
Adaptive Server® Anywhere
SQL Reference

Part number: 38129-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual xi
SQL Anywhere Studio documentation xii
Documentation conventions . xv
The Adaptive Server Anywhere sample database xvii
Finding out more and providing feedback xviii

I SQL 1

1 SQL Language Elements 3
Keywords . 4
Identifiers . 7
Strings . 8
Operators . 10
Expressions . 15
Search conditions . 22
Special values . 32
Variables . 37
Comments . 47
NULL value . 48

2 SQL Data Types 51
Character data types . 52
Numeric data types . 56
Money data types . 63
BIT data type . 64
Date and time data types . 65
Binary data types . 72
Domains . 74
Data type conversions . 76
Year 2000 compliance . 78

3 SQL Functions 83
Function types . 84
Alphabetical list of functions . 97

4 SQL Statements 213
Using the SQL statement reference 220
ALLOCATE DESCRIPTOR statement [ESQL] 223

iii

ALTER DATABASE statement . 225
ALTER DBSPACE statement . 229
ALTER EVENT statement . 231
ALTER FUNCTION statement . 233
ALTER INDEX statement . 234
ALTER PROCEDURE statement . 236
ALTER PUBLICATION statement . 238
ALTER REMOTE MESSAGE TYPE statement [SQL Remote] 240
ALTER SERVER statement . 241
ALTER SERVICE statement . 243
ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink] 246
ALTER SYNCHRONIZATION USER statement [MobiLink] 248
ALTER TABLE statement . 250
ALTER TRIGGER statement . 258
ALTER VIEW statement . 259
ALTER WRITEFILE statement . 261
BACKUP statement . 263
BEGIN statement . 267
BEGIN TRANSACTION statement 270
CALL statement . 273
CASE statement . 275
CHECKPOINT statement . 278
CLEAR statement [Interactive SQL] 279
CLOSE statement [ESQL] [SP] . 280
COMMENT statement . 282
COMMIT statement . 284
CONFIGURE statement [Interactive SQL] 286
CONNECT statement [ESQL] [Interactive SQL] 287
CREATE COMPRESSED DATABASE statement 290
CREATE DATABASE statement . 292
CREATE DBSPACE statement . 297
CREATE DECRYPTED FILE statement 299
CREATE DOMAIN statement . 300
CREATE ENCRYPTED FILE statement 302
CREATE EVENT statement . 304
CREATE EXISTING TABLE statement 310
CREATE EXTERNLOGIN statement 313
CREATE FUNCTION statement . 315
CREATE INDEX statement . 319
CREATE MESSAGE statement [T-SQL] 323
CREATE PROCEDURE statement 324
CREATE PROCEDURE statement [T-SQL] 332
CREATE PUBLICATION statement 334

iv

CREATE REMOTE MESSAGE TYPE statement [SQL Remote] . . . 337
CREATE SCHEMA statement . 339
CREATE SERVER statement . 341
CREATE SERVICE statement . 343
CREATE STATISTICS statement . 346
CREATE SUBSCRIPTION statement [SQL Remote] 347
CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]349
CREATE SYNCHRONIZATION USER statement [MobiLink] 351
CREATE TABLE statement . 361
CREATE TRIGGER statement . 373
CREATE TRIGGER statement [SQL Remote] 377
CREATE TRIGGER statement [T-SQL] 380
CREATE VARIABLE statement . 381
CREATE VIEW statement . 382
CREATE WRITEFILE statement . 384
DEALLOCATE statement . 386
DEALLOCATE DESCRIPTOR statement [ESQL] 387
Declaration section [ESQL] . 388
DECLARE statement . 389
DECLARE CURSOR statement [ESQL] [SP] 390
DECLARE CURSOR statement [T-SQL] 395
DECLARE LOCAL TEMPORARY TABLE statement 397
DELETE statement . 399
DELETE (positioned) statement [ESQL] [SP] 401
DESCRIBE statement [ESQL] . 403
DISCONNECT statement [ESQL] [Interactive SQL] 407
DROP statement . 408
DROP DATABASE statement . 410
DROP CONNECTION statement . 411
DROP EXTERNLOGIN statement . 412
DROP PUBLICATION statement . 413
DROP REMOTE MESSAGE TYPE statement [SQL Remote] 414
DROP SERVER statement . 415
DROP SERVICE statement . 416
DROP STATEMENT statement [ESQL] 417
DROP STATISTICS statement . 418
DROP SUBSCRIPTION statement [SQL Remote] 419
DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink] 420
DROP SYNCHRONIZATION USER statement [MobiLink] 421
DROP VARIABLE statement . 422
EXCEPT operation . 423
EXECUTE statement [ESQL] . 425
EXECUTE statement [T-SQL] . 427

v

EXECUTE IMMEDIATE statement [SP] 429
EXIT statement [Interactive SQL] . 432
EXPLAIN statement [ESQL] . 434
FETCH statement [ESQL] [SP] . 436
FOR statement . 441
FORWARD TO statement . 443
FROM clause . 445
GET DATA statement [ESQL] . 450
GET DESCRIPTOR statement [ESQL] 452
GET OPTION statement [ESQL] . 454
GOTO statement [T-SQL] . 455
GRANT statement . 456
GRANT CONSOLIDATE statement [SQL Remote] 460
GRANT PUBLISH statement [SQL Remote] 462
GRANT REMOTE statement [SQL Remote] 463
GRANT REMOTE DBA statement [SQL Remote] 465
HELP statement [Interactive SQL] . 466
IF statement . 467
IF statement [T-SQL] . 469
INCLUDE statement [ESQL] . 471
INPUT statement [Interactive SQL] 472
INSERT statement . 476
INSTALL JAVA statement . 480
INTERSECT operation . 482
LEAVE statement . 483
LOAD STATISTICS statement . 485
LOAD TABLE statement . 486
LOCK TABLE statement . 493
LOOP statement . 495
MESSAGE statement . 496
OPEN statement [ESQL] [SP] . 498
OUTPUT statement [Interactive SQL] 501
PARAMETERS statement [Interactive SQL] 506
PASSTHROUGH statement [SQL Remote] 507
PREPARE statement [ESQL] . 508
PREPARE TO COMMIT statement 511
PRINT statement [T-SQL] . 512
PUT statement [ESQL] . 513
RAISERROR statement [T-SQL] . 515
READ statement [Interactive SQL] 517
READTEXT statement [T-SQL] . 518
RELEASE SAVEPOINT statement 519
REMOTE RESET statement [SQL Remote] 520

vi

REMOVE JAVA statement . 521
REORGANIZE TABLE statement . 522
RESIGNAL statement . 524
RESTORE DATABASE statement . 525
RESUME statement . 527
RETURN statement . 528
REVOKE statement . 530
REVOKE CONSOLIDATE statement [SQL Remote] 532
REVOKE PUBLISH statement [SQL Remote] 533
REVOKE REMOTE statement [SQL Remote] 535
REVOKE REMOTE DBA statement [SQL Remote] 536
ROLLBACK statement . 537
ROLLBACK TO SAVEPOINT statement 538
ROLLBACK TRIGGER statement . 539
SAVEPOINT statement . 540
SELECT statement . 541
SET statement . 548
SET statement [T-SQL] . 550
SET CONNECTION statement [Interactive SQL] [ESQL] 553
SET DESCRIPTOR statement [ESQL] 554
SET OPTION statement . 556
SET OPTION statement [Interactive SQL] 559
SET REMOTE OPTION statement [SQL Remote] 560
SET SQLCA statement [ESQL] . 562
SETUSER statement . 563
SIGNAL statement . 565
START DATABASE statement . 566
START ENGINE statement [Interactive SQL] 568
START JAVA statement . 569
START LOGGING statement [Interactive SQL] 570
START SUBSCRIPTION statement [SQL Remote] 571
START SYNCHRONIZATION DELETE statement [MobiLink] 573
STOP DATABASE statement . 575
STOP ENGINE statement . 576
STOP JAVA statement . 577
STOP LOGGING statement [Interactive SQL] 578
STOP SUBSCRIPTION statement [SQL Remote] 579
STOP SYNCHRONIZATION DELETE statement [MobiLink] 580
SYNCHRONIZE SUBSCRIPTION statement [SQL Remote] 581
SYSTEM statement [Interactive SQL] 582
TRIGGER EVENT statement . 583
TRUNCATE TABLE statement . 584
UNION operation . 586

vii

UNLOAD statement . 588
UNLOAD TABLE statement . 590
UPDATE statement . 592
UPDATE (positioned) statement [ESQL] [SP] 597
UPDATE statement [SQL Remote] 599
VALIDATE INDEX statement . 602
VALIDATE TABLE statement . 603
WAITFOR statement . 605
WHENEVER statement [ESQL] . 606
WHILE statement [T-SQL] . 607
WRITETEXT statement [T-SQL] . 608

II System Objects 609

5 System Tables 611
DUMMY system table . 614
RowGenerator system table . 615
SYSARTICLE system table . 616
SYSARTICLECOL system table . 617
SYSATTRIBUTE system table . 618
SYSATTRIBUTENAME system table 620
SYSCAPABILITY system table . 621
SYSCAPABILITYNAME system table 622
SYSCHECK system table . 623
SYSCOLLATION system table . 624
SYSCOLLATIONMAPPINGS system table 625
SYSCOLPERM system table . 626
SYSCOLSTAT system table . 627
SYSCOLUMN system table . 628
SYSCONSTRAINT system table . 630
SYSDOMAIN system table . 631
SYSEVENT system table . 632
SYSEVENTTYPE system table . 634
SYSEXTENT system table . 635
SYSEXTERNLOGINS system table 636
SYSFILE system table . 637
SYSFKCOL system table . 638
SYSFOREIGNKEY system table . 639
SYSGROUP system table . 641
SYSINDEX system table . 642
SYSINFO system table . 644
SYSIXCOL system table . 646
SYSJAR system table . 647

viii

SYSJARCOMPONENT system table 648
SYSJAVACLASS system table . 649
SYSLOGIN system table . 651
SYSOPTBLOCK system table . 652
SYSOPTION system table . 653
SYSOPTJOINSTRATEGY system table 654
SYSOPTORDER system table . 655
SYSOPTQUANTIFIER system table 656
SYSOPTREQUEST system table . 657
SYSOPTREWRITE system table . 658
SYSOPTSTAT system table . 659
SYSPROCEDURE system table . 660
SYSPROCPARM system table . 662
SYSPROCPERM system table . 664
SYSPUBLICATION system table . 665
SYSREMOTEOPTION system table 666
SYSREMOTEOPTIONTYPE system table 667
SYSREMOTETYPE system table . 668
SYSREMOTEUSER system table . 669
SYSSCHEDULE system table . 671
SYSSERVERS system table . 673
SYSSQLSERVERTYPE system table 674
SYSSUBSCRIPTION system table 675
SYSSYNC system table . 676
SYSTABLE system table . 678
SYSTABLEPERM system table . 681
SYSTRIGGER system table . 683
SYSTYPEMAP system table . 686
SYSUSERMESSAGES system table 687
SYSUSERPERM system table . 688
SYSUSERTYPE system table . 690
SYSWEBSERVICE system table . 692
Other system tables . 694

6 System Views 695
Introduction . 696
Views for Transact-SQL compatibility 701

7 System Procedures and Functions 705
System procedure overview . 706
System and catalog stored procedures 707
System extended stored procedures 753
Adaptive Server Enterprise system and catalog procedures 763

ix

Index 767

x

About This Manual

Subject This book provides a complete reference for the SQL language used by
Adaptive Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

While other manuals provide more motivation and context for how to carry
out particular tasks, this manual is the place to look for complete listings of
available SQL syntax and system objects.

Audience This manual is for all users of Adaptive Server Anywhere. It includes
material of particular interest to users of MobiLink and SQL Remote. It is to
be used in conjunction with other manuals in the documentation set.

xi

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

xii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

xiii

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

xiv

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xv

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xvi

The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file namedasademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

xvii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xviii

PART I

SQL

This part describes the Adaptive Server Anywhere SQL language, including
data types, functions and statements.

CHAPTER 1

SQL Language Elements

About this chapter This chapter describes the elements and conventions of the SQL language.

Contents Topic: page

Keywords 4

Identifiers 7

Strings 8

Operators 10

Expressions 15

Search conditions 22

Special values 32

Variables 37

Comments 47

NULL value 48

3

Keywords
Each SQL statement contains one or more keywords. SQL is case insensitive
to keywords, but throughout these manuals, keywords are indicated in upper
case.

For example, in the following statement, SELECT and FROM are keywords:

SELECT *
FROM employee

The following statements are equivalent to the one above:

Select *
From employee
select * from employee
sELECT * FRoM employee

Some keywords cannot be used as identifiers without surrounding them in
double quotes. These are called reserved words. Other keywords, such
as DBA, do not require double quotes, and are not reserved words.

Reserved words

Some keywords in SQL are alsoreserved words. To use a reserved word in
a SQL statement as an identifier, you must enclose it in double quotes.
Many, but not all, of the keywords that appear in SQL statements are
reserved words. For example, you must use the following syntax to retrieve
the contents of a table named SELECT.

SELECT *
FROM "SELECT"

Because SQL is not case sensitive with respect to keywords, each of the
following words may appear in upper case, lower case, or any combination
of the two. All strings that differ only in capitalization from one of the
following words are reserved words.

If you are using Embedded SQL, you can use the database library function
SQL_needs_quotesto determine whether a string requires quotation marks.
A string requires quotes if it is a reserved word or if it contains a character
not ordinarily allowed in an identifier.

The SQL keywords in Adaptive Server Anywhere are as follows:

Reserved word Reserved word Reserved word Reserved word

add all alter and

any as asc backup

4

Chapter 1. SQL Language Elements

Reserved word Reserved word Reserved word Reserved word

begin between bigint binary

bit bottom break by

call capability cascade case

cast char char_convert character

check checkpoint close comment

commit connect constraint contains

continue convert create cross

cube current cursor date

dbspace deallocate dec decimal

declare default delete deleting

desc distinct do double

drop dynamic else elseif

encrypted end endif escape

except exception exec execute

existing exists externlogin fetch

first float for foreign

forward from full goto

grant group having holdlock

identified if in index

inner inout insensitive insert

inserting install instead int

integer integrated intersect into

iq is isolation join

key lateral left like

lock login long match

membership message mode modify

natural new no noholdlock

not notify null numeric

5

Reserved word Reserved word Reserved word Reserved word

of off on open

option options or order

others out outer over

passthrough precision prepare primary

print privileges proc procedure

publication raiserror readtext real

reference references release remote

remove rename reorganize resource

restore restrict return revoke

right rollback rollup save

savepoint scroll select sensitive

session set setuser share

smallint some sqlcode sqlstate

start stop subtrans subtransaction

synchronize syntax_error table temporary

then time timestamp tinyint

to top tran trigger

truncate tsequal unbounded union

unique unknown unsigned update

updating user using validate

values varbinary varchar variable

varying view wait waitfor

when where while window

with with_lparen within work

writetext

6

Chapter 1. SQL Language Elements

Identifiers
Function Identifiers are names of objects in the database, such as user IDs, tables, and

columns.

Description Identifiers need to be enclosed in double quotes or square brackets if any of
the following conditions are true:

♦ The identifier contains spaces.

♦ The first character of the identifier is not an alphabetic character (as
defined below).

♦ The identifier contains a reserved word.

♦ The identifier contains characters other than alphabetic characters and
digits.

Alphabetic characters include the alphabet, as well as the underscore
character (_), at sign (@), number sign (#), and dollar sign ($). The database
collation sequence dictates which characters are considered alphabetic or
digit characters.

If the QUOTED_IDENTIFIER database option is set to OFF, double quotes
are used to delimit SQL strings and cannot be used for identifiers. However,
you can always use square brackets to delimit identifiers, regardless of the
setting of QUOTED_IDENTIFIER.

The default setting for the QUOTED_IDENTIFIER option is to OFF for
Open Client and JDBC connections; otherwise the default is ON.

You can represent a quotation mark inside an identifier by following it with
another quotation mark.

Identifiers have a maximum length of 128 bytes.

See also ☞ For a complete list of the reserved words, see“Reserved words” on
page 4.

☞ For information about the QUOTED_IDENTIFIER option, see
“QUOTED_IDENTIFIER option [compatibility]”[ASA Database
Administration Guide,page 620].

Examples The following are all valid identifiers.

Surname
"Surname"
[Surname]
SomeBigName
"Client Number"
"With one double quotation "" mark"

7

Strings
Strings are of the following types:

♦ literal strings

♦ expressions with CHAR or VARCHAR data types.

An expression with a CHAR data type may be a built-in or user-defined
function, or one of the many other kinds of expressions available.

☞ For more information on expressions, see“Expressions” on page 15.

A literal string is any sequence of characters enclosed in apostrophes
(‘single quotes’). A SQL variable of character data type can hold a string.
The following is a simple example of a literal string:

’This is a string.’

Special characters in
strings

You represent special character in strings by escape sequences, as follows:

♦ To represent an apostrophe inside a string, use two apostrophes in a row.
For example,

’John’’s database’

♦ To represent a new line character, use a backslash followed by n (\n).
For example,

’First line: \nSecond line:’

♦ To represent a backslash character, use two backslashes in a row (\\).
For example,

’c: \\temp’

♦ Hexadecimal escape sequences can be used for any character, printable or
not. A hexadecimal escape sequence is a backslash followed by an x
followed by two hexadecimal digits (for example, \x6d represents the
letter m). For example,

’ \x00 \x01 \x02 \x03’

See also For information about the handling of strings in dynamically constructed
SQL statements, see“EXECUTE IMMEDIATE statement [SP]” on
page 429.

Standards and
compatibility

For compatibility with Adaptive Server Enterprise, you can set the
QUOTED_IDENTIFIER database option to OFF. With this setting, you can

8

Chapter 1. SQL Language Elements

also use double quotes to mark the beginning and end of strings. The option
is set to ON by default.

☞ For information about the QUOTED_IDENTIFIER option, see
“QUOTED_IDENTIFIER option [compatibility]”[ASA Database
Administration Guide,page 620].

9

Operators
This section describes arithmetic, string, and bit-wise operators. For
information on comparison operators, see the section“Search conditions” on
page 22.

The normal precedence of operations applies. Expressions in parentheses are
evaluated first, then multiplication and division before addition and
subtraction. String concatenation happens after addition and subtraction.

☞ For more information, see“Operator precedence” on page 13.

Comparison operators

The syntax for comparison conditions is as follows:

expression compare expression

wherecompareis a comparison operator. The following comparison
operators are available:

operator description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

<> Not equal to

!> Not greater than

!< Not less than

Case sensitivity
All string comparisons arecase insensitiveunless the database was created
as case sensitive.

Standards and
compatibility

♦ Trailing blanks Any trailing blanks in character data are ignored for
comparison purposes by Adaptive Server Enterprise. The behavior of
Adaptive Server Anywhere when comparing strings is controlled the-b

command-line switch that is set when creating the database.

10

Chapter 1. SQL Language Elements

☞ For more information about blank padding, see “Initialization utility
options” [ASA Database Administration Guide,page 487].

♦ Case sensitivity By default, Adaptive Server Anywhere databases
are created as case insensitive, while Adaptive Server Enterprise
databases are created as case sensitive. Comparisons are carried out with
the same attention to case as the database they are operating on. You can
control the case sensitivity of Adaptive Server Anywhere databases with
the -c command line switch when you create the database.

☞ For more information about case sensitivity for string comparisons,
see “Initialization utility options”[ASA Database Administration Guide,
page 487].

Logical operators

Search conditions can be combined using AND, OR, and NOT.

Conditions are combined using AND as follows:

condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:

condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if
both conditions are FALSE, and UNKNOWN otherwise.

The syntax for the NOT operator is as follows:

NOT condition

The NOT condition is TRUE ifcondition is FALSE, FALSE ifcondition
is TRUE, and UNKNOWN ifcondition is UNKNOWN.

The IS operator provides a means to test a logical value. The syntax for the
IS operator is as follows:

expression IS [NOT] truth-value

The condition is TRUE if theexpressionevaluates to the supplied
truth-value, which must be one of TRUE, FALSE, UNKNOWN, or NULL.
Otherwise, the value is FALSE.

☞ For more information, see“Three-valued logic” on page 29.

Standards and
compatibility

11

♦ The logical operators are compatible between Adaptive Server Anywhere
and Adaptive Server Enterprise.

Arithmetic operators

expression + expression Addition. If either expression is the NULL
value, the result is NULL.

expression – expression Subtraction. If either expression is the NULL
value, the result is NULL.

–expression Negation. If the expression is the NULL value, the result
is NULL.

expression * expression Multiplication. If either expression is NULL, the
result is NULL.

expression / expression Division. If either expression is NULL or if the
second expression is 0, the result is NULL.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because
21 divided by 11 equals 1 with a remainder of 10.

Standards and
compatibility

♦ Modulo The % operator can be used in Adaptive Server Anywhere only
if the PERCENT_AS_COMMENT option is set to OFF. The default
value is ON.

String operators

expression || expression String concatenation (two vertical bars). If
either string is NULL, it is treated as the empty string for concatenation.

expression + expression Alternative string concatenation. When using
the + concatenation operator, you must ensure the operands are explicitly set
to character data types rather than relying on implicit data conversion.

For example, the following query returns the integer value579:

SELECT 123 + 456

whereas the following query returns the character string123456:

SELECT ’123’ + ’456’

You can use the CAST or CONVERT function to explicitly convert data
types.

Standards and
compatibility

♦ SQL/92 The || operator is the SQL/92 string concatenation operator.

♦ Sybase The + operator is supported by Adaptive Server Enterprise.

12

Chapter 1. SQL Language Elements

The || concatenation operator is not supported by Adaptive Server
Enterprise.

Bitwise operators

The following operators can be used on integer data types, in both Adaptive
Server Anywhere and Adaptive Server Enterprise.

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, | and ~ are not interchangeable with the logical
operators AND, OR, and NOT.

Example For example, the following statement selects rows in which the correct bits
are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0

Join operators

The Transact-SQL outer join operators *= and =* are supported in Adaptive
Server Anywhere, in addition to the SQL/92 join syntax that uses a table
expression in the FROM clause.

Operator precedence

The precedence of operators in expressions is as follows. The operators at
the top of the list are evaluated before those at the bottom of the list.

1. unary operators (operators that require a single operand)

2. & , | , ^ , ~

3. * , /, %

4. +, -

5. ||

6. not

13

7. and

8. or

When you use more than one operator in an expression, it is recommended
that you make the order of operation explicit using parentheses rather than
relying on an identical operator precedence between Adaptive Server
Enterprise and Adaptive Server Anywhere.

14

Chapter 1. SQL Language Elements

Expressions
Syntax expression:

case-expression
| constant
| [correlation-name.]column-name
| - expression
| expression operator expression
| (expression)
| function-name (expression, . . .)
| if-expression
| special value
| (subquery)
| variable-name

Parameters case-expression:
CASE expression
WHEN expression
THEN expression,. . .
[ELSE expression]
END

alternative form of case-expression:
CASE
WHEN search-condition
THEN expression,. . .
[ELSE expression]
END

constant :
integer | number | string | host-variable

special-value:
CURRENT { DATE | TIME | TIMESTAMP }

| NULL
| SQLCODE
| SQLSTATE
| USER

if-expression:
IF condition
THEN expression
[ELSE expression]
ENDIF

operator :
{ + | - | * | / | || | % }

Usage Anywhere.

15

Authorization Must be connected to the database.

Side effects None.

Description Expressions are formed from several different kinds of elements. These are
discussed in the following sections.

☞ For information on functions, see“SQL Functions” on page 83. For
information on variables, see“Variables” on page 37.

See also “Constants in expressions” on page 16

“Special values” on page 32

“Column names in expressions” on page 16

“SQL Functions” on page 83

“Subqueries in expressions” on page 17

“Search conditions” on page 22

“SQL Data Types” on page 51

“Variables” on page 37

“CASE expressions” on page 18

Standards and
compatibility

♦ The IF condition is not supported in Adaptive Server Enterprise.

♦ For other differences, see the separate descriptions of each class of
expression, in the following sections.

Constants in expressions

Constants are numbers or string literals. String constants are enclosed in
apostrophes (‘single quotes’). An apostrophe is represented inside a string
by two apostrophes in a row.

Column names in expressions

A column name is an identifier preceded by an optional correlation name. (A
correlation name is usually a table name. For more information on
correlation names, see“FROM clause” on page 445.) If a column name has
characters other than letters, digits and underscore, it must be surrounded by
quotation marks (“”). For example, the following are valid column names:

employee.name
address
"date hired"
"salary"."date paid"

16

Chapter 1. SQL Language Elements

☞ For more information on identifiers, see“Identifiers” on page 7.

Subqueries in expressions

A subquery is a SELECT statement that is nested inside another SELECT,
INSERT, UPDATE, or DELETE statement, or another subquery.

The SELECT statement must be enclosed in parentheses, and must contain
one and only one select list item. When used as an expression, a subquery is
generally allowed to return only one value.

A subquery can be used anywhere that a column name can be used.
For example, a subquery can be used in the select list of another SELECT
statement.

☞ For other uses of subqueries, see“Subqueries in search conditions” on
page 23.

IF expressions

The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
ENDIF

This expression returns the following:

♦ If condition is TRUE, the IF expression returnsexpression1.

♦ If condition is FALSE, the IF expression returnsexpression2.

♦ If condition is FALSE, and there is noexpression2, the IF expression
returns NULL.

♦ If condition is UNKNOWN, the IF expression returns NULL.

☞ For more information about TRUE, FALSE and UNKNOWN
conditions, see“NULL value” on page 48, and“Search conditions” on
page 22.

IF statement is different from IF expression
Do not confuse the syntax of the IF expression with that of the IF statement.

For information on the IF statement, see“IF statement” on page 467.

17

CASE expressions

The CASE expression provides conditional SQL expressions. Case
expressions can be used anywhere an expression can be used.

The syntax of the CASE expression is as follows:

CASE expression
WHEN expression
THEN expression, . . .
[ELSE expression]
END

If the expression following the CASE statement is equal to the expression
following the WHEN statement, then the expression following the THEN
statement is returned. Otherwise the expression following the ELSE
statement is returned, if it exists.

For example, the following code uses a case expression as the second clause
in a SELECT statement.

SELECT id,
(CASE name

WHEN ’Tee Shirt’ then ’Shirt’
WHEN ’Sweatshirt’ then ’Shirt’
WHEN ’Baseball Cap’ then ’Hat’
ELSE ’Unknown’

END) as Type
FROM "DBA".Product

An alternative syntax is as follows:

CASE
WHEN search-condition
THEN expression, . . .
[ELSE expression]
END

If the search-condition following the WHEN statement is satisfied, the
expression following the THEN statement is returned. Otherwise the
expression following the ELSE statement is returned, if it exists.

For example, the following statement uses a case expression as the third
clause of a SELECT statement to associate a string with a search-condition.

SELECT id, name,
(CASE

WHEN name=’Tee Shirt’ then ’Sale’
WHEN quantity >= 50 then ’Big Sale’
ELSE ’Regular price’

END) as Type
FROM "DBA".Product

18

Chapter 1. SQL Language Elements

NULLIF function for
abbreviated CASE
expressions

The NULLIF function provides a way to write some CASE statements in
short form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression
equals the second expression, NULLIF returns NULL. If the first expression
does not equal the second expression, NULLIF returns the first expression.

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE expression with that of the CASE
statement.

For information on the CASE statement, see“CASE statement” on
page 275.

Compatibility of expressions

The following tables describe the compatibility of expressions and constants
between Adaptive Server Enterprise and Adaptive Server Anywhere. These
tables are a guide only, and a marking of Both may not mean that the
expression performs in an identical manner for all purposes under all
circumstances. For detailed descriptions, you should refer to the Adaptive
Server Enterprise documentation and the Adaptive Server Anywhere
documentation on the individual expression.

In the following table,expr represents an expression, andop represents an
operator.

Expression Supported by

constant Both

column name Both

variable name Both

function (expr) Both

- expr Both

expr op expr Both

(expr) Both

(subquery) Both

if-expression Adaptive Server Anywhere only

19

Constant Supported by

integer Both

number Both

‘string’ Both

special-constant Both

host-variable Adaptive Server Anywhere

Default interpretation of
delimited strings

By default, Adaptive Server Enterprise and Adaptive Server Anywhere give
different meanings to delimited strings: that is, strings enclosed in
apostrophes (single quotes) and in quotation marks (double quotes).

Adaptive Server Anywhere employs the SQL/92 convention, that strings
enclosed in apostrophes are constant expressions, and strings enclosed in
quotation marks (double quotes) are delimited identifiers (names for
database objects). Adaptive Server Enterprise employs the convention that
strings enclosed in quotation marks are constants, while delimited identifiers
are not allowed by default and are treated as strings.

The quoted_identifier option

Both Adaptive Server Enterprise and Adaptive Server Anywhere provide a
quoted_identifier option that allows the interpretation of delimited strings
to be changed. By default, thequoted_identifier option is set to OFF in
Adaptive Server Enterprise, and to ON in Adaptive Server Anywhere.

You cannot use SQL reserved words as identifiers if thequoted_identifier
option is off.

☞ For a complete list of reserved words, see“Reserved words” on page 4.

Setting the option While the Transact-SQL SET statement is not supported for most Adaptive
Server Enterprise connection options, it is supported for the
quoted_identifier option.

The following statement in either Adaptive Server Anywhere or Adaptive
Server Enterprise changes the setting of thequoted_identifier option to ON:

SET quoted_identifier ON

With thequoted_identifier option set to ON, Adaptive Server Enterprise
allows table, view, and column names to be delimited by quotes. Other
object names cannot be delimited in Adaptive Server Enterprise.

The following statement in Adaptive Server Anywhere or Adaptive Server
Enterprise changes the setting of thequoted_identifier option to OFF:

20

Chapter 1. SQL Language Elements

SET quoted_identifier OFF

Compatible interpretation
of delimited strings

You can choose to use either the SQL/92 or the default Transact-SQL
convention in both Adaptive Server Enterprise and Adaptive Server
Anywhere as long as thequoted_identifier option is set to the same value in
each DBMS.

Examples If you choose to operate with thequoted_identifier option ON (the default
Adaptive Server Anywhere setting), then the following statements involving
the SQL keyworduserare valid for both DBMSs.

CREATE TABLE "user" (
col1 char(5)

) ;
INSERT "user" (col1)
VALUES (’abcde’) ;

If you choose to operate with thequoted_identifier option off (the default
Adaptive Server Enterprise setting), then the following statements are valid
for both DBMSs.

SELECT *
FROM employee
WHERE emp_lname = "Chin"

21

Search conditions
Function To specify a search condition for a WHERE clause, a HAVING clause, a

CHECK clause, an ON phrase in a join, or an IF expression.

Syntax search-condition:
expression compare expression

| expression compare { [ANY | SOME] | ALL } (subquery)
| expression IS [NOT] NULL
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE expression [ESCAPE expression]
| expression [NOT] IN ({ expression

| subquery
| value-expr1 , value-expr2 [,value-expr3] . . . })

| EXISTS (subquery)
| NOT condition
| search-condition AND search-condition
| search-condition OR search-condition
| (search-condition)
| (search-condition , estimate)
| search-condition IS [NOT] { TRUE | FALSE | UNKNOWN }
| trigger-operation

Parameters compare:
= | > | < | >= | <= | <> | != | !< | !>

trigger-operation:
INSERTING | DELETING
| UPDATING(column-name-string) | UPDATE(column-name)

Usage Anywhere.

Permissions Must be connected to the database.

Side effects None.

Description Search conditions are used to choose a subset of the rows from a table, or in
a control statement such as an IF statement to determine control of flow.

In SQL, every condition evaluates as one of TRUE, FALSE, or
UNKNOWN. This is called three-valued logic. The result of a comparison is
UNKNOWN if either value being compared is the NULL value. For tables
displaying how logical operators combine in three-valued logic, see the
section“Three-valued logic” on page 29.

Rows satisfy a search condition if and only if the result of the condition
is TRUE. Rows for which the condition is UNKNOWN or FALSE do not
satisfy the search condition. For more information about NULL, see“NULL
value” on page 48.

22

Chapter 1. SQL Language Elements

Subqueries form an important class of expression that is used in many search
conditions. For information about using subqueries in search conditions, see
“Subqueries in search conditions” on page 23.

The different types of search condition are discussed in the following
sections.

See also “Expressions” on page 15

Subqueries in search conditions

Subqueries that return exactly one column and either zero or one row can be
used in any SQL statement wherever a column name could be used,
including in the middle of an expression.

For example, expressions can be compared to subqueries in comparison
conditions (see“Comparison operators” on page 10) as long as the subquery
does not return more than one row. If the subquery (which must have one
column) returns one row, then the value of that row is compared to the
expression. If a subquery returns no rows, its value is NULL.

Subqueries that return exactly one column and any number of rows can be
used in IN conditions, ANY conditions, and ALL conditions. Subqueries
that return any number of columns and rows can be used in EXISTS
conditions. These conditions are discussed in the following sections.

ALL or ANY conditions

The syntax for ANY conditions is

expression compare ANY (subquery)

wherecompareis a comparison operator.

For example, an ANY condition with an equality operator,

expression = ANY (subquery)

is TRUE if expressionis equal to any of the values in the result of the
subquery, and FALSE if the expression is not NULL and does not equal any
of the columns of the subquery. The ANY condition is UNKNOWN if
expressionis the NULL value, unless the result of the subquery has no rows,
in which case the condition is always FALSE.

The keywordSOME can be used instead ofANY .

The syntax for ALL conditions is

expression compare ALL (subquery)

23

wherecompareis a comparison operator.

Standards and
compatibility

♦ ANY and ALL subqueries are compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere. Only Adaptive Server
Anywhere supports SOME as a synonym for ANY.

BETWEEN conditions

The syntax for BETWEEN conditions is as follows:

expr [NOT] BETWEEN start-expr AND end-expr

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE ifexpr is
betweenstart-exprandend-expr. The NOT keyword reverses the meaning of
the condition but leaves UNKNOWN unchanged.

The BETWEEN conditions is equivalent to a combination of two
inequalities:

[NOT] (expr >= start-expr AND expr <= end-expr)

Standards and
compatibility

♦ The BETWEEN condition is compatible between Adaptive Server
Anywhere and Adaptive Server Enterprise.

LIKE conditions

The syntax for LIKE conditions is as follows:

expr [NOT] LIKE pattern [ESCAPE escape-expr]

The LIKE condition can evaluate as TRUE, FALSE, or UNKNOWN.

Without the NOT keyword, the condition evaluates as TRUE ifexpression
matches thepattern. If eitherexpressionor patternis the NULL value, this
condition is UNKNOWN. The NOT keyword reverses the meaning of the
condition, but leaves UNKNOWN unchanged.

The pattern may contain any number of wildcards. The wildcards are:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single characternot in the specified range or set

All other characters must match exactly.

24

Chapter 1. SQL Language Elements

For example, the search condition

... name LIKE ’a%b_’

is TRUE for any row where name starts with the letter a and has the letter b
as its second last character.

If an escape-expris specified, it must evaluate to a single character. The
character can precede a percent, an underscore, a left square bracket, or
another escape character in thepatternto prevent the special character from
having its special meaning. When escaped in this manner, a percent will
match a percent, and an underscore will match an underscore.

All patterns of length 126 characters or less are supported. Patterns of length
greater than 254 characters are not supported. Some patterns of length
between 127 and 254 characters are supported, depending on the contents of
the pattern.

Searching for one of a
set of characters

A set of characters to look for is specified by listing the characters inside
square brackets. For example, the following condition finds the stringssmith
andsmyth :

LIKE ’sm[iy]th’

Searching for one of a
range of characters

A range of characters to look for is specified by giving the ends of the range
inside square brackets, separated by a hyphen. For example, the following
condition finds the stringsboughandrough , but nottough :

LIKE ’[a-r]ough’

The range of characters [a-z] is interpreted as “greater than or equal to a, and
less than or equal to z”, where the greater than and less than operations are
carried out within the collation of the database. For information on ordering
of characters within a collation, see “International Languages and Character
Sets”[ASA Database Administration Guide,page 285].

The lower end of the range must precede the higher end of the range.
For example, a LIKE condition containing the expression [z-a] returns no
rows because no character matches the [z-a] range.

Unless the database is created as case sensitive, the range of characters is
case insensitive. For example, the following condition finds the strings
Bough , rough , andTOUGH :

LIKE ’[a-z]ough’

If the database is created as a case-sensitive database, the search condition is
case sensitive also. To perform a case insensitive search in a case sensitive
database, you must include upper and lower characters. For example, the

25

following condition finds the stringsBough , rough , andTOUGH :

LIKE ’[a-zA-Z][oO][uU][gG][hH]’

Combining searches for
ranges and sets

You can combine ranges and sets within a square bracket. For example, the
following condition finds the stringsbough, rough , andtough :

... LIKE ’[a-rt]ough’

The bracket [a-mpqs-z] is interpreted as “exactly one character that is either
in the rangea to m inclusive, or isp, or isq, or is in the ranges to z
inclusive”.

Searching for one
character not in a range

The caret character (^) is used to specify a range of characters that is
excluded from a search. For example, the following condition finds the
stringtough , but not the stringsrough , or bough :

... LIKE ’[^a-r]ough’

The caret negates the entire rest of the contents of the brackets. For example,
the bracket[^a-mpqs-z]is interpreted as “exactly one character that is not in
the rangea to m inclusive, is notp , is notq , and is not in the ranges to z
inclusive”.

Special cases of ranges
and sets

Any single character in square brackets means that character. For example,
[a] matches just the charactera . [^] matches just the caret character,[%]
matches just the percent character (the percent character does not act as a
wildcard in this context), and[_] matches just the underscore character.
Also, [[] matches just the character[.

Other special cases are as follows:

♦ The expression[a-] matches either of the charactersa or - .

♦ The expression[] is never matched and always returns no rows.

♦ The expressions[or [abp-qare ill-formed expressions, and give syntax
errors.

♦ You cannot use wildcards inside square brackets. The expression[a%b]
finds one ofa, % , or b.

♦ You cannot use the caret character to negate ranges except as the first
character in the bracket. The expression[a^b] finds one ofa , ^ , or b.

Search patterns with
trailing blanks

When your search pattern includes trailing blanks, Adaptive Server
Anywhere matches the pattern only to values that contain blanks—it does
not blank-pad strings. For example, the search patterns ‘90 ‘, ‘90[]’ and
‘90_’ match the value ‘90 ‘, but do not match the value ‘90’, even if the

26

Chapter 1. SQL Language Elements

value being tested is in a char or varchar column that is three or more
characters in width.

Standards and
compatibility

♦ The ESCAPE clause is supported by Adaptive Server Anywhere only.

IN conditions

The syntax for IN conditions is as follows:

expression [NOT] IN { (subquery) | (expression2) | (value-expr , . . .)
}

An IN condition, without the NOT keyword, evaluates according to the
following rules:

♦ TRUE if expressionis not NULL and equals at least one of the values.

♦ UNKNOWN if expressionis NULL and the values list is not empty, or if
at least one of the values is NULL andexpressiondoes not equal any of
the other values.

♦ FALSE if expressionis NULL andsubqueryreturns no values; or if
expressionis not NULL, none of the values are NULL, andexpression
does not equal any of the values.

The NOT keyword interchanges TRUE and FALSE.

The search conditionexpressionIN (values) is identical to the search
conditionexpression= ANY (values). The search conditionexpression
NOT IN (values) is identical to the search conditionexpression<>
ALL (values).

Thevalue-exprarguments are expressions that take on a single value, which
may be a string, a number, a date, or any other SQL datatype.

Standards and
compatibility

♦ IN conditions are compatible between Adaptive Server Enterprise and
Adaptive Server Anywhere.

EXISTS conditions

The syntax for EXISTS conditions is as follows:

EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one
row, and FALSE if the subquery result does not contain any rows. The
EXISTS condition cannot be UNKNOWN.

Standards and
compatibility

♦ The EXISTS condition is compatible between Adaptive Server Enterprise
and Adaptive Server Anywhere.

27

IS NULL conditions

The syntax for IS NULL conditions is as follows:

expression IS [NOT] NULL

Without the NOT keyword, the IS NULL condition is TRUE if the
expression is the NULL value, and FALSE otherwise. The NOT keyword
reverses the meaning of the condition.

Standards and
compatibility

♦ The IS NULL condition is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere.

Truth value conditions

The syntax for truth-value conditions is as follows:

IS [NOT] truth-value

Without the NOT keyword, the condition is TRUE if theconditionevaluates
to the suppliedtruth-value, which must be one of TRUE, FALSE, or
UNKNOWN. Otherwise, the value is FALSE. The NOT keyword reverses
the meaning of the condition, but leaves UNKNOWN unchanged.

Standards and
compatibility

♦ Vendor extension. Adaptive Server Enterprise does not support
truth-valued conditions.

Trigger operation conditions

The syntax for trigger operation conditions is as follows:

trigger-operation:
INSERTING | DELETING
| UPDATING(column-name-string) | UPDATE(column-name)

Trigger-operation conditions can be used only in triggers, to carry out
actions depending on the kind of action that caused the trigger to fire.

The argument for UPDATING is a quoted string (for example,UPDATING(

’mycolumn’)). The argument for UPDATE is an identifier (for example,
UPDATE(mycolumn)) . The two versions are interoperable, and are
included for compatibility with SQL dialects of other vendors’ DBMS.

If you supply an UPDATING or UPDATE function, you must also supply a
REFERENCING clause in the CREATE TRIGGER statement to avoid
syntax errors.

Example The following trigger displays a message showing which action caused the
trigger to fire.

28

Chapter 1. SQL Language Elements

CREATE TRIGGER tr BEFORE INSERT, UPDATE, DELETE
ON sample_table
REFERENCING OLD AS t1old
FOR EACH ROW
BEGIN

DECLARE msg varchar(255);
SET msg = ’This trigger was fired by an ’;
IF INSERTING THEN

SET msg = msg || ’insert’
ELSEIF DELETING THEN

set msg = msg || ’delete’
ELSEIF UPDATING THEN

set msg = msg || ’update’
END IF;
MESSAGE msg TO CLIENT

END

Three-valued logic

The following tables display how the AND, OR, NOT, and IS logical
operators of SQL work in three-valued logic.

AND operator

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

OR operator

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

NOT operator

TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

IS operator

29

IS TRUE FALSE UNKNOWN

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

UNKNOWN FALSE FALSE TRUE

Explicit selectivity estimates

Adaptive Server Anywhere uses statistical information to determine the most
efficient strategy for executing each statement. Adaptive Server Anywhere
automatically gathers and updates these statistics. These statistics are stored
permanently in the database in the system table SYSCOLSTAT. Statistics
gathered while processing one statement are available when searching for
efficient ways to execute subsequent statements.

Occasionally, the statistics may become inaccurate or relevant statistics may
be unavailable. This condition is most likely to arise when few queries have
been executed since a large amount of data was added, updated, or deleted.

In this situation, you may want to execute CREATE STATISTICS or DROP
STATISTICS.

In unusual circumstances, however, these measures may prove ineffective. In
such cases, you can sometimes improve performance by supplying explicit
selectivity estimates.

For each table in a potential execution plan, the optimizer must estimate the
number of rows that will be part of the result set. If you know that a
condition has a success rate that differs from the optimizer’s estimate, you
can explicitly supply a user estimate in the search condition.

The estimate is a percentage. It can be a positive integer or can contain
fractional values.

Caution: Whenever possible, avoid supplying explicit estimates in state-
ments that are to be used on an ongoing basis. Should the data change, the
explicit estimate may become inaccurate and may force the optimizer to
select poor plans.

You can disable user estimates by setting the database option
USER_ESTIMATES to OFF. The default value for USER_ESTIMATES is
OVERRIDE-MAGIC, which means that user-supplied selectivity estimates
are used only when the optimizer would use a MAGIC (default) selectivity
value for the condition. The optimizer uses MAGIC values as a last resort
when it is unable to accurately predict the selectivity of a predicate.

30

Chapter 1. SQL Language Elements

☞ For more information about disabling user-defined selectivity estimates,
see “USER_ESTIMATES option [database]”[ASA Database Administration
Guide,page 633].

☞ For more information about statistics, see “Optimizer estimates”[ASA
SQL User’s Guide,page 369].

Examples ♦ The following query provides an estimate that one percent of the
ship_datevalues will be later than 2001/06/30:

SELECT ship_date
FROM sales_order_items

WHERE (ship_date > ’2001/06/30’, 1)
ORDER BY ship_date DESC

♦ The following query estimates that half a percent of the rows will satisfy
the condition:

SELECT *
FROM customer c, sales_order o

WHERE (c.id = o.cust_id, 0.5)

Fractional values enable more accurate user estimates for joins, particularly
for large tables.

Standards and
compatibility

♦ Adaptive Server Enterprise does not support explicit estimates.

31

Special values
Special values can be used in expressions, and as column defaults when
creating tables.

While some special values can be queried, some can only be used as default
values for columns. For example,user, last user, timestampandUTC
timestampcan only be used as default values.

CURRENT DATABASE special value

Function CURRENT DATABASE returns the name of the current database.

Data type STRING

See also “Expressions” on page 15

CURRENT DATE special value

Function CURRENT DATE returns the current year, month, and day.

Data type DATE

See also “Expressions” on page 15

“TIME data type [Date and Time]” on page 70

CURRENT PUBLISHER special value

Function CURRENT PUBLISHER returns a string that contains the publisher user ID
of the database for SQL Remote replications.

Data type STRING

CURRENT PUBLISHER can be used as a default value in columns with
character data types.

See also “Expressions” on page 15

“SQL Remote Design for Adaptive Server Anywhere”[SQL Remote User’s
Guide,page 91]

CURRENT TIME special value

Function The current hour, minute, second and fraction of a second.

Data type TIME

Description The fraction of a second is stored to 6 decimal places. The accuracy of the
current time is limited by the accuracy of the system clock.

32

Chapter 1. SQL Language Elements

See also “Expressions” on page 15

“TIME data type [Date and Time]” on page 70

CURRENT TIMESTAMP special value

Function Combines CURRENT DATE and CURRENT TIME to form a
TIMESTAMP value containing the year, month, day, hour, minute, second
and fraction of a second. The fraction of a second is stored to 3 decimal
places. The accuracy is limited by the accuracy of the system clock.

The information CURRENT TIMESTAMP returns is equivalent to the
information returned by the GETDATE and NOW functions.

Data type TIMESTAMP

See also “CURRENT TIME special value” on page 32

“Expressions” on page 15

“TIMESTAMP data type [Date and Time]” on page 71

“GETDATE function [Date and time]” on page 135

“NOW function [Date and time]” on page 163

CURRENT USER special value

Function CURRENT USER returns a string that contains the user ID of the current
connection.

Data type STRING

CURRENT USER can be used as a default value in columns with character
data types.

Description On UPDATE, columns with a default value of CURRENT USER are not
changed.

See also “Expressions” on page 15

CURRENT UTC TIMESTAMP special value

Function Combines CURRENT DATE and CURRENT TIME, adjusted by the
server’s time zone adjustment value, to form a Coordinated Universal Time
(UTC) TIMESTAMP value containing the year, month, day, hour, minute,
second and fraction of a second. This feature allows data to be entered with
a consistent time reference, regardless of the time zone in which the data
was entered.

33

Data type TIMESTAMP

See also “TIMESTAMP data type [Date and Time]” on page 71

“UTC TIMESTAMP special value” on page 36

“CURRENT TIMESTAMP special value” on page 33

“TRUNCATE_TIMESTAMP_VALUES option [database]”[ASA Database
Administration Guide,page 631]

LAST USER special value

Function The name of the user who last modified the row.

Data type String.

LAST USER can be used as a default value in columns with character data
types.

Description On INSERT, this constant has the same effect as CURRENT USER. On
UPDATE, if a column with a default value of LAST USER is not explicitly
modified, it is changed to the name of the current user.

When combined with the DEFAULT TIMESTAMP, a default value of LAST
USER can be used to record (in separate columns) both the user and the date
and time a row was last changed.

See also “CURRENT USER special value” on page 33

“CURRENT TIMESTAMP special value” on page 33

“CREATE TABLE statement” on page 361

SQLCODE special value

Function Current SQLCODE value.

Data type String.

Description The SQLCODE value is set after each statement. You can check the
SQLCODE to see whether or not the statement succeeded.

See also “Expressions” on page 15

“Database Error Messages”[ASA Error Messages,page 1].

SQLSTATE special value

Function Current SQLSTATE value

Data type STRING

34

Chapter 1. SQL Language Elements

Description The SQLSTATE value is set after each statement. You can check the
SQLSTATE to see whether or not the statement succeeded.

See also “Expressions” on page 15

“Database Error Messages”[ASA Error Messages,page 1]

TIMESTAMP special value

Function TIMESTAMP indicates when each row in the table was last modified. When
a column is declared with DEFAULT TIMESTAMP, a default value is
provided for inserts, and the value is updated with the current date and time
whenever the row is updated.

Data type TIMESTAMP

Description Columns declared with DEFAULT TIMESTAMP contain unique values so
that applications can detect near-simultaneous updates to the same row. If
the current timestamp value is the same as the last value, it is incremented by
the value of the DEFAULT_TIMESTAMP_INCREMENT option.

You can automatically truncate timestamp values in Adaptive Server
Anywhere based on the DEFAULT_TIMESTAMP_INCREMENT option.
This is useful for maintaining compatibility with other database software
which records less precise timestamp values.

The global variable @@dbts returns a TIMESTAMP value representing the
last value generated for a column using DEFAULT TIMESTAMP.

See also “TIMESTAMP data type [Date and Time]” on page 71

“CURRENT UTC TIMESTAMP special value” on page 33

“DEFAULT_TIMESTAMP_INCREMENT option [database]”[ASA Database
Administration Guide,page 589]

“TRUNCATE_TIMESTAMP_VALUES option [database]”[ASA Database
Administration Guide,page 631]

USER special value

Function USER returns a string that contains the user ID of the current connection.

Data type STRING

USER can be used as a default value in columns with character data types.

Description On UPDATE, columns with a default value of USER are not changed.

See also “Expressions” on page 15

35

“CURRENT USER special value” on page 33

“LAST USER special value” on page 34

UTC TIMESTAMP special value

Function UTC TIMESTAMP indicates the Coordinated Universal (UTC) time when
each row in the table was last modified.

Data type TIMESTAMP

See also “TIMESTAMP data type [Date and Time]” on page 71

“CURRENT UTC TIMESTAMP special value” on page 33

“TIMESTAMP special value” on page 35

“DEFAULT_TIMESTAMP_INCREMENT option [database]”[ASA Database
Administration Guide,page 589]

“TRUNCATE_TIMESTAMP_VALUES option [database]”[ASA Database
Administration Guide,page 631]

36

Chapter 1. SQL Language Elements

Variables
Adaptive Server Anywhere supports three levels of variables:

♦ Local variables These are defined inside a compound statement in a
procedure or batch using the DECLARE statement. They exist only
inside the compound statement.

♦ Connection-level variables These are defined with a CREATE
VARIABLE statement. They belong to the current connection, and
disappear when you disconnect from the database or when you use the
DROP VARIABLE statement.

♦ Global variables These are system-supplied variables that have
system-supplied values. All global variables have names beginning with
two @ signs. For example, the global variable@@versionhas a value
that is the current version number of the database server. Users cannot
define global variables.

Local and connection-level variables are declared by the user, and can be
used in procedures or in batches of SQL statements to hold information.
Global variables are system-supplied variables that provide system-supplied
values.

See also “TIMESTAMP data type [Date and Time]” on page 71

“CREATE VARIABLE statement” on page 381

Local variables

Local variables are declared using the DECLARE statement, which can be
used only within a compound statement (that is, bracketed by the BEGIN
and END keywords). The variable is initially set as NULL. The value of the
variable can be set using the SET statement, or can be assigned using a
SELECT statement with an INTO clause.

The syntax of the DECLARE statement is as follows:

DECLARE variable-name data-type

Local variables can be passed as arguments to procedures, as long as the
procedure is called from within the compound statement.

Examples ♦ The following batch illustrates the use of local variables.

BEGIN
DECLARE local_var INT;
SET local_var = 10;
MESSAGE ’local_var = ’, local_var TO CLIENT;

END

37

Running this batch from Interactive SQL gives the messagelocal_var

= 10 in the Interactive SQL Messages pane.

♦ The variable local_var does not exist outside the compound statement in
which it is declared. The following batch is invalid, and gives acolumn

not found error.

-- This batch is invalid.
BEGIN

DECLARE local_var INT;
SET local_var = 10;

END;
MESSAGE ’local_var = ’, local_var TO CLIENT;

♦ The following example illustrates the use of SELECT with an INTO
clause to set the value of a local variable:

BEGIN
DECLARE local_var INT;
SELECT 10 INTO local_var;
MESSAGE ’local_var = ’, local_var TO CLIENT;

END

Running this batch from Interactive SQL gives the messagelocal_var

= 10 on the server window.

Standards and
compatibility

♦ Names Adaptive Server Enterprise and Adaptive Server Anywhere both
support local variables. In Adaptive Server Enterprise, all variables must
be prefixed with an @ sign. In Adaptive Server Anywhere, the @ prefix
is optional. To write compatible SQL, prefix all of your variables with @.

♦ Scope The scope of local variables is different in Adaptive Server
Anywhere and Adaptive Server Enterprise. Adaptive Server Anywhere
supports the use of the DECLARE statement to declare local variables
within a batch. However, if the DECLARE is executed within a
compound statement, the scope is limited to the compound statement.

♦ Declaration Only one variable can be declared for each DECLARE
statement in Adaptive Server Anywhere. In Adaptive Server Enterprise,
more than one variable can be declared in a single statement.

For more information on batches and local variable scope, see “Variables in
Transact-SQL procedures”[ASA SQL User’s Guide,page 468].

Connection-level variables

Connection-level variables are declared with the CREATE VARIABLE
statement. Connection-level variables can be passed as parameters to
procedures.

38

Chapter 1. SQL Language Elements

The syntax for the CREATE VARIABLE statement is as follows:

CREATE VARIABLE variable-name data-type

When a variable is created, it is initially set to NULL. The value of
connection-level variables can be set in the same way as local variables,
using the SET statement or using a SELECT statement with an INTO clause.

Connection-level variables exist until the connection is terminated, or until
the variable is explicitly dropped using the DROP VARIABLE statement.
The following statement drops the variablecon_var:

DROP VARIABLE con_var

Standards and
compatibility

♦ Adaptive Server Enterprise does not support connection-level variables.

Example ♦ The following batch of SQL statements illustrates the use of
connection-level variables.

CREATE VARIABLE con_var INT;
SET con_var = 10;
MESSAGE ’con_var = ’, con_var TO CLIENT;

Running this batch from Interactive SQL gives the messagecon_var =

10 on the server window.

Global variables

Global variables have values set by the database server. For example, the
global variable@@versionhas a value that is the current version number of
the database server.

Global variables are distinguished from local and connection-level variables
by having two @ signs preceding their names. For example,@@error and
@@rowcountare global variables. Users cannot create global variables,
and cannot update the values of global variables directly.

Some global variables, such as@@identity, hold connection-specific
information, and so have connection-specific values. Other variables, such
as@@connections, have values that are common to all connections.

Global variable and
special constants

The special constants (for example, CURRENT DATE, CURRENT TIME,
USER, and SQLSTATE) are similar to global variables.

The following statement retrieves a value of the version global variable.

SELECT @@version

In procedures and triggers, global variables can be selected into a variable
list. The following procedure returns the server version number in thever
parameter.

39

CREATE PROCEDURE VersionProc (OUT ver
VARCHAR(100))

BEGIN
SELECT @@version
INTO ver;

END

In Embedded SQL, global variables can be selected into a host variable list.

List of global variables The following table lists the global variables available in Adaptive Server
Anywhere

Variable name Meaning

@@dbts A value of type TIMESTAMP representing the last
generated value used for all columns defined with
DEFAULT TIMESTAMP.

@@error Commonly used to check the error status (succeeded
or failed) of the most recently executed statement.
It contains 0 if the previous transaction succeeded;
otherwise, it contains the last error number generated
by the system. A statement such as if @@error != 0
return causes an exit if an error occurs. Every SQL
statement resets @@error, so the status check must
immediately follow the statement whose success is in
question.

@@fetch_status Contains status information resulting from the last fetch
statement. @@fetch_status may contain the following
values

♦ 0 The fetch statement completed successfully.

♦ -1 The fetch statement resulted in an error.

♦ -2 There is no more data in the result set.

This feature is the same as @@sqlstatus, except that it
returns different values. It is for Microsoft SQL Server
compatibility.

@@identity Last value inserted into any IDENTITY or DEFAULT
AUTOINCREMENT column by an INSERT or SE-
LECT INTO statement.

For a description, see“@@identity global variable” on
page 45.

@@isolation Current isolation level. @@isolation takes the value of
the active level.

40

Chapter 1. SQL Language Elements

Variable name Meaning

@@procid Stored procedure ID of the currently executing proce-
dure.

@@rowcount Number of rows affected by the last statement. The
value of @@rowcount should be checked immediately
after the statement.

Inserts, updates, and deletes set @@rowcount to the
number of rows affected.

With cursors, @@rowcount represents the cumulative
number of rows returned from the cursor result set to
the client, up to the last fetch request.

Unlike in Adaptive Server Enterprise, @@rowcount is
not reset to zero by any statement which does not affect
rows, such as an IF statement.

@@servername Name of the current database server.

@@sqlstatus Contains status information resulting from the last fetch
statement. @@sqlstatus may contain the following
values

♦ 0 The fetch statement completed successfully.

♦ 1 The fetch statement resulted in an error.

♦ 2 There is no more data in the result set.

@@version Version number of the current version of Adaptive
Server Anywhere.

Standards and
compatibility

The following list includes all Adaptive Server Enterprise global variables
supported in Adaptive Server Anywhere. Adaptive Server Enterprise global
variables not supported by Adaptive Server Anywhere are not included in
the list. In contrast to the above table, this list includes all global variables
that return a value, including those for which the value is fixed at NULL, 1,
-1, or 0, and may not be meaningful.

Global variable Returns

@@char_convert Returns 0.

41

Global variable Returns

@@client_csname In Adaptive Server Enterprise, the client’s character
set name. Set to NULL if client character set has never
been initialized; otherwise, it contains the name of the
most recently used character set. Returns NULL in
Adaptive Server Anywhere.

@@client_csid In Adaptive Server Enterprise, the client’s character
set ID. Set to –1 if client character set has never been
initialized; otherwise, it contains the most recently
used client character set ID from syscharsets. Returns
–1 in Adaptive Server Anywhere.

@@connections The number of logins since the server was last started

@@cpu_busy In Adaptive Server Enterprise, the amount of time, in
ticks, that the CPU has spent doing Adaptive Server
Enterprise work since the last time Adaptive Server
Enterprise was started. In Adaptive Server Anywhere,
returns 0.

@@error Commonly used to check the error status (succeeded
or failed) of the most recently executed statement.
It contains 0 if the previous transaction succeeded;
otherwise, it contains the last error number generated
by the system. A statement such as

if @@error != 0 return

causes an exit if an error occurs. Every statement
resets @@error, including PRINT statements or IF
tests, so the status check must immediately follow the
statement whose success is in question.

@@identity Last value inserted into an IDENTITY column by an
INSERT or SELECT INTO statement.

For a description, see“@@identity global variable”
on page 45.

@@idle In Adaptive Server Enterprise, the amount of time, in
ticks, that Adaptive Server Enterprise has been idle
since it was last started. In Adaptive Server Anywhere,
returns 0.

@@io_busy In Adaptive Server Enterprise, the amount of time, in
ticks, that Adaptive Server Enterprise has spent doing
input and output operations since it was last started. In
Adaptive Server Anywhere, returns 0.

42

Chapter 1. SQL Language Elements

Global variable Returns

@@isolation Current isolation level of the connection. In Adaptive
Server Enterprise, @@isolation takes the value of the
active level

@@langid Returns a unique language ID for the language in use
by the current connection.

@@language Returns the name of the language in use by the con-
nection.

@@maxcharlen In Adaptive Server Enterprise, maximum length, in
bytes, of a character in Adaptive Server Enterprise’s
default character set. In Adaptive Server Anywhere,
returns 1.

@@max_ connec-
tions

For the personal server, the maximum number of
simultaneous connections that can be made to the
server, which is 10.

For the network server, the maximum number of active
clients (not database connections, as each client can
support multiple connections).

For Adaptive Server Enterprise, the maximum number
of connections to the server.

@@ncharsize In Adaptive Server Enterprise, average length, in bytes,
of a national character. In Adaptive Server Anywhere,
returns 1.

@@nestlevel In Adaptive Server Enterprise, nesting level of current
execution (initially 0). Each time a stored procedure
or trigger calls another stored procedure or trigger,
the nesting level is incremented. In Adaptive Server
Anywhere, returns –1.

@@pack_received In Adaptive Server Enterprise, number of input packets
read by Adaptive Server Enterprise since it was last
started. In Adaptive Server Anywhere, returns 0.

@@pack_sent In Adaptive Server Enterprise, number of output
packets written by Adaptive Server Enterprise since it
was last started. In Adaptive Server Anywhere, returns
0.

43

Global variable Returns

@@packet_errors In Adaptive Server Enterprise, number of errors that
have occurred while Adaptive Server Enterprise was
sending and receiving packets. In Adaptive Server
Anywhere, returns 0.

@@procid Stored procedure ID of the currently executing proce-
dure.

@@rowcount Number of rows affected by the last command. In
Adaptive Server Enterprise @@rowcount is set to zero
by any command which does not return rows, such as
an IF statement; in Adaptive Server Anywhere, such
statements to not reset @@rowcount. With cursors,
@@rowcount represents the cumulative number of
rows returned from the cursor result set to the client,
up to the last fetch request.

@@servername Name of the local Adaptive Server Enterprise or
Adaptive Server Anywhere server.

@@spid In Adaptive Server Enterprise, server process ID
number of the current process. In Adaptive Server
Anywhere, the connection handle for the current
connection. This is the same value as that displayed
by the sa_conn_info procedure.

@@sqlstatus Contains status information resulting from the last
fetch statement. @@sqlstatus may contain the follow-
ing values

♦ 0 The fetch statement completed successfully.

♦ 1 The fetch statement resulted in an error.

♦ 2 There is no more data in the result set.

@@textsize Current value of the SET TEXTSIZE option, which
specifies the maximum length, in bytes, of text or
image data to be returned with a select statement. The
default setting is 32765, which is the largest bytestring
that can be returned using READTEXT. The value can
be set using the SET statement.

@@thresh_-
hysteresis

In Adaptive Server Enterprise, change in free space
required to activate a threshold. In Adaptive Server
Anywhere, returns 0.

44

Chapter 1. SQL Language Elements

Global variable Returns

@@timeticks In Adaptive Server Enterprise, number of microsec-
onds per tick. The amount of time per tick is machine-
dependent. In Adaptive Server Anywhere, returns
0.

@@total_errors In Adaptive Server Enterprise, number of errors that
have occurred while Adaptive Server Enterprise was
reading or writing. In Adaptive Server Anywhere,
returns 0.

@@total_read In Adaptive Server Enterprise, number of disk reads
by Adaptive Server Enterprise since it was last started.
In Adaptive Server Anywhere, returns 0.

@@total_write In Adaptive Server Enterprise, number of disk writes
by Adaptive Server Enterprise since it was last started.
In Adaptive Server Anywhere, returns 0.

@@tranchained Current transaction mode of the Transact-SQL pro-
gram. @@tranchained returns 0 for unchained or 1 for
chained.

@@trancount Nesting level of transactions. Each BEGIN TRANS-
ACTION in a batch increments the transaction count.

@@transtate In Adaptive Server Enterprise, current state of a
transaction after a statement executes. In Adaptive
Server Anywhere, returns –1.

@@version Information on the current version of Adaptive Server
Enterprise or Adaptive Server Anywhere.

@@identity global variable

The @@identity variable holds the most recent value inserted into an
IDENTITY column or a DEFAULT AUTOINCREMENT column, or zero if
the most recent insert was into a table that had no such column.

The value of @@identity is connection specific. It is reset each time a row is
inserted into a table. If a statement inserts multiple rows, @@identity
reflects the IDENTITY value for the last row inserted. If the affected table
does not contain an IDENTITY column, @@ identity is set to 0.

The value of @@identity is not affected by the failure of an INSERT or
SELECT INTO statement, or the rollback of the transaction that contained

45

it. @@identity retains the last value inserted into an IDENTITY column,
even if the statement that inserted it fails to commit.

@@identity and triggers When an insert causes referential integrity actions or fires a trigger,
@@identity behaves like a stack. For example, if an insert into a table T1
(with an identity or autoincrement column) fires a trigger that inserts a row
into table T2 (also with an identity or autoincrement column), then the value
returned to the application or procedure which carried out the insert is the
value inserted into T1. Within the trigger, @@identity has the T1 value
before the insert into T2 and the T2 value after. The trigger can copy the
values to local variables if it needs to access both.

46

Chapter 1. SQL Language Elements

Comments
Comments are used to attach explanatory text to SQL statements or
statement blocks. The database server does not execute comments.

Several comment indicators are available in Adaptive Server Anywhere.

♦ – (Double hyphen) The database server ignores any remaining
characters on the line. This is the SQL/92 comment indicator.

♦ // (Double slash) The double slash has the same meaning as the double
hyphen.

♦ /* . . . */ (Slash-asterisk) Any characters between the two comment
markers are ignored. The two comment markers may be on the same or
different lines. Comments indicated in this style can be nested. This style
of commenting is also called C-style comments.

♦ % (Percent sign) The percent sign has the same meaning as the double
hyphen, if the PERCENT_AS_COMMENT option is set to ON. It is
recommended that % not be used as a comment indicator.

Standards and
compatibility

♦ The double-hyphen and the slash-asterisk comment styles are compatible
with Adaptive Server Enterprise.

Examples ♦ The following example illustrates the use of double-dash comments:

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
-- fullname concatenates the firstname and lastname
-- arguments with a single space between.
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ’ ’ || lastname;
RETURN (name);

END

♦ The following example illustrates the use of C-style comments:

/*
Lists the names and employee IDs of employees
who work in the sales department.

*/
CREATE VIEW SalesEmployee AS
SELECT emp_id, emp_lname, emp_fname
FROM "DBA".employee
WHERE dept_id = 200

47

NULL value
Function To specify a value that is unknown or not applicable.

Syntax NULL

Usage Anywhere.

Permissions Must be connected to the database.

Side effects None.

See also “Expressions” on page 15

“Search conditions” on page 22

Description The NULL value is a special value which is different from any valid value
for any data type. However, the NULL value is a legal value in any data
type. The NULL value is used to represent missing or inapplicable
information. There are two separate and distinct cases where NULL is used:

Situation Description

missing The field does have a value, but that value is unknown.

inapplicable The field does not apply for this particular row.

SQL allows columns to be created with the NOT NULL restriction. This
means that those particular columns cannot contain NULL.

The NULL value introduces the concept of three valued logic to SQL. The
NULL value compared using any comparison operator with any value
(including the NULL value) is “UNKNOWN.” The only search condition
that returns TRUE is the IS NULL predicate. In SQL, rows are selected only
if the search condition in the WHERE clause evaluates to TRUE; rows that
evaluate to UNKNOWN or FALSE are not selected.

The IS [NOT]truth-valueclause, wheretruth-valueis one of TRUE,
FALSE or UNKNOWN can be used to select rows where the NULL value is
involved. See“Search conditions” on page 22for a description of this clause.

In the following examples, the columnSalary contains NULL.

Condition Truth value Selected?

Salary = NULL UNKNOWN NO

Salary<> NULL UNKNOWN NO

NOT (Salary = NULL) UNKNOWN NO

NOT (Salary<> NULL) UNKNOWN NO

48

Chapter 1. SQL Language Elements

Condition Truth value Selected?

Salary = 1000 UNKNOWN NO

Salary IS NULL TRUE YES

Salary IS NOT NULL FALSE NO

Salary =expressionIS UNKNOWN TRUE YES

The same rules apply when comparing columns from two different tables.
Therefore, joining two tables together will not select rows where any of the
columns compared contain the NULL value.

NULL also has an interesting property when used in numeric expressions.
The result ofany numeric expression involving the NULL value is NULL.
This means that if NULL is added to a number, the result is NULL—not a
number. If you want NULL to be treated as 0, you must use theISNULL(
expression, 0) function (see“SQL Functions” on page 83).

Many common errors in formulating SQL queries are caused by the behavior
of NULL. You will have to be careful to avoid these problem areas. See
“Search conditions” on page 22for a description of the effect of three-valued
logic when combining search conditions.

Set operators and
DISTINCT clause

In set operations (UNION, INTERSECT, EXCEPT), and in the DISTINCT
operation, NULL is treated differently from in search conditions. Rows that
contain NULL and are otherwise identical are treated as identical for the
purposes of these operations.

For example, if a column called redundant contained NULL for every row in
a table T1, then the following statement would return a single row:

SELECT DISTINCT redundant
FROM T1

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ Sybase In some contexts, Adaptive Server Enterprise treats NULL as a
value, whereas Adaptive Server Anywhere does not. For example, rows
of a column c1 that are NULL are not included in the results of a query
with the following WHERE clause in Adaptive Server Anywhere, as the
condition has a value of UNKNOWN:

WHERE NOT(C1 = NULL)

In Adaptive Server Enterprise, the condition is evaluated as TRUE, and
these rows are returned. You should use IS NULL rather than a
comparison operator for compatibility.

49

Unique indexes in Adaptive Server Anywhere can hold rows that hold
NULL and are otherwise identical. Adaptive Server Enterprise does not
permit such entries in unique indexes.

If you use jConnect, the TDS_EMPTY_STRING_IS_NULL option
controls whether empty strings are returned as NULL strings or as a
string containing one blank character.

☞ For more information, see “TDS_EMPTY_STRING_IS_NULL
option [database]”[ASA Database Administration Guide,page 628].

Example ♦ The following INSERT statement inserts a NULL into the date_returned
column of the Borrowed_book table.

INSERT
INTO Borrowed_book
(date_borrowed, date_returned, book)
VALUES (CURRENT DATE, NULL, ’1234’)

50

CHAPTER 2

SQL Data Types

About this chapter This chapter describes the data types supported by Adaptive Server
Anywhere.

Contents Topic: page

Character data types 52

Numeric data types 56

Money data types 63

BIT data type 64

Date and time data types 65

Binary data types 72

Domains 74

Data type conversions 76

Year 2000 compliance 78

51

Character data types
Function For storing strings of letters, numbers and symbols.

Description Adaptive Server Anywhere treats CHAR, VARCHAR, and LONG
VARCHAR columns all as the same type. Values up to 254 characters are
stored as short strings, with a preceding length byte. Any values that are
longer than 255 bytes are considered long strings. Characters after the 255th
byte are stored separately from the row containing the long string value.

There are several functions (see“SQL Functions” on page 83) that will
ignore the part of any string past the 255th character. They aresoundex,
similar , and all of the date functions. Also, any arithmetic involving the
conversion of a long string to a number will work on only the first 255
characters. It would be extremely unusual to run in to one of these
limitations.

All other functions and all other operators work with the full length of long
strings.

Character sets and code
pages

Character data is placed in the database using the exact binary representation
that is passed from the application. This usually means that character data is
stored in the database with the binary representation of the currentcode
page. The code page is the character set representation used by
IBM-compatible personal computers. You can find documentation about
code pages in the documentation for your operating system.

Most code pages are the same for the first 128 characters. If you use special
characters from the top half of the code page (accented international
language characters), you must be careful with your databases. In particular,
if you copy the database to a machine that uses a different code page, those
special characters will be retrieved from the database using the original code
page representation. With the new code page, they will appear on the screen
to be the wrong characters.

This problem also appears if you have two clients using the same multi-user
server, but run with different code pages. Data inserted or updated by one
client may appear incorrect to the other.

This problem also shows up if a database is used across platforms.
PowerBuilder and many other Windows applications insert data into the
database in the standard ANSI character set. If non-Windows applications
attempt to use this data, they will not properly display or update the
extended characters.

This problem is quite complex. If any of your applications use the extended
characters in the upper half of the code page, make sure that all clients and

52

Chapter 2. SQL Data Types

all machines using the database use the same or a compatible code page.

Notes Data type lengths of less than one are not allowed.

Compatibility ♦ The CHARACTER (n) alternative for CHAR is not supported in
Adaptive Server Enterprise.

♦ Adaptive Server Anywhere does not support the NCHAR and
NVARCHAR data types provided by Adaptive Server Enterprise.

CHAR data type [Character]

Function Character data of maximum lengthmax-lengthbytes.

Syntax { CHAR | CHARACTER } [(max-length)]

Usage The default value ofmax-lengthis 1.

For strings up to 254 bytes in length, the storage requirement is the number
of bytes in the string plus one additional byte. For longer strings, there is
more overhead.

Strings of multi-byte characters can be held as the CHAR data type, but
max-lengthis in bytes, not characters.

Parameters max-length The maximum length in bytes of the string. The maximum
size allowed is 32767.

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise. In Adaptive
Server Enterprise, the storage requirements for CHAR data types is
alwaysmax-length. The maximummax-lengthfor Adaptive Server
Enterprise is 255.

♦ Other database systems In many other database-management
systems, unlike Adaptive Server Anywhere, CHAR data types result in
blank padding to the full length of the string. This means that they require
max-lengthbytes of storage, regardless of the length of the actual string.

See also “CHARACTER VARYING (VARCHAR) data type [Character]” on page 53

“LONG VARCHAR data type [Character]” on page 54

CHARACTER VARYING (VARCHAR) data type [Character]

Function Same as CHAR.

Syntax { VARCHAR | CHARACTER VARYING } [(max-length)]

Usage The default value ofmax-lengthis 1.

53

For strings up to 254 bytes in length, the storage requirements are the
number of bytes in the string plus one additional byte. For longer strings,
there is more overhead.

Strings of multi-byte characters can be held as the CHAR data type, but it is
important to note thatmax-lengthis in bytes, not characters.

Parameters max-length The maximum length of the string, in bytes. The maximum
size allowed is 32767.

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise. The maximum
max-lengthfor Adaptive Server Enterprise is 255.

See also “CHAR data type [Character]” on page 53

“LONG VARCHAR data type [Character]” on page 54

LONG VARCHAR data type [Character]

Function Arbitrary length character data.

Syntax LONG VARCHAR

Usage Arbitrary length strings. The maximum size is limited by the maximum size
of the database file (currently 2 Gb).

In addition to the length of the string itself, there is some additional
overhead for storage.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “CHAR data type [Character]” on page 53

“CHARACTER VARYING (VARCHAR) data type [Character]” on page 53

TEXT data type [Character]

Function This is a domain. It is implemented as a LONG VARCHAR allowing NULL.

Syntax TEXT

Usage Arbitrary length strings. The usage is as for LONG VARCHAR.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

54

Chapter 2. SQL Data Types

See also “LONG VARCHAR data type [Character]” on page 54

UNIQUEIDENTIFIERSTR data type [Character]

Function This is a domain. It is implemented as a CHAR(36).

Syntax UNIQUEIDENTIFIERSTR

Usage This data type is used for remote data access, when mapping SQL Server
uniqueidentifier columns.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “Data type conversions: Microsoft SQL Server”[ASA SQL User’s Guide,
page 601]

“STRTOUUID function [STRING]” on page 192

XML data type [Character]

Function A domain, implemented as LONG VARCHAR.

Syntax XML

Usage XML is provided for storing XML documents in an Adaptive Server
Anywhere database. Data of type XML is not quoted when generating
element content from relational data.

You can cast between the XML data type and any other data type that can be
cast to or from a string. Note that there is no checking that the string is
well-formed when it is cast to XML.

☞ For information about using the XML data type when generating XML
elements, see “Storing XML documents in relational databases”[ASA SQL
User’s Guide,page 481].

Standards and
compatibility

♦ Part of the SQL/XML draft standard.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “LONG VARCHAR data type [Character]” on page 54

55

Numeric data types
Function For storing numerical data.

Notes ♦ The NUMERIC and DECIMAL data types, and the various kinds of
INTEGER data types, are sometimes calledexactnumeric data types, in
contrast to theapproximate numeric data types FLOAT, DOUBLE, and
REAL.

The exact numeric data types are those for which precision and scale
values can be specified, while approximate numeric data types are stored
in a predefined manner.Only exact numeric data is guaranteed accurate
to the least significant digit specified after an arithmetic operation.

♦ Before release 5.5, hexadecimal constants longer than four bytes were
treated as string constants, and others were treated as integers. The new
default behavior is to treat them as binary type constants. To use the
historical behavior, set the TSQL_HEX_CONSTANTS database option
to OFF.

♦ Data type lengths and precision of less than one are not allowed.

Compatibility ♦ Only the NUMERIC data type with scale = 0 can be used for the
Transact-SQL identity column.

♦ You should avoid default precision and scale settings for NUMERIC and
DECIMAL data types, because these are different between Adaptive
Server Anywhere and Adaptive Server Enterprise. In Adaptive Server
Anywhere, the default precision is 30 and the default scale is 6. In
Adaptive Server Enterprise, the default precision is 18 and the default
scale is 0.

♦ The FLOAT (p) data type is a synonym for REAL or DOUBLE,
depending on the value ofp. For Adaptive Server Enterprise, REAL is
used for p less than or equal to 15, and DOUBLE forp greater than 15.
For Adaptive Server Anywhere, the cutoff is platform-dependent, but on
all platforms the cutoff value is greater than 15.

☞ For information about changing the defaults by setting database options,
see “PRECISION option [database]”[ASA Database Administration Guide,
page 617]and “SCALE option [database]”[ASA Database Administration Guide,
page 624].

BIGINT data type [Numeric]

Function Integer requiring 8 bytes of storage.

Syntax [UNSIGNED] BIGINT

56

Chapter 2. SQL Data Types

Usage The BIGINT data type is an exact numeric data type: its accuracy is
preserved after arithmetic operations.

A BIGINT value requires 8 bytes of storage.

The range for signed BIGINT values is –263 to 263 – 1, or
–9223372036854775808 to 9223372036854775807.

The range for unsigned BIGINT values is 0 to 264 – 1, or 0
to 18446744073709551615.

By default, the data type is signed.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “INT or INTEGER data type [Numeric]” on page 59

“TINYINT data type [Numeric]” on page 62

“SMALLINT data type [Numeric]” on page 61

DECIMAL data type [Numeric]

Function A decimal number withprecisiontotal digits and withscaleof the digits
after the decimal point.

Syntax { DECIMAL | DEC } [(precision [, scale])]

Usage The DECIMAL data type is an exact numeric data type; its accuracy is
preserved to the least significant digit after arithmetic operations.

The storage required for a decimal number can be estimated as

2 + int((before + 1)/2) + int((after + 1)/2)

The functionint takes the integer portion of its argument, andbeforeand
after are the number of significant digits before and after the decimal point.
The storage is based on the value being stored, not on the maximum
precision and scale allowed in the column.

Parameters precision An integer expression that specifies the number of digits in the
expression. The default setting is 30.

scale An integer expression that specifies the number of digits after the
decimal point. The default setting is 6.

The defaults can be changed by setting database options. For information,
see “PRECISION option [database]”[ASA Database Administration Guide,
page 617]and “SCALE option [database]”[ASA Database Administration Guide,
page 624].

57

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “FLOAT data type [Numeric]” on page 58

“REAL data type [Numeric]” on page 61

“DOUBLE data type [Numeric]” on page 58

DOUBLE data type [Numeric]

Function A double-precision floating-point number.

Syntax DOUBLE [PRECISION]

Usage The DOUBLE data type holds a double-precision floating point number. An
approximate numeric data type, it is subject to rounding errors after
arithmetic operations. The approximate nature of DOUBLE values means
that queries using equalities should generally be avoided when comparing
DOUBLE values.

DOUBLE values require 8 bytes of storage.

The value range is 2.22507385850721e–308 to 1.79769313486231e+308.
Values held as DOUBLE are accurate to 15 significant digits, but may be
subject to round-off error beyond the fifteenth digit.

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “FLOAT data type [Numeric]” on page 58

“REAL data type [Numeric]” on page 61

“DECIMAL data type [Numeric]” on page 57

FLOAT data type [Numeric]

Function A floating point number, which may be single or double precision.

Syntax FLOAT [(precision)]

Usage When a column is created using the FLOAT (precision) data type, columns
on all platforms are guaranteed to hold the values to at least the specified
minimum precision. In contrast, REAL and DOUBLE do not guarantee a
platform-independent minimum precision.

If precisionis not supplied, the FLOAT data type is a single precision
floating point number, equivalent to the REAL data type, and requires
4 bytes of storage.

58

Chapter 2. SQL Data Types

If precisionis supplied, the FLOAT data type is either single or double
precision, depending on the value of precision specified. The cutoff between
REAL and DOUBLE is platform-dependent. Single precision FLOATs
require 4 bytes of storage, and double precision FLOATs require 8 bytes.

The FLOAT data type is an approximate numeric data type. It is subject to
round-off errors after arithmetic operations. The approximate nature of
FLOAT values means that queries using equalities should generally be
avoided when comparing FLOAT values.

Parameters precision An integer expression that specifies the number of bits in the
mantissa. A mantissa is the decimal part of a logarithm. For example, in the
logarithm 5.63428, the mantissa is 0.63428. The IEEE standard 754
floating-point precision is as follows:

n Decimal preci-

sion

Equivalent SQL data

type

Storage size

1-24 7 decimal digits REAL 4 bytes

25-53 15 decimal dig-
its

DOUBLE 8 bytes

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92.

♦ Sybase You can tune the behavior of the FLOAT data type for
compatibility with Adaptive Server Enterprise, using the
“FLOAT_AS_DOUBLE option [compatibility]”[ASA Database
Administration Guide,page 593].

See also “DECIMAL data type [Numeric]” on page 57

“REAL data type [Numeric]” on page 61

“DOUBLE data type [Numeric]” on page 58

INT or INTEGER data type [Numeric]

Function Integer requiring 4 bytes of storage.

Syntax [UNSIGNED] { INT | INTEGER }

Usage The INTEGER data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations.

If you specify UNSIGNED, the integer can never be assigned a negative
number. By default, the data type is signed.

The range for signed integers is –231 to 231 – 1, or –2147483648
to 2147483647.

59

The range for unsigned integers is 0 to 232 – 1, or 0 to 4294967295.

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92. The UNSIGNED keyword is a
vendor extension.

♦ Sybase The signed data type is compatible with Adaptive Server
Enterprise. Adaptive Server Enterprise does not support the UNSIGNED
data type.

See also “BIGINT data type [Numeric]” on page 56

“TINYINT data type [Numeric]” on page 62

“SMALLINT data type [Numeric]” on page 61

NUMERIC data type [Numeric]

Function Same as DECIMAL.

Syntax NUMERIC [(precision [, scale])]

Usage The NUMERIC data type is an exact numeric data type; its accuracy is
preserved to the least significant digit after arithmetic operations.

The number of bytes required to store a decimal number can be estimated as

2 + int((before+1)/2) + int((after+1)/2)

The functionint takes the integer portion of its argument, andbeforeand
after are the number of significant digits before and after the decimal point.
The storage is based on the value being stored, not on the maximum
precision and scale allowed in the column.

Parameters precision An integer expression that specifies the number of digits in the
expression. The default value is 30.

scale An integer expression that specifies the number of digits after the
decimal point. The default value is 6.

The defaults can be changed by setting database options. For information,
see “PRECISION option [database]”[ASA Database Administration Guide,
page 617]and “SCALE option [database]”[ASA Database Administration Guide,
page 624].

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92, if the SCALE option is set to zero.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “FLOAT data type [Numeric]” on page 58

“REAL data type [Numeric]” on page 61

60

Chapter 2. SQL Data Types

“DOUBLE data type [Numeric]” on page 58

REAL data type [Numeric]

Function A single-precision floating-point number stored in 4 bytes.

Syntax REAL

Usage The REAL data type is an approximate numeric data type; it is subject to
roundoff errors after arithmetic operations.

The range of values is 1.175495e-38 to 3.402823e+38. Values held as REAL
are accurate to 10 significant digits, but may be subject to round-off error
beyond the sixth digit.

The approximate nature of REAL values means that queries using equalities
should generally be avoided when comparing REAL values

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92.

♦ Sybase Compatible with Adaptive Server Enterprise.

SMALLINT data type [Numeric]

Function Integer requiring 2 bytes of storage.

Syntax [UNSIGNED] SMALLINT

Usage The SMALLINT data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations. It requires 2 bytes of storage.

The range for signed SMALLINT values is –215 to 215 – 1, or –32768
to 32767.

The range for unsigned SMALLINT values is 0 to 216 – 1, or 0 to 65535.

Standards and
compatibility

♦ SQL/92 Compatible with SQL/92. The UNSIGNED keyword is a
vendor extension.

♦ Sybase The signed data type is compatible with Adaptive Server
Enterprise. Adaptive Server Enterprise does not support the UNSIGNED
data type.

See also “INT or INTEGER data type [Numeric]” on page 59

“TINYINT data type [Numeric]” on page 62

“BIGINT data type [Numeric]” on page 56

61

TINYINT data type [Numeric]

Function Unsigned integer requiring 1 byte of storage.

Syntax [UNSIGNED] TINYINT

Usage The TINYINT data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations.

You can explicitly specify TINYINT as UNSIGNED, but the UNSIGNED
modifier has no effect as the type is always unsigned.

The range for TINYINT values is 0 to 28 – 1, or 0 to 255.

In Embedded SQL, TINYINT columns should not be fetched into variables
defined as char or unsigned char, since the result is an attempt to convert the
value of the column to a string and then assign the first byte to the variable in
the program. Instead, TINYINT columns should be fetched into 2-byte or
4-byte integer columns. Also, to send a TINYINT value to a database from
an application written in C, the type of the C variable should be integer.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “BIGINT data type [Numeric]” on page 56

“TINYINT data type [Numeric]” on page 62

“SMALLINT data type [Numeric]” on page 61

62

Chapter 2. SQL Data Types

Money data types
Function For storing monetary data.

MONEY data type [Money]

Function This data type is convenient for storing monetary data, and provides
compatibility with the Adaptive Server Enterprise MONEY data type.

Syntax MONEY

Usage The MONEY data type is implemented as a domain, as NUMERIC(19,4),
allowing NULL.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Monetary data types in Adaptive Server Anywhere are
implemented as domains, and are primarily intended for compatibility
with Adaptive Server Enterprise.

See also “SMALLMONEY data type [Money]” on page 63

SMALLMONEY data type [Money]

Function This data type is convenient for storing monetary data that is not too large,
and provides compatibility with the Adaptive Server Enterprise
SMALLMONEY data type.

Syntax SMALLMONEY

Usage The SMALLMONEY data type is implemented in Adaptive Server
Anywhere as a domain, as NUMERIC(10,4), allowing NULL.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Monetary data types in Adaptive Server Anywhere are
implemented as domains, and are primarily intended for compatibility
with Adaptive Server Enterprise.

See also “MONEY data type [Money]” on page 63

63

BIT data type
Function For storing Boolean values (0 or 1).

Syntax BIT

Usage By default, columns of BIT data type do not allow NULL. This behavior is
different from other data types. You can explicitly allow NULL if desired.

Allowed values are 0 and 1.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

64

Chapter 2. SQL Data Types

Date and time data types
Function For storing dates and times.

Sending dates and times to the database

Dates and times may be sent to the database in one of the following ways:

♦ Using any interface, as a string

♦ Using ODBC, as a TIMESTAMP structure

♦ Using Embedded SQL, as a SQLDATETIME structure

When a time is sent to the database as a string (for the TIME data type) or as
part of a string (for TIMESTAMP or DATE data types), the hours, minutes,
and seconds must be separated by colons in the formathh:mm:ss.sss, but
can appear anywhere in the string. The following are valid and unambiguous
strings for specifying times:

21:35 -- 24 hour clock if no am or pm specified
10:00pm -- pm specified, so interpreted as 12 hour clock
10:00 -- 10:00am in the absence of pm
10:23:32.234 -- seconds and fractions of a second included

When a date is sent to the database as a string, conversion to a date is
automatic. The string can be supplied in one of two ways:

♦ As a string of formatyyyy/mm/dd or yyyy-mm-dd, which is interpreted
unambiguously by the database

♦ As a string interpreted according to the DATE_ORDER database option

Transact-SQL compatibility of string-to-date/time conversions

There are some differences in behavior between Adaptive Server Anywhere
and Adaptive Server Enterprise, when converting strings to date and time
data types.

If a string containing only a time value (no date) is converted to a date/time
data type, Adaptive Server Enterprise uses a default date of January 1, 1900,
but Adaptive Server Anywhere uses the current date.

If the fraction portion of a time is less than 3 digits Adaptive Server
Enterprise interprets the value differently depending on whether it was
preceded by a period or a colon. If preceded by a colon, the value means
thousandths of a second. If preceded by a period, one digit means tenths, two
digits mean hundredths, and three digits mean thousandths. Adaptive Server
Anywhere interprets the value the same way, regardless of the separator.

65

Examples Adaptive Server Enterprise converts the values below as shown. The second
line in each pair differs in the use of a colon rather than a period.

12:34:56.7 to 12:34:56.700
12:34:56:7 to 12:34:56.007
12.34.56.78 to 12:34:56.780
12.34.56:78 to 12:34:56.078
12:34:56.789 to 12:34:56.789
12:34:56:789 to 12:34:56.789

Adaptive Server Anywhere converts the milliseconds value in the manner
that Adaptive Server Enterprise does for values preceded by a period, in both
cases:

12:34:56.7 to 12:34:56.700
12:34:56:7 to 12:34:56.700
12.34.56.78 to 12:34:56.780
12.34.56:78 to 12:34:56.780
12:34:56.789 to 12:34:56.789
12:34:56:789 to 12:34:56.789

Retrieving dates and times from the database

Dates and times may be retrieved from the database in one of the following
ways:

♦ Using any interface, as a string

♦ Using ODBC, as a TIMESTAMP structure

♦ Using embedded SQL, as a SQLDATETIME structure

When a date or time is retrieved as a string, it is retrieved in the format
specified by the database options DATE_FORMAT, TIME_FORMAT and
TIMESTAMP_FORMAT. For descriptions of these options, see“SET
OPTION statement” on page 556.

☞ For information on functions that deal with dates and times, see“Date
and time functions” on page 85. The following arithmetic operators are
allowed on dates:

♦ timestamp + integer Add the specified number of days to a date or
timestamp.

♦ timestamp - integer Subtract the specified number of days from a date
or timestamp.

♦ date - date Compute the number of days between two dates or
timestamps.

♦ date + time Create a timestamp combining the given date and time.

66

Chapter 2. SQL Data Types

Comparing dates and times in the database

By default, values stored as DATE do not have any hour or minute values,
and so comparison of dates is straightforward.

If you set the TRUNCATE_DATE_VALUES option to OFF, then the DATE
data type also contains a time, which introduces complications when
comparing dates. If the time is not specified when a date is entered into the
database, the time defaults to 0:00 or 12:00am (midnight). Any date
comparisons with this option setting compare the times as well as the date
itself. A database date value of ‘1999-05-23 10:00’ is not equal to the
constant ‘1999-05-23’. The DATEFORMAT function or one of the other
date functions can be used to compare parts of a date and time field.
For example,

DATEFORMAT(invoice_date,’yyyy/mm/dd’) = ’1999/05/23’

If a database column requires only a date, client applications should ensure
that times are not specified when data is entered into the database. This way,
comparisons with date-only strings will work as expected.

If you wish to compare a date to a stringas a string, you must use the
DATEFORMAT function or CAST function to convert the date to a string
before comparing.

Using unambiguous dates and times

Dates in the formatyyyy/mm/dd or yyyy-mm-dd are always recognized
unambiguously as dates, regardless of the DATE_ORDER setting. Other
characters can be used as separators instead of “/” or “ -”; for example, “?”, a
space character, or “,”. You should use this format in any context where
different users may be employing different DATE_ORDER settings.
For example, in stored procedures, use of the unambiguous date format
prevents misinterpretation of dates according to the user’s DATE_ORDER
setting.

Also, a string of the formhh:mm:ss.sssis interpreted unambiguously as a
time.

For combinations of dates and times, any unambiguous date and any
unambiguous time yield an unambiguous date-time value. Also, the form

YYYY-MM-DD HH.MM.SS.SSS

is an unambiguous date-time value. Periods can be used in the time only in

67

combination with a date.

In other contexts, a more flexible date format can be used. Adaptive Server
Anywhere can interpret a wide range of strings as dates. The interpretation
depends on the setting of the database option DATE_ORDER. The
DATE_ORDER database option can have the valueMDY , YMD , or DMY
(see“SET OPTION statement” on page 556). For example, the following
statement sets the DATE_ORDER option toDMY :

SET OPTION DATE_ORDER = ’DMY’ ;

The default DATE_ORDER setting is ‘YMD’. The ODBC driver sets the
DATE_ORDER option to ‘YMD’ whenever a connection is made. The value
can still be changed using the SET TEMPORARY OPTION statement.

The database option DATE_ORDER determines whether the string 10/11/12
is interpreted by the database as November 12, 2010; October 11, 2012; or
November 10, 2012. The year, month, and day of a date string should be
separated by some character (/, -, or space) and appear in the order specified
by the DATE_ORDER option.

The year can be supplied as either 2 or 4 digits. The value of the option
NEAREST_CENTURY affects the interpretation of 2-digit years: 2000 is
added to values less than NEAREST_CENTURY and 1900 is added to all
other values. The default value of this option is 50. Thus, by default, 50 is
interpreted as 1950 and 49 is interpreted 2049.

The month can be the name or number of the month. The hours and minutes
are separated by a colon, but can appear anywhere in the string.

Notes ♦ We recommend that you always specify the year using the four-digit
format.

For more information about Y2K compliance issues, see“Year 2000
compliance” on page 78.

♦ With an appropriate setting of DATE_ORDER, the following strings are
all valid dates:

99-05-23 21:35
99/5/23
1999/05/23
May 23 1999
23-May-1999
Tuesday May 23, 1999 10:00pm

♦ If a string contains only a partial date specification, default values are
used to fill out the date. The following defaults are used:

• year This year

68

Chapter 2. SQL Data Types

• month No default

• day 1 (useful for month fields; for example, May 1999 will be the
date 1999-05-01 00:00)

• hour, minute, second, fraction 0

DATE data type [Date and Time]

Function A calendar date, such as a year, month and day.

Syntax DATE

Usage The year can be from the year 0001 to 9999. The minimum date in Adaptive
Server Anywhere is 0001-01-01 00:00:00.

For historical reasons, a DATE column can also contain an hour and minute
if the TRUNCATE_DATE_VALUES option is set to OFF. The
TIMESTAMP data type is recommended for anything with hours and
minutes.

The format in which DATE values are retrieved by applications is controlled
by the DATE_FORMAT setting. For example, a date value representing the
19th of July, 2003 may be returned to an application as2003/07/19 , as
Jul 19, 2003 , or as one of a number of other possibilities.

The way in which a string is interpreted by the database server as a date is
controlled by the DATE_ORDER option. For example, depending on the
DATE_ORDER setting, a value of02/05/2002 supplied by an application
for a DATE value may be interpreted in the database as the 2nd of May or
the 5th of February.

A DATE value requires 4 bytes of storage.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise 12.5.1 and later.

See also “DATE_FORMAT option [compatibility]” [ASA Database Administration
Guide,page 587]

“DATE_ORDER option [compatibility]”[ASA Database Administration Guide,
page 588]

“DATETIME data type [Date and Time]” on page 70

“SMALLDATETIME data type [Date and Time]” on page 70

“TIMESTAMP data type [Date and Time]” on page 71

“TRUNCATE_DATE_VALUES option [database]”[ASA Database
Administration Guide,page 630]

69

DATETIME data type [Date and Time]

Function A domain, implemented as TIMESTAMP.

Syntax DATETIME

Usage DATETIME is provided primarily for compatibility with Adaptive Server
Enterprise.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise. For an exception,
see“Transact-SQL compatibility of string-to-date/time conversions” on
page 65.

See also “DATE data type [Date and Time]” on page 69

“SMALLDATETIME data type [Date and Time]” on page 70

“TIMESTAMP data type [Date and Time]” on page 71

SMALLDATETIME data type [Date and Time]

Function A domain, implemented as TIMESTAMP.

Syntax SMALLDATETIME

Usage SMALLDATETIME is provided primarily for compatibility with Adaptive
Server Enterprise.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise. For an exception,
see“Transact-SQL compatibility of string-to-date/time conversions” on
page 65.

See also “DATE data type [Date and Time]” on page 69

“DATETIME data type [Date and Time]” on page 70

“TIMESTAMP data type [Date and Time]” on page 71

TIME data type [Date and Time]

Function The time of day, containing hour, minute, second and fraction of a second.

Syntax TIME

Usage The fraction is stored to 6 decimal places. A TIME value requires 8 bytes of
storage. (ODBC standards restrict TIME data type to an accuracy of

70

Chapter 2. SQL Data Types

seconds. For this reason you should not use TIME data types in WHERE
clause comparisons that rely on a higher accuracy than seconds.)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise 12.5.1 and later.

See also “TIMESTAMP data type [Date and Time]” on page 71

TIMESTAMP data type [Date and Time]

Function The point in time, containing year, month, day, hour, minute, second and
fraction of a second.

Syntax TIMESTAMP

Usage The fraction is stored to 6 decimal places. A TIMESTAMP value requires
8 bytes of storage.

Although the range of possible dates for the TIMESTAMP data type is the
same as the DATE type (covering years 0001 to 9999), the useful range of
TIMESTAMP date types is from 1600-02-28 23:59:59 to 7911-01-01
00:00:00. Prior to, and after this range the time portion of the TIMESTAMP
may be incomplete.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “TIME data type [Date and Time]” on page 70

71

Binary data types
Function For storing binary data, including images and other information that is not

interpreted by the database.

BINARY data type [Binary]

Function Binary data of a specified maximum length (in bytes).

Syntax BINARY [(max-length)]

Usage The defaultmax-lengthis 1.

The maximum size allowed is 32767. The BINARY data type is identical to
the CHAR data type except when used in comparisons. BINARY values are
compared exactly while CHAR values are compared using the collation
sequence of the database.

Parameters max-length An integer expression that specifies the maximum length of
the expression.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Adaptive Server Enterprise supportsmax-lengthup to 255.

See also “LONG BINARY data type [BINARY]” on page 72

“VARBINARY data type [BINARY]” on page 73

LONG BINARY data type [BINARY]

Function Arbitrary length binary data.

Syntax LONG BINARY

Usage The maximum size is limited by the maximum size of the database file.

☞ For more information on limitations, see “Size and number limitations”
[ASA Database Administration Guide,page 674].

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “BINARY data type [Binary]” on page 72

“VARBINARY data type [BINARY]” on page 73

IMAGE data type [BINARY]

Function LONG BINARY data allowing NULL.

72

Chapter 2. SQL Data Types

Syntax IMAGE

Usage IMAGE is implemented in Adaptive Server Anywhere as a domain, as
LONG BINARY allowing NULL. It is provided primarily for compatibility
with Adaptive Server Enterprise.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

UNIQUEIDENTIFIER data type [Binary]

Function Storage of UUID (also known as GUID) values.

Syntax UNIQUEIDENTIFIER

Usage The UNIQUEIDENTIFIER data type is binary(16), and stores UUID
(Universally Unique Identifier) or GUID (Globally Unique Identifier) values.

UUIDs and GUIDs can be used to uniquely identify rows in a table. The
values are generated such that a value produced on one computer will not
match a UUID or GUID produced on another computer. They can be used as
keys in a replication environment.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “The NEWID default” [ASA SQL User’s Guide,page 82]

“NEWID function [Miscellaneous]” on page 159

“UUIDTOSTR function [STRING]” on page 200

“STRTOUUID function [STRING]” on page 192

VARBINARY data type [BINARY]

Function Identical to BINARY.

Syntax VARBINARY [(max-length)]

Usage Variable length binary strings. The default value formax-lengthis 1.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “BINARY data type [Binary]” on page 72

“LONG BINARY data type [BINARY]” on page 72

73

Domains
Function Domainsare aliases for built-in data types, including precision and scale

values where applicable, and optionally including DEFAULT values and
CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in Adaptive Server Anywhere, but you can add more of your
own.

Domains, also calleduser-defined data types, allow columns throughout a
database to be automatically defined on the same data type, with the same
NULL or NOT NULL condition, with the same DEFAULT setting, and with
the same CHECK condition. Domains encourage consistency throughout the
database and can eliminate some types of errors.

Simple domains Domains are created using the CREATE DOMAIN statement For full
description of the syntax, see“CREATE DOMAIN statement” on page 300.

The following statement creates a data type namedstreet_address, which is
a 35-character string.

CREATE DOMAIN street_address CHAR(35)

CREATE DATATYPE can be used as an alternative to CREATE DOMAIN,
but is not recommended because CREATE DOMAIN is the syntax used in
the draft SQL/3 standard.

Resource authority is required to create data types. Once a data type is
created, the user ID that executed the CREATE DOMAIN statement is the
owner of that data type. Any user can use the data type. Unlike with other
database objects, the owner name is never used to prefix the data type name.

Thestreet_addressdata type may be used in exactly the same way as any
other data type when defining columns. For example, the following table
with two columns has the second column as astreet_addresscolumn:

CREATE TABLE twocol (
id INT,
street street_address

)

Domains can be dropped by their owner or by the DBA, using the DROP
DOMAIN statement:

DROP DOMAIN street_address

This statement can be carried out only if the data type is not used in any
table in the database. If you attempt to drop a domain that is in use, the
message “Primary key for row in table ‘SYSUSERTYPE’ is referenced in

74

Chapter 2. SQL Data Types

another table” appears.

Constraints and defaults
with domains

Many of the attributes associated with columns, such as allowing NULL
values, having a DEFAULT value, and so on, can be built into a domain.
Any column that is defined on the data type automatically inherits the NULL
setting, CHECK condition, and DEFAULT values. This allows uniformity to
be built into columns with a similar meaning throughout a database.

For example, many primary key columns in the sample database are integer
columns holding ID numbers. The following statement creates a data type
that may be useful for such columns:

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT
CHECK(@col > 0)

Any column created using the data typeid is not allowed to hold NULLs,
defaults to an auto-incremented value, and must hold a positive number. Any
identifier could be used instead ofcol in the@col variable.

The attributes of the data type can be overridden if needed by explicitly
providing attributes for the column. A column created on data typeid with
NULL values explicitly allowed does allow NULLs, regardless of the setting
in the id data type.

Compatibility ♦ Named constraints and defaults In Adaptive Server Anywhere,
domains are created with a base data type, and optionally a NULL or
NOT NULL condition, a default value, and a CHECK condition. Named
constraints and named defaults are not supported.

♦ Creating data types In Adaptive Server Anywhere, you can use the
sp_addtypesystem procedure to add a domain, or you can use the
CREATE DOMAIN statement. In Adaptive Server Enterprise, you must
usesp_addtype.

75

Data type conversions
Type conversions can happen automatically, or they can be explicitly
requested using the CAST or CONVERT function.

If a string is used in a numeric expression or as an argument to a function
that expects a numeric argument, the string is converted to a number.

If a number is used in a string expression or as a string function argument, it
is converted to a string before being used.

All date constants are specified as strings. The string is automatically
converted to a date before use.

There are certain cases where the automatic database conversions are not
appropriate.

’12/31/90’ + 5
’a’ > 0

The automatic data type conversion fails here. You can use the CAST or
CONVERT function to force type conversions. For information about the
CAST and CONVERT functions, see“Data type conversion functions” on
page 84.

The following functions can also be used to force type conversions (see
“SQL Functions” on page 83).

♦ DATE(value) Converts the expression into a date, and removes any
hours, minutes or seconds. Conversion errors may be reported.

♦ STRING(value) Equivalent to CAST(value AS LONG VARCHAR).

☞ For more information about the STRING function, see“STRING
function [String]” on page 192.

♦ VALUE+0.0 Equivalent to CAST(value AS DECIMAL).

☞ For more information about the CAST function, see“CAST function
[Data type conversion]” on page 102.

Conversion when using comparison operators

When a comparison (such as =) is performed between arguments with
different data types, one or both arguments must be converted so that the
comparison is done using one data type. Sometimes it is preferable for you
to explicitly convert the argument.

Adaptive Server Anywhere uses the following rules to perform a
comparison:

76

Chapter 2. SQL Data Types

1. If the data types of the arguments have a common super type, convert to
the common super type and compare. The super types are the final data
type in each of the following lists:

♦ BIT ➤ TINYINT ➤ UNSIGNED SMALLINT ➤ UNSIGNED
INTEGER➤ UNSIGNED BIGINT ➤ NUMERIC

♦ SMALLINT ➤ INTEGER➤ BIGINT ➤ NUMERIC

♦ REAL ➤ DOUBLE

♦ CHAR ➤ LONG VARCHAR

♦ BINARY ➤ LONG BINARY

♦ DATE ➤ TIMESTAMP

♦ TIME ➤ TIMESTAMP

For example, if the two arguments are of types BIT and TINYINT, they
are converted to NUMERIC.

2. If Rule 1 does not apply, and either data type has the type DATE or
TIMESTAMP, convert to TIMESTAMP and compare.

For example, if the two arguments are of type REAL and DATE, they are
both converted to TIMESTAMP.

3. If Rules 1 and 2 do not apply, and one argument has CHARACTER data
type and the other has BINARY data type, convert to BINARY and
compare.

4. If Rules 1 to 3 do not apply, and one argument has NUMERIC data type
and the other has FLOAT, convert to DOUBLE and compare.

5. If none of the rules apply, convert to NUMERIC and compare.

For example, if the two arguments have REAL and CHAR data types,
they are both converted to NUMERIC.

Notes ♦ You can override these rules by explicitly casting arguments to another
type. For example, if you want to compare a DATE and a CHAR as a
CHAR, then you need to explicitly cast the DATE to a CHAR.

♦ Rules 2 and 5 may lead to conversions that fail.

77

Year 2000 compliance
The problem of handling dates, in particular year values in and beyond the
year 2000, was a significant issue for the computer industry.

This section examines the year 2000 compliance of Adaptive Server
Anywhere. It illustrates how date values are handled internally by Adaptive
Server Anywhere, and how Adaptive Server Anywhere handles ambiguous
date information, such as the conversion of a two digit year string value.

Users of Sybase Adaptive Server Anywhere and its predecessors can be
assured that dates are handled and stored internally in a manner not
adversely effected by the transition from the 20th century to the 21st century.

Consider the following measurements of Adaptive Server Anywhere year
2000 compliance:

♦ Adaptive Server Anywhere always returns correct values for any legal
arithmetic and logical operations on dates, regardless of whether the
calculated values span different centuries.

♦ At all times, the Adaptive Server Anywhere internal storage of dates
explicitly includes the century portion of a year value.

♦ The operation of Adaptive Server Anywhere is unaffected by any return
value, including the current date.

♦ Date values can always be output in full century format.

Many of the date–related topics summarized in this section are explained in
greater detail in other parts of the documentation.

How dates are stored

Dates containing year values are used internally and stored in Adaptive
Server Anywhere databases using either of the following data types:

78

Chapter 2. SQL Data Types

Data type Contains Stored in Range of possi-

ble values

DATE Calendar date
(year, month,
day)

4-bytes 0001-01-01 to
9999-12-31

TIMESTAMP Time stamp (year,
month, day, hour
minute, second,
and fraction of
second accu-
rate to 6 decimal
places)

8-bytes 0001-01-01 to
9999-12-31 (pre-
cision of the
time portion of
TIMESTAMP
is dropped prior
to 1600-02-28
23:59:59 and af-
ter 7911-01-01
00:00:00)

☞ For more information on Adaptive Server Anywhere date and time data
types see“Date and time data types” on page 65.

Sending and retrieving date values

Date values are stored within Adaptive Server Anywhere as either a DATE
or TIMESTAMP data type, but they are passed to and retrieved from
Adaptive Server Anywhere using one of the following methods:

♦ As a string, using any Adaptive Server Anywhere programming interface.

♦ As a TIMESTAMP structure, using ODBC.

♦ As a SQLDATETIME structure, using Embedded SQL.

A string containing a date value is considered unambiguous and is
automatically converted to a DATE or TIMESTAMP data type without
potential for misinterpretation if it is passed using the following format:
yyyy-mm-dd (the “-” dash separator is one of several characters that are
permitted).

For more information Date formats other thanyyyy-mm-dd can be used by setting the
DATE_FORMAT database option. For more information, see
“DATE_FORMAT option [compatibility]” [ASA Database Administration
Guide,page 587].

For more information on unambiguous date formats, see“Using
unambiguous dates and times” on page 67.

For more information on the ODBC TIMESTAMP structure, see the

79

Microsoft Open Database Connectivity SDK, or“Sending dates and times to
the database” on page 65.

Used in the development of C programs, an embedded SQL
SQLDATETIME structure’s year value is a 16-bit signed integer.

For more information on the SQLDATETIME data type, see “Embedded
SQL data types”[ASA Programming Guide,page 149].

Leap years

The year 2000 is a leap year, with an additional day in the month of
February. Adaptive Server Anywhere uses a globally accepted algorithm for
determining which years are leap years. Using this algorithm, a year is
considered a leap year if it is divisible by four, unless the year is a century
date (such as the year 1900), in which case it is a leap year only if it is
divisible by 400.

Adaptive Server Anywhere handles all leap years correctly. For example, the
following SQL statement results in a return value of “Tuesday”:

SELECT DAYNAME(’2000-02-29’)

Adaptive Server Anywhere accepts February 29, 2000—a leap year—as a
date, and using this date determines the day of the week.

However, the following statement is rejected by Adaptive Server Anywhere:

SELECT DAYNAME(’2001-02-29’)

This statement results in an error (cannot convert ‘2001-02-29’ to a date)
because February 29th does not exist in the year 2001.

Ambiguous string to date conversions

Adaptive Server Anywhere automatically converts a string into a date when
a date value is expected, even if the year is represented in the string by only
two digits.

If the century portion of a year value is omitted, the method of conversion is
determined by the NEAREST_CENTURY database option.

The NEAREST_CENTURY database option is a numeric value that acts as a
break point between 19YY date values and 20YY date values.

Two-digit years less than the NEAREST_CENTURY value are converted to
20yy, while years greater than or equal to the value are converted to 19yy.

If this option is not set, the default setting of 50 is assumed. Thus, two-digit

80

Chapter 2. SQL Data Types

year strings are understood to refer to years between 1950 and 2049.

This NEAREST_CENTURY option was introduced in SQL Anywhere
Version 5.5. In version 5.5, the default setting was 0.

Ambiguous date
conversion example

The following statement creates a table that can be used to illustrate the
conversion of ambiguous date information in Adaptive Server Anywhere.

CREATE TABLE T1 (C1 DATE);

The table T1 contains one column, C1, of the type DATE.

The following statement inserts a date value into the column C1. Adaptive
Server Anywhere automatically converts a string that contains an ambiguous
year value, one with two digits representing the year but nothing to indicate
the century.

INSERT INTO T1 VALUES(’00-01-01’);

By default, the NEAREST_CENTURY option is set to 50, thus Adaptive
Server Anywhere converts the above string into the date 2000-01-01. The
following statement verifies the result of this insert.

SELECT * FROM T1;

Changing the NEAREST_CENTURY option using the following statement
alters the conversion process.

SET OPTION NEAREST_CENTURY = 0;

When NEAREST_CENTURY option is set to 0, executing the previous
insert using the same statement will create a different date value:

INSERT INTO T1 VALUES(’00-01-01’);

The above statement now results in the insertion of the date 1900-01-01. Use
the following statement to verify the results.

SELECT * FROM T1;

Date to string conversions

Adaptive Server Anywhere provides several functions for converting
Adaptive Server Anywhere date and time values into a wide variety of
strings and other expressions. It is possible in converting a date value into a
string to reduce the year portion into a two-digit number representing the
year, thereby losing the century portion of the date.

Wrong century values Consider the following statement, which incorrectly converts a string
representing the date January 1, 2000 into a string representing the date

81

January 1, 1900 even though no database error occurs.

SELECT DATEFORMAT (
DATEFORMAT(’2000-01-01’, ’Mmm dd/yy’),
’yyyy-Mmm-dd’)

AS Wrong_year;

Adaptive Server Anywhere automatically and correctly converts the
unambiguous date string 2000-01-01 into a date value. However, the
‘Mmm dd/yy’ formatting of the inner, or nested, DATEFORMAT function
drops the century portion of the date when it is converted back to a string
and passed to the outer DATEFORMAT function.

Because the database option NEAREST_CENTURY in this case is set to 0,
the outer DATEFORMAT function converts the string representing a date
with a two-digit year value into a year between 1900 and 1999.

☞ For more information on date and time functions, see“Date and time
functions” on page 85.

82

CHAPTER 3

SQL Functions

About this chapter Functions are used to return information from the database. They are
allowed anywhere an expression is allowed.

NULL parameters
Unless otherwise stated, any function that receives NULL as a parameter
returns NULL.

The chapter includes a grouping of functions by type, followed by an
alphabetical list of functions.

Contents Topic: page

Function types 84

Alphabetical list of functions 97

83

Function types
This section groups the available function by type.

Aggregate functions

Aggregate functions summarize data over a group of rows from the database.
The groups are formed using the GROUP BY clause of the SELECT
statement. Aggregate functions are allowed only in the select list and in the
HAVING and ORDER BY clauses of a SELECT statement.

List of functions The following aggregate functions are available:

♦ “AVG function [Aggregate]” on page 100

♦ “COUNT function [Aggregate]” on page 110

♦ “GROUPING function [Aggregate]” on page 138

♦ “LIST function [Aggregate]” on page 148

♦ “MAX function [Aggregate]” on page 154

♦ “MIN function [Aggregate]” on page 154

♦ “STDDEV function [Aggregate]” on page 189

♦ “STDDEV_POP function [Aggregate]” on page 189

♦ “STDEV_SAMP function [Aggregate]” on page 190

♦ “SUM function [Aggregate]” on page 194

♦ “VAR_POP function [Aggregate]” on page 201

♦ “VAR_SAMP function [Aggregate]” on page 202

♦ “VARIANCE function [Aggregate]” on page 202

Data type conversion functions

These functions are used to convert arguments from one data type to another,
or to test whether they can be converted.

Compatibility ♦ The Adaptive Server Anywherecastfunction is not currently supported
by Adaptive Server Enterprise.

List of functions The following data type conversion functions are available:

♦ “CAST function [Data type conversion]” on page 102

84

Chapter 3. SQL Functions

♦ “CONVERT function [Data type conversion]” on page 107

♦ “HEXTOINT function [Data type conversion]” on page 139

♦ “INTTOHEX function [Data type conversion]” on page 144

♦ “ISDATE function [Data type conversion]” on page 144

♦ “ISNUMERIC function [Miscellaneous]” on page 145

Date and time functions

Date and time functions perform operations on date and time data types or
return date or time information.

In this chapter, the termdatetime is used to mean date or time or timestamp.
The specific data type DATETIME is indicated as DATETIME.

☞ For more information on datetime data types, see“Date and time data
types” on page 65.

List of functions The following date and time functions are available:

♦ “DATE function [Date and time]” on page 113

♦ “DATEADD function [Date and time]” on page 114

♦ “DATEDIFF function [Date and time]” on page 114

♦ “DATEFORMAT function [Date and time]” on page 116

♦ “DATENAME function [Date and time]” on page 117

♦ “DATEPART function [Date and time]” on page 117

♦ “DATETIME function [Date and time]” on page 118

♦ “DAY function [Date and time]” on page 118

♦ “DAYNAME function [Date and time]” on page 118

♦ “DAYS function [Date and time]” on page 119

♦ “DOW function [Date and time]” on page 123

♦ “GETDATE function [Date and time]” on page 135

♦ “HOUR function [Date and time]” on page 139

♦ “HOURS function [Date and time]” on page 140

♦ “MINUTE function [Date and time]” on page 155

85

♦ “MINUTES function [Date and time]” on page 155

♦ “MONTH function [Date and time]” on page 157

♦ “MONTHNAME function [Date and time]” on page 157

♦ “MONTHS function [Date and time]” on page 158

♦ “NOW function [Date and time]” on page 163

♦ “QUARTER function [Date and time]” on page 173

♦ “SECOND function [Date and time]” on page 180

♦ “SECONDS function [Date and time]” on page 180

♦ “TODAY function [Date and time]” on page 196

♦ “WEEKS function [Date and time]” on page 204

♦ “YEARS function [Date and time]” on page 210

♦ “YMD function [Date and time]” on page 211

Date parts

Many of the date functions use dates built fromdate parts. The following
table displays allowed values of date-parts.

Date Part Abbreviation Values

Year yy 1–9999

Quarter qq 1–4

Month mm 1–12

Week wk 1–54. Weeks begin on Sunday.

Day dd 1–31

Dayofyear dy 1–366

Weekday dw 1–7 (Sunday = 1, . . . , Saturday = 7)

Hour hh 0–23

Minute mi 0–59

Second ss 0–59

Millisecond ms 0–999

86

Chapter 3. SQL Functions

Date Part Abbreviation Values

Calyearofweek cyr Integer. The year in which the week
begins. The week containing the first few
days of the year may have started in the
previous year, depending on the weekday
on which the year started. Years starting on
Monday through Thursday have no days
that are part of the previous year, but years
starting on Friday through Sunday start
their first week on the first Monday of the
year.

Calweekofyear cwk 1–54. The week number within the year
that contains the specified date.

Caldayofweek cdw 1–7. (Sunday = 1, . . . , Saturday = 7)

Java and SQL user-defined functions

There are two mechanisms for creating user-defined functions in Adaptive
Server Anywhere. You can use the SQL language to write the function, or
you can use Java.

User-defined functions in
SQL

You can implement your own functions in SQL using the“CREATE
FUNCTION statement” on page 315. The RETURN statement inside the
CREATE FUNCTION statement determines the data type of the function.

Once a SQL user-defined function is created, it can be used anywhere a
built-in function of the same data type is used.

☞ For more information on creating SQL functions, see “Using
Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609].

User-defined functions in
Java

Java classes provide a more powerful and flexible way of implementing
user-defined functions, with the additional advantage that they can be moved
from the database server to a client application if desired.

Any class method of an installed Java class can be used as a user-defined
function anywhere a built-in function of the same data type is used.

Instance methods are tied to particular instances of a class, and so have
different behavior from standard user-defined functions.

☞ For more information on creating Java classes, and on class methods,
see “A Java seminar”[ASA Programming Guide,page 59].

87

Miscellaneous functions

Miscellaneous functions perform operations on arithmetic, string or
date/time expressions, including the return values of other functions.

List of functions The following miscellaneous functions are available:

♦ “ARGN function [Miscellaneous]” on page 98

♦ “COALESCE function [Miscellaneous]” on page 105

♦ “ERRORMSG function [Miscellaneous]” on page 124

♦ “ESTIMATE function [Miscellaneous]” on page 125

♦ “ESTIMATE_SOURCE function [Miscellaneous]” on page 125

♦ “EXPERIENCE_ESTIMATE function [Miscellaneous]” on page 131

♦ “EXPLANATION function [Miscellaneous]” on page 132

♦ “EXPRTYPE function [Miscellaneous]” on page 133

♦ “GET_IDENTITY function [Miscellaneous]” on page 134

♦ “GRAPHICAL_PLAN function [Miscellaneous]” on page 135

♦ “GRAPHICAL_ULPLAN function [Miscellaneous]” on page 137

♦ “GREATER function [Miscellaneous]” on page 138

♦ “IDENTITY function [Miscellaneous]” on page 141

♦ “IFNULL function [Miscellaneous]” on page 142

♦ “INDEX_ESTIMATE function [Miscellaneous]” on page 143

♦ “ISNULL function [Data type conversion]” on page 145

♦ “LESSER function [Miscellaneous]” on page 148

♦ “LONG_ULPLAN function [Miscellaneous]” on page 152

♦ “NEWID function [Miscellaneous]” on page 159

♦ “NULLIF function [Miscellaneous]” on page 163

♦ “NUMBER function [Miscellaneous]” on page 164

♦ “PLAN function [Miscellaneous]” on page 170

♦ “REWRITE function [Miscellaneous]” on page 177

88

Chapter 3. SQL Functions

♦ “SHORT_ULPLAN function [Miscellaneous]” on page 181

♦ “SQLDIALECT function [Miscellaneous]” on page 188

♦ “TRACEBACK function [Miscellaneous]” on page 196

♦ “TRANSACTSQL function [Miscellaneous]” on page 197

♦ “VAREXISTS function [Miscellaneous]” on page 203

♦ “WATCOMSQL function [Miscellaneous]” on page 203

Numeric functions

Numeric functions perform mathematical operations on numerical data types
or return numeric information.

List of functions The following numeric functions are available:

♦ “ABS function [Numeric]” on page 97

♦ “ACOS function [Numeric]” on page 97

♦ “ASIN function [Numeric]” on page 99

♦ “ATAN function [Numeric]” on page 99

♦ “ATN2 function [Numeric]” on page 100

♦ “CEILING function [Numeric]” on page 103

♦ “COS function [Numeric]” on page 109

♦ “COT function [Numeric]” on page 110

♦ “DEGREES function [Numeric]” on page 123

♦ “EXP function [Numeric]” on page 131

♦ “FLOOR function [Numeric]” on page 133

♦ “LOG function [Numeric]” on page 151

♦ “LOG10 function [Numeric]” on page 152

♦ “MOD function [Numeric]” on page 157

♦ “PI function [Numeric]” on page 169

♦ “POWER function [Numeric]” on page 171

♦ “RADIANS function [Numeric]” on page 174

89

♦ “RAND function [Numeric]” on page 174

♦ “REMAINDER function [Numeric]” on page 175

♦ “ROUND function [Numeric]” on page 179

♦ “SIGN function [Numeric]” on page 182

♦ “SIN function [Numeric]” on page 183

♦ “SQRT function [Numeric]” on page 189

♦ “TAN function [Numeric]” on page 195

♦ “TRUNCATE function [Numeric]” on page 197

♦ “TRUNCNUM function [Numeric]” on page 198

HTTP functions

HTTP functions facilitate the handling of HTTP requests within web
services.

List of functions The following functions are available:

♦ “HTTP_HEADER function [HTTP]” on page 141

♦ “HTTP_VARIABLE function [HTTP]” on page 141

♦ “NEXT_HTTP_HEADER function [HTTP]” on page 162

♦ “NEXT_HTTP_VARIABLE function [HTTP]” on page 162

String functions

String functions perform conversion, extraction or manipulation operations
on strings, or return information about strings.

When working in a multi-byte character set, check carefully whether the
function being used returns information concerning characters or bytes.

List of functions The following string functions are available:

♦ “ASCII function [String]” on page 98

♦ “BYTE_LENGTH function [String]” on page 101

♦ “BYTE_SUBSTR function [String]” on page 101

♦ “CHAR function [String]” on page 103

♦ “CHARINDEX function [String]” on page 104

90

Chapter 3. SQL Functions

♦ “CHAR_LENGTH function [String]” on page 104

♦ “COMPARE function [String]” on page 105

♦ “CSCONVERT function [STRING]” on page 111

♦ “DIFFERENCE function [String]” on page 123

♦ “INSERTSTR function [String]” on page 143

♦ “LCASE function [String]” on page 146

♦ “LEFT function [String]” on page 147

♦ “LENGTH function [String]” on page 147

♦ “LOCATE function [String]” on page 150

♦ “LOWER function [String]” on page 153

♦ “LTRIM function [String]” on page 153

♦ “OPENXML function [String]” on page 165

♦ “PATINDEX function [String]” on page 168

♦ “REPEAT function [String]” on page 175

♦ “REPLACE function [String]” on page 176

♦ “REPLICATE function [String]” on page 176

♦ “RIGHT function [String]” on page 179

♦ “RTRIM function [String]” on page 180

♦ “SIMILAR function [String]” on page 183

♦ “SORTKEY function [String]” on page 184

♦ “SOUNDEX function [String]” on page 187

♦ “SPACE function [String]” on page 188

♦ “STR function [String]” on page 191

♦ “STRING function [String]” on page 192

♦ “STRTOUUID function [STRING]” on page 192

♦ “STUFF function [String]” on page 193

♦ “SUBSTRING function [String]” on page 193

91

♦ “TRIM function [String]” on page 197

♦ “UCASE function [String]” on page 199

♦ “UPPER function [String]” on page 199

♦ “UUIDTOSTR function [STRING]” on page 200

♦ “XMLAGG function [String]” on page 205

♦ “XMLCONCAT function [String]” on page 206

♦ “XMLELEMENT function [String]” on page 207

♦ “XMLFOREST function [String]” on page 208

♦ “XMLGEN function [String]” on page 209

System functions

System functions return system information.

