seeSQL standards
standards and compatibility seeSQL

standards
star joins 282
starting

Index Consultant 65
starting a database without connecting 35
statement-level triggers 463

724

Index

statements
CALL 611, 616, 633, 637
CASE 633
CLOSE 646
COMMIT 634, 660
compound 634
CREATE DATABASE 443
CREATE DEFAULT 444
CREATE DOMAIN 444
CREATE PROCEDURE 613, 636
CREATE RULE 444
CREATE TABLE 458
CREATE TRIGGER 625
DECLARE 634, 646, 650
DISK 444
DROP DATABASE 443
DUMP DATABASE 443
DUMP TRANSACTION 443
EXECUTE IMMEDIATE 658
FETCH 646
FOR 633
GRANT 447
IF 633
LEAVE 633
LOAD DATABASE 443
LOAD TRANSACTION 443
logging 34
LOOP 633, 646
MESSAGE 650
OPEN 646
optimization 368
OUTPUT 534
RAISERROR 470
RETURN 640
REVOKE 447
ROLLBACK 464, 660
SELECT 459, 461, 641
SIGNAL 470, 650
WHILE 633

statements allowed in batches 663
statistics

access plans 420, 422
adding to the Performance Monitor189
available 191
column statistics 369
displaying 191
monitoring 187

performance 190
removing to the Performance Monitor

189
updating column statistics 371

statistics are present and correct 373
steps in optimization 377
stored procedure language

overview 463
stored procedures

common table expressions in 310
debugging 677
Transact-SQL stored procedure

overview 463
using in the FROM clause 218
viewing individual profiling

information 201
viewing profiling data 197
viewing summary profiling data 200

storing values
in common table expressions 312

storing XML documents in relational
databases 481

string and number defaults 83
strings

matching 222
quotation marks 225

structure of procedures and triggers 636
subqueries

about 327, 328
ALL test 334
ANY operator 333
ANY test 333
caching of 418
comparison operators 346
comparison test 331, 332
converting to joins 341, 345
correlated 340, 345
existence test 331, 338
GROUP BY 330
HAVING clause 330
IN keyword 222
nested 343
optimizer internals 345
outer references 330
quantified comparison test 331, 333
rewriting as EXISTS predicates 374
rewriting as joins 341

725

Index

row group selection 330
row selection 329
set membership test 331, 336
types of operators 331
WHERE clause 329, 345

subqueries and joins 341
subqueries in the HAVING clause 330
subquery and function caching 418
subquery comparison test 332
subquery set membership test

about 336
subquery tests 331
subquery transformations during

optimization 404
subquery unnesting 408
subscriptions

data replication and concurrency 148
substituting a value for NULL 228
subtotal rows

construction 247
definition 247
ROLLUP operation 247

subtransactions
and savepoints 102
procedures and triggers 660

summarizing query results using
aggregate functions 232

summarizing, grouping and sorting query
results 231

summary information
ROLLUP operation 247

summary profiling data
events 200
stored procedures and functions 200
triggers 200

summary rows
ROLLUP operation 247

summary values 237
about 232

support
newsgroups xvi

swap space
database cache 178

Sybase Central
altering tables 39
and column defaults 80
column constraints 87

copying database objects 73
copying tables 48
creating databases 28
creating indexes 60
creating tables 37
deleting databases 30
deleting tables 41
displaying system objects 34
displaying system tables 48
dropping views 55
erasing databases 30
installing jConnect metadata support

35
logging SQL statements 34
managing foreign keys 44
managing primary keys 42
modifying views 55
rebuilding databases 540
setting a consolidated database 33
setting database options 32
starting a database without connecting

35
translating procedures 466
validating indexes 61

Sybase Central Performance Monitor 188
symbols

string comparisons 223
syntax-independent optimization 368
SYSCOLSTAT

updating column statistics 371
SYSCOLUMNS view

conflicting name 450
SYSINDEX table

index information 71
SYSINDEXES view

conflicting name 450
index information 71

SYSIXCOL table
index information 71

sysservers system table
remote servers 562

SYSTABLE system table
view information 56

system administrator
Adaptive Server Enterprise 445

system catalog

726

Index

Adaptive Server Enterprise
compatibility 445

system functions
tsequal 455

system objects 34
displaying 48

system security officer
Adaptive Server Enterprise 445

system tables
Adaptive Server Enterprise

compatibility 445
and indexes 71
displaying 48
information about referential integrity