List of functions The following system functions are available:

♦ “CONNECTION_PROPERTY function [System]” on page 106

♦ “DATALENGTH function [System]” on page 113

♦ “DB_ID function [System]” on page 120

♦ “DB_NAME function [System]” on page 120

♦ “DB_EXTENDED_PROPERTY function [System]” on page 121

♦ “DB_PROPERTY function [System]” on page 122

♦ “EVENT_CONDITION function [System]” on page 127

♦ “EVENT_CONDITION_NAME function [System]” on page 128

♦ “EVENT_PARAMETER function [System]” on page 128

♦ “NEXT_CONNECTION function [System]” on page 160

♦ “NEXT_DATABASE function [System]” on page 161

♦ “PROPERTY function [System]” on page 172

♦ “PROPERTY_DESCRIPTION function [System]” on page 171

♦ “PROPERTY_NAME function [System]” on page 172

92

Chapter 3. SQL Functions

♦ “PROPERTY_NUMBER function [System]” on page 173

Compatibility The following table displays the Adaptive Server Enterprise system
functions and their status in Adaptive Server Anywhere:

93

Function Status

Col_length Implemented

Col_name Implemented

Curunreservedpgs Not implemented

Data_pgs Not implemented

Datalength Implemented

Db_id Implemented

Db_name Implemented

Host_id Not implemented

Host_name Not implemented

Index_col Implemented

Lct_admin Not implemented

Object_id Implemented

Object_name Implemented

Proc_role Always returns 0

Reserved_pgs Not implemented

Rowcnt Not implemented

Show_role Always returns NULL

94

Chapter 3. SQL Functions

Function Status

Suser_id Implemented

Suser_name Implemented

Tsequal Implemented

Used_pgs Not implemented

User_id Implemented

User_name Implemented

Valid_name Not implemented

Valid_user Not implemented

Notes ♦ Some of the system functions are implemented in Adaptive Server
Anywhere as stored procedures.

♦ The db_id, db_name, and datalength functions are implemented as
built-in functions.

The implemented system functions are described in the following table.

System function Description

Col_length(table-name , column-name
)

Returns the defined length of col-
umn

Col_name(table-id , column-id [,
database-id])

Returns the column name

Datalength(expression) Returns the length of the expres-
sion, in bytes

Db_id([database-name]) Returns the database ID number

95

System function Description

Db_name([database-id]) Returns the database name

Index_col (table-name , index-id ,
key _# [, userid])

Returns the name of the indexed
column

Object_id (object-name) Returns the object ID

Object_name (object-id [,
database-id])

Returns the object name

Suser_id([user-name]) Returns an integer user identifica-
tion number

Suser_name([user-id]) Returns the user ID (server user
name in Adaptive Server Enter-
prise)

Tsequal (timestamp , timestamp2) Compares timestamp values to
prevent update on a row that has
been modified since it was selected

User_id([user-name]) Returns an integer user identifica-
tion number. This does not return
the Adaptive Server Anywhere
user ID

User_name([user-id]) Returns the user ID (user name in
Adaptive Server Enterprise)

Text and image functions

Text and image functions operate on text and image data types. Adaptive
Server Adaptive Server Anywhere supports only the textptr text and image
function.

Compatibility ♦ Adaptive Server Anywhere does not currently support the Adaptive
Server Enterprisetextvalid function.

List of functions The following text and image function is available:

♦ “TEXTPTR function [Text and image]” on page 195

96

Chapter 3. SQL Functions

Alphabetical list of functions
Each function is listed, and the function type (numeric, character, and so on)
is indicated next to it.

☞ For links to all functions of a given type, see“Function types” on
page 84.

ABS function [Numeric]

Function Returns the absolute value of a numeric expression.

Syntax ABS (numeric-expression)

Parameters numeric expression The number whose absolute value is to be
returned.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 66.

SELECT ABS(-66)

ACOS function [Numeric]

Function ♦ Returns the arc-cosine, in radians, of a numeric expression.

Syntax ACOS (numeric-expression)

Parameters numeric-expression The cosine of the angle.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “ASIN function [Numeric]” on page 99

“ATAN function [Numeric]” on page 99

“ATN2 function [Numeric]” on page 100

“COS function [Numeric]” on page 109

Example The following statement returns the value 1998-06-12.

SELECT YMD(1998, 06, 12)

97

If the values are outside their normal range, the date will adjust accordingly.
For example, the following statement returns the value 2000-03-01.

SELECT YMD(1999, 15, 1)

Example The following statement returns the value 1.023945.

SELECT ACOS(0.52)

ARGN function [Miscellaneous]

Function Returns a selected argument from a list of arguments.

Syntax ARGN (integer-expression, expression [, . . .])

Parameters integer expression The position of an argument within the list of
expressions.

expression An expression of any data type passed into the function. All
supplied expressions must be of the same data type.

Usage Using the value of the integer-expression as n, returns the nth argument
(starting at 1) from the remaining list of arguments. While the expressions
can be of any data type, they must all be of the same data type. The integer
expression must be from one to the number of expressions in the list or
NULL is returned. Multiple expressions are separated by a comma.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 6.

SELECT ARGN(6, 1,2,3,4,5,6)

ASCII function [String]

Function Returns the integer ASCII value of the first byte in a string-expression.

Syntax ASCII (string-expression)

Parameters string-expression The string.

Usage If the string is empty, then ASCII returns zero. Literal strings must be
enclosed in quotes.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

98

Chapter 3. SQL Functions

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 90.

SELECT ASCII(’Z’)

ASIN function [Numeric]

Function Returns the arc-sine, in radians, of a number.

Syntax ASIN (numeric-expression)

Parameters numeric-expression The sine of the angle.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 97

“ATAN function [Numeric]” on page 99

“ATN2 function [Numeric]” on page 100

“SIN function [Numeric]” on page 183

Example The following statement returns the value 0.546850.

SELECT ASIN(0.52)

ATAN function [Numeric]

Function Returns the arc-tangent, in radians, of a number.

Syntax ATAN (numeric-expression)

Parameters numeric-expression The tangent of the angle.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 97

“ASIN function [Numeric]” on page 99

“ATN2 function [Numeric]” on page 100

“TAN function [Numeric]” on page 195

99

Example The following statement returns the value0.479519.

SELECT ATAN(0.52)

ATN2 function [Numeric]

Function Returns the arc-tangent, in radians, of the ratio of two numbers.

Syntax { ATN2 | ATAN2 } (numeric-expression1, numeric-expression2)

Parameters numeric-expression1 The numerator in the ratio whose arc tangent is
calculated.

numeric-expression2 The denominator in the ratio whose arc-tangent is
calculated.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase ATN2 is compatible with Adaptive Server Enterprise. ATAN2
is not supported by Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 97

“ASIN function [Numeric]” on page 99

“ATAN function [Numeric]” on page 99

“TAN function [Numeric]” on page 195

Example The following statement returns the value 0.008666.

SELECT ATAN2(0.52, 060)

AVG function [Aggregate]

Function Computes the average, for a set of rows, of a numeric-expression or of a set
unique values.

Syntax AVG (numeric-expression | DISTINCT column-name)

Parameters numeric-expression The expression whose average is calculated over a
set of rows.

DISTINCT column-name Computes the average of the unique values in
column-name. This is of limited usefulness, but is included for
completeness.

Usage This average does not include rows where thenumeric expressionis the
NULL value. Returns the NULL value for a group containing no rows.

100

Chapter 3. SQL Functions

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “SUM function [Aggregate]” on page 194

“COUNT function [Aggregate]” on page 110

Example The following statement returns the value 49988.6.

SELECT AVG(salary) FROM employee

BYTE_LENGTH function [String]

Function Returns the number of bytes in a string.

Syntax BYTE_LENGTH (string-expression)

Parameters string-expression The string whose length is to be calculated.

Usage Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multi-byte character set, the BYTE_LENGTH value
differs from the number of characters returned by CHAR_LENGTH.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “CHAR_LENGTH function [String]” on page 104

“DATALENGTH function [System]” on page 113

“LENGTH function [String]” on page 147

Example The following statement returns the value 12.

SELECT BYTE_LENGTH(’Test Message’)

BYTE_SUBSTR function [String]

Function Returns a substring of a string. The substring is calculated using bytes, not
characters.

Syntax BYTE_SUBSTR (string-expression, start [, length])

Parameters string- expression The string from which the substring is taken.

101

start An integer expression indicating the start of the substring. A positive
integer starts from the beginning of the string, with the first character being
position 1. A negative integer specifies a substring starting from the end of
the string, the final character being at position -1.

length An integer expression indicating the length of the substring. A
positive length specifies the number of bytes to be takenstartingat the start
position. A negative length specifies the number of bytes to be takenending
at the start position.

Usage If length is specified, the substring is restricted to that number of bytes. Both
startandlength can be either positive or negative. A negative starting
position specifies a number of bytes from the end of the string instead of the
beginning. A positivelengthspecifies that the substring endslength bytes to
the right of the starting position, while a negativelengthspecifies that the
substring endslength bytes to the left of the starting position and ends at the
startposition. Using appropriate combinations of negative and positive
numbers, you can get a substring from either the beginning or end of the
string.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “SUBSTRING function [String]” on page 193

Example The following statement returns the valueage.

SELECT BYTE_SUBSTR(’Test Message’,-1,-3)

CAST function [Data type conversion]

Function Returns the value of an expression converted to a supplied data type.

Syntax CAST (expression AS data type)

Parameters expression The expression to be converted.

data type The target data type.

Usage If you do not indicate a length for character string types, the database server
chooses an appropriate length. If neither precision nor scale is specified for a
DECIMAL conversion, the database server selects appropriate values.

Standards and
compatibility

♦ SQL/92 This function is SQL/92 compatible.

♦ SQL/99 Core feature.

102

Chapter 3. SQL Functions

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “CONVERT function [Data type conversion]” on page 107

Example The following function ensures a string is used as a date:

CAST(’2000-10-31’ AS DATE)

The value of the expression1 + 2 is calculated, and the result cast into a
single-character string.

CAST(1 + 2 AS CHAR)

You can use theCAST function to shorten strings:

CAST(Surname AS CHAR(10))

CEILING function [Numeric]

Function ♦ Returns the ceiling (smallest integer not less than) of a number.

Syntax CEILING (numeric-expression)

Parameters numeric expression The number whose ceiling is to be calculated.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “FLOOR function [Numeric]” on page 133

Example The following statement returns the value 60.

SELECT CEILING(59.84567)

CHAR function [String]

Function Returns the character with the ASCII value of a number.

Syntax CHAR (integer-expression)

Parameters integer expression The number to be converted to an ASCII character.
The number must be in the range 0 to 255, inclusive.

Usage The character returned corresponds to the supplied numeric expression in the
current database character set, according to a binary sort order.

CHAR returns NULL for integer expressions with values greater than 255 or
less than zero.

Standards and
compatibility

♦ SQL/92 Vendor extension.

103

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value Y.

SELECT CHAR(89)

CHARINDEX function [String]

Function Returns the position of one string in another.

Syntax CHARINDEX (string-expression1, string-expression2)

Parameters string expression1 The string you are searching for.

string expression2 The string to be searched.

Usage The position of the first character in the string being searched is 1.

If the string being searched contains more than one instance of the other
string, then CHARINDEX returns the position of the first instance.

If the string being searched does not contain the other string, then
CHARINDEX returns 0.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “SUBSTRING function [String]” on page 193

Example The statement

SELECT emp_lname, emp_fname
FROM employee
WHERE CHARINDEX(’K’, emp_lname) = 1

returns the following values:

emp_lname emp_fname

Klobucher James

Kuo Felicia

Kelly Moira

CHAR_LENGTH function [String]

Function Returns the number of characters in a string.

104

Chapter 3. SQL Functions

Syntax CHAR_LENGTH (string-expression)

Parameters string-expression The string whose length is to be calculated.

Usage Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multi-byte character set, the CHAR_LENGTH value
differs from the number of bytes returned by BYTE_LENGTH.

Standards and
compatibility

♦ SQL/92 This function is SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “BYTE_LENGTH function [String]” on page 101

Example The following statement returns the value8.

SELECT CHAR_LENGTH(’Chemical’)

COALESCE function [Miscellaneous]

Function Returns the first non-NULL expression from a list.

Syntax COALESCE (expression, expression [, . . .])

Parameters expression Any expression.

Standards and
compatibility

♦ SQL/92 SQL/92.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 34.

SELECT COALESCE(NULL, 34, 13, 0)

COMPARE function [String]

Function Allows you to directly compare two character strings based on alternate
collation rules.

Syntax COMPARE (
string-expression-1,
string-expression-2
[, collation-name | , collation-id])

Parameters string-expression-1 The first string expression.

105

string-expression-2 The second string expression.

The string expression may only contain characters that are encoded in the
database’s character set.

collation-name A string or a character variable that specifies the name of
the sort order to use. For a list of valid collation names, see“SORTKEY
function [String]” on page 184.

collation-id A variable or integer constant that specifies the sort order to
use. You can only use a collation-id for built-in collations. For more
information, see“SORTKEY function [String]” on page 184.

If you do not specify a collation name or id, the default is Default Unicode
multilingual.

Usage The COMPARE function returns the following values, based on the collation
rules that you choose:

Value Meaning

1 string-expression-1 is greater than string-expression-2

0 string-expression-1 is equal to string-expression-2

-1 string-expression-1 is less than string-expression-2

The COMPARE function does not equate empty strings and strings
containing only spaces, even if the database has blank-padding enabled.
COMPARE uses the SORTKEY function to generate collation keys for
comparison. Therefore, an empty string, a string with one space, and a string
with two spaces will not compare equally.

If eitherstring-expression-1or string-expression-2is null, the result is null.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “SORTKEY function [String]” on page 184

CONNECTION_PROPERTY function [System]

Function Returns the value of a given connection property as a string.

Syntax CONNECTION_PROPERTY (
{ integer-expression-1 | string-expression }
[, integer-expression-2])

106

Chapter 3. SQL Functions

Parameters integer expression-1 In most cases it is more convenient to supply a
string expression as the first argument. If you do supply an
integer-expression, it is the connection property ID. You can determine this
using the PROPERTY_NUMBER function.

string-expression The connection property name. Either the property ID
or the property name must be specified.

For a list of connection properties, see “Connection-level properties”[ASA
Database Administration Guide,page 647].

integer-expression-2 The connection ID of the current database
connection. The current connection is used if this argument is omitted.

Usage The current connection is used if the second argument is omitted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “Connection-level properties”[ASA Database Administration Guide,page 647]

“PROPERTY_NUMBER function [System]” on page 173

Example The following statement returns the number of prepared statements being
maintained.

SELECT connection_property(’PrepStmt’)

CONVERT function [Data type conversion]

Function Returns an expression converted to a supplied data type.

Syntax CONVERT (data type, expression [, format-style])

Parameters data type The data type to which the expression will be converted.

expression The expression to be converted.

format-style For converting strings to date or time data types and vice
versa, theformat-styleis a style code number that describes the date format
string to be used. The values of theformat-styleargument have the
following meanings:

Without century

(yy)

With century

(yyyy)

Output

- 0 or 100 Mmm dd yyyy hh:nn:ss:sss AM (or PM)

107

Without century

(yy)

With century

(yyyy)

Output

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAM (or PM)

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

13 113 dd Mmm yyy hh:nn:ss:sss (24 hour
clock, Europe default + milliseconds,
4-digit year)

14 114 hh:nn:ss:sss (24 hour clock)

20 120 yyyy-mm-dd hh:nn:ss:sss (24-hour
clock, ODBC canonical, 4-digit year)

21 121 yyyy-mm-dd hh:nn:ss.sss (24 hour clock,
ODBC canonical with milliseconds, 4-
digit year)

If no format-styleargument is provided, Style Code 0 is used.

☞ For a description of the styles produced by each output symbol (such as
Mmm), see “DATE_FORMAT option [compatibility]”[ASA Database
Administration Guide,page 587].

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “CAST function [Data type conversion]” on page 102

108

Chapter 3. SQL Functions

Example The following statements illustrate the use of format styles:

SELECT CONVERT(CHAR(20), order_date, 104)
FROM sales_order

order_date

16.03.2000

20.03.2000

23.03.2000

25.03.2000

. . .
SELECT CONVERT(CHAR(20), order_date, 7)
FROM sales_order

order_date

Mar 16, 00

Mar 20, 00

Mar 23, 00

Mar 25, 00

. . .

The following statement illustrates conversion to an integer, and returns the
value 5:

SELECT CONVERT(integer, 5.2)

COS function [Numeric]

Function ♦ Returns the cosine of a number.

Syntax COS (numeric-expression)

Parameters numeric expression The angle, in radians.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 97

“COT function [Numeric]” on page 110

109

“SIN function [Numeric]” on page 183

“TAN function [Numeric]” on page 195

Example The statement

SELECT COS(0.52)

returns the value 0.86781.

COT function [Numeric]

Function ♦ Returns the cotangent of a number.

Syntax COT (numeric-expression)

Parameters numeric-expression The angle, in radians.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “COS function [Numeric]” on page 109

“SIN function [Numeric]” on page 183

“TAN function [Numeric]” on page 195

Example The following statement returns the value 1.74653.

SELECT COT(0.52)

COUNT function [Aggregate]

Function Counts the number of rows in a group depending on the specified
parameters.

Syntax COUNT (
*
| expression
| DISTINCT { expression | column-name })

Parameters * Returns the number of rows in each group.

expression Returns the number of rows in each group where the
expression is not the null value.

DISTINCT expression or column-name Returns the number of different
values in the expression, or the column with namecolumn-name. Rows
where the value is the NULL value are not included in the count.

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

110

Chapter 3. SQL Functions

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “AVG function [Aggregate]” on page 100

“SUM function [Aggregate]” on page 194

Example The following statement returns each unique city, and the number of rows
with that city value:

SELECT city , Count(*)
FROM employee
GROUP BY city

CSCONVERT function [STRING]

Function Converts strings between character sets.

Syntax CSCONVERT (
string-expression,
’ target-charset’
[, ’ source-charset’])

Parameters string-expression The string.

target-charset The destination character set.Target-charsetcan be one of
the following:

♦ os_charset The character set used by the operating system.

♦ db_charset The character set used by the database.

♦ any other supported character set label You can specify any of the
Adaptive Server Anywhere supported character set labels. For more
information, see “Character set labels”[ASA Database Administration Guide,
page 304].

source-charset The character set used by the original string-expression.
The default isdb_charset. Source-charset-namecan be one of the following:

♦ os_charset The character set used by the operating system.

♦ db_charset The character set used by the database.

♦ any other supported character set label You can specify any of the
Adaptive Server Anywhere supported character set labels. For more
information, see “Character set labels”[ASA Database Administration Guide,
page 304].

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

111

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “Starting a database server using character set translation”[ASA Database
Administration Guide,page 329]

Examples This fragment converts the mytext column from the Traditional Chinese
character set to the Simplified Chinese character set:

SELECT CSCONVERT (mytext, ’cp936’, ’cp950’)
FROM mytable

This fragment converts the mytext column from the database character set to
the Simplified Chinese character set:

SELECT CSCONVERT (mytext, ’cp936’)
FROM mytable

If a filename is stored in the database, it is stored in the database’s character
set. If the server is going to read from or write to a file whose name is stored
in a database (for example, in an external stored procedure), the filename
must be explicitly converted to the operating system’s character set before
the file can be accessed. Filenames stored in the database and retrieved by
the client are converted automatically to the client’s character set, so explicit
conversion is not necessary.

This fragment converts the filename column from the database character set
to the operating system character set:

SELECT CSCONVERT (filename, ’os_charset’)
FROM mytable

A table contains a list of filenames. An external stored procedure takes a
filename from this table as a parameter and reads information directly out of
that file. The following statement works when character set conversion is not
required:

SELECT MYFUNC(filename)
FROM mytable

where mytable is a table that contains a filename column. However, if you
need to convert the filename to the character set of the operating system, you
would use the following statement.

SELECT MYFUNC(csconvert(filename, ’os_charset’))
FROM mytable

112

Chapter 3. SQL Functions

DATALENGTH function [System]

Function Returns the length in bytes of the underlying storage for the result of an
expression.

Syntax DATALENGTH (expression)

Parameters expression The expression is usually a column name. If the expression is
a string constant, it must be enclosed in quotes.

Usage The return values of DATALENGTH are as follows:

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value27, the longest string in the
company_name column.

SELECT following MAX(DATALENGTH(company_name))
FROM customer

DATE function [Date and time]

Function Converts the expression into a date, and removes any hours, minutes or
seconds.

Syntax DATE (expression)

Parameters expression The value to be converted to date format. The expression is
usually a string.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

113

Example The following statement returns the value 1999-01-02 as a date.

SELECT DATE(’1999-01-02 21:20:53’)

DATEADD function [Date and time]

Function Returns the date produced by adding a number of the date parts to a date.

Syntax DATEADD (date-part , numeric-expression, date-expression)

date-part :
year | quarter | month | week | day | hour | minute | second | millisecond

Parameters date-part The date-part to be added to the date..

☞ For more information about date-parts, see“Date parts” on page 86.

numeric-expression The number of date-parts to be added to the date.
Thenumeric_expressioncan be any numeric type, but the value is truncated
to an integer.

date-expression The date to be modified.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example ♦ The following statement returns the value: 1995-11-02 00:00:00.0.

SELECT dateadd(month, 102, ’1987/05/02’)

DATEDIFF function [Date and time]

Function Returns the interval between two dates.

Syntax DATEDIFF (date-part , date-expression1, date-expression2)

date-part :
year | quarter | month | week | day | hour | minute | second | millisecond

Parameters date-part Specifies the date-part in which the interval is to be measured.

☞ For more information about date-parts, see“Date parts” on page 86.

date-expression1 The starting date for the interval. This value is
subtracted fromdate-expression2to return the number ofdate-partsbetween
the two arguments.

114

Chapter 3. SQL Functions

date-expression2 The ending date for the interval.Date-expression1is
subtracted from this value to return the number ofdate-partsbetween the
two arguments.

Usage This function calculates the number of date parts between two specified
dates. The result is a signed integer value equal to (date2 - date1), in date
parts.

DATEDIFF results are truncated, not rounded, when the result is not an even
multiple of the date part.

When you useday as the date part, DATEDIFF returns the number of
midnights between the two times specified, including the second date but not
the first.

When you usemonth as the date part, DATEDIFF returns the number of
first-of-the-months between two dates, including the second date but not the
first.

When you useweekas the date part, DATEDIFF returns the number of
Sundays between the two dates, including the second date but not the first.

For the smaller time units there are overflow values:

♦ milliseconds 24 days

♦ seconds 68 years

♦ minutes 4083 years

♦ others No overflow limit

The function returns an overflow error if you exceed these limits.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns 1:

SELECT datediff(hour, ’4:00AM’, ’5:50AM’)

The following statement returns 102:

SELECT datediff(month, ’1987/05/02’, ’1995/11/15’)

The following statement returns 0:

SELECT datediff(day, ’00:00’, ’23:59’)

The following statement returns 4:

115

SELECT datediff(day,
’1999/07/19 00:00’,
’1999/07/23 23:59’)

The following statement returns 0:

SELECT datediff(month, ’1999/07/19’, ’1999/07/23’)

The following statement returns 1:

SELECT datediff(month, ’1999/07/19’, ’1999/08/23’)

DATEFORMAT function [Date and time]

Function Returns a string representing a date-expression in the specified format.

Syntax DATEFORMAT (datetime-expression, string-expression)

Parameters datetime-expression The datetime to be converted.

string-expression The format of the converted date.

For information on date format descriptions, see “DATE_FORMAT option
[compatibility]” [ASA Database Administration Guide,page 587].

Usage Any allowable date format can be used for the string-expression.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Year 2000 compliance
It is possible to use the DATEFORMAT function to produce a string with
the year value represented by only two digits. This can cause problems
with year 2000 compliance even though no error has occurred.

For more information on year 2000 compliance, please see“Year 2000
compliance” on page 78.

See also “DATE_FORMAT option [compatibility]” [ASA Database Administration
Guide,page 587]

Example The following statement returns the value Jan 01, 1989.

SELECT DATEFORMAT(’1989-01-01’, ’Mmm dd, yyyy’)

116

Chapter 3. SQL Functions

DATENAME function [Date and time]

Function Returns the name of the specified part (such as the month “June”) of a
datetime value, as a character string.

Syntax DATENAME (date-part , date-expression)

Parameters date-part The date-part to be named.

☞ For a complete listing of allowed date-parts, see“Date parts” on page 86.

date-expression The date for which the date-part name is to be returned.
The date must contain the requesteddate-part.

Usage DATENAME returns a string, even if the result is numeric, such as 23 for the
day.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value May.

SELECT datename(month , ’1987/05/02’)

DATEPART function [Date and time]

Function Returns the value of part of a datetime value.

Syntax DATEPART (date-part , date-expression)

Parameters date-part The date-part to be returned.

☞ For a complete listing of allowed date-parts, see“Date parts” on page 86.

date-expression The date for which the part is to be returned. The date
must contain thedate-partfield.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 5.

SELECT datepart(month , ’1987/05/02’)

117

DATETIME function [Date and time]

Function Converts an expression into a timestamp.

Syntax DATETIME (expression)

Parameters expression Theexpressionto be converted. It is generally a string.
Attempts to convert numerical values return an error.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns a timestamp with value 1998-09-09
12:12:12.000.

SELECT DATETIME(’1998-09-09 12:12:12.000’)

DAY function [Date and time]

Function Returns an integer from 1 to 31 corresponding to the day of the month of a
date.

Syntax DAY (date-expression)

Parameters date-expression The date.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 12.

SELECT DAY(’2001-09-12’)

DAYNAME function [Date and time]

Function Returns the name of the day of the week from the a date.

Syntax DAYNAME(date-expression)

Parameters date-expression The date.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

118

Chapter 3. SQL Functions

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value Saturday.

SELECT DAYNAME (’1987/05/02’)

DAYS function [Date and time]

Function Given a single date, this function returns the number of days since
0000-02-29.

Given two dates, this function returns the integer number of days between
them. It is recommended that you use the“DATEDIFF function [Date and
time]” on page 114instead for this purpose.

Given one date and an integer, it adds the integer number of days to the
specified date. It is recommended that you use the“DATEADD function
[Date and time]” on page 114instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

DAYS ignores hours, minutes, and seconds.

Syntax 1 DAYS ([datetime-expression,] datetime-expression)

Syntax 2 DAYS (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of days to be added to the
datetime-expression.If the integer-expressionis negative, the appropriate
number of days is subtracted from the timestamp. If you supply an integer
expression, thedatetime-expressionmust be explicitly cast as a date or
timestamp.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the integer 729 889.

SELECT DAYS(’1998-07-13 06:07:12’)

The following statement returns the current Julian day.

SELECT DAYS(CURRENT DATE) + 1721119

119

The following statements return the integer value –366, indicating that the
second date is 366 days prior to the first. It is recommended that you use the
second example (DATEDIFF).

SELECT DAYS(’1998-07-13 06:07:12’,
’1997-07-12 10:07:12’)

SELECT DATEDIFF(day,
’1998-07-13 06:07:12’,
’1997-07-12 10:07:12’)

The following statements return the timestamp 1999-07-14 00:00:00.0. It is
recommended that you use the second example (DATEADD).

SELECT DAYS(CAST(’1998-07-13’ AS DATE), 366)
SELECT DATEADD(day, 366, ’1998-07-13’)

DB_ID function [System]

Function Returns the database ID number.

Syntax DB_ID ([database-name])

Parameters database-name A string containing the database name. If no
database-nameis supplied, the ID number of the current database is
returned.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 0 if asademo is the only running
database:

SELECT DB_ID(’asademo’)

The following statement returns the value 0 if executed against the only
running database.

SELECT DB_ID()

DB_NAME function [System]

Function Returns the name of a database with a given ID number.

Syntax DB_NAME ([database-id])

Parameters database-id The ID of the database. Thedatabase-idmust be a numeric
expression.

120

Chapter 3. SQL Functions

Usage If no database ID is supplied, the name of the current database is returned.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The statement returns the database name asademo, when executed against
the sample database as the sole database on the server.

SELECT DB_NAME(0)

DB_EXTENDED_PROPERTY function [System]

Function Returns the value of the given property. Allows an optional property-specific
string parameter to be specified.

Syntax DB_EXTENDED_PROPERTY (
{ property_id | property_name },
[, property-specific_argument
[, { database_id | database_name }]])

Parameters property_id The database property ID.

property_name The database property name.

database_id The database ID number, as returned by DB_ID. Typically,
the database name is used.

database_name The name of the database, as returned by DB_NAME.

property_specific_argument The optional property-specific string
parameter associated with FileSize and FreePages properties. If you provide
a property specific argument for a property that does not require one (for
example, any property other than FileSize or FreePages), the item is ignored.
For a list of properties, see “Database-level properties”[ASA Database
Administration Guide,page 664].

Usage Returns a string. The current database is used if the second argument is
omitted.

Db_extended_property() is similar to db_property() except that it allows an
optional property-specific string parameter to be specified. The
interpretation of the property-specific argument depends on the property id
or name specified in the first argument. Callingdb_extended_property(x)
is equivalent tocalling db_property(x).

Standards and
compatibility

♦ SQL/92 Vendor extension.

SQL/99 Vendor extension.

121

Sybase Not supported by Adaptive Server Enterprise.

See also “DB_ID function [System]” on page 120

“DB_NAME function [System]” on page 120

“Database-level properties”[ASA Database Administration Guide,page 664]

Example The following statement returns the file size of the system dbspace, in pages.

SELECT DB_EXTENDED_PROPERTY(’FileSize’)

The following statement returns the file size of the transaction log, in pages.

SELECT DB_EXTENDED_PROPERTY(’FileSize’, ’translog’)

DB_PROPERTY function [System]

Function Returns the value of the given property.

Syntax DB_PROPERTY (
{ property_id | property_name }
[, { database_id | database_name }])

Parameters property_id The database property ID.

property_name The database property name.

database_id The database ID number, as returned by DB_ID. Typically,
the database name is used.

database_name The name of the database, as returned by DB_NAME.

Usage Returns a string. The current database is used if the second argument is
omitted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “DB_ID function [System]” on page 120

“DB_NAME function [System]” on page 120

“Database-level properties”[ASA Database Administration Guide,page 664]

Example The following statement returns the page size of the current database, in
bytes.

SELECT DB_PROPERTY(’PAGESIZE’)

122

Chapter 3. SQL Functions

DEGREES function [Numeric]

Function ♦ Converts a number from radians to degrees.

Syntax DEGREES (numeric-expression)

Parameters numeric-expression An angle in radians.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 29.793805.

SELECT DEGREES(0.52)

DIFFERENCE function [String]

Function Returns the difference in the SOUNDEX values between the two string
expressions.

Syntax DIFFERENCE (string-expression-1, string-expression-2)

Parameters string-expression-1 The first SOUNDEX argument.

string-expression-2 The second SOUNDEX argument.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “SOUNDEX function [String]” on page 187

Example The following statement returns the value 3.

SELECT DIFFERENCE(’test’, ’chest’)

DOW function [Date and time]

Function Returns a number from 1 to 7 representing the day of the week of a date,
with Sunday=1, Monday=2, and so on.

Syntax DOW (date-expression)

Parameters date-expression The date.

Standards and
compatibility

♦ SQL/92 Vendor extension.

123

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 5.

SELECT DOW(’1998-07-09’)

ERRORMSG function [Miscellaneous]

Function Provides the error message for the current error, or for a specified
SQLSTATE or SQLCODE value.

Syntax ERRORMSG ([sqlstate | sqlcode])

sqlstate: string

sqlcode: integer

Parameters sqlstate The SQLSTATE value for which the error message is to be
returned.

sqlcode The SQLCODE value for which the error message is to be
returned.

Return value A string containing the error message. If no argument is supplied, the error
message for the current state is supplied. Any substitutions (such as table
names and column names) are made.

If an argument is supplied, the error message for the supplied SQLSTATE or
SQLCODE is returned, with no substitutions. Table names and column
names are supplied as placeholders (%1).

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “Error messages indexed by SQLSTATE”[ASA Error Messages,page 32]

“Error messages indexed by Adaptive Server Anywhere SQLCODE”[ASA
Error Messages,page 2]

Example The following statement returns the error message for SQLCODE -813.

select errormsg(-813)

124

Chapter 3. SQL Functions

ESTIMATE function [Miscellaneous]

Function Provides selectivity estimates for the query optimizer, based on specified
parameters.

Syntax ESTIMATE (column-name [, value [, relation-string]])

Parameters column-name The column used in the estimate.

value The value to which the column is compared.

relation-string The comparison operator used for the comparison,
enclosed in single quotes; the default is ‘=‘ .

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “INDEX_ESTIMATE function [Miscellaneous]” on page 143

“ESTIMATE_SOURCE function [Miscellaneous]” on page 125

Example The following statement returns the percentage of emp_id values estimated
to be greater than 200. The precise value depends on the actions you have
carried out on the database.

SELECT FIRST ESTIMATE(emp_id, 200, ’>’)
FROM employee

ESTIMATE_SOURCE function [Miscellaneous]

Function Provides the source for selectivity estimates used by the query optimizer.

Syntax ESTIMATE_SOURCE (
column-name
[, value [, relation-string]])

Parameters column-name The name of the column that is being investigated.

value The value to which the column is compared. This is optional.

relation-string The comparison operator used for the comparison,
enclosed in single quotes. The default is equality (=).

Return value The source of the selectivity estimate can be one of the following:

♦ Statistics is used as the source when you have specified a value, and
there is a stored statistic available that estimates the average selectivity of
the value in the column. The statistic is available only when the

125

selectivity of the value is a significant enough number that it is stored in
the statistics. Currently, a value is deemed significant if it occurs in at
least 1% of the rows.

♦ Column is similar to Statistics, except that the selectivity of the value
occurs in less than 1% of the rows. In this case, the selectivity that is used
is the average of all values that have been stored in the statistics that
occur in less than 1% of rows.

♦ Guess is returned when there is no relevant index to use, and no
statistics have been collected for the column. In this case, built-in guesses
are used.

♦ Column-column is returned when the estimate that is used is the
selectivity of a join. In this case, the estimate is calculated as the number
of rows in the joined result set divided by the number of rows in the
Cartesian product of the two tables.

♦ Index is used as the source when there are no statistics available to
estimate the selectivity, but there is an index which can be probed to
estimate selectivity.

♦ User is returned when there is a user supplied estimate, and the
USER_ESTIMATES database option is not set to DISABLED.

☞ For more information, see “USER_ESTIMATES option [database]”
[ASA Database Administration Guide,page 633].

♦ Computed is returned when statistics are computed by the optimizer
based on other information. For example, Adaptive Server Anywhere
does not maintain statistics on multiple columns, so if you want an
estimate on a multiple column equation, such as x=5 and y=10, and there
are statistics on the columns x and y, then the optimizer creates an
estimate by multiplying the estimated selectivity for each column.

♦ Always is used when the test is by definition true. For example, if the
value is 1=1.

♦ Combined is used when the optimizer uses more than one of the above
sources, and combines them.

♦ Bounded can qualify one of the other sources. This indicates that
Adaptive Server Anywhere has placed an upper and/or lower bound on
the estimate. The optimizer does this to keep estimates within logical
bounds. For example, it ensures that an estimate is not greater than 100%,
or that the selectivity is not less than one row.

Standards and
compatibility

♦ SQL/92 Vendor extension.

126

Chapter 3. SQL Functions

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “ESTIMATE function [Miscellaneous]” on page 125

“INDEX_ESTIMATE function [Miscellaneous]” on page 143

Example The following statement returns the value Index, which means that the query
optimizer probed an index to estimate the selectivity.

SELECT FIRST ESTIMATE_SOURCE(emp_id, 200, ’>’)
FROM employee

EVENT_CONDITION function [System]

Function To specify when an event handler is triggered.

Syntax EVENT_CONDITION (condition-name)

Parameters condition-name The condition triggering the event. The possible values
are preset in the database, and are case insensitive. Each condition is valid
only for certain event types. The conditions and the events for which they
are valid are as follows:

Condition name Units Valid for. . . Comments

DBFreePercent n/a DBDiskSpace

DBFreeSpace Mb DBDiskSpace

DBSize Mb GrowDB

ErrorNumber n/a RAISERROR

IdleTime seconds ServerIdle

Interval seconds All Time since handler last
executed

LogFreePercent n/a LogDiskSpace

LogFreeSpace Mb LogDiskSpace

LogSize Mb GrowLog

RemainingValues integer GlobalAutoincre-
ment

The number of remain-
ing values

TempFreePercent n/a TempDiskSpace

TempFreeSpace Mb TempDiskSpace

127

Condition name Units Valid for. . . Comments

TempSize Mb GrowTemp

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “CREATE EVENT statement” on page 304

Example The following event definition uses theevent_conditionfunction:

create event LogNotifier
type LogDiskSpace
where event_condition(’LogFreePercent’) < 50
handler
begin

message ’LogNotifier message’
end

EVENT_CONDITION_NAME function [System]

Function Can be used to list the possible parameters for EVENT_CONDITION.

Syntax EVENT_CONDITION_NAME (integer)

Parameters integer Must be greater than or equal to zero.

Usage You can use EVENT_CONDITION_NAME to obtain a list of all
EVENT_CONDITION arguments by looping over integers until the
function returns NULL.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “CREATE EVENT statement” on page 304

EVENT_PARAMETER function [System]

Function Provides context information for event handlers.

Syntax EVENT_PARAMETER (context-name)

128

Chapter 3. SQL Functions

context-name:
’ AppInfo ’

| ’ ConnectionID ’
| DisconnectReason
| ’ EventName ’
| ’ Executions ’
| ’ NumActive ’
| ’ ScheduleName ’
| ’ TableName ’
| ’ User ’
| condition-name

Parameters context-name One of the preset strings. The strings are case insensitive,
and carry the following information:

♦ AppInfo The value of the connection_property(‘AppInfo’) for the
connection which caused the event. This parameter is valid for Connect,
Disconnect, ConnectFailed, BackupEnd, and RAISERROR events. The
AppInfo string contains the machine name and application name of the
client connection for Embedded SQL, ODBC, and OLE DB connections.

♦ ConnectionId The connection ID, as returned by
connection_property(’id’)

♦ DisconnectReason A string indicating the reason the connect was
terminated. This parameter is valid only for Disconnect events. Possible
results include:

• from client The client application disconnected.

• drop connection A DROP CONNECTION statement was executed.

• liveness No liveness packets were received for the period specified
by the -tl server option.

• inactive No requests were received for the period specified by the -ti
server option.

• connect failed A connection attempt failed.

♦ EventName The name of the event that has been triggered.

♦ Executions The number of times the event handler has been executed.

♦ NumActive The number of active instances of an event handler. This is
useful if you want to limit an event handler so that only one instance
executes at any given time.

♦ ScheduleName The name of the schedule which caused an event to be
fired. If the event was fired manually using TRIGGER EVENT or as a
system event, the result will be an empty string. If the schedule was not

129

assigned a name explicitly when it was created, its name will be the name
of the event.

♦ TableName The name of the table, for use with RemainingValues.

♦ User The user ID for the user that caused the event to be triggered.

In addition, you can access any of the validcondition-namearguments to the
EVENT_CONDITION function from the EVENT_PARAMETER function.

The following table indicates which context-name values are valid for which
system event types. “User events” (indicated by quotation marks) are events
which do not contain a TYPE clause.

context-name: valid for event types:

ConnectionID BackupEnd, “Connect”, “Disconnect”, Global Au-
toincrement, “RAISERROR”, user events

User BackupEnd, “Connect”, ConnectFailed, “Discon-
nect”, GlobalAutoincrement, “RAISERROR”, user
events

EventName all

Executions all

NumActive all

TableName GlobalAutoincrement

AppInfo BackupEnd, “Connect”, ConnectFailed, “Discon-
nect”, “RAISERROR”, user events

DisconnectReason ”Disconnect”

Example Add the following message to the engine window
output:’ev_PassedParameter - was trigger at: ’ +

event_parameter(’Time’);

CREATE EVENT ev_PassedParameter
HANDLER
BEGIN
END;
TRIGGER EVENT ev_PassedParameter("Time"=string(current

timestamp));

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

130

Chapter 3. SQL Functions

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “EVENT_CONDITION function [System]” on page 127

“CREATE EVENT statement” on page 304

“TRIGGER EVENT statement” on page 583

EXP function [Numeric]

Function Returns the exponential function, e to the power of a number.

Syntax EXP (numeric-expression)

Parameters numeric-expression The exponent.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The statement returns the value 3269017.372.

SELECT EXP(15)

EXPERIENCE_ESTIMATE function [Miscellaneous]

Function This function is the same as the ESTIMATE function, except that it always
looks in the frequency table.

Syntax EXPERIENCE_ESTIMATE (
column-name
[, value [, relation-string]])

Parameters column-name The name of the column that is being investigated.

value The value to which the column is compared.

relation-string The comparison operator used for the comparison,
enclosed in single quotes; the default is ‘=‘ .

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “ESTIMATE function [Miscellaneous]” on page 125

Example The following statement returns NULL.

SELECT DISTINCT EXPERIENCE_ESTIMATE(emp_id, 200, ’>’)
FROM employee

131

EXPLANATION function [Miscellaneous]

Function Returns the short plan optimization strategy of a SQL statement, as a string.

Syntax EXPLANATION (
string-expression [cursor-type],
update-status])

Parameters string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

cursor-type A string. Cursor-type can beasensitive(default),
insensitive, sensitive, or keyset-driven.

update-status A string parameter accepting one of the following values
indicating how the optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE
(default)

The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the
same as READ-WRITE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “PLAN function [Miscellaneous]” on page 170

“GRAPHICAL_PLAN function [Miscellaneous]” on page 135

“GRAPHICAL_ULPLAN function [Miscellaneous]” on page 137

“LONG_ULPLAN function [Miscellaneous]” on page 152

“SHORT_ULPLAN function [Miscellaneous]” on page 181

Example The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT EXPLANATION(
’SELECT * FROM department WHERE dept_id > 100’)

This information can help you decide which indexes to add or how to
structure your database for better performance.

132

Chapter 3. SQL Functions

The following statement returns a string containing the short form of the
textual plan for an INSENSITIVE cursor over the query ‘select * from
department where’.

SELECT EXPLANATION(
’SELECT * FROM department WHERE dept_id > 100’,
’insensitive’,
’read-only’)

In Interactive SQL, you can view the plan for any SQL statement on the Plan
tab in the Results pane.

EXPRTYPE function [Miscellaneous]

Function This function returns a string that identifies the data type of an expression.

Syntax EXPRTYPE (string-expression, integer-expression)

Parameters ♦ string-expression A SELECT statement. The expression whose data
type is to be queried must appear in the select list. If the string is not a
valid SELECT statement, NULL is returned.

♦ integer-expression The position in the select list of the desired
expression. The first item in the select list is numbered 1. If the
integer-expression value odes not correspond to a SELECT list item,
NULL is returned.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “SQL Data Types” on page 51

Example The following statement returnssmallint when executed against the
sample database.

SELECT EXPRTYPE(
’SELECT line_id FROM sales_order_items’, 1)

FLOOR function [Numeric]

Function Returns the floor of (largest integer not greater than) a number.

Syntax FLOOR (numeric-expression)

Parameters numeric- expression The number, usually a float.

Standards and
compatibility

♦ SQL/92 Vendor extension.

133

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “CEILING function [Numeric]” on page 103

Example

Value FLOOR (Value)

123 123

123.45 123

–123.45 –124

GET_IDENTITY function [Miscellaneous]

Function Allocates values to an autoincrement column. This is an alternative to using
autoincrement to generate numbers.

Syntax GET_IDENTITY ([owner.] table-name [, num_to_alloc],. . .)

Parameters num_to_allocate Default is 1.

Usage Using autoincrement or global autoincrement is still the most efficient way
to generate IDs, but this function is provided as an alternative. The function
assumes that the table has an autoincrement column defined. It returns the
next available value that would be generated for the table’s autoincrement
column, and reserves that value so that no other connection will use it by
default.

The function returns an error if the table is not found, and returns NULL if
the table has no autoincrement column. If there is more than one
autoincrement column, it uses the first one it finds.

If num_to_allocis greater than 1, the function also reserves the remaining
values. The next allocation uses the current number plus the value of
num_to_alloc. This allows the application to execute get_identity less
frequently.

No COMMIT is required after executing get_identity, and so it can be called
using the same connection that is used to insert rows. If ID values are
required for several tables, they can be obtained using a single SELECT that
includes multiple calls to get_identity, as in the example.

GET_IDENTITY is a non-deterministic function. Successive calls to
GET_IDENTITY may return different values. The query optimizer does not
cache the results of the GET_IDENTITY function.

134

Chapter 3. SQL Functions

☞ For more information about non-deterministic functions, see “Function
caching”[ASA SQL User’s Guide,page 418].

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “CREATE TABLE statement” on page 361

“ALTER TABLE statement” on page 250

“NUMBER function [Miscellaneous]” on page 164

Example The following statement makes three calls to the GET_IDENTITY function:

SELECT GET_IDENTITY(’T1’),
GET_IDENTITY(’T2’,10),
GET_IDENTITY(’T3’,5)

GETDATE function [Date and time]

Function Returns the current year, month, day, hour, minute, second and fraction of a
second. The fraction of a second. The accuracy is limited by the accuracy of
the system clock.

The information the GETDATE function returns is equivalent to the
information returned by the NOW function and the CURRENT
TIMESTAMP special value.

Syntax GETDATE ()

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “NOW function [Date and time]” on page 163

“CURRENT TIMESTAMP special value” on page 33

Example The following statement returns the system date and time.

SELECT GETDATE()

GRAPHICAL_PLAN function [Miscellaneous]

Function Returns the plan optimization strategy of a SQL statement in XML format,
as a string.

135

Syntax GRAPHICAL_PLAN (
string-expression [statistics-level],
[cursor-type],
[update-status])

Parameters string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

statistics-level An integer.Statistics-levelcan be one of the following
values:

Value Description

0 Include optimizer estimates only. (default)

1 Include actual summary statistics from execution.

2 Include detailed actual statistics.

cursor-type A string. Cursor-type can beasensitive(default),
insensitive, sensitive, or keyset-driven.

update-status A string parameter accepting one of the following values
indicating how the optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE
(default)

The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the
same as READ-WRITE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “PLAN function [Miscellaneous]” on page 170

“EXPLANATION function [Miscellaneous]” on page 132

“GRAPHICAL_ULPLAN function [Miscellaneous]” on page 137

“LONG_ULPLAN function [Miscellaneous]” on page 152

“SHORT_ULPLAN function [Miscellaneous]” on page 181

Examples The following Interactive SQL example passes a SELECT statement as a
string parameter and returns the plan for executing the query. It saves the
plan in the fileplan.xml.

136

Chapter 3. SQL Functions

SELECT GRAPHICAL_PLAN(
’SELECT * FROM department WHERE dept_id > 100’);

OUTPUT TO plan.xml FORMAT FIXED

The following statement returns a string containing the graphical plan for a
keyset-driven, updatable cursor over the query ‘SELECT * FROM
department WHERE’. It also causes the server to annotate the plan with
actual execution statistics, in addition to the estimated statistics that were
used by the optimizer.

SELECT GRAPHICAL_PLAN(
’SELECT * FROM department WHERE dept_id > 100’,
2,
’keyset-driven’, ’for update’)

In Interactive SQL, you can view the plan for any SQL statement on the Plan
tab in the Results pane.

GRAPHICAL_ULPLAN function [Miscellaneous]

Function Returns the UltraLite plan optimization strategy of a SQL statement in XML
format, as a string. The UltraLite plan does not include statistics.

For some queries, the execution plan for UltraLite may differ from the plan
selected for Adaptive Server Anywhere.

Syntax GRAPHICAL_ULPLAN (string-expression)

Parameters string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “PLAN function [Miscellaneous]” on page 170

“EXPLANATION function [Miscellaneous]” on page 132

“GRAPHICAL_PLAN function [Miscellaneous]” on page 135

“LONG_ULPLAN function [Miscellaneous]” on page 152

“SHORT_ULPLAN function [Miscellaneous]” on page 181

Example The following Interactive SQL example passes a SELECT statement as a
string parameter and returns the plan for executing the query. It saves the
plan in the fileplan.xml.

137

SELECT GRAPHICAL_ULPLAN(
’select * from department where dept_id > 100’);

OUTPUT TO ulplan.xml
FORMAT FIXED

To display the plan, open theulplan.xml file in Interactive SQL.

As an alternative, you can view the plan for any SQL statement on the
UltraLite Plan tab in Interactive SQL, choose File➤ Save, and change the
file type to xml. To change the type of plan that is displayed, choose Tools➤

Options and open the Plan tab.

GREATER function [Miscellaneous]

Function Returns the greater of two parameter values. If the parameters are equal, the
first is returned.

Syntax GREATER (expression1, expression2)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “LESSER function [Miscellaneous]” on page 148

Example The following statement returns the value 10.

SELECT GREATER(10,5) FROM dummy

GROUPING function [Aggregate]

Function Identifies whether a column in a ROLLUP operation result set is NULL
because it is part of a subtotal row, or NULL because of the underlying data.

Syntax GROUPING (group-by-expression)

Parameters group-by-expression An expression appearing as a grouping column in
the result set of a query that uses a GROUP BY clause with the ROLLUP
keyword. The function identifies subtotal rows added to the result set by a
ROLLUP operation.

Return value ♦ 1 Indicates thatgroup-by-expressionis NULL because it is part of a
subtotal row. The column is not a prefix column for that row.

♦ 0 Indicates thatgroup-by-expressionis a prefix column of a subtotal
row.

Standards and
compatibility

♦ SQL/92 Vendor extension.

138

Chapter 3. SQL Functions

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “The ROLLUP operation: adding summary information to GROUP BY
queries”[ASA SQL User’s Guide,page 247]

“SELECT statement” on page 541

Example See “The ROLLUP operation: adding summary information to GROUP BY
queries”[ASA SQL User’s Guide,page 247].

HEXTOINT function [Data type conversion]

Function Returns the decimal integer equivalent of a hexadecimal string.

Syntax HEXTOINT (hexadecimal-string)

Parameters hexadecimal-string The string to be converted to an integer.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “INTTOHEX function [Data type conversion]” on page 144

Example The following statement returns the value 420.

SELECT HEXTOINT (’1A4’)

HOUR function [Date and time]

Function Returns a number from 0 to 23 corresponding to the hour component of a
datetime.

Syntax HOUR (datetime-expression)

Parameters datetime-expression The datetime.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 21:

SELECT HOUR(’1998-07-09 21:12:13’)

139

HOURS function [Date and time]

Function Given two timestamps, this function returns the integer number of hours
between them. It is recommended that you use the“DATEDIFF function
[Date and time]” on page 114instead for this purpose.

Given a single date, this function returns the number of hours since
0000-02-29 00:00:00.

Given one date and an integer, it adds the integer number of hours to the
specified timestamp. It is recommended that you use the“DATEADD
function [Date and time]” on page 114instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Syntax 1 HOURS ([datetime-expression,] datetime-expression)

Syntax 2 HOURS (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of hours to be added to the
datetime-expression.If integer-expressionis negative, the appropriate
number of hours is subtracted from the datetime. If you supply an integer
expression, thedatetime-expressionmust be explicitly cast as a datetime
data type.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statements return the value 4, signifying that the second
timestamp is four hours after the first. It is recommended that you use the
second example (DATEDIFF).

SELECT HOURS(’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

SELECT DATEDIFF(hour,
’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

The following statement returns the value 17 517 342.

SELECT HOURS(’1998-07-13 06:07:12’)

140

Chapter 3. SQL Functions

The following statements return the datetime 1999-05-13 02:05:07.0. It is
recommended that you use the second example (DATEADD).

SELECT HOURS(
CAST(’1999-05-12 21:05:07’ AS DATETIME), 5)

SELECT DATEADD(hour, 5, ’1999-05-12 21:05:07’)

HTTP_HEADER function [HTTP]

Function Gets the value of an HTTP header.

Syntax HTTP_HEADER (field-name)

Parameters field-name The name of an HTTP header field.

Usage This function returns the value of the named HTTP header field. It is used
when processing an HTTP request via a web service.

See also “HTTP_VARIABLE function [HTTP]” on page 141

“NEXT_HTTP_HEADER function [HTTP]” on page 162

“NEXT_HTTP_VARIABLE function [HTTP]” on page 162

HTTP_VARIABLE function [HTTP]

Function Gets the value of an HTTP variable.

Syntax HTTP_VARIABLE (var-name [[, instance] , header-field])

Parameters var-name The name of the an HTTP variable.

instance If more than one variable has the same name, the instance
number of the field instance, or NULL to get the first one. Useful for select
lists that permit multiple selections.

header-field In a multi-part request, a header field field name associated
with the named field.

Usage This function returns the value of the named HTTP variable. It is used when
processing an HTTP request within a web service.

See also “HTTP_HEADER function [HTTP]” on page 141

“NEXT_HTTP_HEADER function [HTTP]” on page 162

“NEXT_HTTP_VARIABLE function [HTTP]” on page 162

IDENTITY function [Miscellaneous]

Function Generates integer values, starting at 1, for each successive row in a query. Its

141

implementation is identical to that of the NUMBER function.

Syntax IDENTITY (expression)

Parameters expression An expression. The expression is parsed, but is ignored during
the execution of the function.

Usage For a description of how to use the IDENTITY function, see the“NUMBER
function [Miscellaneous]” on page 164.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Offers similar behavior to that of Adaptive Server Enterprise.

See also “NUMBER function [Miscellaneous]” on page 164

Example The following statement returns a sequentially-numbered list of employees.

SELECT IDENTITY(10), emp_lname FROM employee

IFNULL function [Miscellaneous]

Function If the first expression is the NULL value, then the value of the second
expression is returned. If the first expression is not NULL, the value of the
third expression is returned. If the first expression is not NULL and there is
no third expression, NULL is returned.

Syntax IFNULL (expression-1, expression-2 [, expression-3])

Parameters expression-1 The expression to be evaluated. Its value determines
whether expression-2 or expression-3 is returned.

expression-2 The return value ifexpression-1is NULL.

expression-3 The return value ifexpression-1is not NULL.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value –66:

SELECT IFNULL(NULL, -66)

The following statement: returns NULL, because the first expression is not
NULL and there is no third expression:

SELECT IFNULL(-66, -66)

142

Chapter 3. SQL Functions

INDEX_ESTIMATE function [Miscellaneous]

Function This function is the same as the ESTIMATE function, except that it always
looks only in an index.

Syntax INDEX_ESTIMATE(column-name, number [, relation-string])

Parameters column-name The name of the column that is used in the estimate.

number If numberis specified, the function returns as a REAL the
percentage estimate that the query optimizer uses.

relation-string Therelation-stringmust be a comparison operator
enclosed in single quotes; the default is ‘=‘ .

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “ESTIMATE function [Miscellaneous]” on page 125

“ESTIMATE_SOURCE function [Miscellaneous]” on page 125

Example The following statement returns the value 81.304607.

SELECT FIRST ESTIMATE(emp_id, 200, ’>’)
FROM employee

INSERTSTR function [String]

Function Inserts a string into another string at a specified position.

Syntax INSERTSTR (
integer-expression,
string-expression-1,
string-expression-2)

Parameters integer expression The position after which the string is to be inserted.
Use zero to insert a string at the beginning.

string-expression-1 The string into which the other string is to be
inserted.

string-expression-2 The string to be inserted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

143

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “STUFF function [String]” on page 193

Example The following statement returns the value backoffice.

SELECT INSERTSTR(0, ’office ’, ’back’)

INTTOHEX function [Data type conversion]

Function Returns a string containing the hexadecimal equivalent of an integer.

Syntax INTTOHEX (integer-expression)

Parameters integer expression The integer to be converted to hexadecimal.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “HEXTOINT function [Data type conversion]” on page 139

Example The following statement returns the value 9c:

SELECT INTTOHEX(156)

ISDATE function [Data type conversion]

Function Tests if a string argument can be converted to a date. If a conversion is
possible, the function returns 1; otherwise, 0 is returned. If the argument is
null, 0 is returned.

Syntax ISDATE (string)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following example imports data from an external file, exports rows
which contain invalid values, and copies the remaining rows to a permanent
table.

144

Chapter 3. SQL Functions

create global temporary table MyData(
person varchar(100),
birth_date varchar(30),
height_in_cms varchar(10)

) on commit preserve rows;
load table MyData from ’exported.dat’;
unload

select *
from MyData
where isdate(birth_date)=0

or isnumeric(height_in_cms)=0
to ’badrows.dat’;
insert into PermData

select person,birthdate,height_in_cms
from MyData
where isdate(birth_date)=1

and isnumeric(height_in_cms)=1;
commit;
drop table MyData;

ISNULL function [Data type conversion]

Function ♦ Returns the first non-NULL expression in the parameter list.

Syntax ISNULL (expression, expression [, . . .])

Parameters expression An expression to be tested against NULL.

At least two expressions must be passed into the function.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise allows only two expressions.

See also “COALESCE function [Miscellaneous]” on page 105

Example The following statement returns the value –66.

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16)

ISNUMERIC function [Miscellaneous]

Function Tests if a string argument can be converted to a numeric. If a conversion is
possible, the function returns 1; otherwise, 0 is returned. If the argument is
null, 0 is returned.

Syntax ISNUMERIC (string)

Standards and
compatibility

♦ SQL/92 Vendor extension.

145

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following example imports data from an external file, exports rows
which contain invalid values, and copies the remaining rows to a permanent
table.

create global temporary table MyData(
person varchar(100),
birth_date varchar(30),
height_in_cms varchar(10)

) on commit preserve rows;
load table MyData from ’exported.dat’;
unload

select *
from MyData
where isdate(birth_date)=0

or isnumeric(height_in_cms)=0
to ’badrows.dat’;
insert into PermData

select person,birthdate,height_in_cms
from MyData
where isdate(birth_date)=1

and isnumeric(height_in_cms)=1;
commit;
drop table MyData;

LCASE function [String]

Function Converts all characters in a string to lower case.

Syntax LCASE (string-expression)

Parameters string-expression The string to be converted to lower case.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase LCASE is not supported in Adaptive Server Enterprise; you
can use LOWER to get the same functionality.

See also “LOWER function [String]” on page 153

“UCASE function [String]” on page 199

“UPPER function [String]” on page 199

Example The following statement returns the value lower case.

SELECT LCASE(’LOWER CasE’)

146

Chapter 3. SQL Functions

LEFT function [String]

Function Returns a number of characters from the beginning of a string.

Syntax LEFT (string-expression, integer-expression)

Parameters string-expression The string.

integer expression The number of characters to return.

Usage If the string contains multi-byte characters, and the proper collation is being
used, the number of bytes returned may be greater than the specified number
of characters.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “RIGHT function [String]” on page 179

“International Languages and Character Sets”[ASA Database Administration
Guide,page 285]

Example The following statement returns the value choco.

SELECT LEFT(’chocolate’, 5)

LENGTH function [String]

Function Returns the number of characters in the specified string.

Syntax LENGTH (string-expression)

Parameters string-expression The string.

Usage If the string contains multi-byte characters, and the proper collation is being
used, LENGTH returns the number of characters, not the number of bytes. If
string is of BINARY data type, the LENGTH function behaves as
BYTE_LENGTH.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “BYTE_LENGTH function [String]” on page 101

147

“International Languages and Character Sets”[ASA Database Administration
Guide,page 285]

Example The following statement returns the value 9.

SELECT LENGTH(’chocolate’)

LESSER function [Miscellaneous]

Function Returns the lesser of two parameter values. If the parameters are equal, the
first is returned.

Syntax LESSER (expression1, expression2)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “GREATER function [Miscellaneous]” on page 138

Example The following statement returns the value 5.

SELECT LESSER(10,5) FROM dummy

LIST function [Aggregate]

Function Returns a comma-separated list of values.

Syntax LIST (
{ string-expression | DISTINCT column-name }
[, delimiter-string]
[ORDER BY order-by-expression])

Parameters string-expression A string, usually a column name. For each row, the
expression’s value is added to the comma-separated list.

DISTINCT column-name The name of a column that you are using in the
query. For each unique value of that column, the value is added to the
comma-separated list.

delimiter-string A delimiter string for the list items. The default setting is
a comma. There is no delimiter if a value of NULL or an empty string is
supplied. Thedelimiter-stringmust be a constant.

order-by-expression Order the items returned by the function. There is no
comma preceding this argument, which makes it easy to use in the case
where nodelimiter-stringis supplied.

148

Chapter 3. SQL Functions

Multiple LIST functions in the same query block are not allowed to use
differentorder-by-expressionarguments.

Usage NULL values are not added to the list. List(X) returns the concatenation
(with delimiters) of all the non-NULL values of X for each row in the group.
If there does not exist at least one row in the group with a definite X-value,
then LIST(X) returns the empty string.

If both DISTINCT and ORDER BY are supplied, the DISTINCT expression
must be the same as the ORDER BY expression.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

Examples The following statement returns the value 48 Kennedy Court, 54 School
Street.

SELECT LIST(street) FROM employee
WHERE emp_fname = ’Thomas’

The following statement lists employee IDs. Each row in the result set
contains a comma-separated list of employee IDs for a single department.

SELECT LIST(emp_id)
FROM employee
GROUP BY dept_id

LIST(emp_id)

102,105,160,243,247,249,266,27,. . .

129,195,299,467,641,667,690,85,. . .

148,390,586,757,879,1293,1336,. . .

184,207,318,409,591,888,992,10,. . .

191,703,750,868,921,1013,1570,. . .

The following statement sorts the employee IDs by the last name of the
employee:

SELECT LIST(emp_id ORDER BY emp_lname) AS "Sorted IDs"
FROM EMPLOYEE
GROUP BY dept_id

149

Sorted IDs

160,105,1250,247,266,249,445,. . .

1039,129,1142,195,667,1162,902,. . .

1336,879,586,390,757,148,1483,. . .

1751,591,1062,1191,992,888,318,. . .

1013,191,750,921,868,1658,703,. . .

The following statement returns semicolon-separated lists. Note the position
of the ORDER BY clause and the list separator:

SELECT LIST(emp_id, ’;’ ORDER BY emp_lname) AS "Sorted IDs"
FROM EMPLOYEE
GROUP BY dept_id

Sorted IDs

160;105;1250;247;266;249;445;. . .

1039;129;1142;195;667;1162;902;. . .

1336;879;586;390;757;148;1483;. . .

1751;591;1062;1191;992;888;318;. . .

1013;191;750;921;868;1658;703;. . .

Be sure to distinguish the previous statement from the following statement,
which returns comma-separated lists of employee IDs sorted by a compound
sort-key of(emp_lname, ’;’) :

SELECT LIST(emp_id ORDER BY emp_lname, ’;’) AS "Sorted IDs"
FROM EMPLOYEE
GROUP BY dept_id

LOCATE function [String]

Function Returns the position of one string within another.

Syntax LOCATE (string-expression-1, string-expression-2 [, integer-expression])

Parameters string-expression-1 The string to be searched.

string-expression-2 The string to be searched for. This string is limited to
255 bytes.

integer-expression The character position in the string to begin the
search. The first character is position 1. If the starting offset is negative, the

150

Chapter 3. SQL Functions

locate function returns the last matching string offset rather than the first. A
negative offset indicates how much of the end of the string is to be excluded
from the search. The number of bytes excluded is calculated as (-1 * offset)
-1.

Usage If integer-expressionis specified, the search starts at that offset into the
string.

The first string can be a long string (longer than 255 bytes), but the second is
limited to 255 bytes. If a long string is given as the second argument, the
function returns a NULL value. If the string is not found, 0 is returned.
Searching for a zero-length string will return 1. If any of the arguments are
NULL, the result is NULL.

If multi-byte characters are used, with the appropriate collation, then the
starting position and the return value may be different from thebyte
positions.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 8.

SELECT LOCATE(
’office party this week - rsvp as soon as possible’,
’party’,
2)

The following statement:

BEGIN
declare str long varchar;
declare pos int;
set str = ’c: \test \functions \locate.sql’;
set pos = locate(str, ’ \’, -1);
select str, pos,

substr(str, 1, pos -1) as path,
substr(str, pos +1) as filename;

END

returns the following output:

str pos path filename c:\test\functions\locate.sql 18 c:\test\functions
locate.sql

LOG function [Numeric]

Function ♦ Returns the natural logarithm of a number.

151

Syntax LOG (numeric-expression)

Parameters numeric-expression The number.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “LOG10 function [Numeric]” on page 152

Example The following statement returns the value 3.912023.

SELECT LOG(50)

LOG10 function [Numeric]

Function ♦ Returns the base 10 logarithm of a number.

Syntax LOG10 (numeric-expression)

Parameters numeric-expression The number.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “LOG function [Numeric]” on page 151

Example The following statement returns the value 1.698970.

SELECT LOG10(50)

LONG_ULPLAN function [Miscellaneous]

Function Returns a long description of the UltraLite plan optimization strategy of a
SQL statement, as a string. The description is the same as that returned by
the PLAN function.

For some queries, the execution plan for UltraLite may differ from the plan
selected for Adaptive Server Anywhere.

Syntax LONG_ULPLAN (string-expression)

Parameters string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

152

Chapter 3. SQL Functions

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “PLAN function [Miscellaneous]” on page 170

“EXPLANATION function [Miscellaneous]” on page 132

“GRAPHICAL_PLAN function [Miscellaneous]” on page 135

“GRAPHICAL_ULPLAN function [Miscellaneous]” on page 137

“SHORT_ULPLAN function [Miscellaneous]” on page 181

Example The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT LONG_ULPLAN(
’select * from department where dept_id > 100’)

This information can help with decisions about indexes to add or how to
structure your database for better performance.

In Interactive SQL, you can view the plan for any SQL statement on the
UltraLite Plan tab in the Results pane.

LOWER function [String]

Function Converts all characters in a string to lower case.

Syntax LOWER (string-expression)

Parameters string-expression The string to be converted.

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “LCASE function [String]” on page 146

“UCASE function [String]” on page 199

“UPPER function [String]” on page 199

Example The following statement returns the value lower case.

SELECT LOWER(’LOWER CasE’)

LTRIM function [String]

Function Trims leading blanks from a string.

153

Syntax LTRIM (string-expression)

Parameters string-expression The string to be trimmed.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “RTRIM function [String]” on page 180

“TRIM function [String]” on page 197

Example The following statement returns the value Test Message with all leading
blanks removed.

SELECT LTRIM(’ Test Message’)

MAX function [Aggregate]

Function Returns the maximumexpressionvalue found in each group of rows.

Syntax MAX (expression | DISTINCT column name)

Parameters expression The expression for which the maximum value is to be
calculated. This is commonly a column name.

DISTINCT column-name Returns the same as MAX(expression), and is
included for completeness.

Usage Rows whereexpressionis NULL are ignored. Returns NULL for a group
containing no rows.

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “MIN function [Aggregate]” on page 154

Example The following statement returns the value 138948.000, representing the
maximum salary in the employee table.

SELECT MAX(salary)
FROM employee

MIN function [Aggregate]

Function Returns the minimum expression value found in each group of rows.

154

Chapter 3. SQL Functions

Syntax MIN (expression
| DISTINCT column name)

Parameters expression The expression for which the minimum value is to be
calculated. This is commonly a column name.

DISTINCT column-name Returns the same as MIN(expression), and is
included for completeness.

Usage Rows whereexpressionis NULL are ignored. Returns NULL for a group
containing no rows.

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “MAX function [Aggregate]” on page 154

Example The following statement returns the value 24903.000, representing the
minimum salary in the employee table.

SELECT MIN(salary)
FROM employee

MINUTE function [Date and time]

Function Returns a number from 0 to 59 corresponding to the minute component of a
datetime value.

Syntax MINUTE (datetime-expression)

Parameters datetime-expression The datetime value.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 22.

SELECT MINUTE(’1998-07-13 12:22:34’)

MINUTES function [Date and time]

Function Given two timestamps, this function returns the integer number of minutes
between them. It is recommended that you use the“DATEDIFF function
[Date and time]” on page 114instead for this purpose.

155

Given a single date, this function returns the number of minutes since
0000-02-29 00:00:00.

Given one date and an integer, it adds the integer number of minutes to the
specified timestamp. Instead, please use the“DATEADD function [Date and
time]” on page 114.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Syntax 1 MINUTES ([datetime-expression,] datetime-expression)

Syntax 2 MINUTES (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of minutes to be added to the
datetime-expression.If integer-expressionis negative, the appropriate
number of minutes is subtracted from the datetime value. If you supply an
integer expression, thedatetime-expressionmust be explicitly cast as a
datetime data type.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Usage Since this function returns an integer, overflow may occur when syntax 1 is
used with timestamps greater than or equal to 4083-03-23 02:08:00.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statements return the value 240, signifying that the second
timestamp is 240 seconds after the first. It is recommended that you use the
second example (DATEDIFF).

SELECT MINUTES(’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

SELECT DATEDIFF(minute,
’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

The following statement returns the value 1 051 040 527.

SELECT MINUTES(’1998-07-13 06:07:12’)

The following statements return the timestamp 1999-05-12 21:10:07.0. It is
recommended that you use the second example (DATEADD).

SELECT MINUTES(CAST(’1999-05-12 21:05:07’
AS DATETIME), 5)
SELECT DATEADD(minute, 5, ’1999-05-12 21:05:07’)

156

Chapter 3. SQL Functions

MOD function [Numeric]

Function Returns the remainder when one whole number is divided by another.

Syntax MOD (dividend , divisor)

Parameters dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Usage Division involving a negative dividend will give a negative or zero result.
The sign of the divisor has no effect.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported in Adaptive Server Enterprise. The % operator
is used as a modulo operator in Adaptive Server Enterprise.

See also “REMAINDER function [Numeric]” on page 175

Example The following statement returns the value 2.

SELECT MOD(5, 3)

MONTH function [Date and time]

Function ♦ Returns a number from 1 to 12 corresponding to the month of the given
date.

Syntax MONTH (date-expression)

Parameters date-expression A datetime value.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 7.

SELECT MONTH(’1998-07-13’)

MONTHNAME function [Date and time]

Function Returns the name of the month from a date.

Syntax MONTHNAME (date-expression)

157

Parameters date-expression The datetime value.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value September.

SELECT MONTHNAME(’1998-09-05’)

MONTHS function [Date and time]

Function Given two dates, this function returns the integer number of months between
them. It is recommended that you use the“DATEDIFF function [Date and
time]” on page 114instead for this purpose.

Given a single date, this function returns the number of months since
0000-02.

Given one date and an integer, it adds the integer number of months to the
specified date. It is recommended that you use the“DATEADD function
[Date and time]” on page 114instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Syntax 1 MONTHS ([datetime-expression,] datetime-expression)

Syntax 2 MONTHS (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of months to be added to the
datetime-expression.If integer-expressionis negative, the appropriate
number of months is subtracted from the datetime value. If you supply an
integer expression, thedatetime-expressionmust be explicitly cast as a
datetime data type.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Usage The value of MONTHS is calculated from the number of first days of the
month between the two dates.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

158

Chapter 3. SQL Functions

Example The following statements return the value 2, signifying that the second date
is two months after the first. It is recommended that you use the second
example (DATEDIFF).

SELECT MONTHS(’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

SELECT DATEDIFF(month,
’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

The following statement returns the value 23 982.

SELECT MONTHS(’1998-07-13 06:07:12’)

The following statements return the timestamp 1999-10-12 21:05:07.0. It is
recommended that you use the second example (DATEADD).

SELECT MONTHS(CAST(’1999-05-12 21:05:07’
AS DATETIME), 5)
SELECT DATEADD(month, 5, ’1999-05-12 21:05:07’)

NEWID function [Miscellaneous]

Function Generates a UUID (Universally Unique Identifier) value. A UUID is the
same as a GUID (Globally Unique Identifier).

Syntax NEWID()

Parameters There are no parameters associated with NEWID().

Usage The NEWID() function generates a unique identifier value. It can be used in
a DEFAULT clause for a column.

UUIDs can be used to uniquely identify rows in a table. The values are
generated such that a value produced on one computer will not match that
produced on another. Hence they can also be used as keys in replication and
synchronization environments.

NEWID is a non-deterministic function. Successive calls to NEWID may
return different values. The query optimizer does not cache the results of the
NEWID function.

☞ For more information about non-deterministic functions, see “Function
caching”[ASA SQL User’s Guide,page 418].

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

159

See also “The NEWID default” [ASA SQL User’s Guide,page 82]

“STRTOUUID function [STRING]” on page 192

“UUIDTOSTR function [STRING]” on page 200

“UNIQUEIDENTIFIER data type [Binary]” on page 73

Example The following statement creates a table mytab with two columns. Column
pk has a unique identifier data type, and assigns the newid() function as the
default value. Column c1 has an integer data type.

CREATE TABLE mytab(pk uniqueidentifier primary key default newid(),
c1 int)

If you execute the following statement,

SELECT newid()

the unique identifier is returned as a string. For example, the value might be
0xd3749fe09cf446e399913bc6434f1f08. You can convert this string into a
readable format using the UUIDTOSTR() function.

NEXT_CONNECTION function [System]

Function Returns an identifying number for a connection.

Syntax NEXT_CONNECTION ([connection-id] [, database-id])

Parameters connection-id An integer, usually returned from a previous call to
NEXT_CONNECTION. Ifconnection-idis NULL, NEXT_CONNECTION
returns the first connection ID.

database-id An integer representing one of the databases on the current
server. If you supply no database-id, the current database is used. If you
supply NULL, then NEXT_CONNECTION returns the next connection
regardless of database.

Usage NEXT_CONNECTION can be used to enumerate the connections to a
database. To get the first connection pass NULL; to get each subsequent
connection, pass the previous return value. The function returns NULL
when there are no more connections.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns an identifier for the first connection on the
current database. The identifier is an integer value like 569851433.

160

Chapter 3. SQL Functions

SELECT NEXT_CONNECTION(NULL)

The following statement returns a value like 1661140050.

SELECT NEXT_CONNECTION(569851433)

The following call returns the connection afterconnection-idon the current
database.

NEXT_CONNECTION(connection-id)

The following call returns the connection afterconnection-id(regardless of
database).

NEXT_CONNECTION(connection-id, NULL)

The following call returns the connection afterconnection-idon the
specified database.

NEXT_CONNECTION(connection-id, database-id)

The following call returns the first connection (regardless of database).

NEXT_CONNECTION(NULL, NULL)

The following call returns the first connection on the specified database.

NEXT_CONNECTION(NULL, database-id)

NEXT_DATABASE function [System]

Function Returns an identifying number for a database.

Syntax NEXT_DATABASE ({ NULL | database-id })

Parameters database-id An integer that specifies the ID number of the database.

Usage NEXT_DATABASE can be used to enumerate the databases running on a
database server. To get the first database pass NULL; to get each subsequent
database, pass the previous return value. The function returns NULL when
there are no more databases.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 0, the first database value.

SELECT NEXT_DATABASE(NULL)

161

The following statement returns NULL, indicating that there are no more
databases on the server.

SELECT NEXT_DATABASE(0)

NEXT_HTTP_HEADER function [HTTP]

Function Get the next HTTP header name.

Syntax NEXT_HTTP_HEADER (header-name)

Parameters header-name The name of the previous header. If header-name is null,
this function returns the name of the first HTTP header.

Usage This function iterates over the HTTP headers included within a request.
Calling it with NULL causes it to return the name of the first header.
Subsequent headers are retrieved by passing the function the name of the
previous header. This function returns NULL when called with the name of
the last header.

Calling this function repeatedly returns all the header fields exactly once, but
not necessarily in the order they appear in the HTTP request.

See also “HTTP_HEADER function [HTTP]” on page 141

“HTTP_VARIABLE function [HTTP]” on page 141

“NEXT_HTTP_VARIABLE function [HTTP]” on page 162

NEXT_HTTP_VARIABLE function [HTTP]

Function Get the next HTTP variable name.

NEXT_HTTP_VARIABLE (var-name)

Parameters var-name The name of the previous variable. If var-name is null, this
function returns the name of the first HTTP variable.

Usage This function iterates over the HTTP variables included within a request.
Calling it with NULL causes it to return the name of the first variable.
Subsequent variables are retrieved by passing the function the name of the
previous variable. This function returns NULL when called with the name of
the final variable.

Calling this function repeatedly returns all the variables exactly once, but not
necessarily in the order they appear in the HTTP request. The variables url
or url1, url2, . . . , url10 are included if URL PATH is set to ON or
ELEMENTS, respectively.

162

Chapter 3. SQL Functions

See also “HTTP_HEADER function [HTTP]” on page 141

“HTTP_VARIABLE function [HTTP]” on page 141

“NEXT_HTTP_HEADER function [HTTP]” on page 162

NOW function [Date and time]

Function Returns the current year, month, day, hour, minute, second and fraction of a
second. The fraction of a second. The accuracy is limited by the accuracy of
the system clock.

The information the NOW function returns is equivalent to the information
returned by the GETDATE function and the CURRENT TIMESTAMP
special value.

Syntax NOW (*)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “GETDATE function [Date and time]” on page 135

“CURRENT TIMESTAMP special value” on page 33

Example The following statement returns the current date and time.

SELECT NOW(*)

NULLIF function [Miscellaneous]

Function To provide an abbreviated CASE expression by comparing expressions.

Syntax NULLIF (expression-1, expression-2)

Parameters expression-1 An expression to be compared.

expression-2 An expression to be compared.

Usage NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second
expression is NULL, NULLIF returns the first expression.

The NULLIF function provides a short way to write some CASE
expressions.

Standards and
compatibility

♦ SQL/92 Entry-level feature.

163

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “CASE expressions” on page 18

Example The following statement returns the value a:

SELECT NULLIF(’a’, ’b’)

The following statement returns NULL.

SELECT NULLIF(’a’, ’a’)

NUMBER function [Miscellaneous]

Function Generates numbers starting at 1 for each successive row in the results of the
query. NUMBER is primarily intended for use in select lists.

Syntax NUMBER (*)

Usage You can use NUMBER(*) in a select list to provide a sequential numbering
of the rows in the result set. NUMBER(*) returns the value of the ANSI row
number of each result row. This means that NUMBER can return positive or
negative values, depending on how the application scrolls through the result
set. For insensitive cursors, the value of NUMBER(*) will always be
positive because the entire result set is materialized at OPEN.

In addition, the row number may be subject to change for some cursor types.
The value is fixed for insensitive cursors and scroll cursors. If there are
concurrent updates, it may change for dynamic and sensitive cursors.

A syntax error is generated if you use NUMBER in a DELETE statement,
WHERE clause, HAVING clause, ORDER BY clause, subquery, query
involving aggregation, any constraint, GROUP BY, DISTINCT, a query
containing UNION ALL, or a derived table.

NUMBER(*) can be used in a view (subject to the above restrictions), but
the view column corresponding to the expression involving NUMBER(*)
can be referenced at most once in the query or outer view, and the view
cannot participate as a null-supplying table in a left outer join or full outer
join.

In Embedded SQL, care should be exercised when using a cursor that
references a query containing a NUMBER(*) function. In particular, this
function returns negative numbers when a database cursor is positioned
using relative to the end of the cursor (an absolute position with a negative
offset).

164

Chapter 3. SQL Functions

You can use NUMBER in the right hand side of an assignment in the SET
clause of an UPDATE statement. For example,SET x = NUMBER(*).

NUMBER can also be used to generate primary keys when using the
INSERT from SELECT statement (see“INSERT statement” on page 476),
although using AUTOINCREMENT is a preferred mechanism for
generating sequential primary keys.

☞ For information on AUTOINCREMENT, see“CREATE TABLE
statement” on page 361.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Behavior changes
The behavior of the NUMBER function changed in version 8. For more
information, see “Adaptive Server Anywhere behavior changes”[What’s
New in SQL Anywhere Studio,page 105].

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns a sequentially-numbered list of departments.

SELECT NUMBER(*), dept_name
FROM department
WHERE dept_id > 5
ORDER BY dept_name

OPENXML function [String]

Function Generates a result set from an XML document.

Syntax OPENXML (xml-expression,
xpath-query [, flags [, namespace-declaration]])

WITH (column-name column-type [xpath-query],...)

Parameters xml-expression The XML on which the result set is based. This can be
any string expression, such as a constant, variable, or column.

xpath-query A string containing an XPath query. XPath allows you to
specify patterns that describe the structure of the XML document you are
querying. The XPath pattern included in this argument selects the nodes
from the XML document. Each node that matches the XPath query in the
second argument generates one row in the table.

Metaproperties can only be specified in WITH clausexpath-query
arguments. A metaproperty is accessed within an XPath query as if it was an
attribute. If anamespace-declarationis not specified, then by default the

165

prefix mp is bound to the Uniform Resource Identifier (URI)
urn:ianywhere-com:asa-xpath-metaprop. If a namespace-declarationis
specified, this URI must be bound to mp or some other prefix in order to
access metaproperties in the query. OPENXML supports the following
metaproperties:

♦ @mp:id returns an ID for a node that is unique within the XML
document. The ID for a given node in a given document may change if
the database server is restarted. The value of this metaproperty increases
with document order.

♦ @mp:localname returns the local part of the node’s name, or NULL if
the node does not have a name.

♦ @mp:prefix returns the prefix part of the node’s name, or NULL if the
node does not have a name or if the name is not prefixed.

♦ @mp:namespaceuri returns the URI of the namespace that the node
belongs to, or NULL if the node is not in a namespace.

♦ @mp:xmltext returns a subtree of the XML document in XML form.
For example, when you match an internal node, you can use this
metaproperty to return an XML string, rather than the concatenated
values of the descendant text nodes.

flags Indicates the mapping that should be used between the XML data
and the result set when an XPath query is not specified in the WITH clause.
If the flagsparameter is not specified, the default behavior is to map
attributes to columns in the result set. Theflagsparameter can have one of
the following values:

Value Description

1 XML attributes are mapped to columns in the result set (the
default).

2 XML elements are mapped to columns in the result set.

namespace-declaration An XML document. The in-scope namespaces
for the query are taken from the root element of the document. If
namespaces are specified, then you must include aflagsargument, even if all
thexpath-queryarguments are specified.

WITH clause Specifies the schema of the result set and how the value is
found for each column in the result set. WITH clausexpath-query
arguments are matched relative to the matches for thexpath-queryin the
second argument. If a WITH clause expression matches more than one node,
then only the first node in the document order is used. If the node is not a

166

Chapter 3. SQL Functions

text node, then the result is found by appending all the text node
descendants. If a WITH clause expression does not match any nodes, then
the column for that row is NULL.

The OPENXML WITH clause syntax is similar to the syntax for selecting
from a stored procedure.

☞ For information about selecting from a stored procedure, see“FROM
clause” on page 445.

column-name The name of the column in the result set.

column-type The data type of the column in the result set. The data type
must be compatible with the values selected from the XML document.

☞ For a list of data types, see“SQL Data Types” on page 51.

Usage OPENXML parses thexml-expressionand models the result as a tree. The
tree contains a separate node for each element, attribute, and text node, or
other XML construct. The XPath queries supplied to OPENXML are used to
select nodes from the tree, and the selected nodes are then mapped to the
result set.

The XML parser used by OPENXML is non-validating, and does not read
the external DTD subset or external parameter entities.

When there are multiple matches for a column expression, the first match in
the document order (the order of the original XML document before it was
parsed) is used. NULL is returned if there are no matching nodes. When an
internal node is selected, the result is all the descendant text nodes of the
internal node concatenated together.

Columns of type BINARY, LONG BINARY, IMAGE, and VARBINARY are
assumed to be base64-encoded format and are decoded automatically. If you
generate XML using the FOR XML clause, these types are base64-encoded,
and can be decoded using OPENXML.

☞ For information about the FOR XML clause and encoding binary data,
see “FOR XML and binary data”[ASA SQL User’s Guide,page 491].

OPENXML supports a subset of the XPath syntax, as follows:

♦ The child, self, attribute, descendant, descendant-or-self, and parent axes
are fully supported.

☞ For descriptions, see “Using XPath expressions”[ASA SQL User’s
Guide,page 483].

♦ Both abbreviated and unabbreviated syntax can be used for all supported
features. For example,’a’ is equivalent to’child::a’ and’..’ is
equivalent to’parent::node()’ .

167

♦ Name tests can use wildcards. For example,’a/*/b’ .

♦ The following Kind tests are supported: node(), text(),
processing-instruction(), and comment().

♦ Qualifiers of the formexpr1[expr2] can be used, whereexpr2 is any
supported XPath expression. A qualifier evaluates TRUE ifexpr2
matches one or more nodes. For example,’a[b]’ findsa nodes that
have at least oneb child.

☞ For information about the XPath query language, see
http://www.w3.org/TR/xpath.

Standards and
compatibility

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Importing XML using OPENXML” [ASA SQL User’s Guide,page 483]

Example The following query generates a result set from the XML document supplied
as the first argument to OPENXML:

SELECT * FROM OPENXML(’<products>
<prod_type id="301">Tee Shirt</prod_type>
<prod_type id="401">Baseball Cap</prod_type>
</products>’,
’/products/prod_type’)

WITH (prod_name LONG VARCHAR ’text()’, prod_id CHAR(3) ’@id’)

This query generates the following result:

prod_name prod_id

Tee Shirt 301

Baseball Cap 401

☞ For more examples of using OPENXML, see “Importing XML using
OPENXML” [ASA SQL User’s Guide,page 483].

PATINDEX function [String]

Function Returns an integer representing the starting position of the first occurrence of
a pattern in a string.

Syntax PATINDEX (’ %pattern%’ , string_expression)

Parameters pattern The pattern to be searched for. If the leading percent wildcard is
omitted, PATINDEX returns one (1) if the pattern occurs at the beginning of
the string, and zero if not.

The pattern uses the same wildcards as the LIKE comparison. These are as
follows:

168

Chapter 3. SQL Functions

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

string-expression The string to be searched for the pattern.

Usage PATINDEX returns the starting position of the first occurrence of the
pattern. If the pattern is not found, it returns zero (0).

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that the
USING clause is not supported.

See also “LIKE conditions” on page 24

“LOCATE function [String]” on page 150

Example The following statement returns the value 2.

SELECT PATINDEX(’%hoco%’, ’chocolate’)

The following statement returns the value 11.

SELECT PATINDEX (’%4_5_’, ’0a1A 2a3A 4a5A’)

PI function [Numeric]

Function ♦ Returns the numeric value PI.

Syntax PI (*)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase The PI() function is supported in Adaptive Server Enterprise,
but PI(*) is not.

Example The following statement returns the value 3.141592653. . .

SELECT PI(*)

169

PLAN function [Miscellaneous]

Function Returns the long plan optimization strategy of a SQL statement, as a string.

Syntax PLAN (string-expression, [cursor-type], [update-status])

Parameters string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

cursor-type A string. Cursor-type can beasensitive(default),
insensitive, sensitive, or keyset-driven.

update-status A string parameter accepting one of the following values
indicating how the optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE
(default)

The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the
same as READ-WRITE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “EXPLANATION function [Miscellaneous]” on page 132

“GRAPHICAL_PLAN function [Miscellaneous]” on page 135

“GRAPHICAL_ULPLAN function [Miscellaneous]” on page 137

“LONG_ULPLAN function [Miscellaneous]” on page 152

“SHORT_ULPLAN function [Miscellaneous]” on page 181

Example The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT PLAN(
’SELECT * FROM department WHERE dept_id > 100’)

This information can help with decisions about indexes to add or how to
structure your database for better performance.

The following statement returns a string containing the textual plan for an
INSENSITIVE cursor over the query’select * from department

where ...’ .

170

Chapter 3. SQL Functions

SELECT PLAN(
’SELECT * FROM department WHERE dept_id > 100’,
’insensitive’,
’read-only’)

In Interactive SQL, you can view the plan for any SQL statement on the Plan
tab in the Results pane.

POWER function [Numeric]

Function Calculates one number raised to the power of another.

Syntax POWER (numeric-expression-1, numeric-expression-2)

Parameters numeric-expression-1 The base.

numeric-expression-2 The exponent.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 64.

SELECT Power(2, 6)

PROPERTY_DESCRIPTION function [System]

Function Returns a description of a property.

Syntax PROPERTY_DESCRIPTION ({ property-id | property-name })

Parameters property-id An integer that is the property-number of the database
property. This number can be determined from the PROPERTY_NUMBER
function. Theproperty-id is commonly used when looping through a set of
properties.

property-name A string giving the name of the database property.

Usage Each property has both a number and a name, but the number is subject to
change between releases, and should not be used as a reliable identifier for a
given property.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

171

See also “Database Performance and Connection Properties”[ASA Database
Administration Guide,page 637]

Example The following statement returns the description Number of index insertions.

SELECT PROPERTY_DESCRIPTION(’IndAdd’)

PROPERTY function [System]

Function Returns the value of the specified server-level property as a string.

Syntax PROPERTY ({ property-id | property-name })

Parameters property-id An integer that is the property-number of the server-level
property. This number can be determined from the PROPERTY_NUMBER
function. Theproperty-id is commonly used when looping through a set of
properties.

property-name A string giving the name of the database property.

Usage Each property has both a number and a name, but the number is subject to
change between releases, and should not be used as a reliable identifier for a
given property.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Server-level properties”[ASA Database Administration Guide,page 657]

Example The following statement returns the name of the current database server:

SELECT PROPERTY(’Name’)

PROPERTY_NAME function [System]

Function Returns the name of the property with the supplied property-number.

Syntax PROPERTY_NAME (property-id)

Parameters property-id The property number of the database property.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

172

Chapter 3. SQL Functions

See also “Database properties”[ASA Database Administration Guide,page 647]

Example The following statement returns the property associated with property
number 126. The actual property to which this refers changes from release
to release.

SELECT PROPERTY_NAME(126)

PROPERTY_NUMBER function [System]

Function Returns the property number of the property with the supplied
property-name.

Syntax PROPERTY_NUMBER (property-name)

Parameters property-name A property name.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Database properties”[ASA Database Administration Guide,page 647]

Example The following statement returns an integer value. The actual value changes
from release to release.

SELECT PROPERTY_NUMBER(’PAGESIZE’)

QUARTER function [Date and time]

Function Returns a number indicating the quarter of the year from the supplied date
expression.

Syntax QUARTER(date-expression)

Parameters date- expression The date.

Usage The quarters are as follows:

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

4 October 1 to December 31

Standards and
compatibility

♦ SQL/92 Vendor extension.

173

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 2.

SELECT QUARTER (’1987/05/02’)

RADIANS function [Numeric]

Function ♦ Converts a number from degrees to radians.

Syntax RADIANS (numeric-expression)

Parameters numeric-expression A number, in degrees. This angle is converted to
radians.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns a value of approximately 0.5236.

SELECT RADIANS(30)

RAND function [Numeric]

Function Returns a random number in the interval 0 to 1, with an optional seed.

Syntax RAND ([integer-expression])

Parameters integer expression The optional seed used to create a random number.
This argument allows you to create repeatable random number sequences.

Usage RAND is a non-deterministic function. Successive calls to RAND may
return different values. The query optimizer does not cache the results of the
RAND function.

☞ For more information about non-deterministic functions, see “Function
caching”[ASA SQL User’s Guide,page 418].

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

174

Chapter 3. SQL Functions

Example The following statement returns a value of approximately 0.0554504.

SELECT RAND(4)

REMAINDER function [Numeric]

Function Returns the remainder when one whole number is divided by another.

Syntax REMAINDER (dividend , divisor)

Parameters dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise. The % (modulo)
operator and the division operator can be used to produce a remainder.

See also “MOD function [Numeric]” on page 157

Example The following statement returns the value 2.

SELECT REMAINDER(5, 3)

REPEAT function [String]

Function Concatenates a string a specified number of times.

Syntax REPEAT (string-expression, integer-expression)

Parameters string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated. If
integer-expressionis negative, an empty string is returned.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise, but REPLICATE
provides the same capabilities.

See also “REPLICATE function [String]” on page 176

Example The following statement returns the value repeatrepeatrepeat.

SELECT REPEAT(’repeat’, 3)

175

REPLACE function [String]

Function Replaces all occurrences of a substring with another substring.

Syntax REPLACE (original-string, search-string, replace-string)

Parameters If any argument is NULL, the function returns NULL.

original-string The string to be searched. This can be any length.

search-string The string to be searched for and replaced with
replace-string. This string is limited to 255 bytes. Ifsearch-stringis an
empty string, the original string is returned unchanged.

replace-string The replacement string, which replacessearch-string. This
can be any length. Ifreplacement-stringis an empty string, all occurrences
of search-stringare deleted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “SUBSTRING function [String]” on page 193

Example The following statement returns the value xx.def.xx.ghi.

SELECT REPLACE(’abc.def.abc.ghi’, ’abc’, ’xx’)

The following statement generates a result set containing ALTER
PROCEDURE statements which, when executed, would repair stored
procedures that reference a table that has been renamed. (To be useful, the
table name would need to be unique.)

SELECT REPLACE(
replace(proc_defn,’OldTableName’,’NewTableName’),
’create procedure’,
’alter procedure’)

FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE ’%OldTableName%’

Use a separator other than the comma for the LIST function:

SELECT REPLACE(list(table_id), ’,’, ’--’)
FROM SYS.SYSTABLE
WHERE table_id <= 5

REPLICATE function [String]

Function Concatenates a string a specified number of times.

176

Chapter 3. SQL Functions

Syntax REPLICATE (string-expression, integer-expression)

Parameters string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “REPEAT function [String]” on page 175

Example The following statement returns the value repeatrepeatrepeat.

SELECT REPLICATE(’repeat’, 3)

REWRITE function [Miscellaneous]

Function Returns a rewritten SELECT, UPDATE, or DELETE statement.

Syntax REWRITE (select-statement [, ’ ANSI’])

Usage You can use the REWRITE function without the ANSI argument to help
understand how the optimizer generated the access plan for a given query. In
particular, you can find how Adaptive Server Anywhere has rewritten the
conditions in the statement’s WHERE, ON, and HAVING clauses, and then
determine whether or not applicable indexes exist that can be exploited to
improve the request’s execution time.

The statement that is returned by REWRITE may not match the semantics of
the original statement. This is because several rewrite optimizations
introduce internal mechanisms that cannot be translated directly into SQL.
For example, the server’s use of row identifiers to perform duplicate
elimination cannot be translated into SQL.

The rewritten query from the REWRITE() function is not intended to be
executable. It is a tool for analyzing performance issues by showing what
gets passed to the optimizer after the rewrite phase.

There are some rewrite optimizations that are not reflected in the output of
REWRITE. They include LIKE optimization, optimization for minimum or
maximum functions, upper/lower elimination, and predicate subsumption.

If ANSI is specified, REWRITE returns the ANSI equivalent to the
statement. In this case, only the following rewrite optimizations are applied:

♦ Transact-SQL outer joins are rewritten as ANSI SQL outer joins.

♦ Duplicate correlation names are eliminated.

177

♦ KEY and NATURAL joins are rewritten as ANSI SQL joins.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Semantic query transformations”[ASA SQL User’s Guide,page 404]

“EXTENDED_JOIN_SYNTAX option [database]”[ASA Database
Administration Guide,page 592]

“Transact-SQL outer joins (*= or =*)”[ASA SQL User’s Guide,page 278]

“Key joins” [ASA SQL User’s Guide,page 292]

“Natural joins” [ASA SQL User’s Guide,page 288]

“Duplicate correlation names in joins (star joins)”[ASA SQL User’s Guide,
page 282]

Example In the following example, two rewrite optimizations are performed on a
query. The first is the unnesting of the subquery into a join between the
employee and sales_order tables. The second optimization simplifies the
query by eliminating the primary key - foreign key join between employee
and sales_order. Part of this rewrite optimization is to replace the join
predicate e.emp_id=s.sales_rep with the predicate s.sales_rep IS NOT
NULL.

SELECT REWRITE(’SELECT s.id, s.order_date
FROM sales_order s
WHERE EXISTS(SELECT *

FROM employee e
WHERE e.emp_id = s.sales_rep)’) FROM dummy

The query returns a single column result set containing the rewritten query:

’SELECT s.id, s.order_date FROM sales_order s WHERE s.sales_rep
IS NOT NULL’

The next example of REWRITE uses the ANSI argument.

SELECT REWRITE(’SELECT DISTINCT s.id, s.order_date, e.emp_
fname, e.emp_id

FROM sales_order s, employee e
WHERE e.emp_id *= s.sales_rep’, ’ANSI’) FROM dummy

The result is the ANSI equivalent of the statement. In this case, the
Transact-SQL outer join is converted to an ANSI outer join. The query
returns a single column result set (broken into separate lines for readability):

178

Chapter 3. SQL Functions

’SELECT DISTINCT s.id, s.order_date, e.emp_id, e.emp_fname
FROM employee as e
LEFT OUTER JOIN sales_order as s
ON e.emp_id = s.sales_rep’

RIGHT function [String]

Function ♦ Returns the rightmost characters of a string.

Syntax RIGHT (string-expression, integer-expression)

Parameters string-expression The string to be left-truncated.

integer-expression The number of characters at the end of the string to
return.

Usage If the string contains multi-byte characters, and the proper collation is being
used, the number of bytes returned may be greater than the specified number
of characters.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “LEFT function [String]” on page 147

“International Languages and Character Sets”[ASA Database Administration
Guide,page 285]

Example The following statement returns the value olate.

SELECT RIGHT(’chocolate’, 5)

ROUND function [Numeric]

Function Rounds thenumeric-expressionto the specified integer-expression amount
of places after the decimal point.

Syntax ROUND (numeric-expression, integer-expression)

Parameters numeric-expression The number, passed into the function, to be rounded..

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative
expression specifies the number of significant digits to the left of the decimal
point at which to round.

Standards and
compatibility

♦ SQL/92 Vendor extension.

179

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “TRUNCNUM function [Numeric]” on page 198

Example The following statement returns the value 123.200.

SELECT ROUND(123.234, 1)

RTRIM function [String]

Function ♦ Returns a string with trailing blanks removed.

Syntax RTRIM (string-expression)

Parameters string-expression The string to be trimmed.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “LTRIM function [String]” on page 153

Example The following statement returns the string Test Message, with all trailing
blanks removed.

SELECT RTRIM(’Test Message ’)

SECOND function [Date and time]

Function Returns a number from 0 to 59 corresponding to the second component of
the given datetime value.

Syntax SECOND (datetime-expression)

Parameters datetime-expression The datetime value.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 21.

SELECT SECOND(’1998-07-13:21:21:25’)

SECONDS function [Date and time]

Function Given two timestamps, this function returns the integer number of seconds
between them. It is recommended that you use the“DATEDIFF function
[Date and time]” on page 114instead for this purpose.

180

Chapter 3. SQL Functions

Given a single date, this function returns the number of seconds since
0000-02-29 00:00:00.

Given one date and an integer, it adds the integer number of seconds to the
specified timestamp. It is recommended that you use the“DATEADD
function [Date and time]” on page 114instead for this purpose.

Syntax 1 returns a bigint. Syntax 2 returns a timestamp.

Syntax 1 SECONDS ([datetime-expression,] datetime-expression)

Syntax 2 SECONDS (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of seconds to be added to the
datetime-expression.If integer-expressionis negative, the appropriate
number of minutes is subtracted from the datetime value. If you supply an
integer expression, thedatetime-expressionmust be explicitly cast as a
datetime data type.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statements return the value 14 400, signifying that the second
timestamp is 14 400 seconds after the first.

SELECT SECONDS(’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

SELECT DATEDIFF(second,
’1999-07-13 06:07:12’,
’1999-07-13 10:07:12’)

The following statement returns the value 63 062 431 632.

SELECT SECONDS(’1998-07-13 06:07:12’)

The following statements return the datetime 1999-05-12 21:05:12.0.

SELECT SECONDS(CAST(’1999-05-12 21:05:07’
AS TIMESTAMP), 5)
SELECT DATEADD(second, ’1999-05-12 21:05:07’)

SHORT_ULPLAN function [Miscellaneous]

Function Returns a short description of the UltraLite plan optimization strategy of a

181

SQL statement, as a string. The description is the same as that returned by
the EXPLANATION function.

For some queries, the execution plan for UltraLite may differ from the plan
selected for Adaptive Server Anywhere.

Syntax SHORT_ULPLAN (string-expression)

Parameters string-expression The SQL statement, which is commonly a SELECT
statement but which may also be an UPDATE or DELETE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “PLAN function [Miscellaneous]” on page 170

“EXPLANATION function [Miscellaneous]” on page 132

“GRAPHICAL_PLAN function [Miscellaneous]” on page 135

“GRAPHICAL_ULPLAN function [Miscellaneous]” on page 137

“LONG_ULPLAN function [Miscellaneous]” on page 152

Example The following statement passes a SELECT statement as a string parameter
and returns the plan for executing the query.

SELECT EXPLANATION(
’select * from department where dept_id > 100’)

This information can help with decisions about indexes to add or how to
structure your database for better performance.

In Interactive SQL, you can view the plan for any SQL statement on the
UltraLite Plan tab in the Results pane.

SIGN function [Numeric]

Function Returns the sign of a number.

Syntax SIGN (numeric-expression)

Parameters numeric-expression The number for which the sign is to be returned.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

182

Chapter 3. SQL Functions

Example The following statement returns the value -1

SELECT SIGN(-550)

Return value For negative numbers, SIGN returns -1.

For zero, SIGN returns 0.

For positive numbers, SIGN returns 1.

SIMILAR function [String]

Function Returns a number indicating the similarity between two strings.

Syntax SIMILAR (string-expression-1, string-expression-2)

Parameters string-expression-1 The first string to be compared.

string-expression-2 The second string to be compared.

Usage The function returns an integer between 0 and 100 representing the
similarity between the two strings. The result can be interpreted as the
percentage of characters matched between the two strings. A value of 100
indicates that the two strings are identical.

This function can be used to correct a list of names (such as customers).
Some customers may have been added to the list more than once with
slightly different names. Join the table to itself and produce a report of all
similarities greater than 90 percent but less than 100 percent.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the value 75.

SELECT SIMILAR(’toast’, ’coast’)

This signifies that the two values are 75% similar.

SIN function [Numeric]

Function ♦ Returns the sine of a number.

Syntax SIN (numeric-expression)

Parameters numeric-expression The angle, in radians.

Standards and
compatibility

♦ SQL/92 Vendor extension.

183

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “ASIN function [Numeric]” on page 99

“COS function [Numeric]” on page 109

“COT function [Numeric]” on page 110

“TAN function [Numeric]” on page 195

Example The following statement returns the value 0.496880.

SELECT SIN(0.52)

SORTKEY function [String]

Function Generates values that can be used to sort character strings based on alternate
collation rules.

Syntax SORTKEY (string-expression
[, collation-name | , collation-id])

Parameters string-expression The string expression may only contain characters that
are encoded in the database’s character set.

If string-expressionis an empty string, SORTKEY returns a zero-length
binary value. Ifstring-expressionis null, SORTKEY returns a null value.
An empty string has a different sort order value than a null string from a
database column.

The maximum length of the string that SORTKEY can handle is 254 bytes.
Any longer part is ignored.

collation-name A string or a character variable that specifies the name of
the sort order to use.

collation-id A variable, integer constant, or string that specifies the ID
number of the sort order to use.

If you do not specify a collation, the default is Default Unicode multilingual.

Following are the valid values forcollation-nameandcollation-id:

Description Collation

name

Collation ID

Default Unicode multilingual default 0

CP 850 Alternative: no accent altnoacc 39

184

Chapter 3. SQL Functions

Description Collation

name

Collation ID

CP 850 Alternative: lower case first altdict 45

CP 850 Western European: no case,
preference

altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian: no case, preferencescannocp 48

GB Pinyin gbpinyin n/a

Binary sort binary 50

Latin-1 English, French, German dictio-
nary

dict 51

Latin-1 English, French, German no casenocase 52

Latin-1 English, French, German no case,
preference

nocasep 53

Latin-1 English, French, German no
accent

noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-5 Turkish dictionary turdict 72

ISO 8859-5 Turkish no accents turnoac 73

ISO 8859-5 Turkish no case turnocs 74

185

Description Collation

name

Collation ID

CP 874 (TIS 620) Royal Thai dictionary thaidict 257

ISO 14651 ordering standard 14651 258

Shift-JIS binary order sjisbin 259

Unicode UTF-8 binary sort utf8bin 260

EUC JIS binary order eucjisbin 261

GB2312 binary order gb2312bin 262

CP932 MS binary order cp932bin 263

Big5 binary order big5bin 264

EUC KSC binary order euckscbin 265

There are two types of collation tables: built-in and external. Built-in tables
are included in the DLL, and external tables reside in separate files. You
cannot use acollation-id for external tables.

You can also define your own collation tables. To do this, create your own
collation table in a.ust file and copy it to the same folder as the pre-installed
.ust files, . . . /charsets/unicode/. You can use the file name as the
collation-name.

☞ For more information about.ust files, see the Adaptive Server
Enterprise documentation.

Usage The SORTKEY function generates values that can be used to order results
based on predefined sort order behavior. This allows you to work with
character sort order behaviors that are beyond the limitation of Adaptive
Server Anywhere collations. The returned value is a binary value that
contains coded sort order information for the input string is retained from the
SORTKEY function.

For example, you can store the values returned by SORTKEY in a column
with the source character string. When you want to retrieve the character
data in the desired order, the SELECT statement only needs to include an
ORDER BY clause on the columns that contain the results of running
SORTKEY.

The SORTKEY function guarantees that the values it returns for a given set
of sort order criteria work for the binary comparisons that are performed on
VARBINARY data types.

186

Chapter 3. SQL Functions

The input of SORTKEY can generate up to six bytes of sort order
information for each input character. The output of SORTKEY is of type
VARBINARY and has a maximum length of (254 * 6) bytes.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise does not allow the use of self-defined sort
orders.

See also “COMPARE function [String]” on page 105

“Introduction to international languages and character sets”[ASA Database
Administration Guide,page 286]

Example The following statements return the sort key values in the sort order:
Latin-1, English, French, German dictionary.

SELECT SORTKEY(’coop’, ’dict’)

SORTKEY(‘coop’, ‘dict’)

0x08890997099709b30008000800080008
SELECT SORTKEY (’Cö-op’, 51)

SORTKEY(‘Cö-op’, 51)

0x08890997099709b30020004700020008000800080001fffd002d

SOUNDEX function [String]

Function Returns a number representing the sound of a string.

Syntax SOUNDEX (string-expression)

Parameters string-expression The string.

Usage The SOUNDEX function value for a string is based on the first letter and the
next three consonants other than H, Y, and W. Doubled letters are counted as
one letter. For example,

SOUNDEX(’apples’)

is based on the letters A, P, L and S.

Multi-byte characters are ignored by the SOUNDEX function.

Although it is not perfect, SOUNDEX will normally return the same number
for words that sound similar and that start with the same letter.

187

The SOUNDEX function works best with English words. It is less useful for
other languages.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise returns a CHAR(4) result and Adaptive
Server Anywhere returns an integer.

Example The following statement returns two numbers, representing the sound of
each name. The SOUNDEX value for each argument is 3827.

SELECT SOUNDEX(’Smith’), SOUNDEX(’Smythe’)

SPACE function [String]

Function ♦ Returns a specified number of spaces.

Syntax SPACE (integer-expression)

Parameters integer expression The number of spaces to return.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns a string containing 10 spaces.

SELECT SPACE(10)

SQLDIALECT function [Miscellaneous]

Function Returns either ‘Watcom-SQL’ or ‘Transact-SQL’, indicating the SQL dialect
of a statement.

Syntax SQLDIALECT (sql-statement-string)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “TRANSACTSQL function [Miscellaneous]” on page 197

“WATCOMSQL function [Miscellaneous]” on page 203

188

Chapter 3. SQL Functions

Example The following statement returns the string Transact-SQL.

SELECT
SQLDIALECT(’SELECT employeeName = emp_lname FROM employee’)

FROM dummy

SQRT function [Numeric]

Function ♦ Returns the square root of a number.

Syntax SQRT (numeric-expression)

Parameters numeric-expression The number for which the square root is to be
calculated.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns the value 3.

SELECT SQRT(9)

STDDEV function [Aggregate]

Function An alias for STDDEV_SAMP. See“STDEV_SAMP function [Aggregate]”
on page 190.

STDDEV_POP function [Aggregate]

Function Computes the standard deviation of a population consisting of a
numeric-expression, as a DOUBLE.

Syntax STDDEV_POP (numeric-expression)

Parameters numeric-expression The expression whose population-based standard
deviation is calculated over a set of rows. The expression is commonly a
column name.

Usage The population-based standard deviation (s) is computed according to the
following formula:

s = [(1/N) * SUM(xi - mean(x))2]1/2

This standard deviation does not include rows wherenumeric-expressionis
NULL. It returns NULL for a group containing no rows.

Standards and
compatibility

♦ SQL/92 Vendor extension.

189

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Aggregate functions” on page 84

Example The following statement lists the average and variance in the number of
items per order in different time periods:

SELECT year(ship_date) AS Year,
quarter(ship_date) AS Quarter,
avg(quantity) AS Average,
STDDEV_POP(quantity) AS Variance

FROM sales_order_items
GROUP BY Year, Quarter
ORDER BY Year, Quarter

Year Quarter Average Variance

2000 1 25.775148 14.2794. . .

2000 2 27.050847 15.0270. . .

.

STDEV_SAMP function [Aggregate]

Function Computes the standard deviation of a sample consisting of a
numeric-expression, as a DOUBLE.

Syntax STDDEV_SAMP (numeric-expression)

Parameters numeric-expression The expression whose sample-based standard
deviation is calculated over a set of rows. The expression is commonly a
column name.

Usage The standard deviation (s) is computed according to the following formula,
which assumes a normal distribution:

s = [(1/(N - 1)) * SUM(xi - mean(x))2]1/2

This standard deviation does not include rows wherenumeric-expressionis
NULL. It returns NULL for a group containing no rows.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL. The STDDEV
syntax is a vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

190

Chapter 3. SQL Functions

See also “Aggregate functions” on page 84

Example The following statement lists the average and variance in the number of
items per order in different time periods:

SELECT year(ship_date) AS Year,
quarter(ship_date) AS Quarter,
avg(quantity) AS Average,
STDDEV_SAMP(quantity) AS Variance

FROM sales_order_items
GROUP BY Year, Quarter
ORDER BY Year, Quarter

Year Quarter Average Variance

2000 1 25.775148 14.3218. . .

2000 2 27.050847 15.0696. . .

.

STR function [String]

Function Returns the string equivalent of a number.

Syntax STR (numeric_expression [, length [, decimal]])

Parameters numeric-expression Any approximate numeric (float, real, or double
precision) expression between -1E126 and 1E127.

length The number of characters to be returned (including the decimal
point, all digits to the right and left of the decimal point, and blanks). The
default is 10.

decimal The number of decimal digits to be returned. The default is 0.

Usage If the integer portion of the number cannot fit in the length specified, then
the result is a string of the specified length containing all asterisks. For
example, the following statement returns ***

SELECT STR(1234.56, 3)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example The following statement returns a string of six spaces followed by 1235, for
a total of ten characters:

SELECT STR(1234.56)

191

The following statement returns the result 1234.6:

SELECT STR(1234.56, 6, 1)

STRING function [String]

Function Concatenates one or more strings into one large string.

Syntax STRING (string-expression [, . . .])

Parameters string-expression A string.

If only one argument is supplied, it is converted into a single expression. If
more than one argument is supplied, they are concatenated into a single
string.

Usage Numeric or date parameters are converted to strings before concatenation.
The STRING function can also be used to convert any single expression to a
string by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL. If any parameters are
non-NULL, then any NULL parameters are treated as empty strings.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement returns the valuetesting123.

SELECT STRING(’testing’, NULL, 123)

STRTOUUID function [STRING]

Function Converts a string value to a unique identifier (UUID or GUID) value.

Syntax STRTOUUID(string-expression)

Parameters string-expression A string in the format
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Usage Converts a string in the formatxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
wherex is a hexadecimal digit, to a unique identifier value. If the string is
not a valid UUID string, NULL is returned.

This function is useful for inputting UUID values into an Adaptive Server
Anywhere database.

Standards and
compatibility

♦ SQL/92 Vendor extension.

192

Chapter 3. SQL Functions

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “UUIDTOSTR function [STRING]” on page 200

“NEWID function [Miscellaneous]” on page 159

Example CREATE TABLE T (
pk uniqueidentifier primary key,
c1 int);

INSERT INTO T (pk, c1)
VALUES (STRTOUUID

(’12345678-1234-5678-9012-123456789012’), 1);

STUFF function [String]

Function Deletes a number of characters from one string and replaces them with
another string.

Syntax STUFF (string-expression1, start , length, string-expression2)

Parameters string-expression1 The string to be modified by the STUFF function.

start The character position at which to begin deleting characters. The first
character in the string is position 1.

length The number of characters to delete.

string-expression2 The string to be inserted. To delete a portion of a
string using STUFF, use a replacement string of NULL.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “INSERTSTR function [String]” on page 143

Example The following statement returns the value chocolate pie.

SELECT STUFF(’chocolate cake’, 11, 4, ’pie’)

SUBSTRING function [String]

Function Returns a substring of a string.

Syntax { SUBSTRING | SUBSTR }(
string-expression,
start [, length])

193

Parameters string-expression The string from which a substring is to be returned.

start The start position of the substring to return, in characters. A negative
starting position specifies a number of characters from the end of the string
instead of the beginning. The first character in the string is at position 1.

length The length of the substring to return, in characters. A positive
lengthspecifies that the substring endslength characters to the right of the
starting position, while a negativelengthspecifies that the substring ends
length characters to the left of the starting position.

Usage If length is specified, the substring is restricted to that length. If no length is
specified, the remainder of the string is returned, starting at thestartposition.

Bothstartandlength can be negative. Using appropriate combinations of
negative and positive numbers, you can get a substring from either the
beginning or end of the string.

If string-expressionis of binary data type, the SUBSTRING function
behaves as BYTE_SUBSTR.

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase SUBSTRING is compatible with Adaptive Server Enterprise.
SUBSTR is not supported by Adaptive Server Enterprise.

See also “BYTE_SUBSTR function [String]” on page 101

Example The following statement returnsback :

SELECT SUBSTRING(’back yard’,1 ,4)

The following statement returnsyard :

SELECT SUBSTRING(’back yard’, -1 , -4)

SUM function [Aggregate]

Function Returns the total of the specified expression for each group of rows.

Syntax SUM (expression | DISTINCT column-name)

Parameters expression The object to be summed. This is commonly a column name.

DISTINCT column-name This is of limited usefulness, but is included for
completeness.

Usage Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

194

Chapter 3. SQL Functions

Standards and
compatibility

♦ SQL/92 SQL/92 compatible.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “COUNT function [Aggregate]” on page 110

“AVG function [Aggregate]” on page 100

Example The following statement returns the value 3749146.

SELECT SUM(salary)
FROM Employee

TAN function [Numeric]

Function ♦ Returns the tangent of a number.

Syntax TAN (numeric-expression)

Parameters numeric-expression An angle, in radians.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “COS function [Numeric]” on page 109

“SIN function [Numeric]” on page 183

Example The following statement returns the value 0.572561.

SELECT TAN(0.52)

TEXTPTR function [Text and image]

Function Returns the 16-byte binary pointer to the first page of the specified text
column.

Syntax TEXTPTR (column-name)

Parameters column-name The name of a text column.

Usage This function is included for Transact-SQL compatibility.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

195

Example Use TEXTPTR to locate the text column, copy, associated with au_id
486-29-1786 in the author’s blurbs table.

The text pointer is put into a local variable @val and supplied as a parameter
to the readtext command, which returns 5 bytes, starting at the second byte
(offset of 1).

DECLARE @val VARBINARY(16)
SELECT @val = TEXTPTR(copy)
FROM blurbs
WHERE au_id = "486-29-1786"
READTEXT blurbs.copy @val 1 5

TODAY function [Date and time]

Function Returns the current date. This is the historical syntax for CURRENT DATE.

Syntax TODAY (*)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statements return the current day according to the system
clock.

SELECT TODAY(*)
SELECT CURRENT DATE

TRACEBACK function [Miscellaneous]

Function Returns a string containing a traceback of the procedures and triggers that
were executing when the most recent exception (error) occurred.

Syntax TRACEBACK (*)

Usage This is useful for debugging procedures and triggers

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example To use the traceback function, enter the following after an error occurs while
executing a procedure:

SELECT TRACEBACK (*)

196

Chapter 3. SQL Functions

TRANSACTSQL function [Miscellaneous]

Function Takes a Watcom-SQL statement and rewrites it in the Transact-SQL dialect.

Syntax TRANSACTSQL(sql-statement-string)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “SQLDIALECT function [Miscellaneous]” on page 188

“WATCOMSQL function [Miscellaneous]” on page 203

Example The following statement returns the string’select EmployeeName =

empl_name from employee’ .

SELECT TRANSACTSQL(’SELECT empl_name as EmployeeName FROM
employee’) FROM dummy

TRIM function [String]

Function ♦ Removes leading and trailing blanks from a string.

Syntax TRIM (string-expression)

Parameters string-expression The string to be trimmed.

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “LTRIM function [String]” on page 153

“RTRIM function [String]” on page 180

Example The following statement returns the valuechocolatewith no leading or
trailing blanks.

SELECT TRIM(’ chocolate ’)

TRUNCATE function [Numeric]

Function Truncates a number at a specified number of places after the decimal point.
Deprecated in favor of TRUNCNUM.

Syntax " TRUNCATE" (numeric-expression, integer-expression)

197

Parameters numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative
expression specifies the number of significant digits to the left of the decimal
point at which to round.

Usage This function is the same as TRUNCNUM. Using TRUNCNUM is
recommended as it does not cause keyword conflicts.

The quotation marks are required because of a keyword conflict with the
TRUNCATE TABLE statement. You can only use TRUNCATE without the
quotation marks if the QUOTED_IDENTIFIER option is set to OFF.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “QUOTED_IDENTIFIER option [compatibility]”[ASA Database
Administration Guide,page 620]

“TRUNCNUM function [Numeric]” on page 198

Example The following statement returns the value 600.

SELECT "TRUNCATE"(655, -2)

The following statement returns the value 655.340.

SELECT "TRUNCATE"(655.348, 2)

TRUNCNUM function [Numeric]

Function Truncates a number at a specified number of places after the decimal point.

Syntax TRUNCNUM (numeric-expression, integer-expression)

Parameters numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative
expression specifies the number of significant digits to the left of the decimal
point at which to round.

Usage This function is the same as TRUNCATE, but does not cause keyword
conflicts.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

198

Chapter 3. SQL Functions

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “ROUND function [Numeric]” on page 179

“TRUNCATE function [Numeric]” on page 197

Example The following statement returns the value 600.

SELECT TRUNCNUM(655, -2)

The following statement: returns the value 655.340.

SELECT TRUNCNUM(655.348, 2)

UCASE function [String]

Function Converts all characters in a string to upper case.

Syntax UCASE (string-expression)

Parameters string-expression The string to be converted to upper case.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase UCASE is not supported by Adaptive Server Enterprise, but
UPPER provides the same feature in a compatible manner.

See also “UPPER function [String]” on page 199

“LCASE function [String]” on page 146

Example The following statement returns the value CHOCOLATE.

SELECT UCASE(’ChocoLate’)

UPPER function [String]

Function Converts all characters in a string to upper case.

Syntax UPPER (string-expression)

Parameters string-expression The string to be converted to upper case.

Standards and
compatibility

♦ SQL/92 This function is SQL/92 compatible.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

199

See also “UCASE function [String]” on page 199

“LCASE function [String]” on page 146

“LOWER function [String]” on page 153

Example The following statement returns the value CHOCOLATE.

SELECT UPPER(’ChocoLate’)

UUIDTOSTR function [STRING]

Function Converts a unique identifier value (UUID, also known as GUID) to a string
value.

Syntax UUIDTOSTR(uuid-expression)

Parameters uuid-expression A unique identifier value.

Usage Converts a unique identifier to a string value in the format
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit.
If the binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful if you want to view a UUID value.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “NEWID function [Miscellaneous]” on page 159

“STRTOUUID function [STRING]” on page 192

Example The following statement creates a table mytab with two columns. Column
pk has a unique identifier data type, and column c1 has an integer data type.
It then inserts two rows with the values 1 and 2 respectively into column c1.

CREATE TABLE mytab(
pk uniqueidentifier primary key default newid(),
c1 int)

INSERT INTO mytab(c1) values (1)
INSERT INTO mytab(c1) values (2)

Executing the following SELECT statement returns all of the data in the
newly created table.

SELECT *
FROM mytab

You will see a two-column, two-row table. The value displayed for column
pk will be binary values.

200

Chapter 3. SQL Functions

To convert the unique identifier values into a readable format, execute the
following command:

SELECT uuidtostr(pk),c1
FROM mytab

VAR_POP function [Aggregate]

Function Computes the statistical variance of a population consisting of a
numeric-expression, as a DOUBLE.

Syntax VAR_POP (numeric-expression)

Parameters numeric-expression The expression whose population-based variance is
calculated over a set of rows. The expression is commonly a column name.

Usage The population-based variance (s2) is computed according to the following
formula:

s2 = (1/N) * SUM(xi - mean(x))2

This variance does not include rows wherenumeric-expressionis NULL. It
returns NULL for a group containing no rows.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Aggregate functions” on page 84

Example The following statement lists the average and variance in the number of
items per order in different time periods:

SELECT year(ship_date) AS Year,
quarter(ship_date) AS Quarter,
avg(quantity) AS Average,
var_pop(quantity) AS Variance

FROM sales_order_items
GROUP BY Year, Quarter
ORDER BY Year, Quarter

Year Quarter Average Variance

2000 1 25.775148 203.9021. . .

2000 2 27.050847 225.8109. . .

.

201

VAR_SAMP function [Aggregate]

Function Computes the statistical variance of a sample consisting of a
numeric-expression, as a DOUBLE.

Syntax VAR_SAMP (numeric-expression)

Parameters numeric-expression The expression whose sample-based variance is
calculated over a set of rows. The expression is commonly a column name.

Usage The variance (s2) is computed according to the following formula, which
assumes a normal distribution:

s2 = (1/(N - 1)) * SUM(xi - mean(x))2

This variance does not include rows wherenumeric-expressionis NULL. It
returns NULL for a group containing no rows.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL. The VARIANCE
syntax is a vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Aggregate functions” on page 84

Example The following statement lists the average and variance in the number of
items per order in different time periods:

SELECT year(ship_date) AS Year,
quarter(ship_date) AS Quarter,
avg(quantity) AS Average,
var_samp(quantity) AS Variance

FROM sales_order_items
GROUP BY Year, Quarter
ORDER BY Year, Quarter

Year Quarter Average Variance

2000 1 25.775148 205.1158. . .

2000 2 27.050847 227.0939. . .

.

VARIANCE function [Aggregate]

Function An alias for VAR_SAMP. See“STDEV_SAMP function [Aggregate]” on
page 190.

202

Chapter 3. SQL Functions

VAREXISTS function [Miscellaneous]

Function Returns 1 if a user-defined variable has been created or declared with a given
name. Returns 0 if no such variable has been created.

Syntax VAREXISTS (variable-name-string)

Parameters variable-name-string Thename to be tested, as astring.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise.

See also “CREATE VARIABLE statement” on page 381

“DECLARE statement” on page 389

“IF statement” on page 467

Example The following IF statement creates a variable with a namestart_time if one
is not already created or declared. The variable can then be used safely.

IF VAREXISTS(’start_time’) = 0 THEN
CREATE VARIABLE start_time TIMESTAMP;

END IF;
SET start_time = current timestamp;

WATCOMSQL function [Miscellaneous]

Function Takes a Transact-SQL statement and rewrites it in the Watcom-SQL dialect.
This can be useful when converting existing Adaptive Server Enterprise
stored procedures into Watcom SQL syntax.

Syntax WATCOMSQL(sql-statement-string)

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “SQLDIALECT function [Miscellaneous]” on page 188

“TRANSACTSQL function [Miscellaneous]” on page 197

Example The following statement returns the string’select empl_name as

EmployeeName from employee’ .

SELECT WATCOMSQL(’SELECT EmployeeName=empl_name FROM employee’
) FROM dummy

203

WEEKS function [Date and time]

Function Given two dates, this function returns the integer number of weeks between
them. It is recommended that you use the“DATEDIFF function [Date and
time]” on page 114instead for this purpose.

Given a single date, this function returns the number of weeks since
0000-02-29.

Given one date and an integer, it adds the integer number of weeks to the
specified date. It is recommended that you use the“DATEADD function
[Date and time]” on page 114instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Syntax 1 WEEKS ([datetime-expression,] datetime-expression)

Syntax 2 WEEKS (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of weeks to be added to the
datetime-expression.If integer-expressionis negative, the appropriate
number of weeks is subtracted from the datetime value. If you supply an
integer expression, thedatetime-expressionmust be explicitly cast as a
datetime data type.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Usage The difference of two dates in weeks is the number of Sundays between the
two dates.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statements return the value 8, signifying that the second date
is eight weeks after the first. It is recommended that you use the second form
(DATEDIFF).

SELECT WEEKS(’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

SELECT DATEDIFF(week,
’1999-07-13 06:07:12’,
’1999-09-13 10:07:12’)

The following statement returns the value 104 270.

204

Chapter 3. SQL Functions

SELECT WEEKS(’1998-07-13 06:07:12’)

The following statements return the timestamp 1999-06-16 21:05:07.0. It is
recommended that you use the second form (DATEADD).

SELECT WEEKS(CAST(’1999-05-12 21:05:07’
AS TIMESTAMP), 5)
SELECT DATEADD(week, ’1999-05-12 21:05:07’)

XMLAGG function [String]

Function Generates a forest of XML elements from a collection of XML values.

Syntax XMLAGG (value-expression [ORDER BY order-by-expression],...)

Parameters value-expression An XML value. The content is quoted unless the data
type is XML. Theorder-by-expressionorders the elements returned by the
function.

Usage Any values that are NULL are omitted from the result. If all inputs are
NULL, or there are no rows, the result is NULL. If you require a
well-formed XML document, you must ensure that your query is written so
that the generated XML has a single root element.

Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is
automatically returned in base64-encoded format when you execute a query
that contains XMLAGG.

☞ For an example of a query that uses the XMLAGG function with an
ORDER BY clause, see “Using the XMLAGG function”[ASA SQL User’s
Guide,page 510].

Standards and
compatibility

♦ Part of the SQL/XML draft standard.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Using the XMLAGG function” [ASA SQL User’s Guide,page 510]

Example The following statement generates an XML document that shows the orders
placed by each customer.

205

SELECT XMLELEMENT(NAME "order",
XMLATTRIBUTES(id AS order_id),

(SELECT XMLAGG(
XMLELEMENT(

NAME "product",
XMLATTRIBUTES(prod_id,

quantity
AS "quantity_shipped")

)
)

FROM sales_order_items
)

) AS products_ordered
FROM sales_order

XMLCONCAT function [String]

Function Produces a forest of XML elements.

Syntax XMLCONCAT (xml-value,...)

Parameters xml-value The XML values to be concatenated.

Usage Generates a forest of XML elements. In an unparsed XML document, a
forest refers to the multiple root nodes within the document. NULL values
are omitted from the result. If all the values are NULL, then NULL is
returned. XMLCONCAT does not check whether the argument has a prolog.
If you require a well-formed XML document, you must ensure that your
query is written so that a single root element is generated.

Element content is always quoted unless the data type is XML. Data in
BINARY, LONG BINARY, IMAGE, and VARBINARY columns is
automatically returned in base64-encoded format when you execute a query
that contains XMLCONCAT.

Standards and
Compatibility

♦ Part of the SQL/XML draft standard.

♦ Sybase Not supported in Adaptive Server Enterprise.

See also “Using the XMLCONCAT function”[ASA SQL User’s Guide,page 511]

“XMLFOREST function [String]” on page 208

Example The following query generates<cust_id>, <cust_fname>, and
<cust_lname> elements for each customer.

SELECT XMLCONCAT(XMLELEMENT (NAME cust_id, id),
XMLELEMENT(NAME cust_fname, fname),
XMLELEMENT(NAME cust_lname, lname)

) AS "Customer Information"
FROM customer
WHERE id < 120

206

Chapter 3. SQL Functions

XMLELEMENT function [String]

Function Produces an XML element within a query.

Syntax XMLELEMENT (NAME element-name-expression
[, XMLATTRIBUTES (attribute-value-expression
[AS attribute-name],...)
[, element-content-expression,...])

Parameters element-name-expression An identifier. For each row, an XML element
with the same name as the identifier is generated.

attribute-value-expression An attribute of the element. This optional
argument allows you to specify an attribute value for the generated element.
This argument specifies the attribute name and content. If the
attribute-value-expressionis a column name, then the attribute name
defaults to the column name. You can change the attribute name by
specifying theattribute-name argument.

element-content-expression The content of the element. This can be any
string expression. You can specify an unlimited number of
element-content-expressionarguments and they are concatenated together.
For example,

SELECT XMLELEMENT(NAME x, ’abc’, ’def’)

returns

<x>abcdef</x>

Usage NULL element values and NULL attribute values are omitted from the
result. The case for both element and attribute names is taken from the query.

Element content is always quoted unless the data type is XML. Invalid
element and attribute names are also quoted.

☞ For more information about quoting and the XMLELEMENT function,
see “Invalid names and SQL/XML”[ASA SQL User’s Guide,page 510].

XMLELEMENT functions can be nested to create a hierarchy. If you wish
to return different elements at the same level of the document hierarchy, use
the XMLFOREST function.

☞ For more information, see“XMLFOREST function [String]” on
page 208.

Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is
automatically returned in base64-encoded format when you execute a query
that contains XMLELEMENT.

207

Standards and
compatibility

♦ Part of the SQL/XML draft standard.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Using the XMLELEMENT function” [ASA SQL User’s Guide,page 512]

“XMLFOREST function [String]” on page 208

Example The following statement produces an<item_name> element for each
product in the result set, where the product name is the content of the
element.

SELECT id, XMLELEMENT(NAME item_name, p.name)
FROM product p
WHERE id > 400

XMLFOREST function [String]

Function Generates a forest of XML elements.

Syntax XMLFOREST (element-content-expression [AS element-name],...)

Parameters element-content-expression A string. An element is generated for each
element-content-expressionargument that is specified. The
element-content-expressionvalue becomes the content of the element. For
example, if you specify the emp_id column from the employee table for this
argument, then an<emp_id> element containing an emp_id value is
generated for each value in the table.

Specify theelement-nameargument if you wish to assign a name other than
theelement-content-expressionto the element, otherwise the element name
defaults to theelement-content-expressionname.

Usage Produces a forest of XML elements. In the unparsed XML document, a
forest refers to the multiple root nodes within the document. When all of the
arguments to XMLFOREST are NULL, a NULL value is returned. If only
some values are NULL, the NULL values are omitted from the result.
Element content is always quoted unless the data type is XML. You cannot
specify attributes using XMLFOREST. Use the XMLELEMENT function if
you wish to specify attributes for generated elements.

☞ For more information about the XMLELEMENT function, see
“XMLELEMENT function [String]” on page 207.

Element names are quoted unless the data type is XML.

If you require a well-formed XML document, you must ensure that your
query is written so that a single root element is generated.

Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is

208

Chapter 3. SQL Functions

automatically returned in base64-encoded format when you execute a query
that contains XMLFOREST.

Standards and
compatibility

♦ Part of the SQL/XML draft standard.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Using the XMLFOREST function”[ASA SQL User’s Guide,page 514]

“XMLELEMENT function [String]” on page 207

“XMLCONCAT function [String]” on page 206

Example The following statement produces an XML element for the first and last
name of each employee.

SELECT emp_id,
XMLFOREST(emp_fname, emp_lname

) AS "Employee Name"
FROM employee

XMLGEN function [String]

Function Generates an XML value based on an XQuery constructor.

Syntax XMLGEN (xquery-constructor , content-expression [AS variable-name],...)

Parameters xquery-constructor An XQuery constructor. The XQuery constructor is
an item defined in the XQuery language. It gives a syntax for constructing
XML elements based on XQuery expressions. Thexquery-constructor
argument must be a well-formed XML document with one or more variable
references. A variable reference is enclosed in curly braces and must be
prefixed with a $ and have no surrounding white space. For example:

SELECT XMLGEN(’<a>{$ x} ’, 1 AS x)

content-expression A variable. You can specify multiple
content-expressionarguments. The optionalvariable-nameargument is used
to name the variable. For example,

SELECT XMLGEN(’<emp emp_id="{$emp_id}"><start_date>{$x}
</start_date></emp>’,

emp_id,
start_date AS x

)
FROM employee

Usage Computed constructors as defined in the XQuery specification are not
supported by XMLGEN.

When you execute a query that contains XMLGEN, data in BINARY, LONG

209

BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format.

Element content is always quoted unless the data type is XML. Invalid
element and attribute names are also quoted.

☞ For information about quoting and the XMLGEN function, see “Invalid
names and SQL/XML”[ASA SQL User’s Guide,page 510].

Standards and
compatibility

♦ Part of the SQL/XML draft standard.

♦ Sybase Not supported by Adaptive Server Enterprise.

See also “Using the XMLGEN function”[ASA SQL User’s Guide,page 515]

Example The following example generates an<emp> element, as well as
<last_name>, <first_name>, and<start_date> elements for each
employee.

SELECT XMLGEN (’<emp emp_id="{$emp_id}">
<last_name>="{$emp_lname}"</last_name>
<first_name>="{$emp_fname}"</first_name>
<start_date>="{$start_date}"</start_date>

</emp>’,
emp_id,
emp_lname,
emp_fname,
start_date

) AS employee_list
FROM employee

YEARS function [Date and time]

Function Given two dates, this function returns the integer number of years between
them. It is recommended that you use the“DATEDIFF function [Date and
time]” on page 114instead for this purpose.

Given one date, it returns the year. It is recommended that you use the
“DATEPART function [Date and time]” on page 117instead for this purpose.

Given one date and an integer, it adds the integer number of years to the
specified date. It is recommended that you use the“DATEADD function
[Date and time]” on page 114instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Syntax 1 YEARS ([datetime-expression,] datetime-expression)

Syntax 2 YEARS (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

210

Chapter 3. SQL Functions

integer-expression The number of years to be added to the
datetime-expression.If integer-expressionis negative, the appropriate
number of years is subtracted from the datetime value. If you supply an
integer expression, thedatetime-expressionmust be explicitly cast as a
datetime data type.

☞ For information on casting data types, see“CAST function [Data type
conversion]” on page 102.

Usage The value of YEARS is calculated from the number of first days of the year
between the two dates.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statements both return –4

SELECT YEARS(’1998-07-13 06:07:12’,
’1994-03-13 08:07:13’)

SELECT DATEDIFF(year,
’1998-07-13 06:07:12’,
’1994-03-13 08:07:13’)

The following statements return 1998.

SELECT YEARS(’1998-07-13 06:07:12’)
SELECT DATEPART(year, ’1998-07-13 06:07:12’)

The following statements return the given date advanced 300 years.

SELECT YEARS(
CAST(’1998-07-13 06:07:12’ AS TIMESTAMP),
300)

SELECT DATEADD(year, 300,
’1998-07-13 06:07:12’)

YMD function [Date and time]

Function Returns a date value corresponding to the given year, month, and day of the
month. Values are small integers from -32768 to 32767.

Syntax YMD (
integer-expression,
integer-expression,
integer-expression)

Parameters integer expression The year.

211

integer expression The number of the month. If the month is outside the
range 1–12, the year is adjusted accordingly.

integer expression The day number. The day is allowed to be any integer,
the date is adjusted accordingly.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Compatible with Adaptive Server Enterprise

Example The following statement returns the value 1998-06-12.

SELECT YMD(1998, 06, 12)

If the values are outside their normal range, the date will adjust accordingly.
For example, the following statement returns the value 2000-03-01.

SELECT YMD(1999, 15, 1)

212

CHAPTER 4

SQL Statements

About this chapter This chapter presents detailed descriptions of SQL statements in alphabetical
order.

Contents Topic: page

Using the SQL statement reference 220

ALLOCATE DESCRIPTOR statement [ESQL] 223

ALTER DATABASE statement 225

ALTER DBSPACE statement 229

ALTER EVENT statement 231

ALTER FUNCTION statement 233

ALTER INDEX statement 234

ALTER PROCEDURE statement 236

ALTER PUBLICATION statement 238

ALTER REMOTE MESSAGE TYPE statement [SQL Remote] 240

ALTER SERVER statement 241

ALTER SERVICE statement 243

ALTER SYNCHRONIZATION SUBSCRIPTION statement [Mo-
biLink]

246

ALTER SYNCHRONIZATION USER statement [MobiLink] 248

ALTER TABLE statement 250

ALTER TRIGGER statement 258

ALTER VIEW statement 259

ALTER WRITEFILE statement 261

BACKUP statement 263

BEGIN statement 267

BEGIN TRANSACTION statement 270

213

Topic: page

CALL statement 273

CASE statement 275

CHECKPOINT statement 278

CLEAR statement [Interactive SQL] 279

CLOSE statement [ESQL] [SP] 280

COMMENT statement 282

COMMIT statement 284

CONFIGURE statement [Interactive SQL] 286

CONNECT statement [ESQL] [Interactive SQL] 287

CREATE COMPRESSED DATABASE statement 290

CREATE DATABASE statement 292

CREATE DBSPACE statement 297

CREATE DECRYPTED FILE statement 299

CREATE DOMAIN statement 300

CREATE ENCRYPTED FILE statement 302

CREATE EVENT statement 304

CREATE EXISTING TABLE statement 310

CREATE EXTERNLOGIN statement 313

CREATE FUNCTION statement 315

CREATE INDEX statement 319

CREATE MESSAGE statement [T-SQL] 323

CREATE PROCEDURE statement 324

CREATE PROCEDURE statement [T-SQL] 332

CREATE PUBLICATION statement 334

CREATE REMOTE MESSAGE TYPE statement [SQL Remote] 337

CREATE SCHEMA statement 339

CREATE SERVER statement 341

CREATE SERVICE statement 343

214

Chapter 4. SQL Statements

Topic: page

CREATE STATISTICS statement 346

CREATE SUBSCRIPTION statement [SQL Remote] 347

CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]

349

CREATE SYNCHRONIZATION USER statement [MobiLink] 351

CREATE TABLE statement 361

CREATE TRIGGER statement 373

CREATE TRIGGER statement [SQL Remote] 377

CREATE TRIGGER statement [T-SQL] 380

CREATE VARIABLE statement 381

CREATE VIEW statement 382

CREATE WRITEFILE statement 384

DEALLOCATE statement 386

DEALLOCATE DESCRIPTOR statement [ESQL] 387

Declaration section [ESQL] 388

DECLARE statement 389

DECLARE CURSOR statement [ESQL] [SP] 390

DECLARE CURSOR statement [T-SQL] 395

DECLARE LOCAL TEMPORARY TABLE statement 397

DELETE statement 399

DELETE (positioned) statement [ESQL] [SP] 401

DESCRIBE statement [ESQL] 403

DISCONNECT statement [ESQL] [Interactive SQL] 407

DROP statement 408

DROP DATABASE statement 410

DROP CONNECTION statement 411

DROP EXTERNLOGIN statement 412

DROP PUBLICATION statement 413

215

Topic: page

DROP REMOTE MESSAGE TYPE statement [SQL Remote] 414

DROP SERVER statement 415

DROP SERVICE statement 416

DROP STATEMENT statement [ESQL] 417

DROP STATISTICS statement 418

DROP SUBSCRIPTION statement [SQL Remote] 419

DROP SYNCHRONIZATION SUBSCRIPTION statement [Mo-
biLink]

420

DROP SYNCHRONIZATION USER statement [MobiLink] 421

DROP VARIABLE statement 422

EXCEPT operation 423

EXECUTE statement [ESQL] 425

EXECUTE statement [T-SQL] 427

EXECUTE IMMEDIATE statement [SP] 429

EXIT statement [Interactive SQL] 432

EXPLAIN statement [ESQL] 434

FETCH statement [ESQL] [SP] 436

FOR statement 441

FORWARD TO statement 443

FROM clause 445

GET DATA statement [ESQL] 450

GET DESCRIPTOR statement [ESQL] 452

GET OPTION statement [ESQL] 454

GOTO statement [T-SQL] 455

GRANT statement 456

GRANT CONSOLIDATE statement [SQL Remote] 460

GRANT PUBLISH statement [SQL Remote] 462

GRANT REMOTE statement [SQL Remote] 463

216

Chapter 4. SQL Statements

Topic: page

GRANT REMOTE DBA statement [SQL Remote] 465

HELP statement [Interactive SQL] 466

IF statement 467

IF statement [T-SQL] 469

INCLUDE statement [ESQL] 471

INPUT statement [Interactive SQL] 472

INSERT statement 476

INSTALL JAVA statement 480

INTERSECT operation 482

LEAVE statement 483

LOAD STATISTICS statement 485

LOAD TABLE statement 486

LOCK TABLE statement 493

LOOP statement 495

MESSAGE statement 496

OPEN statement [ESQL] [SP] 498

OUTPUT statement [Interactive SQL] 501

PARAMETERS statement [Interactive SQL] 506

PASSTHROUGH statement [SQL Remote] 507

PREPARE statement [ESQL] 508

PREPARE TO COMMIT statement 511

PRINT statement [T-SQL] 512

PUT statement [ESQL] 513

RAISERROR statement [T-SQL] 515

READ statement [Interactive SQL] 517

READTEXT statement [T-SQL] 518

RELEASE SAVEPOINT statement 519

REMOTE RESET statement [SQL Remote] 520

217

Topic: page

REMOVE JAVA statement 521

REORGANIZE TABLE statement 522

RESIGNAL statement 524

RESTORE DATABASE statement 525

RESUME statement 527

RETURN statement 528

REVOKE statement 530

REVOKE CONSOLIDATE statement [SQL Remote] 532

REVOKE PUBLISH statement [SQL Remote] 533

REVOKE REMOTE statement [SQL Remote] 535

REVOKE REMOTE DBA statement [SQL Remote] 536

ROLLBACK statement 537

ROLLBACK TO SAVEPOINT statement 538

ROLLBACK TRIGGER statement 539

SAVEPOINT statement 540

SELECT statement 541

SET statement 548

SET statement [T-SQL] 550

SET CONNECTION statement [Interactive SQL] [ESQL] 553

SET DESCRIPTOR statement [ESQL] 554

SET OPTION statement 556

SET OPTION statement [Interactive SQL] 559

SET REMOTE OPTION statement [SQL Remote] 560

SET SQLCA statement [ESQL] 562

SETUSER statement 563

SIGNAL statement 565

START DATABASE statement 566

START ENGINE statement [Interactive SQL] 568

218

Chapter 4. SQL Statements

Topic: page

START JAVA statement 569

START LOGGING statement [Interactive SQL] 570

START SUBSCRIPTION statement [SQL Remote] 571

START SYNCHRONIZATION DELETE statement [MobiLink] 573

STOP DATABASE statement 575

STOP ENGINE statement 576

STOP JAVA statement 577

STOP LOGGING statement [Interactive SQL] 578

STOP SUBSCRIPTION statement [SQL Remote] 579

STOP SYNCHRONIZATION DELETE statement [MobiLink] 580

SYNCHRONIZE SUBSCRIPTION statement [SQL Remote] 581

SYSTEM statement [Interactive SQL] 582

TRIGGER EVENT statement 583

TRUNCATE TABLE statement 584

UNION operation 586

UNLOAD statement 588

UNLOAD TABLE statement 590

UPDATE statement 592

UPDATE (positioned) statement [ESQL] [SP] 597

UPDATE statement [SQL Remote] 599

VALIDATE INDEX statement 602

VALIDATE TABLE statement 603

WAITFOR statement 605

WHENEVER statement [ESQL] 606

WHILE statement [T-SQL] 607

WRITETEXT statement [T-SQL] 608

219

Using the SQL statement reference
This section describes some conventions used in documenting the SQL
statements.

Common elements in SQL syntax

This section lists language elements that are found in the syntax of many
SQL statements.

☞ For more information on the elements described here, see“Identifiers”
on page 7, “SQL Data Types” on page 51, “Search conditions” on page 22,
“Expressions” on page 15, or “Strings” on page 8.

♦ column-name An identifier that represents the name of a column.

♦ condition An expression that evaluates to TRUE, FALSE, or
UNKNOWN.

♦ connection-name A string representing the name of an active
connection.

♦ data-type A storage data type.

♦ expression An expression.

♦ filename A string containing a filename.

♦ hostvar A C language variable, declared as a host variable preceded by
a colon. See “Using host variables”[ASA Programming Guide,page 153]for
more information.

♦ indicator-variable A second host variable of typeshort int
immediately following a normal host variable. It must also be preceded
by a colon. Indicator variables are used to pass NULL values to and from
the database.

♦ number Any sequence of digits followed by an optional decimal part
and preceded by an optional negative sign. Optionally, the number can be
followed by an E and then an exponent. For example,

42
-4.038
.001
3.4e10
1e-10

♦ owner An identifier representing the user ID who owns a database
object.

220

Chapter 4. SQL Statements

♦ role-name An identifier representing the role name of a foreign key.

♦ savepoint-name An identifier that represents the name of a savepoint.

♦ search-condition A condition that evaluates to TRUE, FALSE, or
UNKNOWN.

♦ special-value One of the special values described in“Special values”
on page 32.

♦ statement-label An identifier that represents the label of a loop or
compound statement.

♦ table-list A list of table names, which may include correlation names.

☞ For more information, see“FROM clause” on page 445.

♦ table-name An identifier that represents the name of a table.

♦ userid An identifier representing a user name.

♦ variable-name An identifier that represents a variable name.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. If more than one is specified, they
must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

221

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA , RESOURCE }

Statement applicability indicators

Some statement titles are followed by an indicator in square brackets that
indicate where the statement can be used. These indicators are as follows:

♦ [ESQL] The statement is for use in Embedded SQL.

♦ [Interactive SQL] The statement can be used only in Interactive SQL.

♦ [SP] The statement is for use in stored procedures, triggers, or batches.

♦ [T-SQL] The statement is implemented for compatibility with Adaptive
Server Enterprise. In some cases, the statement cannot be used in stored
procedures that are not in Transact-SQL format. In other cases, an
alternative statement closer to the SQL/92 standard is recommended
unless Transact-SQL compatibility is an issue.

♦ [MobiLink] The statement is for use only in MobiLink clients.

♦ [SQL Remote] The statement can be used only in SQL Remote.

If two sets of brackets are used, the statement can be used in both
environments. For example, [ESQL][SP] means a statement can be used in
both embedded SQL and stored procedures.

222

Chapter 4. SQL Statements

ALLOCATE DESCRIPTOR statement [ESQL]
Description Use this statement to allocate space for a SQL descriptor area (SQLDA).

Syntax ALLOCATE DESCRIPTOR descriptor-name
[WITH MAX { integer | hostvar }]

descriptor-name : string

Parameters WITH MAX clause Allows you to specify the number of variables within
the descriptor area. The default size is one. You must still callfill_sqlda to
allocate space for the actual data items before doing a fetch or any statement
that accesses the data within a descriptor area.

Usage Allocates space for a descriptor area (SQLDA). You must declare the
following in your C code prior to using this statement:

struct sqlda * descriptor_name

Permissions None.

Side effects None.

See also “DEALLOCATE DESCRIPTOR statement [ESQL]” on page 387

“The SQL descriptor area (SQLDA)”[ASA Programming Guide,page 181]

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Example The following sample program includes an example of ALLOCATE
DESCRIPTOR statement usage.

223

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
EXEC SQL INCLUDE SQLCA;
#include <sqldef.h>
EXEC SQL BEGIN DECLARE SECTION;
int x;
short type;
int numcols;
char string[100];
a_SQL_statement_number stmt = 0;
EXEC SQL END DECLARE SECTION;
int main(int argc, char * argv[]){

struct sqlda * sqlda1;
if(!db_init(&sqlca)) {

return 1;
}
db_string_connect(&sqlca,
"UID=DBA;PWD=SQL;DBF=d: \\DB Files \\sample.db");
EXEC SQL ALLOCATE DESCRIPTOR sqlda1 WITH MAX 25;
EXEC SQL PREPARE :stmt FROM

’SELECT * FROM employee’;
EXEC SQL DECLARE curs CURSOR FOR :stmt;
EXEC SQL OPEN curs;
EXEC SQL DESCRIBE :stmt into sqlda1;
EXEC SQL GET DESCRIPTOR sqlda1 :numcols=COUNT;
// how many columns?
if(numcols > 25) {

// reallocate if necessary
EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL ALLOCATE DESCRIPTOR sqlda1

WITH MAX :numcols;
EXEC SQL DESCRIBE :stmt into sqlda1;

}
type = DT_STRING; // change the type to string
EXEC SQL SET DESCRIPTOR sqlda1 VALUE 2 TYPE = :type;
fill_sqlda(sqlda1);
// allocate space for the variables
EXEC SQL FETCH ABSOLUTE 1 curs

USING DESCRIPTOR sqlda1;
EXEC SQL GET DESCRIPTOR sqlda1

VALUE 2 :string = DATA;
printf("name = %s", string);
EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL CLOSE curs;
EXEC SQL DROP STATEMENT :stmt;
db_string_disconnect(&sqlca, "");
db_fini(&sqlca);
return 0;

}

224

Chapter 4. SQL Statements

ALTER DATABASE statement
Description Use this statement to upgrade a database created with previous versions of

the software; or to add Java or JConnect support to any database.

Syntax 1 ALTER DATABASE
[UPGRADE [JAVA { ON | OFF | JDK { ’ 1.1.8’ | ’ 1.3’ } }]

[JCONNECT { ON | OFF }]
| REMOVE JAVA]

Syntax 2 ALTER DATABASE
{ CALIBRATE [SERVER]
| CALIBRATE DBSPACE dbspace-name
| CALIBRATE DBSPACE TEMPORARY
| RESTORE DEFAULT CALIBRATION

}

Syntax 3 ALTER DATABASE dbfile
MODIFY [TRANSACTION] LOG
{ { OFF | ON } { log-name | log-name MIRROR mirror-name | MIRROR

mirror-name } }
[KEY key [ALGORITHM algorithm]]

Parameters JAVA clause Controls support for Java in the upgraded database.

♦ SpecifyJAVA ON to enable support for Java in the database by adding
entries for the default Sybase runtime Java classes to the system tables.
The default classes are the JDK 1.3 classes.

♦ SpecifyJAVA OFF to prevent addition of Java support. SettingJAVA
OFF does not remove Java support from a database.

♦ SpecifyJAVA JDK ’ 1.1.8’ or JAVA JDK ’ 1.3’ to explicitly install
support for the named version of the JDK. You can upgrade your
database to a higher version of JDK, but you cannot downgrade.

For JDK 1.1.8 the classes are heldjava\1.1\classes.zipunder your
SQL Anywhere directory. For JDK 1.3, they are held injava\1.3\rt.jar.

The default behavior isJAVA OFF .

If you add Java in the database, you must restart the database before it can be
used.

Java in the database is a separately licensable component. For more
information, see “Introduction to Java in the Database”[ASA Programming
Guide,page 51].

JCONNECT clause If you wish to use the Sybase jConnect JDBC driver to
access system catalog information, you need to specify JCONNECT ON. If

225

you wish to exclude the jConnect system objects, specify JCONNECT OFF.
You can still use JDBC, as long as you do not access system catalog
information. The default is to include jConnect support (JCONNECT ON).

Setting JCONNECT OFF does not remove jConnect support from a
database.

REMOVE JAVA clause Removes Java in the database from a database.
The operation leaves the database as if it were created with JAVA OFF. Java
in the database must not be in use when the statement is issued. You must
remove all Java classes from the database before executing this statement.
The statement does not remove stored procedures and triggers that reference
Java objects, and the presence of these objects does not trigger an error in
the ALTER DATABASE statement.

Usage Syntax 1 You can use the ALTER DATABASE statement as an alternative
to the Upgrade utility to upgrade a database. After using ALTER
DATABASE UPGRADE, you should shut down the database. (The Upgrade
utility does this for you automatically.)

Backup before upgrading
As with any software, it is recommended that you make a backup of your
database before upgrading.

ALTER DATABASE can be used to upgrade databases created with earlier
versions of the software. This applies to maintenance releases as well, so
you can upgrade a database created with, for example, version 7.0.2 to 7.0.3
standards using the ALTER DATABASE statement in version 7.0.3 of the
software.

In general, changes in databases between minor versions are limited to
additional database options and minor system table changes.

When used to upgrade a database, ALTER DATABASE makes the following
changes:

♦ Upgrades the system tables to the current version.

♦ Adds any new database options.

♦ Drops and recreates all system stored procedures.

You can also use ALTER DATABASE to just add Java in the database or
jConnect features if the database was created with the current version of the
software.

☞ For more information on adding Java support, see “Java-enabling a
database”[ASA Programming Guide,page 87]. For more information on adding

226

Chapter 4. SQL Statements

jConnect support to a Version 6 database, see “Installing jConnect system
objects into a database”[ASA Programming Guide,page 111].

Not all features made available
Features that require a physical reorganization of the database file are
not made available by ALTER DATABASE. Such features include index
enhancements and changes in data storage. To obtain the benefits of these
enhancements, you must unload and reload your database.

For more information, see “Rebuilding databases”[ASA SQL User’s Guide,
page 539].

Syntax 2 You can also use ALTER DATABASE to perform recalibration
of the I/O cost model used by the optimizer. This updates the Disk Transfer
Time (DTT) model, which is a mathematical model of the disk I/O used by
the cost model.

In normal operation, the cost model uses a built-in default DTT model. This
default model was designed based on typical hardware and configuration. In
rare cases when you are using specialized hardware such as non-standard
disk drives, and when you are having performance problems, it may be
useful to overwrite the default model with one based on your particular
setup. However, it is generally recommended to leave the default in place.

When you recalibrate the I/O cost model, the server is unavailable for other
use. In addition, it is essential that all other activities on the computer are
idle. Recalibrating the server is an expensive operation and may take some
time to complete.

When you use the CALIBRATE [SERVER] argument, all dbspaces are
calibrated except for the temporary dbspace. Use CALIBRATE
TEMPORARY DBSPACE to calibrate it. Use CALIBRATE DBSPACE
dbspace-nameto calibrate a single dbspace. Use RESTORE DEFAULT
CALIBRATION to restore the default DTT model.

Syntax 3 You can use the ALTER DATABASE statement to change the
transaction log and mirror names associated with a database file. These
changes are the same as those made by the Transaction Log (dblog) utility.
You can execute this statement while connected to the utility database or
another database, depending on the setting of the -gu option. If you are
changing the transaction or mirror log of an encrypted database, you must
specify a key and the encryption algorithm.

Permissions Must have DBA authority, and must be the only connection to the database.

For REMOVE JAVA, Java in the database must not be in use when the
statement is issued.

227

Not supported on Windows CE.

Java in the database is a separately licensable component.

Side effects Automatic commit

See also “CREATE DATABASE statement” on page 292

“The Upgrade utility”[ASA Database Administration Guide,page 542]

“CREATE STATISTICS statement” on page 346

“The Transaction Log utility”[ASA Database Administration Guide,page 527]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following example upgrades a database to enable Java operations.

ALTER DATABASE UPGRADE
JAVA ON

The following example sets the transaction log filename associated with
asademo.dbto newdemo.log.

ALTER DATABASE ’asademo.db’
MODIFY LOG ON ’newdemo.log’

228

Chapter 4. SQL Statements

ALTER DBSPACE statement
Description Use this statement to pre-allocate space for a dbspace or for the transaction

log, or when a database file is renamed or moved.

Syntax ALTER DBSPACE { dbspace-name | TRANSLOG | TEMPORARY }
{ ADD number [PAGES | KB | MB | GB | TB]

| RENAME filename-string }

Parameters TRANSLOG You supply the special dbspace name TRANSLOG to
pre-allocate disk space for the transaction log. Pre-allocation improves
performance if the transaction log is expected to grow quickly. You may
want to use this feature if, for example, you are handling many binary large
objects (BLOBs) such as bitmaps.

TEMPORARY You supply the special dbspace name TEMPORARY to add
space to temporary dbspaces. When space is added to a temporary dbspace,
the additional space materializes in the corresponding temporary file
immediately. Pre-allocating space to the temporary dbspace of a database
can improve performance during execution complex queries that use large
work tables.

ADD clause An ALTER DBSPACE with the ADD clause pre-allocates
disk space for a dbspace. It extends the corresponding database file by the
specified size, in units of pages, kilobytes (KB), megabytes (MB), gigabytes
(GB), or terabytes (TB). If you do not specify a unit,PAGES is the default.
The page size of a database is fixed when the database is created.

If space is not pre-allocated, database files are extended by about 256K at a
time for page sizes of 1K, 2K, 4K and 8K, and by about 32 pages for other
page sizes, when the space is needed. Pre-allocating space can improve
performance for loading large amounts of data and also serves to keep the
database files more contiguous within the file system.

RENAME clause If you rename or move a database file other than the
main file to a different directory or device, you can use ALTER DBSPACE
with the RENAME clause to ensure that Adaptive Server Anywhere finds
the new file when the database is started.

Using ALTER DBSPACE with RENAME on the main dbspace, SYSTEM,
has no effect.

Usage Each database is held in one or more files. A dbspace is an additional file
with a logical name associated with each database file, and used to hold more
data than can be held in the main database file alone. ALTER DBSPACE
modifies the main dbspace (also called the root file) or an additional
dbspace. The dbspace names for a database are held in the SYSFILE system
table. The main database file has a dbspace name of SYSTEM.

229

When a multi-file database is started, the start line or ODBC data source
description tells Adaptive Server Anywhere where to find the main database
file. The main database file holds the system tables. Adaptive Server
Anywhere looks in these system tables to find the location of the other
dbspaces, and then opens each of the other dbspaces.

Permissions Must have DBA authority. Must be the only connection to the database.

Side effects Automatic commit.

See also “CREATE DBSPACE statement” on page 297

“Working with databases”[ASA SQL User’s Guide,page 27]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following example increases the size of the SYSTEM dbspace by 200
pages:

ALTER DBSPACE system
ADD 200

The following example increases the size of the SYSTEM dbspace by 400
megabytes:

ALTER DBSPACE system
ADD 400 MB

The following example changes the filename associated with the system_2
dbspace:

ALTER DBSPACE system_2
RENAME ’e:\db\dbspace2.db’

230

Chapter 4. SQL Statements

ALTER EVENT statement
Description Use this statement to change the definition of an event or its associated

handler for automating predefined actions. Also, to alter the definition of
scheduled actions.

Syntax ALTER EVENT event-name
[DELETE TYPE | TYPE event-type]
{ WHERE { trigger-condition | NULL }

| { ADD | MODIFY | DELETE } SCHEDULE schedule-spec
}
[ENABLE | DISABLE]
[[MODIFY] HANDLER compound-statement | DELETE HANDLER }

event-type :
BackupEnd | " Connect "

| ConnectFailed | DatabaseStart
| DBDiskSpace | " Disconnect "
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | " RAISERROR"
| ServerIdle | TempDiskSpace

trigger-condition :
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec :
[schedule-name]

{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week , . . .) | (day-of-month, . . .) }]
[START DATE start-date]

event-name | schedule-name : identifier

day-of-week : string

value | period | day-of-month : integer

start-time | end-time : time

start-date : date

Parameters DELETE TYPE clause Removes an association of the event with an event
type. For a description of event types, see “Choosing a system event”[ASA
Database Administration Guide,page 272].

ADD | MODIFY | DELETE SCHEDULE clause Changes the definition of a
schedule. Only one schedule can be altered in any one ALTER EVENT

231

statement.

WHERE clause The WHERE NULL option deletes a condition.

For descriptions of most of the parameters, see“CREATE EVENT
statement” on page 304.

Usage This statement allows you to alter an event definition created with CREATE
EVENT. Possible uses include the following:

♦ You can use ALTER EVENT to change an event handler during
development.

♦ You may want to define and test an event handler without a trigger
condition or schedule during a development phase, and then add the
conditions for execution using ALTER EVENT once the event handler is
completed.

♦ You may want to disable an event handler temporarily by disabling the
event.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “BEGIN statement” on page 267

“CREATE EVENT statement” on page 304

232

Chapter 4. SQL Statements

ALTER FUNCTION statement
Description Use this statement to modify a function. You must include the entire new

function in the ALTER FUNCTION statement.

Syntax 1 ALTER FUNCTION [owner.]function-name
function-definition

function-definition:
CREATE FUNCTION syntax following the name

Syntax 2 ALTER FUNCTION [owner.]function-name SET HIDDEN

Usage Syntax 1 The ALTER FUNCTION statement is identical in syntax to the
CREATE FUNCTION statement except for the first word. Either version of
the CREATE FUNCTION statement can be altered.

Existing permissions on the function are maintained, and do not have to be
reassigned. If a DROP FUNCTION and CREATE FUNCTION were carried
out, execute permissions would have to be reassigned.

Syntax 2 You can use SET HIDDEN to scramble the definition of the
associated function and cause it to become unreadable. The function can be
unloaded and reloaded into other databases.

This setting is irreversible.If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the function definition, nor will it be available through
procedure profiling.

Permissions Must be the owner of the function or be DBA.

Side effects Automatic commit.

See also “CREATE FUNCTION statement” on page 315

“Hiding the contents of procedures, functions, triggers and views”[ASA SQL
User’s Guide,page 670]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

233

ALTER INDEX statement
Description Use this statement to rename an index or foreign key, or to change the

clustered nature of the index.

Syntax ALTER { index-spec { rename-clause | cluster-clause }
| foreign-key-spec { rename-clause | cluster-clause }
| primary-key-spec cluster-clause }

index-spec :
INDEX index-name ON [owner .]table-name

foreign-key-spec :
[INDEX] FOREIGN KEY role-name ON [owner .]table-name

primary-key-spec :
[INDEX] PRIMARY KEY ON [owner .]table-name

rename-clause :
RENAME [AS | TO] index-name

cluster-clause :
CLUSTERED | NONCLUSTERED

Parameters rename-clause Specify the new name for the index.

cluster-clause Specify whether the index should be changed to
CLUSTERED or NONCLUSTERED. Only one index on a table can be
clustered.

Usage The ALTER INDEX statement carries out two tasks:

♦ It can be used to rename an index or foreign key.

♦ It can also be used to change an index type from nonclustered to
clustered, orvice versa.

☞ The ALTER INDEX statement can be used to change the clustering
specification of the index, but does not reorganize the data. As well, only
one index per table can be clustered. For more information on clustered
indexes, see“CREATE INDEX statement” on page 319.

Permissions Must own the table, or have REFERENCES permissions on the table, or
have DBA authority.

Side effects Automatic commit. Clears the Results tab in the Results pane in
Interactive SQL. Closes all cursors for the current connection.

See also “CREATE INDEX statement” on page 319

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

234

Chapter 4. SQL Statements

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement renames the index ix_prod_name on the product
table to ixProductName:

ALTER INDEX ix_prod_name ON product
RENAME TO ixProductName

The following statement changes ix_prod_name to be a clustered index:

ALTER INDEX ix_prod_name ON product
CLUSTERED

235

ALTER PROCEDURE statement
Description Use this statement to modify a procedure, or to enable and disable a

procedure for replication with Sybase Replication Server. You must include
the entire new procedure in the ALTER PROCEDURE statement.

Syntax 1 ALTER PROCEDURE [owner.]procedure-name
procedure-definition

procedure-definition:
CREATE PROCEDURE syntax following the name

Syntax 2 ALTER PROCEDURE [owner.]procedure-name
REPLICATE { ON | OFF }

Syntax 3 ALTER PROCEDURE [owner.]procedure-name SET HIDDEN

Usage Syntax 1 The ALTER PROCEDURE statement is identical in syntax to the
CREATE PROCEDURE statement except for the first word. Either version
of the CREATE PROCEDURE statement can be altered.

Existing permissions on the procedure are maintained, and do not have to be
reassigned. If a DROP PROCEDURE and CREATE PROCEDURE were
carried out, execute permissions would have to be reassigned.

Syntax 2 If a procedure is to be replicated to other sites using Sybase
Replication Server, you must set REPLICATE ON for the procedure.

Syntax 2 of the ALTER PROCEDURE statement has the same effect as the
sp_setreplicate or sp_setrepproc ‘table’ Adaptive Server Enterprise system
procedures.

Syntax 3 You can use SET HIDDEN to scramble the definition of the
associated procedure and cause it to become unreadable. The procedure can
be unloaded and reloaded into other databases.

This setting is irreversible.If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the procedure definition, nor will it be available through
procedure profiling.

You cannot combine Syntax 2 with Syntax 1. You cannot combine Syntax 3
with either Syntax 1 or 2.

Permissions Must be the owner of the procedure or be DBA.

Side effects Automatic commit.

236

Chapter 4. SQL Statements

See also “CREATE PROCEDURE statement” on page 324

“Hiding the contents of procedures, functions, triggers and views”[ASA SQL
User’s Guide,page 670]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

237

ALTER PUBLICATION statement
Description Use this statement to alter a publication. In MobiLink, a publication

identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

Syntax ALTER PUBLICATION [owner.]publication-name alterpub-clause, . . .

alterpub-clause:
ADD TABLE article-description

| MODIFY TABLE article-description
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

owner , publication-name, table-name : identifier

article-description :
table-name [(column-name, . . .)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Usage This statement is applicable only to MobiLink and SQL Remote.

The ALTER PUBLICATION statement alters a publication in the database.
The contribution to a publication from one table is called anarticle.
Changes can be made to a publication by adding, modifying, or deleting
articles, or by renaming the publication. If an article is modified, the entire
specification of the modified article must be entered.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

Permissions Must have DBA authority, or be the owner of the publication. Requires
exclusive access to all tables referred to in the statement.

Side effects Automatic commit.

See also “CREATE PUBLICATION statement” on page 334

“DROP PUBLICATION statement” on page 413

“ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 246

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 349

“sp_add_article procedure”[SQL Remote User’s Guide,page 379]

238

Chapter 4. SQL Statements

“sp_add_article_col procedure”[SQL Remote User’s Guide,page 381]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub_contact
ADD TABLE customer

239

ALTER REMOTE MESSAGE TYPE statement [SQL
Remote]
Description Use this statement to change the publisher’s message system, or the

publisher’s address for a given message system, for a message type that has
been created.

Syntax ALTER REMOTE MESSAGE TYPE message-system
ADDRESS address

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

Parameters message-system One of the message systems supported by SQL Remote.
It must be one of the following values:

address A string containing a valid address for the specified message
system.

Usage The statement changes the publisher’s address for a given message type.

The Message Agent sends outgoing messages from a database by one of the
supported message links. The extraction utility uses this address when
executing the GRANT CONSOLIDATE statement in the remote database.

The address is the publisher’s address under the specified message system. If
it is an e-mail system, the address string must be a valid e-mail address. If it
is a file-sharing system, the address string is a subdirectory of the directory
specified by the SQLREMOTE environment variable, or of the current
directory if that is not set. You can override this setting on the GRANT
CONSOLIDATE statement at the remote database.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” on
page 337

“sp_remote_type procedure”[SQL Remote User’s Guide,page 425]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement changes the publisher’s address for the FILE
message link tonew_addr.

CREATE REMOTE MESSAGE TYPE file
ADDRESS ’new_addr’

240

Chapter 4. SQL Statements

ALTER SERVER statement
Description Use this statement to modify the attributes of a remote server.

Syntax ALTER SERVER server-name
[CLASS ’ server-class’]
[USING ’ connection-info’]
[CAPABILITY ’ cap-name’ { ON | OFF }]

server-class :
ASAJDBC | ASEJDBC

| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC

connection-info :
machine-name:port-number [/dbname] | data-source-name

Parameters CLASS clause The CLASS clause is specified to change the server class.

☞ For more information on server classes and how to configure a server,
see “Server Classes for Remote Data Access”[ASA SQL User’s Guide,
page 589].

USING clause The USING clause is specified to change the server
connection information. For information aboutconnection-info, see
“CREATE SERVER statement” on page 341.

CAPABILITY clause The CAPABILITY clause turns a server capability
ON or OFF. Server capabilities are stored in the system table syscapability.
The names of these capabilities are stored in the system table
syscapabilityname. The syscapability table contains no entries for a remote
server until the first connection is made to that server. At the first
connection, Adaptive Server Anywhere interrogates the server about its
capabilities and then populates the syscapability table. For subsequent
connections, the server’s capabilities are obtained from this table.

In general, you do not need to alter a server’s capabilities. It may be
necessary to alter capabilities of a generic server of class ODBC.

Usage The ALTER SERVER statement modifies the attributes of a server. These
changes do not take effect until the next connection to the remote server.

Permissions Must have RESOURCE authority.

Side effects Automatic commit.

See also “CREATE SERVER statement” on page 341

“DROP SERVER statement” on page 415

241

“Server Classes for Remote Data Access”[ASA SQL User’s Guide,page 589]

“Troubleshooting remote data access”[ASA SQL User’s Guide,page 587]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Example The following example changes the server class of the Adaptive Server
named ase_prod so its connection to Adaptive Server Anywhere is
ODBC-based. Its Data Source Name isase_prod.

ALTER SERVER ase_prod
CLASS ’ASEODBC’
USING ’ase_prod’

♦ The following example changes a capability of server infodc.

ALTER SERVER infodc
CAPABILITY ’insert select’ OFF

242

Chapter 4. SQL Statements

ALTER SERVICE statement
Description Use this statement to alter a web service.

Syntax ALTER SERVICE service-name [TYPE service-type-string] [attributes] [AS
statement]

attributes:
[AUTHORIZATION { ON | OFF }]
[SECURE { ON | OFF }]
[USER { user-name | NULL }]
[URL [PATH] { ON | OFF | ELEMENTS }]
[USING { SOAP-prefix | NULL }]

service-type-string:
{ ’ RAW’ | ’ HTML’ | ’ XML’ | ’ SOAP’ | ’ DISH’ }

Parameters service-name You cannot rename web services.

service-type-string Identifies the type of the service. The type must be
one of the listed service types. There is no default value.

AUTHORIZATION clause Determines whether users must specify a user
name and password when connecting to the service. If authorization is OFF,
the AS clause is required and a single user must be identified by the USER
clause. All requests are run using that user’s account and permissions.

If authorization is ON, all users must provide a user name and password.
Optionally, you may limit the users that are permitted to use the service by
providing a user or group name using the USER clause. If the user name is
NULL, all known users can access the service.

The default value is ON. It is recommended that production systems be run
with authorization turned on and that you grant permission to use the service
by adding users to a group.

SECURE clause Indicates whether unsecure connections are accepted.
ON indicates that only HTTPS connections are to be accepted. Service
requests received on the HTTP port are automatically redirected to the
HTTPS port. If set to OFF, both HTTP and HTTPS connections are
accepted. The default value is OFF.

USER clause If authorization is disabled, this parameter becomes
mandatory and specifies the user id used to execute all service requests. If
authorization is enabled (the default), this optional clause identified the user
or group permitted access to the service. The default value is NULL, which
grants access to all users.

URL clause Determines whether URI paths are accepted and, if so, how

243

they are processed. OFF indicates that nothing must follow the service name
in a URI request. ON indicates that the remainder of the URI is interpreted
as the value of a variable named url. ELEMENTS indicates that the
remainder of the URI path is to be split at the slash characters into a list of
up to 10 elements. The values are assigned to variables named url plus a
numeric suffix of between 1 and 10; for example, the first three variable
names are url1, url2, and url3. If fewer than 10 values are supplied, the
remaining variables are set to NULL. If the service name ends with the
character /, then URL must be set to OFF. The default value is OFF.

USING clause This clause applies only to DISH services. The parameter
specifies a name prefix. Only SOAP services whose names begin with this
prefix are handled.

statement If the statement is NULL, the URI must specify the statement to
be executed. Otherwise, the specified SQL statement is the only one that can
be executed through the service. SOAP services must have statements;
DISH services must have none.The default value is NULL.

It is strongly recommended that all services run in production systems define
a statement. The statement can be NULL only if authorization is enabled.

Service types ♦ RAW The result set is sent to the client without any further formatting.
You can produce formatted documents by generating the required tags
explicitly within your procedure.

♦ HTML The result set of a statement or procedure are automatically
formatted into an HTML document that contains a table.

♦ XML The result set is assumed to be in XML format. If it is not already
so, it is automatically converted to XML RAW format.

♦ SOAP The request must be a valid Simple Object Access Protocol, or
SOAP, request. The result set is automatically formatted as a SOAP
response. For more information about the SOAP standards, see
www.w3.org/TR/SOAP.

♦ DISH A DetermIne SOAP Handler, or DISH, service acts as a proxy for
one or more SOAP services. In use, it acts as a container that holds and
provides access to a number of soap services. A Web Services
Description Language (WSDL) file is automatically generated for each of
the included SOAP services. The included SOAP services are identified
by a common prefix, which must be specified in the USING clause.

Usage The alter service statement causes the database server to act as a web server.

Permissions Must have DBA authority.

Side affects None.

244

Chapter 4. SQL Statements

See also “CREATE SERVICE statement” on page 343, “DROP SERVICE statement”
on page 416

Standards and
compatibility
Example To quickly set up a web server, start a database server with the -xs switch,

then execute the following statements:

CREATE SERVICE tables TYPE ’HTML’

ALTER SERVICE tables
AUTHORIZATION OFF
USER DBA
AS SELECT *

FROM SYS.SYSTABLE

After executing these statements, use any web browser to open the URL
http://localhost/tables.

245

ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to alter

the properties of a subscription of a MobiLink user to a publication.

Syntax ALTER SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, . . .]
[MODIFY OPTION option=value, . . .]
[DELETE { ALL OPTION | OPTION option, . . . }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Parameters TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user IDs.

Omit the FOR clause to set extended options, sync type and network
parameters for a publication.

☞ For information about how dbmlsync processes options that are
specified in different locations, see “Priority order for extended options and
connection parameters”[MobiLink Synchronization User’s Guide,page 180].

TYPE clause This clause specifies the communication protocol to use for
synchronization. The default protocol istcpip.

ADDRESS clause This clause specifies network parameters, including the
location of the MobiLink synchronization server.

☞ For a complete list of network parameters, see“CREATE
SYNCHRONIZATION USER statement [MobiLink]” on page 351.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

The values for each option cannot contain the characters “=” or “ ,” or “ ;”.

246

Chapter 4. SQL Statements

☞ For a complete list of options, see“CREATE SYNCHRONIZATION
USER statement [MobiLink]” on page 351.

Usage Use this statement to alter a synchronization subscription within a MobiLink
remote or reference database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also “CREATE PUBLICATION statement” on page 334

“CREATE SYNCHRONIZATION USER statement [MobiLink]” on
page 351

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ’ml_user1’
OPTION memory=’3m’;

247

ALTER SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to alter

the properties of a MobiLink user.

Syntax ALTER SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[ADD OPTION option=value, . . .]
[MODIFY OPTION option=value, . . .]
[DELETE { ALL OPTION | OPTION option }]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Parameters TYPE clause This clause specifies the communication protocol to use for
synchronization.

ADDRESS clause This clause specifies network parameters, including the
location of the MobiLink synchronization server.

☞ For a complete list of network parameters, see“CREATE
SYNCHRONIZATION USER statement [MobiLink]” on page 351.

ADD OPTION, MODIFY OPTION, DELETE OPTION AND DELETE ALL
OPTION clause These clauses allow you to add, modify, delete or delete
all options. You may specify only one parameter in each clause.

☞ For a complete list of options, see“CREATE SYNCHRONIZATION
USER statement [MobiLink]” on page 351.

Usage Use this statement to alter the properties of a synchronization user within a
MobiLink remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 246

“CREATE SYNCHRONIZATION USER statement [MobiLink]” on

248

Chapter 4. SQL Statements

page 351

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 349

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

249

ALTER TABLE statement
Description Use this statement to modify a table definition or to enable a table to take

part in Replication Server replication.

Syntax 1 ALTER TABLE [owner.]table-name
{ add-clause | modify-clause | drop-clause | rename-clause }

add-clause :
ADD { column-definition | table-constraint }

| { ADD PCTFREE integer | PCTFREE DEFAULT }

modify-clause :
MODIFY column-definition

| MODIFY column-name { DEFAULT default-value
| [NOT] NULL
| [CONSTRAINT constraint-name]

CHECK { NULL | (new-condition) } }
| ALTER column-name column-modification
| ALTER constraint-name CHECK (new-condition)

drop-clause :
{ DELETE | DROP }{

column-name
| CONSTRAINT constraint-name
| CHECK
| UNIQUE (column-name, . . .)
| PRIMARY KEY
| FOREIGN KEY role-name }

rename-clause :
RENAME new-table-name

| RENAME column-name TO new-column-name
| RENAME constraint-name TO new-constraint-name

column-definition :
column-name data-type [NOT NULL] [DEFAULT default-value] [column-

constraint . . .]

table-constraint :
[CONSTRAINT constraint-name] { UNIQUE (column-name, . . .)

| PRIMARY KEY [CLUSTERED] (column-name, . . .)
| foreign-key-constraint
| CHECK (condition) }

250

Chapter 4. SQL Statements

column-constraint :
[CONSTRAINT constraint-name] { UNIQUE

| PRIMARY KEY
| REFERENCES table-name

[(column-name)] [actions] [CLUSTERED]
| CHECK (condition) }

| COMPUTE (expression)

column-modification :
SET DEFAULT default-value

| DROP DEFAULT
| ADD [CONSTRAINT column-constraint-name] CHECK (condition)
| { DELETE | DROP } CONSTRAINT column-constraint-name
| { DELETE | DROP } CHECK
| SET COMPUTE (expression)
| DROP COMPUTE

default-value :
special-value

| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| TIMESTAMP
| UTC TIMESTAMP
| LAST USER
| USER

special-value:
CURRENT { DATABASE | DATE

| REMOTE USER | TIME
| TIMESTAMP | UTC TIMESTAMP
| USER | PUBLISHER }

foreign-key-constraint :
[NOT NULL] FOREIGN KEY [role-name] [(column-name, . . .)]
REFERENCES table-name [(column-name, . . .)] [CLUSTERED]
[actions] [CHECK ON COMMIT]

actions :
[ON UPDATE action] [ON DELETE action]

action :
CASCADE | SET NULL | SET DEFAULT | RESTRICT

Syntax 2 ALTER TABLE [owner.]table-name REPLICATE { ON | OFF }

251

Parameters add-clause Add a new column or table constraint to the table. For more
information, see below.

modify-clause Change a single column definition. For more information,
see below.

drop-clause Drop a column or a table constraint. For more information,
see below.

rename-clause Change the name of the table, a column, or a constraint.
For more information, see below.

ADD column-definition Add a new column to the table.

If the column has a default value, all rows of the new column are populated
with that default value.

Adaptive Server Anywhere optimizes the creation of columns that are
allowed to contain NULL. The first column allowed to contain NULL
allocates room for eight such columns, and initializes all eight to be NULL.
(This requires no extra storage.) Thus, the next seven columns added require
no changes to the rows of the table. Adding a ninth column then allocates
room for another eight such columns and modifies each row of the table to
allocate the extra space.

ADD table-constraint Add a constraint to the table. See“CREATE
TABLE statement” on page 361for a full explanation of table constraints.

If PRIMARY KEY is specified, the table must not already have a primary
key that was created by the CREATE TABLE statement or another
ALTER TABLE statement.

The optional constraint name allows you to modify or drop individual
constraints at a later time, rather than having to modify the entire table
constraint.

Table CHECK constraints fail only if a value of FALSE is returned. A value
of UNKNOWN allows the change.

PCTFREE Specify the percentage of free space you want to reserve for
each table page. The free space is used if rows increase in size when the data
is updated. If there is no free space in a table page, every increase in the size
of a row on that page requires the row to be split across multiple table pages,
causing row fragmentation and possible performance degradation.

A free space percentage of 0 specifies that no free space is to be left on each
page—each page is to be fully packed. A high free space percentage causes
each row to be inserted into a page by itself. If PCTFREE is not set, or if
DEFAULT is specified, 200 bytes are reserved in each page.

252

Chapter 4. SQL Statements

When PCTFREE is set, all subsequent inserts into table pages use the new
value, but rows that were already inserted are not affected. The value persists
until it is changed or the table is dropped.

The PCTFREE specification can be used for base, global temporary, or local
temporary tables. Except for local temporary tables, the value for PCTFREE
is stored in the SYSATTRIBUTE system table.

☞ For more information, see“SYSATTRIBUTE system table” on
page 618.

MODIFY column-definition Change the length or data type of an existing
column in a table. If NOT NULL is specified, a NOT NULL constraint is
added to the named column. Otherwise, the NOT NULL constraint for the
column will not be changed. If necessary, the data in the modified column
will be converted to the new data type. If a conversion error occurs, the
operation will fail and the table will be left unchanged.

You cannot modify a column to make it a computed column. Computed
columns can only be added or dropped.

Deleting an index, constraint, or key
If the column is contained in a uniqueness constraint, a foreign key, or a
primary key, then the constraint or key must be deleted before the column
can be modified. If a primary key is deleted, all foreign keys referencing
the table will also be deleted.

You cannot MODIFY a table or column constraint. To change a constraint,
you must DELETE the old constraint and ADD the new constraint.

MODIFY column-name DEFAULT default-value Change the default value
of an existing column in a table. To remove a default value for a column,
specify DEFAULT NULL. Modifying a default value does not change any
existing values in the table.

ALTER column-name column-modification Change the definition of a
column. The permitted modifications are as follows:

♦ SET DEFAULT default-value Change the default value of an existing
column in a table. You can also use the MODIFY clause for this task, but
ALTER is SQL/92 compliant, and MODIFY is not. Modifying a default
value does not change any existing values in the table.

♦ DROP DEFAULT Remove the default value of an existing column in a
table. You can also use the MODIFY clause for this task, but ALTER is
SQL/92 compliant, and MODIFY is not. Dropping a default does not
change any existing values in the table.

253

♦ ADD Add a named constraint or a CHECK condition to the column.
The new constraint or condition applies only to operations on the table
after its definition. The existing values in the table are not validated to
confirm that they satisfy the new constraint or condition.

♦ CONSTRAINT column-constraint-name The optional column
constraint name allows you to modify or drop individual constraints at a
later time, rather than having to modify the entire column constraint.

♦ SET COMPUTE (expression) Change the expression associated with a
computed column. The values in the column are recalculated when the
statement is executed, and the statement fails if the new expression is
invalid.

♦ DROP COMPUTE Change a column from being a computed column to
being a non-computed column. This statement does not change any
existing values in the table.

MODIFY column-name [NOT] NULL Change the NOT NULL constraint
on the column to allow or disallow NULL values in the column.

MODIFY column-name CHECK NULL Delete the check constraint for the
column. This statement cannot be used on databases created before
version 5.0.

MODIFY column-name CHECK (condition) Replace the existing CHECK
condition for the column with the one specified. This statement cannot be
used on databases created before version 5.0.

DELETE column-name Delete the column from the table. If the column is
contained in any index, uniqueness constraint, foreign key, or primary key
then the index, constraint, or key must be deleted before the column can be
deleted. This does not delete CHECK constraints that refer to the column.

DELETE constraint-name Delete the named constraint from the table
definition.

DELETE CHECK Delete all check constraints for the table. This includes
both table check constraints and column check constraints.

DELETE UNIQUE (column-name, . . .) Delete a uniqueness constraint for
this table. Any foreign keys referencing this uniqueness constraint (rather
than the primary key) will also be deleted.

DELETE PRIMARY KEY Delete the primary key constraint for this table.
All foreign keys referencing the primary key for this table will also be
deleted.

254

Chapter 4. SQL Statements

DELETE FOREIGN KEY role-name Delete the foreign key constraint for
this table with the given role name.

RENAME new-table-name Change the name of the table to
new-table-name. Note that any applications using the old table name must
be modified. Foreign keys that were automatically assigned the old table
name will not change names.

RENAME column-name TO new-column-name Change the name of the
column to thenew-column-name. Note that any applications using the old
column name will need to be modified.

Usage Syntax 1 The ALTER TABLE statement changes table attributes (column
definitions, constraints) in a table that was previously created. Note that the
syntax allows a list of alter clauses; however, only one table-constraint or
column-constraint can be added, modified or deleted in one ALTER TABLE
statement. A table cannot be both added and modified in the same statement.

You cannot use ALTER TABLE on a local temporary table.

ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be
time-consuming, and the server will not process requests referencing the
table while the statement is being processed.

☞ For more information on using the CLUSTERED option, see “Using
clustered indexes”[ASA SQL User’s Guide,page 59].

Before version 5.0, all table and column constraints were held in a single
table constraint. Consequently, for these databases individual constraints on
columns cannot be deleted using the MODIFY column-name CHECK
NULL clause or replaced using the MODIFY column-name CHECK
(condition) clause. To use these statements, the entire table constraint
should be deleted and the constraints added back using the MODIFY
column-name CHECK (condition) clause. At this point you can use
MODIFY CHECK.

Syntax 2 When a table has REPLICATE ON, all changes to the table are
sent to Replication Server for replication. The replication definitions in
Replication Server are used to decide which table changes are sent to other
sites. The remainder of this section describes syntax 1.

Permissions Must be one of the following:

♦ The owner of the table.

♦ A user with DBA authority.

♦ A user granted ALTER permission on the table.

255

♦ ALTER TABLE requires exclusive access to the table.

Global temporary tables cannot be altered unless all users that have
referenced the temporary table have disconnected.

Side effects Automatic commit.

The MODIFY and DELETE (DROP) options close all cursors for the
current connection.

A checkpoint is carried out at the beginning of the ALTER TABLE
operation.

Once you alter a column or table, any stored procedures, views or other
items that refer to the altered column no longer work.

See also “CREATE TABLE statement” on page 361

“DROP statement” on page 408

“SQL Data Types” on page 51

“Altering tables” [ASA SQL User’s Guide,page 38]

“Special values” on page 32

“Using table and column constraints”[ASA SQL User’s Guide,page 85]

Standards and
compatibility

♦ SQL/92 Intermediate-level feature. MODIFY is not SQL/92 compliant.

♦ SQL/99 ADD COLUMN is a core feature. Other clauses are vendor
extensions or implementation of specific, named extensions to SQL/99.

♦ Sybase Some clauses are supported by Adaptive Server Enterprise.

Example The following example adds a new column to the employee table showing
which office they work in.

ALTER TABLE employee
ADD office CHAR(20) DEFAULT ’Boston’

The following example drops the office column from the employee table.

ALTER TABLE employee
DELETE office

The address column in the customer table can currently hold up to
35 characters. To allow it to hold up to 50 character, type the following.

ALTER TABLE customer
MODIFY address CHAR(50)

The following example adds a column to the customer table assigning each
customer a sales contact.

256

Chapter 4. SQL Statements

ALTER TABLE customer
ADD sales_contact INTEGER
REFERENCES employee (emp_id)
ON UPDATE CASCADE
ON DELETE SET NULL

This foreign key is constructed with cascading updates and is set null on
deletes. If an employee has their employee ID changed, the column is
updated to reflect this change. If an employee leaves the company and has
their employee ID deleted, the column is set to NULL.

257

ALTER TRIGGER statement
Description Use this statement to replace a trigger definition with a modified version.

You must include the entire new trigger definition in the ALTER TRIGGER
statement.

Syntax 1 ALTER TRIGGER trigger-name trigger-definition

trigger-definition :
CREATE TRIGGER syntax following the trigger name

Syntax 2 ALTER TRIGGER trigger-name ON [owner.] table-name SET HIDDEN

Usage Syntax 1 The ALTER TRIGGER statement is identical in syntax to the
CREATE TRIGGER statement except for the first word. For information on
trigger-definition, see“CREATE TRIGGER statement” on page 373and
“CREATE TRIGGER statement [T-SQL]” on page 380.

Either the Transact-SQL or Watcom-SQL form of the CREATE TRIGGER
syntax can be used.

Syntax 2 You can use SET HIDDEN to scramble the definition of the
associated trigger and cause it to become unreadable. The trigger can be
unloaded and reloaded into other databases.

This setting is irreversible.If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the trigger definition, nor will it be available through
procedure profiling.

Permissions Must be the owner of the table on which the trigger is defined, or be DBA, or
have ALTER permissions on the table and have RESOURCE authority.

Side effects Automatic commit.

See also “CREATE TRIGGER statement” on page 373

“CREATE TRIGGER statement [T-SQL]” on page 380

“DROP statement” on page 408

“Hiding the contents of procedures, functions, triggers and views”[ASA SQL
User’s Guide,page 670]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

258

Chapter 4. SQL Statements

ALTER VIEW statement
Description Use this statement to replace a view definition with a modified version. You

must include the entire new view definition in the ALTER VIEW statement.

Syntax 1 ALTER VIEW
[owner.]view-name [(column-name, . . .)] AS select-statement
[WITH CHECK OPTION]

Syntax 2 ALTER VIEW
[owner.]view-name SET HIDDEN

Usage Syntax 1 The ALTER VIEW statement is identical in syntax to the
CREATE VIEW statement except for the first word. The ALTER VIEW
statement replaces the entire contents of the CREATE VIEW statement with
the contents of the ALTER VIEW statement. Existing permissions on the
view are maintained, and do not have to be reassigned. If a DROP VIEW
followed by a CREATE VIEW is used, instead of ALTER VIEW,
permissions on the view would have to be reassigned.

Syntax 2 You can use SET HIDDEN to scramble the definition of the
associated view and cause it to become unreadable. The view can be
unloaded and reloaded into other databases.

This setting is irreversible.If you will need the original source again, you
must maintain it outside the database.

If SET HIDDEN is used, debugging using the stored procedure debugger
will not show the view definition, nor will it be available through procedure
profiling.

☞ For information on the keywords and options, see“CREATE VIEW
statement” on page 382.

Permissions Must be owner of the view or have DBA authority.

Side effects Automatic commit.

All procedures and triggers are unloaded from memory, so that any
procedure or trigger that references the view reflects the new view definition.
The unloading and loading of procedures and triggers can have a
performance impact if you are regularly altering views.

See also “CREATE VIEW statement” on page 382

“DROP statement” on page 408

“Hiding the contents of procedures, functions, triggers and views”[ASA SQL
User’s Guide,page 670]

259

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

260

Chapter 4. SQL Statements

ALTER WRITEFILE statement
Description Use this statement to change the name of the read-only database file to

which a write file refers.

Syntax ALTER WRITEFILE write-file-name
REFERENCES db-file-name [KEY key]

write-file-name | db-file-name : string

Usage The ALTER WRITEFILE statement changes the name of the read-only
database file to which the write file refers. If you move the database file from
one directory to another, you can use this statement to point the write file to
the new location.

The path name of the database file is relative to the database server’s current
directory at startup.

☞ For information on escaping backslash characters in strings, see
“Strings” on page 8.

Permissions The permissions required to execute this statement are set on the server
command line, using the-gu option. The default setting is to require DBA
authority.

You need to specify a KEY value if you want to change the writefile for a
strongly encrypted database.

Not supported on Windows CE.

Side effects Automatic commit.

See also “CREATE WRITEFILE statement” on page 384

“The Write File utility” [ASA Database Administration Guide,page 551]

“Working with write files” [ASA Database Administration Guide,page 260]

“Using the utility database”[ASA Database Administration Guide,page 262]

“Encryption Key connection parameter [DBKEY]”[ASA Database
Administration Guide,page 190]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement changes the existing write filec:\readwrite.wrtto
point to the database fileh:\readonly.db.

261

ALTER WRITEFILE ’c: \\readwrite.wrt’
REFERENCES ’h:\\readonly.db’

262

Chapter 4. SQL Statements

BACKUP statement
Description Use this statement to back up a database and transaction log.

Syntax 1 (image backup) BACKUP DATABASE
DIRECTORY backup-directory
[WAIT BEFORE START]
[WAIT AFTER END]
[DBFILE ONLY]
[TRANSACTION LOG ONLY]
[TRANSACTION LOG RENAME [MATCH]]
[TRANSACTION LOG TRUNCATE]

backup-directory : string

Syntax 2 (archive
backup)

BACKUP DATABASE TO archive-root
[ATTENDED { ON | OFF }]
[WITH COMMENT comment string]

archive-root : string

comment-string : string

Parameters backup-directory The target location on disk for those files, relative to the
server’s current directory at startup. If the directory does not already exist, it
is created. Specifying an empty string as a directory allows you to rename or
truncate the log without making a copy of it first.

WAIT BEFORE START clause This clause ensures that the backup copy of
the database does not contain any information required for recovery. In
particular, it ensures that the rollback log for each connection is empty.

If a backup is carried out using this clause, you can start the backup copy of
the database in read-only mode and validate it. By enabling validation of the
backup database, the customer can avoid making an additional copy of the
database.

WAIT AFTER END clause This clause may be used if the transaction log is
being renamed or truncated. It ensures that all transactions are completed
before the log is renamed or truncated. If this clause is used, the backup
must wait for other connections to commit or rollback any open transactions
before finishing.

DBFILE ONLY clause This clause may be used to cause backup copies of
the main database file and any associated dbspaces to be made. The
transaction log is not copied.

TRANSACTION LOG ONLY clause This clause may be used to cause a
backup copy of the transaction log to be made. No other database files are

263

copied.

TRANSACTION LOG RENAME [MATCH] clause This clause will cause
the server to rename current transaction log at the completion of the backup.
The name for the renamed copy will be of the form YYMMDDnn.log. If the
MATCH keyword is omitted, the backup copy of the log will have the same
name as the current transaction log for the database. If you supply the
MATCH keyword, the backup copy of the transaction log is given a name of
the form YYMMDDnn.log, to match the renamed copy of the current
transaction log. Using the MATCH keyword enables the same statement to
be executed several times without writing over old data.

TRANSACTION LOG TRUNCATE clause If this clause is used, the current
transaction log is truncated and restarted at the completion of the backup.

archive-root The file name or tape drive device name for the archive file.

To back up to tape, you must specify the device name of the tape drive.
For example, on Windows NT or NetWare, the first tape drive is\\.\tape0.

The backslash (\) is an escape character in SQL strings, so each backslash
must be doubled. For more information on escape characters and strings, see
“Strings” on page 8.

ATTENDED The clause applies only when backing up to a tape device.
ATTENDED ON (the default) indicates that someone is available to monitor
the status of the tape drive and to place a new tape in the drive when needed.
A message is sent to the application that issued the BACKUP statement if
the tape drive requires intervention. The database server then waits for the
drive to become ready. This may happen, for example, when a new tape is
required.

If ATTENDED OFF is specified and a new tape is required or the drive is
not ready, no message is sent, and an error is given.

Each BACKUP operation, whether image or archive, updates a history file
calledbackup.syb. This file is stored in the same directory as the database
server executable.

WITH COMMENT Record a comment in the archive file and in the backup
history file.

Usage The first syntax is an image backup and the second syntax is an archive
backup.

Syntax 1 An image backup creates copies of each of the database files, in
the same way as the Backup utility (dbbackup). In the case of the BACKUP
statement, however, the backup is made on the server, while the Backup
utility makes the backup from a client machine.

264

Chapter 4. SQL Statements

Optionally, only the database file(s) or transaction log can be saved. The log
may also be renamed or truncated after the backup has completed.

Alternatively, you can specify an empty string as a directory to rename or
truncate the log without copying it first. This is particularly useful in a
replication environment where space is a concern. You can use this feature
with an event handler on transaction log size to rename the log when it
reaches a given size, and with the DELETE_OLD_LOGS option to delete
the log when it is no longer needed.

To restore from an image backup, copy the saved files back to their original
locations and reapply transaction logs as described in the chapter “Backup
and Data Recovery”[ASA Database Administration Guide,page 337].

Syntax 2 An archive backup creates a single file holding all the required
backup information. The destination can be either a file name or a tape drive
device name. Archive backups to tape are not supported on versions of
NetWare earlier than NetWare 5.

There can be only one backup on a given tape. The filebackup.sybrecords
the BACKUP and RESTORE operations that have been performed on a
given server.

The tape is ejected at the end of the backup.

Only one archive per tape is allowed, but a single archive can span multiple
tapes. To restore a database from an archive backup, use the RESTORE
DATABASE statement.

Dynamically constructed filenames You can execute a BACKUP
statement with a dynamically constructed filename by dynamically
constructing the entire statement, then executing it using the EXECUTE
IMMEDIATE statement.

Permissions Must have DBA authority.

Side effects Causes a checkpoint.

See also “RESTORE DATABASE statement” on page 525

“Backup and Data Recovery”[ASA Database Administration Guide,page 337]

“EXECUTE IMMEDIATE statement [SP]” on page 429

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not compatible with Adaptive Server Enterprise.

265

♦ Windows CE Only the BACKUP DATABASE DIRECTORY syntax
(syntax 1 above) is supported on the Windows CE platform.

Example Back up the current database and the transaction log to a file, renaming the
existing transaction log. An image backup is created.

BACKUP DATABASE
DIRECTORY ’d: \\temp \\backup’
TRANSACTION LOG RENAME

The option to rename the transaction log is useful especially in replication
environments, where the old transaction log is still required.

Back up the current database and transaction log to tape:

BACKUP DATABASE
TO ’ \\\\. \\tape0’

Rename the log without making a copy:

BACKUP DATABASE DIRECTORY’’
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME

Execute the BACKUP statement with a dynamically-constructed filename,
via the EXECUTE IMMEDIATE statement:

CREATE EVENT NightlyBackup
SCHEDULE
START TIME ’23:00’ EVERY 24 HOURS
HANDLER
BEGIN

DECLARE cmd LONG VARCHAR;
DECLARE day_name CHAR(20);

SET day_name = DATENAME(WEEKDAY,CURRENT DATE);
SET cmd = ’BACKUP DATABASE DIRECTORY ’ ||

’’’d: \\backups \\’ || day_name || ’’’ ’ ||
’TRANSACTION LOG RENAME’;

EXECUTE IMMEDIATE WITH ESCAPES OFF cmd;
END

266

Chapter 4. SQL Statements

BEGIN statement
Description Use this statement to group SQL statements together.

Syntax [statement-label :]
BEGIN [[NOT] ATOMIC]

[local-declaration; . . .]
statement-list
[EXCEPTION [exception-case . . .]]

END [statement-label]

local-declaration :
variable-declaration

| cursor-declaration
| exception-declaration
| temporary-table-declaration

variable-declaration :
DECLARE variable-name data-type

exception-declaration :
DECLARE exception-name EXCEPTION
FOR SQLSTATE [VALUE] string

exception-case :
WHEN exception-name [, . . .] THEN statement-list

| WHEN OTHERS THEN statement-list

Parameters local-declaration Immediately following the BEGIN, a compound
statement can have local declarations for objects that only exist within the
compound statement. A compound statement can have a local declaration for
a variable, a cursor, a temporary table, or an exception. Local declarations
can be referenced by any statement in that compound statement, or in any
compound statement nested within it. Local declarations are not visible to
other procedures that are called from within a compound statement.

statement-label If the endingstatement-labelis specified, it must match
the beginningstatement-label. The LEAVE statement can be used to resume
execution at the first statement after the compound statement. The
compound statement that is the body of a procedure or trigger has an
implicit label that is the same as the name of the procedure or trigger.

☞ For a complete description of compound statements and exception
handling, see “Using Procedures, Triggers, and Batches”[ASA SQL User’s
Guide,page 609].

ATOMIC An atomic statement is a statement executed completely or not at
all. For example, an UPDATE statement that updates thousands of rows
might encounter an error after updating many rows. If the statement does not

267

complete, all changes revert back to their original state. Similarly, if you
specify that the BEGIN statement is atomic, the statement is executed either
in its entirety or not at all.

Usage The body of a procedure or trigger is a compound statement. Compound
statements can also be used in control statements within a procedure or
trigger.

A compound statement allows one or more SQL statements to be grouped
together and treated as a unit. A compound statement starts with the
keyword BEGIN and ends with the keyword END.

Permissions None.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“DECLARE LOCAL TEMPORARY TABLE statement” on page 397

“LEAVE statement” on page 483

“SIGNAL statement” on page 565

“RESIGNAL statement” on page 524

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

“Atomic compound statements”[ASA SQL User’s Guide,page 634]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Supported by Adaptive Server Enterprise. This does not mean
that all statements inside a compound statement are supported.

The BEGIN and END keywords are not required in Transact-SQL.

BEGIN and END are used in Transact-SQL to group a set of statements
into a single compound statement, so that control statements such as IF
. . . ELSE, which only affect the execution of a single SQL statement, can
affect the execution of the whole group. The ATOMIC keyword is not
supported by Adaptive Server Enterprise.

In Transact-SQL. DECLARE statements need not immediately follow a
BEGIN keyword, and the cursor or variable that is declared exists for the
duration of the compound statement. You should declare variables at the
beginning of the compound statement for compatibility.

Example The body of a procedure or trigger is a compound statement.

268

Chapter 4. SQL Statements

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)

BEGIN
DECLARE err_notfound EXCEPTION FOR

SQLSTATE ’02000’;
DECLARE curThisCust CURSOR FOR

SELECT company_name, CAST(
sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product

GROUP BY company_name;
DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop;

END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;

END IF;
END LOOP CustomerLoop;
CLOSE curThisCust;

END

269

BEGIN TRANSACTION statement
Description Use this statement to begin a user-defined transaction.

Syntax BEGIN TRAN [SACTION] [transaction-name]

Usage The optional parametertransaction-nameis the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK
statements.

When executed inside a transaction, the BEGIN TRANSACTION statement
increases the nesting level of transactions by one. The nesting level is
decreased by a COMMIT statement. When transactions are nested, only the
outermost COMMIT makes the changes to the database permanent.

Both Adaptive Server Enterprise and Adaptive Server Anywhere have two
transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained
mode, commits each statement individually, unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In contrast, the
ISO SQL/92 compatible chained mode only commits a transaction when an
explicit COMMIT is executed or when a statement that carries out an
autocommit (such as data definition statements) is executed.

You can control the mode by setting the CHAINED database option. The
default setting for ODBC and embedded SQL connections in Adaptive
Server Anywhere is ON, in which case Adaptive Server Anywhere runs in
chained mode. (ODBC users should also check the AutoCommit ODBC
setting). The default for TDS connections is OFF.

In unchained mode, a transaction is implicitly started before any data
retrieval or modification statement. These statements include: DELETE,
INSERT, OPEN, FETCH, SELECT, and UPDATE. You must still explicitly
end the transaction with a COMMIT or ROLLBACK statement.

You cannot alter the CHAINED option within a transaction.

Caution
When calling a stored procedure, you should ensure that it operates
correctly under the required transaction mode.

☞ For more information, see “CHAINED option [compatibility]”[ASA
Database Administration Guide,page 581].

The current nesting level is held in the global variable@@trancount. The
@@trancountvariable has a value of zero before the first BEGIN

270

Chapter 4. SQL Statements

TRANSACTION statement is executed, and only a COMMIT executed
when@@trancount is equal to one makes changes to the database
permanent.

A ROLLBACK statement without a transaction or savepoint name always
rolls back statements to the outermost BEGIN TRANSACTION (explicit or
implicit) statement, and cancels the entire transaction.

Permissions None.

Side effects None.

See also “COMMIT statement” on page 284

“ISOLATION_LEVEL option [compatibility]” [ASA Database Administration
Guide,page 597]

“ROLLBACK statement” on page 537

“SAVEPOINT statement” on page 540

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following batch reports successive values of @@trancount as 0, 1, 2, 1,
and 0. The values are printed on the server window.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT
PRINT @@trancount
COMMIT
PRINT @@trancount

You should not rely on the value of@@trancount for more than keeping
track of the number of explicit BEGIN TRANSACTION statements that
have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, the
@@trancount variable is set to 1. Adaptive Server Anywhere does not set
the @@trancount value to 1 when a transaction is started implicitly.
Consequently, the Adaptive Server Anywhere@@trancountvariable has a
value of zero before any BEGIN TRANSACTION statement (even though
there is a current transaction), while in Adaptive Server Enterprise (in
chainedmode) it has a value of 1.

271

For transactions starting with a BEGIN TRANSACTION statement,
@@trancounthas a value of 1 in both Adaptive Server Anywhere and
Adaptive Server Enterprise after the first BEGIN TRANSACTION
statement. If a transaction is implicitly started with a different statement, and
a BEGIN TRANSACTION statement is then executed,@@trancounthas a
value of 1 in Adaptive Server Anywhere, and a value of 2 in Adaptive Server
Enterprise after the BEGIN TRANSACTION statement.

272

Chapter 4. SQL Statements

CALL statement
Description Use this statement to invoke a procedure.

Syntax 1 [variable =] CALL procedure-name ([expression, . . .])

Syntax 2 [variable =] CALL procedure-name ([parameter-name = expression, . . .])

Usage The CALL statement invokes a procedure that has been previously created
with a CREATE PROCEDURE statement. When the procedure completes,
any INOUT or OUT parameter values will be copied back.

The argument list can be specified by position or by using keyword format.
By position, the arguments will match up with the corresponding parameter
in the parameter list for the procedure. By keyword, the arguments are
matched up with the named parameters.

Procedure arguments can be assigned default values in the CREATE
PROCEDURE statement, and missing parameters are assigned the default
value or. If no default is set, and an argument is not provided, an error is
given.

Inside a procedure, a CALL statement can be used in a DECLARE
statement when the procedure returns result sets (see “Returning results
from procedures”[ASA SQL User’s Guide,page 640]).

Procedures can return an integer value (as a status indicator, say) using the
RETURN statement. You can save this return value in a variable using the
equality sign as an assignment operator:

CREATE VARIABLE returnval INT;
returnval = CALL proc_integer (arg1 = val1, ...)

☞ For information on returning non-integer values, see“CREATE
FUNCTION statement” on page 315.

Permissions Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

Side effects None.

See also “CREATE PROCEDURE statement” on page 324

“GRANT statement” on page 456

“EXECUTE statement [T-SQL]” on page 427

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

273

♦ Sybase Not supported by Adaptive Server Enterprise. For an
alternative that is supported, see“EXECUTE statement [T-SQL]” on
page 427.

Example Call the sp_customer_list procedure. This procedure has no parameters, and
returns a result set.

CALL sp_customer_list()

The following Interactive SQL example creates a procedure to return the
number of orders placed by the customer whose ID is supplied, creates a
variable to hold the result, calls the procedure, and displays the result.

CREATE PROCEDURE OrderCount (IN customer_ID INT, OUT Orders INT)
BEGIN

SELECT COUNT("DBA".sales_order.id)
INTO Orders
FROM "DBA".customer
KEY LEFT OUTER JOIN "DBA".sales_order
WHERE "DBA".customer.id = customer_ID;

END
go

-- Create a variable to hold the result
CREATE VARIABLE Orders INT
go
-- Call the procedure, FOR customer 101
CALL OrderCount (101, Orders)
go
-- Display the result
SELECT Orders FROM DUMMY
go

274

Chapter 4. SQL Statements

CASE statement
Description Use this statement to select an execution path based on multiple cases.

Syntax 1 CASE value-expression
WHEN [constant | NULL] THEN statement-list . . .
[WHEN [constant | NULL] THEN statement-list] . . .
[ELSE statement-list]
END CASE

Syntax 2 CASE
WHEN [search-condition | NULL] THEN statement-list . . .
[WHEN [search-condition | NULL] THEN statement-list] . . .
[ELSE statement-list]
END CASE

Usage Syntax 1 The CASE statement is a control statement that allows you to
choose a list of SQL statements to execute based on the value of an
expression. Thevalue-expressionis an expression that takes on a single
value, which may be a string, a number, a date, or other SQL data type. If a
WHEN clause exists for the value ofvalue-expression, thestatement-listin
the WHEN clause is executed. If no appropriate WHEN clause exists, and
an ELSE clause exists, thestatement-listin the ELSE clause is executed.
Execution resumes at the first statement after the END CASE.

If the value-expressioncan be null, use the ISNULL function to replace the
NULL value-expressionwith a different expression.

For more information about the ISNULL function, see“ISNULL function
[Data type conversion]” on page 145.

Syntax 2 With this form, the statements are executed for the first satisfied
search-conditionin the CASE statement. The ELSE clause is executed if
none of thesearch-conditionsare met.

If the expression can be NULL, use the following syntax for the first
search-condition:

WHEN search-condition IS NULL THEN statement-list

☞ For more information about NULL values, see “Unknown Values:
NULL” [ASA SQL User’s Guide,page 226].

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE statement with that of the CASE
expression.

For information on the CASE expression, see“CASE expressions” on
page 18.

275

Permissions None.

Side effects None.

See also “BEGIN statement” on page 267

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature. Adaptive Server Anywhere
supports the CASE statement allowing WHEN NULL. This is a vendor
extension to the SQL/92 standard.

♦ SQL/99 Persistent Stored Module feature. Adaptive Server Anywhere
supports the CASE statement allowing WHEN NULL. This is a vendor
extension to the SQL/92 standard.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following procedure using a case statement classifies the products listed
in the product table of the sample database into one of shirt, hat, shorts, or
unknown.

CREATE PROCEDURE ProductType (IN product_id INT, OUT type
CHAR(10))

BEGIN
DECLARE prod_name CHAR(20);
SELECT name INTO prod_name FROM "DBA"."product"
WHERE id = product_id;
CASE prod_name
WHEN ’Tee Shirt’ THEN

SET type = ’Shirt’
WHEN ’Sweatshirt’ THEN

SET type = ’Shirt’
WHEN ’Baseball Cap’ THEN

SET type = ’Hat’
WHEN ’Visor’ THEN

SET type = ’Hat’
WHEN ’Shorts’ THEN

SET type = ’Shorts’
ELSE

SET type = ’UNKNOWN’
END CASE;

END

The following example uses Syntax 2 to generate a message about product
quantity within the sample database.

276

Chapter 4. SQL Statements

CREATE PROCEDURE StockLevel (IN product_id INT)
BEGIN

DECLARE qty INT;
SELECT quantity INTO qty FROM product
WHERE id = product_id;
CASE
WHEN qty < 30 THEN

MESSAGE ’Order Stock’ TO CLIENT;
WHEN qty > 100 THEN

MESSAGE ’Overstocked’ TO CLIENT;
ELSE

MESSAGE ’Sufficient stock on hand’ TO CLIENT;
END CASE;

END

277

CHECKPOINT statement
Description Use this statement to checkpoint the database.

Syntax CHECKPOINT

Usage The CHECKPOINT statement forces the database server to execute a
checkpoint. Checkpoints are also performed automatically by the database
server according to an internal algorithm. It is not normally required for
applications issue the CHECKPOINT statement.

☞ For a full description of checkpoints, see “Backup and Data Recovery”
[ASA Database Administration Guide,page 337].

Permissions DBA authority is required to checkpoint the network database server.

No permissions are required to checkpoint the personal database server.

Side effects None.

See also “CHECKPOINT_TIME option [database]”[ASA Database Administration
Guide,page 582]

“RECOVERY_TIME option [database]”[ASA Database Administration Guide,
page 621]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise.

278

Chapter 4. SQL Statements

CLEAR statement [Interactive SQL]
Description Use this statement to clear the Interactive SQL panes.

Syntax CLEAR

Usage The CLEAR statement is used to clear the SQL Statements pane, the
Messages pane and the Results, Messages, Plan, and UltraLite Plan tabs in
the Results pane.

Permissions None.

Side effects Closes the cursor associated with the data being cleared.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable

279

CLOSE statement [ESQL] [SP]
Description Use this statement to close a cursor.

Syntax CLOSE cursor-name

cursor-name : identifier | hostvar

Usage This statement closes the named cursor.

Permissions The cursor must have been previously opened.

Side effects None.

See also “OPEN statement [ESQL] [SP]” on page 498

“DECLARE CURSOR statement [ESQL] [SP]” on page 390

“PREPARE statement [ESQL]” on page 508

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following examples close cursors in embedded SQL.

EXEC SQL CLOSE employee_cursor;
EXEC SQL CLOSE :cursor_var;

The following procedure uses a cursor.

280

Chapter 4. SQL Statements

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)

BEGIN
DECLARE err_notfound EXCEPTION

FOR SQLSTATE ’02000’;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(sum(sales_order_items.quantity

*
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name;
DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop;

END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;

END IF;
END LOOP CustomerLoop;

CLOSE curThisCust;
END

281

COMMENT statement
Description Use this statement to store a comment in the system tables for a database

object.

Syntax COMMENT ON
{

COLUMN [owner.]table-name.column-name
| EVENT event-name
| FOREIGN KEY [owner.]table-name.role-name
| INDEX [[owner.] table.]index-name
| JAVA CLASS java-class-name
| JAVA JAR java-jar-name
| LOGIN integrated_login_id
| PROCEDURE [owner.]procedure-name
| SERVICE web-service-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]tablename.]trigger-name
| USER userid
| VIEW [owner.]view-name

}
IS comment

comment : string | NULL

Usage Several system tables have a column named Remarks that allows you to
associate a comment with a database item (SYSUSERPERM, SYSTABLE,
SYSCOLUMN, SYSINDEX, SYSLOGIN, SYSFOREIGNKEY,
SYSPROCEDURE, SYSTRIGGER). The COMMENT ON statement allows
you to set the Remarks column in these system tables. A comment can be
removed by setting it to NULL.

For a comment on an index or trigger, the owner of the comment is the
owner of the table on which the index or trigger is defined.

Permissions Must either be the owner of the database object being commented, or have
DBA authority.

Side effects Automatic commit.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following examples show how to add and remove a comment.

Add a comment to the employee table.

282

Chapter 4. SQL Statements

COMMENT
ON TABLE employee
IS ’Employee information’

Remove the comment from the employee table.

COMMENT
ON TABLE employee
IS NULL

283

COMMIT statement
Description Use this statement to make changes to the database permanent, or to

terminate a user-defined transaction.

Syntax 1 COMMIT [WORK]

Syntax 2 COMMIT TRAN[SACTION] [transaction-name]

Parameters transaction-name An optional name assigned to this transaction. It must
be a valid identifier. You should use transaction names only on the outermost
pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK statements.

☞ For more information on transaction nesting in Adaptive Server
Enterprise and Adaptive Server Anywhere, see“BEGIN TRANSACTION
statement” on page 270. For more information on savepoints, see
“SAVEPOINT statement” on page 540.

☞ You can use a set of options to control the detailed behavior of the
COMMIT statement. For information, see
“COOPERATIVE_COMMIT_TIMEOUT option [database]”[ASA Database
Administration Guide,page 586], “COOPERATIVE_COMMITS option
[database]”[ASA Database Administration Guide,page 586],
“DELAYED_COMMITS option [database]”[ASA Database Administration
Guide,page 590], and “DELAYED_COMMIT_TIMEOUT option [database]”
[ASA Database Administration Guide,page 589]. You can use the Commit
connection property to return the number of Commits on the current
connection.

Usage Syntax 1 The COMMIT statement ends a transaction and makes all
changes made during this transaction permanent in the database.

Data definition statements all carry out a commit automatically. For
information, see the Side effects listing for each SQL statement.

The COMMIT statement fails if the database server detects any invalid
foreign keys. This makes it impossible to end a transaction with any invalid
foreign keys. Usually, foreign key integrity is checked on each data
manipulation operation. However, if the database option
WAIT_FOR_COMMIT is set ON or a particular foreign key was defined
with a CHECK ON COMMIT clause, the database server delays integrity
checking until the COMMIT statement is executed.

Syntax 2 You can use BEGIN TRANSACTION and COMMIT
TRANSACTION statements in pairs to construct nested transactions.
Nested transactions are similar to savepoints. When executed as the
outermost of a set of nested transactions, the statement makes changes to the

284

Chapter 4. SQL Statements

database permanent. When executed inside a transaction, the COMMIT
TRANSACTION statement decreases the nesting level of transactions by
one. When transactions are nested, only the outermost COMMIT makes the
changes to the database permanent.

Permissions None.

Side effects Closes all cursors except those opened WITH HOLD.

Deletes all rows of declared temporary tables on this connection, unless they
were declared using ON COMMIT PRESERVE ROWS..

See also “BEGIN TRANSACTION statement” on page 270

“PREPARE TO COMMIT statement” on page 511

“ROLLBACK statement” on page 537

Standards and
compatibility

♦ SQL/92 Syntax 1 is an entry-level feature. Syntax 2 is a Transact-SQL
extension.

♦ SQL/99 Syntax 1 is a core feature. Syntax 2 is a Transact-SQL
extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following statement commits the current transaction:

COMMIT

The following Transact-SQL batch reports successive values of
@@trancount as 0, 1, 2, 1, 0.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
go

285

CONFIGURE statement [Interactive SQL]
Description Use this statement to open the Interactive SQL Options dialog.

Syntax CONFIGURE

Usage The CONFIGURE statement activates the Interactive SQL Options dialog.
This window displays the current settings of all Interactive SQL options. It
does not display or allow you to modify database options.

You can configure Interactive SQL settings in this dialog. If you select Make
Permanent, the options are written to the SYSOPTION table in the database
and the database server performs an automatic COMMIT. If you do not
choose Make Permanent, and instead click OK, the options are set
temporarily and remain in effect for the current database connection only.

Permissions None.

Side effects None.

See also “SET OPTION statement” on page 556

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

286

Chapter 4. SQL Statements

CONNECT statement [ESQL] [Interactive SQL]
Description Use this statement to establish a connection to a database.

Syntax 1 CONNECT
[TO engine-name]
[DATABASE database-name]
[AS connection-name]
[USER] userid IDENTIFIED BY password

engine-name, database-name, connection-name, userid , password :
{ identifier | string | hostvar }

Syntax 2 CONNECT USING connect-string

connect-string : { identifier | string | hostvar }

Parameters AS clause A connection can optionally be named by specifying the AS
clause. This allows multiple connections to the same database, or multiple
connections to the same or different database servers, all simultaneously.
Each connection has its own associated transaction. You may even get
locking conflicts between your transactions if, for example, you try to
modify the same record in the same database from two different connections.

Syntax 2 A connect-stringis a list of parameter settings of the form
keyword=value, and must be enclosed in single quotes.

☞ For more information on connection strings, see “Connection
parameters”[ASA Database Administration Guide,page 70].

Usage The CONNECT statement establishes a connection to the database identified
by database-namerunning on the server identified byengine-name.

Embedded SQL behavior In Embedded SQL, if noengine-nameis
specified, the default local database server will be assumed (the first
database server started). If nodatabase-nameis specified, the first database
on the given server will be assumed.

The WHENEVER statement, SET SQLCA and some DECLARE statements
do not generate code and thus may appear before the CONNECT statement
in the source file. Otherwise, no statements are allowed until a successful
CONNECT statement has been executed.

The user ID and password are used for permission checks on all dynamic
SQL statements.

You can connect without explicitly specifying a password by using a host
variable for the password and setting the value of the host variable to be the
null pointer.

287

If you are connected to a user ID with DBA authority, you can connect to
another user ID without specifying a password. (The output of dbtran
requires this capability.)

☞ For a detailed description of the connection algorithm, see
“Troubleshooting connections”[ASA Database Administration Guide,page 75].

Interactive SQL behavior If no database or server is specified in the
CONNECT statement, Interactive SQL remains connected to the current
database, rather than to the default server and database. If a database name is
specified without a server name, Interactive SQL attempts to connect to the
specified database on the current server. If a server name is specified without
a database name, Interactive SQL connects to the default database on the
specified server.

For example, if the following batch is executed while connected to a
database, the two tables are created in the same database.

CREATE TABLE t1(c1 int)
go
CONNECT DBA IDENTIFIED BY SQL
go
CREATE TABLE t2 (c1 int)
go

No other database statements are allowed until a successful CONNECT
statement has been executed.

In the user interface, if the password or the user ID and password are not
specified, the user is prompted to type the missing information.

In Interactive SQL running in command prompt mode or batch mode, if you
execute CONNECT without an AS clause, an unnamed connection is
opened. If there is another unnamed connection already opened, the old one
is automatically closed. Otherwise, existing connections are not closed when
you run CONNECT.

Multiple connections are managed through the concept of a current
connection. After a successful connect statement, the new connection
becomes the current one. To switch to a different connection, use the
SET CONNECTION statement. The DISCONNECT statement is used to
drop connections.

In Interactive SQL, the connection information (including the database
name, your user ID, and the database server) appears in the title bar above
the SQL Statements pane. If you are not connected to a database, Not
Connected appears in the title bar.

Permissions None.

288

Chapter 4. SQL Statements

Side effects None.

See also “GRANT statement” on page 456

“DISCONNECT statement [ESQL] [Interactive SQL]” on page 407

“SET CONNECTION statement [Interactive SQL] [ESQL]” on page 553

“SETUSER statement” on page 563

“Connection parameters”[ASA Database Administration Guide,page 174]

Standards and
compatibility

♦ SQL/92 Syntax 1 is a full SQL feature. Syntax 2 is a vendor extension.

♦ SQL/99 Syntax 1 is a SQL/foundation feature outside of core SQL.
Syntax 2 is a vendor extension.

♦ Sybase Open Client Embedded SQL supports a different syntax for the
CONNECT statement.

Examples The following are examples of CONNECT usage within Embedded SQL.

EXEC SQL CONNECT AS :conn_name
USER :userid IDENTIFIED BY :password;
EXEC SQL CONNECT USER "DBA" IDENTIFIED BY "SQL";

The following examples assume that the sample database (asademo.db) has
already been started.

Connect to a database from Interactive SQL. Interactive SQL prompts for a
user ID and a password.

CONNECT

Connect to the default database as DBA from Interactive SQL.
Interactive SQL prompts for a password.

CONNECT USER "DBA"

Connect to the sample database as the DBA from Interactive SQL.

CONNECT
TO asademo
USER DBA
IDENTIFIED BY SQL

Connect to the sample database using a connect string, from Interactive SQL.

CONNECT
USING ’UID=DBA;PWD=SQL;DBN=asademo’

Once you connect to the sample database, the database name, your user ID,
and the server name appear on the title bar: asademo (DBA) on asademo9.

289

CREATE COMPRESSED DATABASE statement
Description Use this statement to create a compressed database from an existing

database file, or to expand a compressed database.

Syntax CREATE [COMPRESSED | EXPANDED] DATABASE new-db-file-name
FROM old-db-file-name [KEY key]

Usage Creates a compressed database file from an uncompressed database file, or
an uncompressed database file from a compressed one.

Any relative path is resolved relative to the current working directory of the
server.

You cannot use this statement on files other than the main database file.

Permissions ♦ The permissions required to execute this statement are set on the server
command line, using the-gu option. The default setting is to require
DBA authority.

♦ The operating system account under which the server is running must
have write permissions on the directories where files are created.

♦ The old database file must not be currently running.

♦ Not supported on Windows CE.

♦ You must specify a key if you want to create a compressed database for a
strongly encrypted database.

Side effects An operating system file is created.

See also “The Compression utility”[ASA Database Administration Guide,page 468]

“The Uncompression utility”[ASA Database Administration Guide,page 531]

“Encryption Key connection parameter [DBKEY]”[ASA Database
Administration Guide,page 190]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement creates a compressed database file named
compress.dbin theC:\ directory from a database file namedfull.db in the
current working directory of the server.

CREATE COMPRESSED DATABASE ’C:\\compress.db’
FROM ’full.db’

290

Chapter 4. SQL Statements

The following statement creates an uncompressed database file named
full.db in theC:\ directory from a compressed database file named
compress.dbin the current working directory of the server.

CREATE EXPANDED DATABASE ’C:\\full.db’
FROM ’compress.db’

291

CREATE DATABASE statement
Description Use this statement to create a database. The database is stored as an

operating-system file.

Syntax CREATE DATABASE db-file-name
[[TRANSACTION] { LOG OFF | LOG ON } [log-file-name-string]

[MIRROR mirror-file-name-string]]
[CASE { RESPECT | IGNORE }]
[PAGE SIZE page-size]
[COLLATION collation-label]
[ENCRYPTED { ON | OFF | key-spec }]
[BLANK PADDING { ON | OFF }]
[ASE [COMPATIBLE]]
[JAVA { ON | OFF | JDK { ’ 1.1.8’ | ’ 1.3’ } }]
[JCONNECT { ON | OFF }]
]

page-size :
1024 | 2048 | 4096 | 8192 | 16384 | 32768

collation-label : string

key-spec:
[ON] KEY key [ALGORITHM { ’ AES’ | ’ MDSR’ }]

Parameters File name The file names (db-file-name-string, log-file-name-string,
mirror-file-name-string) are strings containing operating system file names.
As literal strings, they must be enclosed in single quotes.

♦ If you specify a path, any backslash characters (\) must be doubled if they
are followed by ann or anx. Escaping them prevents them being
interpreted as new line characters (\n) or as hexadecimal numbers (\x),
according to the rules for strings in SQL.

It is safer to always escape the backslash character. For example,

CREATE DATABASE ’c:\\sybase \\my_db.db’
LOG ON ’e:\\logdrive \\my_db.log’

♦ If you specify no path, or a relative path, the database file is created
relative to the working directory of the server. If you specify no path for a
log file, the file is created in the same directory as the database file.

♦ If you provide no file extension, a file is created with extension.db for
databases,.log for the transaction log, or.mlg for the mirror log.

TRANSACTION LOG clause The transaction log is a file where the
database server logs all changes made to the database. The transaction log

292

Chapter 4. SQL Statements

plays a key role in backup and recovery (see “The transaction log”[ASA
Database Administration Guide,page 343]), and in data replication.

MIRROR clause A transaction log mirror is an identical copy of a
transaction log, usually maintained on a separate device, for greater
protection of your data. By default, Adaptive Server Anywhere does not use
a mirrored transaction log. If you do wish to use a transaction log mirror,
this option allows you to provide a filename.

CASE clause For databases created with CASE RESPECT, all values are
case sensitive in comparisons and string operations.

This option is provided for compatibility with the ISO/ANSI SQL standard.
The default value for the option is CASE IGNORE; that is, all comparisons
are case insensitive. If you create a case sensitive database, all passwords are
case sensitive. Extended characters used in passwords are case sensitive
regardless of the database sensitivity setting. User IDs and other identifiers
in the database are case insensitive, even in case sensitive databases.

PAGE SIZE clause The page size for a database can be 1024, 2048, 4096,
8192, 16384, or 32768 bytes. The default page size is 2048 bytes. Large
databases generally obtain performance benefits from a larger page size, but
there can be additional overhead associated with large page sizes.

☞ For more information, see “Information utility options”[ASA Database
Administration Guide,page 483].

For example,

CREATE DATABASE ’c:\\sybase \\my_db.db’
PAGE SIZE 4096

Page size limit
The page size cannot be larger than the page size used by the current server.
The server page size is taken from the first set of databases started or is set
on the server command line using the-gp option.

COLLATION clause The collation sequence used for all string
comparisons in the database.

☞ For more information on collation sequences, see “International
Languages and Character Sets”[ASA Database Administration Guide,page 285].

ENCRYPTED clause Encryption makes the data stored in your physical
database file unreadable. There are two levels of encryption:

Simple encryption is equivalent to obfuscation. The data is unreadable, but
someone with cryptographic expertise could decipher the data. Simple

293

encryption is achieved by specifying the ENCRYPTED clause with no KEY
clause.

Strong encryption is achieved through the use of a 128-bit algorithm and a
security key. The data is unreadable and virtually undecipherable without
the key. To create a strongly encrypted database, specify the ENCRYPTED
clause with the KEY clause. As with most passwords, it is best to choose a
KEY value that cannot be easily guessed. We recommend that you choose a
value for your KEY that is at least 16 characters long, contains a mix of
upper and lower case, and includes numbers, letters and special characters.

You will require this key each time you want to start the database.

Using the ALGORITHM clause in conjunction with the ENCRYPTED and
KEY clauses lets you specify the encryption algorithm. You can choose
either AES or MDSR. If the ENCRYPTED clause is used but no algorithm
is specified, the default is AES.

Caution
Protect your KEY! Be sure to store a copy of your key in a safe location.
A lost KEY will result in a completely inaccessible database, from which
there is no recovery.

BLANK PADDING clause If you specify BLANK PADDING ON, trailing
blanks are ignored in comparisons. For example, the two strings

’Smith’
’Smith ’

would be treated as equal in a database created with BLANK PADDING
ON.

This option is provided for compatibility with the ISO/ANSI SQL standard,
which is to ignore trailing blanks in comparisons. The default is that blanks
are significant for comparisons (BLANK PADDING OFF).

ASE COMPATIBLE clause Do not create the SYS.SYSCOLUMNS and
SYS.SYSINDEXES views. By default, these views are created for
compatibility with system tables available in Watcom SQL (versions 4 and
earlier of this software). These views conflict with the Sybase Adaptive
Server Enterprise compatibility views dbo.syscolumns and dbo.sysindexes.

JCONNECT clause If you wish to use the Sybase jConnect JDBC driver to
access system catalog information, you need to install jConnect support.
Specify JCONNECT OFF if you wish to exclude the jConnect system
objects. You can still use JDBC, as long as you do not access system
information.

294

Chapter 4. SQL Statements

JAVA clause The default behavior isJAVA OFF .

To use Java in your database, you must install entries for the Sybase runtime
Java classes into the system tables. SpecifyingJAVA JDK ’ 1.1.8’ or JAVA
JDK ’ 1.3’ explicitly installs entries for the named version of the JDK. For
JDK 1.1.8 the classes are heldjava\1.1\classes.zipunder your
SQL Anywhere directory. For JDK 1.3, they are held injava\1.3\rt.jar. The
default classes are the JDK 1.3 classes.

Java in the database is a separately licensable component. For more
information, see “Introduction to Java in the Database”[ASA Programming
Guide,page 51].

Usage Creates a database file with the supplied name and attributes.

Permissions The permissions required to execute this statement are set on the server
command line, using the-gu option. The default setting is to require DBA
authority.

The account under which the server is running must have write permissions
on the directories where files are created.

Not supported on Windows CE.

Side effects An operating system file is created.

See also “ALTER DATABASE statement” on page 225

“DROP DATABASE statement” on page 410

“The Initialization utility” [ASA Database Administration Guide,page 485]

“Encryption Key connection parameter [DBKEY]”[ASA Database
Administration Guide,page 190]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Enterprise provides a CREATE DATABASE
statement, but with different options.

Example The following statement creates a database file namedmydb.dbin theC:\
directory.

CREATE DATABASE ’C:\\mydb’
TRANSACTION LOG ON
CASE IGNORE
PAGE SIZE 1024
COLLATION ’437’
ENCRYPTED OFF
BLANK PADDING OFF
JAVA JDK ’1.3’
JCONNECT OFF

295

The following statement creates a database with no Sybase runtime Java
classes. All database operations will execute normally, except for those
involving Java classes or objects.

CREATE DATABASE ’C:\\nojava’
JAVA OFF

296

Chapter 4. SQL Statements

CREATE DBSPACE statement
Description Use this statement to define a new database space and create the associated

database file.

Syntax CREATE DBSPACE dbspace-name AS filename

Parameters dbspace-name An internal name for the database file. Thefilename
parameter is the actual name of the database file, with a path where
necessary.

filename A filenamewithout an explicit directory is created in the same
directory as the main database file. Any relative directory is relative to the
main database file. Thefilenameis relative to the database server. When you
are using the database server for NetWare, thefilenameshould use a volume
name (not a drive letter) when an absolute directory is specified.

Usage The CREATE DBSPACE statement creates a new database file. When a
database is created, it is composed of one file. All tables and indexes created
are placed in that file. CREATE DBSPACE adds a new file to the database.
This file can be on a different disk drive than the main file, which means that
the database can be larger than one physical device.

For each database, there is a limit of twelve dbspaces in addition to the main
file.

Each table is contained entirely within one database file. The IN clause of
the CREATE TABLE statement specifies the dbspace into which a table is
placed. Tables are put into the main database file by default.

Permissions Must have DBA authority.

Side effects Automatic commit. Automatic checkpoint.

See also “DROP statement” on page 408

“Using additional dbspaces”[ASA Database Administration Guide,page 256]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example Create a dbspace called library to hold the LibraryBooks table and its
indexes.

297

CREATE DBSPACE library
AS ’e: \\dbfiles \\library.db’;
CREATE TABLE LibraryBooks (

title char(100),
author char(50),
isbn char(30),

) IN library;

298

Chapter 4. SQL Statements

CREATE DECRYPTED FILE statement
Description This statement decrypts strongly encrypted databases.

Syntax CREATE DECRYPTED FILE newfile
FROM oldfileKEY
key

Parameters FROM Lists the filename of the encrypted file.

KEY Lists the key required to access the encrypted file.

Usage This statement decrypts an encrypted database, transaction log file, or
dbspace and creates a new, unencrypted file. The original file must be
strongly encrypted using an encryption key. The resulting file is an exact
copy of the encrypted file, without encryption and therefore requiring no
encryption key.

If a database is decrypted using this statement, the corresponding transaction
log file (and any dbspaces) must also be decrypted in order to use the
database.

If a database requiring recovery is decrypted, its transaction log file must
also be decrypted and recovery on the new database will still be necessary.

The name of the transaction log file remains the same in this process, so if
the database and transaction log file are renamed, then you need to run dblog
-t on the resulting database.

If you want to encrypt an existing database, you need to either use the
CREATE ENCRYPTED FILE statement, or unload and reload the database
using the-an option with either-ek or -ep . You can also use this method
to change an existing encryption key.

Permissions ♦ Must be a user with DBA authority.

Side effects None.

Example The following example decrypts the contacts database and creates a new
unencrypted database called contacts2.

CREATE DECRYPTED FILE ’contacts2.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’

299

CREATE DOMAIN statement
Description Use this statement to create a domain in a database.

Syntax CREATE { DOMAIN | DATATYPE } [AS] domain-name data-type
[[NOT] NULL]
[DEFAULT default-value]
[CHECK (condition)]

domain-name : identifier

data-type : built-in data type, with precision and scale

Parameters DOMAIN | DATATYPE It is recommended that you use CREATE
DOMAIN, rather than CREATE DATATYPE because CREATE DOMAIN
is the ANSI/ISO SQL3 term.

NULL By default, domains allow NULLs unless the
allow_nulls_by_defaultoption is set to OFF. In this case, new domains by
default do not allow NULLs. The nullability of a column created on a
domain depends on the setting of the definition of the domain, not on the
setting of theallow_nulls_by_defaultoption when the column is
referenced. Any explicit setting of NULL or NOT NULL in the column
definition overrides the domain setting.

CHECK clause When creating a CHECK condition, you can use a variable
name prefixed with the @ sign in the condition. When the data type is used
in the definition of a column, such a variable is replaced by the column
name. This allows CHECK conditions to be defined on data types and used
by columns of any name.

Usage Domains are aliases for built-in data types, including precision and scale
values where applicable. They improve convenience and encourage
consistency in the database.

Domains are objects within the database. Their names must conform to the
rules for identifiers. Domain names are always case insensitive, as are
built-in data type names.

The user who creates a data type is automatically made the owner of that
data type. No owner can be specified in the CREATE DATATYPE statement.
The domain name must be unique, and all users can access the data type
without using the owner as prefix.

Domains can have CHECK conditions and DEFAULT values, and you can
indicate whether the data type permits NULL values or not. These
conditions and values are inherited by any column defined on the data type.
Any conditions or values explicitly specified on the column override those

300

Chapter 4. SQL Statements

specified for the data type.

To drop the data type from the database, use the DROP statement. You must
be either the owner of the data type or have DBA authority in order to drop a
domain.

Permissions Must have RESOURCE authority.

Side effects Automatic commit.

See also “DROP statement” on page 408

“SQL Data Types” on page 51

Standards and
compatibility

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported by Adaptive Server Enterprise. Transact-SQL
provides similar functionality using the sp_addtype system procedure and
the CREATE DEFAULT and CREATE RULE statements.

Example The following statement creates a data type namedaddress, which holds a
35-character string, and which may be NULL.

CREATE DOMAIN address CHAR(35) NULL

The following statement creates a data type namedid, which does not allow
NULLS, and which is autoincremented by default.

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT

301

CREATE ENCRYPTED FILE statement
Description This statement encrypts strongly encrypted databases, transaction log files,

or dbspaces.

Syntax CREATE ENCRYPTED FILE newfile
FROM oldfile
KEY key
ALGORITHM algorithm

Parameters FROM Lists the filename of the unencrypted file.

KEY Lists the key assigned to the encrypted file.

ALGORITHM Can be eitherAES (default) orMDSR. MDSR is only
supported on 32-bit Windows operating systems.

Usage This statement takes an unencrypted database, transaction log file or dbspace
and creates a new encrypted file. The original file must not be encrypted.
The resulting file is an exact copy of the original file, except that it is
encrypted using the specified algorithm and key.

If a database is encrypted using this statement, the corresponding transaction
log file (and any dbspaces) must also be encrypted with the same algorithm
and key in order to use the database. You cannot mix encrypted and
unencrypted files, nor can you mix encrypted files with different encryption
algorithms or different keys.

If a database requiring recovery is encrypted, its transaction log file must
also be encrypted and recovery on the new database will still be necessary.

The name of the transaction log file remains the same in this process, so if
the database and transaction log file are renamed, then you need to run dblog
-t on the resulting database.

You can encrypt an existing database or change an existing encryption key
by unloading and reloading the database using the-an option with either
-ek or -ep . You can also use the CREATE ENCRYPTED FILE statement
in conjunction with the CREATE DECRYPTED FILE statement to change
an encryption key.

Permissions ♦ Must be a user with DBA authority.

♦ Not supported on Windows CE.

Side effects None.

Example The following example decrypts the contacts database and creates a new
unencrypted database called contacts2.

302

Chapter 4. SQL Statements

CREATE ENCRYPTED FILE ’contacts2.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’

The following example encrypts the contacts database and the contacts log
file, renaming the both files. You will need torun dblog -ek abcd -t

contacts2.log contacts.db , since the log has been renamed and the
database file still points at the old log.

CREATE ENCRYPTED FILE ’contacts2.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’
CREATE ENCRYPTED FILE ’contacts2.log’
FROM ’contacts.db’
KEY ’Te9g7765*Noo’

Example 3 The following example encrypts the contacts database and the contacts log
file, leaving the original log file name untouched. In this case, you do not
need to run dblog, since the name of the file remains the same.

CREATE ENCRYPTED FILE ’newpath\contacts.db’
FROM ’contacts.db’
KEY ’Sd8f6654*Mnn’
CREATE ENCRYPTED FILE ’newpath\contacts.log’
FROM ’contacts.log’
KEY ’Sd8f6654*Mnn’

Example 4 The following example changes the encryption key of the contacts database.

CREATE DECRYPTED FILE ’temp.db’
FROM ’contacts.db’
KEY ’oldkey’
del contacts.db
CREATE ENCRYPTED FILE ’contacts.db’
FROM ’temp.db’
KEY ’newkey’
del temp.db

303

CREATE EVENT statement
Description Use this statement to define an event and its associated handler for

automating predefined actions. Also, to define scheduled actions.

Syntax CREATE EVENT event-name
[TYPE event-type

[WHERE trigger-condition [AND trigger-condition] . . .]
| SCHEDULE schedule-spec, . . .]

[ENABLE | DISABLE]
[AT { CONSOLIDATED | REMOTE | ALL }]
[HANDLER

BEGIN
. . .

END]

event-type :
BackupEnd | " Connect "

| ConnectFailed | DatabaseStart
| DBDiskSpace | " Disconnect "
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | " RAISERROR"
| ServerIdle | TempDiskSpace

trigger-condition :
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec :
[schedule-name]

{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week , . . .) | (day-of-month, . . .) }]
[START DATE start-date]

event-name | schedule-name : identifier

day-of-week : string

day-of-month | value | period : integer

start-time | end-time : time

start-date : date

Parameters CREATE EVENT clause The event name is an identifier. An event has a
creator, which is the user creating the event, and the event handler executes
with the permissions of that creator. This is the same as stored procedure
execution. You cannot create events owned by other users.

304

Chapter 4. SQL Statements

TYPE clause You can specify the TYPE clause with an optional WHERE
clause; or specify the SCHEDULE.

Theevent-typeis one of the listed set of system-defined event types. The
event types are case insensitive. To specify the conditions under which this
event-typetriggers the event, use the WHERE clause. For a description of
event-types not listed below, see “Choosing a system event”[ASA Database
Administration Guide,page 272].

♦ DiskSpace event types If the database contains an event handler for
one of the DiskSpace types, the database server checks the available
space on each device associated with the relevant file every 30 seconds.

In the event the database has more than one dbspace, on separate drives,
DBDiskSpacechecks each drive and acts depending on the lowest
available space.

TheLogDiskSpaceevent type checks the location of the transaction log
and any mirrored transaction log, and reports based on the least available
space.

Disk space event types are not supported on Windows CE or on very
early releases of Windows 95.

TheTempDiskSpaceevent type checks the amount of temporary disk
space.

If the appropriate event handlers have been defined (DBDiskSpace,
LogDiskSpace, or TempDiskSpace), the server checks the available space
on each device associated with a database file every 30 seconds.
Similarly, if an event has been defined to handle the system event type
ServerIdle, the server notifies the handler when no requests have been
process during the previous 30 seconds.

♦ Globalautoincrement event type Globalautoincrement event type The
event fires oneachinsert when the number of remaining values for a
GLOBAL AUTOINCREMENT is less than 1% of the end of its range. A
typical action for the handler could be to request a new value for the
GLOBAL_DATABASE_ID option , based on the table and number of
remaining values which are supplied as parameters to this event.

You can use the event_condition function withRemainingValuesas an
argument for this event type.

♦ ServerIdle event type If the database contains an event handler for the
ServerIdle type, the server checks for server activity every 30 seconds.

WHERE clause The trigger condition determines the condition under
which an event is fired. For example, to take an action when the disk

305

containing the transaction log becomes more than 80% full, use the
following triggering condition:

...
WHERE event_condition(’LogDiskSpacePercentFree’) < 20
...

The argument to theevent_conditionfunction must be valid for the event
type.

You can use multiple AND conditions to make up the WHERE clause, but
you cannot use OR conditions or other conditions.

☞ For information on valid arguments, see“EVENT_CONDITION
function [System]” on page 127.

SCHEDULE clause This clause specifies when scheduled actions are to
take place. The sequence of times acts as a set of triggering conditions for
the associated actions defined in the event handler.

You can create more than one schedule for a given event and its associated
handler. This permits complex schedules to be implemented. While it is
compulsory to provide a schedule-name when there is more than one
schedule, it is optional if you provide only a single schedule.

A scheduled event is recurring if its definition includes EVERY or ON; if
neither of these reserved words is used, the event will execute at most once.
An attempt to create a non-recurring scheduled event for which the start time
has passed will generate an error. When a non-recurring scheduled event has
passed, its schedule is deleted, but the event handler is not deleted.

Scheduled event times are calculated when the schedules are created, and
again when the event handler completes execution. The next event time is
computed by inspecting the schedule or schedules for the event, and finding
the next schedule time that is in the future. If an event handler is instructed
to run every hour between 9:00 and 5:00, and it takes 65 minutes to execute,
it runs at 9:00, 11:00, 1:00, 3:00, and 5:00. If you want execution to overlap,
you must create more than one event.

The subclauses of a schedule definition are as follows:

♦ START TIME The first scheduled time for each day on which the event
is scheduled. If a START DATE is specified, the START TIME refers to
that date. If no START DATE is specified, the START TIME is on the
current day (unless the time has passed) and each subsequent day (if the
schedule includes EVERY or ON).

♦ BETWEEN . . . AND A range of times during the day outside of which
no scheduled times occur. If a START DATE is specified, the scheduled
times do not occur until that date.

306

Chapter 4. SQL Statements

♦ EVERY An interval between successive scheduled events. Scheduled
events occur only after the START TIME for the day, or in the range
specified by BETWEEN . . . AND.

♦ ON A list of days on which the scheduled events occur. The default is
every day if EVERY is specified. Days can be specified as days of the
week or days of the month.

Days of the week are Mon, Tues, and so on. You may also use the full
forms of the day, such as Monday. You must use the full forms of the day
names if the language you are using is not English, is not the language
requested by the client in the connection string, and is not the language
which appears in the server window.

Days of the month are integers from 0 to 31. A value of 0 represents the
last day of any month.

♦ START DATE The date on which scheduled events are to start
occurring. The default is the current date.

Each time a scheduled event handler is completed, the next scheduled time
and date is calculated.

1. If the EVERY clause is used, find whether the next scheduled time falls
on the current day, and is before the end of the BETWEEN . . . AND
range. If so, that is the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next
date on which the event is to be executed.

3. Find the START TIME for that date, or the beginning of the BETWEEN
. . . AND range.

ENABLE | DISABLE By default, event handlers are enabled. When
DISABLE is specified, the event handler does not execute even when the
scheduled time or triggering condition occurs. A TRIGGER EVENT
statement doesnot cause a disabled event handler to be executed.

AT clause If you wish to execute events at remote or consolidated
databases in a SQL Remote setup, you can use this clause to restrict the
databases at which the event is handled. By default, all databases execute the
event.

HANDLER clause Each event has one handler.

Usage Events can be used in two main ways:

♦ Scheduling actions The database server carries out a set of actions on
a schedule of times. You could use this capability to schedule backups,
validity checks, queries to fill up reporting tables, and so on.

307

♦ Event handling actions The database server carries out a set of actions
when a predefined event occurs. The events that can be handled include
disk space restrictions (when a disk fills beyond a specified percentage),
when the server is idle, and so on.

An event definition includes two distinct pieces. The trigger condition can
be an occurrence, such as a disk filling up beyond a defined threshold. A
schedule is a set of times, each of which acts as a trigger condition. When a
trigger condition is satisfied, the event handler executes. The event handler
includes one or more actions specified inside a compound statement
(BEGIN. . . END).

If no trigger condition or schedule specification is supplied, only an explicit
TRIGGER EVENT statement can trigger the event. During development,
you may wish to develop and test event handlers using TRIGGER EVENT,
and add the schedule or WHERE clause once testing is complete.

Event errors are logged to the database server console.

When event handlers are triggered, the server makes context information,
such as the connection ID that caused the event to be triggered, available to
the event handler using the event_parameter function. For more information
about event_parameter, see“EVENT_PARAMETER function [System]” on
page 128.

Permissions Must have DBA authority.

Event handlers execute on a separate connection, with the permissions of the
event owner. To execute with permissions other than DBA, you can call a
procedure from within the event handler: the procedure executes with the
permissions of its owner. The separate connection does not count towards
the ten-connection limit of the personal database server.

Side effects Automatic commit.

The actions of an event handler are committed if no error is detected during
execution, and rolled back if errors are detected.

See also “BEGIN statement” on page 267

“ALTER EVENT statement” on page 231

“COMMENT statement” on page 282

“DROP statement” on page 408

“TRIGGER EVENT statement” on page 583

“EVENT_PARAMETER function [System]” on page 128

Standards and
compatibility

♦ SQL/92 Vendor extension.

308

Chapter 4. SQL Statements

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example Instruct the database server to carry out an automatic backup to tape using
the first tape drive on a Windows NT machine, every day at 1 am.

CREATE EVENT DailyBackup
SCHEDULE daily_backup
START TIME ’1:00AM’ EVERY 24 HOURS
HANDLER

BEGIN
BACKUP DATABASE TO ’\\\\. \\tape0’
ATTENDED OFF

END

Instruct the database server to carry out an automatic backup of the
transaction log only, every hour, Monday to Friday between 8 am and 6 pm.

CREATE EVENT HourlyLogBackup
SCHEDULE hourly_log_backup
BETWEEN ’8:00AM’ AND ’8:00PM’
EVERY 1 HOURS ON

(’Monday’,’Tuesday’,’Wednesday’,’Thursday’,’Friday’)
HANDLER

BEGIN
BACKUP DATABASE DIRECTORY ’c:\\database \\backup’
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME

END

☞ For more examples see “Defining trigger conditions for events”[ASA
Database Administration Guide,page 273].

309

CREATE EXISTING TABLE statement
Description Use this statement to create a new proxy table, which represents an existing

object on a remote server.

Syntax CREATE EXISTING TABLE [owner.]table-name
[(column-definition, . . .)]
AT location-string

column-definition :
column-name data-type [NOT NULL]

location-string :
remote-server-name.[db-name].[owner].object-name

| remote-server-name;[db-name];[owner];object-name

Parameters AT clause The AT clause specifies the location of the remote object. The
AT clause supports the semicolon (;) as a delimiter. If a semicolon is present
anywhere in the location-string string, the semicolon is the field delimiter. If
no semicolon is present, a period is the field delimiter. This allows filenames
and extensions to be used in the database and owner fields. For example, the
following statement maps the table a1 to the MS Access filemydbfile.mdb:

CREATE EXISTING TABLE a1
AT ’access;d: \mydbfile.mdb;;a1’

Usage The CREATE EXISTING TABLE statement creates a new local, proxy table
that maps to a table at an external location. The CREATE EXISTING
TABLE statement is a variant of the CREATE TABLE statement. The
EXISTING keyword is used with CREATE TABLE to specify that a table
already exists remotely and that its metadata is to be imported into Adaptive
Server Anywhere. This establishes the remote table as a visible entity to
Adaptive Server Anywhere users. Adaptive Server Anywhere verifies that
the table exists at the external location before it creates the table.