97
owner 445
Transact-SQL name conflicts 450
views 56

system triggers
implementing referential integrity

actions 95
system views

and indexes 71
information about referential integrity

97
SYSVIEWS view

view information 56

T
table and page sizes 393
table expressions

how they are joined 267
in key joins 295
syntax 264

table fragmentation
about 193

table names
fully qualified in procedures 661
identifying 209
procedures and triggers 661

table scans
about 380
disk allocation and performance 392

table size
about 393

table structures for import 525
tables

adding keys to 42, 44, 45
altering 38, 39
bitmaps 393
browsing data 41
column names 23
constraints 24
copying 48
copying rows 360
correlation names 218
creating 37
creating proxy tables in SQL 571
creating proxy tables in Sybase

Central 570
defragmenting all tables in a database

194
defragmenting individual tables in a

database 195
deleting 41
displaying primary keys in Sybase

Central 42
displaying references from other tables

44
dropping 41
editing data 41
exporting 537
fragmentation 193
group reads 393
importing 530
listing remote 566
managing foreign keys 43–45
managing primary keys 42
managing table constraints 87
naming in queries 218
properties 23
proxy 569
remote access 560
structure 38
system tables 48
Transact-SQL 458
work tables 185
working with 37

technical support
newsgroups xvi

temporary files
work tables 163

temporary tables
about 72

727

Index

importing data 525, 526
indexes 396
local and global 72
Transact-SQL 459
work tables in query processing 185

testing
database design 15, 21

testing a column for NULL 227
testing set membership with IN

conditions 336
text plans

reading access plans 427
theorems

two-phase locking 141
threads

deadlock when none available 111
times

procedures and triggers 662
TIMESTAMP data type

Transact-SQL 454
tips

performance 161
tips for writing procedures 661
tools

rebuilding databases 540
TOP clause

about 245
top performance tips 161
total benefits

Index Consultant recommendations 69
total cost benefit

Index Consultant recommendations 69
TRACEBACK function 650
trailing blanks

comparisons 220
creating databases 450
Transact-SQL 450

Transact-SQL
about 440
batches 464
creating databases 449
IDENTITY column 456
joins 462
NULL 458
outer join limitations 279
outer joins 278
overview 440

procedures 463
result sets 467
timestamp column 454
trailing blanks 450
triggers 463
variables 468
writing compatible SQL statements

458
writing portable SQL 458

Transact-SQL batch overview 464
Transact-SQL compatibility 439

databases 452
setting database options 451

Transact-SQL procedure language
overview 463

Transact-SQL stored procedure overview
463

Transact-SQL trigger overview 463
transaction blocking

about 110
transaction log

performance 161
role in data replication 149

transaction management
and remote data 581

transaction processing
effects of scheduling 113
performance 102
scheduling 112
serializable scheduling 112
transaction log based replication 149
two-phase locking 140

transaction scheduling
effects of 113

transactions
about 100
blocking 110, 111, 122
completing 101
concurrency 102
data modification 356
deadlock 111
interference between 110, 122
managing 581
more than one at once 102
procedures and triggers 660
remote data access 581
replicating concurrent 148

728

Index

savepoints 102
starting 101
sub-transactions and savepoints 102
using 101

transactions and data modification 356
transactions and isolation levels 99
transactions and savepoints in procedures

and triggers 660
transactions processing

blocking 110, 122
transformations

rewrite optimization 407
trantest 195
trigger creation wizard

using 625
triggers

about 609
altering 628
benefits of 612
command delimiter 661
creating 625
cursors 646
dates 662
deleting 629
error handling 649
exception handlers 654
executing 627
execution permissions 629
overview 611
recursion 464
ROLBACK statement 464
savepoints 660
SQL statements allowed in 636
statement-level 463
structure 636
times 662
Transact-SQL 453, 463
using 624
viewing individual profiling

information 202
viewing summary profiling data 200
warnings 653

troubleshooting
ANY operator 333
deadlocks 111
debugging classes 681
performance 161

remote data access 587
TRUNCATE TABLE statement

about 366
try using Adaptive Server Anywhere’s

compression features 166
tsequal function 455
turn off autocommit mode 165
tutorials

dirty reads 116
implications of locking 126
isolation levels 116
non-repeatable reads 119
phantom locks 126
phantom rows 123

two-phase locking 140
two-phase locking theorem 141
types of explicit join conditions 270
types of index 401
types of locks 132
types of semantic transformations 407
typical transactions at various isolation

levels 113
typical types of inconsistencies 104

U
uncorrelated subqueries

about 345
underlying assumptions

optimizer 372
understanding complex outer joins 276
understanding group by 238
union all