If the object does not exist (either host data file or remote server object), the
statement is rejected with an error message.

Index information from the host data file or remote server table is extracted
and used to create rows for the system table sysindexes. This defines indexes
and keys in server terms and enables the query optimizer to consider any
indexes that may exist on this table.

Referential constraints are passed to the remote location when appropriate.

If column-definitions are not specified, Adaptive Server Anywhere derives
the column list from the metadata it obtains from the remote table. If
column-definitions are specified, Adaptive Server Anywhere verifies the
column-definitions. Column names, data types, lengths, identity property,

310

Chapter 4. SQL Statements

and null properties are checked for the following:

♦ Column names must match identically (although case is ignored).

♦ Data types in the CREATE EXISTING TABLE statement must match or
be convertible to the data types of the column on the remote location.
For example, a local column data type is defined as money, while the
remote column data type is numeric.

♦ Each column’s NULL property is checked. If the local column’s NULL
property is not identical to the remote column’s NULL property, a
warning message is issued, but the statement is not aborted.

♦ Each column’s length is checked. If the length of char, varchar, binary,
varbinary, decimal and numeric columns do not match, a warning
message is issued, but the command is not aborted.

You may choose to include only a subset of the actual remote column list
in your CREATE EXISTING statement.

Permissions Must have RESOURCE authority. To create a table for another user, you
must have DBA authority.

Not supported on Windows CE.

Side effects Automatic commit.

See also CREATE TABLE statement

“Specifying proxy table locations”[ASA SQL User’s Guide,page 569]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Example Create a proxy table named blurbs for the blurbs table at the remote server
server_a.

CREATE EXISTING TABLE blurbs
(author_id id not null,
copy text not null)
AT ’server_a.db1.joe.blurbs’

Create a proxy table named blurbs for the blurbs table at the remote server
server_a. Adaptive Server Anywhere derives the column list from the
metadata it obtains from the remote table.

CREATE EXISTING TABLE blurbs
AT ’server_a.db1.joe.blurbs’

311

Create a proxy table named rda_employee for the employee table at the
Adaptive Server Anywhere remote server asademo.

CREATE EXISTING TABLE rda_employee
AT ’asademo..DBA.employee’

312

Chapter 4. SQL Statements

CREATE EXTERNLOGIN statement
Description Use this statement to assign an alternate login name and password to be used

when communicating with a remote server.

Syntax CREATE EXTERNLOGIN login-name
TO remote-server
REMOTE LOGIN remote-user
[IDENTIFIED BY remote-password]

Parameters login-name specifies the local user login name. When using integrated
logins, thelogin-nameis the database user to which the Windows user ID is
mapped.

TO clause The TO clause specifies the name of the remote server.

REMOTE LOGIN clause The REMOTE LOGIN clause specifies the user
account on remote-server for the local userlogin-name.

IDENTIFIED BY clause The IDENTIFIED BY clause specifies the
remote-passwordfor remote-user. Theremote-userandremote-password
combination must be valid on the remote-server.

Usage By default, Adaptive Server Anywhere uses the names and passwords of its
clients whenever it connects to a remote server on behalf of those clients.
CREATE EXTERNLOGIN assigns an alternate login name and password to
be used when communicating with a remote server.

The password is stored internally in encrypted form. Theremote-server
must be known to the local server by an entry in the SYSERVERS table. For
more information, see“CREATE SERVER statement” on page 341.

Sites with automatic password expiration should plan for periodic updates of
passwords for external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

Permissions Only the login-name and the DBA account can add or modify an external
login for login-name.

Not supported on Windows CE.

Side effects Automatic commit.

See also “DROP EXTERNLOGIN statement” on page 412

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

313

Example Map the local user namedDBA to the usersawith passwordPlankton when
connecting to the serversybase1.

CREATE EXTERNLOGIN DBA
TO sybase1
REMOTE LOGIN sa
IDENTIFIED BY Plankton

314

Chapter 4. SQL Statements

CREATE FUNCTION statement
Description Use this statement to create a new function in the database.

Syntax CREATE FUNCTION [owner.]function-name ([parameter , . . .])
RETURNS data-type routine-characteristics
{ compound-statement

| AS tsql-compound-statement
| external-name }

parameter :
[IN] parameter-name data-type

routine-characteristics
ON EXCEPTION RESUME | [NOT] DETERMINISTIC

tsql-compound-statement :
sql-statement
sql-statement
...

external-name:
EXTERNAL NAME library-call

| EXTERNAL NAME java-call LANGUAGE JAVA

library-call :
’ [operating-system:]function-name@library ; . . . ’

operating-system :
Windows95 | WindowsNT | NetWare | UNIX

java-call :
’ [package-name.]class-name.method-name method-signature’

method-signature :
([field-descriptor , . . .]) return-descriptor

field-descriptor | return-descriptor :
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

Parameters CREATE FUNCTION clause Parameter names must conform to the rules
for database identifiers. They must have a valid SQL data type, and must be
prefixed by the keyword IN, signifying that the argument is an expression
that provides a value to the function.

compound-statement A set of SQL statements bracketed by BEGIN and
END, and separated by semicolons. See“BEGIN statement” on page 267

tsql-compound-statement A batch of Transact-SQL statements. See
“Transact-SQL batch overview”[ASA SQL User’s Guide,page 464], and

315

“CREATE PROCEDURE statement [T-SQL]” on page 332.

EXTERNAL NAME clause A function using the EXTERNAL NAME
clause is a wrapper around a call to a function in an external library.
A function using EXTERNAL NAME can have no other clauses following
the RETURNS clause. Thelibrary name may include the file extension,
which is typically.dll on Windows,.soon UNIX, and.nlm on NetWare. In
the absence of the extension, the software appends the platform-specific
default file extension for libraries. On NetWare, if no NLM name is given,
the NLM containing the symbol must already be loaded when the function is
called.

☞ For information about external library calls, see “Calling external
libraries from procedures”[ASA SQL User’s Guide,page 664].

EXTERNAL NAME LANGUAGE JAVA clause A function that uses
EXTERNAL NAME with a LANGUAGE JAVA clause is a wrapper around
a Java method.

☞ For information on calling Java procedures, see“CREATE
PROCEDURE statement” on page 324.

ON EXCEPTION RESUME clause Use Transact-SQL -like error handling.
For more information, see“CREATE PROCEDURE statement” on
page 324.

NOT DETERMINISTIC clause A function specified as NOT
DETERMINISTIC is re-evaluated each time it is called in a query. The
results of functions not specified in this manner may be cached for better
performance, and re-used each time the function is called with the same
parameters during query evaluation.

Functions that have side effects such as modifying the underlying data
should be declared as NOT DETERMINISTIC. For example, a function that
generates primary key values and is used in an INSERT . . . SELECT
statement should be declared NOT DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN

DECLARE keyval INTEGER;
UPDATE counter SET x = x + increment;
SELECT counter.x INTO keyval FROM counter;
RETURN keyval

END
INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table

316

Chapter 4. SQL Statements

Functions may be declared as DETERMINISTIC if they always return the
same value for given input parameters. Future versions of the software may
use this declaration to allow optimizations that are unsafe for functions that
could return different values for the same input.

Usage The CREATE FUNCTION statement creates a user-defined function in the
database. A function can be created for another user by specifying an owner
name. Subject to permissions, a user-defined function can be used in exactly
the same way as other non-aggregate functions.

Adaptive Server Anywhere treats all user-defined functions as idempotent
unless they are declared NOT DETERMINISTIC. Idempotent functions
return a consistent result for the same parameters and are free of side effects.
That is, the server assumes that two successive calls to the same function
with the same parameters will return the same result, and will not have any
unwanted side-effects on the query’s semantics.

Permissions Must have RESOURCE authority.

External functions, including Java functions, must have DBA authority.

Side effects Automatic commit.

See also “ALTER FUNCTION statement” on page 233

“DROP statement” on page 408

“BEGIN statement” on page 267

“CREATE PROCEDURE statement” on page 324

“RETURN statement” on page 528

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported by Adaptive Server Enterprise. The CREATE
FUNCTION statement is supported by Microsoft SQL Server.

Examples The following function concatenates a firstname string and a lastname string.

CREATE FUNCTION fullname (
firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ’ ’ || lastname;
RETURN (name);

END

317

The following examples illustrate the use of thefullname function.

Return a full name from two supplied strings:

SELECT fullname (’joe’,’smith’)

fullname(‘joe’, ‘smith’)

joe smith

List the names of all employees:

SELECT fullname (emp_fname, emp_lname)
FROM employee

fullname (emp_fname, emp_lname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

. . .

The following function uses Transact-SQL syntax:

CREATE FUNCTION DoubleIt (@Input INT)
RETURNS INT
AS

DECLARE @Result INT
SELECT @Result = @Input * 2
RETURN @Result

The statementSELECT DoubleIt(5) returns a value of10.

The following statement creates an external function written in Java:

CREATE FUNCTION dba.encrypt(IN name char(254))
RETURNS VARCHAR
EXTERNAL NAME

’Scramble.encrypt (Ljava/lang/String;)Ljava/lang/String;’
LANGUAGE JAVA

318

Chapter 4. SQL Statements

CREATE INDEX statement
Description Use this statement to create an index on a specified table. Indexes can

improve database performance.

Syntax CREATE [VIRTUAL] [UNIQUE] [CLUSTERED] INDEX index-name
ON [owner.]table-name
(column-name [ASC | DESC], . . .

| function-name (argument [,. . .]) AS column-name)
[{ IN | ON } dbspace-name]

Parameters VIRTUAL keyword The VIRTUAL keyword is primarily for use by the
Index Consultant. A virtual index mimics the properties of a real physical
index during the evaluation of query plans by the Index Consultant and when
the PLAN function is used. You can use virtual indexes together with the
PLAN function to explore the performance impact of an index, without the
often time-consuming and resource-consuming effects of creating a real
index.

Virtual indexes are not visible to other connections, and are dropped when
the connection is closed. Virtual indexes are not used when evaluating plans
for the actual execution of queries, and so do not interfere with performance.

Virtual indexes have a limit of four columns.

☞ For more information, see “Starting the Index Consultant”[ASA SQL
User’s Guide,page 65], and “Index Consultant overview”[ASA SQL User’s
Guide,page 63].

CLUSTERED keyword The CLUSTERED attribute causes table rows to
be stored in an approximate key order corresponding to the index. While the
server makes an attempt to preserve key order, total clustering is not
guaranteed.

If a clustered index exists, the LOAD TABLE statement inserts rows into the
table in the order of the index key, and the INSERT statement attempts to put
new rows on the same table page as the one containing adjacent rows, as
defined by the key order.

☞ For more information, see “Using clustered indexes”[ASA SQL User’s
Guide,page 59].

UNIQUE keyword The UNIQUE attribute ensures that there will not be
two rows in the table with identical values in all the columns in the index.
Each index key must be unique or contain a NULL in at least one column.

There is a difference between a unique constraint on a table and a unique
index. Columns of a unique index are allowed to be NULL, while columns
in a unique constraint are not. A foreign key can reference either a primary

319

key or a column with a unique constraint, but not a unique index, because it
can include multiple instances of NULL.

ASC | DESC option Columns are sorted in ascending (increasing) order
unless descending (DESC) is explicitly specified. An index will be used for
both an ascending and a descending ORDER BY, whether the index was
ascending or descending. However, if an ORDER BY is performed with
mixed ascending and descending attributes, an index will be used only if the
index was created with the same ascending and descending attributes.

function-name parameter The function-name parameter creates an index
on a built-in function. This form of the CREATE INDEX statement is a
convenience method that carries out the following operations:

1. Adds a computed column named column-name to the table. The column
is defined with a COMPUTE clause that is the specified built-in function,
along with any specified arguments. The data type of the column is based
on the result type of the function.

2. Populates the computed column for the existing rows in the table.

3. Creates an index on the column.

Dropping the index does not cause the associated column to be dropped.
This form of CREATE INDEX cannot be used on declared temporary tables.

☞ For more information about computed columns, see “Working with
computed columns”[ASA SQL User’s Guide,page 46]

IN | ON clause By default, the index is placed in the same database file as
its table. You can place the index in a separate database file by specifying a
dbspace name in which to put the index. This feature is useful mainly for
large databases to circumvent file size limitations.

☞ For more information on limitations, see “Size and number limitations”
[ASA Database Administration Guide,page 674].

Usage The CREATE INDEX statement creates a sorted index on the specified
columns of the named table. Indexes are automatically used to improve the
performance of queries issued to the database, and to sort queries with an
ORDER BY clause. Once an index is created, it is never referenced in a
SQL statement again except to validate it (VALIDATE INDEX) or delete it
(DROP INDEX).

You cannot create indexes on views.

♦ Index ownership There is no way of specifying the index owner in the
CREATE INDEX statement. Indexes are always owned by the owner of
the table. The index name must be unique for each owner.

320

Chapter 4. SQL Statements

♦ No indexes on views Indexes cannot be created for views.

♦ Index name space The name of each index must be unique for a given
table.

♦ Exclusive table use CREATE INDEX is prevented whenever the
statement affects a table currently being used by another connection.
CREATE INDEX can be time consuming and the server will not process
requests referencing the same table while the statement is being
processed.

♦ Automatically created indexes Adaptive Server Anywhere
automatically creates indexes for primary keys and for unique constraints.
These automatically created indexes are held in the same database file as
the table.

Permissions Must be the owner of the table or have either DBA authority or
REFERENCES permission.

The table must be a base table or a global temporary table.

Side effects Automatic commit. Creating an index on a built-in function also causes a
checkpoint.

See also “DROP statement” on page 408

“Indexes” [ASA SQL User’s Guide,page 395]

“Types of index”[ASA SQL User’s Guide,page 401]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Enterprise has a more complex CREATE
INDEX statement than Adaptive Server Anywhere. While the Adaptive
Server Enterprise syntax is permitted in Adaptive Server Anywhere,
some clauses and keywords are ignored.
• The full syntax for Adaptive Server Enterprise 11.5 is as follows:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED]
INDEX index-name
ON [[database.]owner.]table_name

(column_name [, column_name], . . .)
[WITH {

{ FILLFACTOR | MAX_ROWS_PER_PAGE } = x ,
CONSUMERS = x ,

. . . IGNORE_DUP_KEY,

. . . SORTED_DATA ,
[IGNORE_DUP_ROW | ALLOW_DUP_ROW]

}]
[ON segment_name]

321

Adaptive Server Anywhere allows, by ignoring, the following keywords:

• FILLFACTOR

• IGNORE_DUP_KEY

• SORTED_DATA

• IGNORE_DUP_ROW

• ALLOW_DUP_ROW

Physical placement of an index is carried out differently in Adaptive
Server Enterprise and Adaptive Server Anywhere. TheON
segment-nameclause is supported in Adaptive Server Anywhere, but
segment-namerefers to a dbspace.

Unique indexes in Adaptive Server Anywhere permit entries that contain
NULL, and are otherwise identical. Unique indexes in Adaptive Server
Enterprise do not permit entries that contain NULL and are otherwise
identical.

Index names must be unique on a given table for both Adaptive Server
Anywhere and Enterprise.

Example Create a two-column index on the employee table.

CREATE INDEX employee_name_index
ON employee
(emp_lname, emp_fname)

Create an index on the sales_order_items table for the prod_id column.

CREATE INDEX item_prod
ON sales_order_items
(prod_id)

Use the SORTKEY function to create an index on the description column of
the product table, sorted according to a Russian collation. As a side effect,
the statement adds a computed column desc_ru to the table.

CREATE INDEX ix_desc_ru
ON product (

SORTKEY(description, ’rusdict’)
AS desc_ru)

322

Chapter 4. SQL Statements

CREATE MESSAGE statement [T-SQL]
Description Use this statement to add a user-defined message to the

SYSUSERMESSAGES system table for use by PRINT and RAISERROR
statements.

Syntax CREATE MESSAGE message-number AS message-text

message-number : integer

message-text : string

Parameters message_number The message number of the message to add. The
message number for a user-defined message must be 20000 or greater.

message_text The text of the message to add. The maximum length is
255 bytes. PRINT and RAISERROR recognize placeholders in the message
text. A single message can contain up to 20 unique placeholders in any
order. These placeholders are replaced with the formatted contents of any
arguments that follow the message when the text of the message is sent to
the client.

The placeholders are numbered to allow reordering of the arguments when
translating a message to a language with a different grammatical structure. A
placeholder for an argument appears as “%nn!”: a percent sign (%),
followed by an integer from 1 to 20, followed by an exclamation mark (!),
where the integer represents the position of the argument in the argument
list. “%1!” is the first argument, “%2!” is the second argument, and so on.

There is no parameter corresponding to thelanguageargument for
sp_addmessage.

Usage CREATE MESSAGE associates a message number with a message string.
The message number can be used in PRINT and RAISERROR statements.

To drop a message, see“DROP statement” on page 408.

Permissions Must have RESOURCE authority

Side effects Automatic commit.

See also “PRINT statement [T-SQL]” on page 512

“RAISERROR statement [T-SQL]” on page 515

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase The functionality of CREATE MESSAGE is provided by the
sp_addmessageprocedure in Adaptive Server Enterprise.

323

CREATE PROCEDURE statement
Description Use this statement to create a procedure in the database.

Syntax 1 CREATE PROCEDURE [owner.]procedure-name ([parameter , . . .])
{ [RESULT (result-column, . . .)]

[ON EXCEPTION RESUME]
compound-statement

| AT location-string
| EXTERNAL NAME library-call
| [DYNAMIC RESULT SETS integer-expression]

[EXTERNAL NAME java-call LANGUAGE JAVA]
}

Syntax 2 CREATE PROCEDURE [owner.]procedure-name ([parameter , . . .])
compound-statement

parameter :
parameter_mode parameter-name data-type [DEFAULT expression]

| SQLCODE
| SQLSTATE

parameter_mode : IN | OUT | INOUT

result-column : column-name data-type

library-call :
’ [operating-system:]function-name@library ; . . . ’

operating-system :
Windows95 | WindowsNT | NetWare | UNIX

java-call :
’ [package-name.]class-name.method-name method-signature’

method-signature :
([field-descriptor , . . .]) return-descriptor

field-descriptor | return-descriptor :
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

Parameters CREATE PROCEDURE clause Parameter names must conform to the
rules for other database identifiers such as column names. They must be a
valid SQL data type (see“SQL Data Types” on page 51), and must be
prefixed by one of the keywords IN, OUT or INOUT. The keywords have the
following meanings:

♦ IN The parameter is an expression that provides a value to the
procedure.

♦ OUT The parameter is a variable that could be given a value by the

324

Chapter 4. SQL Statements

procedure.

♦ INOUT The parameter is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

When procedures are executed using the CALL statement, not all parameters
need to be specified. If a default value is provided in the CREATE
PROCEDURE statement, missing parameters are assigned the default
values. If an argument is not provided in the CALL statement, and no
default is set, an error is given.

SQLSTATE and SQLCODE are special parameters that output the
SQLSTATE or SQLCODE value when the procedure ends (they are OUT
parameters). Whether or not a SQLSTATE and SQLCODE parameter is
specified, the SQLSTATE and SQLCODE special values can always be
checked immediately after a procedure call to test the return status of the
procedure.

The SQLSTATE and SQLCODE special values are modified by the next
SQL statement. Providing SQLSTATE or SQLCODE as procedure
arguments allows the return code to be stored in a variable.

RESULT clause The RESULT clause declares the number and type of
columns in the result set. The parenthesized list following the RESULT
keyword defines the result column names and types. This information is
returned by the Embedded SQL DESCRIBE or by ODBCSQLDescribeCol
when a CALL statement is being described. Allowable data types are listed
in “SQL Data Types” on page 51.

☞ For more information on returning result sets from procedures, see
“Returning results from procedures”[ASA SQL User’s Guide,page 640].

Some procedures can more than one result set, with different numbers of
columns, depending on how they are executed. For example, the following
procedure returns two columns under some circumstances, and one in others.

CREATE PROCEDURE names(IN formal char(1))
BEGIN

IF formal = ’n’ THEN
SELECT emp_fname
FROM employee

ELSE
SELECT emp_lname,emp_fname
FROM employee

END IF
END

Procedures with variable result sets must be written without a RESULT
clause, or in Transact-SQL. Their use is subject to the following limitations:

325

♦ Embedded SQL You must DESCRIBE the procedure call after the
cursor for the result set is opened, but before any rows are returned, in
order to get the proper shape of result set. TheCURSORcursor-name
clause on the DESCRIBE statement is required.

♦ ODBC, OLE DB, ADO.NET Variable result-set procedures can be used
by applications using these interfaces. The proper description of the
result sets is carried out by the driver or provider.

♦ Open Client applications Variable result-set procedures can be used by
Open Client applications.

If your procedure returns only one result set, you should use a RESULT
clause. The presence of this clause prevents ODBC and Open Client
applications from redescribing the result set after a cursor is open.

In order to handle multiple result sets, ODBC must describe the currently
executing cursor, not the procedure’s defined result set. Therefore, ODBC
does not always describe column names as defined in the RESULT clause of
the procedure definition. To avoid this problem, use column aliases in the
SELECT statement that generates the result set.

ON EXCEPTION RESUME clause This clause enables Transact-SQL -like
error handling to be used within a Watcom-SQL syntax procedure.

If you use ON EXCEPTION RESUME, the procedure takes an action that
depends on the setting of the ON_TSQL_ERROR option. If
ON_TSQL_ERROR is set to CONDITIONAL (which is the default) the
execution continues if the next statement handles the error; otherwise, it
exits.

Error-handling statements include the following:

♦ IF

♦ SELECT @variable =

♦ CASE

♦ LOOP

♦ LEAVE

♦ CONTINUE

♦ CALL

♦ EXECUTE

♦ SIGNAL

326

Chapter 4. SQL Statements

♦ RESIGNAL

♦ DECLARE

♦ SET VARIABLE

You should not use explicit error handling code with an ON EXCEPTION
RESUME clause.

☞ For more information, see “ON_TSQL_ERROR option [compatibility]”
[ASA Database Administration Guide,page 612].

EXTERNAL NAME clause A procedure using the EXTERNAL NAME
clause is a wrapper around a call to an external library. A stored procedure
using EXTERNAL NAME can have no other clauses following the
parameter list. Thelibrary name may include the file extension, which is
typically .dll on Windows, .so on UNIX, and .nlm on NetWare. In the
absence of the extension, the software appends the platform-specific default
file extension for libraries. On NetWare, if no NLM name is given, the NLM
containing the symbol must already be loaded when the function is called.

☞ For information about external library calls, see “Calling external
libraries from procedures”[ASA SQL User’s Guide,page 664].

AT location-string clause Create a proxy stored procedure on the current
database for a remote procedure specified bylocation-string. The AT clause
supports the semicolon (;) as a field delimiter inlocation-string. If no
semicolon is present, a period is the field delimiter. This allows filenames
and extensions to be used in the database and owner fields.

For example, the following statement creates a proxy procedure
(remotewho) that calls the dbo.sp_who procedure on the master database of
the bostonase server:

CREATE PROCEDURE remotewho ()
AT ’bostonase.master.dbo.sp_who

Remote procedures can return only up to 254 characters in output variables.

☞ For information on remote servers, see“CREATE SERVER statement”
on page 341. For information on using remote procedures, see “Using
remote procedure calls (RPCs)”[ASA SQL User’s Guide,page 578].

DYNAMIC RESULT SETS clause This clause is for use with procedures
that are wrappers around Java methods. If the DYNAMIC RESULT SETS
clause is not provided, it is assumed that the method returns no result set.

EXTERNAL NAME LANGUAGE JAVA clause A procedure that uses
EXTERNAL NAME with a LANGUAGE JAVA clause is a wrapper around
a Java method.

327

If the number of parameters is less than the number indicated in the
method-signature then the difference must equal the number specified in
DYNAMIC RESULT SETS, and each parameter in the method signature in
excess of those in the procedure parameter list must have a method signature
of [Ljava/SQL/ResultSet;.

A Java method signature is a compact character representation of the types
of the parameters and the type of the return value. It is an error to put a space
before the signature.

Thefield-descriptorandreturn-descriptorhave the following meanings:

Field type Java data type

B byte

C char

D double

F float

I int

J long

Lclass-name; an instance of the classclass-name. The class name must be
fully qualified, and any dot in the name must be replaced by
a /. For example,java/lang/String

S short

V void

Z Boolean

[use one for each dimension of an array

For example,

double some_method(
boolean a,
int b,
java.math.BigDecimal c,
byte [][] d,
java.SQL.ResultSet[] rs) {

}

would have the following signature:

’(ZILjava/math/BigDecimal;[[B[Ljava/SQL/ResultSet;)D’

328

Chapter 4. SQL Statements

☞ For more information, see “Returning result sets from Java methods”
[ASA Programming Guide,page 94].

Usage The CREATE PROCEDURE statement creates a procedure in the database.
Users with DBA authority can create procedures for other users by
specifying anowner. A procedure is invoked with a CALL statement.

Permissions Must have RESOURCE authority.

Must have DBA authority for external procedures or to create a procedure
for another user.

Side effects Automatic commit.

See also “BEGIN statement” on page 267

“CALL statement” on page 273

“CREATE FUNCTION statement” on page 315

“CREATE PROCEDURE statement [T-SQL]” on page 332

“DROP statement” on page 408

“EXECUTE IMMEDIATE statement [SP]” on page 429

“GRANT statement” on page 456

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase The Transact-SQL CREATE PROCEDURE statement is
different.

♦ SQLJ The syntax extensions for Java result sets are as specified in the
proposed SQLJ1 standard.

Examples The following procedure uses a case statement to classify the results of a
query.

329

CREATE PROCEDURE ProductType (IN product_id INT, OUT type
CHAR(10))

BEGIN
DECLARE prod_name CHAR(20);
SELECT name INTO prod_name FROM "DBA"."product"
WHERE id = product_id;
CASE prod_name
WHEN ’Tee Shirt’ THEN

SET type = ’Shirt’
WHEN ’Sweatshirt’ THEN

SET type = ’Shirt’
WHEN ’Baseball Cap’ THEN

SET type = ’Hat’
WHEN ’Visor’ THEN

SET type = ’Hat’
WHEN ’Shorts’ THEN

SET type = ’Shorts’
ELSE

SET type = ’UNKNOWN’
END CASE;

END

The following procedure uses a cursor and loops over the rows of the cursor
to return a single value.

330

Chapter 4. SQL Statements

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT
TopValue INT)

BEGIN
DECLARE err_notfound EXCEPTION
FOR SQLSTATE ’02000’;
DECLARE curThisCust CURSOR FOR

SELECT company_name,
CAST(sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name;

DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop;
END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;
END IF;

END LOOP CustomerLoop;
CLOSE curThisCust;

END

331

CREATE PROCEDURE statement [T-SQL]
Description Use this statement to create a new procedure in the database in a manner

compatible with Adaptive Server Enterprise.

Syntax 1 The following subset of the Transact-SQL CREATE PROCEDURE
statement is supported in Adaptive Server Anywhere.

CREATE PROCEDURE [owner.]procedure_name
[[(] @parameter_name data-type [= default] [OUTPUT], . . . [)]]
[WITH RECOMPILE] AS statement-list

Usage The following differences between Transact-SQL and Adaptive Server
Anywhere statements (Watcom-SQL) are listed to help those writing in both
dialects.

♦ Variable names prefixed by @ The “@” sign denotes a Transact-SQL
variable name, while Watcom-SQL variables can be any valid identifier,
and the @ prefix is optional.

♦ Input and output parameters Watcom-SQL procedure parameters are
specified as IN, OUT, or INOUT, while Transact-SQL procedure
parameters are INPUT parameters by default or can be specified as
OUTPUT. Those parameters that would be declared as INOUT or as
OUT in Adaptive Server Anywhere should be declared with OUTPUT in
Transact-SQL.

♦ Parameter default values Watcom-SQL procedure parameters are
given a default value using the keyword DEFAULT, while Transact-SQL
uses an equality sign (=) to provide the default value.

♦ Returning result sets Watcom-SQL uses a RESULT clause to specify
returned result sets. In Transact-SQL procedures, the column names or
alias names of the first query are returned to the calling environment.

The following Transact-SQL procedure illustrates how result sets are
returned from Transact-SQL stored procedures:

CREATE PROCEDURE showdept @deptname varchar(30)
AS

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = @deptname
AND department.dept_id = employee.dept_id

The following is the corresponding Watcom-SQL procedure:

332

Chapter 4. SQL Statements

CREATE PROCEDURE showdept(in deptname
varchar(30))

RESULT (lastname char(20), firstname char(20))
ON EXCEPTION RESUME
BEGIN

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = deptname
AND department.dept_id = employee.dept_id

END

♦ Procedure body The body of a Transact-SQL procedure is a list of
Transact-SQL statements prefixed by the AS keyword. The body of a
Watcom-SQL procedure is a compound statement, bracketed by BEGIN
and END keywords.

Permissions Must have RESOURCE authority.

Side effects Automatic commit.

See also “CREATE PROCEDURE statement” on page 324

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Anywhere supports a subset of the Adaptive Server Enterprise
CREATE PROCEDURE statement syntax.

If the Transact-SQL WITH RECOMPILE optional clause is supplied, it
is ignored. Adaptive Server Anywhere always recompiles procedures the
first time they are executed after a database is started, and stores the
compiled procedure until the database is stopped.

Groups of procedures are not supported.

333

CREATE PUBLICATION statement
Description Use this statement to create a publication. In MobiLink, a publication

identifies synchronized data in UltraLite or Adaptive Server Anywhere
remote databases. In SQL Remote, publications identify replicated data in
both consolidated and remote databases.

Syntax CREATE PUBLICATION [owner.]publication-name
(TABLE article-description, . . .)

owner , publication-name : identifier

article-description :
table-name [(column-name, . . .)]

[WHERE search-condition]
[SUBSCRIBE BY expression]

Parameters article-description Publications are built from articles. Each article is a
table or part of a table. An article may be a vertical partition of a table (a
subset of the table’s columns), a horizontal partition (a subset of the table’s
rows) or a vertical and horizontal partition.

WHERE clause The WHERE clause is a way of defining the subset of
rows of a table to be included in an article. It is useful if the same subset is to
be received by all subscribers to the publication.

SUBSCRIBE BY clause In SQL Remote, one way of defining a subset of
rows of a table to be included in an article is to use a SUBSCRIBE BY
clause. This clause allows many different subscribers to receive different
rows from a table in a single publication definition. This clause is ignored
during MobiLink synchronization.

You can combine WHERE and SUBSCRIBE BY clauses in an article
definition, but the SUBSCRIBE BY clause is used only by SQL Remote.

Usage This statement is applicable only to MobiLink and SQL Remote.

The CREATE PUBLICATION statement creates a publication in the
database. A publication can be created for another user by specifying an
owner name.

In MobiLink, publications are required in Adaptive Server Anywhere remote
databases, and are optional in UltraLite databases. These publications and
the subscriptions to them determine which data will be uploaded to the
MobiLink synchronization server. You can construct a remote database by
creating publications and subscriptions directly. Alternatively, you can
create publications and subscriptions in an Adaptive Server Anywhere
reference database, which acts as a template for the remote databases, and

334

Chapter 4. SQL Statements

then construct the remote databases using the MobiLink extraction utility.

You set options for a MobiLink publication with the ADD OPTION clause
in the ALTER SYNCHRONIZATION SUBSCRIPTION statement or
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

In SQL Remote, publishing is a two-way operation, as data can be entered at
both consolidated and remote databases. In a SQL Remote installation, any
consolidated database and all remote databases must have the same
publication defined. Running the SQL Remote extraction utility from a
consolidated database automatically executes the correct CREATE
PUBLICATION statement in the remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Side effects Automatic commit.

See also “ALTER PUBLICATION statement” on page 238

“DROP PUBLICATION statement” on page 413

“ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 246

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 349

“sp_create_publication procedure”[SQL Remote User’s Guide,page 384]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement publishes all columns and rows of two tables.

CREATE PUBLICATION pub_contact (
TABLE contact,
TABLE company

)

The following statement publishes only some columns of one table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city)

)

The following statement publishes only the active customer rows by
including a WHERE clause that tests the status column of the customer table.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
WHERE status = ’active’

)

335

The following statement publishes only some rows by providing a
subscribe-by value. This method can be used only with SQL Remote.

CREATE PUBLICATION pub_customer (
TABLE customer (id, company_name, city, state)
SUBSCRIBE BY state

)

The subscribe-by value is used as follows when you create a SQL Remote
subscription.

CREATE SUBSCRIPTION TO pub_customer (’NY’)
FOR jsmith

336

Chapter 4. SQL Statements

CREATE REMOTE MESSAGE TYPE statement
[SQL Remote]
Description Use this statement to identify a message-link and return address for outgoing

messages from a database.

Syntax CREATE REMOTE MESSAGE TYPE message-system
ADDRESS address

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

Parameters message-system One of the supported message systems.

address The address for the specified message system.

Usage The Message Agent sends outgoing messages from a database using one of
the supported message links. Return messages for users employing the
specified link are sent to the specified address as long as the remote database
is created by the extraction utility. The Message Agent starts links only if it
has remote users for those links.

The address is the publisher’s address under the specified message system. If
it is an e-mail system, the address string must be a valid e-mail address. If it
is a file-sharing system, the address string is a subdirectory of the directory
set in the SQLREMOTE environment variable, or of the current directory if
that is not set. You can override this setting on the GRANT CONSOLIDATE
statement at the remote database.

The initialization utility creates message types automatically, without an
address. Unlike other CREATE statements, the CREATE REMOTE
MESSAGE TYPE statement does not give an error if the type exists; instead
it alters the type.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “GRANT PUBLISH statement [SQL Remote]” on page 462

“GRANT REMOTE statement [SQL Remote]” on page 463

“GRANT CONSOLIDATE statement [SQL Remote]” on page 460

“sp_remote_type procedure”[SQL Remote User’s Guide,page 425]

“Using message types”[SQL Remote User’s Guide,page 210]

Standards and
compatibility

♦ SQL/92 Vendor extension.

337

♦ SQL/99 Vendor extension.

Example When remote databases are extracted using the extraction utility, the
following statement sets all recipients of file message-system messages to
send messages back to thecompanysubdirectory.

The statement also instructsdbremoteto look in thecompanysubdirectory
for incoming messages.

CREATE REMOTE MESSAGE TYPE file
ADDRESS ’company’

338

Chapter 4. SQL Statements

CREATE SCHEMA statement
Description Use this statement to create a collection of tables, views, and permissions for

a database user.

Syntax CREATE SCHEMA AUTHORIZATION userid
[

create-table-statement
| create-view-statement
| grant-statement

], . . .

Usage The CREATE SCHEMA statement creates a schema. A schema is a
collection of tables, views, and their associated permissions.

Theuseridmust be the user ID of the current connection. You cannot create
a schema for another user.

If any statement contained in the CREATE SCHEMA statement fails, the
entire CREATE SCHEMA statement is rolled back.

The CREATE SCHEMA statement is simply a way of collecting together
individual CREATE and GRANT statements into one operation. There is no
SCHEMA database object created in the database, and to drop the objects
you must use individual DROP TABLE or DROP VIEW statements. To
revoke permissions, you must use a REVOKE statement for each permission
granted.

The individual CREATE or GRANT statements are not separated by
statement delimiters. The statement delimiter marks the end of the CREATE
SCHEMA statement itself.

The individual CREATE or GRANT statements must be ordered such that
the objects are created before permissions are granted on them.

Although you can currently create more than one schema for a user, this is
not recommended, and may not be supported in future releases.

Permissions Must have RESOURCE authority.

Side effects Automatic commit.

See also “CREATE TABLE statement” on page 361

“CREATE VIEW statement” on page 382

“GRANT statement” on page 456

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

339

♦ Sybase Adaptive Server Anywhere does not support the use of
REVOKE statements within the CREATE SCHEMA statement, and does
not allow its use within Transact-SQL batches or procedures.

Example The following CREATE SCHEMA statement creates a schema consisting of
two tables. The statement must be executed by the user ID sample_user, who
must have RESOURCE authority. If the statement creating table t2 fails,
neither table is created.

CREATE SCHEMA AUTHORIZATION sample_user
CREATE TABLE t1 (id1 INT PRIMARY KEY)
CREATE TABLE t2 (id2 INT PRIMARY KEY);

The statement delimiter in the following CREATE SCHEMA statement is
placed after the first CREATE TABLE statement. As the statement delimiter
marks the end of the CREATE SCHEMA statement, the example is
interpreted as a two statement batch by the database server. Consequently, if
the statement creating tablet2 fails, the tablet1 is still created.

CREATE SCHEMA AUTHORIZATION sample_user
CREATE TABLE t1 (id1 INT PRIMARY KEY);
CREATE TABLE t2 (id2 INT PRIMARY KEY);

340

Chapter 4. SQL Statements

CREATE SERVER statement
Description Use this statement to add a server to the SYSSERVERS system table.

Syntax CREATE SERVER server-name
CLASS ’ server-class’
USING ’ connection-info’
[READ ONLY]

server-class :
ASAJDBC | ASEJDBC

| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC

connection-info :
{ machine-name:port-number [/dbname] | data-source-name }

Parameters CLASS clause Specifies the server class you want to use for a remote
connection. Server classes contain detailed server capability information. If
you are using NetWare, only the asajdbc class is supported.

USING clause If a JDBC-based server class is used, the USING clause is
of the formhostname:portnumber[/dbname], where:

♦ hostname is the machine the remote server runs on

♦ portnumber is the TCP/IP port number the remote server listens on.
The default port number for Adaptive Server Anywhere is 2638.

♦ dbname For Adaptive Server Anywhere remote servers, if you do not
specify adbname, then the default database is used. For Adaptive Server
Enterprise, the default is themasterdatabase, and an alternative to using
dbnameis to another database by some other means (for example, in the
FORWARD TO statement).

If an ODBC-based server class is used, the USING clause is the
data-source-name. The data-source-name is the ODBC Data Source Name.

On UNIX platforms, you need to reference the ODBC driver manager as
well. For example, using the supplied Merant drivers, the syntax is as
follows:

USING ’ driver=/opt/sybase/SYBSsa9/drivers/lib/libodbc.so;dsn=my_dsn’

READ ONLY The READ ONLY clause specifies that the remote server is a
read-only data source. Any update request is rejected by Adaptive Server
Anywhere.

Usage The CREATE SERVER statement defines a remote server from the Adaptive
Server Anywhere catalogs.

341

☞ For more information on server classes and how to configure a server,
see “Server Classes for Remote Data Access”[ASA SQL User’s Guide,
page 589].

Permissions Must have RESOURCE authority.

Not supported on Windows CE.

Side effects Automatic commit.

See also “ALTER SERVER statement” on page 241

“DROP SERVER statement” on page 415

“Server Classes for Remote Data Access”[ASA SQL User’s Guide,page 589]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Example The following example creates an Adaptive Server Anywhere remote server
named testasa, located on the machineappleand listening on port number
2638, use:

CREATE SERVER testasa
CLASS ’asajdbc’
USING ’apple:2638’

The following example creates a remote server for the JDBC-based Adaptive
Server named ase_prod. Its machine name is banana and port number
is 3025.

CREATE SERVER ase_prod
CLASS ’asejdbc’
USING ’banana:3025’

The following example creates a remote server for the Oracle server named
oracle723. Its ODBC Data Source Name isoracle723.

CREATE SERVER oracle723
CLASS ’oraodbc’
USING ’oracle723’

342

Chapter 4. SQL Statements

CREATE SERVICE statement
Description Use this statement to permit a database server to act as a web server.

Syntax CREATE SERVICE service-name TYPE service-type-string [attributes] [AS
statement]

attributes:
[AUTHORIZATION { ON | OFF }]
[SECURE { ON | OFF }]
[USER { user-name | NULL }]
[URL [PATH] { ON | OFF | ELEMENTS }]
[USING { SOAP-prefix | NULL }]

service-type-string:
{ ’ RAW’ | ’ HTML’ | ’ XML’ | ’ SOAP’ | ’ DISH’ }

Parameters service-name Web service names may be any sequence of alpha-numeric
characters or “/”, “-”, “_”, “.”, “!”, “~”, “*”, “”’, “(“, or “”)”, except that the
first character must not begin with a slash (/) and the name must not contain
two or more consecutive slash characters.

service-type-string Identifies the type of the serivce. The type must be
one of the listed service types. There is no default value.

AUTHORIZATION clause Determines whether users must specify a user
name and password when connecting to the service. If authorization is OFF,
the AS clause is required and a single user must be identified by the USER
clause. All requests are run using that user’s account and permissions.

If authorization is ON, all users must provide a user name and password.
Optionally, you may limit the users that are permitted to use the service by
providing a user or group name using the USER clause. If the user name is
NULL, all known users can access the service.

The default value is ON. It is recommended that production systems be run
with authorization turned on and that you grant permission to use the service
by adding users to a group.

SECURE clause Indicates whether unsecure connections are accepted.
ON indicates that only HTTPS connections are to be accepted. Service
requests received on the HTTP port are automatically redirected to the
HTTPS port. If set to OFF, both HTTP and HTTPS connections are
accepted. The default value is OFF.

USER clause If authorization is disabled, this parameter becomes
mandatory and specifies the user id used to execute all service requests. If
authorization is enabled (the default), this optional clause identified the user
or group permitted access to the service. The default value is NULL, which

343

grants access to all users.

URL clause Determines whether URI paths are accepted and, if so, how
they are processed. OFF indicates that nothing must follow the service name
in a URI request. ON indicates that the remainder of the URI is interpreted
as the value of a variable named url. ELEMENTS indicates that the
remainder of the URI path is to be split at the slash characters into a list of
up to 10 elements. The values are assigned to variables named url plus a
numeric suffix of between 1 and 10; for example, the first three variable
names are url1, url2, and url3. If fewer than 10 values are supplied, the
remaining variables are set to NULL. If the service name ends with the
character /, then URL must be set to OFF. The default value is OFF.

USING clause This clause applies only to DISH services. The parameter
specifies a name prefix. Only SOAP services whose names begin with this
prefix are handled.

statement If the statement is NULL, the URI must specify the statement to
be executed. Otherwise, the specified SQL statement is the only one that can
be executed through the service. The statement is mandatory for SOAP
services, and ignored for DISH services. The default value is NULL.

It is strongly recommended that all services run in production systems define
a statement. The statement can be NULL only if authorization is enabled.

Service types ♦ RAW The result set is sent to the client without any further formatting.
You can produce formatted documents by generating the required tags
explicitly within your procedure, as demonstrated in an example, below.

♦ HTML The result set of a statement or procedure are automatically
formatted into an HTML document that contains a table.

♦ XML The result set is assumed to be in XML format. If it is not already
so, it is automatically converted to XML RAW format.

♦ SOAP The request must be a valid Simple Object Access Protocol, or
SOAP, request. The result set is automatically formatted as a SOAP
response. For more information about the SOAP standards, see
www.w3.org/TR/SOAP.

♦ DISH A DetermIne SOAP Handler, or DISH, service acts as a proxy for
one or more SOAP services. In use, it acts as a container that holds and
provides access to a number of soap services. A Web Services
Description Language (WSDL) file is automatically generated for each of
the included SOAP services. The included SOAP services are identified
by a common prefix, which must be specified in the USING clause.

344

Chapter 4. SQL Statements

Usage The create service statement causes the database server to act as a web
server. A new entry is created in the SYSWEBSERVICE system table.

Permissions Must have DBA authority.

Side affects None.

See also “ALTER SERVICE statement” on page 243, “DROP SERVICE statement”
on page 416

Examples To quickly set up a web server, start a database server with the -xs switch,
then execute the following statement:

CREATE SERVICE tables TYPE ’HTML’
AUTHORIZATION OFF
USER DBA
AS SELECT *

FROM SYS.SYSTABLE

After executing this statement, use any web browser to open the URL
http://localhost/tables.

The following example demonstrates how to write a Hello World program.

CREATE PROCEDURE hello_world_proc
RESULT (html_doc long varchar)
BEGIN

CALL dbo.sa_set_http_header(’Content-Type’, ’text/html’);
SELECT ’<html> \n’

|| ’<head><title>Hello World</title></head> \n’
|| ’<body> \n’
|| ’<h1>Hello World!</h1> \n’
|| ’</body> \n’
|| ’</html> \n’;

END;

CREATE SERVICE hello_world TYPE ’RAW’
AUTHORIZATION OFF
USER DBA
AS CALL hello_world_proc;

345

CREATE STATISTICS statement
Description This statement should be used only in rare circumstances. It explicitly

recreates the statistics that are used by the optimizer.

Syntax CREATE STATISTICS table-name [(column-list)]

Usage This statement recreates the statistics that Adaptive Server Anywhere uses to
optimize database queries. These statistics analyze the distribution of data in
the database for the specified table. The process of running CREATE
STATISTICS is time-consuming because it performs ordered scans of the
entire table.

In rare circumstances, when your database queries are very variable, and
when data distribution is not uniform or the data is changing frequently, you
may improve performance by running CREATE STATISTICS against a table
or column. This causes an ordered scan of the table or column, using an
index if possible.

CREATE STATISTICS overwrites existing statistics. You do not need to
drop statistics before executing it.

CREATE STATISTICS creates histograms for the specified table, regardless
of the size of the table or the setting of
MIN_TABLE_SIZE_FOR_HISTOGRAM.

You can also create statistics using the LOAD TABLE statement.

Permissions Must have DBA authority.

Side effects Query plans will probably change.

See also “DROP STATISTICS statement” on page 418

“ALTER DATABASE statement” on page 225

“MIN_TABLE_SIZE_FOR_HISTOGRAM option [database]”[ASA
Database Administration Guide,page 609]

“LOAD TABLE statement” on page 486

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

346

Chapter 4. SQL Statements

CREATE SUBSCRIPTION statement [SQL Remote]
Description Use this statement to create a subscription for a user to a publication.

Syntax CREATE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id

publication-name: identifier

subscription-value, subscriber-id : string

subscriber-id : string

Usage In a SQL Remote installation, data is organized intopublications for
replication. In order to receive SQL Remote messages, asubscription must
be created for a user ID with REMOTE permissions.

If a string is supplied in the subscription, it is matched against each
SUBSCRIBE BY expression in the publication. The subscriber receives all
rows for which the value of the expression is equal to the supplied string.

In SQL Remote, publications and subscriptions are two-way relationships. If
you create a subscription for a remote user to a publication on a consolidated
database, you should also create a subscription for the consolidated database
on the remote database. The extraction utility carries this out automatically.

Parameters publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The subscriber receives all rows for which the
subscription expression matches the subscription value.

subscriber-id The user ID of the subscriber to the publication. This user
must have been granted REMOTE permissions.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “DROP SUBSCRIPTION statement [SQL Remote]” on page 419

“GRANT REMOTE statement [SQL Remote]” on page 463

“SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” on page 581

“START SUBSCRIPTION statement [SQL Remote]” on page 571

“sp_subscription procedure”[SQL Remote User’s Guide,page 431]

347

Example The following statement creates a subscription for the userp_chin to the
publicationpub_sales. The subscriber receives all rows for which the
subscription expression has a value ofEastern.

CREATE SUBSCRIPTION
TO pub_sales (’Eastern’)
FOR p_chin

348

Chapter 4. SQL Statements

CREATE SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to

subscribe a MobiLink user to a publication.

Syntax CREATE SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, . . .]

ml_username: identifier

network-parameters: string

sync-type: http | https | tcpip | ActiveSync

value: string | integer

Parameters TO clause Specify the name of a publication.

FOR clause Specify one or more MobiLink user names.ml_usernameis a
name identifying a remote database. This name must be unique.

☞ For more information about synchronization user names, see “About
MobiLink users”[MobiLink Synchronization User’s Guide,page 104].

Omit the FOR clause to set extended options, sync type and network
parameters for a publication.

☞ For information about how dbmlsync processes options that are
specified in different locations, see “Priority order for extended options and
connection parameters”[MobiLink Synchronization User’s Guide,page 180].

TYPE clause This clause specifies the communication protocol to use for
synchronization. The default protocol istcpip.

ADDRESS clause This clause specifies network parameters, including the
location of the MobiLink synchronization server.

☞ For a complete list of network parameters, see“CREATE
SYNCHRONIZATION USER statement [MobiLink]” on page 351.

OPTION clause This clause allows you to set extended options for the
subscription. If no FOR clause is provided, the extended options act as
default settings for the publication, and are overridden by any extended
options set for a synchronization user.

349

☞ For a complete list of options, see “-e extended options”[MobiLink
Synchronization Reference,page 44].

Usage Use this statement to create a synchronization subscription within a
MobiLink remote or reference database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side effects Automatic commit.

See also “CREATE PUBLICATION statement” on page 334

“CREATE SYNCHRONIZATION USER statement [MobiLink]” on
page 351

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Create a default subscription, which contains default subscription values, for
the sales publication (by omitting the FOR clause). Indicate the address of
the MobiLink synchronization server and specify that only the Certicom root
certificate is to be trusted.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS ’host=test.internal;port=2439;

security=ecc_tls’
OPTION memory=’2m’;

Subscribe MobiLink user ml_user1 to the sales publication. Set the memory
option to 3 Mb, rather than the value specified in the default publication.

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR ml_user1
OPTION memory=’3m’;

350

Chapter 4. SQL Statements

CREATE SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement in an Adaptive Server Anywhere remote database to

create a synchronization user.

Syntax CREATE SYNCHRONIZATION USER ml_username
[TYPE sync-type]
[ADDRESS network-parameters]
[OPTION option=value, . . .]

ml_username: identifier

sync-type: tcpip | http | https | ActiveSync

network-parameters: string

value: string | integer

Parameters ml_username A name identifying a remote database. This name must be
unique.

☞ For more information about synchronization user names, see “About
MobiLink users”[MobiLink Synchronization User’s Guide,page 104].

TYPE clause This clause specifies the communication protocol to use for
synchronization. The options aretcpip, http , https, andActiveSync. The
default protocol istcpip.

ADDRESS clause This clause specifiesnetwork-parametersin the form
keyword=value, separated by semi-colons. Which settings you supply
depends on the communication protocol you are using (TCP/IP, HTTP,
HTTPS, or ActiveSync).

♦ TCP/IP parameters If you specify the tcpip protocol, you can
optionally specify the followingnetwork-parameters:
• client_port=nnnnn or client_port=nnnnn-mmmmm A range of

client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall

• host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value islocalhost. For Windows CE, the default value is the value of
ipaddr in the registry folderComm\Tcpip\Hosts\ppp_peer. This allows
a Windows CE device to connect to a MobiLink synchronization server

351

executing on the desktop machine where the Windows CE device’s
cradle is connected.

For the Palm Computing Platform, the default value of localhost refers
to the device. It is recommended that an explicit host name or IP
address be specified.

• liveness_timeout=n The amount of time, in seconds, after a client
stops communicating before MobiLink recovers the connection. A
value of 0 means that there is no timeout. This option is only effective
if download acknowledgement on the client if set to off (the default).
The default is 120 seconds.

• port=portnumber The socket port number. The port number must be
a decimal number that matches the port the MobiLink synchronization
server is setup to monitor. The default is 2439, which is the IANA
registered port number for the MobiLink synchronization server.

• network_name=name Specify the network name so that you can use
MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run dbmlsync
without manually dialing a connection. The name should be the
network name that you have specified in the dropdown list in Settings
➤ Connections➤ Connections (Pocket PC) or Network & Dialup
Connections (Windows).

☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

• network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

• network_leave_open={0|1} When you specify network_name, you
can optionally specify that the connection should be left open after the
synchronization finishes (1). The default behavior is to close the
connection (0).

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted using the cipher suite specified. The
cipher can be one ofecc_tlsor rsa_tls. These refer to elliptic-curve
and RSA certification. For backwards compatibility,ecc_tlscan also
be specified ascerticom_tls.

352

Chapter 4. SQL Statements

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

The following security keywords are supported.

• certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on
the certificate matches this value.

• certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on
the certificate matches this value.

• certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name field
on the certificate matches this value.

• trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well as
the certificate of the entity that signed it, and so on up to a
self-signed root.
The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which root
certificates to trust. By default, the Sybase certificate is the trusted
root.

♦ HTTP parameters If you specify the http protocol, you can optionally
specify the followingnetwork-parameters:
• buffer_size=number The maximum body size for a fixed content

length message, in bytes. Changing the option will decrease or increase
the amount of memory allocated for sending content. The default is 65
535, except on UltraLite and Pocket PC, in which case it is 1 024.

• client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

• host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value islocalhost. For Windows CE, the default value is the value of
ipaddr in the registry folderComm\Tcpip\Hosts\ppp_peer. This allows

353

a Windows CE device to connect to a MobiLink synchronization server
executing on the desktop machine where the Windows CE device’s
cradle is connected.

For the Palm Computing Platform, the default value of localhost refers
to the device. It is recommended that an explicit host name or
IP address be specified.

• network_name=name Specify the network name so that you can use
MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run dbmlsync
without manually dialing a connection. The name should be the
network name that you have specified in the dropdown list in Settings
➤ Connections➤ Connections (Pocket PC) or Network & Dialup
Connections (Windows).

☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

• network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On
Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

• network_leave_open={0|1} When you specify network_name, you
can optionally specify that the connection should be left open after the
synchronization finishes (1). The default behavior is to close the
connection (0).

• persistent={0|1} 1 means that the client will attempt to use the same
TCP/IP connection for all HTTP requests in a synchronization. A
setting of 0 is more compatible with intermediate agents. The default is
1, except on Palm devices it is 0.

Note: Except on Palm devices, you should only set persistent to 1 if
you are connecting directly to MobiLink. If you are connecting
through an intermediate agent such as a proxy or redirector, a
persistent connection may cause problems.

• port=portnumber The socket port number. The port number must be
a decimal number that matches the port the MobiLink synchronization
server is set up to monitor. The default value for the port number is80,
which is the IANA registered port number for the MobiLink
synchronization server.

• proxy_host=proxy_hostname The host name or IP address of the
proxy server. The default value islocalhost.

354

Chapter 4. SQL Statements

• proxy_port=proxy_portnumber The port number of the proxy
server. The default value is80.

• security=cipher(keyword=value;. . .) All communication through
this connection is to be encrypted using the cipher suite specified. The
cipher can be one ofecc_tlsor rsa_tls. These refer to elliptic-curve
and RSA certification. For backwards compatibility,ecc_tlscan also
be specified ascerticom_tls.

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

The following security keywords are supported.

• certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on
the certificate matches this value.

• certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on
the certificate matches this value.

• certificate_name If you specify this parameter, the MobiLink
client only accepts server certificates when the common name field
on the certificate matches this value.

• trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink
synchronization server sends its certificate to the client, as well as
the certificate of the entity that signed it, and so on up to a
self-signed root.
The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which root
certificates to trust. By default, the Sybase certificate is the trusted
root.

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through a proxy server, the
suffix may be necessary in order to find the MobiLink synchronization
server. The default value isMobiLink .

• version=versionnumber A string specifying the version of HTTP to
use. You have a choice of1.0or 1.1. The default value is1.1.

♦ HTTPS parameters The HTTPS communication stream uses Certicom
RSA security.

355

Separately licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to
export regulations.

For more information about security, see “Transport-Layer Security”
[MobiLink Synchronization User’s Guide,page 337].

If you specify the HTTPS protocol, you can optionally specify the
following network-parameters:
• buffer_size=number The maximum body size for a fixed content

length message, in bytes. Changing the option will decrease or increase
the amount of memory allocated for sending content. The default is 65
535, except on UltraLite and Pocket PC, in which case it is 1 024.

• client_port=nnnnn or client_port=nnnnn-mmmmm A range of
client ports for communication. If only one value is specified, the end
of the range is 100 greater than the initial value, for a total of 101 ports.
The option can be useful for clients inside a firewall communicating
with a MobiLink synchronization server outside the firewall.

• host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is running. The default
value islocalhost. For Windows CE, the default value is the value of
ipaddr in the registry folderComm\Tcpip\Hosts\ppp_peer. This allows
a Windows CE device to connect to a MobiLink synchronization server
executing on the desktop machine where the Windows CE device’s
cradle is connected.
For the Palm Computing Platform, the default value of localhost refers
to the device. It is recommended that an explicit host name or
IP address be specified.

• network_name=name Specify the network name so that you can use
MobiLink’s auto-dial feature. This allows you to connect from a
Pocket PC 2002 or Windows desktop computer without manually
dialing. Used with scheduling, your remote can synchronize
unattended. Used without scheduling, this allows you to run dbmlsync
without manually dialing a connection. The name should be the
network name that you have specified in the dropdown list in Settings
➤ Connections➤ Connections (Pocket PC) or Network & Dialup
Connections (Windows).
☞ For more information about scheduling, see “Scheduling
synchronization”[MobiLink Synchronization User’s Guide,page 198].

• network_connect_timeout=seconds When you specify
network_name, you can optionally specify a timeout after which the
dial-up fails. This feature applies to Pocket PC 2002 only. (On

356

Chapter 4. SQL Statements

Windows, you control this feature by configuring the connection
profile.) The default is 120 seconds.

• network_leave_open={0|1} When you specify network_name, you
can optionally specify that the connection should be left open after the
synchronization finishes (1). The default behavior is to close the
connection (0).

• persistent={0|1} 1 means that the client will attempt to use the same
TCP/IP connection for all HTTP requests in a synchronization. A
setting of 0 is more compatible with intermediate agents. The default is
1, except on Palm devices it is 0.
Note: Except on Palm devices, you should only set persistent to 1 if
you are connecting directly to MobiLink. If you are connecting
through an intermediate agent such as a proxy or redirector, a
persistent connection may cause problems.

• port=portnumber The socket port number. The port number must be
a decimal number that matches the port the MobiLink synchronization
server is set up to monitor. The default value for the port parameter
is 443, which is the IANA registered port number for the MobiLink
synchronization server.

• proxy_host=proxy_hostname The host name or IP address of the
proxy server. The default value islocalhost.

• proxy_port=proxy_portnumber The port number of the proxy
server. The default value is443.

• certificate_company If you specify this parameter, the MobiLink
client only accepts server certificates when the organization field on the
certificate matches this value.

• certificate_unit If you specify this parameter, the MobiLink client
only accepts server certificates when the organization unit field on the
certificate matches this value.

• certificate_name If you specify this parameter, the MobiLink client
only accepts server certificates when the common name field on the
certificate matches this value.

• trusted_certificates When synchronization occurs through a
Certicom TLS synchronization stream, the MobiLink synchronization
server sends its certificate to the client, as well as the certificate of the
entity that signed it, and so on up to a self-signed root.
The client checks that the chain is valid and that it trusts the root
certificate in the chain. This feature allows you to specify which root
certificates to trust. By default, the Sybase certificate is the trusted root.
☞ For more information about security, see “Transport-Layer
Security” [MobiLink Synchronization User’s Guide,page 337].

357

• url_suffix=suffix The suffix to add to the URL on the first line of
each HTTPS request. When synchronizing through a proxy server, the
suffix may be necessary in order to find the MobiLink synchronization
server. The default value isMobiLink .

• version=versionnumber A string specifying the version of HTTP to
use. You have a choice of1.0or 1.1. The default value is1.1.

♦ ActiveSync parameters During ActiveSync synchronization,
ActiveSync is used to exchange data with the MobiLink provider for
ActiveSync, which resides on the desktop machine. The ActiveSync
parameters describe the communications between the MobiLink provider
for ActiveSync and the MobiLink synchronization server.

The address string for ActiveSync takes the following form:

stream= desktop-stream;[desktop-stream-params]

where:

• desktop-stream is the synchronization stream to use between the
MobiLink provider for ActiveSync and the MobiLink synchronization
server. It can behttp , https, or tcpip. The default setting istcpip.

• desktop-stream-paramsare TCP/IP, HTTP, or HTTPS parameters, as
described in the lists above.

☞ For more information, see “ActiveSync provider installation
utility” [MobiLink Synchronization Reference,page 300].

OPTION clause The OPTION clause allows you to set options using
option=valuein a comma-separated list.

The values for each option cannot contain equal signs or semicolons. The
database server accepts any option that you enter without checking for its
validity. Therefore, if you misspell an option or enter an invalid value, no
error message appears until you run the dbmlsync command to perform
synchronization.

Options set for a synchronization user can be overridden in individual
subscriptions or on the dbmlsync command line.

For complete information about extended options, see “-e extended options”
[MobiLink Synchronization Reference,page 44].

Description Thesync-type, network-parameters, andoptionscan be set in several places:

♦ on the dbmlsync command line using the -e or -eu options

♦ in Sybase Central

♦ using the following SQL statements:

358

Chapter 4. SQL Statements

• CREATE SYNCHRONIZATION SUBSCRIPTION

• ALTER SYNCHRONIZATION SUBSCRIPTION

• CREATE SYNCHRONIZATION USER

• ALTER SYNCHRONIZATION USER

• CREATE SYNCHRONIZATION SUBSCRIPTION without specifying
a synchronization user (this associates the values with a publication)

When you store extended options and connection parameters in the database,
dbmlsync reads the information from the database. If values are specified in
both the database and the command line, the value strings are combined. If
conflicting values are specified, dbmlsync resolves them as follows, where
values occurring earlier in the list take precedence over those occurring later
in the list.

♦ dbmlsync extended option -eu

♦ dbmlsync extended option -e

♦ specified on the subscription (whether by a SQL statement or in Sybase
Central)

♦ specified on the MobiLink user (whether by a SQL statement or in
Sybase Central)

♦ specified on the publication (whether by a SQL statement or in Sybase
Central)

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “ALTER SYNCHRONIZATION USER statement [MobiLink]” on page 248

“CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]”
on page 349

“CREATE PUBLICATION statement” on page 334

“-e extended options”[MobiLink Synchronization Reference,page 44]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Examples The following example creates a user named SSinger, who synchronizes
over TCP/IP with a server machine named mlserver.mycompany.com using
the password Sam. The use of a password in the user definition isnot secure.

359

CREATE SYNCHRONIZATION USER SSinger
TYPE http
ADDRESS ’host=mlserver.mycompany.com’
OPTION MobiLinkPwd=’Sam’

The following creates a synchronization user called factory014 that will
cause dbmlsync to hover and synchronize via Certicom-encrypted TCP/IP at
a random time in every 8-hour interval. The randomness helps prevent
performance degradation at the MobiLink server due to multiple
simultaneous synchronizations:

CREATE SYNCHRONIZATION USER factory014
TYPE tcpip
ADDRESS ’host=mycompany.manufacturing.mobilink1;security=certico

m_tls(certificate=mycompany_mobilink.crt;certificate_
password=thepassword)’

OPTION Schedule=’EVERY:08:00’

The following creates a synchronization user called sales5322 that will be
used to synchronize with HTTP. In this example, the MobiLink
synchronization server runs behind the corporate firewall, and
synchronization requests are redirected to it using the Redirector (a reverse
proxy to an NSAPI Web server).

CREATE SYNCHRONIZATION USER sales5322
TYPE https
ADDRESS ’host=www.mycompany.com;port=80;url_

suffix=mlredirect/ml/’

360

Chapter 4. SQL Statements

CREATE TABLE statement
Description Use this statement to create a new table in the database and, optionally, to

create a table on a remote server.

Syntax CREATE [GLOBAL TEMPORARY] TABLE [owner.]table-name
({ column-definition | table-constraint | pctfree }, . . .)
[{ IN | ON } dbspace-name]
[ON COMMIT { DELETE | PRESERVE } ROWS

| NOT TRANSACTIONAL]
[AT location-string]

column-definition :
column-name data-type [NOT NULL]
[DEFAULT default-value] [column-constraint . . .]

default-value :
special-value

| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| CURRENT UTC TIMESTAMP
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| TIMESTAMP
| UTC TIMESTAMP
| LAST USER

special-value:
CURRENT { DATE | TIME | TIMESTAMP

| UTC TIMESTAMP | USER | PUBLISHER }
| USER

column-constraint :
[CONSTRAINT constraint-name] {

UNIQUE
| PRIMARY KEY [CLUSTERED]
| REFERENCES table-name

[(column-name)] [actions] [CLUSTERED]
}
| [CONSTRAINT constraint-name] CHECK (condition)
| COMPUTE (expression)

361

table-constraint :
[CONSTRAINT constraint-name] {

UNIQUE (column-name, . . .)
| PRIMARY KEY [CLUSTERED] (column-name, . . .)
| CHECK (condition)
| foreign-key-constraint

}

foreign-key-constraint :
[NOT NULL] FOREIGN KEY [role-name] [(column-name, . . .)]
REFERENCES table-name [(column-name, . . .)] [CLUSTERED]
[actions] [CHECK ON COMMIT]

action :
ON { UPDATE | DELETE }
. . . { CASCADE | SET NULL | SET DEFAULT | RESTRICT }

location-string :
remote-server-name.[db-name].[owner].object-name

| remote-server-name;[db-name];[owner];object-name

pctfree : PCTFREE percent-free-space

percent-free-space : integer

Parameters PCTFREE Specifies the percentage of free space you want to reserve for
each table page. The free space is used if rows increase in size when the data
is updated. If there is no free space in a table page, every increase in the size
of a row on that page requires the row to be split across multiple table pages,
causing row fragmentation and possible performance degradation.

The valuepercent-free-spaceis an integer between 0 and 100. The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself. If PCTFREE is not set, 200 bytes are reserved in each page.

The value for PCTFREE is stored in the SYSATTRIBUTE system table.

☞ For more information, see“SYSATTRIBUTE system table” on
page 618.

IN clause The IN clause specifies the dbspace in which the table is to be
created. If the table is a GLOBAL TEMPORARY table, the IN clause is
ignored.

☞ For more information about dbspaces, see“CREATE DBSPACE
statement” on page 297.

ON COMMIT clause The ON COMMIT clause is allowed only for
temporary tables. By default, the rows of a temporary table are deleted on

362

Chapter 4. SQL Statements

COMMIT.

NOT TRANSACTIONAL The NOT TRANSACTIONAL clause is allowed
only for temporary tables. A table created using NOT TRANSACTIONAL
is not affected by either COMMIT or ROLLBACK.

The NOT TRANSACTIONAL clause provides performance improvements
in some circumstances because operations on non-transactional temporary
tables do not cause entries to be made in the rollback log. For example, NOT
TRANSACTIONAL may be useful if procedures that use the temporary
table are called repeatedly with no intervening COMMITs or ROLLBACKs.

AT clause Create a remote table on a different server specified by
location-stringand also a proxy table on the current database that maps to
the remote table. The AT clause supports the semicolon (;) as a field
delimiter in location-string. If no semicolon is present, a period is the field
delimiter. This allows filenames and extensions to be used in the database
and owner fields.

For example, the following statement maps the tablea1 to the MS Access
file mydbfile.mdb:

CREATE TABLE a1
AT ’access;d: \mydbfile.mdb;;a1’

☞ For information on remote servers, see“CREATE SERVER statement”
on page 341. For information on proxy tables, see“CREATE EXISTING
TABLE statement” on page 310and “Specifying proxy table locations”[ASA
SQL User’s Guide,page 569].

Foreign key definitions are ignored on remote tables. Foreign key definitions
on local tables that refer to remote tables are also ignored. Primary key
definitions are sent to the remote server if the server supports primary keys.

The COMPUTE clause is ignored for remote tables.

column-definition Define a column in the table. The following are part of
column definitions.

♦ column-name The column name is an identifier. Two columns in the
same table cannot have the same name. For more information, see
“Identifiers” on page 7.

♦ data-type For information on data types, see“SQL Data Types” on
page 51.

♦ NOT NULL If NOT NULL is specified, or if the column is in a
UNIQUE or PRIMARY KEY constraint, the column cannot contain
NULL in any row.

363

♦ DEFAULT For more information on thespecial-value, see“Special
values” on page 32.

If a DEFAULT value is specified, it is used as the value for the column in
any INSERT statement that does not specify a value for the column. If no
DEFAULT is specified, it is equivalent to DEFAULT NULL.

Some of the defaults require more description:

• AUTOINCREMENT When using AUTOINCREMENT, the column
must be one of the integer data types, or an exact numeric type.

On inserts into the table, if a value is not specified for the
AUTOINCREMENT column, a unique value larger than any other
value in the column is generated. If an INSERT specifies a value for
the column, it is used; if the specified value is larger than the current
maximum value for the column, that value will be used as a starting
point for subsequent inserts.

Deleting rows does not decrement the AUTOINCREMENT counter.
Gaps created by deleting rows can only be filled by explicit assignment
when using an insert. After an explicit insert of a row number less then
the maximum, subsequent rows without explicit assignment are still
automatically incremented with a value of one greater than the
previous maximum.

The next value to be used for each column is stored as an integer.
Using values greater than (231 – 1) may cause wraparound to incorrect
values, and AUTOINCREMENT should not be used in such cases.

You can find the most recently inserted value of the column by
inspecting the @@identity global variable.

The identity column is a Transact-SQL-compatible alternative to using
the AUTOINCREMENT default. In Adaptive Server Anywhere, the
identity column is implemented as AUTOINCREMENT default. For
information, see “The special IDENTITY column”[ASA SQL User’s
Guide,page 456].

• GLOBAL AUTOINCREMENT This default is intended for use when
multiple databases will be used in a SQL Remote replication or
MobiLink synchronization environment.

This default is similar to AUTOINCREMENT, except that the domain
is partitioned. Each partition contains the same number of values. You
assign each copy of the database a unique global database
identification number. Adaptive Server Anywhere supplies default
values in a database only from the partition uniquely identified by that
database’s number.

The partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may

364

Chapter 4. SQL Statements

be any positive integer, although the partition size is generally chosen
so that the supply of numbers within any one partition will rarely, if
ever, be exhausted.

If the column is of type BIGINT or UNSIGNED BIGINT, the default
partition size is 232 = 4294967296; for columns of all other types the
default partition size is 216 = 65536. Since these defaults may be
inappropriate, especially if our column is not of type INT or BIGINT,
it is best to specify the partition size explicitly.

When using this default, the value of the public option
Global_database_idin each database must be set to a unique,
non-negative integer. This value uniquely identifies the database and
indicates from which partition default values are to be assigned. The
range of allowed values isn p + 1 to (n + 1) p, wheren is the value of
the public optionGlobal_database_idandp is the partition size.
For example, if you define the partition size to be 1000 and set
Global_database_idto 3, then the range is from 3001 to 4000.

If the previous value is less than (n + 1) p, the next default value will
be one greater than the previous largest value in column. If the column
contains no values, the first default value isn p + 1. Default column
values are not affected by values in the column outside of the current
partition; that is, by numbers less thanpn + 1 or greater thanp(n + 1).
Such values may be present if they have been replicated from another
database via MobiLink synchronization.

Because the public optionGlobal_database_idcannot be set to
negative values, the values chosen are always positive. The maximum
identification number is restricted only by the column data type and the
partition size.

If the public optionGlobal_database_idis set to the default value of
2147483647, a null value is inserted into the column. Should null
values not be permitted, attempting to insert the row causes an error.
This situation arises, for example, if the column is contained in the
table’s primary key.

Null default values are also generated when the supply of values within
the partition has been exhausted. In this case, a new value of
Global_database_idshould be assigned to the database to allow
default values to be chosen from another partition. Attempting to insert
the null value causes an error if the column does not permit nulls. To
detect that the supply of unused values is low and handle this
condition, create an event of typeGlobalAutoincrement.
You cannot use DEFAULT GLOBAL AUTOINCREMENT in
databases created with version 6 or earlier software, even if they have
been upgraded.

365

• Constant expressions Constant expressions that do not reference
database objects are allowed in a DEFAULT clause, so functions such
as GETDATE or DATEADD can be used. If the expression is not a
function or simple value, it must be enclosed in parentheses.

• TIMESTAMP Provides a way of indicating when each row in the table
was last modified. When a column is declared with DEFAULT
TIMESTAMP, a default value is provided for inserts, and the value is
updated with the current date and time whenever the row is updated.
To provide a default value on insert, but not update the column
whenever the row is updated, use DEFAULT CURRENT
TIMESTAMP instead of DEFAULT TIMESTAMP.
☞ For more information on timestamp columns, see “The special
Transact-SQL timestamp column and data type”[ASA SQL User’s Guide,
page 454].
Columns declared with DEFAULT TIMESTAMP contain unique
values, so that applications can detect near-simultaneous updates to the
same row. If the current timestamp value is the same as the last value,
it is incremented by the value of the
DEFAULT_TIMESTAMP_INCREMENT option.
☞ For more information, see
“DEFAULT_TIMESTAMP_INCREMENT option [database]”[ASA
Database Administration Guide,page 589].
You can automatically truncate timestamp values in Adaptive Server
Anywhere based on the DEFAULT_TIMESTAMP_INCREMENT
option. This is useful for maintaining compatibility with other
database software that records less precise timestamp values.
For more information, see “TRUNCATE_TIMESTAMP_VALUES
option [database]”[ASA Database Administration Guide,page 631].
The global variable@@dbtsreturns a TIMESTAMP value
representing the last value generated for a column using DEFAULT
TIMESTAMP. For more information, see“Global variables” on
page 39.

• string For more information, see“Strings” on page 8.

• global-variable For more information, see“Global variables” on
page 39.

♦ column-constraint A column constraint restricts the values the column
can hold.

table-constraint A table constraint restricts the values that one or more
columns in the table can hold.

Constraints Column and table constraints help ensure the integrity of data
in the database. If a statement would cause a violation of a constraint,

366

Chapter 4. SQL Statements

execution of the statement does not complete, any changes made by the
statement before error detection are undone, and an error is reported.
Column constraints are abbreviations for the corresponding table constraints.

♦ For example, the following statements are equivalent:

CREATE TABLE Product (
product_num INTEGER UNIQUE

)
CREATE TABLE Product (

product_num INTEGER,
UNIQUE (product_num)

)

Column constraints are normally used unless the constraint references more
than one column in the table. In these cases, a table constraint must be used.

Constraints include the following:

♦ CHECK This allows arbitrary conditions to be verified. For example, a
check constraint could be used to ensure that a column calledSexonly
contains the values M or F.

No row in a table is allowed to violate a constraint. If an INSERT or
UPDATE statement would cause a row to violate a constraint, the
operation is not permitted and the effects of the statement are undone.

The change is rejected only if a constraint condition evaluates to FALSE,
the change is allowed if a constraint condition evaluates to TRUE or
UNKNOWN.

☞ For more information about TRUE, FALSE, and UNKNOWN
conditions, see“NULL value” on page 48and“Search conditions” on
page 22.

♦ COMPUTE The COMPUTE constraint is a column constraint only.
When a column is created using a COMPUTE constraint, its value in any
row is the value of the supplied expression. Columns created with this
constraint are read-only columns for applications: the value is changed
by the database server when the expression is evaluated.

Any UPDATE statement that attempts to change the value of a computed
column does fire any triggers associated with the column.

♦ UNIQUE Identifies one or more columns that uniquely identify each row
in the table. No two rows in the table can have the same values in all the
named column(s). A table may have more than one unique constraint.

There is a difference between a unique constraint and a unique index.
Columns of a unique index are allowed to be NULL, while columns in a
unique constraint are not. A foreign key can reference either a primary

367

key or a column with a unique constraint, but not a unique index, because
it can include multiple instances of NULL.

☞ For information about unique indexes, see“CREATE INDEX
statement” on page 319.

♦ PRIMARY KEY This is the same as a unique constraint, except that a
table can have only one primary key constraint. The primary key usually
identifies the best identifier for a row. For example, the customer number
might be the primary key for the customer table.

Columns included in primary keys cannot allow NULL. Each row in the
table has a unique primary key value. A table can have only one
PRIMARY KEY.

The order of the columns in a primary key is the order in which the
columns were created in the table, not the order in which they are listed
when the primary key is created.

☞ For more information about the CLUSTERED option and clustered
indexes, see “Using clustered indexes”[ASA SQL User’s Guide,page 59].

♦ Foreign key A foreign key constraint can be implemented using a
REFERENCES column constraint (single column only) or a FOREIGN
KEY table constraint. It restricts the values for a set of columns to match
the values in a primary key or, less commonly, a unique constraint of
another table (the primary table). For example, a foreign key constraint
could be used to ensure that a customer number in an invoice table
corresponds to a customer number in the customer table.

If you specifycolumn namein a REFERENCES column constraint, it
must be a column in the primary table, must be subject to a unique
constraint or primary key constraint, and that constraint must consist of
only that one column. If you do not specifycolumn-name, the foreign
key references the primary key of the primary table.

☞ For more information about the CLUSTERED option and clustered
indexes, see “Using clustered indexes”[ASA SQL User’s Guide,page 59].

If you do not explicitly define a foreign key column, it is created with the
same data type as the corresponding column in the primary table. These
automatically-created columns cannot be part of the primary key of the
foreign table. Thus, a column used in both a primary key and foreign key
of the same table must be explicitly created.

If foreign key column names are specified, then primary key column
names must also be specified, and the column names are paired according
to position in the lists. If the primary table column names are not
specified in a FOREIGN KEY table constraint, then the primary key
columns are used. If foreign key column names are not specified then the

368

Chapter 4. SQL Statements

foreign key columns are give the same names as the columns in the
primary table.

If at least one value in a multi-column foreign key is NULL, there is no
restriction on the values that can be held in other columns of the key.

A temporary table cannot have a foreign key that references a base table
and a base table cannot have a foreign key that references a temporary
table.

• NOT NULL Disallow NULL in the foreign key columns. A NULL in
a foreign key means that no row in the primary table corresponds to
this row in the foreign table.

• role-name The role name is the name of the foreign key. The main
function of the role name is to distinguish two foreign keys to the same
table. If no role name is specified, the role name is assigned as follows:

1. If there is no foreign key with a role name the same as the table
name, the table name is assigned as the role name.

2. If the table name is already taken, the role name is the table name
concatenated with a zero-padded three-digit number unique to the
table.

♦ action The referential integrity action defines the action to be taken to
maintain foreign key relationships in the database. Whenever a primary
key value is changed or deleted from a database table, there may be
corresponding foreign key values in other tables that should be modified
in some way. You can specify either an ON UPDATE clause, an ON
DELETE clause, or both, followed by one of the following actions:

• CASCADE When used with ON UPDATE, updates the
corresponding foreign keys to match the new primary key value. When
used with ON DELETE, deletes the rows from the foreign table that
match the deleted primary key.

• SET NULL Sets to NULL all the foreign key values that correspond
to the updated or deleted primary key.

• SET DEFAULT Sets foreign key values that match the updated or
deleted primary key value to values specified on the DEFAULT clause
of each foreign key column.

• RESTRICT Generates an error if an attempt is made to update or
delete a primary key value while there are corresponding foreign keys
elsewhere in the database. RESTRICT is the default action.

♦ CHECK ON COMMIT The CHECK ON COMMIT clause overrides the
WAIT_FOR_COMMIT database option, and causes the database server
to wait for a COMMIT before checking RESTRICT actions on a foreign

369

key. The CHECK ON COMMIT clause does not delay CASCADE, SET
NULL, or SET DEFAULT actions.

If you use CHECK ON COMMIT with out specifying any actions, then
RESTRICT is implied as an action for UPDATE and DELETE.

Usage The CREATE TABLE statement creates a new table. A table can be created
for another user by specifying an owner name. If GLOBAL TEMPORARY
is specified, the table is a temporary table. Otherwise, the table is a base
table.

The definition of a temporary table exists in the database, like that of a base
table, and remains in the database until it is explicitly removed by a DROP
TABLE statement. The rows in a temporary table are visible only to the
connection that inserted the rows. Multiple connections from the same or
different applications can use the same temporary table at the same time, and
each connection will see only its own rows. The rows of a temporary table
for a connection are deleted when the connection ends.

Permissions Must have RESOURCE authority.

Must have DBA authority to create a table for another user.

The AT clause to create proxy tables is not supported on Windows CE.

Side effects Automatic commit.

See also “ALTER TABLE statement” on page 250

“CREATE DBSPACE statement” on page 297

“CREATE EXISTING TABLE statement” on page 310

“DECLARE LOCAL TEMPORARY TABLE statement” on page 397

“DROP statement” on page 408

“Special values” on page 32

“SQL Data Types” on page 51

“Creating tables”[ASA SQL User’s Guide,page 37]

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

The following are vendor extensions:

• The { IN | ON } dbspace-nameclause.

• TheON COMMIT clause

• Some of the default values.

370

Chapter 4. SQL Statements

♦ Sybase Supported by Adaptive Server Enterprise, with some
differences.

• Temporary tables You can create a temporary table by preceding the
table name in a CREATE TABLE statement with a pound sign (#). In
Adaptive Server Anywhere, these are declared temporary tables, which
are available only in the current connection. For information, see
“DECLARE LOCAL TEMPORARY TABLE statement” on page 397.

• Physical placement Physical placement of a table is carried out
differently in Adaptive Server Anywhere and in Adaptive Server
Enterprise. TheON segment-nameclause supported by Adaptive
Server Enterprise is supported in Adaptive Server Anywhere, but
segment-namerefers to a dbspace name.

• Constraints Adaptive Server Anywhere does not support named
constraints or named defaults, but does support domains, which allow
constraint and default definitions to be encapsulated in the data type
definition. It also supports explicit defaults and CHECK conditions in
the CREATE TABLE statement.

• NULL default By default, columns in Adaptive Server Enterprise
default to NOT NULL, whereas in Adaptive Server Anywhere the
default setting is NULL. This setting can be controlled using the
ALLOW_NULLS_BY_DEFAULT database option. You should
explicitly specify NULL or NOT NULL to make your data definition
statements transferable between Adaptive Server Anywhere and
Adaptive Server Enterprise.

☞ For more information, see “ALLOW_NULLS_BY_DEFAULT
option [compatibility]” [ASA Database Administration Guide,page 574].

Example The following example creates a table for a library database to hold book
information.

CREATE TABLE library_books (
-- NOT NULL is assumed for primary key columns
isbn CHAR(20) PRIMARY KEY,
copyright_date DATE,
title CHAR(100),
author CHAR(50),
-- column(s) corresponding to primary key of room
-- are created automatically
FOREIGN KEY location REFERENCES room
)

The following example creates a table for a library database to hold
information on borrowed books. The default value for date_borrowed
indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

371

CREATE TABLE borrowed_book (
date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
date_returned DATE,
book CHAR(20)

REFERENCES library_books (isbn),
-- The check condition is UNKNOWN until
-- the book is returned, which is allowed
CHECK(date_returned >= date_borrowed)
)

The following example creates tables for a sales database to hold order and
order item information.

CREATE TABLE Orders (
order_num INTEGER NOT NULL PRIMARY KEY,
date_ordered DATE,
name CHAR(80)

);
CREATE TABLE Order_item (

order_num INTEGER NOT NULL,
item_num SMALLINT NOT NULL,
PRIMARY KEY (order_num, item_num),
-- When an order is deleted, delete all of its
-- items.
FOREIGN KEY (order_num)
REFERENCES Orders (order_num)
ON DELETE CASCADE

)

The following example creates a table named t1 at the remote server
SERVER_A and creates a proxy table named t1 that is mapped to the remote
table.

CREATE TABLE t1
(a INT,

b CHAR(10))
AT ’SERVER_A.db1.joe.t1’

372

Chapter 4. SQL Statements

CREATE TRIGGER statement
Description Use this statement to create a new trigger on a table.

Syntax CREATE TRIGGER trigger-name trigger-time trigger-event [, trigger-
event ,. . .]
[ORDER integer] ON table-name
[REFERENCING [OLD AS old-name]

[NEW AS new-name]]
[REMOTE AS remote-name]]

[FOR EACH { ROW | STATEMENT }]
[WHEN (search-condition)]

compound-statement

trigger-time : BEFORE | AFTER | RESOLVE

trigger-event :
DELETE | INSERT | UPDATE | UPDATE OF column-list

Parameters Trigger events Triggers can be fired by one or more of the following
events:

♦ DELETE Invoked whenever a row of the associated table is deleted.

♦ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger.

♦ UPDATE Invoked whenever a row of the associated table is updated.

♦ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in thecolumn-list is modified.

You may write separate triggers for each event that you need to handle or, if
you have some shared actions and some actions that depend on the event,
you can create a trigger for all events and use an IF statement to distinguish
the action taking place.

☞ For more information, see“IF statement” on page 467.

trigger-time Row-level triggers can be defined to execute BEFORE or
AFTER the insert, update, or delete. Statement-level triggers execute
AFTER the statement. The RESOLVE trigger time is for use with
SQL Remote: it fires before row-level UPDATE or UPDATE OF
column-lists only.

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

FOR EACH clause To declare a trigger as a row-level trigger, use the FOR
EACH ROW clause. To declare a trigger as a statement-level trigger, you

373

can either use a FOR EACH STATEMENT clause or omit the FOR EACH
clause. For clarity, it is recommended that you enter the FOR EACH
STATEMENT clause if declaring a statement-level trigger.

ORDER clause Triggers of the same type (insert, update, or delete) that
fire at the same time (before, after, or resolve) can use the ORDER clause to
determine the order that the triggers are fired.

REFERENCING clause The REFERENCING OLD and REFERENCING
NEW clauses allow you to refer to the inserted, deleted or updated rows. For
the purposes of this clause, an UPDATE is treated as a delete followed by an
insert.

An INSERT takes the REFERENCING NEW clause, which represents the
inserted row. There is no REFERENCING OLD clause.

A DELETE takes the REFERENCING OLD clause, which represents the
deleted row. There is no REFERENCING NEW clause.

An UPDATE takes the REFERENCING OLD clause, which represents the
row before the update, and it takes the REFERENCING NEW clause, which
represents the row after the update.

The meaning of REFERENCING OLD and REFERENCING NEW differs,
depending on whether the trigger is a row-level or a statement-level trigger.
For row-level triggers, the REFERENCING OLD clause allows you to refer
to the values in a row prior to an update or delete, and the REFERENCING
NEW clause allows you to refer to the inserted or updated values. The OLD
and NEW rows can be referenced in BEFORE and AFTER triggers. The
REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and
REFERENCING NEW clauses refer to declared temporary tables holding
the old and new values of the rows. The default names for these tables are
deletedandinserted.

The REFERENCING REMOTE clause is for use with SQL Remote. It
allows you to refer to the values in the VERIFY clause of an UPDATE
statement. It should be used only with RESOLVE UPDATE or RESOLVE
UPDATE OF column-list triggers.

WHEN clause The trigger fires only for rows where the search-condition
evaluates to true. The WHEN clause can be used only with row level
triggers.

Usage The CREATE TRIGGER statement creates a trigger associated with a table
in the database, and stores the trigger in the database.

374

Chapter 4. SQL Statements

The trigger is declared as either a row-level trigger, in which case it executes
before or after each row is modified, or as a statement-level trigger, in which
case it executes after the entire triggering statement is completed.

Permissions Must have RESOURCE authority and have ALTER permissions on the
table, or must be the owner of the table or have DBA authority. CREATE
TRIGGER puts a table lock on the table, and thus requires exclusive use of
the table.

Side effects Automatic commit.

See also “BEGIN statement” on page 267

“CREATE PROCEDURE statement” on page 324

“CREATE TRIGGER statement [T-SQL]” on page 380

“DROP statement” on page 408

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Standards and
compatibility

♦ SQL/92 Persistent stored module feature. Some clauses are vendor
extensions.

♦ SQL/99 Persistent Stored Module feature. Some clauses are vendor
extensions.

♦ Sybase This syntax is different to that supported by Adaptive Server
Enterprise.

Example The first example creates a row-level trigger. When a new department head
is appointed, update themanager_idcolumn for employees in that
department.

CREATE TRIGGER tr_manager
BEFORE UPDATE OF dept_head_id
ON department
REFERENCING OLD AS old_dept NEW AS new_dept
FOR EACH ROW
BEGIN

UPDATE employee
SET employee.manager_id=new_dept.dept_head_id
WHERE employee.dept_id=old_dept.dept_id

END

The next example, which is more complex, deals with a statement-level
trigger. First, create a table as follows:

375

CREATE TABLE "DBA"."t0"
(

"id" integer NOT NULL,
"times" timestamp NULL DEFAULT current timestamp,
"remarks" text NULL,
PRIMARY KEY ("id")

)

Next, create a statement-level trigger for this table:

create trigger DBA."insert-st" after insert order 4 on
DBA.t0
referencing new as new_name
for each statement
begin

declare @id1 integer;
declare @times1 timestamp;
declare @remarks1 long varchar;

declare @err_notfound exception for sqlstate value ’02000’;

//declare a cursor for table new_name
declare new1 cursor for

select id,times,remarks from
new_name;

open new1;
//Open the cursor, and get the value

LoopGetRow:
loop

fetch next new1
into @id1, @times1,@remarks1;

if sqlstate = @err_notfound then
leave LoopGetRow

end if;

//print the value or for other use
Print (@remarks1);

end loop LoopGetRow;
close new1

end

376

Chapter 4. SQL Statements

CREATE TRIGGER statement [SQL Remote]
Description Use this statement to create a new trigger in the database. One form of

trigger is designed specifically for use by SQL Remote.

Syntax CREATE TRIGGER trigger-name trigger-time
trigger-event , . . .
[ORDER integer] ON table-name
[REFERENCING [OLD AS old-name]

[NEW AS new-name]]
[REMOTE AS remote-name]]

[FOR EACH { ROW | STATEMENT }]
[WHEN (search-condition)]
[IF UPDATE (column-name) THEN
[{ AND | OR } UPDATE (column-name)] . . .]

compound-statement
[ELSEIF UPDATE (column-name) THEN
[{ AND | OR } UPDATE (column-name)] . . .

compound-statement
END IF]]

trigger-time:
BEFORE | AFTER | RESOLVE

trigger-event :
DELETE | INSERT | UPDATE
| UPDATE OF column-name [, column-name, . . .]

Parameters trigger-time Row-level triggers can be defined to execute BEFORE or
AFTER the insert, update, or delete. Statement-level triggers execute
AFTER the statement. The RESOLVE trigger time is for use with
SQL Remote: it fires before row-level UPDATE or UPDATE OF
column-lists only.

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

Trigger events Triggers can be fired by one or more of the following
events:

♦ DELETE Invoked whenever a row of the associated table is deleted.

♦ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger.

♦ UPDATE Invoked whenever a row of the associated table is updated.

♦ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in thecolumn-list is modified.

377

Usage Anywhere.

Permissions Must have RESOURCE authority and have ALTER permissions on the
table, or must have DBA authority. CREATE TRIGGER puts a table lock on
the table and thus requires exclusive use of the table.

Side effects Automatic commit.

See also “UPDATE statement” on page 592

Description The CREATE TRIGGER statement creates a trigger associated with a table
in the database and stores the trigger in the database.

BEFORE UPDATE triggers fire any time an update occurs on a row,
regardless of whether or not the new value differs from the old value.
AFTER UPDATE triggers will fire only if the new value is different from the
old value.

Row and statement-level
triggers

The trigger is declared as either a row-level trigger, in which case it executes
before or after each row is modified, or as a statement-level trigger, in which
case it executes after the entire triggering statement is completed.

Row-level triggers can be defined to execute BEFORE or AFTER the insert,
update, or delete. Statement-level triggers execute AFTER the statement.
The RESOLVE trigger time is for use with SQL Remote; it fires before
row-level UPDATE or UPDATE OF column-lists only.

To declare a trigger as a row-level trigger, use the FOR EACH ROW clause.
To declare a trigger as a statement-level trigger, you can either use a FOR
EACH STATEMENT clause or omit the FOR EACH clause. For clarity, it is
recommended that you enter the FOR EACH STATEMENT clause if
declaring a statement-level trigger.

Order of firing Triggers of the same type (insert, update, or delete) that fire at the same time
(before, after, or resolve) can use the ORDER clause to determine the order
that the triggers are fired.

Referencing deleted and
inserted values

The REFERENCING OLD and REFERENCING NEW clauses allow you to
refer to the deleted and inserted rows. For the purposes of this clause, an
UPDATE is treated as a delete followed by an insert.

The REFERENCING REMOTE clause is for use with SQL Remote. It
allows you to refer to the values in the VERIFY clause of an UPDATE
statement. It should be used only with RESOLVE UPDATE or RESOLVE
UPDATE OF column-list triggers.

The meaning of REFERENCING OLD and REFERENCING NEW differs,
depending on whether the trigger is a row-level or a statement-level trigger.
For row-level triggers, the REFERENCING OLD clause allows you to refer

378

Chapter 4. SQL Statements

to the values in a row prior to an update or delete, and the REFERENCING
NEW clause allows you to refer to the inserted or updated values. The OLD
and NEW rows can be referenced in BEFORE and AFTER triggers. The
REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and
REFERENCING NEW clauses refer to declared temporary tables holding
the old and new values of the rows. The default names for these tables are
deletedandinserted.

The WHEN clause causes the trigger to fire only for rows where the
search-condition evaluates to true.

Updating values with the
same value

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

Example ♦ When a new department head is appointed, update themanager_id
column for employees in that department.

CREATE TRIGGER
tr_manager BEFORE UPDATE OF dept_head_id ON department
REFERENCING OLD AS old_dept
NEW AS new_dept
FOR EACH ROW
BEGIN

UPDATE employee
SET employee.manager_id=new_dept.dept_head_id
WHERE employee.dept_id=old_dept.dept_id

END

379

CREATE TRIGGER statement [T-SQL]
Description Use this statement to create a new trigger in the database in a manner

compatible with Adaptive Server Enterprise.

Syntax 1 CREATE TRIGGER [owner.]trigger_name
ON [owner.]table_name
FOR { INSERT, UPDATE, DELETE }
AS statement-list

Syntax 2 CREATE TRIGGER [owner.]trigger_name
ON [owner.]table_name
FOR {INSERT, UPDATE}
AS
[IF UPDATE (column_name)
[{ AND | OR } UPDATE (column_name)] . . .]

statement-list
[IF UPDATE (column_name)
[{ AND | OR} UPDATE (column_name)] . . .]

statement-list

Usage The rows deleted or inserted are held in two temporary tables. In the
Transact-SQL form of triggers, they can be accessed using the table names
deleted, andinserted, as in Adaptive Server Enterprise. In the Watcom-SQL
CREATE TRIGGER statement, these rows are accessed using the
REFERENCING clause.

Trigger names must be unique in the database.

Transact-SQL triggers are executed AFTER the triggering statement.

Permissions Must have RESOURCE authority and have ALTER permissions on the
table, or must have DBA authority.

CREATE TRIGGER locks all the rows on the table, and thus requires
exclusive use of the table.

Side effects Automatic commit.

See also “CREATE TRIGGER statement” on page 373

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/92 Transact-SQL extension.

♦ Sybase Anywhere supports a subset of the Adaptive Server Enterprise
syntax.

380

Chapter 4. SQL Statements

CREATE VARIABLE statement
Description Use this statement to create a SQL variable.

Syntax CREATE VARIABLE identifier data-type

Usage The CREATE VARIABLE statement creates a new variable of the specified
data type. The variable contains the NULL value until it is assigned a
different value by the SET statement.

A variable can be used in a SQL expression anywhere a column name is
allowed. If a column name exists with the same name as the variable, the
variable value is used.

Variables belong to the current connection, and disappear when you
disconnect from the database or when you use the DROP VARIABLE
statement. Variables are not visible to other connections. Variables are not
affected by COMMIT or ROLLBACK statements.

Variables are useful for creating large text or binary objects for INSERT or
UPDATE statements from embedded SQL programs.

Local variables in procedures and triggers are declared within a compound
statement (see “Using compound statements”[ASA SQL User’s Guide,
page 634]).

Permissions None.

Side effects None.

See also “BEGIN statement” on page 267

“SQL Data Types” on page 51

“DROP VARIABLE statement” on page 422

“SET statement” on page 548

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example For an example, see“SET statement” on page 548

381

CREATE VIEW statement
Description Use this statement to create a view on the database. Views are used to give a

different perspective on the data, even though it is not stored that way.

Syntax CREATE VIEW
[owner.]view-name [(column-name, . . .)]
AS select-statement
[WITH CHECK OPTION]

Parameters view-name Theview-nameis an identifier. The default owner is the
current user ID.

column-name The columns in the view are given the names specified in
thecolumn-namelist. If the column name list is not specified, the view
columns are given names from the select list items. In order to use the names
from the select list items, each item must be a simple column name or have
an alias-name specified (see“SELECT statement” on page 541). All items
in the select list must have unique names.

AS clause The SELECT statement on which the view is based must not
have an ORDER BY clause on it. It may have a GROUP BY clause and may
be a UNION. The SELECT statement must not refer to local temporary
tables.

WITH CHECK OPTION clause The WITH CHECK OPTION clause
rejects any updates and inserts to the view that do not meet the criteria of the
views as defined by its SELECT statement.

Usage The CREATE VIEW statement creates a view with the given name. You can
create a view owned by another user by specifying theowner. You must
have DBA authority to create a view for another user.

A view name can be used in place of a table name in SELECT, DELETE,
UPDATE, and INSERT statements. Views, however, do not physically exist
in the database as tables. They are derived each time they are used. The view
is derived as the result of the SELECT statement specified in the
CREATE VIEW statement. Table names used in a view should be qualified
by the user ID of the table owner. Otherwise, a different user ID might not
be able to find the table or might get the wrong table.

Views can be updated unless the SELECT statement defining the view
contains a GROUP BY clause, an aggregate function, or involves a UNION
operation. An update to the view causes the underlying table(s) to be
updated.

Permissions Must have RESOURCE authority and SELECT permission on the tables in
the view definition.

382

Chapter 4. SQL Statements

Side effects Automatic commit.

See also “DROP statement” on page 408

“CREATE TABLE statement” on page 361

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following example creates a view showing information for male
employees only. This view has the same column names as the base table.

CREATE VIEW male_employee
AS SELECT *
FROM Employee
WHERE Sex = ’M’

The following example creates a view showing employees and the
departments they belong to.

CREATE VIEW emp_dept
AS SELECT emp_lname, emp_fname, dept_name
FROM Employee JOIN Department
ON Employee.dept_id = Department.dept_id

383

CREATE WRITEFILE statement
Description Use this statement to create a write file for a database.

Syntax CREATE WRITEFILE write-file-name
FOR DATABASE db-file-name [KEY key]
[LOG OFF | LOG ON [log-file-name [MIRROR mirror-file-name]]]

write-file-name | db-file-name | log-file-name | mirror-file-name : string

Usage Creates a database write file with the supplied name and attributes.

The file names (write-file-name, db-file-name, log-file-name,
mirror-file-name) are strings containing operating system file names.

☞ For information on strings, see“Strings” on page 8.

If you specify no path, or a relative path, the file is created relative to the
current working directory of the server.

You cannot create a write file for a database that is currently loaded.

Permissions The permissions required to execute this statement are set on the server
command line, using the-gu option. The default setting is to require DBA
authority.

The account under which the server is running must have write permissions
on the directories where files are created.

Not supported on Windows CE.

You must specify a KEY value if you want to create a writefile for a strongly
encrypted database.

Side effects An operating system file is created.

See also “CREATE DATABASE statement” on page 292

“The Write File utility” [ASA Database Administration Guide,page 551]

“Working with write files” [ASA Database Administration Guide,page 260]

“Encryption Key connection parameter [DBKEY]”[ASA Database
Administration Guide,page 190]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement creates a write file.

384

Chapter 4. SQL Statements

CREATE WRITEFILE ’c: \\sybase \\my_db.wrt’
FOR DATABASE ’c:\\sybase \\my_db.db’
LOG ON ’e:\\logdrive \\my_db.log’

385

DEALLOCATE statement
Description Use this statement to free resources associated with a cursor.

Syntax DEALLOCATE [CURSOR] cursor-name

cursor-name : identifier

Usage Frees all memory associated with a cursor, including the data items,
indicator variables, and the structure itself.

This option has no effect in Adaptive Server Anywhere. It is provided for
compatibility with Adaptive Server Enterprise and Microsoft SQL Server. In
Adaptive Server Enterprise, the CURSOR keyword is required. In Microsoft
SQL Server, the keyword is not permitted. Adaptive Server Anywhere
recognizes both forms.

Permissions None.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise.

386

Chapter 4. SQL Statements

DEALLOCATE DESCRIPTOR statement [ESQL]
Description Use this statement to free memory associated with a SQL descriptor area.

Syntax DEALLOCATE DESCRIPTOR descriptor-name

descriptor-name : string

Usage Frees all memory associated with a descriptor area, including the data items,
indicator variables, and the structure itself.

Permissions None.

Side effects None.

See also “ALLOCATE DESCRIPTOR statement [ESQL]” on page 223

“The SQL descriptor area (SQLDA)”[ASA Programming Guide,page 181]

“SET DESCRIPTOR statement [ESQL]” on page 554

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Example For an example, see“ALLOCATE DESCRIPTOR statement [ESQL]” on
page 223.

387

Declaration section [ESQL]
Description Use this statement to declare host variables in an embedded SQL program.

Host variables are used to exchange data with the database.

Syntax EXEC SQL BEGIN DECLARE SECTION ;
C declarations
EXEC SQL END DECLARE SECTION;

Usage A declaration section is simply a section of C variable declarations
surrounded by the BEGIN DECLARE SECTION and
END DECLARE SECTION statements. A declaration section makes the
SQL preprocessor aware of C variables that will be used as host variables.
Not all C declarations are valid inside a declaration section. See “Using host
variables”[ASA Programming Guide,page 153]for more information.

Permissions None.

See also “BEGIN statement” on page 267

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Compatible with Adaptive Server Enterprise.

Example EXEC SQL BEGIN DECLARE SECTION;
char *emp_lname, initials[5];
int dept;
EXEC SQL END DECLARE SECTION;

388

Chapter 4. SQL Statements

DECLARE statement
Description Use this statement to declare a SQL variable within a compound statement

(BEGIN . . . END).

Syntax DECLARE variable-name data-type

Usage Variables used in the body of a procedure, trigger, or batch can be declared
using the DECLARE statement. The variable persists for the duration of the
compound statement in which it is declared.

The body of a Watcom-SQL procedure or trigger is a compound statement,
and variables must be declared immediately following BEGIN. In a
Transact-SQL procedure or trigger, there is no such restriction.

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Supported by Adaptive Server Enterprise.

• To be compatible with Adaptive Server Enterprise, the variable name
must be preceded by an @.

• In Adaptive Server Enterprise, a variable that is declared in a
procedure or trigger exists for the duration of the procedure or trigger.
In Adaptive Server Anywhere, if a variable is declared inside a
compound statement, it exists only for the duration of that compound
statement (whether it is declared in a Watcom-SQL or Transact-SQL
compound statement).

Example The following batch illustrates the use of the DECLARE statement and
prints a message on the server window:

BEGIN
DECLARE varname CHAR(61);
SET varname = ’Test name’;
MESSAGE varname;

END

389

DECLARE CURSOR statement [ESQL] [SP]
Description Use this statement to declare a cursor. Cursors are the primary means for

manipulating the results of queries.

Syntax 1 [ESQL] DECLARE cursor-name
[UNIQUE]
[NO SCROLL

| DYNAMIC SCROLL
| SCROLL
| INSENSITIVE
| SENSITIVE

]
CURSOR FOR
{ select-statement
| statement-name

[FOR { UPDATE [cursor-concurrency] | READ ONLY }]
| call-statement }

Syntax 2 [SP] DECLARE cursor-name
[NO SCROLL

| DYNAMIC SCROLL
| SCROLL
| INSENSITIVE
| SENSITIVE

]
CURSOR FOR
{ select -statement
[FOR { UPDATE [cursor-concurrency] | READ ONLY }]
| call-statement
| USING variable-name }

cursor-name : identifier

statement-name : identifier | hostvar

variable-name : identifier

cursor-concurrency :
BY { VALUES | TIMESTAMP | LOCK }

Parameters UNIQUE When a cursor is declared UNIQUE, the query is forced to return
all the columns required to uniquely identify each row. Often this means
ensuring that all columns in the primary key or a uniqueness table constraint
are returned. Any columns that are required but were not specified in the
query are added to the result set.

A DESCRIBE done on a UNIQUE cursor sets the following additional flags

390

Chapter 4. SQL Statements

in the indicator variables:

♦ DT_KEY_COLUMN The column is part of the key for the row

♦ DT_HIDDEN_COLUMN The column was added to the query because
it was required to uniquely identify the rows

NO SCROLL A cursor declared NO SCROLL is restricted to moving
forwards through the result set using FETCH NEXT and
FETCH RELATIVE 0 seek operations.

As rows cannot be returned to once the cursor leaves the row, there are no
sensitivity restrictions on the cursor. Consequently, when a NO SCROLL
cursor is requested, Adaptive Server Anywhere supplies the most efficient
kind of cursor, which is an asensitive cursor.

☞ For more information, see “Asensitive cursors”[ASA Programming Guide,
page 38].

DYNAMIC SCROLL DYNAMIC SCROLL is the default cursor type.
DYNAMIC SCROLL cursors can use all formats of the FETCH statement.

When a DYNAMIC SCROLL cursor is requested, Adaptive Server
Anywhere supplies an asensitive cursor. When using cursors there is always
a trade-off between efficiency and consistency. Asensitive cursors provide
efficient performance at the expense of consistency.

☞ For more information, see “Asensitive cursors”[ASA Programming Guide,
page 38].

SCROLL A cursor declared SCROLL can use all formats of the FETCH
statement. When a SCROLL cursor is requested, Adaptive Server Anywhere
supplies a value-sensitive cursor.

☞ For more information, see “Value-sensitive cursors”[ASA Programming
Guide,page 39].

Adaptive Server Anywhere must execute value-sensitive cursors in such a
way that result set membership is guaranteed. DYNAMIC SCROLL cursors
are more efficient and should be used unless the consistent behavior of
SCROLL cursors is required.

INSENSITIVE A cursor declared INSENSITIVE has its membership fixed
when it is opened; a temporary table is created with a copy of all the original
rows. FETCHING from an INSENSITIVE cursor does not see the effect of
any other INSERT, UPDATE, or DELETE statement, or any other PUT,
UPDATE WHERE CURRENT, DELETE WHERE CURRENT operations
on a different cursor. It does see the effect of PUT, UPDATE WHERE
CURRENT, DELETE WHERE CURRENT operations on the same cursor.

391

☞ For more information, see “Insensitive cursors”[ASA Programming Guide,
page 35].

SENSITIVE A cursor declared SENSITIVE is sensitive to changes to
membership or values of the result set.

For more information, see “Sensitive cursors”[ASA Programming Guide,
page 36].

FOR statement-name Statements are named using the PREPARE
statement. Cursors can be declared only for a prepared SELECT or CALL.

FOR UPDATE | READ ONLY A cursor declared FOR READ ONLY may
not be used in an UPDATE (positioned) or a DELETE (positioned)
operation. FOR UPDATE is the default.

In response to any request for a cursor that specifies FOR UPDATE,
Adaptive Server Anywhere provides either a value-sensitive cursor or an
asensitive cursor. Insensitive and asensitive cursors are not updateable.

USING variable-name For use within stored procedures only. The variable
is a string containing a SELECT statement for the cursor. The variable must
be available when the DECLARE is processed, and so must be one of the
following:

♦ A parameter to the procedure. For example,

create function get_row_count(in qry long varchar)
returns int
begin

declare crsr cursor using qry;
declare rowcnt int;

set rowcnt = 0;
open crsr;
lp: loop

fetch crsr;
if SQLCODE <> 0 then leave lp end if;
set rowcnt = rowcnt + 1;

end loop;
return rowcnt;

end

♦ Nested inside another BEGIN. . . END after the variable has been
assigned a value. For example,

392

Chapter 4. SQL Statements

create procedure get_table_name(
in id_value int, out tabname char(128)

)
begin

declare qry long varchar;

set qry = ’select table_name from SYS.SYSTABLE ’ ||
’where table_id=’ || string(id_value);

begin
declare crsr cursor using qry;

open crsr;
fetch crsr into tabname;
close crsr;

end
end

Usage The DECLARE CURSOR statement declares a cursor with the specified
name for a SELECT statement or a CALL statement.

Permissions None.

Side effects None.

See also “PREPARE statement [ESQL]” on page 508

“OPEN statement [ESQL] [SP]” on page 498

“EXPLAIN statement [ESQL]” on page 434

“SELECT statement” on page 541

“CALL statement” on page 273

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Example The following example illustrates how to declare a scroll cursor in
Embedded SQL:

EXEC SQL DECLARE cur_employee SCROLL CURSOR
FOR SELECT * FROM employee;

The following example illustrates how to declare a cursor for a prepared
statement in Embedded SQL:

EXEC SQL PREPARE employee_statement
FROM ’SELECT emp_lname FROM employee’;
EXEC SQL DECLARE cur_employee CURSOR
FOR employee_statement;

393

The following example illustrates the use of cursors in a stored procedure:

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee;

DECLARE name CHAR(40);
OPEN cur_employee;
LOOP

FETCH NEXT cur_employee INTO name;
...

END LOOP
CLOSE cur_employee;

END

394

Chapter 4. SQL Statements

DECLARE CURSOR statement [T-SQL]
Description Use this statement to declare a cursor in a manner compatible with Adaptive

Server Enterprise.

Syntax DECLARE cursor-name
CURSOR FOR select-statement
[FOR { READ ONLY | UPDATE }]

cursor-name : identifier

select-statement : string

Usage Adaptive Server Anywhere supports a DECLARE CURSOR syntax that is
not supported in Adaptive Server Enterprise. For information on the full
DECLARE CURSOR syntax, see“DECLARE CURSOR statement [ESQL]
[SP]” on page 390.

This section describes the overlap between the Adaptive Server Anywhere
and Enterprise flavors of DECLARE CURSOR.

Permissions None.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

Standards and
compatibility

♦ SQL/92 Entry-level feature. The FOR UPDATE and
FOR READ ONLY options are Transact-SQL extensions.

♦ SQL/92 Core feature. The FOR UPDATE and FOR READ ONLY
options are Transact-SQL extensions.

♦ Sybase There are some features of the Adaptive Server Enterprise
DECLARE CURSOR statement that are not supported in Adaptive
Server Anywhere.
• Adaptive Server Enterprise supports cursors opened for update of a list

of columns from the tables specified in theselect-statement. This is not
supported in Adaptive Server Anywhere.

• In the Watcom-SQL dialect, a DECLARE CURSOR statement in a
procedure, trigger, or batch must immediately follow the BEGIN
keyword. In the Transact-SQL dialect, there is no such restriction.

• In Adaptive Server Enterprise, when a cursor is declared in a
procedure, trigger, or batch, it exists for the duration of the procedure,
trigger, or batch. In Adaptive Server Anywhere, if a cursor is declared
inside a compound statement, it exists only for the duration of that
compound statement (whether it is declared in a Watcom-SQL or
Transact-SQL compound statement).

395

• CURSORtype (UNIQUE, NO SCROLL, and so on) and CURSOR
FORstatement-nameare not supported in Adaptive Server Anywhere.

396

Chapter 4. SQL Statements

DECLARE LOCAL TEMPORARY TABLE statement
Description Use this statement to declare a local temporary table.

Syntax DECLARE LOCAL TEMPORARY TABLE table-name
({ column-definition [column-constraint . . .] | table-constraint | pctfree

}, . . .)
[ON COMMIT { DELETE | PRESERVE } ROWS

| NOT TRANSACTIONAL]

pctfree : PCTFREE percent-free-space

percent-free-space : integer

Parameters ON COMMIT By default, the rows of a temporary table are deleted on a
COMMIT. You can use the ON COMMIT clause to preserve rows on a
COMMIT.

NOT TRANSACTIONAL A table created using this clause is not affected by
either COMMIT or ROLLBACK. The clause is useful if procedures that use
the temporary table are called repeatedly with no intervening COMMITs or
ROLLBACKs.

The NOT TRANSACTIONAL clause provides performance improvements
in some circumstances because operations on non-transactional temporary
tables do not cause entries to be made in the rollback log. For example, NOT
TRANSACTIONAL may be useful if procedures that use the temporary
table are called repeatedly with no intervening COMMITs or ROLLBACKs.

PCTFREE Specifies the percentage of free space you want to reserve for
each table page. The free space is used if rows increase in size when the data
is updated. If there is no free space in a table page, every increase in the size
of a row on that page requires the row to be split across multiple table pages,
causing row fragmentation and possible performance degradation.

The valuepercent-free-spaceis an integer between 0 and 100.The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself. If PCTFREE is not set, 200 bytes are reserved in each page.

Usage The DECLARE LOCAL TEMPORARY TABLE statement declares a
temporary table. For definitions ofcolumn-definition, column-constraint,
andtable-constraint, see“CREATE TABLE statement” on page 361.

Declared local temporary tables within compound statements exist within
the compound statement. (See “Using compound statements”[ASA SQL
User’s Guide,page 634]). Otherwise, the declared local temporary table exists
until the end of the connection.

397

The rows of a declared temporary table are deleted when the table is
explicitly dropped and when the table goes out of scope. You can also
explicitly delete rows using TRUNCATE or DELETE.

Permissions None.

Side effects None.

See also “CREATE TABLE statement” on page 361

“Using compound statements”[ASA SQL User’s Guide,page 634]

Standards and
compatibility

♦ SQL/92 Conforms to the SQL/92 standard.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Adaptive Server Enterprise does not support DECLARE
TEMPORARY TABLE.

Example The following example illustrates how to declare a temporary table in
Embedded SQL:

EXEC SQL DECLARE LOCAL TEMPORARY TABLE MyTable (
number INT

);

The following example illustrates how to declare a temporary table in a
stored procedure:

BEGIN
DECLARE LOCAL TEMPORARY TABLE TempTab (

number INT
);
...

END

398

Chapter 4. SQL Statements

DELETE statement
Description Use this statement to delete rows from the database.

Syntax DELETE [FIRST | TOP n]
[FROM] [owner.]table-name
[FROM table-list]
[WHERE search-condition]

Usage The DELETE statement deletes all the rows from the named table that
satisfy the search condition. If no WHERE clause is specified, all rows from
the named table are deleted.

The DELETE statement can be used on views, provided the SELECT
statement defining the view has only one table in the FROM clause and does
not contain a GROUP BY clause, an aggregate function, or involve a
UNION operation.

The optional second FROM clause in the DELETE statement allows rows to
be deleted based on joins. If the second FROM clause is present, the
WHERE clause qualifies the rows of this second FROM clause. Rows are
deleted from the table name given in the first FROM clause.

☞ The second FROM clause can contain arbitrary complex table
expressions, such as KEY and NATURAL joins. For a full description of the
FROM clause and joins, see“FROM clause” on page 445.

The following statement illustrates a potential ambiguity in table names in
DELETE statements with two FROM clauses that use correlation names:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

The table table_1 is identified without a correlation name in the first FROM
clause, but with a correlation name in the second FROM clause. In this case,
table_1 in the first clause is identified with alias_1 in the second
clause—there is only one instance of table_1 in this statement.

This is an exception to the general rule that where a table is identified with a
correlation name and without a correlation name in the same statement, two
instances of the table are considered.

Consider the following example:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

399

In this case, there are two instances of table_1in the second FROM clause.
The statement will fail with a syntax error as it is ambiguous which instance
of the table_1 from the second FROM clause matches the first instance of
table_1 in the first FROM clause.

Deleting a significant amount of data using the DELETE statement will also
update column statistics.

Permissions Must have DELETE permission on the table.

Side effects None.

See also “TRUNCATE TABLE statement” on page 584

“INSERT statement” on page 476

“INPUT statement [Interactive SQL]” on page 472

“FROM clause” on page 445

Standards and
compatibility

♦ SQL/92 Entry-level compliant. The use of more than one table in the
FROM clause is a vendor extension.

♦ SQL/99 Core feature. The use of more than one table in the FROM
clause is a vendor extension.

♦ Sybase Supported by Adaptive Server Enterprise, including the vendor
extension.

Example Remove employee 105 from the database.

DELETE
FROM employee
WHERE emp_id = 105

Remove all data prior to 2000 from thefin_data table.

DELETE
FROM fin_data
WHERE year < 2000

Remove all orders fromsales_order_itemstable if their ship date is older
than 2001-01-01 and their region is Central.

DELETE
FROM sales_order_items
FROM sales_order
WHERE sales_order_items.id = sales_order.id

and ship_date < ’2001-01-01’ and region =’Central’

400

Chapter 4. SQL Statements

DELETE (positioned) statement [ESQL] [SP]
Description Use this statement to delete the data at the current location of a cursor.

Syntax DELETE [FROM table-spec] WHERE CURRENT OF cursor-name

cursor-name : identifier | hostvar

table-spec : [owner.]correlation-name

owner : identifier

Usage This form of the DELETE statement deletes the current row of the specified
cursor. The current row is defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

♦ If no FROM clause is included, the cursor must be on a single table only.

♦ If the cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

♦ If a FROM clause is included, and no table owner is specified,table-spec
is first matched against any correlation names.

• If a correlation name exists,table-specis identified with the correlation
name.

• If a correlation name does not exist,table-specmust be unambiguously
identifiable as a table name in the cursor.

♦ If a FROM clause is included, and a table owner is specified,table-spec
must be unambiguously identifiable as a table name in the cursor.

♦ The positioned DELETE statement can be used on a cursor open on a
view as long as the view is updateable.

Permissions Must have DELETE permission on tables used in the cursor.

Side effects None.

See also “UPDATE statement” on page 592

“UPDATE (positioned) statement [ESQL] [SP]” on page 597

“INSERT statement” on page 476

“PUT statement [ESQL]” on page 513

Standards and
compatibility

401

♦ SQL/92 Entry-level feature. The range of cursors that can be updated
may contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ SQL/99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ Sybase Embedded SQL use is supported by Open Client/Open Server.
Procedure and trigger use is supported only in Adaptive Server
Anywhere.

Example The following statement removes the current row from the database.

DELETE
WHERE CURRENT OF cur_employee

402

Chapter 4. SQL Statements

DESCRIBE statement [ESQL]
Description Use this statement to get information about the host variables required to

store data retrieved from the database, or host variables required to pass data
to the database.

Syntax DESCRIBE
[USER TYPES]
[ALL | BIND VARIABLES FOR | INPUT | OUTPUT
| SELECT LIST FOR]
[LONG NAMES [long-name-spec] | WITH VARIABLE RESULT]
[FOR] { statement-name | CURSOR cursor-name }
INTO sqlda-name

long-name-spec :
OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN

statement-name : identifier | hostvar

cursor-name : declared cursor

sqlda-name : identifier

Parameters USER TYPES A DESCRIBE statement with the USER TYPES clause
returns information about domains of a column. Typically, such a
DESCRIBE will be done when a previous DESCRIBE returns an indicator
of DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER
TYPES keywords, except that thesqlnamefield holds the name of the
domain, instead of the name of the column.

If the DESCRIBE uses the LONG NAMES clause, thesqldatafield holds
this information.

ALL DESCRIBE ALL allows you to describe INPUT and OUTPUT with
one request to the database server. This has a performance benefit. The
INPUT information will be filled in the SQLDA first, followed by the
OUTPUT information. Thesqld field contains the total number of INPUT
and OUTPUT variables. The DT_DESCRIBE_INPUT bit in the indicator
variable is set for INPUT variables and clear for OUTPUT variables.

INPUT A bind variable is a value supplied by the application when the
database executes the statements. Bind variables can be considered
parameters to the statement. DESCRIBE INPUT fills in the name fields in
the SQLDA with the bind variable names. DESCRIBE INPUT also puts the
number of bind variables in thesqld field of the SQLDA.

DESCRIBE uses the indicator variables in the SQLDA to provide additional

403

information. DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits
that are set in the indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter.
Procedure RESULT columns will have both bits clear. After a describe
OUTPUT, these bits can be used to distinguish between statements that have
result sets (need to use OPEN, FETCH, RESUME, CLOSE) and statements
that do not (need to use EXECUTE). DESCRIBE INPUT only sets
DT_PROCEDURE_IN and DT_PROCEDURE_OUT appropriately when a
bind variable is an argument to a CALL statement; bind variables within an
expression that is an argument in a CALL statement will not set the bits.

OUTPUT The DESCRIBE OUTPUT statement fills in the data type and
length for each select list item in the SQLDA. The name field is also filled in
with a name for the select list item. If an alias is specified for a select list
item, the name will be that alias. Otherwise, the name will be derived from
the select list item: if the item is a simple column name, it will be used;
otherwise, a substring of the expression will be used. DESCRIBE will also
put the number of select list items in thesqld field of the SQLDA.

If the statement being described is a UNION of two or more SELECT
statements, the column names returned for DESCRIBE OUTPUT are the
same column names which would be returned for the first SELECT
statement.

If you describe a CALL statement, the DESCRIBE OUTPUT statement fills
in the data type, length, and name in the SQLDA for each INOUT or OUT
parameter in the procedure. DESCRIBE OUTPUT also puts the number of
INOUT or OUT parameters in thesqld field of the SQLDA.

If you describe a CALL statement with a result set, the DESCRIBE
OUTPUT statement fills in the data type, length, and name in the SQLDA
for each RESULT column in the procedure definition. DESCRIBE OUTPUT
will also put the number of result columns in thesqld field of the SQLDA.

LONG NAMES The LONG NAMES clause is provided to retrieve column
names for a statement or cursor. Without this clause, there is a 29-character
limit on the length of column names; with the clause, names of an arbitrary
length are supported.

If LONG NAMES is used, the long names are placed into the SQLDATA
field of the SQLDA, as if you were fetching from a cursor. None of the other
fields (SQLLEN, SQLTYPE, and so on) are filled in. The SQLDA must be
set up like a FETCH SQLDA: it must contain one entry for each column,
and the entry must be a string type. If there is an indicator variable,
truncation is indicated in the usual fashion.

404

Chapter 4. SQL Statements

The default specification for the long names isTABLE.COLUMN .

WITH VARIABLE RESULT This clause is used to describe procedures that
may have more than one result set, with different numbers or types of
columns.

If WITH VARIABLE RESULT is used, the database server sets the
SQLCOUNT value after the DESCRIBE statement to one of the following
values:

♦ 0 The result set may change. The procedure call should be described
again following each OPEN statement.

♦ 1 The result set is fixed. No redescribing is required.

☞ For more information on the use of the SQLDA structure, see “The SQL
descriptor area (SQLDA)”[ASA Programming Guide,page 181].

Usage The DESCRIBE statement sets up the named SQLDA to describe either the
OUTPUT (equivalently SELECT LIST) or the INPUT (BIND
VARIABLES) for the named statement.

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data
types in the SQLDA: this needs to be done by the application. The ALL
keyword allows you to describe INPUT and OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously
prepared using the PREPARE statement with the same statement name and
the SQLDA must have been previously allocated (see the“ALLOCATE
DESCRIPTOR statement [ESQL]” on page 223).

If you specify a cursor name, the cursor must have been previously declared
and opened. The default action is to describe the OUTPUT. Only SELECT
statements and CALL statements have OUTPUT. A DESCRIBE OUTPUT
on any other statement, or on a cursor that is not a dynamic cursor, indicates
no output by setting thesqld field of the SQLDA to zero.

Permissions None.

Side effects None.

See also “ALLOCATE DESCRIPTOR statement [ESQL]” on page 223

“DECLARE CURSOR statement [ESQL] [SP]” on page 390

“OPEN statement [ESQL] [SP]” on page 498

“PREPARE statement [ESQL]” on page 508

Standards and
compatibility

♦ SQL/92 Part of the SQL/92 standard. Some clauses are vendor
extensions.

405

♦ SQL/99 Core feature. Some clauses are vendor extensions.

♦ Sybase Some clauses supported by Open Client/Open Server.

Example The following example shows how to use the DESCRIBE statement:

sqlda = alloc_sqlda(3);
EXEC SQL DESCRIBE OUTPUT

FOR employee_statement
INTO sqlda;

if(sqlda->sqld > sqlda->sqln) {
actual_size = sqlda->sqld;
free_sqlda(sqlda);
sqlda = alloc_sqlda(actual_size);
EXEC SQL DESCRIBE OUTPUT

FOR employee_statement
INTO sqlda;

}

406

Chapter 4. SQL Statements

DISCONNECT statement [ESQL] [Interactive SQL]
Description Use this statement to drop the current connection to a database.

Syntax DISCONNECT [connection-name | CURRENT | ALL]

connection-name : identifier , string, or hostvar

Usage The DISCONNECT statement drops a connection with the database server
and releases all resources used by it. If the connection to be dropped was
named on the CONNECT statement, the name can be specified. Specifying
ALL will drop all of the application’s connections to all database
environments. CURRENT is the default, and will drop the current
connection.

An implicit ROLLBACK is executed on connections that are dropped.

☞ For information on dropping connections other than the current
connection, see“DROP CONNECTION statement” on page 411.

Permissions None.

Side effects None.

See also “CONNECT statement [ESQL] [Interactive SQL]” on page 287

“SET CONNECTION statement [Interactive SQL] [ESQL]” on page 553

Standards and
compatibility

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Supported by Open Client/Open Server.