query execution algorithms 389
UNION operation

combining queries 251
NULL 254
rules 252

unions
query execution algorithms 389

unique keys
generating and concurrency 145

unique results
limiting 217

uniqueness
enforcing with an index 400

UNKNOWN
and NULL 228

729

Index

unknown values. about 226
unload database wizard

about 541
using 536

UNLOAD statement
about 532

UNLOAD TABLE statement
about 532

unloading and reloading
databases 543–545

unloading databases
about 539
using 536

unnecessary distinct elimination 408
unserializable transaction scheduling

effects of 113
unused indexes

Index Consultant recommendations 69
UPDATE statement

locking during 138
using 362

updates tab
Index Consultant recommendations 69

updating column statistics 371
upgrade database wizard

installing jConnect metadata support
35

upgrading databases 541
use and appropriate page size 170
use bulk operations methods 166
use fully-qualified names for tables in

procedures 661
use indexes effectively 162
use of work tables in query processing

185
use the WITH EXPRESS CHECK option

when validating tables 166
user IDs

Adaptive Server Enterprise 446
case sensitivity 453
default 81

user-defined data types 89
CHECK constraints 86
creating 89, 90
deleting 91

user-defined functions
about 620

caching 418
calling 621
creating 620
dropping 622
execution permissions 623
external functions 664
parameters 638

users
occasionally connected 148

uses for locks 133
using aggregate functions with distinct

235
using CHECK constraints on columns 85
using CHECK constraints on tables 86
using column defaults 79
using comparison operators in the

WHERE clause 220
using compound statements 634
using count (*) 235
using cursors in procedures and triggers

646
using cursors on SELECT statements in

procedures 646
using domains 89
using exception handlers in procedures

and triggers 654
using FOR XML AUTO 496
using FOR XML EXPLICIT 499
using FOR XML RAW 494
using foreign keys to improve query

performance 182
using group by with aggregate functions

237
using joins in delete, update, and insert

statements 268
using keys to improve query performance

182
using lists in the WHERE clause 222
USING parameter value in the CREATE

SERVER statement 592
using primary keys to improve query

performance 182
using procedures, triggers, and batches

609
using ranges (between and not between)

in the WHERE clause 221
using remote procedure calls 578

730

Index

using SELECT statements in batches 663
using subqueries 327
using subqueries in the WHERE clause

329
using Sybase Central to translate stored

procedures 466
using table and column constraints 85
using the cache to improve performance

176
using the EXECUTE IMMEDIATE

statement in procedures 658
using the RAISERROR statement in

procedures 470
using the WHERE clause for join

conditions 270
using the WITH CHECK OPTION

clause 52
using transaction and isolation levels 99
using transactions 101
using views 52
using views with Transact-SQL outer

joins 280
using XML in the database 479
UUIDs

compared to global autoincrement 82
default column value 82
generating 145

V
validating

indexes 61
validating tables

WITH EXPRESS CHECK 166
validation

column constraints 24
ValuePtr parameter

about 107
variables

assigning 461
debugging 684
local 461
SELECT statement 461
SET statement 461
Transact-SQL 468

vector aggregates 237
verifying

database design 21

verifying that procedure input arguments
are passed correctly 662

view creation wizard
using 51

viewing
table data 41
view data 56

viewing procedure profiling data
Sybase Central 199

viewing procedure profiling information
in Interactive SQL 202

viewing profiling information for a
specific procedure in Interactive
SQL 203

viewing the isolation level 109
views

browsing data 56
check option 52
common table expressions 305
copying 52
creating 50
deleting 55
FROM clause 218
in key joins 301
in natural joins 290
in outer joins 278
modifying 54
SYSCOLUMNS 450
SYSINDEXES 450
updating 52
using 52
working with 50

views in the system tables 56
virtual indexes

about 64
Index Consultant 64
Index Consultant analysis step 67

virtual memory
a scarce resource 374

W
waiting

to access locked rows 122
to verify referential integrity 138

waiting to access locked rows
deadlock 110

warnings

731

Index

procedures and triggers 653
Watcom-SQL

about 440
writing compatible SQL statements

458
when to create an index 395
when to use indexes 58
WHERE clause

about 219
compared to HAVING 242
GROUP BY clause 240
joins 270
NULL values 227
performance 184, 405
string comparisons 223
subqueries 329
UPDATE statement 363

where you can use aggregate functions
233

WHILE statement
syntax 633

wildcards
LIKE operator 224
string comparisons 223

Windows CE
creating databases 28

Windows Performance Monitor
about 190

WITH CHECK OPTION clause
about 52

WITH clause 305
optimizer algorithm 381

WITH EXPRESS CHECK
performance 166

wizards
add foreign key 44
create database 28
data migration 548
domain creation 89
erase database 30
import 528
index creation 60
procedure creation 613
proxy table creation 570
remote procedure creation 578, 613
remote server creation 563
trigger creation 625

upgrade database 35
view creation 51

work tables
about 185
performance tips 163
query processing 185

working with breakpoints 685
working with column defaults in Sybase

Central 80
working with database objects 25
working with databases 27
working with external logins 567
working with indexes 58
working with proxy tables 569
working with remote servers 562
working with table and column

constraints in Sybase Central 87
working with tables 37
working with views 50
workload capture

pausing 65
stopping 65

workloads
analyzing 63
capturing 63, 66
defined 63
Index Consultant 63
understanding 66

write locks 132
writing an EXPLICIT mode query 502
writing compatible queries 459
writing compatible SQL statements 458

X
XML

defined 480
exporting data as from Interactive SQL

482
exporting data as using the DataSet

object 482
exporting relational data as 482
format 524
importing as relational data 483
importing using the DataSet object 488
obtaining query results as XML 491
storing in relational databases 481
using FOR XML AUTO 496

732

Index

using FOR XML EXPLICIT 499
using FOR XML RAW 494
using in Adaptive Server Anywhere

databases 479
XML and Adaptive Server Anywhere 480
XML data type

using 481
xml directive

using 508
XMLAGG function

using 510
XMLCONCAT function

using 511
XMLELEMENT function

using 512
XMLFOREST function

using 514
XMLGEN function

using 515

733

	Adaptive Server Anywhere SQL User's Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The Adaptive Server Anywhere sample database
	Finding out more and providing feedback

	Designing and Creating Databases
	Designing Your Database
	Introduction
	Database design concepts
	Entities
	Relationships
	Changing many-to-many relationships into entities

	The design process
	Step 1:Identify entities and relationships
	Entity and relationship example
	Step 2:Identify the required data
	Step 3:Normalize the data
	Step 4:Resolve the relationships
	Step 5:Verify the design

	Designing the database table properties
	Choosing column names
	Choosing data types for columns
	Choosing constraints

	Working with Database Objects
	Introduction
	Working with databases
	Creating a database
	Creating databases (Sybase Central)
	Creating databases (SQL)
	Creating databases (command line)

	Erasing a database
	Disconnecting from a database
	Setting properties for database objects
	Setting database options
	Specifying a consolidated database
	Displaying system objects in a database
	Logging SQL statements as you work with a database
	Starting a database without connecting
	Installing the jConnect metadata support to an existing database

	Working with tables
	Creating tables
	Altering tables
	Altering tables (Sybase Central)
	Altering tables (SQL)

	Deleting tables
	Browsing the information in tables
	Managing primary keys
	Managing primary keys (Sybase Central)
	Managing primary keys (SQL)

	Managing foreign keys
	Managing foreign keys (Sybase Central)
	Managing foreign keys (SQL)

	Working with computed columns
	Inserting and updating computed columns
	When computed columns are recalculated

	Copying tables or columns within/between databases
	Displaying system tables

	Working with views
	Creating views
	Using views
	Using the WITH CHECK OPTION clause
	Modifying views
	Deleting views
	Browsing the information in views
	Views in the system tables

	Working with indexes
	Choosing a set of indexes
	When to use indexes
	Use indexes for frequently-searched columns
	Using clustered indexes
	Creating indexes
	Validating indexes
	Dropping indexes
	Index Consultant overview
	Starting the Index Consultant
	Stopping the Index Consultant
	Understanding the Index Consultant
	Understanding workloads
	Understanding the analysis
	Understanding the recommendations
	Assessing the recommendations
	Implementing the recommendations

	Indexes in the system tables

	Working with temporary tables
	Copying database objects in Sybase Central

	Ensuring Data Integrity
	Data integrity overview
	How data can become invalid
	Integrity constraints belong in the database
	How database contents change
	Data integrity tools
	SQL statements for implementing integrity constraints

	Using column defaults
	Creating column defaults
	Modifying and deleting column defaults
	Working with column defaults in Sybase Central
	Current date and time defaults
	The user ID default
	The AUTOINCREMENT default
	The NEWID default
	The NULL default
	String and number defaults
	Constant expression defaults

	Using table and column constraints
	Using CHECK constraints on columns
	Using CHECK constraints on tables
	Inheriting column CHECK constraints from domains
	Working with table and column constraints in Sybase Central
	Modifying and deleting CHECK constraints