Example The following statement shows how to use DISCONNECT in Embedded
SQL:

EXEC SQL DISCONNECT :conn_name

The following statement shows how to use DISCONNECT from
Interactive SQL to disconnect all connections:

DISCONNECT ALL

407

DROP statement
Description Use this statement to remove objects from the database.

Syntax DROP
{ DATATYPE | DOMAIN } datatype-name

| DBSPACE dbspace-name
| EVENT event-name
| FUNCTION [owner.]function-name
| INDEX [[owner.]table-name.]index-name
| MESSAGE msgnum
| PROCEDURE [owner.]procedure-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]table-name.]trigger-name
| VIEW [owner.]view-name

Usage The DROP statement removes the definition of the indicated database
structure. If the structure is a dbspace, all tables in that dbspace must be
dropped prior to dropping the dbspace. If the structure is a table, all data in
the table is automatically deleted as part of the dropping process. Also, all
indexes and keys for the table are dropped by the DROP TABLE statement.

DROP TABLE, DROP INDEX, and DROP DBSPACE are prevented
whenever the statement affects a table that is currently being used by another
connection.

DROP PROCEDURE and DROP FUNCTION are prevented when the
procedure or function is in use by another connection.

DROP DATATYPE is prevented if the data type is used in a table. You must
change data types on all columns defined on the domain in order to drop the
data type. It is recommended that you use DROP DOMAIN rather than
DROP DATATYPE, as DROP DOMAIN is the syntax used in the ANSI/ISO
SQL3 draft.

Permissions Any user who owns the object, or has DBA authority, can execute the DROP
statement.

For DROP DBSPACE, you must be the only connection to the database.

A user with ALTER permissions on the table can execute DROP TRIGGER.

A user with REFERENCES permissions on the table can execute DROP
INDEX.

Global temporary tables cannot be dropped unless all users that have
referenced the temporary table have disconnected.

Side effects Automatic commit. Clears the Results tab in the Results pane in
Interactive SQL. DROP TABLE and DROP INDEX close all cursors for the

408

Chapter 4. SQL Statements

current connection.

Local temporary tables is an exception; no commit is performed when one is
dropped.

When a view is dropped, all procedures and triggers are unloaded from
memory, so that any procedure or trigger that references the view reflects the
fact that the view does not exist. The unloading and loading of procedures
and triggers can have a performance impact if you are regularly dropping
and creating views.

See also “CREATE DATABASE statement” on page 292

“CREATE DOMAIN statement” on page 300

“CREATE INDEX statement” on page 319

“CREATE FUNCTION statement” on page 315

“CREATE PROCEDURE statement” on page 324

“CREATE TABLE statement” on page 361

“CREATE TRIGGER statement” on page 373

“CREATE VIEW statement” on page 382

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise for those objects that
exist in Adaptive Server Enterprise.

Example ♦ Drop the department table from the database.

DROP TABLE department

Drop the emp_dept view from the database.

DROP VIEW emp_dept

409

DROP DATABASE statement
Description Use this statement to delete all database files associated with a database.

Syntax DROP DATABASE database-name [KEY key]

Usage The DROP DATABASE statement physically deletes all associated database
files from disk. If the database file does not exist, or is not in a suitable
condition for the database to be started, an error is generated.

DROP DATABASE cannot be used in a stored procedure.

Permissions Required permissions are set using the database server-gu option. The
default setting is to require DBA authority.

The database must not be in use in order to be dropped.

You must specify a key if you want to drop a strongly encrypted database

Not supported on Windows CE.

Side effects In addition to deleting the database files from disk, any associated
transaction log file or transaction log mirror file is deleted.

See also “CREATE DATABASE statement” on page 292

“Encryption Key connection parameter [DBKEY]”[ASA Database
Administration Guide,page 190]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example Drop the databasetemp.db, in theC:\tempdirectory..

DROP DATABASE ’c:\temp \temp.db’

410

Chapter 4. SQL Statements

DROP CONNECTION statement
Description Use this statement to drop a connection to the database, belonging to any

user.

Syntax DROP CONNECTION connection-id

Usage The DROP CONNECTION statement disconnects a user from the database
by dropping the connection to the database.

You can obtain theconnection-idby using theconnection_property
function to request the connection number. The following statement returns
the connection ID of the current connection:

SELECT connection_property(’number’)

Permissions Must have DBA authority.

Side effects None.

See also “CONNECT statement [ESQL] [Interactive SQL]” on page 287

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement drops the connection with ID number 4.

DROP CONNECTION 4

411

DROP EXTERNLOGIN statement
Description Use this statement to drop an external login from the Adaptive Server

Anywhere catalogs.

Syntax DROP EXTERNLOGIN login-name TO remote-server

Parameters DROP clause Specifies the local user login name

TO clause Specifies the name of the remote server. The local user’s
alternate login name and password for that server is the external login that is
deleted.

Usage DROP EXTERNLOGIN deletes an external login from the Adaptive Server
Anywhere catalogs.

Permissions Must be the owner oflogin-nameor have DBA authority.

Side effects Automatic commit.

See also “CREATE EXTERNLOGIN statement” on page 313

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Example DROP EXTERNLOGIN DBA TO sybase1

412

Chapter 4. SQL Statements

DROP PUBLICATION statement
Description Use this statement to drop a publication. In MobiLink a publication

identifies synchronized data in a Adaptive Server Anywhere remote
database. In SQL Remote, publications identify replicated data in both
consolidated and remote databases.

Syntax DROP PUBLICATION [owner.]publication-name

owner , publication-name : identifier

Usage This statement is applicable only to MobiLink and SQL Remote.

Permissions Must have DBA authority.

Side effects Automatic commit. All subscriptions to the publication are dropped.

See also “ALTER PUBLICATION statement” on page 238

“CREATE PUBLICATION statement” on page 334

“sp_drop_publication procedure”[SQL Remote User’s Guide,page 385]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact

413

DROP REMOTE MESSAGE TYPE statement [SQL
Remote]
Description Use this statement to delete a message type definition from a database.

Syntax DROP REMOTE MESSAGE TYPE message-system

message-system: FILE | FTP | MAPI | SMTP | VIM

Usage The statement removes a message type from a database.

Permissions Must have DBA authority. To be able to drop the type, there must be no user
granted REMOTE or CONSOLIDATE permissions with this type.

Side effects Automatic commit.

See also “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” on
page 337

“sp_drop_remote_type procedure”[SQL Remote User’s Guide,page 386]

“Using message types”[SQL Remote User’s Guide,page 210].

Example The following statement drops the FILE message type from a database.

DROP REMOTE MESSAGE TYPE file

414

Chapter 4. SQL Statements

DROP SERVER statement
Description Use this statement to drop a remote server from the Adaptive Server

Anywhere catalog.

Syntax DROP SERVER server-name

Usage DROP SERVER deletes a remote server from the Adaptive Server
Anywhere catalogs. You must drop all the proxy tables that have been
defined for the remote server before this statement will succeed.

Permissions Only the DBA account can delete a remote server.

Not supported on Windows CE.

Side effects Automatic commit.

See also “CREATE SERVER statement” on page 341

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

Example DROP SERVER ase_prod

415

DROP SERVICE statement
Description Use this statement to permit a database server to act as a web server.

Syntax DROP SERVICE service-name

Usage This statement deletes a web service.

Permissions Must have DBA authority.

Side affects None.

See also “ALTER SERVICE statement” on page 243, “CREATE SERVICE
statement” on page 343

Example To drop a web service named tables, execute the following statement:

CREATE SERVICE tables

416

Chapter 4. SQL Statements

DROP STATEMENT statement [ESQL]
Description Use this statement to free statement resources.

Syntax DROP STATEMENT [owner.]statement-name

statement-name : identifier | hostvar

Usage The DROP STATEMENT statement frees resources used by the named
prepared statement. These resources are allocated by a successful PREPARE
statement, and are normally not freed until the database connection is
released.

Permissions Must have prepared the statement.

Side effects None.

See also “PREPARE statement [ESQL]” on page 508

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Open Client/Open Server

Example The following are examples of DROP STATEMENT use:

EXEC SQL DROP STATEMENT S1;
EXEC SQL DROP STATEMENT :stmt;

417

DROP STATISTICS statement
Description Use this statement to erase all optimizer statistics on the specified columns.

Syntax DROP STATISTICS [ON] [owner.]table-name [(column-list)]

Usage The Adaptive Server Anywhere optimizer uses statistical information to
determine the best strategy for executing each statement. Adaptive Server
Anywhere automatically gathers and updates these statistics. These statistics
are stored permanently in the database in the system table SYSCOLSTAT.
Statistics gathered while processing one statement are available when
searching for efficient ways to execute subsequent statements.

Occasionally, the statistics may become inaccurate or relevant statistics may
be unavailable. This condition is most likely to arise when few queries have
been executed since a large amount of data was added, updated, or deleted.

The DROP STATISTICS statement deletes all internal statistical data from
the system table SYSCOLSTAT for the specified columns. This drastic step
leaves the optimizer with no access to essential statistical information.
Without these statistics, the optimizer may generate very inefficient data
access plans, causing poor database performance.

This statement should be used only during problem determination or when
reloading data into a database that differs substantially from the original
data.

Pre-version 8 databases The DROP STATISTICS syntax has no effect on
Adaptive Server Anywhere 7 databases and earlier. To drop statistics on
those databases, use the syntax:

DROP OPTIMIZER STATISTICS

This syntax drops all statistics on the database. If you use this syntax on
version 8 or later databases, nothing will happen—statistics will not be
dropped. This syntax is deprecated.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “CREATE STATISTICS statement” on page 346

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

418

Chapter 4. SQL Statements

DROP SUBSCRIPTION statement [SQL Remote]
Description Use this statement to drop a subscription for a user from a publication.

Syntax DROP SUBSCRIPTION TO publication-name [(subscription-value)]
FOR subscriber-id , . . .

subscription-value: string

subscriber-id : string

Parameters publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. This value is required because a user may
have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication.

Usage Drops a SQL Remote subscription for a user ID to a publication in the
current database. The user ID will no longer receive updates when data in
the publication is changed.

In SQL Remote, publications and subscriptions are two-way relationships. If
you drop a subscription for a remote user to a publication on a consolidated
database, you should also drop the subscription for the consolidated database
on the remote database to prevent updates on the remote database being sent
to the consolidated database.

Permissions Must have DBA authority.

Side effects Automatic commit.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Adaptive Server Anywhere version 7.0.

See also “CREATE SUBSCRIPTION statement [SQL Remote]” on page 347

Example The following statement drops a subscription for the user IDSamSto the
publicationpub_contact.

DROP SUBSCRIPTION TO pub_contact
FOR SamS

419

DROP SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink]
Description Use this statement to drop a synchronization subscription within a MobiLink

remote database or a MobiLink reference database. You can also use it to
drop a default subscription, which contains default subscription values, for
the specified publication.

Syntax DROP SYNCHRONIZATION SUBSCRIPTION
TO publication-name
[FOR ml_username, . . .]

Parameters TO clause Specify the name of a publication.

FOR clause Specify one more MobiLink users.

Omitting this clause drops the default subscription for the publication.
MobiLink users subscribed to a publication inherit as defaults the values in a
default publication.

Usage Drop a synchronization subscription in a MobiLink remote or reference
database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side Effects Automatic commit.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples Unsubscribe MobiLink user ml_user1 to the sales publication.

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
FOR "ml_user1"

Drop the default subscription, which contains default subscription values,
for the sales publication (by omitting the FOR clause).

DROP SYNCHRONIZATION SUBSCRIPTION
TO sales_publication

420

Chapter 4. SQL Statements

DROP SYNCHRONIZATION USER statement
[MobiLink]
Description Use this statement to drop a synchronization user from a MobiLink remote

database.

Syntax DROP SYNCHRONIZATION USER ml_username, . . .

ml_username: identifier

Usage Drop one or more synchronization users from a MobiLink remote database.

Permissions Must have DBA authority. Requires exclusive access to all tables referred to
in the publication.

Side Effects All subscriptions associated with the user are also deleted.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example Remove MobiLink user ml_user1 from the database.

DROP SYNCHRONIZATION USER ml_user1

421

DROP VARIABLE statement
Description Use this statement to eliminate a SQL variable.

Syntax DROP VARIABLE identifier

Usage The DROP VARIABLE statement eliminates a SQL variable that was
previously created using the CREATE VARIABLE statement. Variables will
be automatically eliminated when the database connection is released.
Variables are often used for large objects, so eliminating them after use or
setting them to NULL may free up significant resources (primarily disk
space).

Permissions None.

Side effects None.

See also “CREATE VARIABLE statement” on page 381

“SET statement” on page 548

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

422

Chapter 4. SQL Statements

EXCEPT operation
Description Computes the difference between the result sets of two or more queries.

Syntax select-statement
EXCEPT [ALL | DISTINCT] select-statement

[EXCEPT [ALL | DISTINCT] select-statement] . . .
[ORDER BY integer [ASC | DESC], . . .]

Usage The differences between the result sets of several SELECT statements can
be obtained as a single result using EXCEPT or EXCEPT ALL. EXCEPT
DISTINCT is identical to EXCEPT.

The component SELECT statements must each have the same number of
items in the select list, and cannot contain an ORDER BY clause.

The number of rows in the result set of EXCEPT ALL is exactly the
difference between the number of rows in the result sets of the separate
queries.

The results of EXCEPT are the same as EXCEPT ALL, except that when
using EXCEPT, duplicate rows are eliminated before the difference between
the result sets is computed.

If corresponding items in two select lists have different data types, Adaptive
Server Anywhere will choose a data type for the corresponding column in
the result and automatically convert the columns in each component
SELECT statement appropriately. If ORDER BY is used, only integers are
allowed in the order by list. These integers specify the position of the
columns to be sorted.

The column names displayed are the same column names that are displayed
for the first SELECT statement. An alternative way of customizing result set
column names is to use the WITH clause on the SELECT statement.

Permissions Must have SELECT permission for each of the component SELECT
statements.

Side effects None

See also “INTERSECT operation” on page 482

“UNION operation” on page 586

Standards and
compatibility

♦ SQL/92 Entry-level.

♦ SQL/99 EXCEPT DISTINCT is a core feature. EXCEPT ALL is
feature F304.

♦ Sybase Supported by Adaptive Server Enterprise.

423

Example For examples of EXCEPT usage, see “Set operators and NULL”[ASA SQL
User’s Guide,page 254].

424

Chapter 4. SQL Statements

EXECUTE statement [ESQL]
Description Use this statement to execute a prepared SQL statement.

Syntax 1 EXECUTE statement
[USING { hostvar-list | DESCRIPTOR sqlda-name }]
[INTO { into-hostvar-list | DESCRIPTOR into-sqlda-name }]
[ARRAY : integer]

statement : { identifier | hostvar | string }

sqlda-name : identifier

into-sqlda-name : identifier

Syntax 2 EXECUTE IMMEDIATE statement

statement : { string | hostvar }

Parameters USING clause Results from a SELECT statement or a CALL statement are
put into either the variables in the variable list or the program data areas
described by the named SQLDA. The correspondence is one-to-one from the
OUTPUT (selection list or parameters) to either the host variable list or the
SQLDA descriptor array.

INTO clause If EXECUTE INTO is used with an INSERT statement, the
inserted row is returned in the second descriptor. For example, when using
auto-increment primary keys or BEFORE INSERT triggers that generate
primary key values, the EXECUTE statement provides a mechanism to
re-fetch the row immediately and determine the primary key value that was
assigned to the row. The same thing can be achieved by using@@identity
with auto-increment keys.

ARRAY clause The optional ARRAY clause can be used with prepared
INSERT statements to allow wide inserts, which insert more than one row at
a time and which may improve performance. The integer value is the
number of rows to be inserted. The SQLDA must contain a variable for each
entry (number of rows * number of columns). The first row is placed in
SQLDA variables 0 to (columns per row)-1, and so on.

Usage The EXECUTE statement can be used for any SQL statement that can be
prepared. Cursors are used for SELECT statements or CALL statements that
return many rows from the database (see “Using cursors in embedded SQL”
[ASA Programming Guide,page 167]).

After successful execution of an INSERT, UPDATE or DELETE statement,
thesqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with the
number of rows affected by the operation.

425

Syntax 1 Execute the named dynamic statement, which was previously
prepared. If the dynamic statement contains host variable place holders
which supply information for the request (bind variables), either the
sqlda-namemust specify a C variable which is a pointer to an SQLDA
containing enough descriptors for all of the bind variables occurring in the
statement, or the bind variables must be supplied in thehostvar -list.

Syntax 2 A short form to PREPARE and EXECUTE a statement that does
not contain bind variables or output. The SQL statement contained in the
string or host variable is immediately executed, and is dropped on
completion.

Permissions Permissions are checked on the statement being executed.

Side effects None.

See also “EXECUTE IMMEDIATE statement [SP]” on page 429

“PREPARE statement [ESQL]” on page 508

“DECLARE CURSOR statement [ESQL] [SP]” on page 390

Standards and
compatibility

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 Feature outside of core SQL.

♦ Sybase Supported in Open Client/Open Server.

Example Execute a DELETE.

EXEC SQL EXECUTE IMMEDIATE
’DELETE FROM employee WHERE emp_id = 105’;

Execute a prepared DELETE statement.

EXEC SQL PREPARE del_stmt FROM
’DELETE FROM employee WHERE emp_id = :a’;
EXEC SQL EXECUTE del_stmt USING :employee_number;

Execute a prepared query.

EXEC SQL PREPARE sel1 FROM
’SELECT emp_lname FROM employee WHERE emp_id = :a’;
EXEC SQL EXECUTE sel1 USING :employee_number INTO :emp_lname;

426

Chapter 4. SQL Statements

EXECUTE statement [T-SQL]
Description Use Syntax 1 to invoke a procedure, as an Adaptive Server

Enterprise-compatible alternative to the CALL statement. You can also
execute statementswithin Transact-SQL stored procedures and triggers. For
more information, see“EXECUTE IMMEDIATE statement [SP]” on
page 429. Use Syntax 2 to execute a prepared SQL statement in
Transact-SQL.

Syntax 1 EXECUTE [@return_status =] [creator.]procedure_name [argument , . . .]

argument :
[@parameter-name =] expression

| [@parameter-name =] @variable [output]

Syntax 2 EXECUTE (string-expression)

Usage Syntax 1 executes a stored procedure, optionally supplying procedure
parameters and retrieving output values and return status information.

The EXECUTE statement is implemented for Transact-SQL compatibility,
but can be used in either Transact-SQL or Watcom-SQL batches and
procedures.

With Syntax 2, you can execute statements within Transact-SQL stored
procedures and triggers. The EXECUTE statement extends the range of
statements that can be executed from within procedures and triggers. It lets
you execute dynamically prepared statements, such as statements that are
constructed using the parameters passed in to a procedure. Literal strings in
the statement must be enclosed in single quotes, and the statement must be
on a single line.

Permissions Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

Side effects None.

See also “CALL statement” on page 273

“EXECUTE statement [ESQL]” on page 425

“EXECUTE IMMEDIATE statement [SP]” on page 429

Example The following procedure illustrates Syntax 1.

427

CREATE PROCEDURE p1(@var INTEGER = 54)
AS
PRINT ’on input @var = %1!’, @var
DECLARE @intvar integer
SELECT @intvar=123
SELECT @var=@intvar
PRINT ’on exit @var = %1!’, @var

The following statement executes the procedure, supplying the input value
of 23 for the parameter. If you are connected from an Open Client or JDBC
application, the PRINT messages are displayed on the client window. If you
are connected from an ODBC or Embedded SQL application, the messages
are displayed on the database server window.

EXECUTE p1 23

The following is an alternative way of executing the procedure, which is
useful if there are several parameters.

EXECUTE p1 @var = 23

The following statement executes the procedure, using the default value for
the parameter

EXECUTE p1

The following statement executes the procedure, and stores the return value
in a variable for checking return status.

EXECUTE @status = p1 23

428

Chapter 4. SQL Statements

EXECUTE IMMEDIATE statement [SP]
Description Use this statement to enable dynamically-constructed statements to be

executed from within a procedure.

Syntax 1 EXECUTE IMMEDIATE [execute-option] string-expression

execute-option:
WITH QUOTES [ON | OFF]

| WITH ESCAPES { ON | OFF }

Syntax 2 EXECUTE (string-expression)

Parameters WITH QUOTES When you specify WITH QUOTES or WITH QUOTES
ON, any double quotes in the string expression are assumed to delimit an
identifier. When you do not specify WITH QUOTES, or specify WITH
QUOTES OFF, the treatment of double quotes in the string expression
depends on the current setting of the QUOTED_IDENTIFIER option.

WITH QUOTES is useful when an object name that is passed into the stored
procedure is used to construct the statement that is to be executed, but the
name might require double quotes and the procedure might be called when
QUOTED_IDENTIFIER is set to OFF.

☞ For more information, see the “QUOTED_IDENTIFIER option
[compatibility]” [ASA Database Administration Guide,page 620].

WITH ESCAPES WITH ESCAPES OFF causes any escape sequences
(such as\n, \x, or \\) in the string expression to be ignored. For example, two
consecutive backslashes remain as two backslashes, rather than being
converted to a single backslash. The default setting is equivalent to WITH
ESCAPES ON.

One use of WITH ESCAPES OFF is for easier execution of
dynamically-constructed statements referencing filenames that contain
backslashes.

In some contexts, escape sequences in thestring-expressionare transformed
before the EXECUTE IMMEDIATE statement is executed. For example,
compound statements are parsed before being executed, and escape
sequences are transformed during this parsing, regardless of the WITH
ESCAPES setting. In these contexts, WITH ESCAPES OFF prevents further
translations from occurring. For example:

429

BEGIN
DECLARE String1 LONG VARCHAR;
DECLARE String2 LONG VARCHAR;
EXECUTE IMMEDIATE

’SET String1 = ’’One backslash: \\\\ ’’’;
EXECUTE IMMEDIATEWITH ESCAPES OFF

’SET String2 = ’’Two backslashes: \\\\ ’’’;
SELECT String1, String2

END

Usage The EXECUTE statement extends the range of statements that can be
executed from within procedures and triggers. It lets you execute
dynamically-prepared statements, such as statements that are constructed
using the parameters passed in to a procedure.

Literal strings in the statement must be enclosed in single quotes, and the
statement must be on a single line.

Only global variables can be referenced in a statement executed by
EXECUTE IMMEDIATE.

Only syntax 2 can be used inside Transact-SQL stored procedures and
triggers.

Permissions None. The statement is executed with the permissions of the owner of the
procedure, not with the permissions of the user who calls the procedure.

Side effects None. However, if the statement is a data definition statement with an
automatic commit as a side effect, that commit does take place.

☞ For more information about using the EXECUTE IMMEDIATE
statement in procedures, see “Using the EXECUTE IMMEDIATE statement
in procedures”[ASA SQL User’s Guide,page 658].

See also “CREATE PROCEDURE statement” on page 324

“BEGIN statement” on page 267

“EXECUTE statement [ESQL]” on page 425

Standards and
compatibility

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Supported in Open Client/Open Server.

Examples The following procedure creates a table, where the table name is supplied as
a parameter to the procedure. The EXECUTE IMMEDIATE statement must
all be on a single line.

430

Chapter 4. SQL Statements

CREATE PROCEDURE CreateTableProc(
IN tablename char(30)
)

BEGIN
EXECUTE IMMEDIATE
’CREATE TABLE ’ || tablename ||
’ (column1 INT PRIMARY KEY)’

END

To call the procedure and create a table called mytable:

CALL CreateTableProc(’mytable’)

☞ For an example of EXECUTE IMMEDIATE with a query that returns a
result set, see “Using the EXECUTE IMMEDIATE statement in procedures”
[ASA SQL User’s Guide,page 658].

431

EXIT statement [Interactive SQL]
Description Use this statement to leave Interactive SQL.

Syntax { EXIT | QUIT | BYE } [return-code]

return-code:number
| hostvar

Usage This statement closes your connection with the database, then closes the
Interactive SQL environment. Before closing the database connection,
Interactive SQL automatically executes a COMMIT statement if the
COMMIT_ON_EXIT option is set to ON. If this option is set to OFF,
Interactive SQL instead performs a ROLLBACK. By default, the
COMMIT_ON_EXIT option is set to ON.

The optional return code can be used in batch files to indicate success or
failure of the commands in an Interactive SQL command file. The default
return code is 0.

Permissions None.

Side effects This statement automatically performs a commit if option
COMMIT_ON_EXIT is set to ON (the default); otherwise it performs a
rollback.

On Windows operating systems the optional return value is available as
ERRORLEVEL.

See also “SET OPTION statement” on page 556

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable in Adaptive Server Enterprise.

Examples The following example sets the Interactive SQL return value to 1 if there are
any rows in table T, or to 0 if T contains no rows.

CREATE VARIABLE rowCount INT;
CREATE VARIABLE retcode INT;
SELECT COUNT(*) INTO rowCount FROM T;
IF(rowCount > 0) THEN

SET retcode = 1;
ELSE

SET retcode = 0;
END IF;
EXIT retcode;

The following sample is invalid, as the EXIST statement is an
Interactive SQL statement only. It cannot be included inside IF statements or

432

Chapter 4. SQL Statements

any other SQL block statement.

// this example shows incorrect code
CREATE VARIABLE rowCount INT;
SELECT COUNT(*) INTO rowCount FROM T;
IF(rowCount > 0) THEN

EXIT 1; // <-- not allowed
ELSE

EXIT 0; // <-- not allowed
END IF;

The following Windows batch file printsError = 1 on the command
prompt.

dbisql -c "dsn=ASA 9.0 Sample" EXIT 1
if errorlevel 1 echo "Errorlevel is 1"

433

EXPLAIN statement [ESQL]
Description Use this statement to retrieve a text specification of the optimization strategy

used for a particular cursor.

Syntax EXPLAIN PLAN FOR CURSOR cursor-name
{ INTO hostvar | USING DESCRIPTOR sqlda-name }

cursor-name : identifier or hostvar

sqlda-name : identifier

Usage The EXPLAIN statement retrieves a text representation of the optimization
strategy for the named cursor. The cursor must be previously declared and
opened.

Thehostvaror sqlda-namevariable must be of string type. The optimization
string specifies in what order the tables are searched, and also which indexes
are being used for the searches if any.

This string may be long, depending on the query, and has the following
format:

table (index), table (index), ...

If a table has been given a correlation name, the correlation name will appear
instead of the table name. The order that the table names appear in the list is
the order in which they will be accessed by the database server. After each
table is a parenthesized index name. This is the index that will be used to
access the table. If no index will be used (the table will be scanned
sequentially) the letters “seq” will appear for the index name. If a particular
SQL SELECT statement involves subqueries, a colon (:) will separate each
subquery’s optimization string. These subquery sections will appear in the
order that the database server executes the queries.

After successful execution of the EXPLAIN statement, thesqlerrd[3] field
of the SQLCA (SQLIOESTIMATE) will be filled in with an estimate of the
number of input/output operations required to fetch all rows of the query.

A discussion with quite a few examples of the optimization string can be
found in “Monitoring and Improving Performance”[ASA SQL User’s Guide,
page 153].

Permissions Must have opened the named cursor.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“PREPARE statement [ESQL]” on page 508

434

Chapter 4. SQL Statements

“FETCH statement [ESQL] [SP]” on page 436

“CLOSE statement [ESQL] [SP]” on page 280

“OPEN statement [ESQL] [SP]” on page 498

“Using cursors in embedded SQL”[ASA Programming Guide,page 167]

“The SQL Communication Area (SQLCA)”[ASA Programming Guide,
page 161]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

Example The following example illustrates the use of EXPLAIN:

EXEC SQL BEGIN DECLARE SECTION;
char plan[300];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE employee_cursor CURSOR FOR

SELECT emp_id, emp_lname
FROM employee
WHERE emp_lname like :pattern;

EXEC SQL OPEN employee_cursor;
EXEC SQL EXPLAIN PLAN FOR CURSOR employee_cursor INTO :plan;
printf("Optimization Strategy: ’%s’.n", plan);

The plan variable contains the following string:

’employee <seq>’

435

FETCH statement [ESQL] [SP]
Description Use this statement to reposition a cursor and then get data from it.

Syntax FETCH cursor-position cursor-name
[INTO { hostvar-list | variable-list }

| USING DESCRIPTOR sqlda-name]
[PURGE]
[BLOCK n]
[FOR UPDATE]
[ARRAY fetch-count]
INTO variable-list [FOR UPDATE]

cursor-position :
NEXT | PRIOR | FIRST | LAST

| { ABSOLUTE | RELATIVE } row-count

row-count : number or hostvar

cursor-name : identifier or hostvar

hostvar-list : may contain indicator variables

variable-list : stored procedure variables

sqlda-name : identifier

fetch-count : integer or hostvar

Parameters INTO The INTO clause is optional. If it is not specified, the FETCH
statement positions the cursor only. Thehostvar-listis for Embedded SQL
use only.

cursor position An optional positional parameter allows the cursor to be
moved before a row is fetched. If the fetch includes a positioning parameter
and the position is outside the allowable cursor positions, the
SQLE_NOTFOUND warning is issued and the SQLCOUNT field indicates
the offset from a valid position.

The OPEN statement initially positions the cursor before the first row.

♦ NEXT Next is the default positioning, and causes the cursor to be
advanced one row before the row is fetched.

♦ PRIOR Causes the cursor to be backed up one row before fetching.

♦ RELATIVE RELATIVE positioning is used to move the cursor by a
specified number of rows in either direction before fetching. A positive
number indicates moving forward and a negative number indicates

436

Chapter 4. SQL Statements

moving backwards. Thus, a NEXT is equivalent to RELATIVE 1 and
PRIOR is equivalent to RELATIVE -1. RELATIVE 0 retrieves the same
row as the last fetch statement on this cursor.

♦ ABSOLUTE The ABSOLUTE positioning parameter is used to go to a
particular row. A zero indicates the position before the first row (see
“Using cursors in procedures and triggers”[ASA SQL User’s Guide,
page 646]).

A one (1) indicates the first row, and so on. Negative numbers are used to
specify an absolute position from the end of the cursor. A negative one
(-1) indicates the last row of the cursor.

♦ FIRST A short form for ABSOLUTE 1.

♦ LAST A short form for ABSOLUTE -1.

Cursor positioning problems
Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database server does not put
inserted rows at a predictable position within a cursor unless there is an
ORDER BY clause on the SELECT statement. In some cases, the inserted
row does not appear at all until the cursor is closed and opened again.

This occurs if a temporary table had to be created to open the cursor (see
“Use of work tables in query processing”[ASA SQL User’s Guide,page 185]
for a description).

The UPDATE statement may cause a row to move in the cursor. This will
happen if the cursor has an ORDER BY that uses an existing index (a
temporary table is not created).

BLOCK clause Rows may be fetched by the client application more than
one at a time. This is referred to as block fetching, prefetching, or multi-row
fetching. The first fetch causes several rows to be sent back from the server.
The client buffers these rows, and subsequent fetches are retrieved from
these buffers without a new request to the server.

The BLOCK clause is for use in Embedded SQL only. It gives the client and
server a hint as to how many rows may be fetched by the application. The
special value of 0 means the request will be sent to the server and a single
row will be returned (no row blocking).

If no BLOCK clause is specified, the value specified on OPEN is used. For
more information, see“OPEN statement [ESQL] [SP]” on page 498.

FETCH RELATIVE 0 always re-fetches the row.

437

PURGE clause The PURGE clause is for use in embedded SQL only. It
causes the client to flush its buffers of all rows, and then send the fetch
request to the server. Note that this fetch request may return a block of rows.

FOR UPDATE clause The FOR UPDATE clause indicates that the fetched
row will subsequently be updated with an UPDATE WHERE CURRENT
OF CURSOR statement. This clause causes the database server to put a
write lock on the row. The lock will be held until the end of the current
transaction. See “How locking works”[ASA SQL User’s Guide,page 131].

ARRAY clause The ARRAY clause is for use in Embedded SQL only. It
allows so-called wide fetches, which retrieve more than one row at a time,
and which may improve performance.

To use wide fetches in embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

whereARRAY nnn is the last item of the FETCH statement. The fetch
countnnn can be a host variable. The SQLDA must containnnn * (columns
per row) variables. The first row is placed in SQLDA variables 0to
(columns per row)-1, and so on.

☞ For a detailed example of using wide fetches, see the section “Fetching
more than one row at a time”[ASA Programming Guide,page 170].

Usage The FETCH statement retrieves one row from the named cursor. The cursor
must have been previously opened.

Embedded SQL use A DECLARE CURSOR statement must appear
before the FETCH statement in the C source code, and the OPEN statement
must be executed before the FETCH statement. If a host variable is being
used for the cursor name, the DECLARE statement actually generates code
and thus must be executed before the FETCH statement.

The server returns in SQLCOUNT the number of records fetched, and
always returns a SQLCOUNT greater than zero unless there is an error or
warning. A SQLCOUNT of zero with no error condition indicates that one
valid row has been fetched.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) contains the number of rows
by which the attempted fetch exceeded the allowable cursor positions. The
value is 0 if the row was not found but the position is valid; for example,
executing FETCH RELATIVE 1 when positioned on the last row of a cursor.
The value is positive if the attempted fetch was beyond the end of the cursor,
and negative if the attempted fetch was before the beginning of the cursor.

438

Chapter 4. SQL Statements

After successful execution of the fetch statement, thesqlerrd[1] field of the
SQLCA (SQLIOCOUNT) is incremented by the number of input/output
operations required to perform the fetch. This field is actually incremented
on every database statement.

Single row fetch One row from the result of the SELECT statement is put
into the variables in the variable list. The correspondence is one-to-one from
the select list to the host variable list.

Multi-row fetch One or more rows from the result of the SELECT
statement are put into either the variables invariable-listor the program data
areas described bysqlda-name. In either case, the correspondence is
one-to-one from theselect-listto either thehostvar-listor thesqlda-name
descriptor array.

Permissions The cursor must be opened, and the user must have SELECT permission on
the tables referenced in the declaration of the cursor.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“PREPARE statement [ESQL]” on page 508

“OPEN statement [ESQL] [SP]” on page 498

“Using cursors in embedded SQL”[ASA Programming Guide,page 167]

“Using cursors in procedures and triggers”[ASA SQL User’s Guide,page 646]

FETCH inPowerScript Reference

Standards and
compatibility

♦ SQL/92 Entry-level feature. Use in procedures is a Persistent Stored
Module feature.

♦ SQL/99 Core feature. Use in procedures is a Persistent Stored Module
feature.

♦ Sybase Supported in Adaptive Server Enterprise.

Example The following is an Embedded SQL example.

EXEC SQL DECLARE cur_employee CURSOR FOR
SELECT emp_id, emp_lname FROM employee;
EXEC SQL OPEN cur_employee;
EXEC SQL FETCH cur_employee
INTO :emp_number, :emp_name:indicator;

The following is a procedure example:

439

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee;

DECLARE name CHAR(40);
OPEN cur_employee;
LOOP

FETCH NEXT cur_employee into name;
...

END LOOP
CLOSE cur_employee;

END

440

Chapter 4. SQL Statements

FOR statement
Description Use this statement to repeat the execution of a statement list once for each

row in a cursor.

Syntax [statement-label :]
FOR for-loop-name AS cursor-name

CURSOR FOR statement
[FOR UPDATE | FOR READ ONLY]

DO statement-list
END FOR [statement-label]

Usage The FOR statement is a control statement that allows you to execute a list of
SQL statements once for each row in a cursor. The FOR statement is
equivalent to a compound statement with a DECLARE for the cursor and a
DECLARE of a variable for each column in the result set of the cursor
followed by a loop that fetches one row from the cursor into the local
variables and executesstatement-listonce for each row in the cursor.

Valid cursor types include dynamic scroll (default), scroll, no scroll,
sensitive, and insensitive.

The name and data type of each local variable is derived from thestatement
used in the cursor. With a SELECT statement, the data types will be the data
types of the expressions in the select list. The names will be the select list
item aliases, if they exist; otherwise, they will be the names of the columns.
Any select list item that is not a simple column reference must have an alias.
With a CALL statement, the names and data types will be taken from the
RESULT clause in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement
after the END FOR. If the endingstatement-labelis specified, it must match
the beginningstatement-label.

Permissions None.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“FETCH statement [ESQL] [SP]” on page 436

“LEAVE statement” on page 483

“LOOP statement” on page 495

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported by Adaptive Server Enterprise.

441

Example The following fragment illustrates the use of the FOR loop.

FOR names AS curs CURSOR FOR
SELECT emp_lname
FROM employee
DO

CALL search_for_name(emp_lname);
END FOR;

442

Chapter 4. SQL Statements

FORWARD TO statement
Description Use this statement to send native syntax SQL statements to a remote server.

Syntax 1 FORWARD TO server-name SQL-statement

Syntax 2 FORWARD TO [server-name]

Usage The FORWARD TO statement enables users to specify the server to which a
passthrough connection is required. The statement can be used in two ways:

♦ Syntax 1 Send a single statement to a remote server.

♦ Syntax 2 Place Adaptive Server Anywhere into passthrough mode for
sending a series of statements to a remote server. All subsequent
statements are passed directly to the remote server. To turn passthrough
mode off, issue FORWARD TO without aserver-namespecification.

If you encounter an error from the remote server while in passthrough
mode, you must still issue a FORWARD TO statement to turn
passthrough off.

When establishing a connection to server-name on behalf of the user, the
server uses:

♦ A remote login alias set using CREATE EXTERNLOGIN, or

♦ If a remote login alias is not set up, the name and password used to
communicate with Adaptive Server Anywhere

If the connection cannot be made to the server specified, the reason is
contained in a message returned to the user.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the client program.

server-name The name of the remote server.

SQL-statement A command in the native SQL syntax of the remote server.
The command or group of commands is enclosed in curly brackets ({}).

Permissions None

Side effects The remote connection is set to AUTOCOMMIT (unchained) mode for the
duration of the FORWARD TO session. Any work that was pending prior to
the FORWARD TO statement is automatically committed.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported by Open Client/Open Server.

443

Example The following example shows a passthrough session with the remote server
ase_prod:

FORWARD TO aseprod
SELECT * from titles
SELECT * from authors
FORWARD TO

444

Chapter 4. SQL Statements

FROM clause
Description Use this clause to specify the database tables or views involved in a

SELECT, UPDATE, or DELETE statement.

Syntax FROM table-expression, . . .

table-expression:
table

| view
| procedure
| derived-table
| lateral-derived-table
| joined table
| (table-expression, . . .)

table or view :
[userid .] table-or-view-name [[AS] correlation-name] [WITH (table-

hint)]

procedure :
[owner.]procedure-name ([parameter , . . .])
[WITH(column-name data-type, ...)]
[[AS] correlation-name]

derived-table :
(select-statement)
[AS] correlation-name [(column-name, . . .)]

lateral-derived-table :
LATERAL (select-statement | table-expression)
[AS] correlation-name [(column-name, . . .)]

joined table:
table-expression join-operator table-expression
[ON join-condition]

join-operator :
[KEY | NATURAL] [join-type] JOIN

| CROSS JOIN

join-type:
INNER

| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

445

table-hint :
NOLOCK

| READUNCOMMITTED
| READCOMMITTED
| REPEATABLEREAD
| HOLDLOCK
| SERIALIZABLE
| FASTFIRSTROW

Parameters table or view A base table, temporary table, or view. Tables owned by a
different user can be qualified by specifying the user ID. Tables owned by
groups to which the current user belongs will be found by default without
specifying the user ID (see “Referring to tables owned by groups”[ASA
Database Administration Guide,page 410]).

procedure A stored procedure that returns a result set. Procedures can be
used only in the FROM clause of SELECT statements, not UPDATE or
DELETE statements. The parentheses following the procedure name are
required even if the procedure does not take parameters. If the stored
procedure returns multiple result sets, only the first is used.

The WITH clause provides a way of specifying column name aliases for the
procedure result set. If a WITH clause is specified, the number of columns
must match the number of columns in the procedure result set, and the data
types must be compatible with those in the procedure result set. If no WITH
clause is specified, the column names and types are those defined by the
procedure definition. The following query illustrates the use of the WITH
clause:

SELECT sp.customer, sp.quantity, product.name
FROM sp_customer_products(149) WITH(customer int, quantity

int) sp
JOIN product

ON sp.customer = product.id

derived-table You can supply SELECT statements instead of table or view
names in the FROM clause. This allows you to use groups on groups, or
joins with groups, without creating a view. The tables that you create in this
way are derived tables.

lateral-derived-table A derived table, stored procedure, or joined table that
may include outer references. You must use a lateral derived table if you
wish to use an outer reference in the FROM clause.

You can use outer references only to tables that precede the lateral derived
table in the FROM clause. For example, you cannot use an outer reference to
an item in theselect-list.

The table and the outer reference must be separated by a comma. For

446

Chapter 4. SQL Statements

example, the following queries (with outer references highlighted) are valid:

SELECT *
FROM A, LATERAL(B LEFT OUTER JOIN C ON (A.x = B.x)) LDT

SELECT *
FROM A, LATERAL(SELECT * FROM B WHEREA.x = B.x) LDT

SELECT *
FROM A, LATERAL(procedure-name (A.x)) LDT

correlation-name An identifier to use when referencing an object
elsewhere in the statement.

If the same correlation name is used twice for the same table in a table
expression, that table is treated as if it were listed only once. For example, in:

SELECT *
FROM sales_order
KEY JOIN sales_order_items,
sales_order
KEY JOIN employee

the two instances of thesales_ordertable are treated as one instance, and so
is equivalent to:

SELECT *
FROM sales_order
KEY JOIN sales_order_items
KEY JOIN employee

Whereas:

SELECT *
FROM Person HUSBAND, Person WIFE

would be treated as two instances of the Person table, with different
correlation names HUSBAND and WIFE.

WITH table-hint allows you to specify the behavior of Adaptive Server
Anywhere to be used only for this table, and only for this statement. You can
use WITHtable-hintto change Adaptive Server Anywhere’s behavior
without changing the isolation level or setting a database or connection
option. Table hints can be used only on base tables and temporary tables.

Caution
WITH table-hint is an advanced feature that should be used only if needed,
and only by experienced database administrators. In addition, the setting
may not be respected in all situations.

♦ Isolation level hints The following table hints can be used to specify
isolation level settings for tables. They specify a locking method to be

447

used only for this table, and only for this statement.

The table hints set the following isolation levels:

Table hint Isolation level

NOLOCK 0

READUNCOMMITTED 0

READCOMMITTED 1

REPEATABLEREAD 2

HOLDLOCK 3

SERIALIZABLE 3

♦ Optimization hints The FASTFIRSTROW table hint allows you to set
the optimization goal for the query without setting the
OPTIMIZATION_GOAL option tofirst-row . When you use
FASTFIRSTROW, Adaptive Server Anywhere chooses an access plan
that is intended to reduce the time to fetch the first row of the query’s
result.

☞ For more information, see “OPTIMIZATION_GOAL option
[database]”[ASA Database Administration Guide,page 613].

Usage The SELECT, UPDATE, and DELETE statements require a table list, to
specify which tables are used by the statement.

Views and derived tables
Although this description refers to tables, it also applies to views and
derived tables unless otherwise noted.

The FROM clause creates a result set consisting of all the columns from all
the tables specified. Initially, all combinations of rows in the component
tables are in the result set, and the number of combinations is usually
reduced by JOIN conditions and/or WHERE conditions.

You cannot use an ON phrase with CROSS JOIN.

Permissions None.

Side effects None.

See also “DELETE statement” on page 399

“SELECT statement” on page 541

“UPDATE statement” on page 592

448

Chapter 4. SQL Statements

“Joins: Retrieving Data from Several Tables”[ASA SQL User’s Guide,
page 261]

Standards and
compatibility

♦ SQL/92 Entry-level feature. The complexity of the FROM clause means
that you should check individual clauses against the standard.

♦ SQL/99 Core feature, except for KEY JOIN, which is a vendor
extension; and FULL OUTER JOIN and NATURAL JOIN, which are
SQL/foundation features outside of core SQL. The complexity of the
FROM clause means that you should check individual clauses against the
standard.

♦ Sybase The ON phrase is not supported in Adaptive Server Enterprise
prior to version 12. In earlier versions, you must use the WHERE clause
to build joins.

Example The following are valid FROM clauses:
...
FROM employee
...
...
FROM employee NATURAL JOIN department
...
...
FROM customer
KEY JOIN sales_order
KEY JOIN sales_order_items
KEY JOIN product
...

The following query illustrates how to use derived tables in a query:

SELECT lname, fname, number_of_orders
FROM customer JOIN

(SELECT cust_id, count(*)
FROM sales_order

GROUP BY cust_id)
AS sales_order_counts (cust_id,

number_of_orders)
ON (customer.id = sales_order_counts.cust_id)
WHERE number_of_orders > 3

The following query illustrates how to select rows from stored procedure
result sets:

SELECT t.id, t.quantity_ordered AS q, p.name
FROM sp_customer_products(149) t JOIN product p
ON t.id = p.id

449

GET DATA statement [ESQL]
Description Use this statement to get string or binary data for one column of the current

row of a cursor. GET DATA is usually used to fetch LONG BINARY or
LONG VARCHAR fields. See“SET statement” on page 548.

Syntax GET DATA cursor-name
COLUMN column-num
OFFSET start-offset
[WITH TEXTPTR]
USING DESCRIPTOR sqlda-name | INTO hostvar [, . . .]

cursor-name : identifier , or hostvar

column-num : integer or hostvar

start-offset : integer or hostvar

sqlda-name : identifier

Parameters COLUMN clause The value ofcolumn-numstarts at one, and identifies the
column whose data is to be fetched. That column must be of a string or
binary type.

OFFSET clause Thestart-offsetindicates the number of bytes to skip over
in the field value. Normally, this would be the number of bytes previously
fetched. The number of bytes fetched on this GET DATA statement is
determined by the length of the target host variable.

The indicator value for the target host variable is a short integer, so it cannot
always contain the number of bytes truncated. Instead, it contains a negative
value if the field contains the NULL value, a positive value (NOT
necessarily the number of bytes truncated) if the value is truncated, and zero
if a non-NULL value is not truncated.

Similarly, if a LONGVARCHAR or a LONGVARCHAR host variable is
used with an offset greater than zero, the untrunc_len field does not
accurately indicate the size before truncation.

WITH TEXTPTR clause If the WITH TEXTPTR clause is given, a text
pointer is retrieved into a second host variable or into the second field in the
SQLDA. This text pointer can be used with the Transact-SQL READ TEXT
and WRITE TEXT statements. The text pointer is a 16-bit binary value, and
can be declared as follows:

DECL_BINARY(16) textptr_var;

WITH TEXTPTR can be used only with long data types (LONG BINARY,

450

Chapter 4. SQL Statements

LONG VARCHAR, TEXT, IMAGE). If you attempt to use it with another
data type, the error INVALID_TEXTPTR_VALUE is returned.

The total length of the data is returned in the SQLCOUNT field of the
SQLCA structure.

Usage Get a piece of one column value from the row at the current cursor position.

Permissions The cursor must be opened and positioned on a row, using FETCH.

Side effects None.

See also “FETCH statement [ESQL] [SP]” on page 436

“READTEXT statement [T-SQL]” on page 518

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Open Client/Open Server. An alternative is
the Transact-SQL READTEXT statement.

Example The following example uses GET DATA to fetch abinary large object
(often called ablob).

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(1000) piece;
short ind;

EXEC SQL END DECLARE SECTION;
int size;
/* Open a cursor on a long varchar field */
EXEC SQL DECLARE big_cursor CURSOR FOR
SELECT long_data FROM some_table
WHERE key_id = 2;
EXEC SQL OPEN big_cursor;
EXEC SQL FETCH big_cursor INTO :piece;
for(offset = 0; ; offset += piece.len) {

EXEC SQL GET DATA big_cursor COLUMN 1
OFFSET :offset INTO :piece:ind;
/* Done if the NULL value */
if(ind < 0) break;
write_out_piece(piece);
/* Done when the piece was not truncated */
if(ind == 0) break;

}
EXEC SQL CLOSE big_cursor;

451

GET DESCRIPTOR statement [ESQL]
Description Use this statement to retrieve information about a variable within a

descriptor area, or retrieves its value.

Syntax GET DESCRIPTOR descriptor-name
{ hostvar = COUNT | VALUE { integer | hostvar } assignment [, . . .] }

assignment :
hostvar = TYPE | LENGTH | PRECISION | SCALE | DATA | INDICA-

TOR | NAME |
NULLABLE | RETURNED_LENGTH

Usage The GET DESCRIPTOR statement is used to retrieve information about a
variable within a descriptor area, or to retrieve its value.

The value {integer| hostvar} specifies the variable in the descriptor area
about which the information will be retrieved. Type checking is performed
when doing GET . . . DATA to ensure that the host variable and the
descriptor variable have the same data type. LONGVARCHAR and
LONGBINARY are not supported by GET DESCRIPTOR ... DATA.

If an error occurs, it is returned in the SQLCA.

Permissions None.

Side effects None.

See also “ALLOCATE DESCRIPTOR statement [ESQL]” on page 223

“DEALLOCATE DESCRIPTOR statement [ESQL]” on page 387

“SET DESCRIPTOR statement [ESQL]” on page 554

“The SQL descriptor area (SQLDA)”[ASA Programming Guide,page 181]

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Example The following example returns the type of the column with position col_num
in sqlda.

int get_type(SQLDA *sqlda, int col_num)
{

EXEC SQL BEGIN DECLARE SECTION;
int ret_type;
int col = col_num;
EXEC SQL END DECLARE SECTION;

EXEC SQL GET DESCRIPTOR sqlda VALUE :col :ret_type = TYPE;
return(ret_type);

}

452

Chapter 4. SQL Statements

For a longer example, see“ALLOCATE DESCRIPTOR statement [ESQL]”
on page 223.

453

GET OPTION statement [ESQL]
Description You can use this statement to get the current setting of an option. It is

recommended that you use the connection_property function instead.

Syntax GET OPTION [userid.]option-name
[INTO hostvar]
[USING DESCRIPTOR sqlda-name]

userid : identifier , string, or hostvar

option-name : identifier , string, or hostvar

hostvar : indicator variable allowed

sqlda-name : identifier

Usage The GET OPTION statement is provided for compatibility with older
versions of the software. The recommended way to get the values of options
is to use theconnection_propertysystem function.

The GET OPTION statement gets the option setting of the option
option-namefor the useruseridor for the connected user ifuserid is not
specified. This will be either the user’s personal setting or thePUBLIC
setting if there is no setting for the connected user. If the option specified is a
database option and the user has a temporary setting for that option, then the
temporary setting is retrieved.

If option-namedoes not exist, GET OPTION returns the warning
SQLE_NOTFOUND.

Permissions None required.

Side effects None.

See also “SET OPTION statement” on page 556

“System and catalog stored procedures” on page 707

“CONNECTION_PROPERTY function [System]” on page 106

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement illustrates use of GET OPTION.

EXEC SQL GET OPTION ’date_format’ INTO :datefmt;

454

Chapter 4. SQL Statements

GOTO statement [T-SQL]
Description Use this statement to branch to a labeled statement.

Syntax label : GOTO label

Usage Any statement in a Transact-SQL procedure, trigger, or batch can be labeled.
The label name is a valid identifier followed by a colon. In the GOTO
statement, the colon is not used.

Permissions None.

Side effects None.

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Adaptive Server Enterprise supports the GOTO statement.

Example The following Transact-SQL batch prints the message “yes” on the server
window four times:

declare @count smallint
select @count = 1
restart:

print ’yes’
select @count = @count + 1
while @count <=4

goto restart

455

GRANT statement
Description Use this statement to create new user IDs, to grant or deny permissions to

specific users, and to create or change passwords.

Syntax 1 GRANT CONNECT TO userid , . . .
[AT starting-id]
IDENTIFIED BY password , . . .

Syntax 2 GRANT {
DBA ,
GROUP,
MEMBERSHIP IN GROUP userid , . . . ,

[RESOURCE | ALL]
}

TO userid , . . .

Syntax 3 GRANT {
ALL [PRIVILEGES],
ALTER ,
DELETE,
INSERT,
REFERENCES [(column-name, . . .)],
SELECT [(column-name, . . .)],
UPDATE [(column-name, . . .)],

}
ON [owner.]table-name
TO userid , . . .
[WITH GRANT OPTION]
[FROM userid]

Syntax 4 GRANT EXECUTE ON [owner.]procedure-name TO userid , . . .

Syntax 5 GRANT INTEGRATED LOGIN TO user_profile_name, . . . AS USER userid

Parameters CONNECT TO Creates a new user. GRANT CONNECT can also be used
by any user to change their own password. To create a user with the empty
string as the password, type:

GRANT CONNECT TO userid IDENTIFIED BY ""

To create a user with no password, type:

GRANT CONNECT TO userid

A user with no password cannot connect to the database. This is useful if
you are creating a group and do not want anyone to connect to the database
using the group user ID. The password must be a valid identifier, as
described in“Identifiers” on page 7.

456

Chapter 4. SQL Statements

AT starting-id This clause is not for general purpose use. The clause
specifies the internal numeric value to be used for the first user ID in the list.

The clause is implemented primarily for use by the Unload utility.

DBA Database Administrator authority gives a user permission to do
anything. This is usually reserved for the person in the organization who is
looking after the database.

GROUP Allows the user(s) to have members.

☞ For more information, see “Managing groups”[ASA Database
Administration Guide,page 406].

MEMBERSHIP IN GROUP This allows the user(s) to inherit table
permissions from a group and to reference tables created by the group
without qualifying the table name.

☞ For more information, see “Managing groups”[ASA Database
Administration Guide,page 406].

Syntax 3 of the GRANT statement is used to grant permission on individual
tables or views. The table permissions can be specified individually, or you
can use ALL to grant all six permissions at once.

RESOURCE Allows the user to create tables and views. In syntax 2,ALL
is a synonym for RESOURCE that is compatible with Sybase Adaptive
Server Enterprise.

ALL In Syntax 3, this grants all of the permissions outlined below.

ALTER The users will be allowed to alter the named table with the
ALTER TABLE statement. This permission is not allowed for views.

DELETE The users will be allowed to delete rows from the named table or
view.

INSERT The users will be allowed to insert rows into the named table or
view.

REFERENCES [(column-name, . . .)] The users will be allowed to create
indexes on the named table, and foreign keys which reference the named
tables. If column names are specified, the users will be allowed to reference
only those columns. REFERENCES permissions on columns cannot be
granted for views, only for tables.

INDEX is a synonym for REFERENCES.

SELECT [(column-name, . . .)] The users will be allowed to look at
information in this view or table. If column names are specified, the users

457

will be allowed to look at only those columns. SELECT permissions on
columns cannot be granted for views, only for tables.

UPDATE [(column-name, . . .)] The users will be allowed to update rows
in this view or table. If column names are specified, the users will be
allowed to update only those columns. UPDATE permissions on columns
cannot be granted for views, only for tables.

FROM If FROM userid is specified, the userid is recorded as a grantor
user ID in the system tables. This clause is for use by the Unload utility
(dbunload). Do not use or modify this option directly.

Usage The GRANT statement is used to grant database permissions to individual
user IDs and groups. It is also used to create and delete users and groups.

If WITH GRANT OPTION is specified, then the named user ID is also
given permission to GRANT the same permissions to other user IDs.

Syntax 4 of the GRANT statement is used to grant permission to execute a
procedure.

Syntax 5 of the GRANT statement creates an explicit integrated login
mapping between one or more Windows user profiles and an existing
database user ID, allowing users who successfully log in to their local
machine to connect to a database without having to provide a user ID or
password.

☞ For more information on integrated logins, see “Using integrated logins”
[ASA Database Administration Guide,page 85].

Permissions Syntax 1 or 2 One of the following conditions must be met.

♦ You are changing your own password using GRANT CONNECT.

♦ You have DBA authority.

If you are changing another user’s password (with DBA authority), the other
user must not be connected to the database.

Syntax 3 If the FROM clause is specified you must have DBA authority.
Otherwise, at least one of the following conditions must be met:

♦ You own the table

♦ You have been granted permissions on the table with GRANT OPTION

♦ You have DBA authority

Syntax 4 One of the following conditions must be met:

♦ You own the procedure

458

Chapter 4. SQL Statements

♦ You have DBA authority

Syntax 5 The following condition must be met:

♦ You have DBA authority

Side effects Automatic commit.

See also “REVOKE statement” on page 530

Standards and
compatibility

♦ SQL/92 Syntax 3 is an entry-level feature. Syntax 4 is a Persistent
Stored Module feature. Other syntaxes are vendor extensions.

♦ SQL/99 Syntax 3 is a core feature. Syntax 4 is a Persistent Stored
Module feature. Other syntaxes are vendor extensions.

♦ Sybase Syntaxes 2 and 3 are supported in Adaptive Server Enterprise.
The security model is different in Adaptive Server Enterprise and
Adaptive Server Anywhere, so other syntaxes differ.

Example Make two new users for the database.

GRANT
CONNECT TO Laurel, Hardy
IDENTIFIED BY Stan, Ollie

Grant permissions on the employee table to user Laurel.

GRANT
SELECT, UPDATE (street)
ON employee
TO Laurel

More than one permission can be granted in a single statement. Separate the
permissions with commas.

Allow the user Hardy to execute the Calculate_Report procedure.

GRANT
EXECUTE ON Calculate_Report
TO Hardy

459

GRANT CONSOLIDATE statement [SQL Remote]
Description Use this statement to identify the database immediately above the current

database in a SQL Remote hierarchy, who will receive messages from the
current database.

Syntax GRANT CONSOLIDATE
TO userid
TYPE message-system, . . .
ADDRESS address-string, . . .
[SEND { EVERY | AT }’ hh:mm:ss’]

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

Parameters userid The user ID for the user to be granted the permission

message-system One of the message systems supported by SQL Remote.

address The address for the specified message system.

Usage In a SQL Remote installation, the database immediately above the current
database in a SQL Remote hierarchy must be granted CONSOLIDATE
permissions. GRANT CONSOLIDATE is issued at a remote database to
identify its consolidated database. Each database can have only one user ID
with CONSOLIDATE permissions: you cannot have a database that is a
remote database for more than one consolidated database.

The consolidated user is identified by a message system, identifying the
method by which messages are sent to and received from the consolidated
user. The address-name must be a valid address for the message-system,
enclosed in single quotes. There can be only one consolidated user per
remote database.

For the FILE message type, the address is a subdirectory of the directory
pointed to by the SQLREMOTE environment variable.

The GRANT CONSOLIDATE statement is required for the consolidated
database to receive messages, but does not by itself subscribe the
consolidated database to any data. To subscribe to data, a subscription must
be created for the consolidated user ID to one of the publications in the
current database. Running the database extraction utility at a consolidated
database creates a remote database with the proper GRANT
CONSOLIDATE statement already issued.

The optional SEND EVERY and SEND AT clauses specify a frequency at
which messages are sent. The string contains a time that is a length of time

460

Chapter 4. SQL Statements

between messages (for SEND EVERY) or a time of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or
SEND AT clause, the Message Agent processes messages, and then stops. In
order to run the Message Agent continuously, you must ensure that every
user with REMOTE permission has either a SEND AT or SEND EVERY
frequency specified.

It is anticipated that at many remote databases, the Message Agent will be
run periodically, and that the consolidated database will have no SEND
clause specified.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “GRANT PUBLISH statement [SQL Remote]” on page 462

“GRANT REMOTE statement [SQL Remote]” on page 463

“REVOKE CONSOLIDATE statement [SQL Remote]” on page 532

“sp_grant_consolidate procedure”[SQL Remote User’s Guide,page 388]

Example GRANT CONSOLIDATE TO con_db
TYPE mapi
ADDRESS ’Consolidated Database’

461

GRANT PUBLISH statement [SQL Remote]
Description Use this statement to identify the publisher of the current database.

Syntax GRANT PUBLISH TO userid

Usage Each database in a SQL Remote installation is identified in outgoing
messages by a user ID, called thepublisher. The GRANT PUBLISH
statement identifies the publisher user ID associated with these outgoing
messages.

Only one user ID can have PUBLISH authority. The user ID with PUBLISH
authority is identified by the special constant CURRENT PUBLISHER. The
following query identifies the current publisher:

SELECT CURRENT PUBLISHER

If there is no publisher, the special constant is NULL.

The current publisher special constant can be used as a default setting for
columns. It is often useful to have a CURRENT PUBLISHER column as
part of the primary key for replicating tables, as this helps prevent primary
key conflicts due to updates at more than one site.

In order to change the publisher, you must first drop the current publisher
using the REVOKE PUBLISH statement, and then create a new publisher
using the GRANT PUBLISH statement.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “GRANT PUBLISH statement [SQL Remote]” on page 462

“GRANT CONSOLIDATE statement [SQL Remote]” on page 460

“REVOKE PUBLISH statement [SQL Remote]” on page 533

“CREATE SUBSCRIPTION statement [SQL Remote]” on page 347

“sp_publisher procedure”[SQL Remote User’s Guide,page 407]

Example GRANT PUBLISH TO publisher_ID

462

Chapter 4. SQL Statements

GRANT REMOTE statement [SQL Remote]
Description Use this statement to identify a database immediately below the current

database in a SQL Remote hierarchy, who will receive messages from the
current database. These are called remote users.

Syntax GRANT REMOTE TO userid , . . .
TYPE message-system, . . .
ADDRESS address-string, . . .
[SEND { EVERY | AT } send-time]

Parameters userid The user ID for the user to be granted the permission

message-system One of the message systems supported by SQL Remote.
It must be one of the following values:

♦ FILE

♦ FTP

♦ MAPI

♦ SMTP

♦ VIM

address-string A string containing a valid address for the specified
message system.

send-time A string containing a time specification in the formhh:mm:ss.

Usage In a SQL Remote installation, each database receiving messages from the
current database must be granted REMOTE permissions.

The single exception is the database immediately above the current database
in a SQL Remote hierarchy, which must be granted CONSOLIDATE
permissions.

The remote user is identified by a message system, identifying the method
by which messages are sent to and received from the consolidated user. The
address-name must be a valid address for the message-system, enclosed in
single quotes.

For the FILE message type, the address is a subdirectory of the directory
pointed to by the SQLREMOTE environment variable.

The GRANT REMOTE statement is required for the remote database to
receive messages, but does not by itself subscribe the remote user to any
data. To subscribe to data, a subscription must be created for the user ID to
one of the publications in the current database, using the database extraction
utility or the CREATE SUBSCRIPTION statement.

463

The optional SEND EVERY and SEND AT clauses specify a frequency at
which messages are sent. The string contains a time that is a length of time
between messages (for SEND EVERY) or a time of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or
SEND AT clause, the Message Agent processes messages, and then stops. In
order to run the Message Agent continuously, you must ensure that every
user with REMOTE permission has either a SEND AT or SEND EVERY
frequency specified.

It is anticipated that at many consolidated databases, the Message Agent will
be run continuously, so that all remote databases would have a SEND clause
specified. A typical setup may involve sending messages to laptop users
daily (SEND AT) and to remote servers every hour or two (SEND EVERY).
You should use as few different times as possible, for efficiency.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “GRANT PUBLISH statement [SQL Remote]” on page 462

“REVOKE REMOTE statement [SQL Remote]” on page 535

“GRANT CONSOLIDATE statement [SQL Remote]” on page 460

“sp_grant_remote procedure”[SQL Remote User’s Guide,page 391]

“Granting and revoking REMOTE and CONSOLIDATE permissions”[SQL
Remote User’s Guide,page 204]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example ♦ The following statement grants remote permissions to userSamS, using a
MAPI e-mail system, sending messages to the addressSinger, Samuel
once every two hours:

GRANT REMOTE TO SamS
TYPE mapi
ADDRESS ’Singer, Samuel’
SEND EVERY ’02:00’

464

Chapter 4. SQL Statements

GRANT REMOTE DBA statement [SQL Remote]
Description Use this statement to provide DBA privileges to a user ID, but only when

connected from the Message Agent.

Syntax GRANT REMOTE DBA
TO userid , . . .
IDENTIFIED BY password

Usage REMOTE DBA authority enables the Message Agent to have full access to
the database in order to make any changes contained in the messages, while
avoiding security problems associated with distributing DBA user IDs
passwords.

REMOTE DBA has the following properties.

♦ No distinct permissions when not connected from the Message Agent. A
user ID granted REMOTE DBA authority has no extra privileges on any
connection apart from the Message Agent. Even if the user ID and
password for a REMOTE DBA user is widely distributed, there is no
security problem. As long as the user ID has no permissions beyond
CONNECT granted on the database, no one can use this user ID to access
data in the database.

♦ Full DBA permissions when connected from the Message Agent.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “The Message Agent and replication security”[SQL Remote User’s Guide,
page 243]

“REVOKE REMOTE DBA statement [SQL Remote]” on page 536

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

465

HELP statement [Interactive SQL]
Description Use this statement to receive help in the Interactive SQL environment.

Syntax HELP [topic]

Usage The HELP statement is used to access SQL Anywhere Studio
documentation.

Thetopic for help can be optionally specified. Iftopic is a reserved word, it
must be enclosed in single quotes. In some help formats, the topic cannot be
specified; in this case, a link to the home page of the online books is
provided.

Permissions None.

Side effects None.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable

466

Chapter 4. SQL Statements

IF statement
Description Use this statement to control conditional execution of SQL statements.

Syntax IF search-condition THEN statement-list
[ELSEIF { search-condition | operation-type } THEN statement-list] . . .
[ELSE statement-list]
END IF

Usage The IF statement is a control statement that allows you to conditionally
execute the first list of SQL statements whosesearch-conditionevaluates to
TRUE. If nosearch-conditionevaluates to TRUE, and an ELSE clause
exists, thestatement-listin the ELSE clause is executed.

Execution resumes at the first statement after the END IF.

IF statement is different from IF expression
Do not confuse the syntax of the IF statement with that of the IF expression.

For information on the IF expression, see“IF expressions” on page 17.

Permissions None.

Side effects None.

See also “BEGIN statement” on page 267

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase The Transact-SQL IF statement has a slightly different syntax.

Example The following procedure illustrates the use of the IF statement:

467

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)

BEGIN
DECLARE err_notfound EXCEPTION
FOR SQLSTATE ’02000’;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(sum(sales_order_items.quantity

*
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name;
DECLARE ThisValue INT;
DECLARE ThisCompany CHAR(35);
SET TopValue = 0;
OPEN curThisCust;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop;
END IF;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue;
SET TopCompany = ThisCompany;

END IF;
END LOOP CustomerLoop;
CLOSE curThisCust;

END

468

Chapter 4. SQL Statements

IF statement [T-SQL]
Description Use this statement to control conditional execution of a SQL statement, as an

alternative to the Watcom-SQL IF statement.

Syntax IF expression
statement
[ELSE
[IF expression]
statement]

Usage The Transact-SQL IF conditional and the ELSE conditional each control the
execution of only a single SQL statement or compound statement (between
the keywords BEGIN and END).

In comparison to the Watcom-SQL IF statement, there is no THEN in the
Transact-SQL IF statement. The Transact-SQL version also has no ELSEIF
or END IF keywords.

Permissions None.

Side effects None.

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Adaptive Server Enterprise supports the Transact-SQL IF
statement.

Example The following example illustrates the use of the Transact-SQL IF statement:

IF (SELECT max(id) FROM sysobjects) < 100
RETURN

ELSE

PRINT ’These are the user-created objects’
SELECT name, type, id
FROM sysobjects
WHERE id < 100

END

The following two statement blocks illustrate Transact-SQL and
Watcom-SQL compatibility:

469

/* Transact-SQL IF statement */
IF @v1 = 0

PRINT ’0’
ELSE IF @v1 = 1

PRINT ’1’
ELSE

PRINT ’other’
/* Watcom-SQL IF statement */
IF v1 = 0 THEN

PRINT ’0’
ELSEIF v1 = 1 THEN

PRINT ’1’
ELSE

PRINT ’other’
END IF

470

Chapter 4. SQL Statements

INCLUDE statement [ESQL]
Description Use this statement to include a file into a source program to be scanned by

the SQL preprocessor.

Syntax INCLUDE filename

filename : SQLDA | SQLCA | string

Usage The INCLUDE statement is very much like the C preprocessor#include
directive. The SQL preprocessor reads an embedded SQL source file and
replaces all the embedded SQL statements with C-language source code. If a
file contains information that the SQL preprocessor requires, include it with
the embedded SQL INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. The
following statement must appear before any embedded SQL statements in all
embedded SQL source files.

EXEC SQL INCLUDE SQLCA;

This statement must appear at a position in the C program where static
variable declarations are allowed. Many embedded SQL statements require
variables (invisible to the programmer), which are declared by the SQL
preprocessor at the position of the SQLCA include statement. The SQLDA
file must be included if any SQLDAs are used.

Permissions None.

Side effects None.

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

471

INPUT statement [Interactive SQL]
Description Use this statement to import data into a database table from an external file

or from the keyboard.

Syntax INPUT INTO [owner.]table-name
[FROM filename | PROMPT]
[FORMAT input-format]
[ESCAPE CHARACTER character]
[BY ORDER | BY NAME]
[DELIMITED BY string]
[COLUMN WIDTHS (integer , . . .)]
[NOSTRIP]
[(column-name, . . .)]

input-format :
ASCII | DBASE | DBASEII | DBASEIII
| EXCEL | FIXED | FOXPRO | LOTUS

Parameters FORMAT clause Each set of values must occupy one input line and must
be in the format specified by the FORMAT clause, or the format set by the
SET OPTION INPUT_FORMAT statement if the FORMAT clause is not
specified. When input is entered by the user, an empty screen is provided for
the user to enter one row per line in the input format.

Certain file formats contain information about column names and types.
Using this information, the INPUT statement will create the database table if
it does not already exist. This is a very easy way to load data into the
database. The formats that have enough information to create the table are:
DBASEII, DBASEIII, FOXPRO, and LOTUS.

Input from a command file is terminated by a line containing END. Input
from a file is terminated at the end of the file.

Allowable input formats are:

♦ ASCII Input lines are assumed to be ASCII characters, one row per line,
with values separated by commas. Alphabetic strings may be enclosed in
apostrophes (single quotes) or quotation marks (double quotes). Strings
containing commas must be enclosed in either single or double quotes. If
the string itself contains single or double quotes, double the quote
character to use it within the string. Optionally, you can use the
DELIMITED BY clause to specify a different delimiter string than the
default, which is a comma.

Three other special sequences are also recognized. The two characters \n
represent a newline character, \\represents a single (\), and the sequence
\xDD represents the character with hexadecimal code DD.

472

Chapter 4. SQL Statements

♦ DBASE The file is in dBASE II or dBASE III format. Interactive SQL
will attempt to determine which format, based on information in the file.
If the table doesn’t exist, it will be created.

♦ DBASEII The file is in dBASE II format. If the table doesn’t exist, it
will be created.

♦ DBASEIII The file is in dBASE III format. If the table doesn’t exist, it
will be created.

♦ EXCEL Input file is in the format of Microsoft Excel 2.1. If the table
doesn’t exist, it will be created.

♦ FIXED Input lines are in fixed format. The width of the columns can be
specified using the COLUMN WIDTHS clause. If they are not specified,
column widths in the file must be the same as the maximum number of
characters required by any value of the corresponding database column’s
type.

The FIXED format cannot be used with binary columns that contain
embedded newline and End of File character sequences.

♦ FOXPRO The file is in FoxPro format (the FoxPro memo field is
different than the dBASE memo field). If the table doesn’t exist, it will be
created.

♦ LOTUS The file is a Lotus WKS format worksheet. INPUT assumes
that the first row in the Lotus WKS format worksheet is column names. If
the table doesn’t exist, it will be created. In this case, the types and sizes
of the columns created may not be correct because the information in the
file pertains to a cell, not to a column.

ESCAPE CHARACTER clause The default escape character for
hexadecimal codes and symbols is a backslash (\), so \x0A is the linefeed
character, for example.

The escape character can be changed, using the ESCAPE CHARACTER
clause. For example, to use the exclamation mark as the escape character,
you would enter:

... ESCAPE CHARACTER ’!’

Only one single-byte character can be used as an escape character.

BY clause The BY clause allows the user to specify whether the columns
from the input file should be matched up with the table columns based on
their ordinal position in the lists (ORDER, the default) or by their names
(NAME). Not all input formats have column name information in the file.
NAME is allowed only for those formats that do. They are the same formats

473

that allow automatic table creation: DBASEII, DBASEIII, FOXPRO, and
LOTUS.

DELIMITED BY clause The DELIMITED BY clause allows you to specify
a string to be used as the delimiter in ASCII input format.

COLUMN WIDTHS clause COLUMN WIDTHS can be specified for
FIXED format only. It specifies the widths of the columns in the input file. If
COLUMN WIDTHS is not specified, the widths are determined by the
database column types. This clause should not be used if inserting
LONG VARCHAR or BINARY data in FIXED format.

NOSTRIP clause Normally, for ASCII input format, trailing blanks will be
stripped from unquoted strings before the value is inserted. NOSTRIP can
be used to suppress trailing blank stripping. Trailing blanks are not stripped
from quoted strings, regardless of whether the option is used. Leading
blanks are stripped from unquoted strings, regardless of the NOSTRIP
option setting.

If the ASCII file has entries such that a column appears to be null, it is
treated as NULL. If the column in that position cannot be NULL, a zero is
inserted in numeric columns and an empty string in character columns.

Usage The INPUT statement allows efficient mass insertion into a named database
table. Lines of input are read either from the user via an input window (if
PROMPT is specified) or from a file (if FROM filename is specified). If
neither is specified, the input will be read from the command file that
contains the input statement—in Interactive SQL, this can even be directly
from the SQL Statements pane. In this case, input is ended with a line
containing only the string END.

If a column list is specified for any input format, the data is inserted into the
specified columns of the named table. By default, the INPUT statement
assumes that column values in the input file appear in the same order as they
appear in the database table definition. If the input file’s column order is
different, you must list the input file’s actual column order at the end of the
INPUT statement.

For example, if you create a table with the following statement:

CREATE TABLE inventory (
quantity INTEGER,
item VARCHAR(60)
)

and you want to import ASCII data from the input filestock.txt that contains
the name value before the quantity value,

474

Chapter 4. SQL Statements

’Shirts’, 100
’Shorts’, 60

then you must list the input file’s actual column order at the end of the
INPUT statement for the data to be inserted correctly:

INPUT INTO inventory
FROM stock.txt
FORMAT ascii
(item, quantity);

By default, the INPUT statement stops when it attempts to insert a row that
causes an error. Errors can be treated in different ways by setting the
ON_ERROR and CONVERSION_ERROR options (see SET OPTION).
Interactive SQL prints a warning in the Messages pane if any string values
are truncated on INPUT. Missing values for NOT NULL columns are set to
zero for numeric types and to the empty string for non-numeric types. If
INPUT attempts to insert a NULL row, the input file contains an empty row.

Permissions Must have INSERT permission on the table or view.

Side effects None.

See also “OUTPUT statement [Interactive SQL]” on page 501

“INSERT statement” on page 476

“UPDATE statement” on page 592

“DELETE statement” on page 399

“SET OPTION statement” on page 556

“LOAD TABLE statement” on page 486

“xp_read_file system procedure” on page 761

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following is an example of an INPUT statement from an ASCII text file.

INPUT INTO employee
FROM new_emp.inp
FORMAT ascii;

475

INSERT statement
Description Use this statement to insert a single row (syntax 1) or a selection of rows

from elsewhere in the database (syntax 2) into a table.

Syntax 1 INSERT [INTO] [owner.]table-name [(column-name, . . .)]
[ON EXISTING { ERROR | SKIP | UPDATE }]VALUES
(expression | DEFAULT , . . .)

Syntax 2 INSERT [INTO] [owner.]table-name
[ON EXISTING { ERROR | SKIP | UPDATE }]
[WITH AUTO NAME]
select-statement

Parameters WITH AUTO NAME clause WITH AUTO NAME applies only to syntax 2.
If you specify WITH AUTO NAME, the names of the items in the SELECT
statement determine which column the data belongs in. The SELECT
statement items should be either column references or aliased expressions.
Destination columns not defined in the SELECT statement will be assigned
their default value. This is useful when the number of columns in the
destination table is very large.

ON EXISTING clause The ON EXISTING clause of the INSERT
statement applies to both syntaxes. It updates existing rows in a table, based
on primary key lookup, with new values. This clause can only be used on
tables that have a primary key. Attempting to use this clause on tables
without primary keys generates a syntax error. You cannot insert values into
a proxy table with the ON EXISTING clause.

If you specify the ON EXISTING clause, the server does a primary key
lookup for each input row. If the corresponding row does not already exist in
the table, it inserts the new row as usual. For rows that already exist in the
table, you can choose to silently ignore the input row (SKIP), update the
values in the input row (UPDATE), or generate an error message for
duplicate key values (ERROR).

By default, if you do not specify ON EXISTING, attempting to insert rows
into a table where the row already exist results in a duplicate key value error.
This is equivalent to specifying ON EXISTING ERROR.

Usage The INSERT statement is used to add new rows to a database table.

Syntax 1 Insert a single row with the specified expression values. The
keyword DEFAULT can be used to cause the default value for the column to
be inserted. If the optional list of column names is given, the values are
inserted one for one into the specified columns. If the list of column names
is not specified, the values are inserted into the table columns in the order
they were created (the same order as retrieved with SELECT *). The row is

476

Chapter 4. SQL Statements

inserted into the table at an arbitrary position. (In relational databases, tables
are not ordered.)

Syntax 2 Carry out mass insertion into a table with the results of a fully
general SELECT statement. Insertions are done in an arbitrary order unless
the SELECT statement contains an ORDER BY clause.

If you specify column names, the columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the
order in which the columns were created.

Inserts can be done into views, if the query specification defining the view is
updateable and has only one table in the FROM clause.

An inherently non-updateable view consists of a query expression or query
specification containing any of the following:

♦ DISTINCT clause

♦ GROUP BY clause

♦ Aggregate function

♦ A select-listitem that is not a base table.

Character strings inserted into tables are always stored in the same case as
they are entered, regardless of whether the database is case sensitive or not.
Thus a stringValue inserted into a table is always held in the database with
an upper-case V and the remainder of the letters lower case. SELECT
statements return the string asValue. If the database is not case sensitive,
however, all comparisons makeValue the same asvalue, VALUE , and so
on. Further, if a single-column primary key already contains an entryValue,
an INSERT ofvalue is rejected, as it would make the primary key not
unique.

Inserting a significant amount of data using the INSERT statement will also
update column statistics.

Performance tips
To insert many rows into a table, it is more efficient to declare a cursor and
insert the rows through the cursor, where possible, than to carry out many
separate INSERT statements. Before inserting data, you can specify the
percentage of each table page that should be left free for later updates. For
more information, see“ALTER TABLE statement” on page 250.

Permissions Must have INSERT permission on the table.

Side effects None.

477

See also “INPUT statement [Interactive SQL]” on page 472

“UPDATE statement” on page 592

“DELETE statement” on page 399

“PUT statement [ESQL]” on page 513

Standards and
compatibility

♦ SQL/92 Entry-level feature. INSERT . . . ON EXISTING is a vendor
extension.

♦ SQL/99 Core feature. INSERT . . . ON EXISTING is a vendor
extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Examples Add an Eastern Sales department to the database.

INSERT
INTO department (dept_id, dept_name)
VALUES (230, ’Eastern Sales’)

Create the table dept_head and fill it with the names of department heads
and their departments.

CREATE TABLE dept_head(
pk int primary key default autoincrement,
dept_name varchar(128),
manager_name varchar (128));

INSERT
INTO dept_head (manager_name, dept_name)
SELECT emp_fname || ’ ’ || emp_lname AS manager,

dept_name
FROM employee JOIN department
ON emp_id = dept_head_id

Create the table dept_head and fill it with the names of department heads
and their departments using the WITH AUTO NAME syntax.

CREATE TABLE dept_head(
pk int primary key default autoincrement,
dept_name varchar(128),
manager varchar (128));

INSERT
INTO dept_head WITH AUTO NAME
SELECT emp_fname || ’ ’ || emp_lname AS manager,

dept_name
FROM employee JOIN department
ON emp_id = dept_head_id

Create the table mytab and populate it using the WITH AUTO NAME
syntax.

478

Chapter 4. SQL Statements

CREATE TABLE mytab(
pk int primary key default autoincrement,
table_name char(128),
len int);

INSERT into mytab WITH AUTO NAME
SELECT

length(t.table_name) AS len,
t.table_name

FROM SYS.SYSTABLE t
WHERE table_id<=10

479

INSTALL JAVA statement
Description Use this statement to make Java classes available for use within a database.

Syntax INSTALL JAVA
[NEW | UPDATE]
[JAR jar-name]
FROM { FILE filename | expression }

Parameters NEW | UPDATE keyword If you specify an install mode of NEW, the
referenced Java classes must be new classes, rather than updates of currently
installed classes. An error occurs if a class with the same name exists in the
database and the NEW install mode is used.

If you specify UPDATE, the referenced Java classes may include
replacements for Java classes that are already installed in the given database.

If install-modeis omitted, the default is NEW.

JAR clause If this is specified, then thefilenamemust designate a jar file.
JAR files typically have extensions of.jar or .zip.

Installed jar and zip files can be compressed or uncompressed.

If the JAR option is specified, the jar is retained as a jar after the classes that
it contains have been installed. That jar is the associated jar of each of those
classes. The jars installed in a database with the JAR option are called the
retained jars of the database.

The jar-nameis a character string value, of up to 255 bytes long. The
jar-nameis used to identify the retained jar in subsequent INSTALL JAVA,
UPDATE, and REMOVE JAVA statements.

FROM FILE clause Specifies the location of the Java class(es) to be
installed.

The formats supported forfile-nameinclude fully qualified file names, such
as ‘c:\libs\jarname.jar’and ‘/usr/u/libs/jarname.jar’, and relative file names,
which are relative to the current working directory of the database server.

Thefilenamemust identify either a class file, or a jar file.

FROM expression clause Expressions must evaluate to a binary type
whose value contains a valid class file or jar file.

Usage The class definition for each class is loaded by each connection’s VM the
first time that class is used. When you INSTALL a class, the VM on your
connection is implicitly restarted. Therefore, you have immediate access to
the new class, whether the INSTALL has aninstall-modeof NEW or
UPDATE. Because the VM is restarted, any values stored in Java static

480

Chapter 4. SQL Statements

variables are lost, and any SQL variables with Java class types are dropped.

For other connections, the new class is loaded the next time a VM accesses
the class for the first time. If the class is already loaded by a VM, that
connection does not see the new class until the VM is restarted for that
connection (for example, with a STOP JAVA and START JAVA).

Permissions DBA permissions are required to execute the INSTALL JAVA statement.

All installed classes can be referenced in any way by any user.

Not supported on Windows CE.

See also “REMOVE JAVA statement” on page 521

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example The following statement installs the user-created Java class named Demo, by
providing the filename and location of the class.

INSTALL JAVA NEW
FROM FILE ’D: \JavaClass \Demo.class’

After installation, the class is referenced using its name. Its original file path
location is no longer used. For example, the following statement uses the
class installed in the previous statement.

create variable d Demo

If the Demo class was a member of the packagesybase.work, the fully
qualified name of the class must be used, for example,

CREATE VARIABLE d sybase.work.Demo

The following statement installs all the classes contained in a zip file, and
associates them within the database with a JAR file name.

INSTALL JAVA
JAR ’Widgets’
FROM FILE ’C: \Jars \Widget.zip’

Again, the location of the zip file is not retained and classes must be
referenced using the fully qualified class name (package name and class
name).

481

INTERSECT operation
Description Computes the intersection between the result sets of two or more queries.

Syntax select-statement
INTERSECT [ALL | DISTINCT] select-statement

[INTERSECT [ALL | DISTINCT] select-statement] . . .
[ORDER BY integer [ASC | DESC], . . .]

Usage The intersection between the result sets of several SELECT statements can
be obtained as a single result using INTERSECT or INTERSECT ALL.
INTERSECT DISTINCT is identical to INTERSECT.

The component SELECT statements must each have the same number of
items in the select list, and cannot contain an ORDER BY clause.

The results of INTERSECT are the same as INTERSECT ALL, except that
when using INTERSECT, duplicate rows are eliminated before the
intersection between the result sets is computed.

If corresponding items in two select lists have different data types, Adaptive
Server Anywhere chooses a data type for the corresponding column in the
result and automatically convert the columns in each component SELECT
statement appropriately. If ORDER BY is used, only integers are allowed in
the order by list. These integers specify the position of the columns to be
sorted.

The column names displayed are the same column names that are displayed
for the first SELECT statement. An alternative way of customizing result set
column names is to use the WITH clause on the SELECT statement.

Permissions Must have SELECT permission for each of the component SELECT
statements.

Side effects None.

See also “EXCEPT operation” on page 423

“UNION operation” on page 586

Standards and
compatibility

♦ SQL/92 Entry-level.

♦ SQL/99 Feature F302.

♦ Sybase Supported by Adaptive Server Enterprise.

Example For examples of INTERSECT usage, see “Set operators and NULL”[ASA
SQL User’s Guide,page 254].

482

Chapter 4. SQL Statements

LEAVE statement
Description Use this statement to leave a compound statement or loop.

Syntax LEAVE statement-label

See also “LOOP statement” on page 495

“FOR statement” on page 441

“BEGIN statement” on page 267

“Using Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609]

Usage The LEAVE statement is a control statement that allows you to leave a
labeled compound statement or a labeled loop. Execution resumes at the first
statement after the compound statement or loop.

The compound statement that is the body of a procedure or trigger has an
implicit label that is the same as the name of the procedure or trigger.

Permissions None.

Side effects None.

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported in Adaptive Server Enterprise. The BREAK
statement provides a similar feature for Transact-SQL compatible
procedures.

Example The following fragment shows how the LEAVE statement is used to leave a
loop.

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters (number)
VALUES (i);
IF i >= 10 THEN

LEAVE lbl;
END IF;
SET i = i + 1

END LOOP lbl

The following example fragment uses LEAVE in a nested loop.

483

outer_loop:
LOOP

SET i = 1;
inner_loop:
LOOP

...
SET i = i + 1;
IF i >= 10 THEN

LEAVE outer_loop
END IF

END LOOP inner_loop
END LOOP outer_loop

484

Chapter 4. SQL Statements

LOAD STATISTICS statement
Description This statement loads statistics into the system table SYSCOLSTAT. It is

used by the dbunload utility to unload column statistics from the old
database. It should not be used manually.

Syntax LOAD STATISTICS [[owner.]table-name.]column-name
format-id , density , max-steps, actual-steps, step-values, frequencies

Parameters format_id Internal field used to determine the format of the rest of the row
in the SYSCOLSTAT system table.

density An estimate of the weighted average selectivity of a single value
for the column, not counting the selectivity of large single value selectivities
stored in the row.

max_steps The maximum number of steps allowed in the histogram.

actual_steps The number of steps actually used at this time.

step_values Boundary values of the histogram steps.

frequencies Selectivities of histogram steps.

Permissions Must have DBA authority.

Side effects None.

See also “SYSCOLSTAT system table” on page 627

“Unloading a database using the dbunload command-line utility”[ASA
Database Administration Guide,page 534]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

485

LOAD TABLE statement
Description Use this statement to import bulk data into a database table from an external

ASCII-format file. Inserts are not recorded in the log file, raising the risk
that data will be lost in the event of a crash and making this statement
unusable with SQL Remote or with MobiLink remote databases.

Syntax LOAD [INTO] TABLE [owner.]table-name [(column-name, . . .)]
FROM filename-string
[load-option . . .]

load-option :
CHECK CONSTRAINTS { ON | OFF }

| COMPUTES { ON | OFF }
| DEFAULTS { ON | OFF }
| DELIMITED BY string
| ESCAPE CHARACTER character
| ESCAPES { ON | OFF }
| FORMAT { ASCII | BCP }
| HEXADECIMAL {ON | OFF}
| ORDER {ON | OFF}
| PCTFREE percent-free-space
| QUOTES { ON | OFF }
| STRIP { ON | OFF }
| WITH CHECKPOINT { ON | OFF }

Parameters Column-name Any columns not present in the column list become NULL
if the DEFAULTS option is off. If DEFAULTS is on and the column has a
default value, that value will be used. If DEFAULTS is off and a
non-nullable column is omitted from the column list, the engine attempts to
convert the empty string to the column’s type.

When a column list is specified, it lists the columns that are expected to exist
in the file and the order in which they are to appear. Column names cannot
be repeated. Column names that do not appear in the list will be set to
null/zero/empty or DEFAULT (depending on column nullability, data type,
and the DEFAULT setting). Columns that exist in the input file that are to be
ignored by LOAD TABLE can be specified using the column name “filler()”.

FROM option Thefilename-stringis passed to the server as a string. The
string is therefore subject to the same formatting requirements as other SQL
strings. In particular:

♦ To indicate directory paths, the backslash character \must be represented
by two backslashes. The statement to load data from the file
c:\temp\input.datinto the employee table is:

LOAD TABLE employee
FROM ’c: \\temp \\input.dat’ ...

486

Chapter 4. SQL Statements

♦ The path name is relative to the database server, not to the client
application. If you are running the statement on a database server on
another computer, the directory names refer to directories on the server
machine, not on the client machine.

♦ You can use UNC path names to load data from files on computers other
than the server. For example, on a Windows 95 or Windows NT network,
you may use the following statement to load data from a file on the client
machine:

LOAD TABLE employee
FROM ’\\\\client \\temp \\input.dat’

CHECK CONSTRAINTS option This option is on by default, but the
Unload utility writes out LOAD TABLE statements with the option set to
off.

Setting CHECK CONSTRAINTS to off disables check constraints. This can
be useful, for example, during database rebuilding. If a table has check
constraints that call user-defined functions that are not yet created, the
rebuild fails unless this option is set to off.

COMPUTES option By default, COMPUTES is ON. Setting COMPUTES
to ON enables recalculation of computed columns.

Setting COMPUTES to OFF disables computed column recalculations. This
option is useful, for example, if you are rebuilding a database, and a table
has a computed column that calls a user-defined function that is not yet
created. The rebuild would fail unless this option was set to OFF.

The Unload utility (dbunload) writes out LOAD TABLE statements with the
COMPUTES option set to OFF.

DEFAULTS option By default, DEFAULTS is OFF. If DEFAULTS is OFF,
any column not present in the column list is assigned NULL. If DEFAULTS
is OFF and a non-nullable column is omitted from the column list, the
database server attempts to convert the empty string to the column’s type. If
DEFAULTS is ON and the column has a default value, that value is used.

DELIMITED BY option The default column delimiter character is a comma.
You can specify an alternative column delimiter by providing a string. The
same formatting requirements apply as to other SQL strings. In particular, if
you wanted to specify tab-delimited values, the hexadecimal ASCII code of
the tab character (9) is used. The DELIMITED BY clause is as follows:

...DELIMITED BY ’ \x09’ ...

You can specify delimiters that are up to 255 bytes in length. For example,

487

...DELIMITED BY ’###’ ...

ESCAPE CHARACTER option The default escape character for characters
stored as hexadecimal codes and symbols is a backslash (\), so \x0A is the
linefeed character, for example.

This can be changed using the ESCAPE CHARACTER clause. For example,
to use the exclamation mark as the escape character, you would enter

... ESCAPE CHARACTER ’!’

Only one single-byte character can be used as an escape character.

ESCAPES option With ESCAPES turned on (the default), characters
following the backslash character are recognized and interpreted as special
characters by the database server. New line characters can be included as the
combination \n, other characters can be included in data as hexadecimal
ASCII codes, such as \x09 for the tab character. A sequence of two
backslash characters (\\) is interpreted as a single backslash. A backslash
followed by any character other than n, x, X or \is interpreted as two separate
characters. For example, \q inserts a backslash and the letter q.

FORMAT option If you choose ASCII, input lines are assumed to be
ASCII characters, one row per line, with values separated by the column
delimiter character. Choosing BCP allows the import of ASE generated BCP
out files containing blobs.

HEXADECIMAL option By default, HEXADECIMAL is ON. With
HEXADECIMAL ON, binary column values are read as0xnnnnnn. . . ,
where eachn is a hexadecimal digit. It is important to use
HEXADECIMAL ON when dealing with multi-byte character sets.

The HEXADECIMAL option can be used only with the FORMAT ASCII
option.

ORDER option If ORDER is ON, and a clustered index has been declared,
then LOAD TABLE sorts the input data according to the clustered index and
inserts rows in the same order. If the data you are loading is already sorted,
you should set ORDER to OFF.

☞ For more information, see “Using clustered indexes”[ASA SQL User’s
Guide,page 59].

QUOTES option With QUOTES turned on (the default), the LOAD
TABLE statement expects strings to be enclosed in quote characters. The
quote character is either an apostrophe (single quote) or a quotation mark
(double quote). The first such character encountered in a string is treated as
the quote character for the string. Strings must be terminated by a matching

488

Chapter 4. SQL Statements

quote.

With quotes on, column delimiter characters can be included in column
values. Also, quote characters are assumed not to be part of the value.
Therefore, a line of the form

’123 High Street, Anytown’,(715)398-2354

is treated as two values, not three, despite the presence of the comma in the
address. Also, the quotes surrounding the address are not inserted into the
database.

To include a quote character in a value, with QUOTES on, you must use two
quotes. The following line includes a value in the third column that is a
single quote character:

’123 High Street, Anytown’,’(715)398-2354’,’’’’

STRIP option With STRIP turned on (the default), trailing blanks are
stripped from values before they are inserted. To turn the STRIP option off,
the clause is as follows:

...STRIP OFF ...

Trailing blanks are stripped only for non-quoted strings. Quoted strings
retain their trailing blanks. Leading blanks are trimmed, regardless of the
STRIP setting, unless they are enclosed in quotes.

WITH CHECKPOINT option The default setting is OFF. If set to ON, a
checkpoint is issued after successfully completing and logging the statement.

If WITH CHECKPOINT ON is not specified, and the database requires
automatic recovery before a CHECKPOINT is issued, the data file used to
load the table must be present for the recovery to complete successfully. If
WITH CHECKPOINT ON is specified, and recovery is subsequently
required, recovery begins after the checkpoint, and the data file need not be
present.

Caution
If you set the database option CONVERSION_ERROR to OFF, you may
load bad data into your table without any error being reported. If you do not
specify WITH CHECKPOINT ON, and the database needs to be recovered,
the recovery may fail as CONVERSION_ERROR is ON (the default value)
during recovery. It is recommended that you do not load tables with
CONVERSION_ERROR set to OFF and WITH CHECKPOINT ON not
specified.

☞ For more information, see CONVERSION_ERROR option.

489

The data files are required, regardless of this option, if the database becomes
corrupt and you need to use a backup and apply the current log file.

PCTFREE option Specifies the percentage of free space you want to
reserve for each table page. This setting overrides any permanent setting for
the table, but only for the duration of the load.

The value percent-free-space is an integer between 0 and 100. The former
specifies that no free space is to be left on each page—each page is to be
fully packed. A high value causes each row to be inserted into a page by
itself.

☞ For more information about PCTFREE, see“CREATE TABLE
statement” on page 361.

Usage
Caution
LOAD TABLE is intended solely for fast loading of large amounts of data.
LOAD TABLE does not write individual rows to the transaction log.

The LOAD TABLE statement allows efficient mass insertion into a database
table from an ASCII file. LOAD TABLE is more efficient than the
Interactive SQL statement INPUT. Before inserting data, you can specify the
percentage of each table page that should be left free for later updates. For
more information, see the“ALTER TABLE statement” on page 250.

LOAD TABLE places an exclusive lock on the whole table. It does not fire
any triggers associated with the table.

You can use LOAD TABLE on temporary tables, but the temporary table
must have been created with the ON COMMIT PRESERVE ROWS clause
because LOAD TABLE does a COMMIT after the load.

If the ASCII file has entries such that a column appears to be NULL, LOAD
TABLE treats it as null. If the column in that position cannot be NULL, it
inserts a zero in numeric columns and an empty string in character columns.
LOAD TABLE skips empty lines in the input file.

LOAD TABLE and statistics LOAD TABLE captures column statistics
when it loads data in order to create histograms on table columns. If a
histogram already exists for a column, LOAD TABLE leaves the existing
histogram alone and does not create a new one. If you are loading into an
empty table, it is beneficial to drop statistics first.

LOAD TABLE does not generate statistics for columns that contain NULL
values for more than 90% of the rows being loaded.

LOAD TABLE saves statistics on base tables for future use. It does not save

490

Chapter 4. SQL Statements

statistics on global temporary tables.

LOAD TABLE adds statistics only if the number of rows being loaded is
greater than the threshold specified in the database option
MIN_TABLE_SIZE_FOR_HISTOGRAM (the default is 1000). If the table
has at least that many rows, histograms are added as follows:

Data already in table? Histogram present? Action taken

Yes Yes Use existing histograms

Yes No Don’t build histograms

No Yes Use existing histograms

No No Build new histograms

☞ For more information, see “Optimizer estimates”[ASA SQL User’s Guide,
page 369].

Using dynamically constructed filenames You can execute a LOAD
TABLE statement with a dynamically constructed filename by dynamically
constructing the entire statement, then executing it using the EXECUTE
IMMEDIATE statement. For more information, see the“EXECUTE
IMMEDIATE statement [SP]” on page 429.

Permissions The permissions required to execute a LOAD TABLE statement depend on
the database server-gl command line option, as follows:

♦ If the -gl option is ALL, you must be the owner of the table or have
DBA authority or have ALTER privilege.

♦ If the -gl option is DBA, you must have DBA authority.

♦ If the -gl option is NONE, LOAD TABLE is not permitted.

☞ For more information, see “-gl server option”[ASA Database
Administration Guide,page 147].

Requires an exclusive lock on the table.

Side effects Inserts are not recorded in the log file. Thus, the inserted rows may not be
recovered in the event of a crash. In addition, the LOAD TABLE statement
should never be used in a database involved in SQL Remote replication or
databases used as MobiLink clients because these technologies replicated
changes through analysis of the log file.

The LOAD TABLE statement does not fire triggers, including referential
integrity actions.

A checkpoint is carried out at the beginning of the operation. A second
checkpoint, at the end of the operation, is optional.

491

Column statistics will be updated if a significant amount of data is loaded.

Side effects Automatic commit.

See also “UNLOAD TABLE statement” on page 590

“MIN_TABLE_SIZE_FOR_HISTOGRAM option [database]”[ASA
Database Administration Guide,page 609]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Following is an example of LOAD TABLE. First, we create a table, then
load data into it using a file called input.txt.

CREATE TABLE T(a char(100), let_me_default int DEFAULT 1, c
char(100))

Following is the content of a file called input.txt:

ignore_me, this_is_for_column_c, this_is_for_column_a

The following LOAD statement loads the file called input.txt:

LOAD TABLE T (filler(), c, a) FROM ’input.txt’ FORMAT ASCII
DEFAULTS ON

The commandSELECT * FROM t yields the result set:

this_is_for_column_a, 1, this_is_for_column_c

Execute the LOAD TABLE statement with a dynamically-constructed
filename, via the EXECUTE IMMEDIATE statement:

CREATE PROCEDURE LoadData(IN from_file LONG VARCHAR)
BEGIN

DECLARE cmd LONG VARCHAR;
SET cmd = ’LOAD TABLE DBA.MyTable FROM ’ ||

’’’d: \\data \\’ || from_file || ’’’’;
EXECUTE IMMEDIATE WITH ESCAPES OFF cmd;

END

492

Chapter 4. SQL Statements

LOCK TABLE statement
Description Use this statement to prevent other concurrent transactions from accessing or

modifying a table.

Syntax LOCK TABLE table-name
[WITH HOLD]
IN { SHARE | EXCLUSIVE } MODE

Parameters table-name The table must be a base table, not a view. As temporary table
data is local to the current connection, locking global or local temporary
tables has no effect.

WITH HOLD clause If this clause is specified, the lock is held until the end
of the connection. If the clause is not specified, the lock is release when the
current transaction is committed or rolled back.

SHARE mode Prevent other transactions from modifying the table, but
allow them read access. In this mode you can change data in the table as
long as no other transaction has locked the row being modified, either
indirectly or explicitly using LOCK TABLE.

EXCLUSIVE mode Prevent other transactions from accessing the table. No
other transaction can execute queries, updates of any kind, or any other
action against the table. If a table t is locked exclusively withLOCK
TABLE t IN EXCLUSIVE MODE , the default server behavior is to not
acquire row locks fort. This behavior can be disabled by setting the
SUBSUME_ROW_LOCKS option OFF.

Usage The LOCK TABLE statement allows direct control over concurrency at a
table level, independent of the current isolation level.

While the isolation level of a transaction generally governs the kinds of
locks that are set when the current transaction executes a request, the LOCK
TABLE statement allows more explicit control locking of the rows in a table.

The locks placed by LOCK TABLE in SHARE mode are phantom and
anti-phantom locks, which are displayed by the sa_locks procedure as PT
and AT.

Permissions To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode; you must be the table owner or have
DBA authority.

Side effects Other transactions that require access to the locked table may be delayed or
blocked.

See also “SELECT statement” on page 541

493

“sa_locks system procedure” on page 721

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Supported in Adaptive Server Enterprise. The WITH HOLD
clause is not supported in Adaptive Server Enterprise. Adaptive Server
Enterprise provides a WAIT clause that is not supported in Adaptive
Server Anywhere.

Example The following statement prevents other transactions from modifying the
customer table for the duration of the current transaction:

LOCK TABLE customer
IN SHARE MODE

494

Chapter 4. SQL Statements

LOOP statement
Description Use this statement to repeat the execution of a statement list.

Syntax [statement-label :]
[WHILE search-condition] LOOP

statement-list
END LOOP [statement-label]

Usage The WHILE and LOOP statements are control statements that allow you to
execute a list of SQL statements repeatedly while asearch-condition
evaluates to TRUE. The LEAVE statement can be used to resume execution
at the first statement after the END LOOP.

If the endingstatement-labelis specified, it must match the beginning
statement-label.

Permissions None.

Side effects None.

See also “FOR statement” on page 441

“LEAVE statement” on page 483

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported in Adaptive Server Enterprise. The WHILE
statement provides looping in Transact-SQL stored procedures.

Example A While loop in a procedure.
...
SET i = 1;
WHILE i <= 10 LOOP

INSERT INTO Counters(number) VALUES (i);
SET i = i + 1;

END LOOP;
...

A labeled loop in a procedure.

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters(number)
VALUES (i);
IF i >= 10 THEN

LEAVE lbl;
END IF;
SET i = i + 1;

END LOOP lbl

495

MESSAGE statement
Description Use this statement to display a message.

Syntax MESSAGE expression, . . .
[TYPE { INFO | ACTION | WARNING | STATUS }]
[TO { CONSOLE | CLIENT | LOG }]

Parameters TYPE clause The TYPE clause only has an effect if the message is sent to
the client. The client application must decide how to handle the message.
Interactive SQL displays messages in the following locations:

♦ INFO The Messages pane. INFO is the default type.

♦ ACTION A Message box with an OK button.

♦ WARNING A Message box with an OK button.

♦ STATUS The Messages pane.

TO clause This clause specifies the destination of a message:

♦ CONSOLE Send messages to the database server window. CONSOLE
is the default.

♦ CLIENT Send messages to the client application. Your application must
decide how to handle the message, and you can use the TYPE as
information on which to base that decision.

♦ LOG Send messages to the server log file specified by the-o option.

Usage The MESSAGE statement displays a message, which can be any expression.
Clauses can specify where the message appears.

The procedure issuing a MESSAGE ... TO CLIENT statement must be
associated with a connection.

For example, the message box is not displayed in the following example
because the event occurs outside of a connection.

create event CheckIdleTime
type ServerIdle
where event_condition(’IdleTime’) > 100
handler
begin

message ’Idle engine’ type warning to client;

end;

However, in the following example, the message is written to the server
console.

496

Chapter 4. SQL Statements

create event CheckIdleTime
type ServerIdle
where event_condition(’IdleTime’) > 100
handler
begin

message ’Idle engine’ type warning to console;
end;

Valid expressions can include a quoted string or other constant, variable, or
function. However, queries are not permitted in the output of a Message
statement even though the definition of an expression includes queries.

Permissions None.

Side effects None.

See also “CREATE PROCEDURE statement” on page 324

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise. The
Transact-SQL PRINT statement provides a similar feature, and is also
available in Adaptive Server Anywhere.

Example The following procedure displays a message on the server message window:

CREATE PROCEDURE message_test ()
BEGIN
MESSAGE ’The current date and time: ’, Now();
END

The statement:

CALL message_test()

displays the stringThe current date and time, and the current date and time,
on the database server message window.

497

OPEN statement [ESQL] [SP]
Description Use this statement to open a previously declared cursor to access

information from the database.

Syntax OPEN cursor-name
[USING [DESCRIPTOR sqlda-name | hostvar , . . .]]
[WITH HOLD]
[ISOLATION LEVEL n]
[BLOCK n]

cursor-name : identifier or hostvar

sqlda-name : identifier

Parameters Embedded SQL usage After successful execution of the OPEN statement,
thesqlerrd[3] field of the SQLCA (SQLIOESTIMATE) is filled in with an
estimate of the number of input/output operations required to fetch all rows
of the query. Also, thesqlerrd[2] field of the SQLCA (SQLCOUNT) is
filled with either the actual number of rows in the cursor (a value greater
than or equal to 0), or an estimate thereof (a negative number whose absolute
value is the estimate). It will be the actual number of rows if the database
server can compute it without counting the rows. The database can also be
configured to always return the actual number of rows (see
“ROW_COUNTS option [database]”[ASA Database Administration Guide,
page 624]), but this can be expensive.

If cursor-nameis specified by an identifier or string, the corresponding
DECLARE CURSOR must appear prior to the OPEN in the C program; if
thecursor-nameis specified by a host variable, the DECLARE CURSOR
statement must execute before the OPEN statement.

USING DESCRIPTOR clause The USING DESCRIPTOR clause is for
Embedded SQL only. It specifies the host variables to be bound to the
place-holder bind variables in the SELECT statement for which the cursor
has been declared.

WITH HOLD clause By default, all cursors are automatically closed at the
end of the current transaction (COMMIT or ROLLBACK). The optional
WITH HOLD clause keeps the cursor open for subsequent transactions. It
will remain open until the end of the current connection or until an explicit
CLOSE statement is executed. Cursors are automatically closed when a
connection is terminated.

ISOLATION LEVEL clause The ISOLATION LEVEL clause allows this
cursor to be opened at an isolation level different from the current setting of
the ISOLATION_LEVEL option. All operations on this cursor will be

498

Chapter 4. SQL Statements

performed at the specified isolation level regardless of the option setting. If
this clause is not specified, then the cursor’s isolation level for the entire time
the cursor is open is the value of the ISOLATION_LEVEL option when the
cursor is opened. See “How locking works”[ASA SQL User’s Guide,page 131].

The cursor is positioned before the first row (see “Using cursors in
embedded SQL”[ASA Programming Guide,page 167]or “Using cursors in
procedures and triggers”[ASA SQL User’s Guide,page 646]).

BLOCK clause This clause is for Embedded SQL use only. Rows are
fetched by the client application in blocks (more than one at a time). By
default, the number of rows in a block is determined dynamically based on
the size of the rows and how long it takes the database server to fetch each
row. The application can specify a maximum number of rows that should be
contained in a block by specifying the BLOCK clause. For example, if you
are fetching and displaying 5 rows at a time, useBLOCK 5 . Specifying
BLOCK 0 will cause one row at a time to be fetched, and also cause a
FETCH RELATIVE 0 to always fetch the row again.

☞ For more information, see“FETCH statement [ESQL] [SP]” on
page 436.

Usage The OPEN statement opens the named cursor. The cursor must be
previously declared.

When the cursor is on a CALL statement, OPEN causes the procedure to
execute until the first result set (SELECT statement with no INTO clause) is
encountered. If the procedure completes and no result set is found, the
SQLSTATE_PROCEDURE_COMPLETE warning is set.

Permissions Must have SELECT permission on all tables in a SELECT statement, or
EXECUTE permission on the procedure in a CALL statement.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“RESUME statement” on page 527

“PREPARE statement [ESQL]” on page 508

“FETCH statement [ESQL] [SP]” on page 436

“RESUME statement” on page 527

“CLOSE statement [ESQL] [SP]” on page 280

Standards and
compatibility

♦ SQL/92 Embedded SQL use is an entry-level feature. Procedures use is
a Persistent Stored Modules feature.

♦ SQL/99 Embedded SQL use is a core feature. Procedures use is a

499

Persistent Stored Modules feature.

♦ Sybase The simple OPENcursor-namesyntax is supported by
Adaptive Server Enterprise. None of the other clauses are supported in
Adaptive Server Enterprise stored procedures. Open Client/Open Server
supports the USING descriptor or host variable syntax.

Example The following examples show the use of OPEN in Embedded SQL.

EXEC SQL OPEN employee_cursor;

and

EXEC SQL PREPARE emp_stat FROM
’SELECT empnum, empname FROM employee WHERE name like ?’;
EXEC SQL DECLARE employee_cursor CURSOR FOR emp_stat;
EXEC SQL OPEN employee_cursor USING :pattern;

The following example is from a procedure or trigger.

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee;

DECLARE name CHAR(40);
OPEN cur_employee;
LOOP
FETCH NEXT cur_employee into name;

...
END LOOP
CLOSE cur_employee;
END

500

Chapter 4. SQL Statements

OUTPUT statement [Interactive SQL]
Description Use this statement to output the current query results to a file.

Syntax OUTPUT TO filename
[APPEND]
[VERBOSE]
[FORMAT output-format]
[ESCAPE CHARACTER character]
[DELIMITED BY string]
[QUOTE string [ALL]]
[COLUMN WIDTHS (integer , . . .)]
[HEXADECIMAL { ON | OFF | ASIS }]

output-format :
ASCII | DBASEII | DBASEIII | EXCEL
| FIXED | FOXPRO | HTML | LOTUS | SQL | XML

Parameters APPEND clause This optional keyword is used to append the results of the
query to the end of an existing output file without overwriting the previous
contents of the file. If the APPEND clause is not used, the OUTPUT
statement overwrites the contents of the output file by default. The APPEND
keyword is valid if the output format is ASCII, FIXED, or SQL.

VERBOSE clause When the optional VERBOSE keyword is included,
error messages about the query, the SQL statement used to select the data,
and the data itself are written to the output file. If VERBOSE is omitted (the
default) only the data is written to the file. The VERBOSE keyword is valid
if the output format is ASCII, FIXED, or SQL.

FORMAT clause Allowable output formats are:

♦ ASCII The output is an ASCII format file with one row per line in the
file. All values are separated by commas, and strings are enclosed in
apostrophes (single quotes). The delimiter and quote strings can be
changed using the DELIMITED BY and QUOTE clauses. If ALL is
specified in the QUOTE clause, all values (not just strings) are quoted.

Three other special sequences are also used. The two characters \n
represent a newline character, \\represents a single \, and the sequence
\xDD represents the character with hexadecimal code DD. This is the
default output format.

If you are exporting Java methods that have string return values, you must
use the HEXADECIMAL OFF clause.

♦ DBASEII The output is a dBASE II format file with the column
definitions at the top of the file. Note that a maximum of 32 columns can

501

be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

♦ DBASEIII The output is a dBASE III format file with the column
definitions at the top of the file. Note that a maximum of 128 columns
can be output. Column names are truncated to 11 characters, and each
row of data in each column is truncated to 255 characters.

♦ EXCEL The output is an Excel 2.1 worksheet. The first row of the
worksheet contains column labels (or names if there are no labels
defined). Subsequent worksheet rows contain the actual table data.

♦ FIXED The output is fixed format with each column having a fixed
width. The width for each column can be specified using the COLUMN
WIDTHS clause. No column headings are output in this format.

If the COLUMN WIDTHS clause is omitted, the width for each column
is computed from the data type for the column, and is large enough to
hold any value of that data type. The exception is that LONG VARCHAR
and LONG BINARY data defaults to 32 kb.

♦ FOXPRO The output is a FoxPro format file (the FoxPro memo field is
different than the dBASE memo field) with the column definitions at the
top of the file. Note that a maximum of 128 columns can be output.
Column names are truncated to 11 characters. Column names are
truncated to 11 characters, and each row of data in each column is
truncated to 255 characters.

♦ HTML The output is in the Hyper Text Markup Language format.

♦ LOTUS The output is a Lotus WKS format worksheet. Column names
will be put as the first row in the worksheet. Note that there are certain
restrictions on the maximum size of Lotus WKS format worksheets that
other software (such as Lotus 1-2-3) can load. There is no limit to the
size of file Interactive SQL can produce.

♦ SQL The output is an Interactive SQL INPUT statement yrequired to
recreate the information in the table.

♦ XML The output is an XML file encoded in UTF-8 and containing an
embedded DTD. Binary values are encoded in CDATA blocks with the
binary data rendered as 2-hex-digit strings. The INPUT statement does
not accept XML as a file format.

ESCAPE CHARACTER clause The default escape character for characters
stored as hexadecimal codes and symbols is a backslash (\), so \x0A is the
linefeed character, for example.

502

Chapter 4. SQL Statements

This can be changed using the ESCAPE CHARACTER clause. For example,
to use the exclamation mark as the escape character, you would enter

... ESCAPE CHARACTER ’!’

DELIMITED BY clause The DELIMITED BY clause is for the ASCII
output format only. The delimiter string is placed between columns (default
comma).

QUOTE clause The QUOTE clause is for the ASCII output format only.
The quote string is placed around string values. The default is a single quote
character. If ALL is specified in the QUOTE clause, the quote string is
placed around all values, not just around strings.

COLUMN WIDTHS clause The COLUMN WIDTHS clause is used to
specify the column widths for the FIXED format output.

HEXADECIMAL clause The HEXADECIMAL clause specifies how
binary data is to be unloaded for the ASCII format only. When set to ON,
binary data is unloaded in the format0xabcd. When set to OFF, binary data
is escaped when unloaded (\xab\xcd). When set to ASIS, values are written
as is, that is, without any escaping—even if the value contains control
characters. ASIS is useful for text that contains formatting characters such as
tabs or carriage returns.

Usage The OUTPUT statement copies the information retrieved by the current
query to a file.

The output format can be specified with the optional FORMAT clause. If no
FORMAT clause is specified, the Interactive SQL OUTPUT_FORMAT
option setting is used (see “OUTPUT_FORMAT option [ISQL]”[ASA
Database Administration Guide,page 614]).

The current query is the SELECT or INPUT statement which generated the
information that appears on the Results tab in the Results pane. The
OUTPUT statement will report an error if there is no current query.

When exporting Java data, you may wish to export objects as binary, or you
may want to export them as strings using thetoString() method. You can
control which way Java data is exported using the
DESCRIBE_JAVA_FORMAT Interactive SQL option.

For example, consider the following script:

CREATE VARIABLE JavaString java.lang.String;
SET JavaString = NEW java.lang.String(’TestVar’);
SELECT JavaString FROM dummy;

If you set DESCRIBE_JAVA_FORMAT toVarchar :

503

♦ The following command gives the hexadecimal representation of TestVar
in the output file.

OUTPUT TO filename

♦ The following command gives a text representation ofTestVar in the
output file (possibly escaped).

OUTPUT TO filename HEXADECIMAL OFF

If you set DESCRIBE_JAVA_FORMAT tobinary :

♦ The following command gives the hexadecimal representation of
JavaString in the output file.

OUTPUT TO filename

♦ The following command gives the actual JavaString object in the output
file (with escape sequences).

OUTPUT TO filename HEXADECIMAL OFF

☞ For more information, see “DESCRIBE_JAVA_FORMAT option
[ISQL]” [ASA Database Administration Guide,page 591].

Permissions None.

Side effects In Interactive SQL, the Results tab displays only the results of the current
query. All previous query results are replaced with the current query results.

See also “SELECT statement” on page 541

“INPUT statement [Interactive SQL]” on page 472

“xp_write_file system procedure” on page 762

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Examples Place the contents of the employee table in a file in ASCII format:

SELECT *
FROM employee;
OUTPUT TO employee.txt
FORMAT ASCII

Place the contents of the employee table at the end of an existing file, and
include any messages about the query in this file as well:

SELECT *
FROM employee;
OUTPUT TO employee.txt APPEND VERBOSE

504

Chapter 4. SQL Statements

Output the contents of thetoString() method of the JProd column to file:

SELECT JProd>>toString()
FROM jdba.product;
OUTPUT TO d:\temp \temp.txt
FORMAT ASCII HEXADECIMAL OFF

Suppose you need to export a value that contains an embedded line feed
character. A line feed character has the numeric value 10, which you can
represent as the string ‘\x0a’ in a SQL statement. If you execute the
following statement, with HEXADECIMAL set to ON,

SELECT ’line1 \x0aline2’;
OUTPUT TO file.txt HEXADECIMAL ON

you get a file with one line in it containing the following text:

line10x0aline2

But if you execute the same statement with HEXADEMICAL set to OFF,
you get the following:

line1 \x0aline2

Finally, if you set HEXADECIMAL to ASIS, you get a file with two lines:

line1
line2

You get two lines when you use ASIS because the embedded line feed
character has been exported without being converted to a two digit hex
representation, and without being prefixed by anything.

505

PARAMETERS statement [Interactive SQL]
Description Use this statement to specify parameters to an Interactive SQL command

file.

Syntax PARAMETERS parameter1, parameter2, . . .

Usage The PARAMETERS statement names the parameters for a command file, so
that they can be referenced later in the command file.

Parameters are referenced by putting:

{parameter1}

into the file where you wish the named parameter to be substituted. There
must be no spaces between the braces and the parameter name.

If a command file is invoked with less than the required number of
parameters, Interactive SQL prompts for values of the missing parameters.

Permissions None.

Side effects None.

See also “READ statement [Interactive SQL]” on page 517

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following Interactive SQL command file takes two parameters.

PARAMETERS department_id, file;
SELECT emp_lname
FROM employee
WHERE dept_id = {department_id}
>#{file}.dat;

If you save this script in a file namedtest.SQL, you can run it from
Interactive SQL using the following command:

READ test.SQL [100] [data]

506

Chapter 4. SQL Statements

PASSTHROUGH statement [SQL Remote]
Description Use this statement to start or stop passthrough mode for SQL Remote

administration. Forms 1 and 2 start passthrough mode, while form 3 stops
passthrough mode.

Syntax 1 PASSTHROUGH [ONLY] FOR userid , . . .

Syntax 2 PASSTHROUGH [ONLY] FOR SUBSCRIPTION
TO [(owner)].publication-name [(constant)]

Syntax 3 PASSTHROUGH STOP

Usage In passthrough mode, any SQL statements are executed by the database
server, and are also placed into the transaction log to be sent in messages to
subscribers. If the ONLY keyword is used to start passthrough mode, the
statements are not executed at the server; they are sent to recipients only.
The recipients of the passthrough SQL statements are either a list of user IDs
(syntax 1) or all subscribers to a given publication. Passthrough mode may
be used to apply changes to a remote database from the consolidated
database or send statements from a remote database to the consolidated
database.

Syntax 2 sends statements to remote databases whose subscriptions are
started, and does not send statements to remote databases whose
subscriptions are created and not started.

Permissions Must have DBA authority.

Side effects None.

See also “sp_passthrough procedure”[SQL Remote User’s Guide,page 400]

Example PASSTHROUGH FOR rem_db ;
...
(SQL statements to be executed at the remote database)
...
PASSTHROUGH STOP ;

507

PREPARE statement [ESQL]
Description Use this statement to prepare a statement to be executed later, or used to

define a cursor.

Syntax PREPARE statement-name
FROM statement

[DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
[WITH EXECUTE]

statement-name : identifier or hostvar

statement : string or hostvar

describe-type :
[ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST]
[LONG NAMES [[[OWNER.]TABLE.]COLUMN]

| WITH VARIABLE RESULT]

Parameters statement-name The statement name can be an identifier or host variable.
However, you should not use an identifier when using multiple SQLCAs. If
you do, two prepared statements may have the same statement number,
which could cause the wrong statement to be executed or opened.

DESCRIBE clause If DESCRIBE INTO DESCRIPTOR is used, the
prepared statement is described into the specified descriptor. The describe
type may be any of the describe types allowed in the DESCRIBE statement.

WITH EXECUTE clause If the WITH EXECUTE clause is used, the
statement is executed if and only if it is not a CALL or SELECT statement,
and it has no host variables. The statement is immediately dropped after a
successful execution. If the PREPARE and the DESCRIBE (if any) are
successful but the statement cannot be executed, a warning SQLCODE 111,
SQLSTATE 01W08 is set, and the statement is not dropped.

The DESRIBE INTO DESCRIPTOR and WITH EXECUTE clauses may
improve performance because they cut down on the required client/server
communication.

WITH VARIABLE RESULT clause The WITH VARIABLE RESULT
clause is used to describe procedures that may have more than one result set,
with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the
SQLCOUNT value after the describe to one of the following values:

♦ 0 The result set may change: The procedure call should be described
again following each OPEN statement.

508

Chapter 4. SQL Statements

♦ 1 The result set is fixed. No redescribing is required.

Static and dynamic
For compatibility reasons, preparing COMMIT, PREPARE TO COMMIT,
and ROLLBACK statements is still supported. However, we recommend
that you do all transaction management operations with static Embedded
SQL because certain application environments may require it. Also, other
Embedded SQL systems do not support dynamic transaction management
operations.

Usage The PREPARE statement prepares a SQL statement from thestatementand
associates the prepared statement withstatement-name. This statement name
is referenced to execute the statement, or to open a cursor if the statement is
a SELECT statement. Thestatement-namemay be a host variable of type
a_sql_statement_numberdefined in thesqlca.hheader file that is
automatically included. If an identifier is used for thestatement-name, only
one statement per module may be prepared with thisstatement-name.

If a host variable is used forstatement-name, it must have the typeshort int .
There is a typedef for this type insqlca.hcalleda_sql_statement_number.
This type is recognized by the SQL preprocessor and can be used in a
DECLARE section. The host variable is filled in by the database during the
PREPARE statement, and need not be initialized by the programmer.

Permissions None.

Side effects Any statement previously prepared with the same name is lost.

The statement is dropped after use only if you use WITH EXECUTE and the
execution is successful. You should ensure that you DROP the statement
after use in other circumstances. If you do not, the memory associated with
the statement is not reclaimed.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“DESCRIBE statement [ESQL]” on page 403

“OPEN statement [ESQL] [SP]” on page 498

“EXECUTE statement [ESQL]” on page 425

“DROP STATEMENT statement [ESQL]” on page 417

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

509

Example The following statement prepares a simple query:

EXEC SQL PREPARE employee_statement FROM
’SELECT emp_lname FROM employee’;

510

Chapter 4. SQL Statements

PREPARE TO COMMIT statement
Description Use this statement to check whether a COMMIT can be performed

successfully.

Syntax PREPARE TO COMMIT

Usage The PREPARE TO COMMIT statement tests whether a COMMIT can be
performed successfully. The statement will cause an error if a COMMIT is
impossible without violating the integrity of the database.

Permissions None.

Side effects None.

See also “COMMIT statement” on page 284

“ROLLBACK statement” on page 537

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

Example The following sequence of statements leads to an error because of foreign
key checking on the employee table.

EXECUTE IMMEDIATE
"SET OPTION wait_for_commit = ’on’";

EXECUTE IMMEDIATE "DELETE FROM employee
WHERE emp_id = 160";

EXECUTE IMMEDIATE "PREPARE TO COMMIT";

The following sequence of statements does not cause an error when the
delete statement is executed, even though it causes integrity violations. The
PREPARE TO COMMIT statement returns an error.

SET OPTION wait_for_commit= ’ON’;
DELETE
FROM department
WHERE dept_id = 100;
PREPARE TO COMMIT;

511

PRINT statement [T-SQL]
Description Use this statement to return a message to the client, or display a message in

the message window of the database server.

Syntax PRINT format-string [, arg-list]

Usage The PRINT statement returns a message to the client window if you are
connected from an Open Client application or jConnect application. If you
are connected from an embedded SQL or ODBC application, the message is
displayed on the database server window.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form%nn!, wherenn is an
integer between 1 and 20.

Permissions None.

Side effects None.

See also “MESSAGE statement” on page 496

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following statement displays a message:

PRINT ’Display this message’

The following statement illustrates the use of placeholders in the PRINT
statement:

DECLARE @var1 INT, @var2 INT
SELECT @var1 = 3, @var2 = 5
PRINT ’Variable 1 = %1!, Variable 2 = %2!’, @var1, @var2

512

Chapter 4. SQL Statements

PUT statement [ESQL]
Description Use this statement to insert a row into the specified cursor.