	Using domains
	Creating domains (Sybase Central)
	Creating domains (SQL)
	Deleting domains

	Enforcing entity and referential integrity
	Enforcing entity integrity
	If a client application breaches entity integrity
	Primary keys enforce entity integrity
	Enforcing referential integrity
	Foreign keys enforce referential integrity
	Losing referential integrity
	If a client application breaches referential integrity
	Referential integrity actions
	Referential integrity checking

	Integrity rules in the system tables

	Using Transactions and Isolation Levels
	Introduction to transactions
	Using transactions
	Introduction to concurrency
	Savepoints within transactions

	Isolation levels and consistency
	Typical types of inconsistency
	Cursor instability

	Setting the isolation level
	Setting the isolation level from an ODBC-enabled application
	Changing isolation levels within a transaction

	Viewing the isolation level

	Transaction blocking and deadlock
	Transaction blocking
	The BLOCKING option
	Deadlock

	Choosing isolation levels
	Serializable schedules
	Typical transactions at various isolation levels
	Improving concurrency at isolation levels 2 and 3
	Reducing the impact of locking

	Isolation level tutorials
	Dirty read tutorial
	Non-repeatable read tutorial
	Phantom row tutorial
	Practical locking implications tutorial

	How locking works
	Objects that can be locked
	Types of locks
	Locking during queries
	Locking during inserts
	Locking during updates
	Locking during deletes
	Two-phase locking
	Early release of read locks
	Special optimizations

	Particular concurrency issues
	Primary key generation
	Data definition statements and concurrency

	Replication and concurrency
	Summary

	Monitoring and Improving Performance
	Performance analysis tools
	Request-level logging
	Index Consultant
	Procedure profiling
	Graphical plan
	Performance Monitor
	Timing utilities
	Concurrency

	Top performance tips
	Always use a transaction log
	Increase the cache size
	Normalize your table structure
	Use indexes effectively
	Place different files on different devices
	Turn off autocommit mode
	Use bulk operations methods
	Use the WITH EXPRESS CHECK option when validating tables
	Try using Adaptive Server Anywhere's compression features
	Reduce the number of requests between client and server
	Reduce table widths
	Reduce primary key width
	Declare constraints
	Use appropriate data types
	Use AUTOINCREMENT to create primary keys
	Replace expensive triggers
	Minimize cascading referential actions
	Pay attention to the order of columns
	Upgrade to take advantage of new features
	Rebuild your database
	Examine your database and server configurations
	Use an appropriate page size
	Examine file, table, and index fragmentation
	Acquire adequate hardware
	Choose the Optimizer's priority
	Specify the correct cursor type
	Consider collecting statistics on small tables
	Use user-estimates sparingly
	Reduce expensive user-defined functions

	Using the cache to improve performance
	Limiting the memory used by the cache
	Dynamic cache sizing (Windows NT/2000/XP, Windows 95/98/Me)
	Dynamic cache sizing (UNIX)
	Monitoring cache size

	Using indexes to improve performance
	Using keys to improve query performance
	Using primary keys to improve query performance
	Using foreign keys to improve query performance
	Separate primary and foreign key indexes

	Sorting query results
	Use of work tables in query processing
	Monitoring database performance
	Obtaining database statistics from a client application
	Monitoring database statistics from Sybase Central
	Opening the Sybase Central Performance Monitor
	Adding and removing statistics
	Configuring the Sybase Central Performance Monitor

	Monitoring database statistics from Windows Performance Monitor

	Fragmentation
	File fragmentation
	Table fragmentation
	Index fragmentation
	Monitoring query performance

	Profiling database procedures
	Enabling procedure profiling
	Resetting procedure profiling
	Disabling procedure profiling
	Viewing procedure profiling information in Sybase Central
	Viewing profiling information for a specific procedure

	Viewing procedure profiling information in Interactive SQL
	Viewing profiling information for a specific procedure in Interactive SQL

	Querying and Modifying Data
	Queries: Selecting Data from a Table
	Query overview
	Queries are made up of clauses
	SQL queries

	The SELECT list: specifying columns
	Selecting all columns from a table
	Selecting specific columns from a table
	Renaming columns in query results
	Character strings in query results
	Computing values in the SELECT list
	Eliminating duplicate query results

	The FROM clause: specifying tables
	The WHERE clause: specifying rows
	Using comparison operators in the WHERE clause
	Using ranges (between and not between) in the WHERE clause
	Using lists in the WHERE clause
	Matching character strings in the WHERE clause
	Character strings and quotation marks
	Unknown Values: NULL
	Testing a column for NULL
	Properties of NULL