Syntax PUT cursor-name
[USING DESCRIPTOR sqlda-name | FROM hostvar-list]
[INTO { DESCRIPTOR into-sqlda-name | into-hostvar-list }]
[ARRAY :nnn]

cursor-name : identifier or hostvar

sqlda-name : identifier

hostvar-list : may contain indicator variables

Usage Inserts a row into the named cursor. Values for the columns are taken from
the first SQLDA or the host variable list, in a one-to-one correspondence
with the columns in the INSERT statement (for an INSERT cursor) or the
columns in the select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or
SELECT statement that references a single table in the FROM clause, or that
references an updateable view consisting of a single base table.

If the sqldatapointer in the SQLDA is the null pointer, no value is specified
for that column. If the column has a DEFAULT VALUE associated with it,
that will be used; otherwise, a NULL value will be used.

The second SQLDA or host variable list contains the results of the PUT
statement.

The optional ARRAY clause can be used to carry out wide puts, which insert
more than one row at a time and which may improve performance. The
valuennn is the number of rows to be inserted. The SQLDA must contain
nnn * (columns per row) variables. The first row is placed in SQLDA
variables 0 to(columns per row)-1, and so on.

Inserting into a cursor
For scroll (values sensitive) cursors, the inserted row will appear if the new
row matches the WHERE clause and the keyset cursor has not finished
populating. For dynamic cursors, if the inserted row matches the WHERE
clause, the row may appear. Insensitive cursors cannot be updated.

☞ For information on putting LONG VARCHAR or LONG BINARY
values into the database, see“SET statement” on page 548.

Permissions Must have INSERT permission.

513

Side effects When inserting rows into a value-sensitive (keyset driven) cursor, the
inserted rows appear at the end of the result set, even when they do not match
the WHERE clause of the query or if an ORDER BY clause would normally
have placed them at another location in the result set. For more information,
see “Modifying rows through a cursor”[ASA Programming Guide,page 23].

See also “UPDATE statement” on page 592

“UPDATE (positioned) statement [ESQL] [SP]” on page 597

“DELETE statement” on page 399

“DELETE (positioned) statement [ESQL] [SP]” on page 401

“INSERT statement” on page 476

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Example The following statement illustrates the use of PUT in Embedded SQL:

EXEC SQL PUT cur_employee FROM :emp_id, :emp_lname;

514

Chapter 4. SQL Statements

RAISERROR statement [T-SQL]
Description Use this statement to signal an error and to send a message to the client.

Syntax RAISERROR error-number [format-string] [, arg-list]

Parameters error-number Theerror-numberis a five-digit integer greater than 17000.
The error number is stored in the global variable@@error.

format-string If format-stringis not supplied or is empty, the error number
is used to locate an error message in the system tables. Adaptive Server
Enterprise obtains messages 17000-19999 from the SYSMESSAGES table.
In Adaptive Server Anywhere this table is an empty view, so errors in this
range should provide a format string. Messages for error numbers of 20000
or greater are obtained from the SYS.SYSUSERMESSAGES table.

In Adaptive Server Anywhere, theformat-stringlength can be up to
255 bytes.

The extended values supported by the Adaptive Server Enterprise
RAISERROR statement are not supported in Adaptive Server Anywhere.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form%nn!, wherenn is an
integer between 1 and 20.

Intermediate RAISERROR status and code information is lost after the
procedure terminates. If at return time an error occurs along with the
RAISERROR then the error information is returned and the RAISERROR
information is lost. The application can query intermediate RAISERROR
statuses by examining @@error global variable at different execution points.

Usage The RAISERROR statement allows user-defined errors to be signaled and
sends a message on the client.

Permissions None.

Side effects None.

See also “CREATE TRIGGER statement [T-SQL]” on page 380

“ON_TSQL_ERROR option [compatibility]”[ASA Database Administration
Guide,page 612]

“CONTINUE_AFTER_RAISERROR option [compatibility]”[ASA Database
Administration Guide,page 584]

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

515

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following statement raises error 23000, which is in the range for
user-defined errors, and sends a message to the client. Note that there is no
comma between theerror-numberand theformat-stringparameters. The
first item following a comma is interpreted as the first item in the argument
list.

RAISERROR 23000 ’Invalid entry for this column: %1!’, @val

The next example uses RAISERROR to disallow connections.

create procedure DBA.login_check()
begin

// Allow a maximum of 3 concurrent connections
if(db_property(’ConnCount’) > 3) then

raiserror 28000
’User %1! is not allowed to connect -- there are already

%2! users logged on’,
current user,
cast(db_property(’ConnCount’) as int)-1;

else
call sp_login_environment;

end if;
end
go
grant execute on DBA.login_check to PUBLIC
go
set option PUBLIC.Login_procedure=’DBA.login_check’
go

☞ For an alternate way to disallow connections, see
“LOGIN_PROCEDURE option [database]”[ASA Database Administration
Guide,page 603].

516

Chapter 4. SQL Statements

READ statement [Interactive SQL]
Description Use this statement to read Interactive SQL statements from a file.

Syntax READ filename [parameters]

Usage The READ statement reads a sequence of Interactive SQL statements from
the named file. This file can contain any valid Interactive SQL statement
including other READ statements. READ statements can be nested to any
depth. To find the command file, Interactive SQL will first search the current
directory, then the directories specified in the environment variable
SQLPATH , then the directories specified in the environment variable
PATH . If the named file has no file extension, Interactive SQL searches each
directory for the same file name with the extensionSQL.

Parameters can be listed after the name of the command file. These
parameters correspond to the parameters named on the PARAMETERS
statement at the beginning of the statement file (see“PARAMETERS
statement [Interactive SQL]” on page 506). Interactive SQL substitutes the
corresponding parameter wherever the source file contains

{parameter-name}

whereparameter-nameis the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted
identifiers, or strings. When quotes are used around a parameter, the quotes
are put into the text during the substitution. Parameters which are not
identifiers, numbers, or strings (contain spaces or tabs) must be enclosed in
square brackets ([]). This allows for arbitrary textual substitution in the
command file.

If not enough parameters are passed to the command file, Interactive SQL
prompts for values for the missing parameters.

Permissions None.

Side effects None.

See also “PARAMETERS statement [Interactive SQL]” on page 506

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following are examples of the READ statement.

READ status.rpt ’160’
READ birthday.SQL [>= ’1988-1-1’] [<= ’1988-1-30’]

517

READTEXT statement [T-SQL]
Description Use this statement to read text and image values from the database, starting

from a specified offset and reading a specified number of bytes.

Syntax READTEXT table-name.column-name
text-pointer offset size
[HOLDLOCK]

Usage READTEXT is used to read image and text values from the database. You
cannot perform READTEXT operations on views.

Permissions SELECT permissions on the table.

Side effects None.

See also “WRITETEXT statement [T-SQL]” on page 608

“GET DATA statement [ESQL]” on page 450

“TEXTPTR function [Text and image]” on page 195

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Adaptive Server Enterprise supports the following clause, which is not
supported by Adaptive Server Anywhere:

USING { BYTES | CHARS | CHARACTERS }

These options are identical for all single-byte character sets. Adaptive
Server Anywhere usesbytesonly, which is the Adaptive Server
Enterprise default setting.

Adaptive Server Enterprise also provides isolation level control in the
READTEXT statement. This is not supported in Adaptive Server
Anywhere.

518

Chapter 4. SQL Statements

RELEASE SAVEPOINT statement
Description Use this statement to release a savepoint within the current transaction.

Syntax RELEASE SAVEPOINT [savepoint-name]

Usage Release a savepoint. Thesavepoint-nameis an identifier specified on a
SAVEPOINT statement within the current transaction. Ifsavepoint-nameis
omitted, the most recent savepoint is released.

Releasing a savepoint does not do any type of COMMIT. It simply removes
the savepoint from the list of currently active savepoints.

Permissions There must have been a corresponding SAVEPOINT within the current
transaction.

Side effects None.

See also “BEGIN TRANSACTION statement” on page 270

“COMMIT statement” on page 284

“ROLLBACK statement” on page 537

“ROLLBACK TO SAVEPOINT statement” on page 538

“SAVEPOINT statement” on page 540

“Savepoints within transactions”[ASA SQL User’s Guide,page 102]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise. A similar feature
is available in an Adaptive Server Enterprise-compatible manner using
nested transactions.

519

REMOTE RESET statement [SQL Remote]
Description Use this statement in custom database-extraction procedures to start all

subscriptions for a remote user in a single transaction.

Syntax REMOTE RESET userid

Usage This command starts all subscriptions for a remote user in a single
transaction. It sets thelog_sentandconfirm_sentvalues in
SYSREMOTEUSER table to the current position in the transaction log. It
also sets the created and started values inSYSSUBSCRIPTION to the
current position in the transaction log for all subscriptions for this remote
user. The statement does not do a commit. You must do an explicit commit
after this call.

In order to write an extraction process that is safe on a live database, the data
must be extracted at isolation level 3 in the same transaction as the
subscriptions are started.

This statement is an alternative to start subscription. START
SUBSCRIPTION has an implicit commit as a side effect, so that if a remote
user has several subscriptions, it is impossible to start them all in one
transaction using START SUBSCRIPTION.

Permissions Must have DBA authority.

Side effects No automatic commit is done by this statement.

See also “START SUBSCRIPTION statement [SQL Remote]” on page 571

Example ♦ The following statement resets the subscriptions for remote user SamS:

REMOTE RESET SamS

520

Chapter 4. SQL Statements

REMOVE JAVA statement
Description Use this statement to remove a class or a jar file from a database. When a

class is removed it is no longer available for use as a column or variable type.

The class or jar must already be installed.

Syntax REMOVE JAVA classes_to_remove

classes_to_remove :
CLASS java_class_name [, java_class_name, . . .]

| JAR jar_name [, jar_name, . . .]

Parameters CLASS The java_class_nameparameter is the name of one or more Java
class to be removed. These classes must be installed classes in the current
database.

JAR The jar_nameis a character string value of maximum length 255.

Eachjar_namemust be equal to thejar_nameof a retained jar in the current
database. Equality ofjar_nameis determined by the character string
comparison rules of the SQL system.

Usage Removes a class or jar file from the database.

Permissions Must have DBA authority.

Not supported on Windows CE.

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise. A similar feature
is available in an Adaptive Server Enterprise-compatible manner using
nested transactions.

Example The following statement removes a Java class named Demo from the current
database.

REMOVE JAVA CLASS Demo

521

REORGANIZE TABLE statement
Description Use this statement to defragment tables when a full rebuild of the database is

not possible due to the requirements for continuous access to the database.

Syntax REORGANIZE TABLE [owner.]table-name
[{ PRIMARY KEY
| FOREIGN KEY foreign_key_name

| INDEX index_name }
| ORDER {ON | OFF}

]

Parameters PRIMARY KEY Reorganizes the primary key index for the table.

FOREIGN KEY Reorganizes the specified foreign key.

INDEX Reorganizes the specified index.

ORDER option With ORDER ON (the default), the data is ordered by
clustered index if one exists. If a clustered index does not exist, the data is
ordered by primary key values. With ORDER OFF, the data is ordered by
primary key.

☞ For more information about clustered indexes, see “Using clustered
indexes”[ASA SQL User’s Guide,page 59]

Usage Table fragmentation can impede performance. Use this statement to
defragment rows in a table, or to compress indexes which have become
sparse due to DELETEs. It may also reduce the total number of pages used
to store the table and its indexes, and it may reduce the number of levels in
an index tree. However, it will not result in a reduction of the total size of the
database file. It is recommended that you use the sa_table_fragmentation
and sa_index_density system procedures to select tables worth processing.

If an index or key is not specified, the reorganization process defragments
rows in the table by deleting and re-inserting groups of rows. For each
group, an exclusive lock on the table is obtained. Once the group has been
processed, the lock is released and re-acquired (waiting if necessary),
providing an opportunity for other connections to access the table.
Checkpoints are suspended while the group is being processed; once the
group is finished, a checkpoint may occur. The rows are processed in order
by primary key; if the table has no primary key, an error results. The
processed rows are re-inserted at the end of the table, resulting in the rows
being clustered by primary key at the end of the process. Note that the same
amount of work is required, regardless of how fragmented the rows initially
were.

If an index or key is specified, the specified index is processed. This form of

522

Chapter 4. SQL Statements

the statement can only be used with databases created with Adaptive Server
Anywhere version 7.0 or above. For the duration of the operation, an
exclusive lock is held on the table and checkpoints are suspended. Any
attempts to access the table by other connections will block or fail,
depending on their setting of the BLOCKING option. The duration of the
lock is minimized by pre-reading the index pages prior to obtaining the
exclusive lock.

Since both forms of reorganization may modify many pages, the checkpoint
log can become large. For version 7.0 or earlier databases, this may result in
growth of the database file. For version 8.0 or later databases, this will result
in only a temporary increase in the database file size, since the checkpoint
log is deleted at shutdown and the file is truncated at that point. Also, more
contiguous allocation of table pages may result for version 8.0 or later
databases.

Neither form of the statement is logged to the transaction log.

Permissions ♦ Must be either the owner of the table, or a user with DBA authority.

Side effects Prior to starting the reorganization, a checkpoint is done to try to maximize
the number of free pages.

Example The following example reorganizes the employee table according to the
primary key.

REORGANIZE TABLE employee
PRIMARY KEY

523

RESIGNAL statement
Description Use this statement to resignal an exception condition.

Syntax RESIGNAL [exception-name]

Usage Within an exception handler, RESIGNAL allows you to quit the compound
statement with the exception still active, or to quit reporting another named
exception. The exception will be handled by another exception handler or
returned to the application. Any actions by the exception handler before the
RESIGNAL are undone.

Permissions None.

Side effects None.

See also “SIGNAL statement” on page 565

“BEGIN statement” on page 267

“Using exception handlers in procedures and triggers”[ASA SQL User’s
Guide,page 654]

“RAISERROR statement [T-SQL]” on page 515

Standards and
compatibility

♦ SQL/92 Persistent stored module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported in Adaptive Server Enterprise. Signaling of
errors in Transact-SQL procedures is carried out using the RAISERROR
statement.

Example The following fragment returns all exceptions except Column Not Found to
the application.

...
DECLARE COLUMN_NOT_FOUND EXCEPTION

FOR SQLSTATE ’52003’;
...
EXCEPTION
WHEN COLUMN_NOT_FOUND THEN
SET message=’Column not found’;
WHEN OTHERS THEN
RESIGNAL;

524

Chapter 4. SQL Statements

RESTORE DATABASE statement
Description Use this statement to restore a backed up database from an archive.

Syntax RESTORE DATABASE filename
FROM archive_root
[CATALOG ONLY |
[[RENAME dbspace_name TO new_dbspace_name] . . .]]

Parameters CATALOG ONLY clause Retrieve information about the named archive,
and place it in the backup history file (backup.syb), but do not restore any
data from the archive.

RENAME clause Specifies a new location to restore each dbspace to.

Usage Each RESTORE DATABASE operation updates a history file called
backup.syb, which is a text file held in the same directory as your database
server executable file.

The RENAME clause provides a way to change the restore location for each
dbspace. The dbspace name in a RENAME clause cannot be SYSTEM or
TRANSLOG.

RESTORE DATABASE replaces the database that is being restored. If you
need incremental backups, use the image format of the BACKUP command
and save only the transaction log; however, image backups to tape are not
supported.

Permissions The permissions required to execute this statement are set on the server
command line, using the-gu option. The default setting is to require DBA
authority.

This statement is not supported on Windows CE.

☞ For more information, see “-gu server option”[ASA Database
Administration Guide,page 150].

Side effects None.

See also “BACKUP statement” on page 263

“Backup and Data Recovery”[ASA Database Administration Guide,page 337]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported in Adaptive Server Enterprise.

♦ Windows CE Not supported on the Windows CE platform.

525

Example The following example restores a database from a Windows NT tape drive.
The number of backslashes that are required depends on which database you
are connected to when you execute RESTORE DATABASE. The database
affects the setting of the ESCAPE_CHARACTER option. It is normally ON,
but is OFF in utility_db. When connected to any database other than
utility_db, the extra backslashes are required.

RESTORE DATABASE ’d:\\dbhome\\cust.db’
FROM ’\\\\. \\tape0’

526

Chapter 4. SQL Statements

RESUME statement
Description Use this statement to resume execution of a cursor that returns result sets.

Syntax RESUME cursor-name

cursor-name : identifier or hostvar

Usage This statement resumes execution of a procedure that returns result sets. The
procedure executes until the next result set (SELECT statement with no
INTO clause) is encountered. If the procedure completes and no result set is
found, the SQLSTATE_PROCEDURE_COMPLETE warning is set. This
warning is also set when you RESUME a cursor for a SELECT statement.

Permissions The cursor must have been previously opened.

Side effects None.

See also “DECLARE CURSOR statement [ESQL] [SP]” on page 390

“Returning results from procedures”[ASA SQL User’s Guide,page 640]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise.

Example Following are Embedded SQL examples.

1. EXEC SQL RESUME cur_employee;
2. EXEC SQL RESUME :cursor_var;

Following is an Interactive SQL example.

CALL sample_proc();
RESUME ALL;

527

RETURN statement
Description Use this statement to exit from a function or procedure unconditionally,

optionally providing a return value.

Syntax RETURN [expression]

Usage A RETURN statement causes an immediate exit from a function or
procedure. Ifexpressionis supplied, the value ofexpressionis returned as
the value of the function or procedure.

Statements following a RETURN statement are not executed.

Within a function, the expression should be of the same data type as the
function’s RETURNS data type.

Within a procedure, RETURN is used for Transact-SQL-compatibility, and
is used to return an integer error code.

Permissions None.

Side effects None.

See also “CREATE FUNCTION statement” on page 315

“CREATE PROCEDURE statement” on page 324

“BEGIN statement” on page 267

Standards and
compatibility

♦ SQL/92 Persistent stored module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Transact-SQL procedures use the RETURN statement to return
an integer error code.

Example The following function returns the product of three numbers:

CREATE FUNCTION product (
a numeric,
b numeric,
c numeric)

RETURNS numeric
BEGIN

RETURN (a * b * c);
END

Calculate the product of three numbers:

SELECT product (2, 3, 4)

product(2, 3, 4)

24

528

Chapter 4. SQL Statements

The following procedure uses the RETURN statement to avoid executing a
complex query if it is meaningless:

CREATE PROCEDURE customer_products
(in customer_id integer DEFAULT NULL)
RESULT (id integer, quantity_ordered integer)
BEGIN

IF customer_id NOT IN (SELECT id FROM customer)
OR customer_id IS NULL THEN

RETURN
ELSE

SELECT product.id,sum(
sales_order_items.quantity)

FROM product,
sales_order_items,
sales_order

WHERE sales_order.cust_id=customer_id
AND sales_order.id=sales_order_items.id
AND sales_order_items.prod_id=product.id
GROUP BY product.id

END IF
END

529

REVOKE statement
Description Use this statement to remove permissions for the specified users.

Syntax 1 REVOKE special-priv , . . . FROM userid , . . .

special-priv :
CONNECT

| DBA
| INTEGRATED LOGIN
| GROUP
| MEMBERSHIP IN GROUP userid , . . .
| RESOURCE

Syntax 2 REVOKE table-priv , . . . ON [owner.]table-name FROM userid , . . .

table-priv :
ALL [PRIVILEGES]

| ALTER
| DELETE
| INSERT
| REFERENCES [(column-name, . . .)]
| SELECT [(column-name, . . .)]
| UPDATE [(column-name, . . .)]

Syntax 3 REVOKE EXECUTE ON [owner.]procedure-name FROM userid , . . .

Usage The REVOKE statement removes permissions given using the GRANT
statement. Syntax 1 revokes special user permissions. Syntax 2 revokes table
permissions. Syntax 3 revokes permission to execute a procedure.
REVOKE CONNECT removes a user ID from a database, and also destroys
any objects (tables, views, procedures, etc.) owned by that user and any
permissions granted by that user. REVOKE GROUP automatically
REVOKES MEMBERSHIP from all members of the group.

When you add a user to a group, the user inherits all the permissions
assigned to that group. Adaptive Server Anywhere does not allow you to
revoke a subset of the permissions that a user inherits as a member of a
group because you can only revoke permissions that are explicitly given by a
GRANT statement. If you need to have different permissions for different
users, you can create different groups with the appropriate permissions, or
you can explicitly grant each user the permissions they require.

When you grant or revoke group permissions for tables, views, or
procedures, all members of the group inherit those changes. The DBA,
RESOURCE, and GROUP permissions are not inherited: you must assign
them individually to each individual user ID that requires them.

530

Chapter 4. SQL Statements

If you give a user GRANT option permission, and later revoke that
permission, you also revoke any permissions that that user granted to others
while they had the GRANT option.

Permissions Must be the grantor of the permissions that are being revoked or have DBA
authority.

If you are revoking connect permissions or table permissions from another
user, the other user must not be connected to the database. You cannot
revoke connect permissions from DBO.

Side effects Automatic commit.

See also “GRANT statement” on page 456

Standards and
compatibility

♦ SQL/92 Syntax 1 is a vendor extension. Syntax 2 is an entry-level
feature. Syntax 3 is a Persistent Stored Modules feature.

♦ SQL/99 Syntax 1 is a vendor extension. Syntax 2 is a core feature.
Syntax 3 is a Persistent Stored Modules feature.

♦ Sybase Syntax 2 and 3 are supported by Adaptive Server Enterprise.
Syntax 1 is not supported by Adaptive Server Enterprise. User
management and security models are different for Adaptive Server
Anywhere and Adaptive Server Enterprise.

Example Prevent user Dave from updating the employee table.

REVOKE UPDATE ON employee FROM dave;

Revoke resource permissions from user Jim.

REVOKE RESOURCE FROM Jim;

Revoke integrated login mapping from user profile name Administrator.

REVOKE INTEGRATED LOGIN FROM Administrator;

Disallow the Finance group from executing the procedure sp_customer_list.

REVOKE EXECUTE ON sp_customer_list
FROM finance;

Drop user ID FranW from the database.

REVOKE CONNECT FROM FranW

531

REVOKE CONSOLIDATE statement [SQL Remote]
Description Use this statement to stop a consolidated database from receiving

SQL Remote messages from this database.

Syntax REVOKE CONSOLIDATE FROM userid

Usage CONSOLIDATE permissions must be granted at a remote database for the
user ID representing the consolidated database. The REVOKE
CONSOLIDATE statement removes the consolidated database user ID from
the list of users receiving messages from the current database.

Permissions Must have DBA authority.

Side effects Automatic commit. Drops all subscriptions for the user.

See also “REVOKE PUBLISH statement [SQL Remote]” on page 533

“REVOKE REMOTE statement [SQL Remote]” on page 535

“REVOKE REMOTE DBA statement [SQL Remote]” on page 536

“GRANT CONSOLIDATE statement [SQL Remote]” on page 460

“sp_revoke_consolidate procedure”[SQL Remote User’s Guide,page 429]

Example ♦ The following statement revokes consolidated status from the user ID
condb:

REVOKE CONSOLIDATE FROM condb

532

Chapter 4. SQL Statements

REVOKE PUBLISH statement [SQL Remote]
Description Use this statement to terminate the identification of the named user ID as the

CURRENT publisher.

Syntax REVOKE PUBLISH FROM userid

Usage Each database in a SQL Remote installation is identified in outgoing
messages by apublisher user ID. The current publisher user ID can be
found using the CURRENT PUBLISHER special constant. The following
query identifies the current publisher:

SELECT CURRENT PUBLISHER

The REVOKE PUBLISH statement ends the identification of the named user
ID as the publisher.

You should not REVOKE PUBLISH from a database while the database has
active SQL Remote publications or subscriptions.

Issuing a REVOKE PUBLISH statement at a database has several
consequences for a SQL Remote installation:

♦ You will not be able to insert data into any tables with a CURRENT
PUBLISHER column as part of the primary key. Any outgoing messages
will not be identified with a publisher user ID, and so will not be accepted
by recipient databases.

If you change the publisher user ID at any consolidated or remote database
in a SQL Remote installation, you must ensure that the new publisher user
ID is granted REMOTE permissions on all databases receiving messages
from the database. This will generally require all subscriptions to be
dropped and recreated.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “GRANT PUBLISH statement [SQL Remote]” on page 462

“REVOKE REMOTE statement [SQL Remote]” on page 535

“REVOKE REMOTE DBA statement [SQL Remote]” on page 536

“REVOKE CONSOLIDATE statement [SQL Remote]” on page 532

“sp_publisher procedure”[SQL Remote User’s Guide,page 407]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

533

Example REVOKE PUBLISH FROM publisher_ID

534

Chapter 4. SQL Statements

REVOKE REMOTE statement [SQL Remote]
Description Use this statement to stop a user from being able to receive SQL Remote

messages from this database.

Syntax REVOKE REMOTE FROM userid , . . .

Usage REMOTE permissions are required for a user ID to receive messages in a
SQL Remote replication installation. The REVOKE REMOTE statement
removes a user ID from the list of users receiving messages from the current
database.

Permissions Must have DBA authority.

Side effects Automatic commit. Drops all subscriptions for the user.

See also “REVOKE PUBLISH statement [SQL Remote]” on page 533

“GRANT REMOTE statement [SQL Remote]” on page 463

“REVOKE REMOTE DBA statement [SQL Remote]” on page 536

“REVOKE CONSOLIDATE statement [SQL Remote]” on page 532

“sp_revoke_remote procedure”[SQL Remote User’s Guide,page 430]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example REVOKE REMOTE FROM SamS

535

REVOKE REMOTE DBA statement [SQL Remote]
Description Use this statement to provide DBA privileges to a user ID, but only when

connected from the Message Agent.

Syntax 1 REVOKE REMOTE DBA
FROM userid , . . .

Usage REMOTE DBA authority enables the Message Agent to have full access to
the database in order to make any changes contained in the messages, while
avoiding security problems associated with distributing DBA user IDs
passwords.

♦ This statement revokes REMOTE DBA authority from a user ID.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “REVOKE PUBLISH statement [SQL Remote]” on page 533

“REVOKE REMOTE statement [SQL Remote]” on page 535

“GRANT REMOTE DBA statement [SQL Remote]” on page 465

“REVOKE CONSOLIDATE statement [SQL Remote]” on page 532

“The Message Agent and replication security”[SQL Remote User’s Guide,
page 243]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

536

Chapter 4. SQL Statements

ROLLBACK statement
Description Use this statement to end a transaction and undo any changes made since the

last COMMIT or ROLLBACK.

Syntax ROLLBACK [WORK]

Usage A transaction is the logical unit of work done on one database connection to
a database between COMMIT or ROLLBACK statements. The
ROLLBACK statement ends the current transaction and undoes all changes
made to the database since the previous COMMIT or ROLLBACK.

Permissions None.

Side effects Closes all cursors not opened WITH HOLD.

See also “COMMIT statement” on page 284

“ROLLBACK TO SAVEPOINT statement” on page 538

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise.

537

ROLLBACK TO SAVEPOINT statement
Description To cancel any changes made since a SAVEPOINT.

Syntax ROLLBACK TO SAVEPOINT [savepoint-name]

Usage The ROLLBACK TO SAVEPOINT statement will undo any changes that
have been made since the SAVEPOINT was established. Changes made
prior to the SAVEPOINT are not undone; they are still pending.

Thesavepoint-nameis an identifier that was specified on a SAVEPOINT
statement within the current transaction. Ifsavepoint-nameis omitted, the
most recent savepoint is used. Any savepoints since the named savepoint are
automatically released.

Permissions There must have been a corresponding SAVEPOINT within the current
transaction.

Side effects None.

See also “BEGIN TRANSACTION statement” on page 270

“COMMIT statement” on page 284

“RELEASE SAVEPOINT statement” on page 519

“ROLLBACK statement” on page 537

“SAVEPOINT statement” on page 540

“Savepoints within transactions”[ASA SQL User’s Guide,page 102]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Savepoints are not supported by Adaptive Server Enterprise. To
implement similar features in an Adaptive Server Enterprise-compatible
manner, you can use nested transactions.

☞ For more information on nested transactions, see“BEGIN
TRANSACTION statement” on page 270.

538

Chapter 4. SQL Statements

ROLLBACK TRIGGER statement
Description Use this statement to undo any changes made in a trigger.

Syntax ROLLBACK TRIGGER [WITH raiserror-statement]

Usage The ROLLBACK TRIGGER statement rolls back the work done in a trigger,
including the data modification that caused the trigger to fire.

Optionally, a RAISERROR statement can be issued. If a RAISERROR
statement is issued, an error is returned to the application. If no
RAISERROR statement is issued, no error is returned.

If a ROLLBACK TRIGGER statement is used within a nested trigger and
without a RAISERROR statement, only the innermost trigger and the
statement which caused it to fire are undone.

Permissions None.

Side effects None

See also “CREATE TRIGGER statement” on page 373

“ROLLBACK statement” on page 537

“ROLLBACK TO SAVEPOINT statement” on page 538

“RAISERROR statement [T-SQL]” on page 515

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

539

SAVEPOINT statement
Description Use this statement to establish a savepoint within the current transaction.

Syntax SAVEPOINT [savepoint-name]

Usage Establish a savepoint within the current transaction. Thesavepoint-nameis
an identifier that can be used in a RELEASE SAVEPOINT or ROLLBACK
TO SAVEPOINT statement. All savepoints are automatically released when
a transaction ends. See “Savepoints within transactions”[ASA SQL User’s
Guide,page 102].

Savepoints that are established while a trigger or atomic compound
statement is executing are automatically released when the atomic operation
ends.

Permissions None.

Side effects None.

See also “RELEASE SAVEPOINT statement” on page 519

“ROLLBACK TO SAVEPOINT statement” on page 538

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Not supported in Adaptive Server Enterprise. To implement
similar features in an Adaptive Server Enterprise-compatible manner, you
can use the SAVE TRANSACTION statement.

540

Chapter 4. SQL Statements

SELECT statement
Description Use this statement to retrieve information from the database.

Syntax [WITH temporary-views]
SELECT [ALL | DISTINCT] [row-limitation] select-list

[INTO { hostvar-list | variable-list }]
[FROM table-expression]
[WHERE search-condition]
[GROUP BY [group-by-list | ROLLUP] (group-by-list)]
[HAVING search-condition]
[ORDER BY { expression | integer } [ASC | DESC], . . .]
[FOR { UPDATE [cursor-concurrency] | READ ONLY }]
[FOR XML xml-mode]

temporary-views :
regular-view , . . .

| RECURSIVE { regular-view | recursive-view }, . . .

regular-view :
view-name [(column-name, . . .)]
AS (subquery)

recursive-view :
view-name (column-name, . . .)
AS (initial-subquery UNION ALL recursive-subquery)

row-limitation :
FIRST | TOP n [START AT m]

select-list :
{ column-name | expression } [[AS] alias-name], . . .
| *

group-by-list :
{ column-name | alias-name | function | expression }, . . .

cursor-concurrency :
BY { VALUES | TIMESTAMP | LOCK }

xml-mode :
RAW [, ELEMENTS] | AUTO [, ELEMENTS] | EXPLICIT

Parameters WITH or WITH RECURSIVE Define one or more common table
expressions, also known as temporary views, to be used elsewhere in the
remainder of the statement. These expressions may be non-recursive, or may
be self-recursive. Recursive common table expressions may appear alone, or
intermixed with non-recursive expressions, only if the RECURSIVE
keyword is specified. Mutually recursive common table expressions are not
supported.

541

This clause is permitted only if the SELECT statement appears in one of the
following locations:

♦ Within a top-level SELECT statement

♦ Within the top-level SELECT statement of a VIEW definition

♦ Within a top-level SELECT statement within an INSERT statement

Recursive expressions consist of an initial subquery and a recursive
subquery. The initial-query implicitly defines the schema of the view. The
recursive subquery must contain a reference to the view within the FROM
clause. During each iteration, this reference refers only to the rows added to
the view in the previous iteration. The reference must not appear on the
null-supplying side of an outer join. A recursive common table expression
must not use aggregate functions and must not contain a GROUP BY,
ORDER BY, or DISTINCT clause.

☞ For more information, see “Common Table Expressions”[ASA SQL
User’s Guide,page 305].

ALL or DISTINCT All (the default) returns all rows that satisfy the
clauses of the SELECT statement. If DISTINCT is specified, duplicate
output rows are eliminated. Many statements take significantly longer to
execute when DISTINCT is specified, so you should reserve DISTINCT for
cases where it is necessary.

FIRST or TOP Explicitly limit the rows of queries that include ORDER
BY clauses. For queries using the TOPn option, a START AT value ofm
restricts the result set to at mostn rows starting at rowm. The default value
of m is 1.

☞ For more information about the use of FIRST and TOP, see “Explicitly
limiting the number of rows returned by a query”[ASA SQL User’s Guide,
page 245].

select list The select list is a list of expressions, separated by commas,
specifying what will be retrieved from the database. An asterisk (*) means
select all columns of all tables in the FROM clause.

Aggregate functions are allowed in the select list (see“SQL Functions” on
page 83). Subqueries are also allowed in the select list (see“Expressions” on
page 15). Each subquery must be within parentheses.

Alias names can be used throughout the query to represent the aliased
expression.

Alias names are also displayed by Interactive SQL at the top of each column
of output from the SELECT statement. If the optional alias name is not

542

Chapter 4. SQL Statements

specified after an expression, Interactive SQL will display the expression
itself.

INTO hostvar-list This clause is used in Embedded SQL only. It specifies
where the results of the SELECT statement will go. There must be one host
variable item for each item in the select list. Select list items are put into the
host variables in order. An indicator host variable is also allowed with each
host variable, so the program can tell if the select list item was NULL.

INTO variable-list This clause is used in procedures and triggers only. It
specifies where the results of the SELECT statement will go. There must be
one variable for each item in the select list. Select list items are put into the
variables in order.

FROM clause Rows are retrieved from the tables and views specified in the
table expression. A SELECT statement with no FROM clause can be used to
display the values of expressions not derived from tables. For example,

SELECT @@version

displays the value of the global variable @@version. This is equivalent to:

SELECT @@version
FROM DUMMY

☞ For more information, see“FROM clause” on page 445.

WHERE clause This clause specifies which rows will be selected from the
tables named in the FROM clause. It can be used to do joins between
multiple tables, as an alternative to the ON phrase (which is part of the
FROM clause).

☞ For more information, see“Search conditions” on page 22and“FROM
clause” on page 445.

GROUP BY clause You can group by columns, alias names, or functions.
The result of the query contains one row for each distinct set of values in the
named columns, aliases, or functions. All NULL-containing rows are treated
as a single set. The resulting rows are often referred to as groups since there
is one row in the result for each group of rows from the table list. Aggregate
functions can then be applied to these groups to get meaningful results.

When GROUP BY is used, theselect-list, HAVING clause, and ORDER BY
clause must not reference any identifier that is not named in the GROUP BY
clause. The exception is that theselect-listand HAVING clause may contain
aggregate functions.

ROLLUP keyword The ROLLUP operation adds summary rows into the
result set of a query with a GROUP BY clause.

543

A prefix is a subset of the items in thegroup-by-list. A prefix is defined by
excluding one or more rightmost items from those in thegroup-by-list. An
additional row is added to the result set for each prefix. The additional row
contains subtotal information for a set of rows in the GROUP BY result set.
Each subtotal row includes the following:

♦ Column excluded from the prefix NULL

♦ Column included in the prefix The value of the column

♦ Aggregate function An aggregate over the values of the excluded
columns.

For more information about ROLLUP operations, see “The ROLLUP
operation: adding summary information to GROUP BY queries”[ASA SQL
User’s Guide,page 247].

HAVING clause This clause selects rows based on the group values and not
on the individual row values. The HAVING clause can only be used if either
the statement has a GROUP BY clause or the select list consists solely of
aggregate functions. Any column names referenced in the HAVING clause
must either be in the GROUP BY clause or be used as a parameter to an
aggregate function in the HAVING clause.

ORDER BY clause This clause sorts the results of a query. Each item in
the ORDER BY list can be labeled as ASC for ascending order (the default)
or DESC for descending order. If the expression is an integern, then the
query results will be sorted by thenth item in the select list.

The only way to ensure that rows are returned in a particular order is to use
ORDER BY. In the absence of an ORDER BY clause, Adaptive Server
Anywhere returns rows in whatever order is most efficient. This means that
the appearance of result sets may vary depending on when you last accessed
the row and other factors.

In embedded SQL, the SELECT statement is used for retrieving results from
the database and placing the values into host variables via the INTO clause.
The SELECT statement must return only one row. For multiple row queries,
you must use cursors.

FOR UPDATE or FOR READ ONLY clause This clause specifies whether
updates are allowed through a cursor opened on the query. Note that this
clause cannot be used with the FOR XML clause.

If you do not use a FOR clause in the SELECT statement, the updatability is
specified by the API. For ODBC and OLE DB, the default is read only. For
JDBC, Open Client, and embedded SQL, the default is update.

544

Chapter 4. SQL Statements

This clause overrides the embedded SQL DECLARE CURSOR statement.
However, it may be overridden by the concurrency setting in other
programming interfaces. In ODBC and OLE DB, the read-only default
setting overrides the FOR clause, but if you change the default to something
other than read only, the FOR clause is not overridden. In JDBC and Open
Client, the current setting always overrides the FOR clause, whether or not it
is the default (updatable cursors).

Statement updatability is dependent on the setting of the
ANSI_UPDATE_CONSTRAINTS database option. Other characteristics of
the statement are also considered, including whether the statement contains a
DISTINCT, GROUP BY, HAVING, UNION, aggregate functions, joins, or
non-updatable views.

☞ For more information about cursor sensitivity, see “Adaptive Server
Anywhere cursors”[ASA Programming Guide,page 30].

☞ For more information about ODBC concurrency, see the discussion of
SQLSetStmtAttr in “Choosing a cursor characteristics”[ASA Programming
Guide,page 247].

☞ For more information about the ANSI_UPDATE_CONSTRAINTS
database option, see “ANSI_UPDATE_CONSTRAINTS option
[compatibility]” [ASA Database Administration Guide,page 576].

FOR XML clause This clause specifies that the result set is to be returned
as an XML document. The format of the XML depends on the mode you
specify. Note that this clause cannot be used with the FOR UPDATE or FOR
READ ONLY clause.

When you specify RAW mode, each row in the result set is represented as an
XML <row> element, and each column is represented as an attribute of the
<row> element.

AUTO mode returns the query results as nested XML elements. Each table
referenced in theselect-listis represented as an element in the XML. The
order of nesting for the elements is based on the order that tables are
referenced in theselect-list.

EXPLICIT mode allows you to control the form of the generated XML
document. Using EXPLICIT mode offers more flexibility in naming
elements and specifying the nesting structure than either RAW or AUTO
mode.

☞ For information about writing a query using EXPLICIT mode, see
“Using FOR XML EXPLICIT” [ASA SQL User’s Guide,page 499].

☞ For more information about using the FOR XML clause, see “Using the

545

FOR XML clause to retrieve query results as XML”[ASA SQL User’s Guide,
page 491].

Usage The SELECT statement is used for retrieving results from the database.

A SELECT statement can be used in Interactive SQL to browse data in the
database, or to export data from the database to an external file.

A SELECT statement can also be used in procedures and triggers or in
embedded SQL. The SELECT statement with an INTO clause is used for
retrieving results from the database when the SELECT statement only
returns one row. For multiple row queries, you must use cursors.

A SELECT statement can also be used to return a result set from a
procedure.

Permissions Must have SELECT permission on the named tables and views.

Side effects None.

See also “Expressions” on page 15

“FROM clause” on page 445

“Search conditions” on page 22

“UNION operation” on page 586

“Joins: Retrieving Data from Several Tables”[ASA SQL User’s Guide,
page 261]

Standards and
compatibility

♦ SQL/92 Entry-level feature. The complexity of the SELECT statement
means that you should check individual clauses against the standard.

♦ SQL/99 Core feature. The complexity of the SELECT statement means
that you should check individual clauses against the standard. For
example, the ROLLUP keyword is part of feature T431.

♦ Sybase Supported by Adaptive Server Enterprise, with some
differences in syntax.

Example How many employees are there?

SELECT count(*)
FROM employee

List all customers and the total value of their orders.

546

Chapter 4. SQL Statements

SELECT company_name,
CAST(sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
JOIN sales_order
JOIN sales_order_items
JOIN product

GROUP BY company_name
ORDER BY VALUE DESC

The following statement shows an Embedded SQL SELECT statement:

SELECT count(*) INTO :size
FROM employee

547

SET statement
Description Use this statement to assign a value to a SQL variable.

Syntax SET identifier = expression

Usage The SET statement assigns a new value to a variable. The variable must have
been previously created using a CREATE VARIABLE statement or
DECLARE statement, or it must be an OUPUT parameter for a procedure.
The variable name can optionally use the Transact-SQL convention of an @
sign preceding the name. For example,

SET @localvar = 42

A variable can be used in a SQL statement anywhere a column name is
allowed. If a column name exists with the same name as the variable, the
variable value is used.

Variables are local to the current connection, and disappear when you
disconnect from the database or use the DROP VARIABLE statement. They
are not affected by COMMIT or ROLLBACK statements.

Variables are necessary for creating large text or binary objects for INSERT
or UPDATE statements from embedded SQL programs because
embedded SQL host variables are limited to 32,767 bytes.

Permissions None.

Side effects None.

See also “CREATE VARIABLE statement” on page 381

“DECLARE statement” on page 389

“DROP VARIABLE statement” on page 422

“Expressions” on page 15

Standards and
compatibility

♦ SQL/92 Persistent stored module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase Not supported. In Adaptive Server Enterprise, variables are
assigned using the SELECT statement with no table, a Transact-SQL
syntax that is also supported by Adaptive Server Anywhere. The SET
statement is used to set database options in Adaptive Server Enterprise.

Example The following code fragment inserts a large text value into the database.

548

Chapter 4. SQL Statements

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(500) buffer;
/* Note: maximum DECL_VARCHAR size is 32765 */
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_blob LONG VARCHAR;
EXEC SQL SET hold_blob = ’’;
for(;;) {

/* read some data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;
/* Does not work if data contains null chars */
EXEC SQL SET hold_blob = hold_blob || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES(1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

The following code fragment inserts a large binary value into the database.

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(5000) buffer;
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold_blob = ’’;
for(;;) {

/* read some data into buffer ... */
size = fread(&(buffer.array), 1, 5000, fp);
if(size <= 0) break;
buffer.len = size;
/* add data to blob using concatenation */
EXEC SQL SET hold_blob = hold_blob || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

549

SET statement [T-SQL]
Description Use this statement to set database options for the current connection in an

Adaptive Server Enterprise-compatible manner.

Syntax SET option-name option-value

Usage The available options are as follows:

Option name Option value

ANSINULL ON | OFF

ANSI_PERMISSIONS ON | OFF

CLOSE_ON_ENDTRANS ON | OFF

DATEFIRST 1 | 2 | 3 | 4 | 5 | 6 | 7

QUOTED_IDENTIFIER ON | OFF

ROWCOUNT integer

SELF_RECURSION ON | OFF

STRING_RTRUNCATION ON | OFF

TEXTSIZE integer

TRANSACTION ISOLATION LEVEL 0 | 1 | 2 | 3

Database options in Adaptive Server Anywhere are set using the SET
OPTION statement. However, Adaptive Server Anywhere also provides
support for the Adaptive Server Enterprise SET statement for options that
are particularly useful for compatibility.

The following options can be set using the Transact-SQL SET statement in
Adaptive Server Anywhere as well as in Adaptive Server Enterprise:

♦ SET ANSINULL { ON | OFF } The default behavior for comparing
values to NULL in Adaptive Server Anywhere and Adaptive Server
Enterprise is different. Setting ANSINULL to OFF provides
Transact-SQL compatible comparisons with NULL.

♦ SET ANSI_PERMISSIONS { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise regarding
permissions required to carry out an UPDATE or DELETE containing a
column reference is different. Setting ANSI_PERMISSIONS to OFF
provides Transact-SQL-compatible permissions on UPDATE and
DELETE.

550

Chapter 4. SQL Statements

♦ SET CLOSE_ON_ENDTRANS { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise for closing
cursors at the end of a transaction is different. Setting
CLOSE_ON_ENDTRANS to OFF provides Transact-SQL compatible
behavior.

♦ SET DATEFIRST { 1 | 2 | 3 | 4 | 5 | 6 | 7 } The default is 7, which means
that the first day of the week is by default Sunday. To set this option
permanently, see “FIRST_DAY_OF_WEEK option [database]”[ASA
Database Administration Guide,page 593].

♦ SET QUOTED_IDENTIFIER { ON | OFF } Controls whether strings
enclosed in double quotes are interpreted as identifiers (ON) or as literal
strings (OFF). For information about this option, see “Setting options for
Transact-SQL compatibility”[ASA SQL User’s Guide,page 451].

♦ SET ROWCOUNT integerThe Transact-SQL ROWCOUNT option
limits the number of rows fetched for any cursor to the specified integer.
This includes rows fetched by re-positioning the cursor. Any fetches
beyond this maximum return a warning. The option setting is considered
when returning the estimate of the number of rows for a cursor on an
OPEN request.

SET ROWCOUNT also limits the number of rows affected by a searched
UPDATE or DELETE statement tointeger. This might be used,
for example, to allow COMMIT statements to be performed at regular
intervals to limit the size of the rollback log and lock table. The
application (or procedure) would need to provide a loop to cause the
update/delete to be re-issued for rows that are not affected by the first
operation. A simple example is given below:

begin
declare @count integer
set rowcount 20
while(1=1) begin

update employee set emp_lname=’new_name’
where emp_lname <> ’old_name’
/* Stop when no rows changed */
select @count = @@rowcount
if @count = 0 break
print string(’Updated ’,

@count,’ rows; repeating...’)
commit

end
set rowcount 0

end

In Adaptive Server Anywhere, if the ROWCOUNT setting is greater than
the number of rows that Interactive SQL can display, Interactive SQL

551

may do some extra fetches to reposition the cursor. Thus, the number of
rows actually displayed may be less than the number requested. Also, if
any rows are re-fetched due to truncation warnings, the count may be
inaccurate.

A value of zero resets the option to get all rows.

♦ SET SELF_RECURSION { ON | OFF } Theself_recursionoption is
used within triggers to enable (ON) or prevent (OFF) operations on the
table associated with the trigger from firing other triggers.

♦ SET STRING_RTRUNCATION { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise when
non-space characters are truncated on assigning SQL string data is
different. Setting STRING_RTRUNCATION to ON provides
Transact-SQL-compatible string comparisons.

♦ SET TEXTSIZE Specifies the maximum size (in bytes) of text or image
type data to be returned with a select statement. The@@textsizeglobal
variable stores the current setting. To reset to the default size (32K), use
the command:

set textsize 0

♦ SET TRANSACTION-ISOLATION-LEVEL { 0 | 1 | 2 | 3 } Sets the
locking isolation level for the current connection, as described in
“Isolation levels and consistency”[ASA SQL User’s Guide,page 104]. For
Adaptive Server Enterprise, only 1 and 3 are valid options. For Adaptive
Server Anywhere, any of 0, 1, 2, or 3 is a valid option.

In addition, the SET statement is allowed by Adaptive Server Anywhere for
the PREFETCH option, for compatibility, but has no effect.

Permissions None.

Side effects None.

See also “SET OPTION statement” on page 556

“Setting options for Transact-SQL compatibility”[ASA SQL User’s Guide,
page 451]

“Compatibility options”[ASA Database Administration Guide,page 566]

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Adaptive Server Anywhere supports a subset of the Adaptive
Server Enterprise database options.

552

Chapter 4. SQL Statements

SET CONNECTION statement [Interactive SQL]
[ESQL]
Description Use this statement to change the active database connection.

Syntax SET CONNECTION [connection-name]

connection-name :
identifier , string, or hostvar

Usage The SET CONNECTION statement changes the active database connection
to connection-name. The current connection state is saved, and will be
resumed when it again becomes the active connection. Ifconnection-name
is omitted and there is a connection that was not named, that connection
becomes the active connection.

When cursors are opened in embedded SQL, they are associated with the
current connection. When the connection is changed, the cursor names of
the previously active connection become inaccessible. These cursors remain
active and in position, and become accessible when the associated
connection becomes active again.

Permissions None.

Side effects None.

See also “CONNECT statement [ESQL] [Interactive SQL]” on page 287

“DISCONNECT statement [ESQL] [Interactive SQL]” on page 407

Standards and
compatibility

♦ SQL/92 Interactive SQL use is a vendor extension. Embedded SQL is a
Full level feature.

♦ SQL/99 Interactive SQL is a vendor extension. Embedded SQL is a
core feature.

♦ Sybase Supported by Open Client/Open Server.

Example The following example is in Embedded SQL.

EXEC SQL SET CONNECTION :conn_name;

From Interactive SQL, set the current connection to the connection named
conn1.

SET CONNECTION conn1;

553

SET DESCRIPTOR statement [ESQL]
Description Use this statement to describe the variables in a SQL descriptor area and to

place data into the descriptor area.

Syntax SET DESCRIPTOR descriptor-name
{ COUNT = { integer | hostvar }
| VALUE { integer | hostvar } assignment [, . . .] }

assignment :
{ TYPE | SCALE | PRECISION | LENGTH | INDICATOR }

= { integer | hostvar }
| DATA = hostvar

Usage The SET DESCRIPTOR statement is used to describe the variables in a
descriptor area, and to place data into the descriptor area.

The SET . . . COUNT statement sets the number of described variables
within the descriptor area. The value for count must not exceed the number
of variables specified when the descriptor area was allocated.

The value {integer| hostvar} specifies the variable in the descriptor area
upon which the assignment(s) will be performed.

Type checking is performed when doing SET . . . DATA, to ensure that the
variable in the descriptor area has the same type as the host variable.
LONGVARCHAR and LONGBINARY are not supported by SET
DESCRIPTOR ... DATA.

If an error occurs, the code is returned in the SQLCA.

Permissions None.

Side effects None.

See also “ALLOCATE DESCRIPTOR statement [ESQL]” on page 223

“DEALLOCATE DESCRIPTOR statement [ESQL]” on page 387

“The SQL descriptor area (SQLDA)”[ASA Programming Guide,page 181]

Standards and
compatibility

♦ SQL/92 Intermediate-level feature.

♦ SQL/99 SQL/foundation feature outside of core SQL.

♦ Sybase Supported by Open Client/Open Server.

Example The following example sets the type of the column with position col_num in
sqlda.

554

Chapter 4. SQL Statements

void set_type(SQLDA *sqlda, int col_num, int new_type)
{

EXEC SQL BEGIN DECLARE SECTION;
int new_type1 = new_type;
int col = col_num;
EXEC SQL END DECLARE SECTION;

EXEC SQL SET DESCRIPTOR sqlda VALUE :col TYPE = :new_type1;
}

For a longer example, see“ALLOCATE DESCRIPTOR statement [ESQL]”
on page 223.

555

SET OPTION statement
Description Use this statement to change the values of database options.

Syntax SET [EXISTING] [TEMPORARY] OPTION
[userid.| PUBLIC .]option-name = [option-value]

userid : identifier | string | hostvar

option-name : identifier | string | hostvar

option-value : hostvar (indicator allowed)
| string
| identifier
| number

Usage The SET OPTION statement is used to change options that affect the
behavior of the database server. Setting the value of an option can change
the behavior for all users or only for an individual user. The scope of the
change can be either temporary or permanent.

The classes of options are:

♦ General database options

♦ Transact-SQL compatibility

♦ Replication database options

☞ For a listing and description of all available options, see “Database
Options” [ASA Database Administration Guide,page 555].

You can set options at three levels of scope: public, user, and temporary. A
temporary option takes precedence over other options, and user options take
precedence over public options. If you set a user level option for the current
user, the corresponding temporary option gets set as well.

If you use the EXISTING keyword, option values cannot be set for an
individual user ID unless there is already aPUBLIC user ID setting for that
option.

If you specify a user ID, the option value applies to that user (or, for a group
user ID, the members of that group). If you specifyPUBLIC , the option
value applies to all users who don’t have an individual setting for the option.
By default, the option value applies to the currently logged on user ID that
issued theSET OPTION statement..

For example, the following statement applies an option change to the user
DBA, if DBA is the user issuing the SQL statement:

SET OPTION login_mode = mixed

556

Chapter 4. SQL Statements

However the following statement applies the change to thePUBLIC user
ID, a user group to which all users belong.

SET OPTION Public.login_mode = standard

Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

In embedded SQL, database options can be set only temporarily.

Users can use the SET OPTION statement to change the values for their own
user ID. Setting the value of an option for a user id other then your own is
permitted only if you have DBA authority.

Adding the TEMPORARY keyword to the SET OPTION statement changes
the duration that the change takes effect. By default, the option value is
permanent: it will not change until it is explicitly changed using the SET
OPTION statement.

When the SET TEMPORARY OPTION statement is not qualified with a
user ID, the new option value is in effect only for the current connection.

When SET TEMPORARY OPTION is used for the PUBLIC user ID, the
change is in place for as long as the database is running. When the database
is shut down, TEMPORARY options for the PUBLIC group revert back to
their permanent value.

Setting temporary options for the PUBLIC user ID offers a security benefit.
For example, when the LOGIN_MODE option is enabled, the database
relies on the login security of the system on which it is running. Enabling it
temporarily means that a database relying on the security of a Windows
domain will not be compromised if the database is shut down and copied to
a local machine. In that case, the temporary enabling of the LOGIN_MODE
option reverts to its permanent value, which could be Standard, a mode
where integrated logins are not permitted.

If option-valueis omitted, the specified option setting will be deleted from
the database. If it was a personal option setting, the value will revert back to
the PUBLIC setting. If a TEMPORARY option is deleted, the option setting
will revert back to the permanent setting.

Caution
Changing option settings while fetching rows from a cursor is not sup-
ported, as it can lead to ill-defined behavior. For example, changing the
DATE_FORMAT setting while fetching from a cursor would lead to dif-
ferent date formats among the rows in the result set. Do not change option
settings while fetching rows.

557

Permissions None required to set your own options.

DBA authority is required to set database options for another user or
PUBLIC.

Side effects If TEMPORARY is not specified, an automatic commit is performed.

See also “Database options”[ASA Database Administration Guide,page 561]

“Compatibility options”[ASA Database Administration Guide,page 566]

“Replication options”[ASA Database Administration Guide,page 570]

“SET OPTION statement [Interactive SQL]” on page 559

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Adaptive Server Enterprise. Adaptive Server
Anywhere does support some Adaptive Server Enterprise options using
the SET statement.

Example Set the date format option to on:

SET OPTION public.date_format = ’Mmm dd yyyy’;

Set the date format option to off:

SET OPTION public.date_format =;

Set the wait_for_commit option to on:

SET OPTION wait_for_commit = ’on’;

Following are two Embedded SQL examples.

1. EXEC SQL SET OPTION :user.:option_name = :value;
2. EXEC SQL SET TEMPORARY OPTION Date_format = ’mm/dd/yyyy’;

558

Chapter 4. SQL Statements

SET OPTION statement [Interactive SQL]
Description Use this statement to change the values of Interactive SQL options.

Syntax 1 SET [TEMPORARY] OPTION
[userid. | PUBLIC .]option-name = [option-value]

userid : identifier , string or hostvar

option-name : identifier , string or hostvar

option-value : hostvar (indicator allowed), string, identifier , or number

Syntax 2 SET PERMANENT

Syntax 3 SET

Usage SET PERMANENT (syntax 2) stores all current Interactive SQL options in
the SYSOPTIONS system table. These settings are automatically
established every time Interactive SQL is started for the current user ID.

Syntax 3 displays all of the current option settings. If there are temporary
options set for Interactive SQL or the database server, these will be
displayed; otherwise, the permanent option settings are displayed.

See Also “Interactive SQL options”[ASA Database Administration Guide,page 571]

559

SET REMOTE OPTION statement [SQL Remote]
Description Use this statement to set a message control parameter for a SQL Remote

message link.

Syntax SET REMOTE link-name OPTION
[userid.| PUBLIC .]link-option-name = link-option-value

link-name:
file | ftp | mapi | smtp | vim

link-option-name:
common-option | file-option | ftp-option
| mapi-option | smtp-option | vim-option

common-option:
debug | output_log_send_on_error
| output_log_send_limit | output_log_send_now

file-option:
directory | unlink_delay

ftp-option:
active_mode | host | password | port | root_directory | user

mapi-option:
force_download | ipm_receive | ipm_send | profile

smtp-option:
local_host | pop3_host | pop3_password | pop3_userid

| smtp_host | top_supported

vim-option:
password | path | receive_all | send_vim_mail | userid

link-option-value:
string

Parameters userid If no userid is specified, then the current publisher is assumed.

Option values The option values are message-link dependent. For more
information, see the following locations:

♦ “The file message system”[SQL Remote User’s Guide,page 215].

♦ “The ftp message system”[SQL Remote User’s Guide,page 216].

♦ “The MAPI message system”[SQL Remote User’s Guide,page 220].

♦ “The SMTP message system”[SQL Remote User’s Guide,page 218].

♦ “The VIM message system”[SQL Remote User’s Guide,page 221].

560

Chapter 4. SQL Statements

Usage The Message Agent saves message link parameters when the user enters
them in the message link dialog box when the message link is first used. In
this case, it is not necessary to use this statement explicitly. This statement is
most useful when preparing a consolidated database for extracting many
databases.

The option names are case sensitive. The case sensitivity of option values
depends on the option: Boolean values are case insensitive, while the case
sensitivity of passwords, directory names, and other strings depend on the
cases sensitivity of the file system (for directory names), or the database (for
user IDs and passwords).

Permissions Must have DBA authority. The publisher can set their own options.

Side effects Automatic commit.

See also “sp_link_option procedure”[SQL Remote User’s Guide,page 394]

“Troubleshooting errors at remote sites”[SQL Remote User’s Guide,page 226]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples The following statement sets the FTP host toftp.mycompany.comfor the ftp
link for user myuser:

SET REMOTE FTP OPTION myuser.host = ’ftp.mycompany.com’

561

SET SQLCA statement [ESQL]
Description Use this statement to tell the SQL preprocessor to use a SQLCA other than

the default, globalsqlca.

Syntax SET SQLCA sqlca

sqlca : identifier or string

Usage The SET SQLCA statement tells the SQL preprocessor to use a SQLCA
other than the default globalsqlca. Thesqlcamust be an identifier or string
that is a C language reference to a SQLCA pointer.

The current SQLCA pointer is implicitly passed to the database interface
library on every embedded SQL statement. All embedded SQL statements
that follow this statement in the C source file will use the new SQLCA.

This statement is necessary only when you are writing code that is reentrant
(see “SQLCA management for multi-threaded or reentrant code”[ASA
Programming Guide,page 163]). Thesqlcashould reference a local variable.
Any global or module static variable is subject to being modified by another
thread.

Permissions None.

Side effects None.

See also “SQLCA management for multi-threaded or reentrant code”[ASA
Programming Guide,page 163]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not supported by Open Client/Open Server.

Example The owning function could be found in a Windows DLL. Each application
that uses the DLL has its own SQLCA.

an_SQL_code FAR PASCAL ExecuteSQL(an_application *app, char
*com)

{
EXEC SQL BEGIN DECLARE SECTION;
char *sqlcommand;
EXEC SQL END DECLARE SECTION;
EXEC SQL SET SQLCA "&app->.sqlca";
sqlcommand = com;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL EXECUTE IMMEDIATE :sqlcommand;

return(SQLCODE);
}

562

Chapter 4. SQL Statements

SETUSER statement
Description Use this statement to allow a database administrator to impersonate another

user, and to enable connection pooling.

Syntax { SET SESSION AUTHORIZATION | SETUSER }
[[WITH OPTIONS] userid]

Parameters WITH OPTIONS By default, only permissions (including group
membership) are altered. If WITH OPTIONS is specified, the database
options in effect are changed to the current database options ofuserid.

Usage The SETUSER statement is provided to make database administration
easier. It enables a user with DBA authority to impersonate another user of
the database.

SETUSER can also be used from an application server to take advantage of
connection pooling. Connection pooling cuts down the number of distinct
connections that need to be made, which can improve performance.

SETUSER with no user ID undoes all earlier SETUSER statements.

The SETUSER statement cannot be used inside a procedure, trigger, event
handler or batch.

There are several uses for the SETUSER statement, including the following:

♦ Creating objects You can use SETUSER to create a database object
that is to be owned by another user.

♦ Permissions checking By acting as another user, with their
permissions and group memberships, a DBA can test the permissions and
name resolution of queries, procedures, views, and so on.

♦ Providing a safer environment for administrators The DBA has
permission to carry out any action in the database. If you wish to ensure
that you do not accidentally carry out an unintended action, you can use
SETUSER to switch to a different user ID with fewer permissions.

Permissions Must have DBA authority.

See also “EXECUTE IMMEDIATE statement [SP]” on page 429

“GRANT statement” on page 456

“REVOKE statement” on page 530

“SET OPTION statement” on page 556

Standards and
compatibility

♦ SQL/92 SET SESSION AUTHORIZATION is SQL 92 compliant.
SETUSER is a vendor extension.

563

♦ SQL/99 SET SESSION AUTHORIZATION is a core feature.
SETUSER is a vendor extension.

♦ Sybase Adaptive Server Enterprise supports SETUSER, but not the
WITH OPTIONS keywords.

Example The following statements, executed by a user named DBA, change the user
ID to be Joe, then Jane, and then back to DBA.

SETUSER ’Joe’
// ... operations...
SETUSER WITH OPTIONS ’Jane’
// ... operations...
SETUSER

564

Chapter 4. SQL Statements

SIGNAL statement
Description Use this statement to signal an exception condition.

Syntax SIGNAL exception-name

Usage SIGNAL allows you to raise an exception. See “Using exception handlers in
procedures and triggers”[ASA SQL User’s Guide,page 654]for a description of
how exceptions are handled.

exception-name The name of an exception declared using a DECLARE
statement at the beginning of the current compound statement. The
exception must correspond to a system-defined SQLSTATE or a user-defined
SQLSTATE. User-defined SQLSTATE values must be in the range 99000
to 99999.

Permissions None.

Side effects None.

See also “DECLARE statement” on page 389

“RESIGNAL statement” on page 524

“BEGIN statement” on page 267

“Using exception handlers in procedures and triggers”[ASA SQL User’s
Guide,page 654]

Standards and
compatibility

♦ SQL/92 Persistent Stored Module feature.

♦ SQL/99 Persistent Stored Module feature.

♦ Sybase SIGNAL is not supported by Adaptive Server Enterprise.

Example The following compound statement declares and signals a user-defined
exception. If you execute this example from Interactive SQL, the message is
displayed in the Messages pane.

BEGIN
DECLARE myexception EXCEPTION
FOR SQLSTATE ’99001’;
SIGNAL myexception;
EXCEPTION

WHEN myexception THEN
MESSAGE ’My exception signaled’
TO CLIENT;

END

565

START DATABASE statement
Description Use this statement to start a database on the current database server.

Syntax START DATABASE database-file
[AS database-name]
[ON engine-name]
[WITH TRUNCATE AT CHECKPOINT]
[FOR READ ONLY]
[AUTOSTOP { ON | OFF }]
[KEY key]

Parameters START DATABASE clause Thedatabase-fileparameter is a string. If a
relative path is supplied indatabase-file, it is relative to the database server
starting directory.

AS clause If database-nameis not specified, a default name is assigned to
the database. This default name is the root of the database file. For example,
a database in fileC:\Database Files\asademo.dbwould be given the default
name ofasademo.

ON clause This clause is supported from Interactive SQL only. In
Interactive SQL, ifengine-nameis not specified, the default database is the
first started server among those currently running.

WITH TRUNCATE AT CHECKPOINT clause Starts a database with log
truncation on checkpoint enabled.

FOR READ ONLY Starts a database in read-only mode.

AUTOSTOP clause The default setting for the AUTOSTOP clause is ON.
With AUTOSTOP set to ON, the database is unloaded when the last
connection to it is dropped. If AUTOSTOP is set to OFF, the database is not
unloaded.

In Interactive SQL, you can use YES or NO as alternatives to ON and OFF.

KEY clause If the database is strongly encrypted, enter the KEY value
(password) using this clause

Usage Starts a specified database on the current database server.

The START DATABASE statement does not connect the current application
to the specified database: an explicit connection is still needed.

Interactive SQL supports the ON clause, which allows the database to be
started on a database server other than the current.

Permissions The required permissions are specified by the database server-gd option.
This option defaults toall on the personal database server, andDBA on the

566

Chapter 4. SQL Statements

network server.

Side effects None

See also “STOP DATABASE statement” on page 575

“CONNECT statement [ESQL] [Interactive SQL]” on page 287

“-gd server option”[ASA Database Administration Guide,page 145]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Start the database fileC:\Database Files\sample_2.dbon the current server.

START DATABASE ’c:\database files \sample_2.db’

From Interactive SQL, start the database filec:\Database Files\sample_2.db
assam2on the server namedsample.

START DATABASE ’c:\database files \sample_2.db’
AS sam2
ON sample

567

START ENGINE statement [Interactive SQL]
Description Use this statement to start a database server.

Syntax START ENGINE AS engine-name [STARTLINE command-string]

Usage The START ENGINE statement starts a database server. If you wish to
specify a set of options for the server, use the STARTLINE keyword together
with a command string. Valid command strings are those that conform to the
database server description in “The database server”[ASA Database
Administration Guide,page 124].

Permissions None

Side effects None

See also “STOP ENGINE statement” on page 576

“The database server”[ASA Database Administration Guide,page 124]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Start a database server, named sample, without starting any databases on it.

START ENGINE AS sample

The following example shows the use of a STARTLINE clause.

START ENGINE AS eng1 STARTLINE ’dbeng9 -c 8M’

568

Chapter 4. SQL Statements

START JAVA statement
Description Use this statement to start the Java VM.

Syntax START JAVA

Usage The START JAVA statement starts the Java VM. The main use is to load the
Java VM at a convenient time so that when the user starts to use Java
functionality there is no initial pause while the Java VM is loaded.

Permissions Java in the database must be installed and the database must be Java-enabled.

This statement is not supported on Windows CE.

Side effects None

See also “STOP JAVA statement” on page 577

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Start the Java VM.

START JAVA

569

START LOGGING statement [Interactive SQL]
Description Use this statement to start logging executed SQL statements to a log file.

Syntax START LOGGING filename

Usage The START LOGGING statement starts copying all subsequent executed
SQL statements to the log file that you specify. If the file does not exist,
Interactive SQL creates it. Logging continues until you explicitly stop the
logging process with the STOP LOGGING statement, or until you end the
current Interactive SQL session. You can also start and stop logging by
clicking SQL(Start Logging and SQL(Stop Logging.

Permissions None.

Side effects None.

See also “STOP LOGGING statement [Interactive SQL]” on page 578

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Start logging to a file calledfilename.SQL, located in the c: directory.

START LOGGING ’c:\filename.SQL’

570

Chapter 4. SQL Statements

START SUBSCRIPTION statement [SQL Remote]
Description Use this statement to start a subscription for a user to a publication.

Syntax START SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id , . . .

Parameters publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The value is required here because each
subscriber may have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Usage A SQL Remote subscription is said to bestarted when publication updates
are being sent from the consolidated database to the remote database.

The START SUBSCRIPTION statement is one of a set of statements that
manage subscriptions. The CREATE SUBSCRIPTION statement defines
the data that the subscriber is to receive. The SYNCHRONIZE
SUBSCRIPTION statement ensures that the consolidated and remote
databases are consistent with each other. The START SUBSCRIPTION
statement is required to start messages being sent to the subscriber.

Data at each end of the subscription must be consistent before a subscription
is started. It is recommended that you use the database extraction utility to
manage the creation, synchronization, and starting of subscriptions. If you
use the database extraction utility, you do not need to execute an explicit
START SUBSCRIPTION statement. Also, the Message Agent starts
subscriptions once they are synchronized.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “CREATE SUBSCRIPTION statement [SQL Remote]” on page 347

“REMOTE RESET statement [SQL Remote]” on page 520

“SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” on page 581

“sp_subscription procedure”[SQL Remote User’s Guide,page 431]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

571

♦ Sybase Not applicable.

Example The following statement starts the subscription of userSamSto the
pub_contactpublication.

START SUBSCRIPTION TO pub_contact
FOR SamS

572

Chapter 4. SQL Statements

START SYNCHRONIZATION DELETE statement
[MobiLink]
Description Use this statement to restart logging of deletes for MobiLink

synchronization.

Syntax START SYNCHRONIZATION DELETE

Usage Ordinarily, Adaptive Server Anywhere automatically logs any changes made
to tables or columns that are part of a synchronization template and uploads
these changes to the consolidated database during the next synchronization.
You can temporarily suspend automatic logging of delete operations using
the STOP SYNCHRONIZATION DELETE statement. The START
SYNCHRONIZATION DELETE statement allows you to restart the
automatic logging.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the delete operations executed on that connection will be synchronized.
The effect continues until a START SYNCHRONIZATION DELETE
statement is executed. The effects do not nest; that is, subsequent execution
of stop synchronization delete after the first will have no additional effect.
A single START SYNCHRONIZATION DELETE statement restarts the
logging, regardless of the number of STOP SYNCHRONIZATION
DELETE statements preceding it.

Permissions Must have DBA authority.

Side effects None.

See also “STOP SYNCHRONIZATION DELETE statement [MobiLink]” on
page 580

“StartSynchronizationDelete method”[UltraLite Static C++ User’s Guide,
page 86]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following sequence of SQL statements illustrates how to use START
SYNCHRONIZATION DELETE and STOP SYNCHRONIZATION
DELETE.

573

-- Prevent deletes from being sent
-- to the consolidated database
STOP SYNCHRONIZATION DELETE;

-- Remove all records older than 1 month
-- from the remote database,
-- NOT the consolidated database
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1)

-- Re-enable all deletes to be sent
-- to the consolidated database
-- DO NOT FORGET to start this
START SYNCHRONIZATION DELETE;

-- Commit the entire operation,
-- otherwise rollback everything
-- including the stopping of the deletes
commit;

574

Chapter 4. SQL Statements

STOP DATABASE statement
Description Use this statement to stop a database on the current database server.

Syntax STOP DATABASE database-name
[ON engine-name]
[UNCONDITIONALLY]

Parameters STOP DATABASE clause Thedatabase-nameis the name of a database
(other than the current database) running on the current server.

ON clause This clause is supported in Interactive SQL only. If
engine-nameis not specified in Interactive SQL, all running engines will be
searched for a database of the specified name.

When not using this statement in Interactive SQL, the database is stopped
only if it is started on the current database server.

UNCONDITIONALLY keyword Stop the database even if there are
connections to the database. By default, the database is not stopped if there
are connections to it.

Usage The STOP DATABASE statement stops a specified database on the current
database server.

Permissions The required permissions are specified by the database server-gk option.
This option defaults toall on the personal database server, andDBA on the
network server.

You cannot use STOP DATABASE on the database to which you are
currently connected.

Side effects None

See also “START DATABASE statement” on page 566

“DISCONNECT statement [ESQL] [Interactive SQL]” on page 407

“-gd server option”[ASA Database Administration Guide,page 145]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Stop the database namedsampleon the current server.

STOP DATABASE sample

575

STOP ENGINE statement
Description Use this statement to stop a database server.

Syntax STOP ENGINE [engine-name] [UNCONDITIONALLY]

Parameters STOP ENGINE clause Theengine-namecan be used in Interactive SQL
only. If you are not running this statement in Interactive SQL, the current
database server is stopped.

UNCONDITIONALLY keyword If you are the only connection to the
database server, you do not need to use UNCONDITIONALLY. If there are
other connections, the database server stops only if you use the
UNCONDITIONALLY keyword.

Usage The STOP ENGINE statement stops the specified database server. If the
UNCONDITIONALLY keyword is supplied, the database server is stopped
even if there are connections to the server. By default, the database server
will not be stopped if there are connections to it.

Permissions The permissions to shut down a server depend on the-gk setting on the
database server command line. The default setting isall for the personal
server, andDBA for the network server.

Side effects None

See also “START ENGINE statement [Interactive SQL]” on page 568

“-gk server option”[ASA Database Administration Guide,page 146]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Stop the current database server, as long as there are no other connections.

STOP ENGINE

576

Chapter 4. SQL Statements

STOP JAVA statement
Description Use this statement to stop the Java VM.

Syntax STOP JAVA

Usage The STOP JAVA statement unloads the Java VM when it is not in use. The
main use is to economize on the use of system resources.

Permissions Java in the database must be installed and the database must be Java-enabled.

This statement is not supported on Windows CE.

Side effects None

See also “START JAVA statement” on page 569

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example Stop the Java VM.

STOP JAVA

577

STOP LOGGING statement [Interactive SQL]
Description Use this statement to stop logging of SQL statements in the current session.

Syntax STOP LOGGING

Usage The STOP LOGGING statement stops the database server from writing each
SQL statement you execute to a log file. You can start logging with the
START LOGGING statement. You can also start and stop logging by
clicking SQL➤ Start Logging and SQL➤ Stop Logging.

Permissions None.

Side effects None.

See also “START LOGGING statement [Interactive SQL]” on page 570

Example The following example stops the current logging session.

STOP LOGGING

578

Chapter 4. SQL Statements

STOP SUBSCRIPTION statement [SQL Remote]
Description Use this statement to stop a subscription for a user to a publication.

Syntax STOP SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id , . . .

Parameters publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The value is required here because each
subscriber may have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Usage A SQL Remote subscription is said to bestarted when publication updates
are being sent from the consolidated database to the remote database.

The STOP SUBSCRIPTION statement prevents any further messages being
sent to the subscriber. The START SUBSCRIPTION statement is required to
restart messages being sent to the subscriber. However, you should ensure
that the subscription is properly synchronized before restarting: that no
messages have been missed.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “DROP SUBSCRIPTION statement [SQL Remote]” on page 419

“SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” on page 581

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement starts the subscription of userSamSto the
pub_contactpublication.

STOP SUBSCRIPTION TO pub_contact
FOR SamS

579

STOP SYNCHRONIZATION DELETE statement
[MobiLink]
Description Use this statement to temporarily stop logging of deletes for MobiLink

synchronization.

Syntax STOP SYNCHRONIZATION DELETE

Usage Ordinarily, Adaptive Server Anywhere automatically logs any changes made
to tables or columns that are part of a synchronization template and uploads
these changes to the consolidated database during the next synchronization.
This statement allows you to temporarily suspend logging of changes to an
Adaptive Server Anywhere remote database.

When a STOP SYNCHRONIZATION DELETE statement is executed, none
of the subsequent delete operations executed on that connection will be
synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. The effects do not nest; that is, subsequent
execution of stop synchronization delete after the first will have no
additional effect. A single START SYNCHRONIZATION DELETE
statement restarts the logging, regardless of the number of STOP
SYNCHRONIZATION DELETE statements preceding it.

This command can be useful to make corrections to a remote database, but
should be used with caution as it effectively disables MobiLink
synchronization.

Permissions Must have DBA authority.

Side Effects None.

See also “StartSynchronizationDelete method”[UltraLite Static C++ User’s Guide,
page 86]

“StopSynchronizationDelete method”[UltraLite Static C++ User’s Guide,
page 86]

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example ☞ For an example, see“START SYNCHRONIZATION DELETE
statement [MobiLink]” on page 573.

580

Chapter 4. SQL Statements

SYNCHRONIZE SUBSCRIPTION statement [SQL
Remote]
Description Use this statement to synchronize a subscription for a user to a publication.

Syntax SYNCHRONIZE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR remote-user , . . .

Parameters publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value A string that is compared to the subscription
expression of the publication. The value is required here because each
subscriber may have more than one subscription to a publication.

remote-user The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Usage A SQL Remote subscription is said to besynchronizedwhen the data in the
remote database is consistent with that in the consolidated database, so that
publication updates sent from the consolidated database to the remote
database will not result in conflicts and errors.

To synchronize a subscription, a copy of the data in the publication at the
consolidated database is sent to the remote database. The SYNCHRONIZE
SUBSCRIPTION statement does this through the message system. It is
recommended that where possible you use the database extraction utility
instead to synchronize subscriptions without using a message system.

Permissions Must have DBA authority.

Side effects Automatic commit.

See also “CREATE SUBSCRIPTION statement [SQL Remote]” on page 347

“START SUBSCRIPTION statement [SQL Remote]” on page 571

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Example The following statement synchronizes the subscription of userSamSto the
pub_contactpublication.

SYNCHRONIZE SUBSCRIPTION
TO pub_contact
FOR SamS

581

SYSTEM statement [Interactive SQL]
Description Use this statement to launch an executable file from within Interactive SQL.

Syntax SYSTEM ’ [path] filename ’

Usage Launches the specified executable file.

♦ The SYSTEM statement must be entirely contained on one line.

♦ Comments are not allowed at the end of a SYSTEM statement.

♦ Enclose the path and filename in single quotation marks.

Permissions None.

Side effects None.

See also “CONNECT statement [ESQL] [Interactive SQL]” on page 287

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase Not applicable.

Example The following statement launches the Notepad program, assuming that the
Notepad executable is in your path.

SYSTEM ’notepad.exe’

582

Chapter 4. SQL Statements

TRIGGER EVENT statement
Description Use this statement to trigger a named event. The event may be defined for

event triggers or be a scheduled event.

Syntax TRIGGER EVENT event-name [(parm = value, . . .)]

Parameters parm = value When a triggering condition causes an event handler to
execute, the database server can provide context information to the event
handler using the event_parameter function. The TRIGGER EVENT
statement allows you to explicitly supply these parameters, in order to
simulate a context for the event handler.

Usage Actions are tied to particular trigger conditions or schedules by a CREATE
EVENT statement. You can use the TRIGGER EVENT statement to force
the event handler to execute, even when the scheduled time or trigger
condition has not occurred. TRIGGER EVENT does not execute disabled
event handlers.

Permissions Must have DBA authority.

Side effects None.

See also “ALTER EVENT statement” on page 231

“CREATE EVENT statement” on page 304

“EVENT_PARAMETER function [System]” on page 128

Example Add the following message to the engine window
output:’ev_PassedParameter - was trigger at: ’ +

event_parameter(’Time’);

CREATE EVENT ev_PassedParameter
HANDLER
BEGIN
END;
TRIGGER EVENT ev_PassedParameter("Time"=string(current

timestamp));

583

TRUNCATE TABLE statement
Description Use this statement to delete all rows from a table, without deleting the table

definition.

Syntax TRUNCATE TABLE [owner.]table-name

Usage The TRUNCATE TABLE statement deletes all rows from a table. It is
equivalent to a DELETE statement without a WHERE clause, except that no
triggers are fired as a result of the TRUNCATE TABLE statement and each
individual row deletion is not entered into the transaction log.

After a TRUNCATE TABLE statement, the table structure and all of the
indexes continue to exist until you issue a DROP TABLE statement. The
column definitions and constraints remain intact, and triggers and
permissions remain in effect.

The TRUNCATE TABLE statement is entered into the transaction log as a
single statement, like data definition statements. Each deleted row is not
entered into the transaction log.

If the TRUNCATE_WITH_AUTO_COMMIT option is set to ON (the
default), and all the following criteria are satisfied, a fast form of table
truncation is executed:

♦ There are no foreign keys either to or from the table.

♦ The TRUNCATE TABLE statement is not executed within a trigger.

♦ The TRUNCATE TABLE statement is not executed within an atomic
statement.

If a fast truncation is carried out, then a COMMIT is carried out before and
after the operation.

Permissions Must be the table owner, or have DBA authority, or have ALTER
permissions on the table.

For base tables, the TRUNCATE TABLE statement requires exclusive
access to the table, as the operation is atomic (either all rows are deleted, or
none are). This means that any cursors that were previously opened and that
reference the table being truncated must be closed and a COMMIT or
ROLLBACK must be issued to release the reference to the table.

For temporary tables, each user has their own copy of the data, and exclusive
access is not required.

Side effects Delete triggers are not fired by the TRUNCATE TABLE statement.

584

Chapter 4. SQL Statements

If TRUNCATE_WITH_AUTO_COMMIT is set to ON, then a COMMIT is
performed before and after the table is truncated.

Individual deletions of rows are not entered into the transaction log, so the
TRUNCATE TABLE operation is not replicated. Do not use this statement
in SQL Remote replication or on a MobiLink remote database.

If the table contains a column defined as DEFAULT AUTOINCREMENT or
DEFAULT GLOBAL AUTOINCREMENT, TRUNCATE TABLE resets the
next available value for the column.

See also “DELETE statement” on page 399

“TRUNCATE_WITH_AUTO_COMMIT option [database]”[ASA Database
Administration Guide,page 631]

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Example Delete all rows from thedepartment table.

TRUNCATE TABLE department

585

UNION operation
Description Use this statement to combine the results of two or more select statements.

Syntax select-statement
UNION [ALL | DISTINCT] select-statement

[UNION [ALL | DISTINCT] select-statement] . . .
[ORDER BY integer [ASC | DESC], . . .]

Usage The results of several SELECT statements can be combined into a larger
result using UNION. The component SELECT statements must each have
the same number of items in the select list, and cannot contain an
ORDER BY clause.

The results of UNION ALL are the combined results of the component
SELECT statements. The results of UNION are the same as UNION ALL,
except that duplicate rows are eliminated. Eliminating duplicates requires
extra processing, so UNION ALL should be used instead of UNION where
possible. UNION DISTINCT is identical to UNION.

If corresponding items in two select lists have different data types, Adaptive
Server Anywhere will choose a data type for the corresponding column in
the result and automatically convert the columns in each component
SELECT statement appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These
integers specify the position of the columns to be sorted.

The column names displayed are the same column names that are displayed
for the first SELECT statement. An alternative way of customizing result set
column names is to use the WITH clause on the SELECT statement.

Permissions Must have SELECT permission for each of the component SELECT
statements.

Side effects None.

See also “SELECT statement” on page 541

Standards and
compatibility

♦ SQL/92 Entry-level.

♦ SQL/99 Core feature.

♦ Sybase Supported by Adaptive Server Enterprise, which also supports
a COMPUTE clause.

Example List all distinct surnames of employees and customers.

586

Chapter 4. SQL Statements

SELECT emp_lname
FROM Employee
UNION
SELECT lname
FROM Customer

587

UNLOAD statement
Description Use this statement to export data from a database into an external

ASCII-format file.

Syntax UNLOAD select-statement TO filename-string [unload-option . . .]

unload-option :
APPEND {ON|OFF}

| DELIMITED BY string
| ESCAPE CHARACTER character
| ESCAPES {ON | OFF}
| FORMAT {ASCII | BCP}
| HEXADECIMAL {ON | OFF}
| QUOTES {ON | OFF}

Parameters filename-string The filename to which the data is to be unloaded. Because
it is the database server that executes the statements, filenames specify files
on the database server machine. Relative filenames specify files relative to
the database server’s starting directory. To unload data onto a client
machine, see“OUTPUT statement [Interactive SQL]” on page 501.

Usage The UNLOAD statement allows the result set of a query to be exported to a
comma-delimited file. The result set is not ordered unless the query itself
contains an ORDER BY clause.

When unloading result set columns with binary data types, UNLOAD writes
hexadecimal strings, of the form\xnnnnwheren is a hexadecimal digit.

☞ For a description of theunload-optionparameters, see“UNLOAD
TABLE statement” on page 590.

When unloading and reloading a database that has proxy tables, you must
create an external login to map the local user to the remote user, even if the
user has the same password on both the local and remote databases. If you
do not have an external login, the reload may fail because you cannot
connect to the remote server.

☞ For more information about external logins, see “Working with external
logins” [ASA SQL User’s Guide,page 567].

When the APPEND option is ON, unloaded data is appended to the end of
the file specified. When the APPEND option is OFF, unloaded data replaces
the contents of the file specified. This option is OFF by default.

Permissions The permissions required to execute an UNLOAD statement are set on the
database server command line, using the-gl option.

☞ For more information, see “-gl server option”[ASA Database

588

Chapter 4. SQL Statements

Administration Guide,page 147].

Side effects None. The query is executed at the current isolation level.

See also “UNLOAD TABLE statement” on page 590

“OUTPUT statement [Interactive SQL]” on page 501

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase UNLOAD is not supported by Adaptive Server Enterprise.

589

UNLOAD TABLE statement
Description Use this statement to export data from a database table into an external

ASCII-format file.

Syntax UNLOAD [FROM] TABLE [owner.]table-name TO filename-string
[unload-option . . .]

unload-option :
APPEND{ON | OFF}

| DELIMITED BY string
| ESCAPE CHARACTER character
| ESCAPES {ON | OFF}
| FORMAT {ASCII | BCP}
| HEXADECIMAL {ON | OFF}
| ORDER {ON | OFF}
| QUOTES {ON | OFF}

Parameters filename-string The filename to which the data is to be unloaded. Because
it is the database server that executes the statements, filenames specify files
on the database server machine. Relative filenames specify files relative to
the database server’s starting directory. To unload data onto a client
machine, see“OUTPUT statement [Interactive SQL]” on page 501.

APPEND option When the APPEND option is ON, unloaded data is
appended to the end of the file specified. When the APPEND option is OFF,
unloaded data replaces the contents of the file specified. This option is OFF
by default.

ESCAPES option With ESCAPES on (the default), backslash-character
combinations are used to identify special characters where necessary on
export.

FORMAT option Outputs data in either ASCII format or in BCP out
format.

HEXADECIMAL option By default, HEXADECIMAL is ON. Binary
column values are written as0xnnnnnn. . . , where eachn is a hexadecimal
digit. It is important to use HEXADECIMAL ON when dealing with
multi-byte character sets.

The HEXADECIMAL option can be used only with the FORMAT ASCII
option.

ORDER option With ORDER ON (the default), the exported data is
ordered by clustered index if one exists. If a clustered index does not exist,
the exported data is ordered by primary key values. With ORDER OFF, the
data is exported in the same order you see when selecting from the table
without an ORDER BY clause.

590

Chapter 4. SQL Statements

Exporting is slower with ORDER ON. However, reloading using the LOAD
TABLE statement is quicker because of the simplicity of the indexing step.

☞ For more information on clustered indexes, see “Using clustered
indexes”[ASA SQL User’s Guide,page 59].

QUOTES option With QUOTES turned on (the default), single quotes are
placed around all exported strings.

Usage The UNLOAD TABLE statement allows efficient mass exporting from a
database table into an ASCII file. UNLOAD TABLE is more efficient than
the Interactive SQL statement OUTPUT, and can be called from any client
application.

UNLOAD TABLE places an exclusive lock on the whole table.

When unloading columns with binary data types, UNLOAD TABLE writes
hexadecimal strings, of the form\xnnnnwheren is a hexadecimal digit.

For descriptions of the FORMAT, DELIMITED BY, and ESCAPE
CHARACTER options, see“LOAD TABLE statement” on page 486.

Permissions The permissions required to execute an UNLOAD TABLE statement depend
on the database server-gl command line option, as follows:

♦ If the -gl option is ALL, you must have SELECT permissions on the
table or tables referenced in the UNLOAD TABLE statement.

♦ If the -gl option is DBA, you must have DBA authority.

♦ If the -gl option is NONE, UNLOAD TABLE is not permitted.

☞ For more information, see “-gl server option”[ASA Database
Administration Guide,page 147].

Side effects None.

See also “LOAD TABLE statement” on page 486

“OUTPUT statement [Interactive SQL]” on page 501

“UNLOAD statement” on page 588

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase UNLOAD TABLE is not supported by Adaptive Server
Enterprise. Similar functionality is provided by the Adaptive Server
Enterprise bulk copy utility (bcp).

591

UPDATE statement
Description Use this statement to modify existing rows in database tables.

Syntax 1 UPDATE [FIRST | TOP n] table-list SET set-item, . . .
[FROM table-list]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], . . .]

Syntax 2 UPDATE table-list
SET set-item, . . .
[VERIFY (column-name, . . .) VALUES (expression, . . .)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], . . .]

Syntax 3 UPDATE table
PUBLICATION publication
{ SUBSCRIBE BY expression
| OLD SUBSCRIBE BY expression NEW SUBSCRIBE BY expression

}
WHERE search-condition

set-item :
column-name [.field-name. . .] = expression

| column-name[.field-name. . .].method-name([expression])
| @variable-name = expression

Parameters UPDATE clause The table is either a base table, a temporary table, or a
view. Views can be updated unless the SELECT statement defining the view
contains a GROUP BY clause or aggregate function, or involves a UNION
operation.

FIRST or TOP clause Primarily for use with the ORDER BY clause, this
clause allows you to update only a certain subset of the rows that satisfy the
WHERE clause. You cannot use a variable as input with FIRST or TOP.

SET clause If you are updating Java columns, you can usefield-nameto
update the value of a public field in the column. Alternatively, you can use a
method to set the value. The following clause updates name field of the
JProdcolumn using a method:

SET JProd.setName(’Tank Top’)

If you are updating non-Java columns, the SET clause is of the following
form:

SET column-name = expression, ...

and/or

SET @variable-name = expression, ...

592

Chapter 4. SQL Statements

Each named column is set to the value of the expression on the right hand
side of the equal sign. There are no restrictions on theexpression. If the
expression is acolumn-name, the old value is used. When assigning a
variable, the variable must already be declared, and its name must begin with
the “at” sign (@). Variable and column assignments can be mixed together,
and any number can be used. If a name on the left side of an assignment in
the SET list matches a column in the updated table as well as the variable
name, the statement will update the column.

Following is an example of part of an UPDATE statement. It assigns a
variable in addition to updating the table:

UPDATE T SET @var = expression1, col1 = expression2
WHERE...

This is equivalent to:

SELECT @var = expression1
FROM T
WHERE... ;
UPDATE T SET col1 = expression2
WHERE...

FROM clause The optional FROM clause allows tables to be updated
based on joins. If the FROM clause is present, the WHERE clause qualifies
the rows of the FROM clause. Data is updated only in the table list of the
UPDATE clause.

☞ If a FROM clause is used, it is important to qualify the table name the
same way in both parts of the statement. If a correlation name is used in one
place, the same correlation name must be used elsewhere. Otherwise, an
error is generated.

☞ This clause is allowed only if ANSI_UPDATE_CONSTRAINTS is set
to OFF. See “ANSI_UPDATE_CONSTRAINTS option [compatibility]”
[ASA Database Administration Guide,page 576].

☞ For a full description of joins, see “Joins: Retrieving Data from Several
Tables”[ASA SQL User’s Guide,page 261].

☞ For more information, see“FROM clause” on page 445.

WHERE clause If a WHERE clause is specified, only rows satisfying the
search condition are updated. If no WHERE clause is specified, every row is
updated.

ORDER BY clause Normally, the order in which rows are updated does
not matter. However, in conjunction with the FIRST or TOP clause the order
can be significant.

593

☞ You must not update columns that appear in the ORDER BY clause
unless you set the ANSI_UPDATE_CONSTRAINTS option to OFF. See
“ANSI_UPDATE_CONSTRAINTS option [compatibility]”[ASA Database
Administration Guide,page 576].

Case sensitivity Character strings inserted into tables are always stored in
the same case as they are entered, regardless of whether the database is case
sensitive or not. A CHAR data type column updated with a stringValue is
always held in the database with an upper case V and the remainder of the
letters lower case. SELECT statements return the string asValue. If the
database is not case sensitive, however, all comparisons makeValue the
same asvalue, VALUE , and so on. Further, if a single-column primary key
already contains an entryValue, an INSERT ofvalue is rejected, as it would
make the primary key not unique.

Updates that leave a row unchanged If the new value does not differ
from the old value, no change is made to the data. However, BEFORE
UPDATE triggers fire any time an UPDATE occurs on a row, whether or not
the new value differs from the old value. AFTER UPDATE triggers fire only
if the new value is different from the old value.

Usage Syntax 1 of the UPDATE statement modifies values in rows of one or more
tables. Syntax 2 and 3 are applicable only to SQL Remote.

Syntax 2 is intended for use with SQL Remote only, in single-row updates
executed by the Message Agent. The VERIFY clause contains a set of
values that are expected to be present in the row being updated. If the values
do not match, any RESOLVE UPDATE triggers are fired before the
UPDATE proceeds. The UPDATE does not fail simply because the VERIFY
clause fails to match.

☞ Syntax 3 of the UPDATE statement is used to implement a specific
SQL Remote feature, and is to be used inside a BEFORE trigger.

It provides a full list of SUBSCRIBE BY values any time the list changes. It
is placed in SQL Remote triggers so that the database server can compute
the current list of SUBSCRIBE BY values. Both lists are placed in the
transaction log.

The Message Agent uses the two lists to make sure that the row moves to
any remote database that did not have the row and now needs it. The
Message Agent also removes the row from any remote database that has the
row and no longer needs it. A remote database that has the row and still
needs it is not be affected by the UPDATE statement.

☞ For publications created using a subquery in a SUBSCRIBE BY clause,
you must write a trigger containing syntax 3 of the UPDATE statement in

594

Chapter 4. SQL Statements

order to ensure that the rows are kept in their proper subscriptions.

Syntax 3 of the UPDATE statement allows the old SUBSCRIBE BY list and
the new SUBSCRIBE BY list to be explicitly specified, which can make
SQL Remote triggers more efficient. In the absence of these lists, the
database server computes the old SUBSCRIBE BY list from the publication
definition. Since the new SUBSCRIBE BY list is commonly only slightly
different from the old SUBSCRIBE BY list, the work to compute the old list
may be done twice. By specifying both the old and new lists, you can avoid
this extra work.

The SUBSCRIBE BY expression is either a value or a subquery.

☞ Syntax 3 of the UPDATE statement makes an entry in the transaction
log, but does not change the database table.

Updating a significant amount of data using the UPDATE statement will also
update column statistics.

Permissions Must have UPDATE permission for the columns being modified.

Side effects None.

See also “DELETE statement” on page 399

“INSERT statement” on page 476

“FROM clause” on page 445

“Joins: Retrieving Data from Several Tables”[ASA SQL User’s Guide,
page 261]

Standards and
compatibility

♦ SQL/92 Syntax 1 is an entry-level feature, except for the FROM and
ORDER BY clauses, which are vendor extensions. Syntax 2 and 3 are
vendor extensions for use only with SQL Remote.

♦ SQL/99 Syntax 1 is a core feature, except for the FROM and ORDER
BY clauses, which are vendor extensions. Syntax 2 and 3 are vendor
extensions for use only with SQL Remote.

To enforce SQL/92 compatibility, ensure that the
ANSI_UPDATE_CONSTRAINTS option is set to STRICT.

☞ For more information, see “ANSI_UPDATE_CONSTRAINTS
option [compatibility]” [ASA Database Administration Guide,page 576].

♦ Sybase Subject to the expressions being compatible, the syntax of the
UPDATE statement (syntax 1) is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere. Syntax 2 and 3 are not
supported.

595

Example Transfer employee Philip Chin (employee 129) from the sales department to
the marketing department.

UPDATE employee
SET dept_id = 400
WHERE emp_id = 129;

Sales orders currently start at ID 2001. Renumber all existing sales orders by
subtracting 2000 from the ID.

UPDATE sales_order AS orders
SET orders.id = orders.id - 2000
ORDER BY items.id ASC

This update is possible only if the foreign key of the sales_order_items table
(referencing the primary key sales_order.id) is defined with the action ON
UPDATE CASCADE. The sales_order_items table is then updated as well.

☞ For more information on foreign key properties, see“ALTER TABLE
statement” on page 250and“CREATE TABLE statement” on page 361.

596

Chapter 4. SQL Statements

UPDATE (positioned) statement [ESQL] [SP]
Description Use this statement to modify the data at the current location of a cursor.

Syntax 1 UPDATE WHERE CURRENT OF cursor-name
{ USING DESCRIPTOR sqlda-name | FROM hostvar-list }

Syntax 2 UPDATE table-list
SET set-item, . . .
WHERE CURRENT OF cursor-name

hostvar-list : indicator variables allowed

set-item :
column-name [.field-name. . .] = expression

| column-name [.field-name. . .].method-name([expression])

sqlda-name : identifier

Parameters SET clause The columns that are referenced inset-itemmust be in the
base table that is updated. They cannot refer to aliases, nor to columns from
other tables or views. If the table you are updating is given a correlation
name in the cursor specification, you must use the correlation name in the
SET clause.

The expression on the right side of the SET clause may use constants,
variables, expressions from the select list of the query, or combinations of
the above using operators such as +, -, . . . , COALESCE, IF, and so on. The
expression cannot contain aggregate functions, subqueries, or subselects.

Usage This form of the UPDATE statement updates the current row of the specified
cursor. The current row is defined to be the last row successfully fetched
from the cursor, and the last operation on the cursor must not have been a
positioned DELETE statement.

For syntax 1, columns from the SQLDA or values from the host variable list
correspond one-to-one with the columns returned from the specified cursor.
If the sqldatapointer in the SQLDA is the null pointer, the corresponding
select list item is not updated.

In syntax 2, the requested columns are set to the specified values for the row
at the current row of the specified query. The columns do not need to be in
the select list of the specified open cursor. This format can be prepared.

The USING DESCRIPTOR, FROMhostvar-list, andhostvarformats are for
embedded SQL only.

Permissions Must have UPDATE permission on the columns being modified.

Side effects None.

597

See also “DELETE statement” on page 399

“DELETE (positioned) statement [ESQL] [SP]” on page 401

“UPDATE statement” on page 592

Standards and
compatibility

♦ SQL/92 Entry-level feature. The range of cursors that can be updated
may contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ SQL/99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

♦ Sybase Embedded SQL use is supported by Open Client/Open Server,
and procedure and trigger use is supported in Adaptive Server Anywhere.

Example The following is an example of an UPDATE statement
WHERE CURRENT OF cursor:

UPDATE Employee
SET emp_lname = ’Jones’
WHERE CURRENT OF emp_cursor;

598

Chapter 4. SQL Statements

UPDATE statement [SQL Remote]
Description Use this statement to modify data in the database.

Syntax 1 UPDATE table-list
SET column-name = expression, . . .
[VERIFY (column-name, . . .) VALUES (expression, . . .)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], . . .]

Syntax 2 UPDATE table
PUBLICATION publication
{ SUBSCRIBE BY expression |

OLD SUBSCRIBE BY expression
NEW SUBSCRIBE BY expression }

WHERE search-condition

expression: value | subquery

Usage Syntax 1 and Syntax 2 are applicable only to SQL Remote.

Syntax 2 with no OLD and NEW SUBSCRIBE BY expressions must be
used in a BEFORE trigger.

Syntax 2 with OLD and NEW SUBSCRIBE BY expressions can be used
anywhere.

The UPDATE statement is used to modify rows of one or more tables. Each
named column is set to the value of the expression on the right hand side of
the equal sign. There are no restrictions on theexpression. Even
column-namecan be used in the expression—the old value will be used.

If no WHERE clause is specified, every row will be updated. If a WHERE
clause is specified, then only those rows which satisfy the search condition
will be updated.

Normally, the order that rows are updated doesn’t matter. However, in
conjunction with the NUMBER(*) function, an ordering can be useful to get
increasing numbers added to the rows in some specified order. Also, if you
wish to do something like add 1 to the primary key values of a table, it is
necessary to do this in descending order by primary key, so that you do not
get duplicate primary keys during the operation.

Views can be updated provided the SELECT statement defining the view
does not contain a GROUP BY clause, an aggregate function, or involve a
UNION operation.

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus a

599

character data type column updated with a stringValue is always held in the
database with an upper-case V and the remainder of the letters lower case.
SELECT statements return the string asValue. If the database is not case
sensitive, however, all comparisons makeValue the same asvalue, VALUE ,
and so on. Further, if a single-column primary key already contains an entry
Value, an INSERT ofvalue is rejected, as it would make the primary key not
unique.

☞ The optional FROM clause allows tables to be updated based on joins.
If the FROM clause is present, the WHERE clause qualifies the rows of the
FROM clause. Data is updated only in the table list immediately following
the UPDATE keyword.

☞ If a FROM clause is used, it is important to qualify the table name that is
being updated the same way in both parts of the statement. If a correlation
name is used in one place, the same correlation name must be used in the
other. Otherwise, an error is generated.

Syntax 1 is intended for use with SQL Remote only, in single-row updates
executed by the Message Agent. The VERIFY clause contains a set of values
that are expected to be present in the row being updated. If the values do not
match, any RESOLVE UPDATE triggers are fired before the UPDATE
proceeds. The UPDATE does not fail if the VERIFY clause fails to match.

Syntax 2 is intended for use with SQL Remote only. If no OLD and NEW
expressions are used, it must be used inside a BEFORE trigger so that it has
access to the relevant values. The purpose is to provide a full list of
subscribe by values any time the list changes. It is placed in SQL Remote
triggers so that the database server can compute the current list of
SUBSCRIBE BY values. Both lists are placed in the transaction log.

The Message Agent uses the two lists to make sure that the row moves to
any remote database that did not have the row and now needs it. The
Message Agent also removes the row from any remote database that has the
row and no longer needs it. A remote database that has the row and still
needs it is not be affected by the UPDATE statement.

Syntax 2 of the UPDATE statement allows the old SUBSCRIBE BY list and
the new SUBSCRIBE BY list to be explicitly specified, which can make
SQL Remote triggers more efficient. In the absence of these lists, the
database server computes the old SUBSCRIBE BY list from the publication
definition. Since the new SUBSCRIBE BY list is commonly only slightly
different from the old SUBSCRIBE BY list, the work to compute the old list
may be done twice. By specifying both the old and new lists, this extra work
can be avoided.

The OLD and NEW SUBSCRIBE BY syntax is especially useful when

600

Chapter 4. SQL Statements

many tables are being updated in the same trigger with the same subscribe
by expressions. This can dramatically increase performance.

The SUBSCRIBE BY expression is either a value or a subquery.

☞ Syntax 2 of the UPDATE statement is used to implement a specific
SQL Remote feature, and is to be used inside a BEFORE trigger.

☞ For publications created using a subquery in a subscription expression,
you must write a trigger containing syntax 2 of the UPDATE statement in
order to ensure that the rows are kept in their proper subscriptions.

☞ For a full description of this feature, see “Territory realignment in the
Contact example”[SQL Remote User’s Guide,page 107].

☞ Syntax 2 of the UPDATE statement makes an entry in the transaction
log, but does not change the database table.

Permissions Must have UPDATE permission for the columns being modified.

Side effects None.

See also “CREATE TRIGGER statement [SQL Remote]” on page 377

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

Examples ♦ Transfer employee Philip Chin (employee 129) from the sales department
to the marketing department.

UPDATE employee
VERIFY(dept_id) VALUES(300)
SET dept_id = 400
WHERE emp_id = 129

601

VALIDATE INDEX statement
Description Use this statement to validate an index, including index statistics.

Syntax VALIDATE INDEX [[owner.]table-name.] { index-name | table-name }

Usage Ensures that every row referenced in the index actually exists in the table.
For foreign key indexes, it also ensures that the corresponding row exists in
the primary table. This check complements the validity checking carried out
by the VALIDATE TABLE statement.

The VALIDATE INDEX statement also verifies that the statistics reported on
the specified index(es) are accurate. If they are not accurate, an error is
generated.

index-name | table-name If you supply atable-nameinstead of an
index-name, the primary key index is validated.

Permissions Must be the owner of the table on which the index is created, have DBA
authority, or have REMOTE DBA authority (SQL Remote).

Side effects None.

See also “CREATE INDEX statement” on page 319

“VALIDATE TABLE statement” on page 603

“The Validation utility” [ASA Database Administration Guide,page 547]

602

Chapter 4. SQL Statements

VALIDATE TABLE statement
Description Use this statement to validate a table in the database.

Syntax VALIDATE TABLE [owner.]table-name
[WITH { DATA | EXPRESS | FULL | INDEX } CHECK]

Parameters WITH DATA CHECK If you have LONG BINARY, LONG VARCHAR,
TEXT, or IMAGE entries, they may span more than one database page. In
addition to the default checks, this option instructs the database server to
check all pages used by each entry.

WITH EXPRESS CHECK In addition to the default and WITH DATA
checks, check that the number of rows in the table matches the number of
entries in the index. This option does not perform individual index lookups
for each row. This option can significantly improve performance when
validating large databases with a small cache.

WITH FULL CHECK In addition to the default checks, carry out a DATA
CHECK and an INDEX CHECK.

WITH INDEX CHECK In addition to the default checks, validate each index
on the table. For information on index validation, see“VALIDATE INDEX
statement” on page 602.

Usage With no additional options, VALIDATE TABLE scans every row of a table.
For each entry that is in an index, it checks the validity of the database page
that the entry starts on, and checks that an entry for the row exists in the
proper index. The VALIDATE TABLE statement also ensures, for each
index in the table, that the number of rows referenced by the index is not
greater than the number of rows in the table.

This default validation is sufficient for most purposes. Options are provided
for additional validation, which may be helpful in unusual circumstances.
Depending on the contents of your database, these additional checks may
significantly extend the time required to validate.

If the table is corrupt, an error is reported. If you do have errors reported,
you can drop all of the indexes and keys on a table and recreate them. Any
foreign keys to the table will also need to be recreated. Another solution to
errors reported by VALIDATE TABLE is to unload and reload your entire
database. You should use the-u option of DBUNLOAD so that it will not
try to use a possibly corrupt index to order the data.

Permissions Must be the owner of the table, have DBA authority, or have REMOTE DBA
authority (SQL Remote).

Side effects None.

603

See also “The Validation utility” [ASA Database Administration Guide,page 547]

“VALIDATE INDEX statement” on page 602

“sa_validate system procedure” on page 745

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase VALIDATE TABLE is not supported in Adaptive Server
Enterprise. The proceduredbcc checktableprovides a similar function.

♦ WITH EXPRESS CHECK option This option is only supported for
databases created with Adaptive Server Anywhere version 7.0 or later.

604

Chapter 4. SQL Statements

WAITFOR statement
Description Use this statement to delay processing for the current connection for a

specified amount of time or until a given time.

Syntax WAITFOR { DELAY time | TIME time }

time: string

Usage If DELAY is used, processing is suspended for the given interval. If TIME is
specified, processing is suspended until the server time reaches the time
specified.

If the current server time is greater than the time specified, processing is
suspended until that time on the following day.

WAITFOR provides an alternative to the following statement, and may be
useful for customers who choose not to license Java in the database:

call java.lang.Thread.sleep(<time_to_wait_in_millisecs>)

In many cases, scheduled events are a better choice than using WAITFOR
TIME, because scheduled events execute on their own connection.

Permissions None

Side effects The implementation of this statement uses a worker thread while it is
waiting. This uses up one of the threads specified by the -gn database option
(the default is 20 threads).

See also “CREATE EVENT statement” on page 304

Standards and
compatibility

♦ SQL/92 Vendor extension.

♦ SQL/99 Vendor extension.

♦ Sybase This statement is also implemented by Adaptive Server
Enterprise.

Examples The following example waits for three seconds:

WAITFOR DELAY ’00:00:03’

The following example waits for 0.5 seconds (500 milliseconds):

WAITFOR DELAY ’00:00:00:500’

The following example waits until 8 PM:

WAITFOR TIME ’20:00’

605

WHENEVER statement [ESQL]
Description Use this statement to specify error handling in embedded SQL programs.

Syntax WHENEVER { SQLERROR | SQLWARNING | NOTFOUND }
GOTO label | STOP | CONTINUE | { C-code; }

label : identifier

Usage The WHENEVER statement is used to trap errors, warnings and exceptional
conditions encountered by the database when processing SQL statements.
The statement can be put anywhere in an embedded SQL program and does
not generate any code. The preprocessor will generate code following each
successive SQL statement. The error action remains in effect for all
embedded SQL statements from the source line of the WHENEVER
statement until the next WHENEVER statement with the same error
condition, or the end of the source file.

Errors based on source position
The error conditions are in effect based on positioning in the C language
source file, not based on when the statements are executed.

The default action is CONTINUE.

Note that this statement is provided for convenience in simple programs.
Most of the time, checking the sqlcode field of the SQLCA (SQLCODE)
directly is the easiest way to check error conditions. In this case, the
WHENEVER statement would not be used. If fact, all the WHENEVER
statement does is cause the preprocessor to generate anif (SQLCODE)
test after each statement.

Permissions None.

Side effects None.

Standards and
compatibility

♦ SQL/92 Entry-level feature.

♦ SQL/99 Core feature.

♦ Sybase Supported by Open Client/Open Server.

Example The following are examples of the WHENEVER statement:

EXEC SQL WHENEVER NOTFOUND GOTO done;
EXEC SQL WHENEVER SQLERROR

{
PrintError(&sqlca);
return(FALSE);

};

606

Chapter 4. SQL Statements

WHILE statement [T-SQL]
Description Use this statement to provide repeated execution of a statement or compound

statement.

Syntax WHILE search-condition-statement

Usage The WHILE conditional affects the execution of only a single SQL
statement, unless statements are grouped into a compound statement
between the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control
execution of the statements in the compound statement. The BREAK
statement terminates the loop, and execution resumes after the END
keyword marking the end of the loop. The CONTINUE statement causes the
WHILE loop to restart, skipping any statements after the CONTINUE.

Permissions None.

Side effects None.

See also “LOOP statement” on page 495

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following code illustrates the use of WHILE:

WHILE (SELECT AVG(unit_price) FROM product) < $30
BEGIN

UPDATE product
SET unit_price = unit_price + 2
IF (SELECT MAX(unit_price) FROM product) > $50

BREAK
END

The BREAK statement breaks the WHILE loop if the most expensive
product has a price above $50. Otherwise, the loop continues until the
average price is greater than or equal to $30.

607

WRITETEXT statement [T-SQL]
Description Permits non-logged, interactive updating of an existing text or image

column.

Syntax WRITETEXT table-name.column-name
text_pointer [WITH LOG] data

Usage Updates an existing text or image value. The update is not recorded in the
transaction log, unless the WITH LOG option is supplied. You cannot carry
out WRITETEXT operations on views.

Permissions None.

Side effects WRITETEXT does not fire triggers, and by default WRITETEXT
operations are not recorded in the transaction log.

See also “READTEXT statement [T-SQL]” on page 518

“TEXTPTR function [Text and image]” on page 195

Standards and
compatibility

♦ SQL/92 Transact-SQL extension.

♦ SQL/99 Transact-SQL extension.

♦ Sybase Supported by Adaptive Server Enterprise.

Example The following code fragment illustrates the use of the WRITETEXT
statement. The SELECT statement in this example returns a single row. The
example replaces the contents of the column_name column on the specified
row with the valuenewdata.

EXEC SQL create variable textpointer binary(16);
EXEC SQL set textpointer =

(SELECT textptr(column_name)
FROM table_name WHERE id = 5);

EXEC SQL writetext table_name.column_name
textpointer ’newdata’;

608

PART II

SYSTEM OBJECTS

This part describes system tables, views, and procedures.

CHAPTER 5

System Tables

About this chapter The structure of every database is described in a number of system tables.

The system tables are owned by theSYSuser ID. The contents of these
tables can be changed only by the database system. The UPDATE,
DELETE, and INSERT commands cannot be used to modify the contents of
these tables. Further, the structure of these tables cannot be changed using
the ALTER TABLE and DROP commands.

This chapter contains descriptions of each of the system tables. Several of
the columns have only two possible values. Usually these values are “Y” and
“N” for “yes” and “no” respectively. These columns are designated by
“(Y/N)”.

Contents Topic: page

DUMMY system table 614

RowGenerator system table 615

SYSARTICLE system table 616

SYSARTICLECOL system table 617

SYSATTRIBUTE system table 618

SYSATTRIBUTENAME system table 620

SYSCAPABILITY system table 621

SYSCAPABILITYNAME system table 622

SYSCHECK system table 623

SYSCOLLATION system table 624

SYSCOLLATIONMAPPINGS system table 625

SYSCOLPERM system table 626

SYSCOLSTAT system table 627

SYSCOLUMN system table 628

SYSCONSTRAINT system table 630

611

Topic: page

SYSDOMAIN system table 631

SYSEVENT system table 632

SYSEVENTTYPE system table 634

SYSEXTENT system table 635

SYSEXTERNLOGINS system table 636

SYSFILE system table 637

SYSFKCOL system table 638

SYSFOREIGNKEY system table 639

SYSGROUP system table 641

SYSINDEX system table 642

SYSINFO system table 644

SYSIXCOL system table 646

SYSJAR system table 647

SYSJARCOMPONENT system table 648

SYSJAVACLASS system table 649

SYSLOGIN system table 651

SYSOPTBLOCK system table 652

SYSOPTION system table 653

SYSOPTJOINSTRATEGY system table 654

SYSOPTORDER system table 655

SYSOPTQUANTIFIER system table 656

SYSOPTREQUEST system table 657

SYSOPTREWRITE system table 658

SYSOPTSTAT system table 659

SYSPROCEDURE system table 660

SYSPROCPARM system table 662

SYSPROCPERM system table 664

SYSPUBLICATION system table 665

612

Chapter 5. System Tables

Topic: page

SYSREMOTEOPTION system table 666

SYSREMOTEOPTIONTYPE system table 667

SYSREMOTETYPE system table 668

SYSREMOTEUSER system table 669

SYSSCHEDULE system table 671

SYSSERVERS system table 673

SYSSQLSERVERTYPE system table 674

SYSSUBSCRIPTION system table 675

SYSSYNC system table 676

SYSTABLE system table 678

SYSTABLEPERM system table 681

SYSTRIGGER system table 683

SYSTYPEMAP system table 686

SYSUSERMESSAGES system table 687

SYSUSERPERM system table 688

SYSUSERTYPE system table 690

SYSWEBSERVICE system table 692

Other system tables 694

613

DUMMY system table

Column name Column type Column con-

straint

Table con-

straints

dummy_col INTEGER NOT NULL

TheDUMMY table is provided as a read-only table that always has exactly
one row. This can be useful for extracting information from the database, as
in the following example that gets the current user ID and the current date
from the database.

SELECT USER, today(*) FROM SYS.DUMMY

Use of FROM SYS.DUMMY in the FROM clause is optional. If no table is
specified in the FROM clause, the table is assumed to be SYS.DUMMY. The
above example could be written as follows:

SELECT USER, today(*)

dummy_col This column is not used. It is present because a table cannot
be created with no columns.

The cost of reading from the SYS.DUMMY table is less than the cost of
reading from a similar user created table because there is no latch placed on
the table page of SYS.DUMMY. Further, the SYS.DUMMY table does not
appear in a Lock node in the graphical plan, and if only the SYS.DUMMY
table is present, a Lock node is not added.

614

Chapter 5. System Tables

RowGenerator system table

Column name Column type Column con-

straint

Table con-

straints

row_num SMALLINT NOT NULL

Thedbo.RowGeneratortable is provided as a read-only table that has 255
rows. This table can be useful for queries which produce small result sets
and which need a range of numeric values.

The RowGenerator table is used by system stored procedures and views, and
should not be modified in any way.

row_num A value between 1 and 255.

The following query returns a result set containing one row for each day of
the current month.

select dateadd(day,row_num-1,
ymd(datepart(year,current date),

datepart(month,current date),
1)) as day_of_month

from dbo.RowGenerator
where row_num < 32
and datepart(month,day_of_month) =

datepart(month,current date)
order by row_num

615

SYSARTICLE system table

Column name Column type Column

constraint

Table constraints

publication_id UNSIGNED
INT

NOT NULL Primary key, for-
eign key references
SYSPUBLICATION

table_id UNSIGNED
INT

NOT NULL Primary key, foreign
key references SYS-
TABLE

where_expr LONG VAR-
CHAR

subscribe_by_-
expr

LONG VAR-
CHAR

query CHAR(1) NOT NULL

Each row ofSYSARTICLE describes an article in a publication.

publication_id The publication of which this article is a part.

table_id Each article consists of columns and rows from a single table.
This column contains the table ID for this table.

where_expr For articles that contain a subset of rows defined by a
WHERE clause, this column contains the search condition.

subscribe_by_expr For articles that contain a subset of rows defined by a
SUBSCRIBE BY expression, this column contains the expression.

query Indicates information about the article type to the database server.

616

Chapter 5. System Tables

SYSARTICLECOL system table

Column name Column type Column

constraint

Table constraints

publication_id UNSIGNED
INT

NOT NULL Primary Key, foreign key
references SYSARTI-
CLE

table_id UNSIGNED
INT

NOT NULL Primary Key, foreign key
references SYSARTI-
CLE, SYSCOLUMN

column_id UNSIGNED
INT

NOT NULL Primary Key, foreign
key references SYSCOL-
UMN

Each row identifies a column in an article.

publication_id A unique identifier for the publication of which the column
is a part.

table_id The table to which the column belongs.

column_id The column identifier, from the SYSCOLUMN system table.

617

SYSATTRIBUTE system table
Maintaining accurate statistics about the physical properties of candidate
indexes facilitates the optimizer’s cost based decisions about which indexes
to use. SYSATTRIBUTE and SYSATTRIBUTENAME were created so that
new information about database objects could be added to the system tables
without changing the schema. For version 8.0.1 and later, they only contain
information about the attribute PCTFREE, which applies to tables.

Each row of SYSATTRIBUTE describes one system object, such as a
particular table or index. Rows are added when the attribute is specified; for
example, every table with a PCTFREE setting is added to SYSATTRIBUTE.
Similarly, a row for index depth appears in SYSATTRIBUTE only when the
index depth increases to 2.

Statistics are maintained for all indexes, including those on catalog tables, as
each index is updated. The VALIDATE statement verifies that the statistics
on the specified index(es) are accurate and generates an error if they are not.
This provides accurate statistics to the optimizer at virtually no performance
cost. Statistics persist in SYSATTRIBUTE in the form of one row for each
statistic for an index.

object_type object_id attribute_-

id (from

SYSAT-

TRIBUTE-

NAME

sub_-

object_id1

sub_-

object_id2

attribute_-

value

PCTFREE T table_id NULL NULL percentage
of free space
left in each
table page

Clustered
Index

T table_id 2 ub-
dex)bynber

NULL NULL

Number of
distinct key
values

I table_id 3 NULL NULL number of
distinct key
values

number of
leaf pages

I table_id 4 index_-
number

NULL number of
leaf pages

index depth I table_id 5 index_-
number

NULL index depth

618

Chapter 5. System Tables

Columns in the SYSATTRIBUTE table exhibit the following characteristics:

Column name Column type Column constraint

object_type CHAR(1) NOT NULL

object_id UNSIGNED INT NOT NULL

attribute_id UNSIGNED INT NOT NULL

sub_object_id1 UNSIGNED INT

sub_object_id2 UNSIGNED INT

attribute_value LONG VARCHAR

object_type The type of object the attribute describes. For example, T
represents a table, I an index. Object type information can be obtained by
executingSELECT * FROM SYSATTRIBUTENAME.

object_id The id of the particular object. Object id information can be
obtained from the table_id column after executingSELECT * FROM

SYSTABLE.

attribute_id The number representing the attribute that is being described.
A descriptive name for each attribute ID is stored in
SYSATTRIBUTENAME.

sub_object_id1 Additional information about the attribute, or NULL if
there is none.

sub_object_id2 Additional information about the attribute, or NULL if
there is none.

attribute_value The value of the attribute.

619

SYSATTRIBUTENAME system table

Column name Column type Column constraint

attribute_id UNSIGNED INT NOT NULL

attribute_name CHAR(128) NOT NULL

This table provides attribute names for the attribute IDs that are used in
SYSATTRIBUTE.

attribute_id The ID of the attribute.

attribute_name The name of the attribute.

620

Chapter 5. System Tables

SYSCAPABILITY system table

Column name Column type Column

constraint

Table constraints

capid INTEGER NOT NULL Primary key. Foreign key
references SYSCAPA-
BILITYNAME

srvid INTEGER NOT NULL Primary key. For-
eign key references
SYSSERVERS

capvalue CHAR(128) NOT NULL

Each row identifies a capability of a remote server.

capid The capability, as listed in SYSCAPABILITYNAME.

srvid The server to which the capability applies, as listed in
SYSSERVERS.

capvalue The value of the capability.

621

SYSCAPABILITYNAME system table

Column name Column type Column

constraint

Table constraints

capid INTEGER NOT NULL Primary key

capname CHAR(128) NOT NULL

Each row identifies a capability.

capid The capability ID.

capname The name of the capability.

622

Chapter 5. System Tables

SYSCHECK system table

Column name Column type Column con-

straint

Table con-

straints

check_id INTEGER NOT NULL Primary key

check_defn LONG VAR-
CHAR

NOT NULL

Each row identifies a named check constraint in a table.

check_id An identifier for the constraint.

check_defn The CHECK expression.

623

SYSCOLLATION system table

Column name Column type Column con-

straint

Table constraint

collation_id SMALLINT NOT NULL Primary key

collation_label CHAR(10) NOT NULL

collation_name CHAR(128) NOT NULL

collation_order BINARY(1280) NOT NULL

This table contains the collation sequences available to Adaptive Server
Anywhere. There is no way to modify the contents of this table.

collation_id A unique number identifying the collation sequence. The
collation sequence withcollation_id 2 is the sequence used in previous
versions of Adaptive Server Anywhere, and is the default when a database is
created.

collation_label A string identifying the collation sequence. The collation
sequence to be used is selected when the database is created, by specifying
the collation label with the-z option.

collation_name The name of the collation sequence.

collation_order An array of bytes defining how each of the 256 character
codes are treated for comparison purposes. All string comparisons translate
each character according to the collation order table before comparing the
characters. For the different ASCII code pages, the only difference is how
accented characters are sorted. In general, an accented character is sorted as
if it were the same as the nonaccented character.

624

Chapter 5. System Tables

SYSCOLLATIONMAPPINGS system table

Column name Column type Column con-

straint

Table Con-

straints

collation_label CHAR(10) NOT NULL Primary key

collation_name CHAR(128) NOT NULL

cs_label CHAR(128)

so_case_label CHAR(128)

so_caseless_label CHAR(128)

jdk_label CHAR(128)

collation_label A string identifying the collation sequence. The collation
sequence to be used is selected when the database is created, by specifying
the collation label with the-z option.

collation_name The collation name used to describe the character set
encoding.

cs_label The GPG character set mapping label.

so_case_label The collation sort order for case-sensitive GPG character
set mapping.

so_caseless_label The collation sort order for case-insensitive GPG
character set mapping.

jdk_label The JDK character set label.

For newly-created databases, this table contains only one row with the
database collation mapping. For databases created with version 7.x or earlier
of Adaptive Server Anywhere, this table includes collation mappings for all
built-in collations.

625

SYSCOLPERM system table

Column name Column type Column

constraint

Table constraint

table_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSCOLUMN

grantee UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSUSERPERM.-
user_id

grantor UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSUSERPERM.-
user_id

column_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSCOLUMN

privilege_type SMALLINT NOT NULL Primary key

is_grantable CHAR(1) NOT NULL

The GRANT statement can give UPDATE permission to individual columns
in a table. Each column with UPDATE permission is recorded in one row of
SYSCOLPERM.

table_id The table number for the table containing the column.

grantee The user number of the user ID that is given UPDATE permission
on the column. If thegrantee is the user number for the specialPUBLIC
user ID, the UPDATE permission is given to all user IDs.

grantor The user number of the user ID that grants the permission.

column_id This column number, together with thetable_id, identifies the
column for which UPDATE permission has been granted.

privilege_type The number in this column indicates the kind of column
permission (REFERENCES, SELECT or UPDATE).

is_grantable (Y/N) Indicates if the permission on the column was granted
WITH GRANT OPTION.

626

Chapter 5. System Tables

SYSCOLSTAT system table

Column

name

Column type Column

constraint

Table constraints

table_id UNSIGNED
INT

NOT NULL Primary key

column_id UNSIGNED
INT

NOT NULL Primary key

format_id SMALL INT NOT NULL

update_time TIMESTAMP NOT NULL

density FLOAT NOT NULL

max_steps SMALL INT NOT NULL

actual_steps SMALL INT NOT NULL

step_values LONG BINARY

frequencies LONG BINARY

This table stores the column statistics that are stored as histograms and used
by the optimizer. The contents of this table are best retrieved using the
sa_get_histogramstored procedure.

table_id A number that uniquely identifies the table or view to which this
column belongs.

column_id A number that uniquely identifies the column.

format_id Internal field used to determine the format of the rest of the row.

update_time The time of the last update of this row.

density An estimate of the weighted average selectivity of a single value
for the column, not counting the selectivity of large single value selectivities
stored in the row.

max_steps The maximum number of steps allowed in the histogram.

actual_steps The number of steps actually used at this time.

step_values Boundary values of the histogram steps.

frequencies Selectivities of histogram steps.