	Connecting conditions with logical operators

	Summarizing, Grouping and Sorting Query Results
	Summarizing query results using aggregate functions
	Where you can use aggregate functions
	Aggregate functions and data types
	Using COUNT(*)
	Using aggregate functions with DISTINCT
	Aggregate functions and NULL

	The GROUP BY clause: organizing query results into groups
	Using GROUP BY with aggregate functions

	Understanding GROUP BY
	How queries with GROUP BY are executed
	GROUP BY with multiple columns
	WHERE clause and GROUP BY

	The HAVING clause: selecting groups of data
	The ORDER BY clause: sorting query results
	Explicitly limiting the number of rows returned by a query
	ORDER BY and GROUP BY

	The ROLLUP operation: adding summary information to GROUP BY queries
	Performing set operations on query results with UNION, INTERSECT, and EXCEPT
	Combining sets with the UNION operation
	Using EXCEPT and INTERSECT
	Rules for set operations
	Set operators and NULL

	Standards and compatibility
	GROUP BY and the SQL/92 standard
	Compatibility with Adaptive Server Enterprise

	Joins: Retrieving Data from Several Tables
	Sample database schema
	How joins work
	Joins overview
	The FROM clause
	Join conditions
	Joined tables
	Joining two tables
	Joining more than two tables
	Join compatible data types
	Using joins in delete, update, and insert statements
	Non-ANSI joins

	Explicit join conditions (the ON phrase)
	Generated joins and the ON phrase
	Types of explicit join conditions
	Using the WHERE clause for join conditions

	Cross joins
	Commas

	Inner and outer joins
	Inner joins
	Outer joins
	Outer joins and join conditions
	Understanding complex outer joins
	Outer joins of views and derived tables

	Transact-SQL outer joins (*= or =*)
	Transact-SQL outer join limitations
	Using views with Transact-SQL outer joins
	How NULL affects Transact-SQL joins

	Specialized joins
	Self-joins
	Duplicate correlation names in joins (star joins)
	Joins involving derived tables

	Natural joins
	Natural joins with an ON phrase
	Natural joins of table expressions
	Natural joins of views and derived tables

	Key joins
	Key joins with an ON phrase
	Key joins when there are multiple foreign key relationships
	Key joins of table expressions
	Key joins of table expressions that do not contain commas
	Key joins of table expression lists
	Key joins of lists and table expressions that do not contain commas

	Key joins of views and derived tables
	Rules describing the operation of key joins

	Common Table Expressions
	About common table expressions
	Where common table expressions are permitted

	Typical applications of common table expressions
	Recursive common table expressions
	Selecting hierarchical data
	Restrictions on recursive common table expressions

	Parts explosion problems
	Datatype declarations in recursive common table expressions
	Least distance problem
	Using multiple recursive common table expressions

	Using Subqueries
	Introduction to subqueries
	Using subqueries in the WHERE clause
	Subqueries in the HAVING clause
	Subquery tests

	Subquery comparison test
	Quantified comparison tests with ANY and ALL
	The ANY test
	The ALL test

	Testing set membership with IN conditions
	Existence test
	Outer references
	Subqueries and joins
	Nested subqueries
	How subqueries work
	Correlated subqueries
	Converting subqueries in the WHERE clause to joins
	Comparison operators
	Quantified comparison test
	Set membership test
	Existence test

	Adding, Changing, and Deleting Data
	Data modification statements
	Permissions for data modification
	Transactions and data modification

	Adding data using INSERT
	Inserting values into all columns of a row
	Inserting values into specific columns
	Adding new rows with SELECT
	Inserting documents and images

	Changing data using UPDATE
	Changing data using INSERT
	Deleting data using DELETE
	Deleting all rows from a table

	Query Optimization and Execution
	The role of the optimizer
	How the optimizer works
	Optimizer estimates
	Updating column statistics

	Automatic performance tuning
	Underlying assumptions
	Minimal administration work
	Optimize for first rows or for entire result set
	Statistics are present and correct
	An index can usually be found to satisfy a predicate
	Virtual Memory is a scarce resource
	Rewriting subqueries as EXISTS predicates

	Access plan caching
	Steps in optimization

	Query execution algorithms
	Accessing tables
	Index scans
	Sequential table scans
	IN list
	Recursive table

	Join algorithms
	Nested loops join
	Nested loops semijoin
	Nested block join and sorted block
	Hash join
	Hash semijoin
	Hash antisemijoin
	Merge join
	Recursive hash join
	Recursive left outer hash join

	Duplicate elimination
	Hash distinct
	Ordered distinct
	Indexed distinct

	Grouping
	Hash group by
	Ordered group by
	Indexed group by
	Single group by

	Sorting and unions
	Merge sort
	Union all
	Recursive union
	Sort Top N

	Miscellaneous
	Filter, pre-filter and hash-filter
	Lock
	Row limit
	Bloom filter
	Explode

	Physical data organization and access
	Disk allocation for inserted rows
	Table and page sizes

	Indexes
	When to create an index
	Improving index performance
	Composite indexes

	Other uses for indexes
	Types of index
	Hash B-tree indexes
	Compressed B-tree indexes
	Recommended page sizes

	Semantic query transformations
	Predicate analysis
	Types of semantic transformations
	Unnecessary DISTINCT elimination
	Subquery unnesting
	Predicate pushdown into GROUPed or UNION views
	Join elimination
	Optimization for minimum or maximum functions
	IN-list optimization
	LIKE optimizations
	Conversion of outer joins to inner joins
	Discovery of exploitable conditions
	Elimination of unnecessary case translation

	Subquery and function caching
	Reading access plans
	Text plans
	Graphical plans
	Accessing the plan
	Accessing the plan in Interactive SQL
	Accessing the Plan with SQL functions

	SQL Dialects and Compatibility
	Transact-SQL Compatibility
	An overview of Transact-SQL support
	Adaptive Server architectures
	Servers and databases
	Device management
	Defaults and rules
	System tables
	Administrative roles
	Users and groups

	Configuring databases for Transact-SQL compatibility
	Creating a Transact-SQL-compatible database
	Setting options for Transact-SQL compatibility
	Case sensitivity
	Ensuring compatible object names
	The special Transact-SQL timestamp column and data type
	The special IDENTITY column
	Retrieving IDENTITY column values with @@identity

	Writing compatible SQL statements
	General guidelines for writing portable SQL
	Creating compatible tables
	Writing compatible queries
	Compatibility of joins

	Transact-SQL procedure language overview
	Transact-SQL stored procedure overview
	Transact-SQL trigger overview
	Transact-SQL batch overview

	Automatic translation of stored procedures
	Using Sybase Central to translate stored procedures

	Returning result sets from Transact-SQL procedures
	Variables in Transact-SQL procedures
	Error handling in Transact-SQL procedures
	Using the RAISERROR statement in procedures
	Transact-SQL-like error handling in the Watcom-SQL dialect

	Differences from Other SQL Dialects
	Adaptive Server Anywhere SQL features

	XML in the Database
	Using XML in the Database
	What is XML?
	XML and Adaptive Server Anywhere

	Storing XML documents in relational databases
	Exporting relational data as XML
	Exporting relational data as XML from Interactive SQL
	Exporting relational data as XML using the DataSet object

	Importing XML documents as relational data
	Importing XML using OPENXML
	Importing XML using the DataSet object

	Obtaining query results as XML
	Using the FOR XML clause to retrieve query results as XML
	FOR XML and binary data
	FOR XML and NULL values
	Invalid column names
	FOR XML examples

	Using FOR XML RAW
	Using FOR XML AUTO
	Using FOR XML EXPLICIT

	Using SQL/XML to obtain query results as XML
	Using the XMLAGG function
	Using the XMLCONCAT function
	Using the XMLELEMENT function
	Using the XMLFOREST function
	Using the XMLGEN function

	Remote Data and Bulk Operations
	Importing and Exporting Data
	Introduction to import and export
	Performance considerations of moving data

	Importing and exporting data
	Data formats
	Table structures for import
	Conversion errors during import
	Outputting NULLs

	Importing
	Import tools
	Importing databases
	Importing data
	Importing a table

	Exporting
	Export tools
	Exporting query results
	Exporting databases
	Exporting tables

	Rebuilding databases
	Rebuild tools
	Rebuild file formats
	Exporting table data or table schema
	Reloading a Database
	Rebuilding a database not involved in replication
	Rebuilding a database involved in replication
	Minimizing downtime during rebuilding

	Extracting data
	Migrating databases to Adaptive Server Anywhere
	Running SQL command files
	Writing output to a file
	Executing command files
	Saving, loading, and running command files

	Adaptive Server Enterprise compatibility

	Accessing Remote Data
	Introduction
	Accessing remote data from PowerBuilder DataWindows

	Basic concepts to access remote data
	Remote table mappings
	Server classes

	Working with remote servers
	Creating remote servers
	Creating remote servers using Sybase Central

	Deleting remote servers
	Altering remote servers
	Listing the remote tables on a server
	Listing remote server capabilities