627

SYSCOLUMN system table

Column

name

Column type Column

constraint

Table constraints

table_id UNSIGNED
INT

NOT NULL Primary key, foreign key
references SYSTABLE.-
table_id

column_id UNSIGNED
INT

NOT NULL Primary key

pkey CHAR(1) NOT NULL

domain_id SMALLINT NOT NULL foreign key references
SYSDOMAIN.domain_-
id

nulls CHAR(1) NOT NULL

width SMALLINT NOT NULL

scale SMALLINT NOT NULL

unused INTEGER NOT NULL

max_identity BIGINT NOT NULL

column_-
name

CHAR(128) NOT NULL

remarks LONG VAR-
CHAR

”default” LONG VAR-
CHAR

”check” LONG VAR-
CHAR

user_type SMALLINT Foreign key references
SYSUSERTYPE.type_id

format_str CHAR(128)

column_type CHAR(1) NOT NULL

remote_name VAR-
CHAR(128)

remote_type UNSIGNED
INT

628

Chapter 5. System Tables

Each column in every table or view is described by one row in
SYSCOLUMN.

table_id A number that uniquely identifies the table or view to which this
column belongs.

column_id Each table starts numbering columns at 1. The order of column
numbers determines the order that columns are displayed in the command

SELECT * FROM TABLE

pkey (Y/N) Indicate whether this column is part of the primary key for the
table.

domain_id The data type for the column, indicated by a data type number
listed in theSYSDOMAIN table.

nulls (Y/N) Indicates whether the NULL value is allowed in this column.

width The length of a string column, the precision of numeric columns or
the number of bytes of storage for any other data type.

scale The number of digits after the decimal point for numeric data type
columns, and zero for all other data types.

unused Not used.

max_identity The largest value of the column, if it is an
AUTOINCREMENT, IDENTITY, or GLOBAL AUTOINCREMENT
column.

column_name The name of the column.

remarks A comment string.

default The default value for the column. This value is only used when an
INSERT statement does not specify a value for the column.

check Any CHECK condition defined on the column.

user_type If the column is defined on a user-defined data type, the data
type is held here.

format_str Currently unused.

column_type The type of column. Contains C for a computed column and
R for other columns.

remote_name The name of the remote column.

remote_type The type of the remote column. This value is defined by the
remote server or interface.

629

SYSCONSTRAINT system table

Column name Column type Column con-

straint

Table con-

straints

constraint_id INTEGER NOT NULL Primary key

table_id INTEGER NOT NULL

column_id INTEGER

index_id INTEGER

fkey_id SMALLINT

constraint_type CHAR(1) NOT NULL

constraint_name CHAR(128) NOT NULL

Each row describes a named constraint.

constraint_id The unique contraint ID.

table_id The table ID of the table to which the constraint applies.

column_id The column ID of the column to which the constraint applies.
The column is NULL for any constraints that are not column constraints.

index_id The index ID for a unique constraint. The column is NULL for
all constraints that are not unique constraints.

fkey_id The foreign key ID for a foreign key constraint. The column is
NULL for all constraints that are not foreign key constraints.

constraint_type Set to one of the following values:

♦ C is the constraint is a column check constraint.

♦ T if the constraint is a table constraint.

♦ P if the constraint is a primary key.

♦ F if the constraint is a foreign key.

♦ U if the constraint is a unique constraint.

constraint_name The name of the constraint.

630

Chapter 5. System Tables

SYSDOMAIN system table

Column name Column type Column con-

straint

Table con-

straints

domain_id SMALLINT NOT NULL Primary key

domain_name CHAR(128) NOT NULL

type_id SMALLINT NOT NULL

precision SMALLINT

Each of the predefined data types (sometimes calleddomains) is assigned a
unique number. TheSYSDOMAIN table is provided for informational
purposes, to show the association between these numbers and the
appropriate data types. This table is never changed.

domain_id The unique number assigned to each data type. These numbers
cannot be changed.

domain_name A string containing the data type normally found in the
CREATE TABLE command, such aschar or integer.

type_id The ODBC data type. This corresponds to “data_type” in the
Transact-SQL-compatibility dbo.SYSTYPES table.

precision The number of significant digits that can be stored using this
data type. The column value is NULL for non-numeric data types.

631

SYSEVENT system table

Column name Column type Column con-

straint

Table con-

straints

event_id INTEGER NOT NULL Primary key

creator UNSIGNED INT NOT NULL

event_name VARCHAR(128) NOT NULL

enabled CHAR(1) NOT NULL

location CHAR(1) NOT NULL

event_type_id INTEGER

action LONG VARCHAR

external_action LONG VARCHAR

condition LONG VARCHAR

remarks LONG VARCHAR

source LONG VARCHAR

Each row inSYSEVENT describes an event created with CREATE EVENT.

event_id The unique number assigned to each event.

creator The user number of the owner of the event. The name of the user
can be found by looking inSYSUSERPERM.

event_name The name of the event.

enabled (Y/N) Indicates whether or not the event is allowed to fire.

location The location where the event is to fire:

♦ C = consolidated

♦ R = remote

♦ A = all

event_type_id For system events, the event type as listed in
SYSEVENTTYPE.

action The event handler definition.

external_action Not used.

632

Chapter 5. System Tables

condition The WHERE condition used to control firing of the event
handler.

remarks A comment string.

source This column contains the original source for the event handler if
the preserve_source_format option is ON. It is used to maintain the
appearance of the original text. For more information, see
“PRESERVE_SOURCE_FORMAT option [database]”[ASA Database
Administration Guide,page 618].

633

SYSEVENTTYPE system table

Column name Column type Column con-

straint

Table con-

straints

event_type_id INTEGER NOT NULL Primary key

name VARCHAR(128) NOT NULL

description LONG VARCHAR

This table lists the system event types which can be referenced by CREATE
EVENT.

event_type_id The unique number assigned to each event type.

name The name of the system event type.

description A description of the system event type.

634

Chapter 5. System Tables

SYSEXTENT system table

Column name Column type Column con-

straint

Table constraint

file_id SMALLINT NOT NULL Primary key, for-
eign key refer-
ences SYSFILE

extent_id SMALLINT NOT NULL Primary key

first_page INTEGER NOT NULL

last_page INTEGER NOT NULL

file_name LONG VARCHAR NOT NULL

This table is not used.

635

SYSEXTERNLOGINS system table

Column name Column type Column con-

straint

Table con-

straints

user_id UNSIGNED INT NOT NULL Primary key.
Foreign key
to SYSUSER-
PERM

srvid INTEGER NOT NULL Primary key.
Foreign key to
SYSSERVERS

remote_login VARCHAR(128)

remote_password VARBINARY(128)

Each row describes an external login for remote data access.

user_id The user ID on the local database.

srvid The remote server, as listed in SYSSERVERS.

remote_login The login name for this user, for the remote server.

remote_password The password for this user, for the remote server.

636

Chapter 5. System Tables

SYSFILE system table

Column name Column type Column con-

straint

Table constraint

file_id SMALLINT NOT NULL Primary key

file_name LONG VARCHAR NOT NULL Unique index

dbspace_name CHAR(128) NOT NULL

store_type CHAR(8) NOT NULL

Every database consists of one or more operating system files. Each file is
recorded inSYSFILE.

file_id Each file in a database is assigned a unique number. This file
identifier is the primary key forSYSFILE. All system tables are stored in
file_id 0.

file_name The database name is stored when a database is created. This
name is for informational purposes only.

dbspace_name Every file has a dbspace name that is unique. It is used in
the CREATE TABLE command.

store_type This field is for internal use.

637

SYSFKCOL system table

Column name Column

type

Column

constraint

Table constraints

foreign_table_id UNSIGNED
INT

NOT NULL Primary key. For-
eign key references
SYSCOLUMN.table_id.
Foreign key references
SYSFOREIGNKEY

foreign_key_id SMALLINT NOT NULL Primary key, foreign key
references SYSFOR-
EIGNKEY. foregin_-
key_id

foreign_column_id UNSIGNED
INT

NOT NULL Primary key, Foreign key
references SYSCOL-
UMN column_id

primary_column_-
id

UNSIGNED
INT

NOT NULL

Each row ofSYSFKCOL describes the association between aforeign
column in the foreign table of a relationship and theprimary column in the
primary table.

foreign_table_id The table number of the foreign table.

foreign_key_id The key number of the FOREIGN KEY for the foreign
table. Together,foreign_table_idandforeign_key_iduniquely identify one
row in SYSFOREIGNKEY. T he table number for the primary table can be
obtained from that row (using theSYSFOREIGNKEY table).

foreign_column_id This column number and theforeign_table_id
identify the foreign column description inSYSCOLUMN.

primary_column_id This column number and theprimary_table_id
obtained fromSYSFOREIGNKEY identify the primary column description
in SYSCOLUMN.

638

Chapter 5. System Tables

SYSFOREIGNKEY system table

Column name Column type Column con-

straint

Table constraints

foreign_table_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSTABLE.table_-
id. Unique index

foreign_key_id SMALLINT NOT NULL Primary key

primary_table_id UNSIGNED INT NOT NULL foreign key refer-
ences SYSTABLE.-
table_id

root INTEGER NOT NULL

check_on_-
commit

CHAR(1) NOT NULL

nulls CHAR(1) NOT NULL

role CHAR(128) NOT NULL Unique index

remarks LONG VAR-
CHAR

primary_index_id UNISGNED INT NOT NULL

fk_not_enforced CHAR(1) NOT NULL

hash_limit SMALLINT NOT NULL

A foreign key is a relationship between two tables—the foreign table and the
primary table. Every foreign key is defined by one row in
SYSFOREIGNKEY and one or more rows inSYSFKCOL.
SYSFOREIGNKEY contains general information about the foreign key
while SYSFKCOL identifies the columns in the foreign key and associates
each column in the foreign key with a column in the primary key of the
primary table.

foreign_table_id The table number of the foreign table.

foreign_key_id Each foreign key has a foreign key number that is unique
with respect to:

♦ The key number of all other foreign keys for the foreign table

639

♦ The key number of all foreign keys for the primary table

♦ The index number of all indexes for the foreign table

primary_table_id The table number of the primary table.

root Foreign keys are stored in the database as B-trees. Theroot identifies
the location of the root of the B-tree in the database file.

check_on_commit (Y/N) Indicates whether INSERT and UPDATE
commands should wait until the next COMMIT command to check if
foreign keys are valid. A foreign key is valid if, for each row in the foreign
table, the values in the columns of the foreign key either contain the NULL
value or match the primary key values in some row of the primary table.

nulls (Y/N) Indicates whether the columns in the foreign key are allowed
to contain the NULL value. Note that this setting is independent of thenulls
setting in the columns contained in the foreign key.

role The name of the relationship between the foreign table and the
primary table. Unless otherwise specified, therole name will be the same as
the name of the primary table. The foreign table cannot have two foreign
keys with the same role name.

remarks A comment string.

primary_index_id The index_id of the primary key, orroot if the primary
key is part of a combined index.

fk_not_enforced (Y/N) Is N if one of the tables is remote.

hash_limit Contains information about physical index representation.

640

Chapter 5. System Tables

SYSGROUP system table

Column name Column type Column

constraint

Table constraints

group_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSUSERPERM.user_-
id

group_member UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSUSERPERM.user_-
id

There is one row inSYSGROUPfor every member of every group. This
table describes a many-to-many relationship between groups and members.
A group may have many members, and a user may be a member of many
groups.

group_id The user number of group.

group_member The user number of a member.

641

SYSINDEX system table

Column

name

Column type Column con-

straint

Table constraints

table_id UNSIGNED INT NOT NULL Primary key, Unique in-
dex. Foreign key refer-
ences SYSTABLE

index_id UNSIGNED INT NOT NULL Primary key

root INTEGER NOT NULL

file_id SMALLINT NOT NULL

”unique” CHAR(1) NOT NULL

creator UNSIGNED INT NOT NULL Foreign key references
SYSUSERPERM.user_id

index_name CHAR(128) NOT NULL Unique index

hash_limit SMALLINT NOT NULL

index_owner CHAR(4) NOT NULL

index_type CHAR(4) NOT NULL

remarks LONG, VAR-
CHAR

Each index in the database is described by one row inSYSINDEX. Each
column in the index is described by one row inSYSIXCOL .

table_id Uniquely identifies the table to which this index applies.

index_id Each index for one particular table is assigned a unique index
number.

root Indexes are stored in the database as B-trees. Theroot identifies the
location of the root of the B-tree in the database file.

file_id The index is completely contained in the file with thisfile_id (see
SYSFILE).

unique Indicate whether the index is a unique index (“Y”), a non-unique
index (“N”), or a unique constraint (“U”). A unique index prevents two rows
in the indexed table from having the same values in the index columns.

creator The user number of the creator of the index. This user is always

642

Chapter 5. System Tables

the same as the creator of the table identified by table_id.

index_name The name of the index. A user ID cannot have two indexes
with the same name in tables that it owns.

index_owner The owner. This field is always SA.

index_type The type. This field is always SA.

remarks A comment string.

643

SYSINFO system table

Column name Column type Column con-

straint

Table con-

straints

page_size INTEGER NOT NULL

encryption CHAR(1) NOT NULL

blank_padding CHAR(1) NOT NULL

case_sensitivity CHAR(1) NOT NULL

default_collation CHAR(10)

database_version SMALLINT NOT NULL

classes_version CHAR(10)

This table indicates the database characteristics, as defined when the
database was created. It always contains only one row.

page_size The page size specified, in bytes. The default value is 1024.

encryption (Y/N) Indicates whether the -e switch was used with DBINIT.

blank_padding (Y/N) Indicates whether the database was created to use
blank padding for string comparisons in the database (-b switch was used
with dbinit).

case_sensitivity (Y/N) Indicates whether the database is created as case
sensitive. Case sensitivity affects value comparisons, but not table and
column name comparisons. For example, if a database is case sensitive,
table names such asSYSCATALOG can be specified in either case, but in a
case-sensitive database’abc’ = ’ABC’ is not true.

default_collation A string corresponding to thecollation_label in
SYSCOLLATE, which also corresponds to the collation sequence specified
with DBINIT. The default value corresponds to the multilingual collation
sequence (code page 850), which was the default prior to Watcom SQL 3.2.
The collation sequence is used for all string comparisons, including searches
for character strings as well as column and table name comparison.

database_version A small integer value indicating the database format.
As newer versions become available, new features may require that the
format of the database file change. The version number Adaptive Server
Anywhere software to determine if this database was created with a newer
version of the software and thus, cannot be understood by the software in
use.

644

Chapter 5. System Tables

classes_version A small string describing the current version of the
SYS.JAVA.CLASSES library that is currently installed on your
computer.

645

SYSIXCOL system table

Column name Column type Column

constraint

Table constraints

table_id UNSIGNED
INT

NOT NULL Primary key. For-
eign key references
SYSCOLUMN. For-
eign key references
SYSINDEX.

index_id UNSIGNED
INT

NOT NULL Primary key. Foreign
key references SYSIN-
DEX

sequence SMALLINT NOT NULL Primary key

column_id UNSIGNED
INT

NOT NULL Foreign key references
SYSCOLUMN

”order” CHAR(1) NOT NULL

Every index has one row inSYSIXCOL for each column in the index.

table_id Identifies the table to which the index applies.

index_id Identifies in which index this column is used. Together,table_id
andindex_id identify one index described inSYSINDEX.

sequence Each column in an index is assigned a unique number starting at
0. The order of these numbers determines the relative significance of the
columns in the index. The most important column hassequencenumber 0.

column_id The column number identifies which column is indexed.
Together,table_id andcolumn_id identify one column inSYSCOLUMN.

order (A/D) Indicate whether this column in the index is kept in ascending
or descending order.

646

Chapter 5. System Tables

SYSJAR system table

Column name Column type Column con-

straint

Table con-

straints

jar_id INTEGER NOT NULL Primary key

creator UNSIGNED INT NOT NULL

jar_name LONG VAR-
CHAR

NOT NULL Unique index

jar_file LONG VAR-
CHAR

create_time TIMESTAMP NOT NULL

update_time TIMESTAMP NOT NULL

remarks LONG VAR-
CHAR

jar_id A field containing the id of the jar file. This field also references the
SYSJARsystem table.

creator The is of the creator of the jar file.

jar_name The name of the jar file.

jar_file The file name of the jar file.

create_time The time the jar file was created.

update_time The time the jar file was last updated.

remarks A comment field.

647

SYSJARCOMPONENT system table

Column name Column type Column con-

straint

Table con-

straints

component_id INTEGER NOT NULL Primary key

jar_id INTEGER Foreign key ref-
erences SYSJAR

component_name LONG VAR-
CHAR

component_type CHAR(1)

create_time TIMESTAMP NOT NULL

contents LONG BINARY

remarks LONG VAR-
CHAR

component_id The primary key containing the id of the component.

jar_id A field containing the ID number of the jar. This field also
references theSYSJARsystem table.

component_name The name of the component.

component_type The type of the component.

create_time A field containing the creation time of the component.

contents The byte code of the jar file.

remarks A comment field.

648

Chapter 5. System Tables

SYSJAVACLASS system table

Column name Column type Column con-

straint

Table con-

straints

class_id INTEGER NOT NULL Primary key

replaced_by INTEGER Foreign key ref-
erences SYS-
JAVACLASSES.
class_id

creator UNSIGNED INT NOT NULL Foreign
key references
SYSUSERPERM.-
user_id

jar_id INTEGER

type_id SMALLINT Foreign key
references
SYSUSERTYPE

class_name LONG VAR-
CHAR

NOT NULL

public CHAR(1) NOT NULL

component_id INTEGER Foreign key ref-
erences SYS-
JARCOMPO-
NENT

create_time TIMESTAMP NOT NULL

update_time TIMESTAMP NOT NULL

class_descriptor LONG BINARY

remarks LONG VAR-
CHAR

TheSYSJAVACLASS system table contains all information related to Java
classes.

class_id This field contains the id of the java class. Also the primary key
for the table.

replaced_by A field that references the primary key field, class_id.

649

creator This field contains the user_id of the creator of the class. This field
references the user_id field in theSYSUSERPERMsystem table to obtain
the name of the user.

jar_id This field contains the id of the jar file from which the class came.

type_id This field contains the id of the user type. This field references the
SYSUSERTYPE system table to obtain the id of the user.

class_name This field contains the name of the Java class.

public This field determines whether or not the class is public or private.

component_id This field, which references the SYSJARCOMPONENT
system table contains the id of the component.

create_time Contains the creation time of the component.

update_time Contains the last update time of the component.

class_descriptor The byte code of the jar file.

remarks Contains a comment string.

650

Chapter 5. System Tables

SYSLOGIN system table

Column name Column type Column con-

straint

Table constraints

integrated_login_-
id

CHAR(128) NOT NULL Primary key

login_uid UNSIGNED
INT

NOT NULL Foreign
key references
SYSUSERPERM.-
user_id

remarks LONG VAR-
CHAR

This table contains all the User Profile names that can be used to connect to
the database using an integrated logon. As a security measure, only users
with DBA authority can view the contents of this table.

integrated_login_id A string value containing the User Profile name that
is used to map to a user ID in the database. When a user successfully logs on
using this User Profile name, and the database is enabled to accept integrated
logons, the user can connect to the database without providing a user ID or
password.

login_uid A foreign key to the system tableSYSUSERPERM.

remarks A comment string

651

SYSOPTBLOCK system table
This table is reserved for system use.

652

Chapter 5. System Tables

SYSOPTION system table

Column name Column type Column con-

straint

Table con-

straints

user_id UNSIGNED INT NOT NULL Primary key,
foreign key
references
SYSUSER-
PERM

”option” CHAR(128) NOT NULL Primary key

”setting” LONG VAR-
CHAR

NOT NULL

Options settings are stored in theSYSOPTION table by the SET command.
Each user can have their own setting for each option. In addition, settings for
thePUBLIC user ID define the default settings to be used for user IDs that
do not have their own setting.

user_id The user number to whom this option setting applies.

option The name of the option.

setting The current setting for the named option.

653

SYSOPTJOINSTRATEGY system table
This table is reserved for system use.

654

Chapter 5. System Tables

SYSOPTORDER system table
This table is reserved for system use.

655

SYSOPTQUANTIFIER system table
This table is reserved for system use.

656

Chapter 5. System Tables

SYSOPTREQUEST system table
This table is reserved for system use.

657

SYSOPTREWRITE system table
This table is reserved for system use.

658

Chapter 5. System Tables

SYSOPTSTAT system table
This table stores information about the cost model. It is reserved for system
use.

659

SYSPROCEDURE system table

Column name Column type Column

constraint

Table constraints

proc_id UNSIGNED INT NOT NULL Primary key

creator UNSIGNED INT NOT NULL Unique index on
this column and
proc_name. For-
eign key references
SYSUSERPERM.-
user_id

proc_name CHAR(128) NOT NULL Unique index on this
column and creator.

proc_defn LONG VARCHAR

remarks LONG VARCHAR

replicate CHAR(1) NOT NULL

srvid INTEGER Foreign key refer-
ences SYSSERVERS

source LONG VARCHAR

avg_num_rows FLOAT

avg_cost FLOAT

stats LONG BINARY

Each procedure in the database is described by one row in
SYSPROCEDURE.

proc_id Each procedure is assigned a unique number (theprocedure
number), which is the primary key forSYSPROCEDURE.

creator This user number identifies the owner of the procedure. The name
of the user can be found by looking inSYSUSERPERM.

proc_name The name of the procedure. One creator cannot have two
procedures with the same name.

proc_defn The command that was used to create the procedure.

remarks A comment string.

660

Chapter 5. System Tables

replicate (Y/N) Indicates whether the procedure is a primary data source
in a Replication Server installation.

srvid If a procedure on a remote database server, indicates the remote
server.

source This column contains the original source for the procedure if the
preserve_source_format option is ON. It is used to maintain the appearance
of the original text. For more information, see
“PRESERVE_SOURCE_FORMAT option [database]”[ASA Database
Administration Guide,page 618].

avg_num_rows Information collected for use in query optimization when
the procedure appears in the FROM clause.

avg_cost Information collected for use in query optimization when the
procedure appears in the FROM clause.

stats Information collected for use in query optimization when the
procedure appears in the FROM clause.

661

SYSPROCPARM system table

Column name Column type Column con-

straint

Table constraint

proc_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSPROCEDURE

parm_id SMALLINT NOT NULL Primary key

parm_type SMALLINT NOT NULL

parm_mode_in CHAR(1) NOT NULL

parm_mode_out CHAR(1) NOT NULL

domain_id SMALLINT NOT NULL Foreign key refer-
ences SYSDOMAIN

width SMALLINT NOT NULL

scale SMALLINT NOT NULL

parm_name CHAR(128) NOT NULL

remarks LONG VAR-
CHAR

”default” LONG VAR-
CHAR

user_type INTEGER

Each parameter to a procedure in the database is described by one row in
SYSPROCPARM.

proc_id Uniquely identifies the procedure to which this parameter belongs.

parm_id Each procedure starts numbering parameters at 1. The order of
parameter numbers corresponds to the order in which they were defined.

parm_type The type of parameter will be one of the following:

♦ Normal parameter (variable)

♦ Result variable - used with a procedure that return result sets

♦ SQLSTATE error value

♦ SQLCODE error value

662

Chapter 5. System Tables

parm_mode_in (Y/N) Indicates whether this parameter supplies a value to
the procedure (IN or INOUT parameters).

parm_mode_out (Y/N) Indicates whether this parameter returns a value
from the procedure (OUT or INOUT parameters).

domain_id Identifies the data type for the parameter, by the data type
number listed in theSYSDOMAIN table.

width Contains the length of a string parameter, the precision of a numeric
parameter, or the number of bytes of storage for any other data types.

scale The number of digits after the decimal point for numeric data type
parameters, and zero for all other data type.

parm_name The name of the procedure parameter.

remarks A comment string.

default Unused.

user_type The user type of the parameter.

663

SYSPROCPERM system table

Column name Column type Column con-

straint

Table constraints

proc_id UNSIGNED
INT

NOT NULL Primary key. For-
eign key references
SYSPROCEDURE

grantee UNSIGNED
INT

NOT NULL Primary key. For-
eign key references
SYSUSERPERM.-
user_id

Only users who have been granted permission can call a procedure. Each
row of theSYSPROCPERMtable corresponds to one user granted
permission to call one procedure.

proc_id The procedure number uniquely identifies the procedure for which
permission has been granted.

grantee The user number of the user ID receiving the permission.

664

Chapter 5. System Tables

SYSPUBLICATION system table

Column name Column type Column con-

straint

Table constraints

publication_id UNSIGNED
INT

NOT NULL Primary key

creator UNSIGNED
INT

NOT NULL Unique index. For-
eign key references
SYSUSERPERM.-
user_id

publication_name CHAR(128) NOT NULL Unique index

remarks LONG VAR-
CHAR

type CHAR(1) NOT NULL

Each row describes a SQL Remote publication.

publication_id A unique identifying number for the publication.

creator The owner of the publication.

publication_name The name of the publication, which must be a valid
identifier.

remarks Descriptive comments.

type This column is deprecated.

665

SYSREMOTEOPTION system table
Function Each row describes the values of a SQL Remote message link parameter.

Columns

Column Data type Column

Constraint

Table constraints

option_id UNSIGNED INT NOT NULL Primary key

user_id UNSIGNED INT NOT NULL Primary key

”setting” VARCHAR(255) NOT NULL

Some columns in this table contain potentially sensitive data. For that
reason, access to this table is restricted to users with DBA authority. The
SYSREMOTEOPTION2 view provides public access to the data in this table
except for the potentially sensitive columns.

option_id An identification number for the message link parameter.

user_id The user ID for which the parameter is set.

setting The value of the message link parameter.

666

Chapter 5. System Tables

SYSREMOTEOPTIONTYPE system table
Function Each row describes one of the SQL Remote message link parameters.

Columns

Column Data type Column con-

straint

Table con-

straints

option_id UNSIGNED INT NOT NULL Primary key

type_id UNSIGNED INT NOT NULL

”option” VARCHAR(128) NOT NULL

option_id An identification number for the message link parameter.

type_id An identification number for the message type that uses this
parameter.

option The name of the message link parameter.

667

SYSREMOTETYPE system table

Column name Column type Column con-

straint

Table con-

straints

type_id SMALLINT NOT NULL Primary key

type_name CHAR(128) NOT NULL Unique index

publisher_address LONG VAR-
CHAR

NOT NULL

remarks LONG VAR-
CHAR

TheSYSREMOTETYPE system table contains information about
SQL Remote.

type_id Identifies which of the of the message systems supported by
SQL Remote is to be used to send messages to this user.

type_name The name of the message system supported by SQL Remote.

publisher_address The address of the remote database publisher.

remarks Descriptive comments.

668

Chapter 5. System Tables

SYSREMOTEUSER system table

Column name Column type Column

constraint

Table constraints

user_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSUSERPERM

consolidate CHAR(1) NOT NULL

type_id SMALLINT NOT NULL Foreign key refer-
ences SYSREMOTE-
TYPE

address LONG VAR-
CHAR

NOT NULL

frequency CHAR(1) NOT NULL Unique index

send_time TIME Unique index

log_send NUMERIC(20,0) NOT NULL

time_sent TIMESTAMP

log_sent NUMERIC(20,0) NOT NULL

confirm_sent NUMERIC(20,0) NOT NULL

send_count INTEGER NOT NULL

resend_count INTEGER NOT NULL

time_received TIMESTAMP

log_received NUMERIC(20,0) NOT NULL

confirm_received NUMERIC(20,0)

receive_count INTEGER NOT NULL

rereceive_count INTEGER NOT NULL

Each row describes a userid with REMOTE permissions (a subscriber),
together with the status of SQL Remote messages that were sent to and from
that user.

user_id The user number of the user with REMOTE permissions.

consolidate (Y/N) Indicates whether the user was granted

669

CONSOLIDATE permissions (Y) or REMOTE permissions (N).

type_id Identifies which of the of the message systems supported by
SQL Remote is used to send messages to this user.

address The address to which SQL Remote messages are to be sent. The
address must be appropriate for theaddress_type.

frequency How frequently SQL Remote messages are sent.

send_time The next time messages are to be sent to this user.

log_send Messages are sent only to subscribers for whomlog_sendis
greater thanlog_sent.

time_sent The time the most recent message was sent to this subscriber.

log_sent The log offset for the most recently sent operation.

confirm_sent The log offset for the most recently confirmed operation
from this subscriber.

send_count How many SQL Remote messages have been sent.

resend_count Counter to ensure that messages are applied only once at
the subscriber database.

time_received The time when the most recent message was received from
this subscriber.

log_received The log offset in the subscriber’s database for the operation
that was most recently received at the current database.

confirm_received The log offset in the subscriber’s database for the most
recent operation for which a confirmation message has been sent.

receive_count How many messages have been received.

rereceive_count Counter to ensure that messages are applied only once at
the current database.

670

Chapter 5. System Tables

SYSSCHEDULE system table

Column name Column type Column con-

straint

Table con-

straints

event_id INTEGER NOT NULL Primary key

sched_name VARCHAR(128) NOT NULL Primary key

recurring TINYINT NOT NULL

start_time TIME NOT NULL

stop_time TIME

start_date DATE

days_of_week TINYINT

days_of_month UNSIGNED INT

interval_units CHAR(10)

interval_amt INTEGER

Each row inSYSSCHEDULEdescribes the times at which an event is to
fire, as specified by the SCHEDULE clause of CREATE EVENT.

event_ id The unique number assigned to each event.

sched_name The name associated with a schedule.

recurring (0/1) Indicates if the schedule is repeating.

start_time The schedule start time.

stop_time The schedule stop time if BETWEEN was used.

start_date The first date on which the event is scheduled to execute.

days_of_week A bit mask indicating the days of the week on which the
event is scheduled:

♦ x01 = Sunday

♦ x02 = Monday

♦ x04 = Tuesday

♦ x08 = Wednesday

♦ x10 = Thursday

671

♦ x20 = Friday

♦ x40 = Saturday

days_of_month A bit mask indicating the days of the month on which the
event is scheduled:

♦ x01 = first day

♦ x02 = second day

♦ x40000000 = 31st day

♦ x80000000 = last day of month

interval_units The interval unit specified by EVERY:

♦ HH = hours

♦ NN = minutes

♦ SS = seconds

interval_amt The period specified by EVERY.

672

Chapter 5. System Tables

SYSSERVERS system table

Column name Column type Column con-

straint

Table Con-

straints

srvid INTEGER NOT NULL Primary key

srvname VARCHAR(128) NOT NULL

srvclass LONG VAR-
CHAR

NOT NULL

srvinfo LONG VAR-
CHAR

srvreadonly CHAR(1) NOT NULL

Each row describes a remote server.

srvid An identifier for the remote server.

srvname The name of the remote server.

srvclass The server class, as specified in the CREATE SERVER
statement.

srvinfo Server information.

srvreadonly Y if the server is read only, and N otherwise.

673

SYSSQLSERVERTYPE system table

Column name Column type Column con-

straint

Table constraints

ss_user_type SMALLINT NOT NULL Primary key

ss_domain_id SMALLINT NOT NULL

ss_type_name VARCHAR
(30)

NOT NULL

primary_sa_-
domain_id

SMALLINT NOT NULL

primary_sa_user_-
type

SMALLINT

This table contains information relating to compatibility with Adaptive
Server Enterprise.

ss_user_type A UNSIGNED INT field describing the Adaptive Server
Enterprise user type

ss_domain_id A UNSIGNED INT field describing the Adaptive Server
Enterprise domain id.

ss_type_name Contains the Adaptive Server Enterprise type name.

primary_sa_domain_id A UNSIGNED INT field containing the Adaptive
Server Anywhere primary domain id.

primary_sa_user_type A UNSIGNED INT field containing the Adaptive
Server Anywhere primary user type.

674

Chapter 5. System Tables

SYSSUBSCRIPTION system table

Column name Column type Column

constraint

Table constraints

publication_id UNSIGNED INT NOT NULL Primary key, for-
eign key references
SYSPUBLICATION

user_id UNSIGNED INT NOT NULL Primary key, foreign
key references SYS-
REMOTEUSER

subscribe_by CHAR(128) NOT NULL Primary key

created NUMERIC(20,0) NOT NULL

started NUMERIC(20,0)

Each row describes a subscription from one user ID (which must have
REMOTE permissions) to one publication.

publication_id The identifier for the publication to which the user ID is
subscribed.

user_id The user number that is subscribed to the publication.

subscribe_by The value of the SUBSCRIBE BY expression, if any, for
the subscription.

created The offset in the transaction log at which the subscription was
created.

started The offset in the transaction log at which the subscription was
started.

675

SYSSYNC system table

Column name Column type Column

constraint

Table constraints

sync_id UNSIGNED INT NOT NULL Primary key

type CHAR(1) NOT NULL

publication_id UNSIGNED INT

progress NUMERIC(20,0)

site_name CHAR(128)

option LONG VAR-
CHAR

server_connect LONG VAR-
CHAR

server_conn_type LONG VAR-
CHAR

last_download_-
time

TIMESTAMP

last_upload_time TIMESTAMP NOT NULL
default ‘jan-
1-1900;

created NUMERIC(20, 0)

log_sent NUMERIC(20,0)

generation_number INTEGER NOT NULL
default 0

extended_state VARCHAR(1024) NOT NULL
default ‘’

This table contains information relating to MobiLink synchronization. Some
columns in this table contain potentially sensitive data. For that reason,
access to this table is restricted to users with DBA authority. The
SYSSYNC2 view provides public access to the data in this table except for
the potentially sensitive columns.

sync_id A SMALLINT field uniquely identifying the row.

type A CHAR(1) field describing the type of synchronization object:

676

Chapter 5. System Tables

‘D’ means definition, ‘T’ means template, and ‘S’ means site.

publication_id A publication_id found in the SYSPUBLICATIONS table.

progress The log offset of the last successful upload.

site_name A CHAR(128) field that holds a MobiLink user id.

option A LONG VARCHAR that holds any synchronization options.

server_connect A LONG VARCHAR field that holds the address or URL
of the MobiLink synchronization server.

server_conn_type A LONG VARCHAR field identifying the
communication protocol, such as TCP/IP, to use when synchronizing.

last_download_time A TIMESTAMP field that indicates the last time a
download stream was received from the MobiLink synchronization server.

last_upload_time A TIMESTAMP field that indicates the last time
(measured at the MobiLink synchronization server) that information was
successfully uploaded.

created The log offset at which the subscription was created.

log_sent The log progress up to which information has been uploaded. It
is not necessary that an acknowledgement of the upload be received for the
entry in this column to be updated.

generation_number For file-base downloads, the last generation number
received for this subscription.

extended_state Reserved for internal use.

677

SYSTABLE system table

Column name Column

type

Column

constraint

Table constraints

table_id UNSIGNED
INT

NOT NULL Primary key

file_id SMALLINT NOT NULL Foreign key references
SYSFILE

count UNSIGNED
BIGINT

NOT NULL

first_page INTEGER NOT NULL

last_page INTEGER NOT NULL

primary_root INTEGER NOT NULL

creator UNSIGNED
INT

NOT NULL Unique index. For-
eign key references
SYSUSERPERM.-
user_id

first_ext_page INTEGER NOT NULL

last_ext_page INTEGER NOT NULL

table_page_count INTEGER NOT NULL

ext_page_count INTEGER NOT NULL

table_name CHAR(128) NOT NULL Unique index

table_type CHAR(10) NOT NULL

view_def LONG
VARCHAR

remarks LONG
VARCHAR

replicate CHAR(1) NOT NULL

existing_obj CHAR(1)

remote_location LONG
VARCHAR

remote_objtype CHAR(1)

678

Chapter 5. System Tables

Column name Column

type

Column

constraint

Table constraints

srvid INTEGER Foreign key references
SYSSERVERS

server_type CHAR(4) NOT NULL

primary_hash_limit SMALL
INT

NOT NULL

page_map_start INTEGER NOT NULL

source LONG
VARCHAR

Each row ofSYSTABLE describes one table or view in the database.

table_id Each table or view is assigned a unique number (the table
number) which is the primary key forSYSTABLE.

file_id Indicates which database file contains the table. Thefile_id is a
FOREIGN KEY forSYSFILE.

count The number of rows in the table is updated during each successful
CHECKPOINT. This number is used by Adaptive Server Anywhere when
optimizing database access. Thecount is always 0 for a view.

first_page Each database is divided into a number of fixed-size pages.
This value identifies the first page that contains information for this table,
and is used internally to find the start of this table. Thefirst_page is always
0 for a view.

last_page The last page that contains information for this table. The
last_pageis always 0 for a view. For global temporary tables, 0 indicates
that the table was created using ON COMMIT PRESERVE ROWS while 1
indicates that the table was created using ON COMMIT DELETE ROWS.

primary_root Primary keys are stored in the database as B-trees. The
primary_root locates the root of the B-tree for the primary key for the table.
It will be 0 for a view and for a table with no primary key.

creator The user number of the owner of the table or view. The name of
the user can be found by looking inSYSUSERPERM.

first_ext_page The first page used for storing row extensions and blobs.

last_ext_page The last page used for storing row extensions and blobs.
The pages are maintained as a doubly-linked list.

679

table_page_count The total number of main pages used by this table.

ext_page_count The total number of extension (blob) pages used by this
table.

table_name The name of the table or view. One creator cannot have two
tables or views with the same name.

table_type This column isBASE for base tables,VIEW for views, and be
GBL TEMP for global temporary tables. No entry is created for local
temporary tables.

view_def For a view, this column contains the CREATE VIEW command
that was used to create the view. For a table, this column contains any
CHECK constraints for the table.

remarks A comment string.

replicate (Y/N) Indicates whether the table is a primary data source in a
Replication Server installation.

existing_obj (Y/N) Indicates whether the table previously existed or not.

remote_location Indicates the storage location of the remote object.

remote_objtype Indicates the type of remote object: ‘T’ if table; ‘V’ if
view; ‘R’ if rpc; ‘B’ if JavaBean.

srvid The unique ID for the server.

server_type The location of the data for the table. It is either SA or OMNI.

primary_hash_limit The hash size for the primary key index for this table.

page_map_start The start of the page map maintained for this table. Page
maps are used to facilitate blocked I/O during sequential scans.

source This column contains the original source for the procedure if the
preserve_source_format option is ON. It is used to maintain the appearance
of the original text. For more information, see
“PRESERVE_SOURCE_FORMAT option [database]”[ASA Database
Administration Guide,page 618].

680

Chapter 5. System Tables

SYSTABLEPERM system table

Column name Column type Column con-

straint

Table con-

straints

stable_id UNSIGNED INT NOT NULL Primary key, for-
eign key ref-
erences SYS-
TABLE table_id

grantee UNSIGNED INT NOT NULL Primary
key, foreign
key references
SYSUSERPERM.-
user_id

grantor UNSIGNED INT NOT NULL Primary
key, foreign
key references
SYSUSERPERM.-
user_id

ttable_id UNSIGNED INT NOT NULL Foreign key ref-
erences SYS-
TABLE table_id

selectauth CHAR(1) NOT NULL

insertauth CHAR(1) NOT NULL

deleteauth CHAR(1) NOT NULL

updateauth CHAR(1) NOT NULL

updatecols CHAR(1) NOT NULL

alterauth CHAR(1) NOT NULL

referenceauth CHAR(1) NOT NULL

Permissions given by the GRANT command are stored in
SYSTABLEPERM . Each row in this table corresponds to one table, one
user ID granting the permission (grantor) and one user ID granted the
permission (grantee).

There are several types of permission that can be granted. Each permission
can have one of the following three values.

681

♦ N No, the grantee has not been granted this permission by the grantor.

♦ Y Yes, the grantee has been given this permission by the grantor.

♦ G The grantee has been given this permission and can grant the same
permission to another user (with grant options).

Permissions
The grantee might have been given permission for the same table by
another grantor. If so, this information would be recorded in a different
row of SYSTABLEPERM .

stable_id The table number of the table or view to which the permissions
apply.

grantor The user number of the user ID granting the permission.

grantee The user number of the user ID receiving the permission.

ttable_id In the current version of Adaptive Server Anywhere, this table
number is always the same asstable_id.

selectauth (Y/N/G) Indicates whether SELECT permission has been
granted.

insertauth (Y/N/G) Indicates whether INSERT permission has been
granted.

deleteauth (Y/N/G) Indicates whether DELETE permission has been
granted.

updateauth (Y/N/G) Indicates whether UPDATE permission has been
granted for all columns in the table. (Only UPDATE permission can be given
on individual columns. All other permissions are for all columns in a table.)

updatecols (Y/N) Indicates whether UPDATE permission has only been
granted for some of the columns in the table. Ifupdatecolshas the value Y,
there will be one or more rows inSYSCOLPERM granting update
permission for the columns in this table.

alterauth (Y/N/G) Indicates whether ALTER permission has been granted.

referenceauth (Y/N/G) Indicates whether REFERENCE permission has
been granted.

682

Chapter 5. System Tables

SYSTRIGGER system table

Column name Column type Column con-

straint

Table constraints

trigger_id UNSIGNED INT NOT NULL Primary key

table_id UNSIGNED INT NOT NULL Foreign key refer-
ences SYSTABLE.-
table_id

event CHAR(1) NOT NULL Unique

trigger_time CHAR(1) NOT NULL Unique

trigger_order SMALLINT Unique

foreign_table_id UNSIGNED INT Unique. Foreign key
references SYSFOR-
EIGNKEY

foreign_key_id SMALLINT Unique. Foreign key
references SYSFOR-
EIGNKEY

referential_action CHAR(1)

trigger_name CHAR(128) Unique

trigger_defn LONG VAR-
CHAR

NOT NULL

remarks LONG VAR-
CHAR

source LONG VAR-
CHAR

Each trigger in the database is described by one row inSYSTRIGGER. The
table also contains triggers that are automatically created by the database for
foreign key definitions which have a referential triggered action (such as ON
DELETE CASCADE).

trigger_id Each trigger is assigned a unique number (thetrigger number),
which is the primary key forSYSTRIGGER.

table_id The table number uniquely identifies the table to which this
trigger belongs.

683

event The event or events that cause the trigger to fire. This
single-character value corresponds to the trigger event that was specified
when the trigger was created.

♦ A INSERT, DELETE

♦ B INSERT, UPDATE

♦ C UPDATE

♦ D DELETE

♦ E DELETE, UPDATE

♦ I INSERT

♦ U UPDATE

♦ M INSERT, DELETE, UPDATE

trigger_time The time at which the trigger will fire. This single-character
value corresponds to the trigger time that was specified when the trigger was
created.

♦ A AFTER

♦ B BEFORE

trigger_order The order in which the trigger will fire. This determines the
order that triggers are fired when there are triggers of the same type (insert,
update, or delete) that fire at the same time (before or after).

foreign_table_id The table number of the table containing a foreign key
definition which has a referential triggered action (such as ON DELETE
CASCADE).

foreign_key_id The foreign key number of the foreign key for the table
referenced byforeign_table_id.

referential_action The action defined by a foreign key. This
single-character value corresponds to the action that was specified when the
foreign key was created.

♦ C CASCADE

♦ D SET DEFAULT

♦ N SET NULL

♦ R RESTRICT

684

Chapter 5. System Tables

trigger_name The name of the trigger. One table cannot have two triggers
with the same name.

trigger_defn The command that was used to create the trigger.

remarks A comment string.

source This column contains the original source for the procedure if the
preserve_source_format option is ON. It is used to maintain the appearance
of the original text. For more information, see
“PRESERVE_SOURCE_FORMAT option [database]”[ASA Database
Administration Guide,page 618].

685

SYSTYPEMAP system table

Column name Column type Column

constraint

Table constraints

ss_user_type SMALLINT NOT NULL

sa_domain_id SMALLINT NOT NULL Foreign key refer-
ences SYSDOMAIN

sa_user_type SMALLINT

nullable CHAR(1)

The SYSTYPEMAP system table contains the compatibility mapping values
for the SYSSQLSERVERTYPE system table.

ss_user_type Contains the Adaptive Server Enterprise user type.

sa_domain_id Contains the Adaptive Server Anywhere 6.0 domain_id.

sa_user_type Contains the Adaptive Server Anywhere 6.0 user type.

nullable This field describes whether or not the type can or cannot be null.

686

Chapter 5. System Tables

SYSUSERMESSAGES system table

Column name Column type Column con-

straint

Table con-

straints

error INTEGER NOT NULL Unique con-
straint on this
column and
langid

uid UNSIGNED INT NOT NULL

description VARCHAR(255) NOT NULL

langid SMALLINT NOT NULL Unique con-
straint on this
column and error

Each row holds a user-defined message for an error condition.

error A unique identifying number for the error condition.

uid The user number that defined the message.

description The message corresponding to the error condition.

langid Reserved.

687

SYSUSERPERM system table

Column name Column type Column con-

straint

Table con-

straints

user_id UNSIGNED INT NOT NULL Primary key

user_name CHAR(128) NOT NULL Unique index

password BINARY(36)

resourceauth CHAR(1) NOT NULL

dbaauth CHAR(1) NOT NULL

scheduleauth CHAR(1) NOT NULL

publishauth CHAR(1) NOT NULL

remotedbaauth CHAR(1) NOT NULL

user_group CHAR(1) NOT NULL

remarks LONG VAR-
CHAR

DBA permissions required
SYSUSERPERM contains passwords, so DBA permissions are required to
SELECT from it.

Each row ofSYSUSERPERMdescribes one user ID.

user_id Each new user ID is assigned a unique number (theuser
number), which is the primary key forSYSUSERPERM.

user_name A string containing a unique name for the user ID.

password The password for the user ID. The password contains the NULL
value for the special user IDsSYSandPUBLIC. This prevents anyone from
connecting to these user IDs.

resourceauth (Y/N) Indicates whether the user has RESOURCE authority.
Resource authority is required to create tables.

dbaauth (Y/N) Indicates whether the user has DBA (database
administrator) authority. DBA authority is very powerful, and should be
restricted to as few user IDs as possible for security purposes.

scheduleauth (Y/N) Indicates whether the user has SCHEDULE authority.
This is currently not used.

688

Chapter 5. System Tables

publishauth (Y/N) Indicates whether the user has the SQL Remote
publisher authority.

remotedbaauth (Y/N) Indicates whether the user has the SQL Remote
remote DBA authority.

user_group (Y/N) Indicates whether the user is a group.

remarks A comment string.

When a database is initialized, the following user IDs are created:

♦ SYS The creator of all the system tables.

♦ PUBLIC A special user ID used to record PUBLIC permissions.

♦ DBA The database administrator user ID is the only usable user ID in an
initialized system. The initial password is SQL.

There is no way to connect to theSYSor PUBLIC user IDs.

689

SYSUSERTYPE system table

Column name Column

type

Column con-

straint

Table constraints

type_id SMALLINT NOT NULL Primary key

creator UNSIGNED
INT

NOT NULL Foreign key references
SYSUSERPERM.user_id

domain_id SMALLINT NOT NULL Foreign key references
SYSDOMAIN

nulls CHAR(1) NOT NULL

width SMALLINT NOT NULL

scale SMALLINT NOT NULL

type_name CHAR(128) NOT NULL Unique

”default” LONG
VARCHAR

”check” LONG
VARCHAR

format_str CHAR(128)

super_type_id SMALLINT Foreign key references
SYSUSERTYPE.type_id

Each row holds a description of a user-defined data type.

type_id A unique identifying number for the user-defined data type.

creator The user number of the owner of the data type.

domain_id The data type on which this user defined data type is based,
indicated by a data type number listed in theSYSDOMAIN table.

nulls (Y/N) Indicates whether the user-defined data type allows nulls.

width The length of a string column, the precision of a numeric column, or
the number of bytes of storage for any other data type.

scale The number of digits after the decimal point for numeric data type
columns, and zero for all other data types.

type_name The name for the data type, which must be a valid identifier.

690

Chapter 5. System Tables

default The default value for the data type.

check The CHECK condition for the data type.

format_str Currently unused.

691

SYSWEBSERVICE system table

Column name Column type Column con-

straint

Table constraints

service_id UNSIGNED
INT

NOT NULL Primary key

service_name CHAR(128) NOT NULL

service_type VAR-
CHAR(40)

NOT NULL

auth_required CHAR(1) NOT NULL

secure_required CHAR(1) NOT NULL

url_path CHAR(1) NOT NULL

user_id UNSIGNED
INT

parameter VAR-
CHAR(250)

statement LONG VAR-
CHAR

remarks LONG VAR-
CHAR

Each row holds a description of a web service.

service_id A unique identifying number for the web service.

service_name The name assigned to the web service.

service_type The type of the service; for example, RAW, HTTP, XML,
SOAP, or DISH.

auth_required (Y/N) Indicates whether all requests must contain a valid
user name and password.

secure_required (Y/N) Indicates whether insecure connections, such as
HTTP, are to be accepted, or only secure connections, such as HTTPS.

url_path Controls the interpretation of URLs.

user_id If authentication is enabled, identifies the user, or group of users,
that have permission to use the service. If authentication is disabled,

692

Chapter 5. System Tables

specifies the account to use when processing requests.

parameter A prefix that identifies the SOAP services to be included in a
DISH service.

statement A SQL statement that is always executed in response to a
request. If NULL, arbitrary statements contained in each request are
executed instead. Ignored for services of type DISH.

693

Other system tables
Following is information about system tables used by Java in the database
and SQL Remote.

Java system tables

The system tables that are used for Java in the database are listed below.
Foreign key relations between tables are indicated by arrows: the arrow
leads from the foreign table to the primary table.

SQL Remote system tables

☞ For information about the SQL Remote system tables, see “SQL
Remote system tables”[SQL Remote User’s Guide,page 324].

694

CHAPTER 6

System Views

About this chapter This chapter lists predefined views for the system tables.

Contents Topic: page

Introduction 696

Views for Transact-SQL compatibility 701

695

Introduction
The system tables described in“System Tables” on page 611use numbers to
identify tables, user IDs, and so forth. While this is efficient for internal use,
it makes these tables difficult for people to interpret. A number of predefined
system views are provided that present the information in the system tables
in a more readable format.

System view definitions

Detailed information about system views, including the view definition, is
available in Sybase Central:

♦ To view system views, right-click a connected database, choose Filter
Objects by Owner, and select SYS.

♦ Open the Views folder for the database.

♦ You can see the view definition by selecting the view in the left pane and
then clicking the SQL tab in the right pane. To display the data, open the
View folder in the left pane and select a view. In the right pane, click the
Data tab.

SYSARTICLECOLS system view

Presents a readable version of the table SYSARTICLECOL.

SYSARTICLES system view

Presents a readable version of the table SYSARTICLE.

SYSCAPABILITIES system view

Presents a readable version of the table SYSCAPABILITY and
SYSCAPABILITYNAME.

SYSCATALOG system view

Lists all the tables and views from SYSTABLE in a readable format.

SYSCOLAUTH system view

Presents column update permission information in SYSCOLPERM in a
more readable format.

696

Chapter 6. System Views

SYSCOLSTATS system view

Presents information in SYSCOLSTAT in a more readable format.

SYSCOLUMNS system view

Presents a readable version of the table SYSCOLUMN.

SYSFOREIGNKEYS system view

Presents foreign key information from SYSFOREIGNKEY and
SYSFKCOL in a more readable format.

SYSGROUPS system view

Presents group information from SYSGROUP in a more readable format.

SYSINDEXES system view

Presents index information from SYSINDEX and SYSIXCOL in a more
readable format.

SYSOPTIONS system view

Presents option settings contained in the table SYSOPTION in a more
readable format.

SYSOPTORDERS system view

This view is reserved for system use.

SYSOPTPLANS system view

This view is reserved for system use.

SYSOPTSTRATEGIES system view

This view is reserved for system use.

SYSPROCAUTH system view

Presents the procedure authorities from SYSUSERPERM in a more readable
format.

697

SYSPROCPARMS system view

Presents the procedure parameters from SYSPROCPARM in a more
readable format.

SYSPUBLICATIONS system view

Presents the user name from the SYSUSERPERM table for all creators and
displays the publication name and remarks from the SYSPUBLICATION
table in a more readable format.

SYSREMOTEOPTION2 system view

Presents the columns from SYSREMOTEOPTION and
SYSREMOTEOPTIONTYPE that do not contain sensitive data in a more
readable format.

SYSREMOTEOPTIONS system view

Presents the data from SYSREMOTEOPTION and
SYSREMOTEOPTIONTYPE in a more readable format.

Some columns in this view contain potentially sensitive data. For that
reason, access to this view is restricted to users with DBA authority. The
SYSREMOTEOPTION2 view provides public access to the insensitive data.

SYSREMOTETYPES system view

Presents the procedure remote types from the SYSREMOTETYPES in a
more readable format.

SYSREMOTEUSERS system view

Presents the information from SYSREMOTEUSER in a more readable
format.

SYSSUBSCRIPTIONS system view

Presents subscription information, such as the publication name, creation
time, and start time from the SYSPUBLICATION table in a more readable
format.

SYSSYNCDEFINITIONS system view

A view of synchronization definitions for MobiLink synchronization. This

698

Chapter 6. System Views

view is deprecated.

SYSSSYNCPUBLICATIONDEFAULTS system view

A view of default synchronization settings associated with publications
involved in MobiLink synchronization.

SYSSYNC2 system view

A union of the columns inSYSSYNCPUBLICATIONDEFAULTS ,
SYSSYNCUSERSandSYSSYNCSUBSCRIPTIONSthat do not contain
sensitive data.

SYSSSYNCS system view

A union ofSYSSYNCPUBLICATIONDEFAULTS , SYSSYNCUSERS
andSYSSYNCSUBSCRIPTIONS.

Some columns in this view contain potentially sensitive data. For that
reason, access to this view is restricted to users with DBA authority. The
SYSSYNC2 view provides public access to the insensitive data.

SYSSYNCSITES system view

A view of synchronization sites for MobiLink synchronization. This view is
deprecated.

SYSSYNCSUBSCRIPTIONS system view

A view of synchronization settings associated with MobiLink
synchronization subscriptions.

SYSSYNCTEMPLATES system view

A view of synchronization settings associated with MobiLink
synchronization templates. This view is deprecated.

SYSSYNCUSERS system view

A view of synchronization settings associated with MobiLink
synchronization users.

SYSTABAUTH system view

Presents table permission information from SYSTABLEPERM in a more

699

readable format.

SYSTRIGGERS system view

Lists all the triggers from SYSTRIGGER in a readable format.

SYSUSERAUTH system view

Presents all the information in the table SYSUSERPERM except for user
numbers. Because this view displays passwords, this system view does not
have PUBLIC select permission. (All other system views have PUBLIC
select permission.)

SYSUSERLIST system view

Presents all of the information in SYSUSERAUTH except passwords.

SYSUSEROPTIONS system view

Presents permanent option settings that are in effect for each user. If a user
has no setting for an option, this view displays the public setting for the
option.

SYSUSERPERMS system view

Contains exactly the same information as the table SYSUSERPERM, except
the password is omitted. All users have read access to this view, but only the
DBA has access to the underlying table (SYSUSERPERM).

SYSVIEWS system view

Lists views along with their definitions.

700

Chapter 6. System Views

Views for Transact-SQL compatibility
Adaptive Server Enterprise and Adaptive Server Anywhere have different
system catalogs, reflecting the different uses for the two products.

In Adaptive Server Enterprise, a single master database contains a set of
system tables, which information that applies to all databases on the server.
Many databases may exist within the master database, and each has
additional system tables associated with it.

In Adaptive Server Anywhere, each database exists independently, and
contains its own system tables. There is no master database that contains
system information on a collection of databases. Each server may run
several databases at a time, dynamically loading and unloading each
database as needed.

The Adaptive Server Enterprise and Adaptive Server Anywhere system
catalogs are different. The Adaptive Server Enterprise system tables and
views are owned by the special userdbo, and exist partly in the master
database, partly in thesybsecuritydatabase, and partly in each individual
database; the Adaptive Server Anywhere system tables and views are owned
by the special user SYS and exist separately in each database.

To assist in preparing compatible applications, Adaptive Server Anywhere
provides a set of views owned by the special userdbo, which correspond to
the Adaptive Server Enterprise system tables and views. Where architectural
differences make the contents of a particular Adaptive Server Enterprise
table or view meaningless in a Adaptive Server Anywhere context, the view
is empty, containing just the column names and data types.

The following tables list the Adaptive Server Enterprise system tables and
their implementation in the Adaptive Server Anywhere system catalog. The
owner of all tables isdbo in each DBMS.

Tables existing in each
Adaptive Server
Enterprise database Table name Description Data?

sysalternates One row for each user mapped to a database
user

No

syscolumns One row for each column in a table or view,
and for each parameter in a procedure

Yes

syscomments One or more rows for each view, rule,
default, trigger, and procedure, giving the
SQL definition statement

Yes

701

Table name Description Data?

sysconstraints One row for each referential or check con-
straint associated with a table or column

No

sysdepends One row for each procedure, view, or table
that is referenced by a procedure, view, or
trigger

No

sysindexes One row for each clustered or nonclustered
index, one row for each table with no in-
dexes, and an additional row for each table
containing text or image data.

Yes

syskeys One row for each primary, foreign, or com-
mon key; set by the user (not maintained by
Adaptive Server Enterprise)

No

syslogs Transaction log No

sysobjects One row for each table, view, procedure,
rule, trigger default, log, or (in tempdb only)
temporary object

Contains
compatible
data only

sysprocedures One row for each view, rule, default, trigger,
or procedure, giving the internal definition

No

sysprotects User permissions information No

sysreferences One row for each referential integrity con-
straint declared on a table or column

No

sysroles Maps server-wide roles to local database
groups

No

syssegments One row for each segment (named collection
of disk pieces)

No

systhresholds One row for each threshold defined for the
database

No

systypes One row for each system-supplied or user-
defined data type

Yes

sysusermes-
sages

One row for each user-defined message Yes (this is
an Adap-
tive Server
Anywhere
system ta-
ble)

702

Chapter 6. System Views

Table name Description Data?

sysusers One row for each user allowed in the
database

Yes

Tables existing in the
Adaptive Server
Enterprise master
database

Table name Description Data?

syscharsets One row for each character set or sort orderNo

sysconfigures One row for each user-settable configura-
tion parameter

No

syscurconfigs Information about configuration parameters
currently being used by the server

No

sysdatabases One row for each database on the server No

sysdevices One row for each tape dump device, disk
dump device, disk for databases, or disk
partition for databases

No

sysengines One row for each server currently online No

syslanguages One row for each language (except U.S.
English) known to the server

No

syslocks Information about active locks No

sysloginroles One row for each server login that possesses
a system-defined role

No

syslogins One row for each valid user account Yes

sysmessages One row for each system error or warning No

sysprocesses Information about server processes No

sysremotelo-
gins

One row for each remote user No

sysservers One row for each remote server No

syssrvroles One row for each server-wide role No

sysusages One row for each disk piece allocated to a
database

No

Tables existing in the
Adaptive Server
Enterprise sybsecurity
database 703

Table name Description Data?

sysaudits One row for each audit record No

sysauditoptions One row for each global audit option No

704

CHAPTER 7

System Procedures and Functions

About this chapter This chapter documents the system-supplied catalog stored procedures in
Adaptive Server Anywhere databases, used to retrieve system information.
The chapter also documents system-supplied extended procedures, including
procedures for sending e-mail messages on a MAPI e-mail system.

Contents Topic: page

System procedure overview 706

System and catalog stored procedures 707

System extended stored procedures 753

Adaptive Server Enterprise system and catalog procedures 763

705

System procedure overview
Adaptive Server Anywhere includes the following kinds of system
procedures:

♦ Catalog stored procedures, for displaying system information in tabular
form.

♦ Extended stored procedures for MAPI e-mail support and other functions.

♦ Transact-SQL system and catalog procedures.

☞ For a list of these system procedures see“Adaptive Server Enterprise
system and catalog procedures” on page 763.

♦ System functions that are implemented as stored procedures.

☞ For information see“System functions” on page 92.

This chapter documents the catalog stored procedures and the extended
stored procedures for MAPI e-mail support and other external functions.

System procedure and function definitions

Detailed information about system procedures and functions is available in
Sybase Central:

♦ To view system procedures and functions, right-click a connected
database, choose Filter Objects by Owner, and select DBO.

♦ Open the Procedures & Functions folder for the database.

♦ You can see the procedure definition by selecting the procedure in the left
pane and then clicking the SQL tab in the left pane.

706

Chapter 7. System Procedures and Functions

System and catalog stored procedures
System and catalog stored procedures are owned by the user ID dbo. Some
of these procedures are for internal system use. This section documents only
those not intended solely for system and internal use. You cannot call
external functions on Windows CE.

sa_audit_string system procedure

Function Adds a string to the transaction log.

Syntax sa_audit_string (string)

Permissions DBA authority required

Side effects None

See also “AUDITING option [database]”[ASA Database Administration Guide,page 578]

“Auditing database activity”[SQL Anywhere Studio Security Guide,page 9]

Description If auditing is turned on, this system procedure adds a comment into the audit
log. The string can be a maximum of 200 bytes long.

Examples The following call adds a comment into the audit log:

CALL sa_audit_string(’Auditing test’)

sa_check_commit system procedure

Function Checks for outstanding referential integrity violations before a commit.

Syntax sa_check_commit(out_table_name, out_key_name)

Permissions None

Side effects None

See also “WAIT_FOR_COMMIT option [database]”[ASA Database Administration
Guide,page 634]

“CREATE TABLE statement” on page 361

Description If the database option WAIT_FOR_COMMIT is ON, or if a foreign key is
defined using CHECK ON COMMIT in the CREATE TABLE statement,
you can update the database in such a way as to violate referential integrity,
as long as these violations are resolved before the changes are committed.

You can use the sa_check_commit system procedure to check whether there
are any outstanding referential integrity violations before attempting to

707

commit your changes.

The returned parameters indicate the name of a table containing a row that is
currently violating referential integrity, and the name of the corresponding
foreign key index.

Examples The following set of commands can be executed from Interactive SQL. It
deletes rows from the department table in the sample database, in such a way
as to violate referential integrity. The call to sa_check_commit checks which
tables and keys have outstanding violations, and the rollback cancels the
change:

SET TEMPORARY OPTION WAIT_FOR_COMMIT=’ON’
go
DELETE FROM department
go
CREATE VARIABLE tname VARCHAR(128);
CREATE VARIABLE keyname VARCHAR(128)
go
CALL sa_check_commit(tname, keyname)
go
SELECT tname, keyname
go
ROLLBACK
go

sa_conn_activity system procedure

Function Returns the most recently-prepared SQL statement for each connection to
databases on the server.

Syntax sa_conn_activity

Permissions None

Side effects None

Description The sa_conn_activity procedure returns a result set consisting of the most
recently-prepared SQL statement for each connection. This procedure is
useful when the database server is busy and you want to obtain information
about what SQL statement is prepared for each connection. This feature can
be used as an alternative to request-level logging.

☞ For information on the property these values are derived from, see
“Connection-level properties”[ASA Database Administration Guide,page 647].

sa_conn_compression_info system procedure

Function Summarizes compression rates.

708

Chapter 7. System Procedures and Functions

Syntax sa_conn_compression_info ([connection-id])

Permissions None

Side effects None

Description The sa_conn_compression_info procedure returns a result set consisting of
the following connection properties for the supplied connection. If no
connection-id is supplied, this system procedure returns information for all
current connections to databases on the server. Parameters include:

Type A string identifying whether the compression statistics that follow
represent either one Connection, or all connections to the Server.

ConnNumber An integer representing a connection ID. Returns NULL if
the Type is Server.

Compression A string representing whether or not compression is enabled
for the connection. Returns Null if Type is Server, or ON/OFF if Type is
Connection.

TotalBytes An integer representing the total number of actual bytes both
sent and received.

TotalBytesUncomp An integer representing the number of bytes that
would have been sent and received if compression was disabled.

CompRate A numeric (5,2) representing the overall compression rate.
For example, a value of 0 indicates that no compression occurred. A value of
75 indicates that the data was compressed by 75%, or down to one quarter of
its original size.

CompRateSent A numeric (5,2) representing the compression rate for
data sent to the client.

CompRateReceived A numeric (5,2) representing the compression rate
for data received from the client.

TotalPackets An integer representing the total number of actual packets
both sent and received.

TotalPacketsUncomp An integer representing the total number of packets
that would have been sent and received if compression was disabled.

ComPktRate A numeric (5,2) representing the overall compression rate of
packets.

CompPktRateSent A numeric (5,2) representing the compression rate of
packets sent to the client.

CompPktRateReceived A numeric (5,2) representing the compression

709

rate of packets received from the client.

☞ For information on the properties these values are derived from, see
“Connection-level properties”[ASA Database Administration Guide,page 647].

sa_conn_info system procedure

Function Reports connection property information.

Syntax sa_conn_info ([connection-id])

Permissions None

Side effects None

Description Returns a result set consisting of the following connection properties for the
supplied connection. If no connection-id is supplied, information for all
current connections to databases on the server is returned.

♦ Number

♦ Name

♦ Userid

♦ DBNumber

♦ LastReqTime

♦ ProcessTime

♦ Port

♦ ReqType

♦ CommLink

♦ NodeAddress

♦ LastIdle

♦ BlockedOn

♦ UncmtOps

♦ LockName

In a block situation, the BlockedOn value returned by this procedure allows
you to check which users are blocked, and who they are blocked on. The
sa_locks procedure can be used to display the locks held by the blocking
connection; and if A holds locks on several tables you can match the
LockName value between sa_locks and sa_conn_info.

710

Chapter 7. System Procedures and Functions

☞ For information on these properties, see “Connection-level properties”
[ASA Database Administration Guide,page 647].

sa_conn_properties system procedure

Function Reports connection property information.

Syntax sa_conn_properties ([connection-id])

Permissions None

Side effects None

See also “sa_conn_properties_by_conn system procedure” on page 711

“sa_conn_properties_by_name system procedure” on page 712

“System functions” on page 92

“Connection-level properties”[ASA Database Administration Guide,page 647]

Description Returns the connection id as Number, and the PropNum, PropName,
PropDescription, and Value for each available connection property.

If no connection-idis supplied, properties for all current connections to the
server are returned.

sa_conn_properties_by_conn system procedure

Function Reports connection property information.

Syntax sa_conn_properties_by_conn ([property-name])

Permissions ☞ None

Side effects None

See also “sa_conn_properties system procedure” on page 711

“Connection-level properties”[ASA Database Administration Guide,page 647]

Description This is a variant on the sa_conn_properties system procedure, and returns
the same result columns. It returns results only for connection properties that
match theproperty-namestring. You can use wildcards inproperty-name, as
the comparison uses a LIKE operator. The result set is sorted by connection
number and property name.

☞ For a list of available connection properties, see “Connection-level
properties”[ASA Database Administration Guide,page 647].

Example ♦ The following statement returns the AnsiNull option setting for all
connections:

711

CALL sa_conn_properties_by_conn(’ansinull’)

♦ The following statement returns the ANSI-related option settings for all
connections:

CALL sa_conn_properties_by_conn(’ansi%’)

sa_conn_properties_by_name system procedure

Function Reports connection property information.

Syntax sa_conn_properties_by_name ([connection-id])

Permissions None

Side effects None

See also “sa_conn_properties system procedure” on page 711

“Connection-level properties”[ASA Database Administration Guide,page 647]

Description This is a variant on the sa_conn_properties system procedure, and returns
the same result columns. The information is sorted by property name and
connection number.

☞ For a list of available connection properties, see“System functions” on
page 92.

sa_db_info system procedure

Function Reports database property information.

Syntax sa_db_info ([database-id])

Permissions None

Side effects None

See also “sa_db_properties system procedure” on page 713

“Database-level properties”[ASA Database Administration Guide,page 664]

Description Returns a single row containing the Number, Alias, File, ConnCount,
PageSize, and LogName for the specified database.

Example ♦ The following statement returns a single row describing the current
database:

CALL sa_db_info

Sample values are as follows:

712

Chapter 7. System Procedures and Functions

Property Value

Number 0

Alias asademo

File C:\program
files\Sybase\SQL Anywhere
9\asademo.db

ConnCount 1

PageSize 1024

LogName C:\program
files\Sybase\SQL Anywhere
9\asademo.log

sa_db_properties system procedure

Function Reports database property information.

Syntax sa_db_properties ([database-id])

Permissions None

Side effects None

See also “sa_db_info system procedure” on page 712

“Database-level properties”[ASA Database Administration Guide,page 664]

Description Returns the database ID number and the Number, PropNum, PropName,
PropDescription, and Value for each available database property.

sa_disable_auditing_type

Function Disables auditing of specific events.

Syntax sa_disable_auditing_type ([string])

Parameters stringis a comma-delimited string containing one or more of:

all disables all types of auditing.

connect disables auditing of both successful and failed connection
attempts.

connectFailed disables auditing of failed connection attempts.

DDL disables auditing of DDL statements.

713

options disables auditing of public options.

permission disables auditing of permission checks, user checks, and
setuser statements.

permissionDenied disables auditing of failed permission and user checks.

triggers disables auditing in response to trigger events.

Permissions DBA authority required

Side effects None

Description You can use the sa_disable_auditing_type option to disable auditing of one
or more categories of information.

Setting this option toall disables all auditing. You can also disable auditing
by setting the public.auditing option to OFF.

sa_disk_free_space system procedure

Function Reports information about space available for a dbspace, transaction log,
transaction log mirror, and/or temporary file.

Syntax sa_disk_free_space ([string])

Parameters string can be one ofdbspace-name, log, mirror , or temp.

If there is a dbspace called log, mirror, or temp, you can prefix the keyword
with an underscore. For example, use_log to get information about the log
file when a dbspace exists called log.

If string is not specified or is null, then the result set contains one row for
each dbspace, plus one row for each of the transaction log, transaction log
mirror, and temporary file, if they exist. Ifstring is specified, then exactly
one or zero rows will be returned (zero if no such dbspace exists, or if “log”
or “mirror” is specified and there is no log or mirror file).

Permissions DBA authority required

Side effects None

Description The result set has two columns: dbspace or file name; and the number of free
bytes on the volume.

sa_enable_auditing_type

Function Enables auditing and specifies which events to audit.

Syntax sa_enable_auditing_type ([string])

714

Chapter 7. System Procedures and Functions

Parameters string is a comma-delimited string containing one or more of:

all enables all types of auditing.

connect enables auditing of both successful and failed connection
attempts.

connectFailed enables auditing of failed connection attempts.

DDL enables auditing of DDL statements.

options enables auditing of public options.

permission enables auditing of permission checks, user checks, and
setuser statements.

permissionDenied enables auditing of failed permission and user checks.

triggers enables auditing after a trigger event.

Permissions DBA authority required

Side effects None

Description Sa_enable_auditing_type works in conjunction with the public.auditing
option to enable auditing of specific types of information.

If you set the public.auditing option to ON, and do not specify which type of
information to audit, the default setting (all) takes effect. In this case, all
types of auditing information are recorded.

If you set the public.auditing option to ON, and disable all types of auditing
using sa_disable_auditing_type, no auditing information is recorded. In
order to re-establish auditing, you must use sa_enable_auditing_type to
specify which type of information you want to audit.

If you set the public.auditing option to OFF, then no auditing information is
recorded, regardless of the sa_enable_auditing_type setting.

Example To enable only option auditing:

sa_disable_auditing_type(’all’)

sa_enable_auditing_type(’options’)

sa_eng_properties system procedure

Function Reports database server property information.

Syntax sa_eng_properties

Permissions None

715

Side effects None

See also “Server-level properties”[ASA Database Administration Guide,page 657]

Description Returns the PropNum, PropName, PropDescription, and Value for each
available server property.

☞ For a list of available engine properties, see“System functions” on
page 92.

Example ♦ The following statement returns a set of available server properties

CALL sa_eng_properties()

PropNum PropName . . .

1 IdleWrite . . .

2 IdleChkPt . . .

.

sa_flush_cache system procedure

Function Empties all pages in the database server cache.

Syntax sa_flush_cache ()

Permissions DBA authority required

Side effects None

Description Database administrators can use this procedure to empty the contents of the
database server cache. This is of use in performance measurement to ensure
repeatable results.

sa_flush_statistics system procedure

Function Saves all cost model statistics in the database server cache.

Syntax sa_flush_statistics ()

Permissions DBA authority required

Side effects None

Description Database administrators can use this procedure to ensure that cost model
statistics in the database server cache that have been created and/or gathered
but not yet saved to disk are flushed out with immediate effect. Under normal
operation it should not be necessary to execute this procedure because the
server automatically writes out statistics to disk on a periodic basis.

716

Chapter 7. System Procedures and Functions

sa_get_dtt system procedure

Function Reports the current value of the Disk Transfer Time (DTT) model, which is
part of the cost model.

Syntax sa_get_dtt (file-id)

Permissions None.

Side effects None.

Description You can obtain thefile-id from the system tableSYSFILE.

This procedure retrieves data from the system tableSYSOPTSTAT. It is
intended for internal diagnostic purposes.

sa_get_histogram system procedure

Function Retrieves the histogram for a column.

Syntax sa_get_histogram (column, table [, owner])

Permissions SELECT permission required.

Side effects None.

See also “The Histogram utility” [ASA Database Administration Guide,page 481]

“ESTIMATE function [Miscellaneous]” on page 125

“ESTIMATE_SOURCE function [Miscellaneous]” on page 125

Description This procedure retrieves data from the system tableSYSCOLSTAT. It is
intended for internal diagnostic purposes. It is recommended that you view
histograms using the Histogram utility.

To determine the selectivity of a predicate over a string column, you should
use the ESTIMATE or ESTIMATE_SOURCE functions. For string
columns, both sa_get_histogram and the Histogram utility retrieve nothing
from SYSCOLSTAT. Attempting to retrieve string data generates an error.

sa_get_request_profile system procedure

Function Analyses the request-level log to determine the execution times of similar
statements.

Syntax sa_get_request_profile ([request-log-filename [, connection-id]])

Permissions DBA authority required.

717

Side effects Automatic commit.

See also “sa_get_request_times system procedure” on page 718

“sa_statement_text system procedure” on page 743

“sa_server_option system procedure” on page 739

Description This procedure callssa_get_request_timesto process a log file, and then
summarizes the results into the global temporary table
satmp_request_profile. This table contains the statements from the log along
with how many times each was executed, and their total, average, and
maximum execution times. The table can be sorted in various ways to
identify targets for performance optimization efforts.

If you do not specify a log file, the default is the current log file that is
specified at the command prompt with-zo , or that has been specified by

sa_server_option(’ request_level_log_file ’ , filename)

If a connection id is specified, it is used to filter information from the log so
that only requests for that connection are retrieved.

sa_get_request_times system procedure

Function Analyses the request-level log to determine statement execution times.

Syntax sa_get_request_times ([request-log-filename [, connection-id]])

Permissions DBA authority required.

Side effects Automatic commit.

See also “sa_get_request_profile system procedure” on page 717

“sa_statement_text system procedure” on page 743

“sa_server_option system procedure” on page 739

Description This procedure reads the specified request-level log and populates the global
temporary table satmp_request_time with the statements from the log and
their execution times.

For statements such as inserts and updates, the execution time is
straightforward. For queries, the time is calculated for preparing the
statement to dropping it, including describing it, opening a cursor, fetching
rows, and closing the cursor. For most queries, this is an accurate reflection
of the amount of time taken. In cases where the cursor is left open while
other actions are performed, the time appears as a large value but is not a
true indication that the query is costly.

718

Chapter 7. System Procedures and Functions

This procedure recognizes host variables and populates the global temporary
table satmp_request_hostvar with the statements from the log and their
execution times. For older databases where this temporary table does not
exist, host variable values are ignored.

If you do not specify a log file, the default is the current log file that is
specified at the command prompt with-zo , or that has been specified by

sa_server_option(’ request_level_log_file ’ , filename)

If a connection id is specified, it is used to filter information from the log so
that only requests for that connection are retrieved.

sa_get_server_messages system procedure

Function Allows you to return the server’s message window as a result set.

Syntax sa_get_server_messages (integer)

Permissions None.

Side effects None.

Description This procedure takes an integer parameter which specifies the starting line
number to display, and returns a row for that line and for all subsequent lines.
If the starting line is negative, the result set starts at the first available line.
The result set includes the line number, message text, and message time.

sa_index_density system procedure

Function Reports information about the amount of fragmentation within database
indexes.

Syntax sa_index_density ([table_name [, owner_name]])

Permissions DBA authority required

Side effects None

See also “Index fragmentation”[ASA SQL User’s Guide,page 195]

Description Database administrators can use this procedure to obtain information about
the degree of fragmentation in a database’s indexes.

The procedure returns a result set containing the table name, the index name,
the number of leaf pages, and the index’s density. The density is a fraction
between 0 and 1.

If you do not specify parameters, the information for all tables appears.
Otherwise, the procedure examines only the named table.

719

The Interactive SQL Results pane shows you a result set for the table as
follows:

TableName, IndexName, LeafPages, Density

Density is a fraction between 0 and 1. For indexes with a high number of
leaf pages, higher density values are desirable.

sa_index_levels system procedure

Function To assist in performance tuning by reporting the number of levels in an
index.

Syntax sa_index_levels ([table_name [, owner_name])

Permissions DBA authority required

Side effects None

See also “CREATE INDEX statement” on page 319

“Using indexes”[ASA SQL User’s Guide,page 163]

Description The number of levels in the index tree determines the number of I/O
operations needed to access a row using the index. Indexes with a small
number of levels are more efficient than indexes with a large number of
levels.

The procedure returns a result set containing the table name, the index name,
and the number of levels in the index.

If no arguments are supplied, levels are returned for all indexes in the
database. If onlytable_nameis supplied, levels for all indexes on that table
are supplied. Iftable_nameis NULL and anowner_nameis given, only
levels for indexes on tables owned by that user are returned.

sa_java_loaded_classes system procedure

Function To list the classes currently loaded by the database virtual machine.

Syntax sa_java_loaded_classes ()

Permissions None

Side effects None

See also “Installing Java classes into a database”[ASA Programming Guide,page 89].

Description Returns a result set containing all the names of the Java classes currently
loaded by the database Java virtual machine.

720

Chapter 7. System Procedures and Functions

When the virtual machine is first called, it loads a number of classes. If you
call sa_java_loaded_classeswithout using any Java in the database features
beforehand, it returns this set of classes.

The procedure can be useful to diagnose missing classes. It can also be used
to identify which classes from a particular jar are used by a given
application.

sa_locks system procedure

Function Displays all locks in the database.

Syntax sa_locks ([connection,] [[owner.]table_name,] [max_locks])

Permissions DBA authority required

Side effects None

See also “How locking works” [ASA SQL User’s Guide,page 131]

Description The sa_locks procedure returns a result set containing information about all
the locks in the database.

The input parameters are as follows:

connection An integer representing a connection ID. The procedure
returns lock information only about the specified connection. The default
value is zero, in which case information is returned about all connections.

table_name A char(128) parameter representing a table name. The
procedure returns information only about the specified tables. The default
value is NULL, in which case information is returned about all tables.

If you do not includeowner, it is assumed that the table is owned by the
caller of the procedure.

max_locks An integer parameter representing the maximum number of
locks for which to return information. The default value is 1000. The value
-1 means return all lock information.

The information returned for each lock includes the following:

connection ID The connection ID that has the lock.

user name The user connected through connection ID.

table name The table on which the lock is held.

lock type The lock type is a string of characters indicating the type of lock.
For lock_names other than NULL, these characters are:

♦ S Shared

721

♦ E Exclusive

♦ P Phantom

♦ A Anti-phantom

All locks listed have exactly one of S or E specified, and may also have P, A,
or both. If a lock is a phantom or anti-phantom lock, a qualifier is added to
the lock type. The qualifier is as follows:

♦ T The lock is with respect to a sequential scan

♦ * The lock is with respect to all scans.

♦ nnn An index number. The lock is with respect to a particular index.

When the lock_name is NULL, the lock_types can be a combination of:

♦ S Shared schema lock

♦ E Exclusive schema lock

♦ AT Shared row lock

♦ PT Intent mode on a row lock

lock_name TheLockNamevalue identifying the lock. This value can be
matched with sa_conn_info output to determine the responsible locks in a
blocking situation.

Lock_names can be a row ID or can be NULL.

NULL lock_name If the lock_name is NULL, then the row contains information about two
types of lock: a schema lock, and a lock on rows.

The schema lock means that other transactions are prevented from
modifying the table schema. This schema lock can be acquired in shared (S)
or exclusive (E) mode.

The row lock applies to the rows in the table. It can be acquired in shared
mode or intent mode. Shared mode is represented by lock_type AT, and
intent mode by lock_type PT. If acquired in share mode, other transactions
cannot modify the rows unless they acquire the lock in intent mode.
However, the lock can only be acquired in share mode if there are no
uncommitted modifications to the table by other transactions.

For example, if a connection has modified a table but not yet done a commit
or rollback, then sa_locks will return a NULL lock_name for the table, and a
lock_type of at least SPT. S indicates a shared lock on the schema of the
table and PT indicates an intent lock on the rows in the table.

722

Chapter 7. System Procedures and Functions

☞ For more information, see “Connection-level properties”[ASA Database
Administration Guide,page 647], and“sa_conn_info system procedure” on
page 710.

sa_make_object system procedure

Function Thesa_make_objectprocedure can be used in a SQL script to ensure that a
skeletal instance of an object exists before executing an ALTER statement
which provides the actual definition.

Syntax sa_make_object (
objtype,
objname,
[, owner [, tabname,])

object-type:
’ procedure ’ | ’ function ’ | ’ view ’ | ’ trigger ’

Permissions Resource authority is required to create or modify database objects.

Side effects Automatic commit.

See also “ALTER FUNCTION statement” on page 233

“ALTER PROCEDURE statement” on page 236

“ALTER TRIGGER statement” on page 258

“ALTER VIEW statement” on page 259

Description This procedure is particularly useful in scripts or command files that are run
repeatedly to create or modify a database schema. A common problem in
such scripts is that the first time they are run, a CREATE statement must be
executed, but subsequent times an ALTER statement must be executed. This
procedure avoids the necessity of querying the system tables to find out
whether the object exists.

To use the procedure, follow it by an ALTER statement that contains the
entire object definition.

You can also use thesa_make_objectsystem procedure to add a skeleton
web service.

Parameters object-type The type of object being created. The parameter must be one
of ’ procedure’ , ’ function’ , ’ view’ , ’ service’ or ’ trigger ’ .

objname The name of the object to be created.

owner The owner of the object to be created. The default value is
CURRENT USER.

723

tabname required only if objtype is’ trigger ’ , in which case it specifies
the name of the table on which the trigger is to be created.

Example The following statements ensure that a skeleton procedure definition is
created, define the procedure, and grant permissions on it. A command file
containing these instructions could be run repeatedly against a database
without error.

CALL sa_make_object(’procedure’,’myproc’);
ALTER PROCEDURE myproc(in p1 int, in p2 char(30))
BEGIN

// ...
END;
GRANT EXECUTE ON myproc TO public;

The following example uses the sa_make_object system procedure to add a
skeleton web service.

CALL sa_make_object(’service’,’my_web_service’)

sa_migrate system procedure

Function Migrates a set of remote tables to an Adaptive Server Anywhere database.

Syntax sa_migrate (
local_table_owner ,
server_name,
[table_name,]
[owner_name,]
[database_name,]
[migrate_data,]
[drop_proxy_tables]
[migrate_fkeys])

Permissions None

Side effects None

See also “sa_migrate_create_remote_table_list system procedure” on page 729

“sa_migrate_create_tables system procedure” on page 731

“sa_migrate_data system procedure” on page 733

“sa_migrate_create_remote_fks_list system procedure” on page 728

“sa_migrate_create_fks system procedure” on page 727

“sa_migrate_drop_proxy_tables system procedure” on page 734

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

724

Chapter 7. System Procedures and Functions

Description You can use this procedure to migrate tables to Adaptive Server Anywhere
from a remote Oracle, DB2, SQL Server, Adaptive Server Enterprise,
Adaptive Server Anywhere, or Access database. This procedure allows you
to migrate in one step a set of remote tables, including their foreign key
mappings, from the specified server. The sa_migrate stored procedure calls
the following stored procedures:

♦ sa_migrate_create_remote_table_list

♦ sa_migrate_create_tables

♦ sa_migrate_data

♦ sa_migrate_create_remote_fks_list

♦ sa_migrate_create_fks

♦ sa_migrate_drop_proxy_tables

You might want to use these stored procedures instead of sa_migrate if you
need more flexibility. For example, if you are migrating tables with foreign
key relationships that are owned by different users, you cannot retain the
foreign key relationships if you use sa_migrate.

Before you can migrate any tables, you must first create a remote server to
connect to the remote database using the CREATE SERVER statement. You
may also need to create an external login to the remote database using the
CREATE EXTERNLOGIN statement.

☞ For more information, see“CREATE SERVER statement” on page 341
and“CREATE EXTERNLOGIN statement” on page 313.

You can migrate all the tables from the remote database to an Adaptive
Server Anywhere database by specifying only thelocal_table_ownerand
server_nameparameters. However, if you specify only these two
parameters, all the tables that are migrated will belong to one owner in the
target Adaptive Server Anywhere database. If tables have different owners
on the remote database and you want them to have different owners on the
Adaptive Server Anywhere database, then you must migrate the tables for
each owner separately, specifying thelocal_table_ownerandowner_name
parameters each time you call the sa_migrate procedure. In order to use this
procedure, you must have the necessary permissions to create tables for the
local Adaptive Server Anywhere user.

Caution
Do not specify NULL for both the table_name and owner_name parame-
ters.

725

Supplying NULL for both thetable_nameandowner_nameparameters
migrates all the tables in the database, including system tables. As well,
tables that have the same name, but different owners in the remote database
all belong to one owner in the target database. It is recommended that you
migrate tables associated with one owner at a time.

Parameters local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated tables. Use the GRANT CONNECT
statement to create this user. A value is required for this parameter.

☞ For more information, see“GRANT statement” on page 456.

server_name The name of the remote server that is being used to connect
to the remote database. Use the CREATE SERVER statement to create this
server. A value is required for this parameter.

☞ For more information, see“CREATE SERVER statement” on page 341.

table_name If you are migrating a single table, specify the name of that
table using thetable_nameparameter. Otherwise, you should specify NULL
(the default) for this parameter. Do not specify NULL for both the
table_nameandowner_nameparameters.

owner_name If you are migrating only tables that belong to one owner,
specify the owner’s name using theowner_nameparameter. Otherwise, you
should enter NULL (the default) for this parameter. Do not specify NULL
for both thetable_nameandowner_nameparameters.

database_name The name of the remote database. You must specify the
database name if you want to migrate tables from only one database on the
remote server. Otherwise, enter NULL (the default) for this parameter.

migrate_data Specifies whether the data in the remote tables is migrated.
This parameter can be 0 (do not migrate data) or 1 (migrate data). By
default, data is migrated.

drop_proxy_tables Specifies whether the proxy tables created for the
migration process are dropped once the migration is complete. This
parameter can be 0 (proxy tables are not dropped) or 1 (proxy tables are
dropped). By default, the proxy tables are dropped.

migrate_fkeys Specifies whether the foreign key mappings are migrated.
ropped once the migration is complete. This parameter can be 0 (do not
migrate foreign key mappings) or 1 (migrate foreign key mappings). By
default, the foreign key mappings are migrated.

Examples The following statement migrates all the tables belonging to user p_chin
from the remote database, including foreign key mappings; migrates the data
in the remote tables; and drops the proxy tables when migration is complete.

726

Chapter 7. System Procedures and Functions

In this example, all the tables that are migrated belong to local_user in the
target Adaptive Server Anywhere database.

CALL sa_migrate(’local_user’, ’server_a’, NULL, ’p_chin’, NULL,
1, 1, 1)

The following statement migrates only the tables that belonging to user
remote_a from the remote database. In the target Adaptive Server Anywhere
database, these tables belong to the user local_a.

CALL sa_migrate(’local_a’, ’server_a’, NULL, ’remote_a’, NULL,
1, 0, 1)

sa_migrate_create_fks system procedure

Function Creates foreign keys for each table listed in the dbo.migrate_remote_fks_list
table.

Syntax sa_migrate_create_fks (local_table_owner)

Permissions None

Side effects None

See also “sa_migrate system procedure” on page 724

“sa_migrate_create_remote_table_list system procedure” on page 729

“sa_migrate_create_tables system procedure” on page 731

“sa_migrate_data system procedure” on page 733

“sa_migrate_create_remote_fks_list system procedure” on page 728

“sa_migrate_drop_proxy_tables system procedure” on page 734

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

Description The sa_migrate_create_fks stored procedure is used with the other migration
stored procedures. These procedures must be executed in the following
order:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

727

6. sa_migrate_drop_proxy_tables

This procedure creates foreign keys for each table that is listed in the
dbo.migrate_remote_fks_list table. The user specified by the
local_table_ownerargument owns the foreign keys in the target database.

If the tables in the target Adaptive Server Anywhere database do not all have
the same owner, you must execute this procedure for each user who owns
tables for which you need to migrate foreign keys.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Parameters local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated foreign keys. If you want to migrate tables
that belong to different user, you must execute this procedure for each user
whose tables you want to migrate. Thelocal_table_owneris created using
the GRANT CONNECT statement. A value is required for this parameter.

☞ For more information, see“GRANT statement” on page 456.

Example The following statement creates foreign keys based on the
dbo.migrate_remote_fks_list table. The foreign keys belong to the user
local_a on the local Adaptive Sever Anywhere database.

CALL sa_migrate_create_fks(’local_a’)

sa_migrate_create_remote_fks_list system procedure

Function Populates the dbo.migrate_remote_fks_list table.

Syntax sa_migrate_create_remote_fks_list (server_name)

Permissions None

Side effects None

See also “sa_migrate system procedure” on page 724

“sa_migrate_create_remote_table_list system procedure” on page 729

“sa_migrate_create_tables system procedure” on page 731

“sa_migrate_data system procedure” on page 733

“sa_migrate_create_fks system procedure” on page 727

“sa_migrate_drop_proxy_tables system procedure” on page 734

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

728

Chapter 7. System Procedures and Functions

Description The sa_migrate_create_remote_fks_list stored procedure is used with the
other migration stored procedures. These procedures must be executed in the
following order:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

6. sa_migrate_drop_proxy_tables

This procedure populates the dbo.migrate_remote_fks_list table with a list
of foreign keys that can be migrated from the remote database. You can
delete rows from this table for foreign keys that you do not want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Parameters server_name The name of the remote server that is being used to connect
to the remote database. The remote server is created with the CREATE
SERVER statement. A value is required for this parameter.

☞ For more information, see“CREATE SERVER statement” on page 341.

Example The following statement creates a list of foreign keys that are in the remote
database.

CALL sa_migrate_create_remote_fks_list (’local_a’)

sa_migrate_create_remote_table_list system procedure

Function Populates the dbo.migrate_remote_table_list table.

Syntax sa_migrate_create_remote_table_list (
server_name,
[table_name,]
[owner_name,]
[database_name])

Permissions None

Side effects None

See also “sa_migrate system procedure” on page 724

“sa_migrate_create_tables system procedure” on page 731

729

“sa_migrate_data system procedure” on page 733

“sa_migrate_create_remote_fks_list system procedure” on page 728

“sa_migrate_create_fks system procedure” on page 727

“sa_migrate_drop_proxy_tables system procedure” on page 734

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

Description The sa_migrate_create_remote_table_list stored procedure is used with the
other migration stored procedures. These procedures must be executed in the
following order:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

6. sa_migrate_drop_proxy_tables

This procedure populates the dbo.migrate_remote_table_list table with a list
of tables that can be migrated from the remote database. You can delete rows
from this table for remote tables that you do not want to migrate.

If you do not want all the migrated tables to have the same owner on the
target Adaptive Server Anywhere database, you must execute this procedure
for each user whose tables you want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Caution
Do not specify NULL for both the table_name and owner_name parame-
ters.

Supplying NULL for both thetable_nameandowner_nameparameters
migrates all the tables in the database, including system tables. As well,
tables that have the same name, but different owners in the remote database
all belong to one owner in the target database. It is recommended that you
migrate tables associated with one owner at a time.

Parameters server_name The name of the remote server that is being used to connect
to the remote database. The remote server is created with the CREATE
SERVER statement. A value is required for this parameter.

730

Chapter 7. System Procedures and Functions

☞ For more information, see“CREATE SERVER statement” on page 341.

table_name The name(s) of the tables that you want to migrate, or NULL
to migrate all the tables. The default is NULL. Do not specify NULL for
both thetable_nameandowner_nameparameters.

owner_name The user who owns the tables on the remote database that
you want to migrate, or NULL to migrate all the tables. The default is
NULL. Do not specify NULL for both thetable_nameandowner_name
parameters

database_name The name of the remote database from which you want to
migrate tables or NULL. This parameter is NULL by default. When
migrating tables from Adaptive Server Enterprise and Microsoft SQL Server
databases, you must specify the database name.

Examples The following statement creates a list of tables that belong to all the users on
the remote database.

CALL sa_migrate_create_remote_table_list(’local_a’, NULL, NULL,
NULL)

The following statement creates a list of tables that belong to the user
remote_a on the remote database.

CALL sa_migrate_create_remote_table_list(’local_a’, NULL,
’remote_a’, NULL)

The following statement creates a list of tables that are in the database
named mydb.

CALL sa_migrate_create_remote_table_list(’local_a’, NULL, NULL,
’mydb’)

sa_migrate_create_tables system procedure

Function Creates a proxy table and base table for each table listed in the
dbo.migrate_remote_table_list table.

Syntax sa_migrate_create_tables (local_table_owner)

Permissions None

Side effects None

See also “sa_migrate system procedure” on page 724

“sa_migrate_create_remote_table_list system procedure” on page 729

“sa_migrate_data system procedure” on page 733

731

“sa_migrate_create_remote_fks_list system procedure” on page 728

“sa_migrate_create_fks system procedure” on page 727

“sa_migrate_drop_proxy_tables system procedure” on page 734

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

Description The sa_migrate_create_tables stored procedure is used with the other
migration stored procedures. These procedures must be executed in the
following order:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

6. sa_migrate_drop_proxy_tables

This procedure creates a base table and proxy table for each table listed in
the dbo.migrate_remote_table_list table (created using the
sa_migrate_create_remote_table_list procedure). These proxy tables and
base tables are owned by the user specified by thelocal_table_owner
argument. This procedure also creates the same primary key indexes and
other indexes for the new table that the remote table has in the remote
database.

If you do want all the migrated tables to have the same owner on the target
Adaptive Server Anywhere database, you must execute the
sa_migrate_create_remote_table_list procedure and the
sa_migrate_create_tables procedure for each user who will own migrated
tables.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Parameters local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated tables. This user is created using the
GRANT CONNECT statement. A value is required for this parameter.

☞ For more information, see“GRANT statement” on page 456.

Example The following statement creates a base tables and proxy tables on the target
Adaptive Server Anywhere database. These tables belong to the user local_a.

CALL sa_migrate_create_tables(’local_a’)

732

Chapter 7. System Procedures and Functions

sa_migrate_data system procedure

Function Migrates data from the remote database tables to the target Adaptive Server
Anywhere database.

Syntax sa_migrate_data (local_table_owner)

Permissions None

Side effects None

See also “sa_migrate system procedure” on page 724

“sa_migrate_create_remote_table_list system procedure” on page 729

“sa_migrate_create_tables system procedure” on page 731

“sa_migrate_create_remote_fks_list system procedure” on page 728

“sa_migrate_create_fks system procedure” on page 727

“sa_migrate_drop_proxy_tables system procedure” on page 734

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

Description The sa_migrate_data stored procedure is used with the other migration
stored procedures. These procedures must be executed in the following
order:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

6. sa_migrate_drop_proxy_tables

This procedure migrates the data from the remote database to the Adaptive
Server Anywhere database for tables belonging to the user specified by the
local_table_ownerargument.

When the tables on the target Adaptive Server Anywhere database do not all
have the same owner, you must execute this procedure for each user whose
tables have data that you want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

733

Parameters local_table_owner The user on the target Adaptive Server Anywhere
database who owns the migrated tables. This user is created using the
GRANT CONNECT statement. A value is required for this parameter.

☞ For more information, see“GRANT statement” on page 456.

Example The following statement migrates data to the target Adaptive Server
Anywhere database for tables that belong to the user local_a.

CALL sa_migrate_data(’local_a’)

sa_migrate_drop_proxy_tables system procedure

Function Drops the proxy tables that were created for migration purposes.

Syntax sa_migrate_drop_proxy_tables (local_table_owner)

Permissions None

Side effects None

See also “sa_migrate system procedure” on page 724

“sa_migrate_create_remote_table_list system procedure” on page 729

“sa_migrate_create_tables system procedure” on page 731

“sa_migrate_data system procedure” on page 733

“sa_migrate_create_remote_fks_list system procedure” on page 728

“sa_migrate_create_fks system procedure” on page 727

“Migrating databases to Adaptive Server Anywhere”[ASA SQL User’s Guide,
page 548]

Description The sa_migrate_drop_proxy_tables stored procedure is used with the other
migration stored procedures. These procedures must be executed in the
following order:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

6. sa_migrate_drop_proxy_tables

734

Chapter 7. System Procedures and Functions

This procedure drops the proxy tables that were created for the migration.
The user who owns these proxy tables is specified by thelocal_table_owner
argument.

If the migrated tables are not all owned by the same user on the target
Adaptive Server Anywhere database, you must call this procedure for each
user in order to drop all the proxy tables.

As an alternative, you can migrate all tables in one step using the sa_migrate
system procedure.

Parameters local_table_owner The user on the target Adaptive Server Anywhere
database who owns the proxy tables. This user is created using the GRANT
CONNECT statement. A value is required for this parameter.

☞ For more information, see“GRANT statement” on page 456.

Example The following statement drops the proxy tables on the target Adaptive Server
Anywhere database that belong to the user local_a.

CALL sa_migrate_drop_proxy_tables(’local_a’)

sa_procedure_profile system procedure

Function Reports information about the execution time for each line within
procedures that have been executed in a database.

Syntax sa_procedure_profile ([p_object_name [, p_owner_name] [, p_table_name
]])

Permissions DBA authority required

Side effects None

See also “sa_server_option system procedure” on page 739

“sa_procedure_profile_summary system procedure” on page 736

Description Before you can profile your database, you must enable profiling.

☞ For more information about enabling procedure profiling, see
“sa_server_option system procedure” on page 739.

The result set includes information about the execution times for individual
lines within procedures, and what percentage of the total procedure
execution time those lines use. The DBA can use this profiling information
to fine-tune slower procedures that may decrease performance. The
procedure returns the same information for stored procedures, functions,
events, and triggers as the Profile tab in Sybase Central.

The result set is as follows:

735

object_type The type of object. It can be:

♦ P stored procedure

♦ F function

♦ E event

♦ T trigger

object_name The name of the stored procedure, function, event, or trigger.

owner_name The object’s owner.

table_name The table associated with a trigger (the value is NULL for
other object types).

line_num The line number within the procedure.

executions The number of times the line has been executed.

millisecs The time to execute the line, in milliseconds.

percentage The percentage of the total execution time required for the
specific line.

By calling the procedures of interest before you begin a profiling session,
you eliminate the start-up time required for procedures to load and for the
database to access tables for the first time.

Parameters The procedure accepts three optional arguments:

p_object_name Selects a specific object.

p_owner_name Selects all objects belonging to one owner.

p_table_name Selects all triggers associated with the specified table.

If you specify more than one of these arguments, you must list them in the
order shown (p_object_name, p_owner_name, p_table_name). The
arguments are strings, and must be enclosed in quotes. The server returns
data for all procedures in the database if you do not include any arguments.

Example The following statement returns profiling information about the tr_manager
trigger:

CALL sa_procedure_profile (p_object_name = ’tr_manager’)

sa_procedure_profile_summary system procedure

Function Reports summary information about the execution times for all procedures
that have been executed in a database.

736

Chapter 7. System Procedures and Functions

Syntax sa_procedure_profile_summary ([p_table_name [, p_owner_name] [, p_
object_name] [, p_object_type] [, p_ordering]])

Permissions DBA authority required

Side effects None

See also “sa_server_option system procedure” on page 739

“sa_procedure_profile_summary system procedure” on page 736

Description Before you can profile your database, you must enable profiling.

☞ For more information about enabling procedure profiling, see
“sa_server_option system procedure” on page 739.

The procedure displays information about the usage frequency and
efficiency of stored procedures, functions, events, and triggers. You can use
this information to fine-tune slower procedures to improve database
performance. The procedure returns the same information for stored
procedures, functions, events, and triggers as the Profile tab in Sybase
Central.

The procedure returns the following results:

object_type The type of object. It can be:

♦ P stored procedure

♦ F function

♦ E event

♦ T trigger

object_name The name of the stored procedure, function, event, or trigger.

owner_name The object’s owner.

table_name The table associated with a trigger (the value is NULL for
other object types).

executions The number of times each procedure has been executed.

millisecs The time to execute the procedure, in milliseconds.

By calling the procedures of interest before you begin a profiling session,
you eliminate the start-up time required for procedures to load and for the
database to access tables for the first time.

Parameters The procedure accepts five optional arguments:

p_object_name Selects a specific object.

737

p_owner_name Selects all objects belonging to one owner.

p_table_name Selects all triggers from a specified table.

p_object_type Selects the type of object to profile. It can be one of the
following:

♦ P stored procedure

♦ F function

♦ E event

♦ T trigger

p_ordering Determines the order of columns in the result set. If no value
is given, the results are listed from the longest execution time to the shortest
execution time. Values and the resulting order are:

♦ P object_type, owner_name, object_name, table_name desc

♦ N object_name, owner_name, table_name, object_type desc

♦ O owner_name, object_type, object_name, table_name desc

♦ T table_name, owner_name, object_name, object_type desc

♦ E executions desc, object_name, owner_name, table_name, object_type
desc

If you specify more than one of these arguments, you must list them in the
order shown (p_object_name, p_owner_name, p_table_name,
p_object_type, p_ordering). If you specify any of these arguments, the
procedure returns only rows that match the parameters; otherwise, the server
returns data for all procedures in the database. Note that the argument values
are strings, and must be enclosed in quotes.

Example The following statement returns profiling information about all the triggers
owned by the DBA on the Product table:

CALL sa_procedure_profile_summary (p_owner_name = ’dba’, p_
table_name = ’Product’, p_object_type = ’T’)

sa_reset_identity system procedure

Function Allows the next available identity value to be set for a table. Use this to
change the autoincrement value for the next row.

Syntax sa_reset_identity ([table_name], [owner], [new_identity_value])

738

Chapter 7. System Procedures and Functions

Permissions DBA authority required.

Side effects Causes a checkpoint to occur after the value has been updated.

Description The next value generated for a row inserted into the table will be
new_identity_value+ 1.

No checking occurs on thenew_identity_valueto ensure that it does not
conflict with existing rows in the table. An invalid value could cause
subsequent inserts to fail.

Parameters The procedure accepts three arguments:

table_name identifies the table you want to set the identity value for.

owner identifies the owner of the table you want to set the identity value
for.

new_identity_value identifies the number from which you want to start
the value counting.

Example The following statement resets the identity value to 101:

CALL sa_reset_identity (’employee’, ’dba’, 100)

sa_server_option system procedure

Function Overrides a server option while the server is running.

Syntax sa_server_option (option_name, option_value)

Permissions DBA authority required

Side effects None

Description Database administrators can use this procedure to override some database
server options without restarting the database server.

☞ The options that can be reset are as follows:

739

Option name Values Default

Disable_connections ON or OFF OFF

Liveness_timeout integer, in seconds 120

Procedure_profiling ON, OFF, RESET,
CLEAR

OFF

Quitting_time valid date and time

Remember_last_-
statement

ON or OFF OFF

Request_level_log_file Filename

Request_level_logging ALL, SQL, NONE,
SQL+hostvars

NONE

disable_connections When set to ON, no other connections are allowed
to any databases on the database server.

liveness_timeout A liveness packet is sent periodically across a
client/server TCP/IP or SPX network to confirm that a connection is intact.
If the network server runs for aliveness_timeoutperiod without detecting a
liveness packet, the communication is severed.

☞ For more information, see “-tl server option”[ASA Database
Administration Guide,page 159].

procedure_profiling Controls procedure profiling for stored procedures,
functions, events, and triggers. The profiling commands are also available in
the Database property sheet in Sybase Central.

♦ ON enables procedure profiling for the database you are currently
connected to.

♦ OFF disables procedure profiling and leaves the profiling data available
for viewing.

♦ RESET returns the profiling counters to zero, without changing the ON
or OFF setting.

♦ CLEAR returns the profiling counters to zero and disables procedure
profiling.

Once profiling is enabled, you can use the sa_procedure_profile_summary
and sa_procedure_profile stored procedures to retrieve profiling information
from the database.

☞ For more information about procedure profiling, see “Profiling database
procedures”[ASA SQL User’s Guide,page 197].

740

Chapter 7. System Procedures and Functions

quitting_time Instruct the database server to shut down at the specified
time.

☞ For more information, see “-tq time server option”[ASA Database
Administration Guide,page 161].

remember_last_statement Instruct the database server to capture the
most recently-prepared SQL statement for each connection to databases on
the server. For stored procedure calls, only the outermost procedure call
appears, not the statements within the procedure.

You can obtain the current value of the remember_last_statement setting
using theLastStatementproperty function as follows:

select connection_property(’LastStatement’)

☞ For more information, see “Server-level properties”[ASA Database
Administration Guide,page 657]and “-zl server option”[ASA Database
Administration Guide,page 166].

request_level_log_file The name of the file used to record logging
information. A name of NULL stops logging to file.

Any backslash characters in the filename must be doubled, as this is a SQL
string.

☞ For more information, see “-zo server option”[ASA Database
Administration Guide,page 166].

request_level_logging Can be ALL, SQL, NONE, or SQL+hostvars. ON
and ALL are equivalent. OFF and NONE are equivalent. This call turns on
logging of individual SQL statements sent to the database server, for use in
troubleshooting, in conjunction with the database server-zr and-zo

options. The settingsrequest_level_debuggingandrequest_level_logging
are equivalent.

When you setrequest_level_loggingto OFF, the request-level log file is
closed.

If you select SQL, only the following types of request are recorded:

♦ START DATABASE

♦ STOP ENGINE

♦ STOP DATABASE

♦ Statement preparation

♦ Statement execution

741

♦ EXECUTE IMMEDIATE statements

♦ Option settings

♦ COMMIT statements

♦ ROLLBACK statements

♦ PREPARE TO COMMIT operations

♦ Connections

♦ Disconnections

♦ Beginnings of transactions

♦ DROP STATEMENT statement

♦ Cursor explanations

♦ Cursor closings

♦ Cursor resume

♦ Errors

Setting request_level_logging to SQL+hostvars outputsboth SQL (as
though you specified request_level_logging=SQL)andhost variable values
to the log.

You can find the current value of the request_level_logging setting using
property(‘RequestLogging’).

☞ For more information, see “-zr server option”[ASA Database
Administration Guide,page 167], and “Server-level properties”[ASA Database
Administration Guide,page 657].

Example The following statement disallows new connections to the database server.

CALL sa_server_option(’disable_connections’, ’ON’)

sa_set_http_header system procedure

Function Permits a web service to set an HTTP header in the result.

Syntax sa_set_http_header (field-name, value)

Parameters field-name A string containing the name of one of the HTTP header fields.

value The value to which the named parameter should be set.

Permissions None.

742

Chapter 7. System Procedures and Functions

Side affects None.

See also “sa_set_http_option system procedure” on page 743

Description

call dbo.sa_set_http_header(’Content-Type’, ’text/html’)

Setting the special header field @HttpStatus sets the status code returned
with the request. For example, the following command sets the status code
to 404 Not Found.

dbo.sa_set_http_header(’@HttpStatus’, ’404’)

The body of the error message is inserted automatically. Only valid HTTP
error codes can be used. Setting the status to an invalid code causes an SQL
error.

sa_set_http_option system procedure

Function Permits a web service to set an HTTP option in the result.

Syntax sa_set_http_option (option-name, value)

Parameters option-name A string containing the name of one of an HTTP options.

value The value to which the named parameter should be set.

Permissions None.

Side affects None.

See also “sa_set_http_header system procedure” on page 742

Description Use this procedure within statements or procedures that handle web services
to set options within an HTTP result set.

Currently only one option is supported:

♦ CharsetConversion Controls whether the result set is to be
automatically converted from the character set of the database to the
character set of the client. The only permitted values are ON and OFF.
The default value is ON.

sa_statement_text system procedure

Function Formats a SELECT statement so that individual items appear on separate
lines. This is useful when viewing long statements from the request-level
log, in which all newline characters are removed.

Syntax sa_statement_text (select-statement)

743

Permissions None

Side effects None

See also “sa_get_request_times system procedure” on page 718

“sa_get_request_profile system procedure” on page 717

Description The select-statement that is entered must be a string (in single quotes).

sa_table_fragmentation system procedure

Function Reports information about the fragmentation of database tables.

Syntax sa_table_fragmentation ([table_name [, owner_name]])

Permissions DBA authority required

Side effects None

See also “Table fragmentation”[ASA SQL User’s Guide,page 193]

“Defragmenting tables”[ASA SQL User’s Guide,page 194]

“Rebuilding databases”[ASA SQL User’s Guide,page 539]

“REORGANIZE TABLE statement” on page 522

Description Database administrators can use this procedure to obtain information about
the fragmentation in a database’s tables. If no arguments are supplied,
densities are returned for all tables in the database.

The procedure returns a result set that contains the following columns:

♦ TableName Name of the table

♦ rows Number of rows in the table

♦ row_segments Number of row segments in the table

♦ segs_per_row Number of segments per row

When database tables become excessively fragmented, you can run
REORGANIZE TABLE or rebuild the database to reclaim disk space and
improve performance.

sa_table_page_usage system procedure

Function Reports information about the page usage of database tables

Syntax sa_table_page_usage

Permissions DBA authority required

744

Chapter 7. System Procedures and Functions

Side effects None

See also “The Information utility” [ASA Database Administration Guide,page 483]

Description ♦ The results include the same information provided by the Information
utility.

☞ For information on the Information utility, see “The Information utility”
[ASA Database Administration Guide,page 483].

sa_validate system procedure

Function Validates all tables in a database.

Syntax sa_validate [tbl_name,] [owner_name,] [check_type]

Permissions DBA authority required

Side effects None

Description This procedure is equivalent to calling the VALIDATE TABLE statement for
each table in the database.

☞ For information, see“VALIDATE TABLE statement” on page 603.

tbl_name Validate only the specified table. When NULL (the default),
validate all tables.

owner_name Validate only the tables owned by the specified user. When
NULL (the default), validate tables for all users.

check_type When NULL (the default), each table is checked using a
VALIDATE TABLE statement with no additional checks. Thecheck_type
value can be one of the following:

♦ data Validate tables using WITH DATA CHECK.

♦ index Validate tables using WITH INDEX CHECK.

♦ full Validate tables using WITH FULL CHECK.

♦ express Validate tables using WITH EXPRESS CHECK.

All of the values for the tbl_name, owner_name, and check_type arguments
are strings and they must be enclosed in quotes.

The procedure returns a single column, named Messages. If all tables are
valid, the column containsNo errors detected .

Example The following statement validates all of the tables owned by the DBA with
an index check:

CALL sa_validate (owner_name = ’DBA’, check_type = ’index’)

745

sp_login_environment system procedure

Function Sets connection options when users log in.

Syntax sp_login_environment

Permissions None

Side effects None

See also “LOGIN_PROCEDURE option [database]”[ASA Database Administration
Guide,page 603]

Description sp_login_environment is the default procedure called by the
LOGIN_PROCEDURE database option.

It is recommended that you not edit this procedure. Instead, to change the
login environment, set the LOGIN_PROCEDURE option to point to a
different procedure.

Here is the text of the sp_login_environment procedure:

CREATE PROCEDURE dbo.sp_login_environment()
BEGIN

IF connection_property(’CommProtocol’)=’TDS’ THEN
CALL dbo.sp_tsql_environment()

END IF
END

sp_remote_columns system procedure

Function Produces a list of the columns on a remote table and a description of their
data types.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_columns servername, tablename [, owner] [, database]

Permissions None

Side effects None

See also “Accessing Remote Data”[ASA SQL User’s Guide,page 557]

“Server Classes for Remote Data Access”[ASA SQL User’s Guide,page 589]

“CREATE SERVER statement” on page 341

Description If you are entering a CREATE EXISTING statement and you are specifying
a column list, it may be helpful to get a list of the columns that are available

746

Chapter 7. System Procedures and Functions

on a remote table. sp_remote_columns produces a list of the columns on a
remote table and a description of their data types. If you specify a database,
you must either specify an owner or provide the valuenull .

Standards and
compatibility

♦ Sybase Supported by Open Client/Open Server.

Example ♦ The following example returns columns from the sysobjects table in the
production database on an Adaptive Server Enterprise server named
asetest. The owner is unspecified.

sp_remote_columns asetest, sysobjects,
null, production

sp_remote_exported_keys system procedure

Function Provides information about tables with foreign keys on a specified primary
key table.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_exported_keys @server_name, @sp_name [, @sp_owner] [, @sp_
qualifier]

Permissions None

Side effects None

See also “CREATE SERVER statement” on page 341

“Tables are related by foreign keys”[ASA Getting Started,page 12]

Description This procedure provides information about the remote table that has a
foreign key on a particular primary key table. The sp_remote_exported_keys
stored procedure’s result set includes the database, owner, table, column, and
name for the both the primary and the foreign key, as well as the foreign key
sequence for the foreign key column. The result set may vary because of the
underlying ODBC and JDBC calls, but information about the table and
column for a foreign key is always returned.

To use the sp_remote_exported_keys stored procedure, your database must
be created or upgraded using version 7.0.2 or higher of Adaptive Server
Anywhere.

Parameters The procedure accepts four arguments:

@server_name identifies the server the primary key table is located on. A
value is required for this parameter.

@sp_name identifies the table containing the primary key. A value is
required for this parameter.

747

@sp_owner identifies the primary key table’s owner. This parameter is
optional.

@sp_qualifier identifies the database containing the primary key table.
This parameter is optional.

Example ♦ To get information about the remote tables with foreign keys on the
sysobjects table, in the production database, in a server named asetest:

call sp_remote_exported_keys (@server_name=’asetest’, @sp_
name=’sysobjects’, @sp_qualifier=’production’)

sp_remote_imported_keys system procedure

Function Provides information about remote tables with primary keys that correspond
to a specified foreign key.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_imported_keys @server_name, @sp_name [, @sp_owner] [, @sp_
qualifier]

Permissions None

Side effects None

See also “CREATE SERVER statement” on page 341

“Tables are related by foreign keys”[ASA Getting Started,page 12]

Description Foreign keys reference a row in a separate table that contains the
corresponding primary key. This procedure allows you to obtain a list of the
remote tables with primary keys that correspond to a particular foreign key
table. The sp_remote_imported_keys result set includes the database, owner,
table, column, and name for the both the primary and the foreign key, as well
as the foreign key sequence for the foreign key column. The result set may
vary because of the underlying ODBC and JDBC calls, but information
about the table and column for a primary key is always returned.

To use the sp_remote_imported_keys stored procedure, your database must
be created or upgraded using version 7.0.2 or higher of Adaptive Server
Anywhere.

Parameters The procedure accepts four arguments:

@server_name identifies the server the foreign key table is located on. A
value is required for this parameter.

@sp_name identifies the table containing the foreign key. A value is
required for this parameter.

748

Chapter 7. System Procedures and Functions

@sp_owner identifies the foreign key table’s owner. This parameter is
optional.

@sp_qualifier identifies the database containing the foreign key table.
This parameter is optional.

Example ♦ To get information about the tables with primary keys that correspond to
a foreign key on the sysobjects table, owned by fred, in the asetest server:

call sp_remote_imported_keys (
@server_name=’asetest’,
@sp_name=’sysobjects’,
@sp_qualifier=’production’)

sp_remote_primary_keys system procedure

Function To provide primary key information about remote tables using remote data
access.

Syntax sp_remote_primary_keys server_name [, table_name] [, table_owner] [,
table_qualifier] [, database_name]

The procedure accepts five parameters:

server_name Selects the server the remote table is located on.

table_name Selects the remote table.

table_owner Selects the owner of the remote table.

database_name Selects the database.

Permissions None

Side effects None

Description This stored procedure provides primary key information about remote tables
using remote data access.

Because of differences in the underlying ODBC/JDBC calls, the information
returned differs slightly in terms of the catalog/database value depending
upon the the remote data access class that is specified for the server.
However, the important information (for example, column name) is as
expected.

Standards and
compatibility

Sybase Supported by Open Client/Open Server.

sp_remote_tables system procedure

Function Returns a list of the tables on a server.

749

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_tables server_name [, table_name] [, table_owner] [, table_
qualifier] [, with_table_type]

Permissions None

Side effects None

See also “Accessing Remote Data”[ASA SQL User’s Guide,page 557]

“Server Classes for Remote Data Access”[ASA SQL User’s Guide,page 589]

“CREATE SERVER statement” on page 341

Description It may be helpful when you are configuring your database server to get a list
of the remote tables available on a particular server. This procedure returns a
list of the tables on a server.

The procedure accepts five parameters:

server_name Selects the server the remote table is located on.

table_name Selects the remote table.

table_owner Selects the owner of the remote table.

table_qualifier Selects the database.

with_table_type Selects the type of remote table. This argument is a bit
type and accepts two values, 0 (the default) and 1. You must enter the value
1 if you want the result set to include a column that lists table types.

The with_table_type argument is only available for databases created in
Adaptive Server Anywhere 7.0.2 and higher. If you use this argument with
an older database, the following error message is returned:

Wrong number of parameters to function

’sp_remote_tables’

If a table, owner, or database name is given, the list of tables will be limited
to only those that match the arguments.

Standards and
compatibility

♦ Sybase Supported by Open Client/Open Server.

Examples ♦ To get a list of all of the Microsoft Excel worksheets available from an
ODBC datasource namedexcel :

sp_remote_tables excel

♦ To get a list of all of the tables owned by fred in the production database
in an Adaptive Server Enterprise server named asetest:

750

Chapter 7. System Procedures and Functions

sp_remote_tables asetest, null, fred, production

sp_servercaps system procedure

Function Displays information about a remote server’s capabilities.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_servercaps servername

Permissions None

Side effects None

See also “Accessing Remote Data”[ASA SQL User’s Guide,page 557]

“Server Classes for Remote Data Access”[ASA SQL User’s Guide,page 589]

“CREATE SERVER statement” on page 341

Description This procedure displays information about a remote server’s capabilities.
Adaptive Server Anywhere uses this capability information to determine
how much of a SQL statement can be forwarded to a remote server. The
system tables which contain server capabilities are not populated until after
Adaptive Server Anywhere first connects to the remote server. This
information comes from SYSCAPABILITY and SYSCAPABILITYNAME.
The servername specified must be the same servername used in the CREATE
SERVER statement.

Standards and
compatibility

♦ Sybase Supported by Open Client/Open Server.

Example ♦ To display information about the remote server testasa issue the following
stored procedure:

sp_servercaps testasa

sp_tsql_environment system procedure

Function Sets connection options when users connect from jConnect or Open Client
applications.

Syntax sp_tsql_environment

Permissions None

Side effects None

See also “sp_login_environment system procedure” on page 746

751

“LOGIN_PROCEDURE option [database]”[ASA Database Administration
Guide,page 603].

Description At startup, sp_login_environment is the default procedure called by the
LOGIN_PROCEDURE database option. If the connection uses the TDS
communications protocol (that is, if it is an Open Client or jConnect
connection), then sp_login_environment in turn calls sp_tsql_environment.

This procedure sets database options so that they are compatible with default
Sybase Adaptive Server Enterprise behavior.

If you wish to change the default behavior, it is recommended that you
create new procedures and alter your LOGIN_PROCEDURE option to point
to these new procedures.

Example ♦ Here is the text of the sp_tsql_environment procedure:

CREATE PROCEDURE dbo.sp_tsql_environment()
BEGIN

IF db_property(’IQStore’)=’OFF’ THEN
-- ASA datastore
SET TEMPORARY OPTION AUTOMATIC_TIMESTAMP=’ON’

END IF;
SET TEMPORARY OPTION ANSINULL=’OFF’;
SET TEMPORARY OPTION TSQL_VARIABLES=’ON’;
SET TEMPORARY OPTION ANSI_BLANKS=’ON’;
SET TEMPORARY OPTION TSQL_HEX_CONSTANT=’ON’;
SET TEMPORARY OPTION CHAINED=’OFF’;
SET TEMPORARY OPTION QUOTED_IDENTIFIER=’OFF’;
SET TEMPORARY OPTION ALLOW_NULLS_BY_DEFAULT=’OFF’;
SET TEMPORARY OPTION FLOAT_AS_DOUBLE=’ON’;
SET TEMPORARY OPTION ON_TSQL_ERROR=’CONTINUE’;
SET TEMPORARY OPTION ISOLATION_LEVEL=’1’;
SET TEMPORARY OPTION DATE_FORMAT=’YYYY-MM-DD’;
SET TEMPORARY OPTION TIMESTAMP_FORMAT=’YYYY-MM-DD

HH:NN:SS.SSS’;
SET TEMPORARY OPTION TIME_FORMAT=’HH:NN:SS.SSS’;
SET TEMPORARY OPTION DATE_ORDER=’MDY’;
SET TEMPORARY OPTION ESCAPE_CHARACTER=’OFF’

END

752

Chapter 7. System Procedures and Functions

System extended stored procedures
A set of system extended procedures are included in Adaptive Server
Anywhere databases. These procedures are owned by the dbo user ID. Users
must be granted EXECUTE permission before they can use these
procedures, unless they already have DBA authority.

The following sections describe each of the stored procedures.

Extended stored procedures for MAPI and SMTP

Adaptive Server Anywhere includes system procedures for sending
electronic mail using the Microsoft Messaging API standard (MAPI) or the
Internet standard Simple Mail Transfer Protocol (SMTP). These system
procedures are implemented as extended stored procedures: each procedure
calls a function in an external DLL.

In order to use the MAPI or SMTP stored procedures, a MAPI or SMTP
e-mail system must be accessible from the database server machine.

The stored procedures are:

♦ xp_startmail Starts a mail session in a specified mail account by
logging onto the MAPI message system

♦ xp_startsmtp Starts a mail session in a specified mail account by
logging onto the SMTP message system

♦ xp_sendmail Sends a mail message to specified users

♦ xp_stopmail Closes the MAPI mail session

♦ xp_stopsmtp Closes the SMTP mail session

The following procedure notifies a set of people that a backup has been
completed.

CREATE PROCEDURE notify_backup()
BEGIN

CALL xp_startmail(mail_user=’ServerAccount’,
mail_password=’ServerPassword’

);
CALL xp_sendmail(recipient=’IS Group’,

subject=’Backup’,
"message"=’Backup completed’
);

CALL xp_stopmail()
END

The mail system procedures are discussed in the following sections.

753

xp_startmail system procedure

Function Starts an e-mail session under MAPI.

Syntax [[variable =] CALL] xp_startmail (

[mail_user = mail-login-name]

[, mail_password = mail-password]

)

Permissions Not supported on NetWare.

Description xp_startmail is a system stored procedure that starts an e-mail session.

Themail-login-nameandmail-passwordvalues are strings containing the
MAPI login name and password to be used in the mail session.

If you are using Microsoft Exchange, themail_login_nameargument is an
Exchange profile name, and you should not include a password in the
procedure call.

Return codes The xp_startmail system procedure issues one of the following return codes:

Return code Meaning

0 Success

2 xp_startmail failed

3 xp_stopmail failed

5 xp_sendmail failed

11 Ambiguous recipients

12 Attachment not found

13 Disk full

14 Failure

15 Invalid session

16 Text too large

17 Too many files

18 Too many recipients

19 Unknown recipient

754

Chapter 7. System Procedures and Functions

Return code Meaning

20 Login failure

21 Too many sessions

22 User abort

23 No MAPI

24 xp_startmail not called (xp_sendmail and xp_stopmail
only)

xp_startsmtp system procedure

Function Starts an e-mail session under SMTP.

Syntax [[variable =] CALL] xp_startsmtp (

smtp_sender = email_address

, smtp_server = smtp_server

[, smtp_port = port_number]

[, timeout = timeout]

)

Permissions Not supported on NetWare.

Description xp_startsmtp is a system stored procedure that starts a mail session for a
specified e-mail address by connecting to an SMTP server.

email_addressis the e-mail address of the sender

smtp_serverspecifies which SMTP server to use, and is the server name or
IP address.

= port_numberspecifies the port number to connect to on the SMTP server.
The default is 25.

timeoutspecifies how long to wait, in seconds, for a response from the server
before aborting the current call to xp_sendmail. The default is 60 seconds.

xp_startsmtp starts a connection to a server. This connection will time out.
Therefore, it is recommended that you start SMTP just before you want to
execute xp_sendmail.

xp_sendmail over SMTP does not support attachments.