	Working with external logins
	Creating external logins
	Dropping external logins

	Working with proxy tables
	Specifying proxy table locations
	Creating proxy tables (Sybase Central)
	Creating proxy tables with the CREATE EXISTING TABLE statement
	Creating a proxy table with the CREATE TABLE statement
	Listing the columns on a remote table

	Joining remote tables
	Joining tables from multiple local databases
	Sending native statements to remote servers
	Using remote procedure calls (RPCs)
	Creating remote procedures
	Dropping remote procedures

	Transaction management and remote data
	Remote transaction management overview
	Restrictions on transaction management

	Internal operations
	Query parsing
	Query normalization
	Query preprocessing
	Server capabilities
	Complete passthrough of the statement
	Partial passthrough of the statement

	Troubleshooting remote data access
	Features not supported for remote data
	Case sensitivity
	Connectivity problems
	General problems with queries
	Queries blocked on themselves
	Managing remote data access connections

	Server Classes for Remote Data Access
	Overview
	JDBC-based server classes
	Configuration notes for JDBC classes
	Server class asajdbc
	USING parameter value in the CREATE SERVER statement

	Server class asejdbc
	Data type conversions: JDBC and Adaptive Server Enterprise

	ODBC-based server classes
	Defining ODBC external servers
	Server class asaodbc
	Server class aseodbc
	Data type conversions: ODBC and Adaptive Server Enterprise

	Server class db2odbc
	Data type conversions: DB2

	Server class oraodbc
	Data type conversions: Oracle

	Server class mssodbc
	Data type conversions: Microsoft SQL Server

	Server class odbc
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft Access (Microsoft 3.51.171300)
	Microsoft FoxPro (Microsoft 3.51.171300)
	Lotus Notes SQL 2.0

	Stored Procedures and Triggers
	Using Procedures, Triggers, and Batches
	Procedure and trigger overview
	Benefits of procedures and triggers
	Introduction to procedures
	Creating procedures
	Altering procedures
	Calling procedures
	Copying procedures in Sybase Central
	Deleting procedures
	Returning procedure results in parameters
	Returning procedure results in result sets

	Introduction to user-defined functions
	Creating user-defined functions
	Calling user-defined functions
	Dropping user-defined functions
	Permissions to execute user-defined functions

	Introduction to triggers
	Creating triggers
	Executing triggers
	Altering triggers
	Dropping triggers
	Trigger execution permissions

	Introduction to batches
	Control statements
	Using compound statements
	Declarations in compound statements
	Atomic compound statements

	The structure of procedures and triggers
	SQL statements allowed in procedures and triggers
	Declaring parameters for procedures
	Passing parameters to procedures
	Passing parameters to functions

	Returning results from procedures
	Returning a value using the RETURN statement
	Returning results as procedure parameters
	Returning result sets from procedures
	Returning multiple result sets from procedures
	Returning variable result sets from procedures

	Using cursors in procedures and triggers
	Cursor management overview
	Using cursors on SELECT statements in procedures

	Errors and warnings in procedures and triggers
	Default error handling in procedures and triggers
	Error handling with ON EXCEPTION RESUME
	Default handling of warnings in procedures and triggers
	Using exception handlers in procedures and triggers
	Nested compound statements and exception handlers

	Using the EXECUTE IMMEDIATE statement in procedures
	Transactions and savepoints in procedures and triggers
	Tips for writing procedures
	Check if you need to change the command delimiter
	Remember to delimit statements within your procedure
	Use fully-qualified names for tables in procedures
	Specifying dates and times in procedures
	Verifying that procedure input arguments are passed correctly

	Statements allowed in batches
	Using SELECT statements in batches

	Calling external libraries from procedures
	Creating procedures and functions with external calls
	External function prototypes
	Passing parameters to external functions
	Hiding the contents of procedures, functions, triggers and views

	Debugging Logic in the Database
	Introduction to debugging in the database
	Debugger features
	Requirements for using the debugger

	Tutorial: Getting started with the debugger
	Lesson 1: Connect to a database and start the debugger
	Start the debugger

	Lesson 2: Debug a stored procedure
	Run the debugger_tutorial procedure
	Diagnose the bug
	Confirm the diagnosis and fix the bug

	Lesson 3: Debug a Java class
	Prepare the database
	Display Java source code in the debugger
	Set a breakpoint
	Run the method
	Step through source code
	Inspect and modify variables

	Working with breakpoints
	Setting breakpoints
	Disabling and enabling breakpoints
	Editing breakpoint conditions

	Working with variables
	Working with connections

	Index