755

Return codes For a list of return codes, see“SMTP return codes” on page 757.

xp_sendmail system procedure

Function Sends an e-mail message.

Syntax [[variable =] CALL] xp_sendmail (

recipient = mail-address

[, subject = subject]

[, cc_recipient = mail-address]

[, bcc_recipient = mail-address]

[, " message " = message-body]

[, include_file = file-name]

)

Permissions Must have executed xp_startmail to start an e-mail session under MAPI, or
xp_startsmtp to start an e-mail session under SMTP.

Not supported on NetWare.

Description xp_sendmail is a system stored procedure that sends an e-mail message to
the specified recipients once a session has been started with xp_startmail.
The procedure accepts messages of any length.

The argument values are strings. The length of each argument is limited only
by the amount of available memory on your system. Themessageparameter
name requires double quotes around it because MESSAGE is a keyword.

xp_sendmail over SMTP does not support attachments.

Return codes The xp_sendmail system procedure issues one of the following return codes:

MAPI return codes

Return code Meaning

0 Success.

5 Failure (general).

11 Ambiguous recipient.

12 Attachment not found.

13 Disk full.

756

Chapter 7. System Procedures and Functions

Return code Meaning

14 Failure

15 Insufficient memory.

16 Invalid session.

17 Text too large.

18 Too many files.

19 Too many recipients.

20 Unknown recipient.

21 Login failure.

22 Too many sessions.

23 User abort.

24 No MAPI.

25 No startmail.

SMTP return codes

Return code Meaning

0 Success.

100 Socket error.

101 Socket timeout.

102 Unable to resolve the SMTP server hostname.

103 Unable to connect to the SMTP server.

104 Server error; response not understood. (For example,
the message is poorly formatted, or the server is not
SMTP).

421 <domain> service not available, closing transmission
channel.

450 Requested mail action not taken: mailbox unavailable.

451 Requested action not taken: local error in processing.

452 Requested action not taken: insufficient system storage.

757

Return code Meaning

500 Syntax error, command unrecognized. (This may in-
clude errors such as a command that is too long.)

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command parameter not implemented.

550 Requested action not taken: mailbox unavailable.
(For example, the mailbox is not found, there is no
access, or no relay is allowed.)

551 User not local; please try<forward-path>

552 Request mail action aborted: exceeded storage alloca-
tion.

553 Requested action not taken: mailbox name not allowed.
(For example, the mailbox syntax is incorrect.)

554 Transaction failed.

Example The following call sends a message to the user IDSales Groupcontaining
the fileprices.docas a mail attachment:

CALL xp_sendmail(recipient=’Sales Group’,
subject=’New Pricing’,
include_file = ’C: \\DOCS\\PRICES.DOC’
)

xp_stopmail system procedure

Function Closes a MAPI e-mail session.

Syntax [variable =] [CALL] xp_stopmail ()

Permissions Not supported on NetWare.

Description xp_stopmail is a system stored procedure that ends an e-mail session.

Return codes The xp_stopmail system procedure issues one of the following return codes:

758

Chapter 7. System Procedures and Functions

Return code Meaning

0 Success

3 Failure

xp_stopsmtp system procedure

Function Closes an SMTP e-mail session.

Syntax [variable =] [CALL] xp_stopsmtp ()

Permissions Not supported on NetWare

Description xp_stopsmtp is a system stored procedure that ends an e-mail session.

Return codes For a list of return codes, see“SMTP return codes” on page 757.

Other system extended stored procedures

The other system extended stored procedures included are:

♦ xp_cmdshell Executes a system command.

♦ xp_msver Returns a string containing version information.

♦ xp_sprintf Builds a string from a format string and a set of input strings.

♦ xp_scanf Extracts substrings from an input string and a format string.

The following sections provide more detail on each of these procedures.

xp_cmdshell system procedure

Function Carries out an operating system command from a procedure.

Syntax [variable = CALL] xp_cmdshell (string [, ’ no_output ’])

Permissions None

Description xp_cmdshell executes a system command and then returns control to the
calling environment.

The default behavior for databases upgraded to 8.0.2 or later is to display
output. For older databases, an explicit parameter of a string other than
’ no_output’ can be used to force output to be displayed.

The second parameter affects only console applications on Windows
NT/2000/XP operating systems. For UNIX, no output is displayed
regardless of the setting for the second parameter. For NetWare, any

759

commands executed are visible on the server console; regardless of the
setting for the second parameter.

Example The following statement lists the files in the current directory in the file
c:\temp.txt

xp_cmdshell(’dir > c: \\temp.txt’)

The following statement carries out the same operation, but does so without
displaying a command window.

xp_cmdshell(’dir > c: \\temp.txt’, ’no_output’)

xp_msver system procedure

Function Retrieves version and name information about the database server.

Syntax xp_msver (string)

The string must be one of the following, enclosed in string delimiters.

Argument Description

ProductName The name of the product (Sybase Adaptive Server
Anywhere)

ProductVersion The version number, followed by the build number. The
format is as follows:

9.0.0 (1200)

CompanyName Returns the following string:

Sybase Inc.

FileDescription Returns the name of the product, followed by the name
of the operating system.

LegalCopyright Returns a copyright string for the software

LegalTrademarks Returns trademark information for the software

Permissions None

See also “System functions” on page 92

Description xp_msver returns product, company, version, and other information.

Example ♦ The following statement requests the version and operating system
description:

760

Chapter 7. System Procedures and Functions

SELECT xp_msver(’ProductVersion’) Version,
xp_msver(’FileDescription’) Description

Sample output is as follows:

Version Description

9.0.0 (1912) Sybase Adaptive Server Anywhere Windows NT

xp_read_file system procedure

Function Returns the contents of a file as a LONG BINARY variable.

Syntax [variable = CALL] xp_read_file (filename)

Permissions DBA authority required

See also “xp_write_file system procedure” on page 762

Description The function reads the contents of the named file, and returns the result as a
LONG BINARY value.

The filename is relative to the starting directory of the database server.

The function can be useful for inserting entire documents or images stored in
files into tables. If the file cannot be read, the function returns NULL.

Example The following statement inserts an image into a column named picture of the
table t1 (assuming all other columns can accept NULL):

INSERT INTO t1 (picture)
SELECT xp_read_file(’portrait.gif’)

xp_sprintf system procedure

Function Builds up a string from a format string and a set of input strings

Syntax [variable = CALL] xp_sprintf (out-string,
format-string
[input-string])

Permissions None

Description xp_sprintf builds up a string from a format string and a set of input strings.
The format-string can contain up to fifty string placeholders (%s). These
placeholders are filled in by theinput-stringarguments.

All arguments must be strings of less than 254 characters.

Example The following statements put the stringHello World ! into the variable
mystring.

761

CREATE VARIABLE mystring CHAR(254) ;
xp_sprintf(mystring, ’Hello %s’, ’World!’)

xp_scanf system procedure

Function Extracts substrings from an input string and a format string.

Syntax [variable = CALL] xp_scanf (in-string, format-string [output-string])

Permissions None

Description xp_scanf extracts substrings from an input string and a format string. The
format-string can contain up to fifty string placeholders (%s). The values of
these placeholders are placed in theoutput-stringvariables.

All arguments must be strings of less than 254 characters.

Example ♦ The following statements put the stringWorld! into the variable
mystring.

CREATE VARIABLE mystring CHAR(254) ;
xp_scanf(’Hello World!’, ’Hello %s’, mystring)

xp_write_file system procedure

Function Writes data to a file from a SQL statement.

Syntax [variable = CALL] xp_write_file (filename, file_contents)

Permissions DBA authority required

See also “xp_read_file system procedure” on page 761

Description The function writesfile_contentsto the filefilename. It returns 0 if
successful, and non-zero if it fails.

Thefilenameis relative to the current working directory of the database
server. If the file already exists, its contents are overwritten.

This function can be useful for unloading long binary data into files.

Example Consider a table t1 that has the following columns:

♦ filename A filename relative to the server.

♦ picture A LONG BINARY column holding an image.

The following statement unloads the pictures into the named files:

SELECT xp_write_file(filename, picture)
FROM t1

762

Chapter 7. System Procedures and Functions

Adaptive Server Enterprise system and catalog
procedures

Adaptive Server Enterprise provides system and catalog procedures to carry
out many administrative functions and to obtain system information.
Adaptive Server Anywhere has implemented support for some of these
procedures.

System procedures are built-in stored procedures used for getting reports
from and updating system tables. Catalog stored procedures retrieve
information from the system tables in tabular form.

Adaptive Server Enterprise system procedures

The following list describes the Adaptive Server Enterprise system
procedures that are provided in Adaptive Server Anywhere.

While these procedures perform the same functions as they do in Adaptive
Server Enterprise and pre-Version 12 Adaptive Server IQ, they are not
identical. If you have preexisting scripts that use these procedures, you may
want to examine the procedures. To see the text of a stored procedure, you
can open it in Sybase Central or, in Interactive SQL, run the following
command.

sp_helptext procedure_name

You may need to reset the width of your Interactive SQL output to see the
full text, by selecting Command➤ Options and entering a new Limit
Display Columns value.

System procedure Description

sp_addgroup group-name Adds a group to a database

sp_addlogin userid , password [,
defdb [, deflanguage [,
fullname]]]

Adds a new login ID to a database

sp_addmessage message-num , message_
text [, language]

Adds a user-defined message to SYSUSER-
MESSAGES, for use by stored procedure
PRINT and RAISERROR calls

sp_addtype typename , data-type [,
"identity" | nulltype]

Creates a user-defined data type

763

System procedure Description

sp_adduser login_name [, name_in_db
[, grpname]]

Adds a new user ID to a database

sp_changegroup new-group-name ,
userid

Changes a user’s group or adds a user to a
group

sp_dboption [dbname, optname ,
{true | false}]

Displays or changes a database option

sp_dropgroup group-name Drops a group from a database

sp_droplogin userid Drops a login ID from a database

sp_dropmessage message-number [,
language]

Drops a user-defined message

sp_droptype typename Drops a user-defined data type

sp_dropuser userid Drops a user ID from a database

sp_getmessage message-num , @msg-var
output [, language]

Retrieves a stored message string from
SYSUSERMESSAGES, for PRINT and
RAISERROR statements.

sp_helptext object-name Displays the text of a system procedure,
trigger, or view

sp_password caller_passwd , new_
passwd [, userid]

Adds or changes a password for a user ID

Adaptive Server Enterprise catalog procedures

Adaptive Server Anywhere implements a subset of the Adaptive Server
Enterprise catalog procedures. The implemented catalog procedures are
described in the following table.

Catalog procedure Description

sp_column_privileges Unsupported

764

Chapter 7. System Procedures and Functions

Catalog procedure Description

sp_columns table-name [, table-
owner] [, table-qualifier] [,
column-name]

Returns the data types of the specified
columns

sp_databases Unsupported

sp_datatype_info Unsupported

sp_fkeys pktable_name [, pktable-
owner][, pktable-qualifier] [,
fktable-name] [, fktable_owner]
[, fktable-qualifier]

Returns foreign key information about the
specified table

sp_pkeys table-name [, table_owner]
[, table_qualifier]

Returns primary key information about the
specified table

sp_server_info Unsupported

sp_special_columns table_name [,
table-owner] [, table-qualifier]
[, col-type]

Returns the optimal set of columns that
uniquely identify a row in the specified table

sp_sproc_columns proc-name [, proc_
owner] [, proc-qualifier] [,
column-name]

Returns information about a stored proce-
dure’s input and return parameters

sp_stored_procedures [sp-name] [,
sp-owner] [, sp-qualifier]

Returns information about one or more stored
procedures

sp_statistics [table_name] [,
table_owner] [, table_qualities]
[, index_name] [, is_unique]

Returns information about tables and their
indexes

sp_tables table-name [, table-
owner] [, table-qualifier] [,
table-type]

Returns a list of objects that can appear in a
FROM clause for the specified table

765

766

Index

Symbols
– comment indicator 47
/* comment indicator 47
// comment indicator 47
[ESQL]

statement indicators 222
[Interactive SQL]

statement indicators 222
[SP]

statement indicators 222
[T-SQL]

statement indicators 222
% comment indicator 47
% operator

modulo function 157
&

bitwise operator 13
^

bitwise operator 13
~

bitwise operator 13
|

bitwise operator 13
2000 compliance 78

A
ABS function

SQL syntax 97
ACOS function

SQL syntax 97
actions

referential integrity 369
ActiveSync

MobiLink clients using 358
Adaptive Server Enterprise

converting stored procedures 203
CREATE DATABASE statement 294

adding
indexes 319
Java classes 480
messages 323

servers 341
web services 343

ADDRESS clause
CREATE SYNCHRONIZATION

USER 351
addresses

publishers 240
AES encryption algorithm

CREATE DATABASE statement 294
aggregate functions

alphabetical list 84
aliases

for columns 542
in the DELETE statement 399

ALL
conditions and SQL syntax 23
keyword in SELECT statement 541

ALLOCATE DESCRIPTOR statement
SQL syntax 223

allocating
disk space 229
memory for descriptor areas 223

alphabetic characters
defined 7

ALTER DATABASE statement
SQL syntax 225

ALTER DBSPACE statement
SQL syntax 229

ALTER EVENT statement
SQL syntax 231

ALTER FUNCTION statement
SQL syntax 233

ALTER INDEX statement
SQL syntax 234

ALTER PROCEDURE statement
SQL syntax 236

ALTER PUBLICATION statement
SQL syntax 238

ALTER REMOTE MESSAGE TYPE
statement

SQL syntax 240
ALTER SERVER statement

767

Index

SQL syntax 241
ALTER SERVICE statement

SQL syntax 243
ALTER SYNCHRONIZATION

SUBSCRIPTION statement
SQL syntax 246

ALTER SYNCHRONIZATION USER
statement

SQL syntax 248
ALTER TABLE statement

SQL syntax 250
ALTER TRIGGER statement

SQL syntax 258
ALTER VIEW statement

SQL syntax 259
ALTER WRITEFILE statement

SQL syntax 261
altering

databases 225
dbspaces 229
events 231
functions 233
granting permissions 456
indexes 234
procedures 236
publications 238
remote message types 240
remote server attributes 241
tables 250
triggers 258
views 259
web services 243
write files 261

ambiguous string to date conversions 80
AND

bitwise operators 13
logical operators description 11
three-valued logic 29

ANSI
equivalency using the REWRITE

function 177
ANSI_PERMISSIONS

Adaptive Server Enterprise
compatibility 550

ANSINULL option
Adaptive Server Enterprise

compatibility 550

ANY operator
conditions and SQL syntax 23

apostrophes
in SQL strings 8

approximate data types
about 56

archive backup
supported operating systems 263

archives
creating database backups 263
restoring databases from 525

ARGN function
SQL syntax 98

arithmetic
operators and SQL syntax 12

arithmetic operators
compatibility with Adaptive Server

Enterprise 12
articles

system table for 616, 617
ASCII

function and SQL syntax 98
ASIN function

SQL syntax 99
assigning

logins for remote servers 313
values to SQL variables 548

AT clause
create existing table 311

ATAN function
SQL syntax 99

ATAN2 function
SQL syntax 100

ATN2 function
SQL syntax 100

attributes
altering remote server 241

auditing
adding comments 707

auto-dial
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 356
MobiLink clients using TCP/IP 352

AUTO_COMMIT option
Interactive SQL option 559

AUTOINCREMENT
about 364

768

Index

GET_IDENTITY function 134
autoincrement

resetting the value 738
AVG function

SQL syntax 100

B
backslashes

in SQL strings 8
BACKUP statement

SQL syntax 263
backups

creating 263
creating events for 304
restoring databases from 525
to tape 263

base tables
creating 370

BEGIN DECLARE statement
SQL syntax 388

BEGIN keyword
compatibility 268

BEGIN statement
SQL syntax 267

BEGIN TRANSACTION statement
SQL syntax 270

beginning
user-defined transactions 270

BETWEEN conditions
SQL syntax 24

BIGINT data type
about 56

binary data
getting from columns 450

binary data types
about 72
BINARY 72
IMAGE 72
LONG BINARY 72
UNIQUEIDENTIFIER 73
VARBINARY 73

binary large objects
binary data types 72
exporting 762
GET DATA SQL statement 450
getting from columns 450

importing ASE generated BCP files
488

inserting 761
SET statement example 549
transaction log considerations 229

bind variables
describing cursors 403
EXECUTE SQL statement 425
OPEN statement 498

BIT data type 64
bitwise operators

SQL syntax 13
blank padding

CREATE DATABASE statement 294
BLOBs

binary data types 72
exporting 762
GET DATA SQL statement 450
importing ASE generated BCP files

488
inserting 548, 761
SET statement example 549
transaction log considerations 229

block fetches
FETCH statement 437
OPEN statement 499

blocking
identifying 710

blocks
identifying 710
troubleshooting 721

brackets
database objects 7
SQL identifiers 7

BREAK statement
Transact-SQL syntax 607

buffer_size stream parameter
MobiLink clients using HTTP 353
MobiLink clients using HTTPS 356

bulk loading of tables 486
bulk operations

unload 588
unloading tables 590

BYE statement
SQL syntax 432

BYTE_LENGTH function
SQL syntax 101

769

Index

BYTE_SUBSTR function
SQL syntax 101

C
cache

flushing 716
calibrating the server 225
CALL statement

in Transact-SQL 427
SQL syntax 273

calling
procedures 273

capabilities
remote servers 621, 622

CASCADE action
CREATE TABLE statement 369

CASE expression
NULLIF function 163
SQL syntax 18

case sensitivity
and SQL LIKE conditions 25
comparison operators 10
in the catalog 644

CASE statement
SQL syntax 275

CAST function
data type conversions 76
SQL syntax 102

catalog
system tables 611

catalog procedures
list 707

catalog procedures (ASE)
sp_column_privileges 764
sp_columns 764
sp_fkeys 764
sp_pkeys 764
sp_special_columns 764
sp_sproc_columns 764
sp_stored_procedures 764
sp_tables 764
Transact-SQL list 763
Transact-SQL, list 764

catalog system procedures
about 705

CEILING function
SQL syntax 103

certificate_company stream parameter
MobiLink clients using HTTP 355
MobiLink clients using HTTPS 357
MobiLink clients using TCP/IP 352

certificate_name stream parameter
MobiLink clients using HTTP 355
MobiLink clients using HTTPS 357
MobiLink clients using TCP/IP 352

certificate_unit stream parameter
MobiLink clients using HTTP 355
MobiLink clients using HTTPS 357
MobiLink clients using TCP/IP 352

chained transaction mode 270
changing

passwords 456
CHAR data type

about 53
CHAR function

SQL syntax 103
CHAR_LENGTH function

SQL syntax 104
character data

about 52
Adaptive Server Enterprise

compatibility 53
strings 8

CHARACTER data type
about 53

character functions
alphabetical list 90

character sets
SORTKEY function 184
storage 52

character strings
about 8

CHARACTER VARYING data type
about 53

CHARINDEX function
SQL syntax 104

CHECK clause
search conditions 22

CHECK conditions
about 367

CHECK CONSTRAINTS option
LOAD TABLE statement 487

CHECK ON COMMIT clause
referential integrity 369

770

Index

checkpoint logs
CHECKPOINT SQL statement 278

CHECKPOINT statement
SQL syntax 278

checkpointing
databases 278

classes
installing Java in the database 480
Java methods 87
removing Java 521

CLEAR statement
SQL syntax 279

clearing
Interactive SQL panes 279

client_port number
default for MobiLink clients using

HTTPS 356
client_port stream parameter

MobiLink clients using HTTP 353
MobiLink clients using TCP/IP 351

CLOSE statement
SQL syntax 280

CLOSE_ON_ENDTRANS option
Adaptive Server Enterprise

compatibility 550
closing

connections 411
cursors 280
Interactive SQL 432

clustered indexes
ALTER INDEX statement 234

COALESCE function
SQL syntax 105

code pages
CREATE DATABASE statement 293
data storage 52
SYSCOLLATION system table 624

col_length Adaptive Server Enterprise
function 93

col_name Adaptive Server Enterprise
function 93

collation sequences seecollations
and SQL LIKE conditions 25
CREATE DATABASE statement 293
SYSCOLLATION system table 624

collations
SORTKEY function 184

column long names 404
column names

SQL syntax 16
column names in expressions 16
column statistics

selectivity estimates 30
SYSCOLSTAT system table 627
SYSCOLSTATS system view 697
updating with CREATE STATISTICS

346
updating with LOAD TABLE 490

columns
aliases 542
altering 250
constraints 75, 366
domains 75
getting binary data from 450
in the system tables 628
permissions on 626
renaming 255
SYSCOLUMNS system view 697
updating 599
updating without logging 608
user-defined data types 75

combining
result of multiple select statements 586

comma-separated lists
LIST function syntax 148

command files
parameters for Interactive SQL 506
reading SQL statements from 517

commands
executing operating system 582

COMMENT statement
SQL syntax 282

comments
database objects 282
services 282
SQL syntax 47

commit
preparing for two-phase 511

COMMIT statement
referential integrity 707
SQL syntax 284

committing
transactions 284

common elements in SQL syntax 220

771

Index

communication protocols
multiple settings in MobiLink 358

COMPARE function
SQL syntax 105

comparing dates and times 67
comparison operators

compatibility with Adaptive Server
Enterprise 10

data conversion 76
SQL syntax 10
Transact-SQL compatibility 10

comparisons
search conditions 22

compatibility
datetime 65
NULLs 49
T-SQL expressions and QUOTED

IDENTIFIER option 20
Transact-SQL comparison operators10
Transact-SQL expressions 19
Transact-SQL global variables 39
Transact-SQL local variables 37

compatibility of expressions 19
compound statements

about 267
compatibility 268

compressed databases
creating 290

compression
statistics 708

concatenating strings
string operators 12

concurrency
locking tables 493

conditions
ALL 23
ANY 23
BETWEEN 24
EXISTS 27
IN 27
IS NULL 28
LIKE 24
search 22
SQL search conditions 22
subqueries in 23
three-valued logic 29
truth value 28

CONFIGURE statement
SQL syntax 286

CONNECT authority
granting permissions 456

CONNECT statement
SQL syntax 287

connecting
creating events for 304
to databases 287

connection-level variables
SQL syntax 38

CONNECTION_PROPERTY function
SQL syntax 106

connections
creating events for failed 304
disallowing with RAISERROR 516
dropping 411
dropping in Interactive SQL 407
enabling pooling 563
setting 553
setting a maximum number 516

console
displaying messages on 496

CONSOLIDATE permissions
granting 460
revoking 532

consolidated databases
publishing 533
revoking permissions 532

constants
SQL strings 8
SQL syntax 16
Transact-SQL 20

constants in expressions 16
constraints

ALTER TABLE statement 252
column 366

CONTINUE statement
Transact-SQL syntax 607

control statements
CALL SQL statement 273
CASE SQL statement 275
GOTO Transact-SQL statement 455
IF SQL statement 467
LEAVE SQL statement 483
LOOP SQL statement 495
Transact-SQL BREAK statement 607

772

Index

Transact-SQL CONTINUE statement
607

Transact-SQL IF statement 469
Transact-SQL WHILE statement 607
WHILE SQL statement 495

conventions
documentation xiv
SQL language syntax 4

conversion
strings to dates 65

conversion functions
alphabetical list 84
data type 84

CONVERT function
data type conversions 76
SQL syntax 107

converting ambiguous dates 80
converting strings

about 90
copyright

retrieving 760
correlation names

in the DELETE statement 399
COS function

SQL syntax 109
cost model

calibrating the server 225
recalibrating 225

COT function
SQL syntax 110

COUNT function
SQL syntax 110

CREATE COMPRESSED DATABASE
statement

SQL syntax 290
CREATE DATABASE statement

SQL syntax 292
CREATE DATATYPE statement

SQL syntax 300
CREATE DBSPACE statement

SQL syntax 297
CREATE DECRYPTED FILE statement

SQL syntax 299
CREATE DOMAIN statement

SQL syntax 300
using 74

CREATE ENCRYPTED FILE statement

SQL syntax 302
CREATE EVENT statement

SQL syntax 304
CREATE EXISTING TABLE statement

proxy tables 747, 750
SQL syntax 310

CREATE EXPANDED DATABASE
statement

SQL syntax 290
CREATE EXTERNLOGIN statement

SQL syntax 313
CREATE FUNCTION statement

SQL syntax 315
Transact-SQL example 318

CREATE INDEX statement
SQL syntax 319
table use 321

CREATE MESSAGE statement
Transact-SQL syntax 323

CREATE PROCEDURE statement
SQL syntax 324
Transact-SQL syntax 332

CREATE PUBLICATION statement
SQL syntax 334

CREATE REMOTE MESSAGE TYPE
statement

SQL syntax 337
CREATE SCHEMA statement

SQL syntax 339
CREATE SERVER statement

SQL syntax 341
CREATE SERVICE statement

SQL syntax 343
CREATE STATISTICS statement

SQL syntax 346
CREATE SUBSCRIPTION statement

SQL syntax 347
CREATE SYNCHRONIZATION

SUBSCRIPTION statement
SQL syntax 349

CREATE SYNCHRONIZATION USER
statement

SQL syntax 351
CREATE TABLE statement

remote tables 363
SQL syntax 361
Transact-SQL 370

773

Index

CREATE TRIGGER statement
SQL syntax 373, 377
Transact-SQL syntax 380

CREATE VARIABLE statement
SQL syntax 381

CREATE VIEW statement
SQL syntax 382

CREATE WRITEFILE statement
SQL syntax 384

creating
backups of databases 263
compressed databases 290
cursors 390
cursors in Transact-SQL 395
data types 74
database files 297
databases 292
domains 74, 300
functions 315
indexes 319
local temporary tables 397
messages 323
proxy tables 310, 363, 751
publications 334
remote message types 337
savepoints 540
schemas 339
servers 341
SQL variables 381, 389
stored procedures 324
stored procedures in Transact SQL 332
subscriptions 347
tables 361
triggers 373, 377
triggers in Transact-SQL 380
views 382
web services 343
write files 384

CROSS JOIN
SQL syntax 445

CSCONVERT function
SQL syntax 111

CURRENT DATABASE
special value 32

CURRENT DATE
special value 32

CURRENT PUBLISHER 462

special value 32
CURRENT TIME

special value 32
CURRENT TIMESTAMP

special value 33
CURRENT USER

special value 33
CURRENT UTC TIMESTAMP

special value 33
cursors

closing 280
deallocating 386
declaring 390
declaring in Transact-SQL 395
deleting rows from 401
describing 403
describing behavior 326
EXPLAIN statement syntax 434
fetching rows from 436
inserting rows using 513
looping over 441
opening 498
preparing statements 508
redescribing 326
updatability set in SELECT statement

544
curunreservedpgs Adaptive Server

Enterprise function 93

D
data

exporting from tables into files 501
importing into tables from files 472
selecting rows 541

data access plans
getting text specification 434

data type conversion
about 76
comparison operators 76

data type conversion functions 84
data types

about 51
binary 72
bit 64
character 52
compatibility 65
converting for comparison operators76

774

Index

creating 300
date 65
dropping user-defined 408
in the system tables 631, 690
money 63
numeric 56
retrieving 133
roundoff errors 56
SQL conversion functions 84
time 65
UNIQUEIDENTIFIER 73
user-defined 690
user-defined domains 74

data types in system tables 636
data_pgs Adaptive Server Enterprise

function 93
database extraction

starting subscriptions during 520
database files

dropping 410
storing indexes in 320

database objects
comments 282
identifying 7

database options
DATE_ORDER and unambiguous

dates 68
initial settings 746, 751
QUOTED_IDENTIFIER and T-SQL

compatibility 20
setting in Transact-SQL 550
Transact-SQL compatibility 751

database schema
about 611

database servers
options 739
starting 568
stopping 576

databases
backing up 263
checkpointing 278
connecting to 287
creating 292
creating compressed 290
creating files 297
dropping files 410
files 637

Java-enabling 225
loading bulk data into 486
migrating 724
restoring from archives 525
schema 611
starting 566
stopping 575
structure 611
system procedures 705
system tables 611
unloading data 588
unloading tables 590
upgrading 225
validating 745

datalength Adaptive Server Enterprise
function 93

DATALENGTH function
SQL syntax 113

DATE data type
about 69

DATE function
SQL syntax 113

date functions
alphabetical list 85

date parts
about 86

date to string conversions 81
DATE_ORDER option

ODBC 68
using 68

DATEADD function
SQL syntax 114

DATEDIFF function
SQL syntax 114

DATEFIRST option
Adaptive Server Enterprise

compatibility 550
DATEFORMAT function

SQL syntax 116
DATENAME function

SQL syntax 117
DATEPART function

SQL syntax 117
dates 65

ambiguous string conversions 80, 81
comparing 67
conversion functions 85

775

Index

conversion problems 81
converting from strings 65
inserting 69
interpretation 69
interpreting strings as dates 67
queries 66
retrieving 69
sending to the database 65
unambiguous specification of 67
year 2000 78

datetime
conversion functions 85

DATETIME data type
about 70

DATETIME function
SQL syntax 118

DAY function
SQL syntax 118

DAYNAME function
SQL syntax 118

DAYS function
SQL syntax 119

DB_EXTENDED_PROPERTY function
SQL syntax 121

DB_ID
Adaptive Server Enterprise function 93

DB_ID function
SQL syntax 120

DB_NAME
Adaptive Server Enterprise function 93

DB_NAME function
SQL syntax 120

DB_PROPERTY function
SQL syntax 122

DBA authority
granting permissions 456
in the system tables 688

DBFreePercent event condition
about 127

DBFreeSpace event condition
about 127

DBSize event condition
about 127

DBSPACE
SYSFILE system table 637

dbspaces
altering 229

creating 297
determining available space for 714
dropping 408

DEALLOCATE DESCRIPTOR
statement

SQL syntax 387
DEALLOCATE statement

SQL syntax 386
deallocating

cursors 386
descriptor areas 387

DECIMAL data type
about 57

DECLARE CURSOR statement
SQL syntax 390
Transact-SQL syntax 395

DECLARE LOCAL TEMPORARY
TABLE statement

SQL syntax 397
DECLARE statement

compound statements 268
SQL syntax 267, 389
Transact-SQL compatibility 268

declaring
cursors 390
cursors in Transact-SQL 395
host variables in embedded SQL 388
variables SQL 389

decrypting
files 299

DEFAULT TIMESTAMP columns 366
default values

CURRENT DATABASE 32
CURRENT DATE 32
CURRENT PUBLISHER 32
CURRENT TIME 32
CURRENT TIMESTAMP 33
CURRENT USER 33
CURRENT UTC TIMESTAMP 33
LAST USER 34
SQLCODE 34
SQLSTATE 34
TIMESTAMP 35
USER 35
UTC TIMESTAMP 36

defaults
autoincrement 364

776

Index

DEFAULTS option
LOAD TABLE statement 487

definitions
altering tables 250

defragmenting
REORGANIZE TABLE 522

DEGREES function
SQL syntax 123

DELETE (positioned) statement
SQL syntax 401

DELETE statement
SQL syntax 399

deleting
all rows from a table 584
database files 410
DBSPACEs 408
domains 408
events 408
functions 408
granting permissions 456, 530
indexes 408
Java classes 521
optimizer statistics 418
prepared statements 417
procedures 408
rows 399
rows from cursors 401
SQL variables 422
tables 408
triggers 408
views 408

DELETING condition
triggers 28

DELIMITED BY option
LOAD TABLE statement 487

delimited strings
compatibility with Adaptive Server

Enterprise 20
delimiting SQL strings 7
denying

granting permissions 456, 530
derived tables

FROM clause 445
lateral 446

DESCRIBE statement
long column names 404
SQL syntax 403

describing
cursor behavior 326
cursors 403

descriptor
DESCRIBE statement 403
FETCH SQL statement 436
preparing statements 508

descriptor areas
allocating memory for 223
deallocating 387
EXECUTE SQL statement 425
getting information from 452
setting 554
UPDATE (positioned) statement 597

DIFFERENCE function
SQL syntax 123

DISCONNECT statement
SQL syntax 407

disconnecting
creating events for 304

disk space
creating events for 304
creating events for out of 304

disk transfer time model
calibrating 225
restoring the default 225

displaying
messages 496
messages in the message window 512

DISTINCT clause
NULL 49

DISTINCT keyword 541
documentation

conventions xiv
conventions for SQL syntax 220
SQL Anywhere Studio xii

domains
about 74
creating 300
dropping 408
Transact-SQL 75

DOUBLE data type
about 58

double quotes
database objects 7
SQL identifiers 7

DOW function

777

Index

SQL syntax 123
DROP CONNECTION statement

SQL syntax 411
DROP DATABASE statement

SQL syntax 410
DROP DATATYPE statement

SQL syntax 408
DROP DBSPACE statement

SQL syntax 408
DROP DOMAIN statement

SQL syntax 408
DROP EVENT statement

SQL syntax 408
DROP EXTERNLOGIN statement

SQL syntax 412
DROP FUNCTION statement

SQL syntax 408
DROP INDEX statement

SQL syntax 408
DROP MESSAGE statement

SQL syntax 408
DROP OPTIMIZER STATISTICS

statement
SQL syntax 418

DROP PROCEDURE statement
SQL syntax 408

DROP PUBLICATION statement
SQL syntax 413

DROP REMOTE MESSAGE TYPE
statement

SQL syntax 414
DROP SERVER statement

SQL syntax 415
DROP SERVICE statement

SQL syntax 416
DROP statement

SQL syntax 408
DROP STATEMENT statement

SQL syntax 417
DROP STATISTICS statement

SQL syntax 418
DROP SUBSCRIPTION statement

SQL syntax 419
DROP SYNCHRONIZATION

SUBSCRIPTION statement
SQL syntax 420

DROP SYNCHRONIZATION USER

statement
SQL syntax 421

DROP TABLE statement
SQL syntax 408

DROP TRIGGER statement
SQL syntax 408

DROP VARIABLE statement
SQL syntax 422

DROP VIEW statement
SQL syntax 408

dropping
connections 411
connections in Interactive SQL 407
database files 410
DBSPACEs 408
domains 408
events 408
functions 408
indexes 408
logins for remote servers 412
optimizer statistics 418
prepared statements 417
procedures 408
publications 413
remote message types 414
remote servers 415
SQL variables 422
subscriptions 419
tables 408
triggers 408
users 530
views 408
web services 416

DUMMY system table
about 614

DYNAMIC SCROLL cursors
declaring 390

dynamic SQL
executing procedures in 429

E
e-mail

extended stored procedures 753
system procedures 756

elements
SQL language syntax 4

ELSE

778

Index

CASE expression 18
IF expressions 17

embedded SQL
ALLOCATE DESCRIPTOR syntax

223
BEGIN DECLARE statement syntax

388
CLOSE statement syntax 280
CONNECT statement syntax 287
DEALLOCATE DESCRIPTOR

statement syntax 387
DEALLOCATE statement syntax 386
DECLARE CURSOR statement

syntax 390
DELETE (positioned) statement

syntax 401
DESCRIBE statement syntax 403
DISCONNECT statement syntax 407
DROP STATEMENT statement syntax

417
END DECLARE statement syntax 388
EXECUTE IMMEDIATE statement

syntax 429
EXECUTE statement syntax 425
EXPLAIN statement syntax 434
FETCH statement syntax 436
GET DATA statement syntax 450
GET DESCRIPTOR statement syntax

452
GET OPTION statement syntax 454
INCLUDE statement syntax 471
OPEN statement syntax 498
PREPARE statement syntax 508
PUT statement syntax 513
SET CONNECTION statement syntax

553
SET DESCRIPTOR statement syntax

554
SET SQLCA statement syntax 562
WHENEVER statement syntax 606

encrypting
files 302

encryption
database files 293

encryption algorithms
CREATE DATABASE statement 294

END

CASE expression 18
END DECLARE statement

SQL syntax 388
END keyword

compatibility 268
END LOOP statement

SQL syntax 495
END statement

SQL syntax 267
ENDIF

IF expressions 17
ending

rolling back transactions 537
engines

starting database 568
stopping database 576

error messages
ERRORMSG function 124

ERRORMSG function
SQL syntax 124

ErrorNumber event condition
about 127

errors
creating events for 304
raising in Transact-SQL 515
signaling 565
trapping in embedded SQL 606
user-defined messages 687

escape character
INPUT SQL statement 472
OUTPUT SQL statement 501

ESCAPE CHARACTER option
LOAD TABLE statement 488

ESCAPES option
LOAD TABLE statement 488

ESQL
statement indicators 222

establishing
savepoints 540

ESTIMATE function
SQL syntax 125

ESTIMATE_SOURCE function
SQL syntax 125

estimates
explicit selectivity estimates 30

event conditions
list 127

779

Index

EVENT_CONDITION function
SQL syntax 127

EVENT_CONDITION_NAME function
SQL syntax 128

EVENT_PARAMETER function
SQL syntax 128

events
altering 231
creating and scheduling 304
dropping 408
EVENT_PARAMETER 128
scheduling 231, 304
triggering 583

EXCEPT operation
SQL syntax 423

EXCEPTION statement
SQL syntax 267

exceptions
resignaling 524
signaling 565

exclusive OR
bitwise operator 13

EXECUTE IMMEDIATE statement
SQL syntax 429

EXECUTE permissions
granting 456

EXECUTE statement
SQL syntax 425
Transact-SQL syntax 427

executing
operating system commands 582
prepared statements 425
resuming execution of procedures 527
SQL statements from files 517
stored procedures in Transact-SQL427

EXISTS conditions
SQL syntax 27

EXIT statement
SQL syntax 432

exiting
Interactive SQL 432
procedures 528

EXP function
SQL syntax 131

EXPERIENCE_ESTIMATE function
SQL syntax 131

EXPLAIN statement

SQL syntax 434
EXPLANATION function

SQL syntax 132
explicit selectivity estimates

about 30
exporting

BLOBs 762
Java data 503
unloading result sets 588
unloading tables 590

exporting data
from tables into files 501

expressions
CASE expressions 18
column names 16
compatibility with Adaptive Server

Enterprise 16
constants 16
data types of 133
IF expressions 17
SQL operator precedence 13
SQL syntax 15
subqueries 17
Transact-SQL compatibility 19

EXPRTYPE function
SQL syntax 133

extended stored procedures
permissions 753

external functions
Java example 318

external logins
assigning for remote servers 313
dropping for remote servers 412

F
FALSE conditions

IS FALSE conditions 28
three-valued logic 29

February 29
about 80

feedback
documentation xviii
providing xviii

FETCH statement
SQL syntax 436

fetching
rows from cursors 436

780

Index

FILE message type
about 240, 337, 414

file size
creating events for 304

files
allocating space for database 229
creating database 297
creating write 384
decrypting 299
encrypting 302
exporting data from tables into 501
importing data into tables from 472
reading SQL statements from 517
xp_read_file system procedure 761
xp_write_file system procedure 762

FIRST clause
SELECT statement 541

FLOAT data type
about 58

FLOOR function
SQL syntax 133

FOR clause
SELECT statement 544

FOR statement
SQL syntax 441

FOR XML clause
SELECT statement 541

foreign keys
ALTER INDEX statement 234
clustered 234
in the system tables 638, 639
integrity constraints 368
remote tables 747, 748
role names 368
system views 697
unnamed 368

foreign tables
in the system tables 639

forest
defined 208

FORMAT option
LOAD TABLE statement 488

FORWARD TO statement
SQL syntax 443

fragmentation
tables 522

frequency

of sending messages 460, 463
FROM clause

SELECT statement 543
selecting from stored procedures 446
SQL syntax 445

FTP message type
about 240, 337

functions
ABS function SQL syntax 97
ACOS function SQL syntax 97
aggregate 84
altering 233
ARGN function SQL syntax 98
ASCII function SQL syntax 98
ASIN function SQL syntax 99
ATAN function SQL syntax 99
ATAN2 function SQL syntax 100
ATN2 function SQL syntax 100
AVG function SQL syntax 100
BYTE_LENGTH function SQL

syntax 101
BYTE_SUBSTR function SQL syntax

101
CAST function SQL syntax 102
CEILING function SQL syntax 103
CHAR function SQL syntax 103
CHAR_LENGTH function SQL

syntax 104
CHARINDEX function SQL syntax

104
COALESCE function SQL syntax 105
col_length Adaptive Server Enterprise

function 93
col_name Adaptive Server Enterprise

function 93
COMPARE function SQL syntax 105
CONNECTION_PROPERTY function

SQL syntax 106
CONVERT function SQL syntax 107
COS function SQL syntax 109
COT function SQL syntax 110
COUNT function SQL syntax 110
creating 315
CSCONVERT function SQL syntax

111
curunreservedpgs Adaptive Server

Enterprise function 93

781

Index

data type conversion SQL 84
data_pgs Adaptive Server Enterprise

function 93
datalength Adaptive Server Enterprise

function 93
DATALENGTH function SQL syntax

113
date and time 85
DATE function SQL syntax 113
DATEADD function SQL syntax 114
DATEDIFF function SQL syntax 114
DATEFORMAT function SQL syntax

116
DATENAME function SQL syntax117
DATEPART function SQL syntax 117
DATETIME function SQL syntax 118
DAY function SQL syntax 118
DAYNAME function SQL syntax 118
DAYS function SQL syntax 119
DB_EXTENDED_PROPERTY

function SQL syntax 121
db_id Adaptive Server Enterprise

function 93
DB_ID function SQL syntax 120
db_name Adaptive Server Enterprise

function 93
DB_NAME function SQL syntax 120
DB_PROPERTY function SQL syntax

122
DEGREES function SQL syntax 123
DIFFERENCE function SQL syntax

123
DOW function SQL syntax 123
dropping 408
ERRORMSG function SQL syntax124
ESTIMATE function SQL syntax 125
ESTIMATE_SOURCE function SQL

syntax 125
EVENT_CONDITION function SQL

syntax 127
EVENT_CONDITION_NAME

function SQL syntax 128
EVENT_PARAMETER function SQL

syntax 128
exiting from user-defined 528
EXP function SQL syntax 131
EXPERIENCE_ESTIMATE function

SQL syntax 131
EXPLANATION function SQL syntax

132
EXPRTYPE function SQL syntax 133
FLOOR function SQL syntax 133
GET_IDENTITY function SQL

syntax 134
GETDATE function SQL syntax 135
GRAPHICAL_PLAN function SQL

syntax 135
GRAPHICAL_ULPLAN function

SQL syntax 137
GREATER function SQL syntax 138
GROUPING function SQL syntax 138
HEXTOINT function SQL syntax 139
host_id Adaptive Server Enterprise

function 93
host_name Adaptive Server Enterprise

function 93
HOUR function SQL syntax 139
HOURS function SQL syntax 140
HTTP 90
HTTP_HEADER function SQL syntax

141
HTTP_VARIABLE function SQL

syntax 141
IDENTITY function SQL syntax 141
IFNULL function SQL syntax 142
image SQL 96
index_col Adaptive Server Enterprise

function 93
INDEX_ESTIMATE function SQL

syntax 143
indexes on 320
INSERTSTR function SQL syntax 143
INTTOHEX function SQL syntax 144
ISDATE function SQL syntax 144
ISNULL function SQL syntax 145
ISNUMERIC function SQL syntax145
Java 87
LCASE function SQL syntax 146
lct_admin Adaptive Server Enterprise

function 93
LEFT function SQL syntax 147
LENGTH function SQL syntax 147
LESSER function SQL syntax 148
LIST function SQL syntax 148

782

Index

LOCATE function SQL syntax 150
LOG function SQL syntax 151
LOG10 function SQL syntax 152
LONG_ULPLAN function SQL

syntax 152
LOWER function SQL syntax 153
LTRIM function SQL syntax 153
MAX function SQL syntax 154
MIN function SQL syntax 154
MINUTE function SQL syntax 155
MINUTES function SQL syntax 155
miscellaneous 88
MOD function SQL syntax 157
MONTH function SQL syntax 157
MONTHNAME function SQL syntax

157
MONTHS function SQL syntax 158
NEWID function SQL syntax 159
NEXT_CONNECTION function SQL

syntax 160
NEXT_DATABASE function SQL

syntax 161
NEXT_HTTP_HEADER function

SQL syntax 162
NEXT_HTTP_VARIABLE function

SQL syntax 162
NOW function SQL syntax 163
NULLIF function SQL syntax 163
NUMBER function SQL syntax 164
numeric 89
object_id Adaptive Server Enterprise

function 93
object_name Adaptive Server

Enterprise function 93
OPENXML function SQL syntax 165
PATINDEX function SQL syntax 168
PI function SQL syntax 169
PLAN function SQL syntax 170
POWER function SQL syntax 171
proc_role Adaptive Server Enterprise

function 93
PROPERTY function SQL syntax 172
PROPERTY_DESCRIPTION function

SQL syntax 171
PROPERTY_NAME function SQL

syntax 172
PROPERTY_NUMBER function SQL

syntax 173
QUARTER function SQL syntax 173
RADIANS function SQL syntax 174
RAND function SQL syntax 174
REMAINDER function SQL syntax

175
REPEAT function SQL syntax 175
REPLACE function SQL syntax 176
REPLICATE function SQL syntax 176
reserved_pgs Adaptive Server

Enterprise function 93
returning values from user-defined 528
REWRITE function SQL syntax 177
RIGHT function SQL syntax 179
ROUND function SQL syntax 179
rowcnt Adaptive Server Enterprise

function 93
RTRIM function SQL syntax 180
SECOND function SQL syntax 180
SECONDS function SQL syntax 180
SHORT_ULPLAN function SQL

syntax 181
show_role Adaptive Server Enterprise

function 93
SIGN function SQL syntax 182
SIMILAR function SQL syntax 183
SIN function SQL syntax 183
SORTKEY function SQL syntax 184
SOUNDEX function SQL syntax 187
SPACE function SQL syntax 188
SQLDIALECT function SQL syntax

188
SQRT function SQL syntax 189
STDDEV function SQL syntax 189
STDDEV_POP function SQL syntax

189
STDDEV_SAMP function SQL

syntax 190
STR function SQL syntax 191
string 90
STRING function SQL syntax 192
STRTOUUID function SQL syntax192
STUFF function SQL syntax 193
SUBSTR function SQL syntax 193
SUBSTRING function SQL syntax193
SUM function SQL syntax 194
suser_id Adaptive Server Enterprise

783

Index

function 93
suser_name Adaptive Server

Enterprise function 93
system 92, 93
TAN function SQL syntax 195
text SQL 96
TEXTPTR function SQL syntax 195
TODAY function SQL syntax 196
TRACEBACK function SQL syntax

196
Transact-SQL 93
TRANSACTSQL function SQL

syntax 197
TRIM function SQL syntax 197
TRUNCATE function SQL syntax 197
TRUNCNUM function SQL syntax

198
tsequal Adaptive Server Enterprise

function 93
types of function 84
UCASE function SQL syntax 199
UPPER function SQL syntax 199
used_pgs Adaptive Server Enterprise

function 93
user-defined 87
user_id Adaptive Server Enterprise

function 93
user_name Adaptive Server Enterprise

function 93
UUIDTOSTR function SQL syntax

200
valid_name Adaptive Server

Enterprise function 93
valid_user Adaptive Server Enterprise

function 93
VAR_POP function SQL syntax 201
VAR_SAMP function SQL syntax 202
VAREXISTS function SQL syntax 203
VARIANCE function SQL syntax 202
WATCOMSQL function SQL syntax

203
WEEKS function SQL syntax 204
XMLAGG function SQL syntax 205
XMLCONCAT function SQL syntax

206
XMLELEMENT function SQL syntax

207

XMLFOREST function SQL syntax
208

XMLGEN function SQL syntax 209
YEARS function SQL syntax 210
YMD function SQL syntax 211

functions, aggregate
about 84
AVG 100
COUNT 110
GROUPING 138
LIST 148
MAX 154
MIN 154
STDDEV 189
STDDEV_POP 189
STDDEV_SAMP 190
SUM 194
VAR_POP 201
VAR_SAMP 202
VARIANCE 202

functions, data type conversion
about 84
CAST 102
CONVERT 107
HEXTOINT 139
INTTOHEX 144
ISDATE 144
ISNULL 145

functions, date and time
about 85
DATE 113
DATEADD 114
DATEDIFF 114
DATEFORMAT 116
DATENAME 117
DATEPART 117
DATETIME 118
DAY 118
DAYNAME 118
DAYS 119
DOW 123
GETDATE 135
HOUR 139
HOURS 140
MINUTE 155
MINUTES 155
MONTH 157

784

Index

MONTHNAME 157
MONTHS 158
NOW 163
QUARTER 173
SECOND 180
SECONDS 180
TODAY 196
WEEKS 204
YEARS 210
YMD 211

functions, HTTP
about 90
HTTP_HEADER 141
HTTP_VARIABLE 141
NEXT_HTTP_HEADER 162
NEXT_HTTP_VARIABLE 162

functions, Java and SQL user-defined
about 87

functions, miscellaneous
about 88
ARGN 98
COALESCE 105
ERRORMSG 124
ESTIMATE 125
ESTIMATE_SOURCE 125
EXPERIENCE_ESTIMATE 131
EXPLANATION 132
GET_IDENTITY 134
GRAPHICAL_PLAN 135
GRAPHICAL_ULPLAN 137
GREATER 138
IDENTITY 141
IFNULL 142
INDEX_ESTIMATE 143
ISNUMERIC 145
LESSER 148
LONG_ULPLAN 152
NEWID 159
NULLIF 163
NUMBER 164
PLAN 170
REWRITE 177
SHORT_ULPLAN 181
SQLDIALECT 188
TRACEBACK 196
TRANSACTSQL 197
VAREXISTS 203

WATCOMSQL 203
functions, numeric

about 89
ABS 97
ACOS 97
ASIN 99
ATAN 99
ATAN2 100
ATN2 100
CEILING 103
CONNECTION_PROPERTY 106
COS 109
COT 110
DEGREES 123
EXP 131
FLOOR 133
LOG 151
LOG10 152
MOD 157
PI 169
POWER 171
RADIANS 174
RAND 174
REMAINDER 175
ROUND 179
SIGN 182
SIN 183
SQRT 189
TAN 195
TRUNCATE 197
TRUNCNUM 198

functions, string
about 90
ASCII 98
BYTE_LENGTH 101
BYTE_SUBSTR 101
CHAR 103
CHAR_LENGTH 104
CHARINDEX 104
COMPARE 105
CSCONVERT 111
DIFFERENCE 123
INSERTSTR 143
LCASE 146
LEFT 147
LENGTH 147
LOCATE 150

785

Index

LOWER 153
LTRIM 153
OPENXML 165
PATINDEX 168
REPEAT 175
REPLACE 176
REPLICATE 176
RIGHT 179
RTRIM 180
SIMILAR 183
SORTKEY 184
SOUNDEX 187
SPACE 188
STR 191
STRING 192
STRTOUUID 192
STUFF 193
SUBSTRING 193
TRIM 197
UCASE 199
UPPER 199
UUIDTOSTR 200
XMLAGG 205
XMLCONCAT 206
XMLELEMENT 207
XMLFOREST 208
XMLGEN 209

functions, system
about 92
DATALENGTH 113
DB_EXTENDED_PROPERTY 121
DB_ID 120
DB_NAME 120
DB_PROPERTY 122
EVENT_CONDITION 127
EVENT_CONDITION_NAME 128
EVENT_PARAMETER 128
NEXT_CONNECTION 160
NEXT_DATABASE 161
PROPERTY 172
PROPERTY_DESCRIPTION 171
PROPERTY_NAME 172
PROPERTY_NUMBER 173

functions, text and image
about 96
TEXTPTR 195

G
GET DATA statement

SQL syntax 450
GET DESCRIPTOR statement

SQL syntax 452
GET OPTION statement

SQL syntax 454
GET_IDENTITY function

SQL syntax 134
GETDATE function

SQL syntax 135
getting

binary data from columns 450
information from descriptor areas 452
option values 454

global autoincrement
creating events for 304

global temporary tables
creating 361

global variables
SQL syntax 39

GLOBAL_DATABASE_ID option
CREATE TABLE statement 364

globally unique identifiers
SQL syntax for NEWID function 159

GOTO statement
Transact-SQL syntax 455

GRANT CONNECT statement
SQL syntax 456

GRANT CONSOLIDATE statement
SQL syntax 460

GRANT DBA statement
SQL syntax 456

GRANT GROUP statement
SQL syntax 456

GRANT PUBLISH statement
SQL syntax 462

GRANT REMOTE DBA statement
SQL syntax 465

GRANT REMOTE statement
SQL syntax 463

GRANT RESOURCE statement
SQL syntax 456

GRANT statement
reviewing permissions 626
SQL syntax 456

granting

786

Index

consolidate permissions 460
permissions 456
publish permissions 462
remote DBA permissions 465
remote permissions 463

GRAPHICAL_PLAN function
SQL syntax 135

GRAPHICAL_ULPLAN function
SQL syntax 137

GREATER function
SQL syntax 138

GROUP authority
granting permissions 456

GROUP BY clause
SELECT statement 543

grouping
statements 267

GROUPING function
SQL syntax 138

GUIDs
SQL syntax for NEWID function 159
SQL syntax for STRTOUUID function

192
SQL syntax for UUIDTOSTR function

200
UNIQUEIDENTIFIER data type 73

H
handling

errors in embedded SQL 606
errors in Transact-SQL 515

HAVING clause
search conditions 22
SELECT statement 544

HELP statement
SQL syntax 466

hexadecimal constants
about 56

hexadecimal escape sequences
in SQL strings 8

HEXTOINT function
SQL syntax 139

histograms
selectivity estimates 30
SYSCOLSTAT system table 627
updating with CREATE STATISTICS

346

updating with LOAD TABLE 490
host stream parameter

MobiLink clients using HTTP 353
MobiLink clients using HTTPS 356
MobiLink clients using TCP/IP 351

host variables
declaring in embedded SQL 388
syntax 220

host_id Adaptive Server Enterprise
function 93

host_name Adaptive Server Enterprise
function 93

hostvar
syntax 220

HOUR function
SQL syntax 139

HOURS function
SQL syntax 140

how dates are stored 78
HTTP

MobiLink clients using 353
setting headers 742
setting options 743

HTTP functions
alphabetical list 90

HTTP_HEADER function
SQL syntax 141

HTTP_VARIABLE function
SQL syntax 141

HTTPS
MobiLink clients using 355

I
I/O

recalibrating the I/O cost model 227
icons

used in manuals xvi
identifiers

about 7
maximum length in ASA 7
SQL syntax 7

IDENTITY function
SQL syntax 141

idle server
creating events for 304

IdleTime event condition
about 127

787

Index

IF expressions
search conditions 22
SQL syntax 17

IF statement
SQL syntax 467
Transact-SQL syntax 469

IF UPDATE clause
in triggers 373, 377
in triggers in Transact-SQL 380

IFNULL function
SQL syntax 142

IMAGE data type
about 72

image SQL functions 96
images

reading from the database 518
importing data

into tables from files 472
IN conditions

SQL syntax 27
INCLUDE statement

SQL syntax 471
index_col Adaptive Server Enterprise

function 93
INDEX_ESTIMATE function

SQL syntax 143
indexes

ALTER INDEX statement 234
automatically created 321
clustered 234
compressing 522
creating 319
dropping 408
foreign keys 321
functions 320
in the system tables 642, 646
naming 321
owner 320
primary keys 321
renaming 234
system views 697
table use 321
unique 319
unique names 321
validating 602
views 320
virtual 319

indexes: built-in functions 319
indicator variables

about 220
indicators

comments 47
initializing

databases 292
INNER JOIN

SQL syntax 445
INPUT statement

SQL syntax 472
INSERT statement

SQL syntax 476
inserting

multi-row 425
rows in bulk 486
rows into tables 476
rows using cursors 513
wide inserts 425

inserting BLOBs 761
INSERTING condition

triggers 28
INSERTSTR function

SQL syntax 143
INSTALL JAVA statement

installing Java classes 480
SQL syntax 480

installing
Java classes 480

INT data type
about 59

INTEGER data type
about 59

INTEGRATED LOGIN permissions
granting 456

integrity
constraints 366

Interactive SQL
alphabetical list of all statements 213
BYE statement syntax 432
CLEAR statement syntax 279
CONFIGURE statement syntax 286
CONNECT statement syntax 287
connecting to a database 288
DISCONNECT statement syntax 407
escaping characters in strings 8
EXIT statement syntax 432

788

Index

HELP statement syntax 466
INPUT statement syntax 472
OUTPUT statement syntax 501
PARAMETERS statement syntax 506
procedure profiling 739
QUIT statement syntax 432
READ statement syntax 517
SET CONNECTION statement syntax

553
SET OPTION statement syntax 559
START ENGINE statement syntax 568
START LOGGING statement syntax

570
STOP LOGGING statement syntax578
SYSTEM statement syntax 582

Interactive SQL
return codes 432

INTERSECT operation
SQL syntax 482

intersecting
result of multiple select statements 482

Interval event condition
about 127

INTO clause
SELECT statement 543

INTTOHEX function
SQL syntax 144

invoking
procedures 273

IS
logical operators description 11
three-valued logic 29

IS FALSE conditions
SQL syntax 28

IS NOT NULL conditions
SQL syntax 28

IS NULL conditions
SQL syntax 28

IS TRUE conditions
SQL syntax 28

IS UNKNOWN conditions
SQL syntax 28

ISDATE function
SQL syntax 144

ISNULL function
SQL syntax 145

ISNUMERIC function

SQL syntax 145
isolation levels

cursors 498
iterating

over cursors 441

J
JAR files

installing 480
removing 521

Java
installing 480
system tables 694
user-defined functions 87

Java classes
CREATE DATABASE statement 294
loaded in the database 720
troubleshooting 720

Java in the database
CREATE DATABASE statement 294
enabling a database 225
exporting 503
installing classes 480
OUTPUT statement 503
removing classes 521
upgrading databases 225

Java signatures
CREATE PROCEDURE statement328
example 318

Java VM
starting 569
stopping 577

jConnect
CREATE DATABASE statement 294

JDBC
upgrading databases 225

join operators
compatibility with Adaptive Server

Enterprise 13
joins

ANSI equivalency 177
deleting rows based on joins 399
FROM clause syntax 445
updates 599
updates based on 594, 600

Julian day 119

789

Index

K
KEY JOIN

SQL syntax 445
keywords

SQL syntax 4

L
labels

for statements 221, 455
language elements

SQL syntax 4
large binary objects

getting from columns 450
large databases

index storage 320
LAST USER

special value 34
lateral derived tables

FROM clause outer references 446
LCASE function

SQL syntax 146
lct_admin Adaptive Server Enterprise

function 93
leap years

about 80
LEAVE statement

SQL syntax 483
LEFT function

SQL syntax 147
LEFT OUTER JOIN

SQL syntax 445
LENGTH function

SQL syntax 147
LESSER function

SQL syntax 148
LIKE conditions

and case-sensitivity 25
and collations 25
maximum pattern length 25
SQL syntax 24

limiting the number of rows returned 541
LIST function

SQL syntax 148
lists

LIST function syntax 148
literal strings

SQL syntax 8
liveness timeout

database server 739
liveness_timeout

MobiLink clients using TCP/IP 352
LOAD STATISTICS statement

SQL syntax 485
LOAD TABLE statement

SQL syntax 486
loading

bulk inserts 486
local temporary tables

creating 397
local variables

SQL syntax 37
LOCATE function

SQL syntax 150
LOCK TABLE statement

SQL syntax 493
locking

blocks 710
tables 493

locks
displaying 721

log files
allocating space for 229
analyzing the request-level log 717,

718
determining available space for 714

LOG function
SQL syntax 151

LOG10 function
SQL syntax 152

LogFreePercent event condition
about 127

LogFreeSpace event condition
about 127

logging
starting in Interactive SQL 570
stopping in Interactive SQL 578
updating columns without 608

logical operators
compatibility with Adaptive Server

Enterprise 11
SQL syntax 11
three-valued logic 29

logins

790

Index

assigning for remote servers 313
dropping for remote servers 412

LogSize event condition
about 127

LONG BINARY data type
about 72

long column names
retrieving 404

LONG VARCHAR data type
about 54

LONG_ULPLAN function
SQL syntax 152

LOOP statement
SQL syntax 495

looping
over cursors 441

LOWER function
SQL syntax 153

LTRIM function
SQL syntax 153

M
MAPI

extended stored procedures 753
return codes 756

MAPI message type
about 240, 337, 414

mathematical expressions
arithmetic operators 12

MAX function
SQL syntax 154

MDSR encryption algorithm
CREATE DATABASE statement 294

MEMBERSHIP clause
granting permissions 456

memory
allocating for descriptor areas 223

message control parameters
setting 560

MESSAGE statement
SQL syntax 496

messages
altering remote types 240
creating 323
creating remote types 337
displaying 496
dropping remote types 414

messages windows
printing messages in 512

method signatures
Java 328

MIN function
SQL syntax 154

MINUTE function
SQL syntax 155

MINUTES function
SQL syntax 155

MobiLink
creating publications 334

MOD function
SQL syntax 157

MONEY data type
about 63

monitoring performance
execution time determination 718

MONTH function
SQL syntax 157

MONTHNAME function
SQL syntax 157

MONTHS function
SQL syntax 158

multi-row fetches
FETCH statement 437
OPEN statement 499

multi-row inserts 425
multibyte character sets

unloading data 488, 590

N
names

column names 16
NATURAL JOIN

SQL syntax 445
nesting

user-defined transactions 270
network_connect_timeout stream

parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 356
MobiLink clients using TCP/IP 352

network_leave_open stream parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 356
MobiLink clients using TCP/IP 352

791

Index

network_name stream parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 356
MobiLink clients using TCP/IP 352

new line characters
in SQL strings 8

NEWID function
SQL syntax 159

newsgroups
technical support xviii

NEXT_CONNECTION function
SQL syntax 160

NEXT_DATABASE function
SQL syntax 161

NEXT_HTTP_HEADER function
SQL syntax 162

NEXT_HTTP_VARIABLE function
SQL syntax 162

NO SCROLL cursors
declaring 390

NOT
bitwise operators 13
logical operators description 11
three-valued logic 29

NOW function
SQL syntax 163

NULL
about 48
Adaptive Server Enterprise

compatibility 49
DISTINCT clause 49
ISNULL function 145
NULL value 48
set operators 49
three-valued logic 29, 48

NULLIF function 19
about 163

NUMBER function
SQL syntax 164
updates 593, 599

number of rows 679
NUMERIC data type

about 60
numeric functions

alphabetical list 89

O
object_id Adaptive Server Enterprise

function 93
object_name Adaptive Server Enterprise

function 93
ODBC

declaring static cursors 390
OLAP

GROUPING function 138
ROLLUP operation 543

ON EXCEPTION RESUME clause
about 326

ON phrase
search conditions 22

ON_TSQL_ERROR option
and ON EXCEPTION RESUME

clause 326
OPEN statement

SQL syntax 498
opening

cursors 498
OPENXML function

SQL syntax 165
operating system

executing commands 582
operator precedence

SQL syntax 13
operators

about 10
arithmetic operators 12
bitwise operators 13
comparison operators 10
logical operators description 11
precedence of operators 13
string operators 12

optimization
defining existing tables and 310

optimizer
CREATE STATISTICS statement 346
explicit selectivity estimates 30

optimizer plans
getting text specification 434

optimizer statistics
dropping 418

OPTION clause
CREATE SYNCHRONIZATION

USER 358

792

Index

options
about 556
getting values 454
in the system tables 653
initial settings 746, 751
MobiLink synchronization clients 358
overriding 739
QUOTED_IDENTIFIER and T-SQL

compatibility 20
setting 556
setting in Interactive SQL 286, 559
setting in Transact-SQL 550
setting remote 560
system views 697, 700
Transact-SQL compatibility 751

OR
bitwise operators 13
logical operators description 11
three-valued logic 29

ORDER BY clause 544
order of operations

SQL operator precedence 13
out of disk space

creating events for 304
outer references

FROM clause 446
lateral derived tables 446

OUTPUT statement
Java data 503
SQL syntax 501

P
packages

installing Java classes 480
removing Java classes 521

page size
creating databases 293

page usage
tables 744

pages
viewing settings for PCTFREE 618

parameters
for Interactive SQL command files 506

PARAMETERS statement
SQL syntax 506

passthrough mode
starting 507

stopping 507
PASSTHROUGH statement

SQL syntax 507
passwords

changing 456
in the system tables 688

PATINDEX function
SQL syntax 168

pattern matching
and case-sensitivity 25
and collations 25
LIKE conditions 24
maximum pattern length 25
PATINDEX function 168
wildcards 168

PCTFREE setting
system tables 618

performance
compression statistics 708
pre-allocating space 229
recalibrating the I/O cost model 227
recalibrating the server 225
updates 600

permissions
CONSOLIDATE 460
granting 456
granting consolidate 460
granting publish 462
granting remote 463
granting remote DBA 465
in the system tables 626, 681
revoking 530
revoking consolidate 532
revoking publish 533
revoking remote 535
revoking remote DBA 536
SYSCOLAUTH system view 696
system views 699

persistent stream parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 357

PI function
SQL syntax 169

PLAN function
SQL syntax 170

plans
and cursors 132, 135, 170

793

Index

getting text specification 434
SQL syntax 132, 135, 170

pooling
enabling pooling of connections 563

port stream parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 357
MobiLink clients using TCP/IP 352

positioned DELETE statement
SQL syntax 401

POWER function
SQL syntax 171

precedence
SQL operator precedence 13

predicates
ANY or ALL conditions 23
comparison operators 10
EXISTS conditions 27
explicit selectivity estimates 30
IS NULL conditions 28
IS TRUE or FALSE conditions 28
IS UNKNOWN conditions 28
LIKE conditions 24
SQL BETWEEN conditions 24
SQL IN conditions 27
SQL subqueries in 23
SQL syntax 22
three-valued logic 29

PREPARE statement
SQL syntax 508

PREPARE TO COMMIT statement
SQL syntax 511

prepared statements
dropping 417
executing 425

preparing
for two-phase commit 511
statements 508

primary keys
ALTER INDEX statement 234
clustered 234
generating unique values 159
generating unique values using UUIDs

159
in the system tables 629, 679
integrity constraints 368
order of columns 368

remote tables 747, 748
UUIDs and GUIDs 159

primary tables
in the system tables 639

PRINT statement
Transact-SQL syntax 512

printing
messages in the message window 512

proc_role Adaptive Server Enterprise
function 93

procedure profiling
disabling in Interactive SQL 740
enabling in Interactive SQL 740
in Interactive SQL 739
summary of procedures 735, 736
viewing in Interactive SQL 735, 736

procedures 508
altering 236
catalog, list 707
CREATE PROCEDURE SQL

statement 332
creating 324
creating in Transact-SQL 332
dropping 408
executing in dynamic SQL 429
executing stored in Transact-SQL 427
exiting 528
extended list 753
external function calls 316, 327
invoking 273
raising errors in Transact-SQL 515
replicating 236
resuming execution of 527
returning values from 528
selecting from 446
system 705
Transact-SQL, list 763
variable result sets 325, 405

product name
retrieving 760

properties
server 172

PROPERTY function
SQL syntax 172

PROPERTY_DESCRIPTION function
SQL syntax 171

PROPERTY_NAME function

794

Index

SQL syntax 172
PROPERTY_NUMBER function

SQL syntax 173
protocols

MobiLink clients using ActiveSync
358

MobiLink clients using HTTP 353
MobiLink clients using HTTPS 355
MobiLink clients using TCP/IP 351

proxy procedures
creating 324

proxy tables
creating 310, 363

proxy_host stream parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 357

proxy_port stream parameter
MobiLink clients using HTTP 354
MobiLink clients using HTTPS 357

PUBLIC group
in the system tables 689

publications
altering 238
creating 334
designing 601
dropping 413
updates 601
updating 594

publish permissions
granting 462
revoking 533

publisher
address 337, 414
GRANT PUBLISH statement 462
remote 463

publishers
addresses 240

PURGE clause
FETCH statement 437

PUT statement
SQL syntax 513

putting
rows into cursors 513

Q
QUARTER function

SQL syntax 173

QUIT statement
SQL syntax 432

quitting
Interactive SQL 432

quitting time
database server 739

quotation marks
compatibility with Adaptive Server

Enterprise 20
database objects 7
single vs. double 20
SQL identifiers 7

QUOTED_IDENTIFIER option
Adaptive Server Enterprise

compatibility 550
T-SQL expression compatibility 20

QUOTES option
LOAD TABLE statement 488

R
RADIANS function

SQL syntax 174
RAISERROR statement

Transact-SQL syntax 515
raising

errors in Transact-SQL 515
RAND function

SQL syntax 174
read only

locking tables 493
READ statement

SQL syntax 517
reading

text and image values from the
database 518

reading files
stored procedures 761, 762

reading SQL statements from files 517
READTEXT statement

Transact-SQL syntax 518
REAL data type

about 61
recalibrating the cost model 225
recovery

LOAD TABLE 490
redescribing cursors 326
REFERENCES permissions

795

Index

granting 456
referential integrity

actions 369
FROM clause 446

relationships
in the system tables 639

RELEASE SAVEPOINT statement
SQL syntax 519

releasing
savepoints 519

REMAINDER function
SQL syntax 175

remember_last_statement
about 739

remote data access
FORWARD TO statement 443

remote DBA permissions
granting 465
revoking 536

remote message types
altering 240
creating 337
dropping 414

remote options
setting 560

remote permissions
granting 463
revoking 535

remote procedures
creating 324, 327
creating in Transact SQL 332

REMOTE RESET statement
SQL syntax 520

remote servers
altering attributes 241
assigning logins for 313
capabilities 621, 622, 751
creating tables 361
dropping 415
dropping logins for 412
sending SQL statements to 443

remote tables
columns 746
creating 363
foreign keys 747, 748
listing 749
primary keys 747, 748

remote users
REVOKE REMOTE statement 535

remoteoption table
about 666

remoteoptiontype table
about 667

REMOVE JAVA statement
SQL syntax 521

removing
granting permissions 456
Java classes 521
permissions 530

renaming
columns 255
tables 255

REORGANIZE TABLE statement
SQL syntax 522

reorganizing
tables 522

REPEAT function
SQL syntax 175

REPLACE function
SQL syntax 176

replacing objects
sa_make_object 723

REPLICATE function
SQL syntax 176

replication
procedures 236

request_level_debugging
about 739

request_level_logging
about 739

reserved words
SQL syntax 4
using as identifiers 20

reserved_pgs Adaptive Server Enterprise
function 93

RESIGNAL statement
SQL syntax 524

resignaling
exceptions 524

RESOURCE authority
granting permissions 456

resource authority
in the system tables 688

RESTORE DATABASE statement

796

Index

SQL syntax 525
restoring

databases from archives 525
RESTRICT action

CREATE TABLE statement 369
result sets

resuming execution of procedures 527
selecting from stored procedures 446
shape of 405
unloading 588
variable 325, 405, 508

RESUME statement
SQL syntax 527

resuming
execution of procedures 527

return codes
Interactive SQL 432

RETURN statement
SQL syntax 528

returning
values from procedures 528

REVOKE CONSOLIDATE statement
SQL syntax 532

REVOKE PUBLISH statement
SQL syntax 533

REVOKE REMOTE DBA statement
SQL syntax 536

REVOKE REMOTE statement
SQL syntax 535

REVOKE statement
SQL syntax 530

revoking
consolidate permissions 532
permissions 530
publish permissions 533
remote DBA permissions 536
remote permissions 535

REWRITE function
SQL syntax 177

RIGHT function
SQL syntax 179

RIGHT OUTER JOIN
SQL syntax 445

Rijndael encryption algorithm
CREATE DATABASE statement 294

role names
about 368

foreign keys 369
ROLLBACK statement

SQL syntax 537
ROLLBACK TO SAVEPOINT statement

SQL syntax 538
ROLLBACK TRIGGER statement

SQL syntax 539
rolling back

transactions 537
transactions to savepoints 538
triggers 539

ROLLUP operation
GROUPING function 138
SELECT statement 543

ROUND function
SQL syntax 179

roundoff errors
about 56

row limits 541
row-level triggers 374
rowcnt Adaptive Server Enterprise

function 93
ROWCOUNT option

Adaptive Server Enterprise
compatibility 550

rows
deleting all from a table 584
deleting from cursors 401
fetching from cursors 436
inserting in bulk 486
inserting into tables 476
inserting using cursors 513
limiting number returned 541
selecting 541
unloading 588
updating 592

RTRIM function
SQL syntax 180

rules
SQL language syntax 4

S
sa_audit_string system procedure

syntax 707
sa_check_commit system procedure

syntax 707
sa_conn_activity system procedure

797

Index

syntax 708
sa_conn_compression_info system

procedure
syntax 708

sa_conn_info system procedure
syntax 710

sa_conn_properties system procedure
syntax 711

sa_conn_properties_by_name system
procedure

syntax 712
sa_db_info system procedure

syntax 712
sa_db_properties system procedure

syntax 713
sa_disk_free_space system procedure

syntax 714
sa_eng_properties system procedure

syntax 715
sa_flush_cache system procedure

syntax 716
sa_flush_statistics system procedure

syntax 716
sa_get_dtt system procedure

syntax 717
sa_get_histogram system procedure

syntax 717
sa_get_request_profile system procedure

syntax 717
sa_get_request_times system procedure

syntax 718
sa_get_server_messages system

procedure
syntax 719

sa_index_density system procedure
syntax 719

sa_index_levels system procedure
syntax 720

sa_java_loaded_classes system procedure
syntax 720

sa_locks system procedure
syntax 721

sa_make_object system procedure
syntax 723

sa_migrate system procedure
syntax 724

sa_migrate_create_fks system procedure

syntax 727
sa_migrate_create_remote_fks_list

system procedure
syntax 728

sa_migrate_create_remote_table_list
system procedure

syntax 729
sa_migrate_create_tables system

procedure
syntax 731

sa_migrate_data system procedure
syntax 733

sa_migrate_drop_proxy_tables system
procedure

syntax 734
sa_procedure_profile system procedure

syntax 735
sa_procedure_profile_summary system

procedure
syntax 736

sa_reset_identity system procedure
syntax 738

sa_server_option system procedure
syntax 739

sa_set_http_header system procedure
syntax 742

sa_set_http_option system procedure
syntax 743

sa_statement_text system procedure
syntax 743

sa_table_fragmentation system procedure
syntax 744

sa_table_page_usage system procedure
syntax 744

sa_validate system procedure
syntax 745

SAVEPOINT statement
SQL syntax 540

savepoints
creating 540
releasing 519
rolling back to savepoints 538

scheduled events
triggering 583
WAITFOR statement 605

scheduling
creating events 304

798

Index

events 231, 304
WAITFOR 605

schema
system tables 611

schemas
creating 339

SCROLL cursors
declaring 390

search conditions
ANY or ALL conditions 23
EXISTS conditions 27
explicit selectivity estimates 30
IS NULL conditions 28
IS TRUE or FALSE conditions 28
IS UNKNOWN conditions 28
LIKE conditions 24
SQL BETWEEN conditions 24
SQL IN conditions 27
SQL syntax 22
subqueries in 23
three-valued logic 29

SECOND function
SQL syntax 180

SECONDS function
SQL syntax 180

security
replication 465, 536

security stream parameter
MobiLink clients using HTTP 355
MobiLink clients using TCP/IP 352

select list
describing cursors 403

SELECT permissions
granting 456

SELECT statement
selecting from stored procedures 446
SQL syntax 541

selecting
for unloading 588
forming intersections 482
forming set differences 423
forming unions 586
rows 541

selectivity estimates
source of estimates 125
user-defined 30

SELF_RECURSION option

Adaptive Server Enterprise
compatibility 550

SEND AT clause 460, 463
publish 462

SEND EVERY clause 460, 463
sending

SQL statements to remote servers 443
sending and retrieving date values 79
servers

altering remote attributes 241
altering web services 243
creating 341
creating events for idle 304
creating web 343
dropping remote 415
dropping web 416
starting database 568
stopping database 576

services
adding comments 282
altering web 243
creating web 343
dropping web 416

SET CONNECTION statement
SQL syntax 553

SET DEFAULT action
CREATE TABLE statement 369

SET DESCRIPTOR statement
SQL syntax 554

SET NULL action
CREATE TABLE statement 369

set operators
NULL 49

SET OPTION statement
Interactive SQL syntax 559
SQL syntax 556
Transact-SQL syntax 550

SET PERMANENT statement
Interactive SQL syntax 559

SET REMOTE OPTION statement
SQL syntax 560

SET SQLCA statement
SQL syntax 562

SET statement
SQL syntax 548
Transact-SQL syntax 550

SET TEMPORARY OPTION statement

799

Index

Interactive SQL syntax 559
SQL syntax 556

setting
connections 553
descriptor areas 554
options 556
options in Interactive SQL 286, 559
options in Transact-SQL 550
remote options 560
SQLCAs 562
users 563
values of SQL variables 548

SETUSER statement
SQL syntax 563

SHORT_ULPLAN function
SQL syntax 181

show_role Adaptive Server Enterprise
function 93

SIGN function
SQL syntax 182

SIGNAL statement
SQL syntax 565

signaling
errors 515, 565
exceptions 524

signatures
Java methods 328
Java signature example 318

SIMILAR function
SQL syntax 183

SIN function
SQL syntax 183

SMALLDATETIME data type
about 70

SMALLINT data type
about 61

SMTP
extended stored procedures 753
return codes 757

SOME conditions
SQL syntax 23

sorting
in the system tables 624
SORTKEY function 184

SORTKEY function
SQL syntax 184

SOUNDEX function

SQL syntax 187
SP

statement indicators 222
sp_addgroup system procedure 763
sp_addlogin system procedure 763
sp_addmessage system procedure 323,

763
sp_addtype system procedure 763
sp_adduser system procedure 763
sp_changegroup system procedure 763
sp_column_privileges

catalog procedure 764
sp_column_privileges catalog procedure

764
sp_columns catalog procedure 764
sp_dboption system procedure 763
sp_dropgroup system procedure 763
sp_droplogin system procedure 763
sp_dropmessage system procedure 763
sp_droptype system procedure 763
sp_dropuser system procedure 763
sp_fkeys catalog procedure 764
sp_getmessage system procedure 763
sp_helptext system procedure 763
sp_login_environment system procedure

syntax 746
sp_password system procedure 763
sp_pkeys catalog procedure 764
sp_remote_columns system procedure

syntax 746
sp_remote_exported_keys system

procedure
syntax 747

sp_remote_imported_keys system
procedure

syntax 748
sp_remote_primary_keys system

procedure
syntax 749

sp_remote_tables system procedure
syntax 749

sp_servercaps system procedure
syntax 751

sp_special_columns catalog procedure
764

sp_sproc_columns catalog procedure 764
sp_stored_procedures catalog procedure

800

Index

764
sp_tables catalog procedure 764
sp_tsql_environment system procedure

syntax 751
SPACE function

SQL syntax 188
special characters

in SQL strings 8
special tables

about 611
special values

CURRENT DATABASE 32
CURRENT DATE 32
CURRENT PUBLISHER 32
CURRENT TIME 32
CURRENT TIMESTAMP 33
CURRENT USER 33
CURRENT UTC TIMESTAMP 33
LAST USER 34
NULL 48
SQL syntax 32
SQLCODE 34
SQLSTATE 34
TIMESTAMP 35
USER 35
UTC TIMESTAMP 36

SQL
alphabetical list of all statements 213

SQL Anywhere Studio
documentation xii

SQL descriptor area
INCLUDE statement 471
inserting rows using cursors 513

SQL descriptor areas
DESCRIBE statement 403

SQL functions
ABS function syntax 97
ACOS function syntax 97
aggregate 84
ARGN function syntax 98
ASCII function syntax 98
ASIN function syntax 99
ATAN function syntax 99
ATAN2 function syntax 100
ATN2 function syntax 100
AVG function syntax 100
BYTE_LENGTH function syntax 101

BYTE_SUBSTR function syntax 101
CAST function syntax 102
CEILING function syntax 103
CHAR function syntax 103
CHAR_LENGTH function syntax 104
CHARINDEX function syntax 104
COALESCE function syntax 105
COMPARE function syntax 105
CONNECTION_PROPERTY function

syntax 106
CONVERT function syntax 107
COS function syntax 109
COT function syntax 110
COUNT function syntax 110
CSCONVERT function syntax 111
data type conversion 84
DATALENGTH function syntax 113
date and time 85
DATE function syntax 113
DATEADD function syntax 114
DATEDIFF function syntax 114
DATEFORMAT function syntax 116
DATENAME function syntax 117
DATEPART function syntax 117
DATETIME function syntax 118
DAY function syntax 118
DAYNAME function syntax 118
DAYS function syntax 119
DB_EXTENDED_PROPERTY

function syntax 121
DB_ID function syntax 120
DB_NAME function syntax 120
DB_PROPERTY function syntax 122
DEGREES function syntax 123
DIFFERENCE function syntax 123
DOW function syntax 123
ERRORMSG function syntax 124
ESTIMATE function syntax 125
ESTIMATE_SOURCE function

syntax 125
EVENT_CONDITION function

syntax 127
EVENT_CONDITION_NAME

function syntax 128
EVENT_PARAMETER function

syntax 128
EXP function syntax 131

801

Index

EXPERIENCE_ESTIMATE function
syntax 131

EXPLANATION function syntax 132
EXPRTYPE syntax 133
FLOOR function syntax 133
GET_IDENTITY function syntax 134
GETDATE function syntax 135
GRAPHICAL_PLAN function syntax

135
GRAPHICAL_ULPLAN function

syntax 137
GREATER function syntax 138
GROUPING function syntax 138
HEXTOINT function syntax 139
HOUR function syntax 139
HOURS function syntax 140
HTTP 90
HTTP_HEADER function syntax 141
HTTP_VARIABLE function syntax

141
IDENTITY function syntax 141
IFNULL function syntax 142
image 96
INDEX_ESTIMATE function syntax

143
INSERTSTR function syntax 143
INTTOHEX function syntax 144
ISDATE function syntax 144
ISNULL function syntax 145
ISNUMERIC function syntax 145
LCASE function syntax 146
LEFT function syntax 147
LENGTH function syntax 147
LESSER function syntax 148
LIST function syntax 148
LOCATE function syntax 150
LOG function syntax 151
LOG10 function syntax 152
LONG_ULPLAN function syntax 152
LOWER function syntax 153
LTRIM function syntax 153
MAX function syntax 154
MIN function syntax 154
MINUTE function syntax 155
MINUTES function syntax 155
miscellaneous 88
MOD function syntax 157

MONTH function syntax 157
MONTHNAME function syntax 157
MONTHS function syntax 158
NEWID function syntax 159
NEXT_CONNECTION function

syntax 160
NEXT_DATABASE function syntax

161
NEXT_HTTP_HEADER function

syntax 162
NEXT_HTTP_VARIABLE function

syntax 162
NOW function syntax 163
NULLIF function syntax 163
NUMBER function syntax 164
numeric 89
OPENXML function syntax 165
PATINDEX function syntax 168
PI function syntax 169
PLAN function syntax 170
POWER function syntax 171
PROPERTY function syntax 172
PROPERTY_DESCRIPTION function

syntax 171
PROPERTY_NAME function syntax

172
PROPERTY_NUMBER function

syntax 173
QUARTER function syntax 173
RADIANS function syntax 174
RAND function syntax 174
REMAINDER function syntax 175
REPEAT function syntax 175
REPLACE function syntax 176
REPLICATE function syntax 176
REWRITE function syntax 177
RIGHT function syntax 179
ROUND function syntax 179
RTRIM function syntax 180
SECOND function syntax 180
SECONDS function syntax 180
SHORT_ULPLAN function syntax181
SIGN function syntax 182
SIMILAR function syntax 183
SIN function syntax 183
SORTKEY function syntax 184
SOUNDEX function syntax 187

802

Index

SPACE function syntax 188
SQLDIALECT function syntax 188
SQRT function syntax 189
STDDEV function syntax 189
STDDEV_POP function syntax 189
STDDEV_SAMP function syntax 190
STR function syntax 191
string 90
STRING function syntax 192
STRTOUUID function syntax 192
STUFF function syntax 193
SUBSTR function syntax 193
SUBSTRING function syntax 193
SUM function syntax 194
system 92
TAN function syntax 195
text 96
TEXTPTR function syntax 195
TODAY function syntax 196
TRACEBACK function syntax 196
TRANSACTSQL function syntax 197
TRIM function syntax 197
TRUNCATE function syntax 197
TRUNCNUM function syntax 198
types of function 84
UCASE function syntax 199
UPPER function syntax 199
user-defined 87
UUIDTOSTR function syntax 200
VAR_POP function syntax 201
VAR_SAMP function syntax 202
VAREXISTS function syntax 203
VARIANCE function syntax 202
WATCOMSQL function syntax 203
WEEKS function syntax 204
XMLAGG function syntax 205
XMLCONCAT function syntax 206
XMLELEMENT function syntax 207
XMLFOREST function syntax 208
XMLGEN function syntax 209
YEARS function syntax 210
YMD function syntax 211

SQL language elements
about 3

SQL Remote
articles 616, 617
creating publications 334

creating subscriptions 347
setting remote options 560
system tables 616, 617

SQL Remote system tables
remoteoption 666
remoteoptiontype 667

SQL statements
ALLOCATE DESCRIPTOR syntax

223
alphabetical list of all statements 213
ALTER DATABASE syntax 225
ALTER DBSPACE syntax 229
ALTER EVENT syntax 231
ALTER FUNCTION syntax 233
ALTER INDEX syntax 234
ALTER PROCEDURE syntax 236
ALTER PUBLICATION syntax 238
ALTER REMOTE MESSAGE TYPE

syntax 240
ALTER SERVER syntax 241
ALTER SERVICE syntax 243
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax 246
ALTER SYNCHRONIZATION USER

syntax 248
ALTER TABLE syntax 250
ALTER TRIGGER syntax 258
ALTER VIEW syntax 259
ALTER WRITEFILE syntax 261
BACKUP syntax 263
BEGIN and END syntax 267
BEGIN DECLARE syntax 388
BEGIN TRANSACTION syntax 270
BREAK Transact-SQL syntax 607
BYE syntax 432
CALL syntax 273
CASE syntax 275
CHECKPOINT syntax 278
CLEAR syntax 279
CLOSE syntax 280
COMMENT syntax 282
COMMIT syntax 284
CONFIGURE syntax 286
CONNECT syntax 287
CONTINUE Transact-SQL syntax 607
CREATE COMPRESSED

DATABASE syntax 290

803

Index

CREATE DATABASE syntax 292
CREATE DBSPACE syntax 297
CREATE DECRYPTED FILE syntax

299
CREATE DOMAIN syntax 300
CREATE ENCRYPTED FILE syntax

302
CREATE EVENT syntax 304
CREATE EXISTING TABLE syntax

310
CREATE EXPANDED DATABASE

syntax 290
CREATE EXTERNLOGIN syntax 313
CREATE FUNCTION syntax 315
CREATE INDEX syntax 319
CREATE MESSAGE Transact-SQL

syntax 323
CREATE PROCEDURE syntax 324
CREATE PROCEDURE

Transact-SQL syntax 332
CREATE PUBLICATION syntax 334
CREATE REMOTE MESSAGE

TYPE syntax 337
CREATE SCHEMA syntax 339
CREATE SERVER syntax 341
CREATE SERVICE syntax 343
CREATE STATISTICS syntax 346
CREATE SUBSCRIPTION syntax347
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax 349
CREATE SYNCHRONIZATION

USER syntax 351
CREATE TABLE syntax 361
CREATE TRIGGER syntax 373, 377
CREATE TRIGGER Transact-SQL

syntax 380
CREATE VARIABLE syntax 381
CREATE VIEW syntax 382
CREATE WRITEFILE syntax 384
DEALLOCATE DESCRIPTOR

syntax 387
DEALLOCATE syntax 386
DECLARE CURSOR syntax 390
DECLARE CURSOR Transact-SQL

syntax 395
DECLARE LOCAL TEMPORARY

TABLE syntax 397

DECLARE syntax 389
DELETE (positioned) syntax 401
DELETE syntax 399
DESCRIBE syntax 403
DISCONNECT syntax 407
documentation conventions 220
DROP CONNECTION syntax 411
DROP DATABASE syntax 410
DROP DATATYPE syntax 408
DROP DBSPACE syntax 408
DROP DOMAIN syntax 408
DROP EVENT syntax 408
DROP EXTERNLOGIN syntax 412
DROP FUNCTION syntax 408
DROP INDEX syntax 408
DROP MESSAGE syntax 408
DROP PROCEDURE syntax 408
DROP PUBLICATION syntax 413
DROP REMOTE MESSAGE TYPE

syntax 414
DROP SERVER syntax 415
DROP SERVICE syntax 416
DROP STATEMENT syntax 417
DROP STATISTICS syntax 418
DROP SUBSCRIPTION syntax 419
DROP SYNCHRONIZATION

SUBSCRIPTION syntax 420
DROP SYNCHRONIZATION USER

syntax 421
DROP syntax 408
DROP TABLE syntax 408
DROP TRIGGER syntax 408
DROP VARIABLE syntax 422
DROP VIEW syntax 408
END DECLARE syntax 388
EXCEPT syntax 423
EXECUTE IMMEDIATE syntax 429
EXECUTE syntax 425
EXECUTE Transact-SQL syntax 427
EXIT syntax 432
EXPLAIN syntax 434
FETCH syntax 436
FOR syntax 441
FORWARD TO syntax 443
FROM clause syntax 445
GET DATA syntax 450
GET DESCRIPTOR syntax 452

804

Index

GET OPTION syntax 454
GOTO Transact-SQL syntax 455
GRANT CONSOLIDATE syntax 460
GRANT PUBLISH syntax 462
GRANT REMOTE DBA syntax 465
GRANT REMOTE syntax 463
GRANT syntax 456
HELP syntax 466
IF syntax 467
IF Transact-SQL syntax 469
INCLUDE syntax 471
INPUT syntax 472
INSERT syntax 476
INSTALL JAVA syntax 480
installing Java classes 480
INTERSECT syntax 482
LEAVE syntax 483
LOAD STATISTICS syntax 485
LOAD TABLE syntax 486
LOCK TABLE syntax 493
LOOP syntax 495
MESSAGE syntax 496
OPEN syntax 498
OUTPUT syntax 501
PARAMETERS syntax 506
PASSTHROUGH syntax 507
PREPARE syntax 508
PREPARE TO COMMIT syntax 511
PRINT Transact-SQL syntax 512
PUT syntax 513
QUIT syntax 432
RAISERROR Transact-SQL syntax

515
READ syntax 517
READTEXT Transact-SQL syntax518
RELEASE SAVEPOINT syntax 519
REMOTE RESET syntax 520
REMOVE JAVA syntax 521
REORGANIZE TABLE syntax 522
RESIGNAL syntax 524
RESTORE DATABASE syntax 525
RESUME syntax 527
RETURN syntax 528
REVOKE CONSOLIDATE syntax 532
REVOKE PUBLISH syntax 533
REVOKE REMOTE DBA syntax 536
REVOKE REMOTE syntax 535

REVOKE syntax 530
ROLLBACK syntax 537
ROLLBACK TO SAVEPOINT syntax

538
ROLLBACK TRIGGER syntax 539
SAVEPOINT syntax 540
SELECT syntax 541
sending to remote servers 443
SET CONNECTION syntax 553
SET DESCRIPTOR syntax 554
SET OPTION syntax 556, 559
SET OPTION Transact-SQL syntax

550
SET REMOTE OPTION syntax 560
SET SQLCA syntax 562
SET syntax 548
SET Transact-SQL syntax 550
SETUSER syntax 563
SIGNAL syntax 565
START DATABASE syntax 566
START ENGINE syntax 568
START JAVA syntax 569
START LOGGING syntax 570
START SUBSCRIPTION syntax 571
START SYNCHRONIZATION

DELETE syntax 573
STOP DATABASE syntax 575
STOP ENGINE syntax 576
STOP JAVA syntax 577
STOP LOGGING syntax 578
STOP SUBSCRIPTION syntax 579
STOP SYNCHRONIZATION

DELETE syntax 580
SYNCHRONIZE SUBSCRIPTION

syntax 581
SYSTEM syntax 582
TRIGGER EVENT syntax 583
TRUNCATE TABLE syntax 584
UNION syntax 586
UNLOAD syntax 588
UNLOAD TABLE syntax 590
UPDATE (positioned) syntax 597
UPDATE syntax 592, 599
VALIDATE INDEX syntax 602
VALIDATE TABLE syntax 603
WAITFOR syntax 605
WHENEVER syntax 606

805

Index

WHILE syntax 495
WHILE Transact-SQL syntax 607
WRITETEXT Transact-SQL syntax

608
SQL syntax

ALL conditions 23
alphabetical list of all statements 213
ANY conditions 23
arithmetic operators 12
BETWEEN conditions 24
bitwise operators 13
CASE expression 18
column names 16
comments 47
comparison operators 10
connection-level variables 38
constants 16
CURRENT DATABASE special value

32
CURRENT DATE special value 32
CURRENT PUBLISHER special

value 32
CURRENT TIME special value 32
CURRENT TIMESTAMP special

value 33
CURRENT USER special value 33
CURRENT UTC TIMESTAMP

special value 33
documentation conventions 220
EXISTS conditions 27
expressions 15
functions 84
global variables 39
identifiers 7
IF expressions 17
IN conditions 27
IS NULL conditions 28
IS TRUE or FALSE conditions 28
keywords 4
LAST USER special value 34
LIKE conditions 24
local variables 37
logical operators 11
NULL value 48
operator precedence 13
operators 10
predicates 22

reserved words 4
search conditions 22
SOME conditions 23
special values 32
SQLCODE special value 34
SQLSTATE special value 34
string operators 12
strings 8
subqueries 17
subqueries in search conditions 23
three-valued logic 29
TIMESTAMP special value 35
Transact-SQL expression

compatibility 19
USER special value 35
UTC TIMESTAMP special value 36
variables 37

SQL variables
creating 381
declaring 389
dropping 422
setting values 548

SQLCA
INCLUDE statement 471

SQLCAs
setting 562

SQLCODE
special value 34

SQLDA
allocating memory for 223
deallocating 387
DESCRIBE SQL statement 403
EXECUTE SQL statement 425
getting information from 452
INCLUDE statement 471
inserting rows using cursors 513
setting 554
UPDATE (positioned) statement 597

SQLDIALECT function
SQL syntax 188

SQLSTATE
special value 34

SQRT function
SQL syntax 189

square brackets
database objects 7
SQL identifiers 7

806

Index

standard deviation
STDDEV function 189
STDDEV_POP function 189
STDDEV_SAMP function 190

START AT clause
SELECT statement 541

START DATABASE statement
SQL syntax 566

START ENGINE statement
Interactive SQL syntax 568

START JAVA statement
SQL syntax 569

START LOGGING statement
Interactive SQL syntax 570

START SUBSCRIPTION statement
SQL syntax 571

START SYNCHRONIZATION DELETE
statement

SQL syntax 573
starting

creating events for 304
database servers 568
databases 566
Java VM 569
logging in Interactive SQL 570
passthrough mode 507
subscriptions 571
subscriptions during database

extraction 520
statement applicability indicators 222
statement labels

about 221
GOTO Transact-SQL statement 455

statement syntax
alphabetical list of all statements 213
BEGIN and END SQL statements 267
documentation conventions 220
FROM clause 445

statement-level triggers 374
statements

ALLOCATE DESCRIPTOR syntax
223

ALTER DATABASE syntax 225
ALTER DBSPACE syntax 229
ALTER EVENT syntax 231
ALTER FUNCTION syntax 233
ALTER IDEX syntax 234

ALTER PROCEDURE syntax 236
ALTER PUBLICATION syntax 238
ALTER REMOTE MESSAGE TYPE

syntax 240
ALTER SERVER syntax 241
ALTER SERVICE syntax 243
ALTER SYNCHRONIZATION

SUBSCRIPTION syntax 246
ALTER SYNCHRONIZATION USER

syntax 248
ALTER TABLE syntax 250
ALTER TRIGGER syntax 258
ALTER VIEW syntax 259
ALTER WRITEFILE syntax 261
BACKUP syntax 263
BEGIN DECLARE statement SQL

syntax 388
BEGIN syntax 267
BEGIN TRANSACTION syntax 270
BREAK Transact-SQL syntax 607
BYE syntax 432
CALL syntax 273
CASE syntax 275
CHECKPOINT syntax 278
CLEAR syntax 279
CLOSE syntax 280
COMMENT syntax 282
COMMIT syntax 284
CONFIGURE syntax 286
CONNECT syntax 287
CONTINUE Transact-SQL syntax 607
CREATE COMPRESSED

DATABASE syntax 290
CREATE DATABASE syntax 292
CREATE DBSPACE syntax 297
CREATE DECRYPTED FILE syntax

299
CREATE DOMAIN syntax 300
CREATE ENCRYPTED FILE syntax

302
CREATE EVENT syntax 304
CREATE EXISTING TABLE syntax

310
CREATE EXPANDED DATABASE

statement SQL syntax 290
CREATE EXTERNLOGIN syntax 313
CREATE FUNCTION syntax 315

807

Index

CREATE INDEX syntax 319
CREATE MESSAGE Transact-SQL

syntax 323
CREATE PROCEDURE syntax 324
CREATE PROCEDURE

Transact-SQL syntax 332
CREATE PUBLICATION syntax 334
CREATE REMOTE MESSAGE

syntax 337
CREATE SCHEMA syntax 339
CREATE SERVER syntax 341
CREATE SERVICE syntax 343
CREATE STATISTICS syntax 346
CREATE SUBSCRIPTION syntax347
CREATE SYNCHRONIZATION

SUBSCRIPTION syntax 349
CREATE SYNCHRONIZATION

USER syntax 351
CREATE TABLE syntax 361
CREATE TRIGGER syntax 373, 377
CREATE TRIGGER Transact-SQL

syntax 380
CREATE VARIABLE syntax 381
CREATE VIEW syntax 382
CREATE WRITEFILE syntax 384
DEALLOCATE DESCRIPTOR

syntax 387
DEALLOCATE syntax 386
DECLARE CURSOR syntax 390
DECLARE CURSOR Transact-SQL

syntax 395
DECLARE LOCAL TEMPORARY

TABLE syntax 397
DECLARE syntax 389
DELETE (positioned) syntax 401
DELETE syntax 399
DESCRIBE syntax 403
DISCONNECT syntax 407
DROP CONNECTION syntax 411
DROP DATABASE syntax 410
DROP DATATYPE syntax 408
DROP DBSPACE syntax 408
DROP DOMAIN syntax 408
DROP EVENT syntax 408
DROP EXTERNLOGIN syntax 412
DROP FUNCTION syntax 408
DROP INDEX syntax 408

DROP MESSAGE syntax 408
DROP OPTIMIZER STATISTICS

syntax 418
DROP PROCEDURE syntax 408
DROP PUBLICATION syntax 413
DROP REMOTE MESSAGE TYPE

syntax 414
DROP SERVER syntax 415
DROP SERVICE syntax 416
DROP STATEMENT syntax 417
DROP SUBSCRIPTION syntax 419
DROP SYNCHRONIZATION

SUBSCRIPTION syntax 420
DROP SYNCHRONIZATION USER

syntax 421
DROP syntax 408
DROP TABLE syntax 408
DROP TRIGGER syntax 408
DROP VARIABLE syntax 422
DROP VIEW syntax 408
dropping prepared 417
END DECLARE syntax 388
EXCEPT syntax 423
EXECUTE IMMEDIATE syntax 429
EXECUTE syntax 425
EXECUTE Transact-SQL syntax 427
executing prepared 425
EXIT syntax 432
EXPLAIN syntax 434
FETCH syntax 436
FOR syntax 441
FORWARD TO syntax 443
FROM clause 445
GET DATA syntax 450
GET DESCRIPTOR syntax 452
GET OPTION syntax 454
GOTO Transact-SQL syntax 455
GRANT CONSOLIDATE syntax 460
GRANT PUBLISH syntax 462
GRANT REMOTE DBA syntax 465
GRANT REMOTE syntax 463
GRANT syntax 456
grouping 267
HELP syntax 466
IF syntax 467
IF Transact-SQL syntax 469
INCLUDE syntax 471

808

Index

INPUT syntax 472
INSERT syntax 476
INSTALL JAVA syntax 480
INTERSECT syntax 482
LEAVE syntax 483
LOAD STATISTICS syntax 485
LOAD TABLE syntax 486
LOCK TABLE syntax 493
LOOP syntax 495
MESSAGE syntax 496
OPEN syntax 498
OUTPUT syntax 501
PARAMETERS syntax 506
PASSTHROUGH syntax 507
PREPARE syntax 508
PREPARE TO COMMIT syntax 511
preparing 508
PRINT Transact-SQL syntax 512
PUT syntax 513
QUIT syntax 432
RAISERROR Transact-SQL syntax

515
READ syntax 517
READTEXT Transact-SQL syntax518
RELEASE SAVEPOINT syntax 519
REMOTE RESET syntax 520
REMOVE JAVA syntax 521
REORGANIZE TABLE syntax 522
RESIGNAL syntax 524
RESTORE DATABASE syntax 525
RESUME syntax 527
RETURN syntax 528
REVOKE CONSOLIDATE syntax 532
REVOKE PUBLISH syntax 533
REVOKE REMOTE DBA syntax 536
REVOKE REMOTE syntax 535
REVOKE syntax 530
ROLLBACK syntax 537
ROLLBACK TO SAVEPOINT syntax

538
ROLLBACK TRIGGER syntax 539
SAVEPOINT syntax 540
SELECT syntax 541
SET CONNECTION syntax 553
SET DESCRIPTOR syntax 554
SET OPTION syntax 556, 559
SET REMOTE OPTION syntax 560

SET SQLCA syntax 562
SET syntax 548
SET Transact-SQL syntax 550
SETUSER syntax 563
SIGNAL syntax 565
START DATABASE syntax 566
START ENGINE Interactive SQL

syntax 568
START JAVA syntax 569
START LOGGING SQL syntax 570
START SUBSCRIPTION syntax 571
START SYNCHRONIZATION

DELETE syntax 573
STOP DATABASE syntax 575
STOP ENGINE syntax 576
STOP JAVA syntax 577
STOP LOGGING Interactive SQL

syntax 578
STOP SUBSCRIPTION syntax 579
STOP SYNCHRONIZATION

DELETE syntax 580
SYNCHRONIZE SUBSCRIPTION

syntax 581
SYSTEM Interactive syntax 582
TRIGGER EVENT syntax 583
TRUNCATE TABLE syntax 584
UNION syntax 586
UNLOAD syntax 588
UNLOAD TABLE syntax 590
UPDATE (positioned) syntax 597
UPDATE syntax 592, 599
VALIDATE INDEX syntax 602
VALIDATE TABLE syntax 603
WAITFOR syntax 605
WHENEVER embedded SQL syntax

606
WHILE Transact-SQL syntax 607
WRITETEXT Transact-SQL syntax

608
static cursors

declaring 390
statistics

CREATE STATISTICS statement 346
dropping optimizer 418
flushing 716
loading 485
SYSCOLSTAT system table 627

809

Index

updating with LOAD TABLE 490
STDDEV function

SQL syntax 189
STDDEV_POP function

SQL syntax 189
STDDEV_SAMP function

SQL syntax 190
STOP DATABASE statement

SQL syntax 575
STOP ENGINE statement

SQL syntax 576
STOP JAVA statement

SQL syntax 577
STOP LOGGING statement

Interactive SQL syntax 578
STOP SUBSCRIPTION statement

SQL syntax 579
STOP SYNCHRONIZATION DELETE

statement
SQL syntax 580

stopping
database servers 576
Java VM 577
logging in Interactive SQL 578
passthrough mode 507

stopping databases 575
stopping subscriptions 579
stored procedures

converting T-SQL 203
creating 324
creating in Transact SQL 332
executing in dynamic SQL 429
executing in Transact-SQL 427
extended list 753
external function calls 316, 327
sa_audit_string 707
sa_check_commit 707
sa_conn_activity 708
sa_conn_compression_info 708
sa_conn_info 710
sa_conn_properties 711
sa_conn_properties_by_name 712
sa_db_info 712
sa_db_properties 713
sa_disk_free_space 714
sa_eng_properties 715
sa_flush_cache 716

sa_flush_statistics 716
sa_get_dtt 717
sa_get_histogram 717
sa_get_request_profile 717
sa_get_request_times 718
sa_get_server_messages 719
sa_index_density 719
sa_index_levels 720
sa_java_loaded_classes 720
sa_locks 721
sa_make_object 723
sa_migrate 724
sa_migrate_create_fks 727
sa_migrate_create_remote_fks_list728
sa_migrate_create_remote_table_list

729
sa_migrate_create_tables 731
sa_migrate_data 733
sa_migrate_drop_proxy_tables 734
sa_procedure_profile 735
sa_procedure_profile_summary 736
sa_reset_identity 738
sa_server_option 739
sa_set_http_header 742
sa_set_http_option 743
sa_statement_text 743
sa_table_fragmentation 744
sa_table_page_usage 744
sa_validate 745
selecting from 446
sp_login_environment 746
sp_remote_columns 746
sp_remote_exported_keys 747
sp_remote_imported_keys 748
sp_remote_primary_keys 749
sp_remote_tables 749
sp_servercaps 751
sp_tsql_environment 751
system procedures 705
viewing profiling data 735, 736
xp_cmdshell 759
xp_msver 760
xp_read_file 761
xp_scanf 762
xp_sendmail 756
xp_sprintf 761
xp_startmail 754

810

Index

xp_startsmtp 755
xp_stopmail 758
xp_stopsmtp 759
xp_write_file 762

STR function
SQL syntax 191

STRING function
SQL syntax 192

string functions
alphabetical list 90

string operators
compatibility with Adaptive Server

Enterprise 12
SQL syntax 12

STRING_RTRUNCATION option
Adaptive Server Enterprise

compatibility 550
strings

about 8
ambiguous conversions to dates 80, 81
changing the interpretation of

delimited strings 20
compatibility with Adaptive Server

Enterprise 8
converting to dates 65
delimiter 20
escaping special characters in

Interactive SQL 8
quotation marks 20
replacing 176
SQL functions 90
Transact-SQL 20

STRIP option
LOAD TABLE statement 489

strong encryption
CREATE DATABASE statement 294

STRTOUUID function
SQL syntax 192

STUFF function
SQL syntax 193

su
setting users 563

subqueries
in SQL search conditions 23
SQL syntax 17

SUBSCRIBE BY clause 334
subscriptions

creating 347
dropping 419
starting 571
starting during database extraction 520
stopping 579
synchronizing 581
updates 601
updating 594

SUBSTR function
SQL syntax 193

SUBSTRING function
SQL syntax 193

substrings
about 193
replacing 176

SUM function
SQL syntax 194

super types 76
support

newsgroups xviii
suser_id Adaptive Server Enterprise

function 93
suser_name Adaptive Server Enterprise

function 93
SYNCHRONIZE SUBSCRIPTION

statement
SQL syntax 581

synchronizing subscriptions 581
syntax

ALL conditions 23
ANY conditions 23
arithmetic operators 12
bitwise operators 13
CASE expression 18
column names 16
comments 47
comparison operators 10
connection-level variables 38
constants 16
CURRENT DATABASE special value

32
CURRENT DATE special value 32
CURRENT PUBLISHER special

value 32
CURRENT TIMESTAMP special

value 33
CURRENT USER special value 33

811

Index

CURRENT UTC TIMESTAMP
special value 33

documentation conventions 220
EXISTS conditions 27
global variables 39
IF expressions 17
IN conditions 27
IS NULL conditions 28
IS TRUE or FALSE conditions 28
LAST USER special value 34
LIKE conditions 24
local variables 37
logical operators 11
NULL value 48
predicates 22
search conditions 22
SOME conditions 23
special values 32
SQL BETWEEN conditions 24
SQL CURRENT TIME special value

32
SQL expressions 15
SQL functions 84
SQL identifiers 7
SQL keywords 4
SQL operator precedence 13
SQL operators 10
SQL reserved words 4
SQL statements 220
SQL subqueries 17
SQL subqueries in search conditions23
SQL variables 37
SQLCODE special value 34
SQLSTATE special value 34
string operators 12
strings 8
three-valued logic 29
TIMESTAMP special value 35
Transact-SQL expression

compatibility 19
USER special value 35
UTC TIMESTAMP special value 36

syntax conventions
SQL statements 221

SYS
system tables 611

SYS group

in the system tables 689
SYSARTICLE system table

about 616
SYSARTICLECOL system table

about 617
SYSATTRIBUTE system table

about 618
SYSATTRIBUTENAME system table

about 620
SYSCAPABILITY system table

about 621
SYSCAPABILITYNAME system table

about 622
SYSCHECK system table

about 623
SYSCOLLATION system table

about 624
SYSCOLLATIONMAPPINGS system

table
about 625

SYSCOLPERM system table
about 626

SYSCOLSTAT system table 627
loading the statistics 485

SYSCOLUMN system table
about 628

SYSCONSTRAINT system table
about 630

SYSDOMAIN system table
about 631

SYSEVENT system table
about 632

SYSEVENTTYPE system table
about 634

SYSEXTENT system table
about 635

SYSEXTERNLOGINS system table
about 636

SYSFILE system table
about 637

SYSFKCOL system table
about 638

SYSFOREIGNKEY system table
about 639

SYSGROUP system table
about 641

SYSINDEX system table

812

Index

about 642
SYSINFO system table

about 644
SYSIXCOL system table

about 646
SYSJAR system table

about 647
SYSJARCOMPONENT system table

about 648
SYSJAVACLASS system table

about 649
SYSLOGIN system table

about 651
SYSOPTBLOCK system table 652
SYSOPTION system table

about 653
SYSOPTJOINSTRATEGY system table

654
SYSOPTORDER system table 655
SYSOPTQUANTIFIER system table 656
SYSOPTREQUEST system table 657
SYSOPTREWRITE system table 658
SYSOPTSTAT system table 659
SYSPROCEDURE system table

about 660
SYSPROCPARM system table

about 662
SYSPROCPERM system table

about 664
SYSPUBLICATION system table

about 665
SYSREMOTEOPTION system table

about 666
SYSREMOTEOPTIONTYPE system

table
about 667

SYSREMOTETYPE system table
about 668

SYSREMOTEUSER system table
about 669

SYSSCHEDULE system table
about 671

SYSSERVERS system table
about 673
adding servers 341

sysservers system table

remote servers for Component
Integration Services 342, 359

SYSSQLSERVERTYPE system table
about 674

SYSSUBSCRIPTION system table
about 675

SYSSYNC system table
about 676

SYSTABLE system table
about 678

SYSTABLEPERM system table
about 681

system and catalog stored procedures 707
system calls

from stored procedures 759
xp_cmdshell system procedure 759

system catalog 696
about 611
Transact-SQL 701

system functions
alphabetical list 92
compatibility 93

system procedures
about 705
catalog list 707
creating messages 323
extended list 753
overview 706
sa_audit_string 707
sa_check_commit 707
sa_conn_activity 708
sa_conn_compression_info 708
sa_conn_info 710
sa_conn_properties 711
sa_conn_properties_by_name 712
sa_db_info 712
sa_db_properties 713
sa_disk_free_space 714
sa_eng_properties 715
sa_flush_cache 716
sa_flush_statistics 716
sa_get_dtt 717
sa_get_histogram 717
sa_get_request_profile 717
sa_get_request_times 718
sa_get_server_messages 719
sa_index_density 719

813

Index

sa_index_levels 720
sa_java_loaded_classes 720
sa_locks 721
sa_make_object 723
sa_migrate 724
sa_migrate_create_fks 727
sa_migrate_create_remote_fks_list728
sa_migrate_create_remote_table_list

729
sa_migrate_create_tables 731
sa_migrate_data 733
sa_migrate_drop_proxy_tables 734
sa_procedure_profile 735
sa_procedure_profile_summary 736
sa_reset_identity 738
sa_server_option 739
sa_set_http_header 742
sa_set_http_option 743
sa_statement_text 743
sa_table_fragmentation 744
sa_table_page_usage 744
sa_validate 745
sp_addgroup 763
sp_addlogin 763
sp_addmessage 763
sp_addtype 763
sp_adduser 763
sp_changegroup 763
sp_dboption 763
sp_dropgroup 763
sp_droplogin 763
sp_dropmessage 763
sp_droptype 763
sp_dropuser 763
sp_getmessage 763
sp_helptext 763
sp_login_environment 746
sp_password 763
sp_remote_columns 746
sp_remote_exported_keys 747
sp_remote_imported_keys 748
sp_remote_primary_keys 749
sp_remote_tables 749
sp_servercaps 751
sp_tsql_environment 751
Sybase Central 706
Transact-SQL 763

Transact-SQL list 763
viewing definitions 706
xp_cmdshell 759
xp_msver 760
xp_read_file 761
xp_scanf 762
xp_sendmail 756
xp_sprintf 761
xp_sstopsmtp 759
xp_startmail 754
xp_startsmtp 755
xp_stopmail 758
xp_write_file 762

system procedures and functions
about 705

SYSTEM statement
Interactive SQL syntax 582

system tables
about 611
DUMMY 614
Java 694
SYSARTICLE 616
SYSARTICLECOL 617
SYSATTRIBUTE 618
SYSATTRIBUTENAME 620
SYSCAPABILITY 621
SYSCAPABILITYNAME 622
SYSCHECK 623
SYSCOLLATION 624
SYSCOLLATIONMAPPINGS 625
SYSCOLPERM 626
SYSCOLSTAT 627
SYSCOLUMN 628
SYSCONSTRAINT 630
SYSDOMAIN 631
SYSEVENT 632
SYSEVENTTYPE 634
SYSEXTENT 635
SYSEXTERNLOGINS 636
SYSFILE 637
SYSFKCOL 638
SYSFOREIGNKEY 639
SYSGROUP 641
SYSINDEX 642
SYSINFO 644
SYSIXCOL 646
SYSJAR 647

814

Index

SYSJARCOMPONENT 648
SYSJAVACLASS 649
SYSLOGIN 651
SYSOPTBLOCK 652
SYSOPTION 653
SYSOPTJOINSTRATEGY 654
SYSOPTORDER 655
SYSOPTQUANTIFIER 656
SYSOPTREQUEST 657
SYSOPTREWRITEK 658
SYSOPTSTAT 659
SYSPROCEDURE 660
SYSPROCPARM 662
SYSPROCPERM 664
SYSPUBLICATION 665
SYSREMOTETYPE 668
SYSREMOTEUSER 669
SYSSCHEDULE 671
SYSSERVERS 673
SYSSQLSERVERTYPE 674
SYSSUBSCRIPTION 675
SYSSYNC 676
SYSTABLE 678
SYSTABLEPERM 681
system views 695
SYSTRIGGER 683
SYSTYPEMAP 686
SYSUSERMESSAGES 687
SYSUSERPERM 688
SYSUSERTYPE 690
SYSWEBSERVICE 692
Transact-SQL 701

system views
about 695
definitions of 696
Sybase Central 696
SYSARTICLECOLS 696
SYSARTICLES 696
SYSCAPABILITIES 696
SYSCATALOG 696
SYSCOLAUTH 696
SYSCOLSTATS 697
SYSCOLUMNS 697
SYSFOREIGNKEYS 697
SYSGROUPS 697
SYSINDEXES 697
SYSOPTIONS 697

SYSOPTORDERS 697
SYSOPTPLANS 697
SYSOPTSTRATEGIES 697
SYSPROCAUTH 697
SYSPROCPARMS 698
SYSPUBLICATIONS 698
SYSREMOTEOPTION2 698
SYSREMOTEOPTIONS 698
SYSREMOTETYPES 698
SYSREMOTEUSERS 698
SYSSCYNCUSERS 699
SYSSUBSCRIPTIONS 698
SYSSYNCDEFINITIONS 698
SYSSYNCPUBLICATIONDE-

FAULTS
699

SYSSYNCS 699
SYSSYNCSITES 699
SYSSYNCSUBSCRIPTIONS 699
SYSSYNCTEMPLATES 699
SYSTABAUTH 699
SYSTRIGGERS 700
SYSUSERAUTH 700
SYSUSERLIST 700
SYSUSEROPTIONS 700
SYSUSERPERMS 700
SYSVIEWS 700

SYSTRIGGER system table
about 683

SYSTYPEMAP system table
about 686

SYSUSERMESSAGES system table
about 687

SYSUSERPERM system table
about 688

SYSUSERTYPE system table
about 690

SYSWEBSERVICE system table
about 692
adding servers 243
adding services 343
altering services 243
dropping services 416

T
table constraints 366
table hints

815

Index

FROM clause 447
table list

FROM clause 446
table number 679
tables

altering 250
bulk loading 486
creating 361
creating local temporary 397
creating proxy 310
dropping 408
exporting data into files from 501
importing data from files into 472
inserting rows into 476
locking 493
renaming 255
reorganizing 522
replicating 250
truncating 584
unloading 590
updating 599
validating 603

TAN function
SQL syntax 195

tapes
creating database backups 263

TCP/IP
MobiLink clients using 351

technical support
newsgroups xviii

TempFreePercent event condition
about 127

TempFreeSpace event condition
about 127

temporary files
determining available space for 714

temporary options
setting 556
setting in Interactive SQL 559

temporary tables
creating 361, 370
declaring local 397
Transact-SQL 370
views disallowed on local 382

TempSize event condition
about 127

text

reading from the database 518
TEXT data type

about 54
text functions 96
TEXTPTR function

SQL syntax 195
TEXTSIZE option

Adaptive Server Enterprise
compatibility 550

THEN
IF expressions 17

three-valued logic
NULL value 48
SQL syntax 29

TIME data type 65
about 70

time functions
alphabetical list 85

times
comparing 67
conversion functions 85
queries 66
sending to the database 65

TIMESTAMP
special value 35

timestamp column 366
TIMESTAMP data type

about 71
timestamp data type 65
TINYINT data type

about 62
TODAY function

SQL syntax 196
TOP clause

SELECT statement 541
TRACEBACK function

SQL syntax 196
trademark information

retrieving 760
Transact-SQL

alphabetical list of all statements 213
ANSI equivalency 177
bit data type compatibility 64
bitwise operators 13
BREAK statement syntax 607
catalog procedures 764
comparison operators 10

816

Index

constants 20
CONTINUE statement syntax 607
converting stored procedures 203
CREATE FUNCTION statement 318
CREATE MESSAGE SQL statement

syntax 323
CREATE PROCEDURE statement

syntax 332
CREATE SCHEMA statement syntax

339
CREATE TABLE statement syntax370
CREATE TRIGGER statement syntax

380
datetime compatibility 65
DECLARE CURSOR statement

syntax 395
DECLARE section 268
domains 75
EXECUTE statement syntax 427
global variables 39
GOTO statement syntax 455
IF statement syntax 469
local variables 37, 38
money data types 63
outer join operators 13
PRINT statement syntax 512
QUOTED_IDENTIFIER option 20
RAISERROR statement syntax 515
READTEXT statement syntax 518
SET OPTION statement syntax 550
SET statement syntax 550
SQL expression compatibility 19
strings 20
system catalog 701
system functions 93
system procedures 763
time compatibility 65
user-defined data types 75
WHILE statement syntax 607
WRITETEXT statement syntax 608

TRANSACTION ISOLATION LEVEL
option

Adaptive Server Enterprise
compatibility 550

transaction log
allocating space for 229
backing up 263

determining available space for 714
TRUNCATE TABLE statement 584

transaction log mirror
determining available space for 714

transaction management
BEGIN TRANSACTION SQL

statement 270
in Transact-SQL 270
Transact-SQL 284

transaction modes
chained 270
unchained 270

transactions
beginning user-defined 270
committing 284
creating savepoints 540
nesting user-defined 270
rolling back 537
rolling back to savepoints 538

TRANSACTSQL function
SQL syntax 197

trapping
errors in embedded SQL 606

trigger conditions
distinguishing trigger actions 28

TRIGGER EVENT statement
SQL syntax 583

triggering
events 583

triggers
altering 258
creating 373, 377
creating in Transact-SQL 380
dropping 408
rolling back 539
row-level 374
statement-level 374
TRUNCATE TABLE statement 584
Watcom-SQL 377

TRIM function
SQL syntax 197

troubleshooting
locks 721
logging operations 740
non-standard disk drives 227
request_level_logging 739

TRUE conditions

817

Index

IS TRUE conditions 28
three-valued logic 29

TRUNCATE function
SQL syntax 197

TRUNCATE TABLE statement
SQL syntax 584

truncating
tables 584

TRUNCNUM function
SQL syntax 198

trusted_certificates stream parameter
MobiLink clients using HTTP 355
MobiLink clients using HTTPS 357
MobiLink clients using TCP/IP 352

tsequal Adaptive Server Enterprise
function 93

TSQL
statement indicators 222

two-phase commit
preparing for 511

TYPE clause
CREATE SYNCHRONIZATION

USER 351
type conversions

about 76
types

about data types 51

U
UCASE function

SQL syntax 199
unchained transaction mode 270
undoing

changes by rolling back transactions
537

UNION operation
SQL syntax 586

unions
multiple select statements 586

unique
constraint 366

unique indexes 319
UNIQUEIDENTIFIER

binary data type 73
UNIQUEIDENTIFIERSTR data type

about 55
universally unique identifiers

SQL syntax for NEWID function 159
UNKNOWN conditions

IS UNKNOWN conditions 28
UNLOAD statement

SQL syntax 588
UNLOAD TABLE statement

SQL syntax 590
unloading

result sets 588
tables 590

unloading data
multibyte character sets 488, 590

UPDATE
IF UPDATE clause 373, 377
IF UPDATE clause in Transact-SQL

380
UPDATE (positioned) statement

SQL syntax 597
update column permission 626
UPDATE permissions

granting 456
UPDATE statement

SQL syntax 592, 599
updateable views 477
updates

based on joins 594
joins 600

updating
columns without logging 608
publications and subscriptions 594
rows 592
tables and columns 599

UPDATING condition
triggers 28

upgrading
databases 225

UPPER function
SQL syntax 199

url_suffix stream parameter
MobiLink clients using HTTP 355
MobiLink clients using HTTPS 357

used_pgs Adaptive Server Enterprise
function 93

USER
special value 35

user estimates
about 30

818

Index

user IDs
changing permissions and passwords

456
creating 456
in the system tables 679, 688
revoking 530
system views 700

user number 688
user-defined data types

about 74
creating 300
dropping 408
Transact-SQL 75

user-defined functions
alphabetical list 87
creating 315
exiting from 528
Java 87
returning values from 528

user-supplied selectivity estimates
about 30

user_id Adaptive Server Enterprise
function 93

user_name Adaptive Server Enterprise
function 93

users
dropping 530
setting 563

using the SQL statement reference 220
ust files

creating 184
UTC TIMESTAMP

special value 36
UUIDs

SQL syntax for NEWID function 159
SQL syntax for STRTOUUID function

192
SQL syntax for UUIDTOSTR function

200
UNIQUEIDENTIFIER data type 73

UUIDTOSTR function
SQL syntax 200

V
valid_name Adaptive Server Enterprise

function 93

valid_user Adaptive Server Enterprise
function 93

VALIDATE INDEX statement
SQL syntax 602

VALIDATE TABLE statement
SQL syntax 603

validating
databases 745
indexes 602
tables 603

values
returning from procedures 528

VAR_POP function
SQL syntax 201

VAR_SAMP function
SQL syntax 202

VARBINARY data type
about 73

VARCHAR data type
syntax 53

VAREXISTS function
SQL syntax 203

variable result sets
from procedures 325, 405, 508

variables
creating SQL 381
declaring SQL 389
dropping SQL 422
getting from within a descriptor area

452
global variables 38, 39
local variables 37
setting values 548
SQL syntax 37

VARIANCE function
SQL syntax 202

version number
retrieving 760

version stream parameter
MobiLink clients using HTTP 355
MobiLink clients using HTTPS 358

viewing
Interactive SQL procedure profiling

data 735, 736
views

altering 259
creating 382

819

Index

dropping 408
indexes 320
system views 700
updateable 477

VIM message type
about 240, 337, 414

VM
starting Java 569
stopping Java 577

W
WAITFOR statement

SQL syntax 605
Watcom-SQL

DECLARE statement 389
WATCOMSQL function

SQL syntax 203
web servers

altering services 243
creating 343
dropping 416

web services
adding comments 282
system table 692

WEEKS function
SQL syntax 204

WHEN
CASE expression 18

WHENEVER statement
embedded SQL syntax 606

WHERE clause
search conditions 22
SELECT statement 543

WHILE statement
SQL syntax 495
Transact-SQL syntax 607

wide inserts 425
wildcards

LIKE conditions 24
pattern matching 168

WITH CHECKPOINT option
LOAD TABLE statement 489

WITH clause
SELECT statement 541

WITH HOLD clause
OPEN SQL statement 498

WITH RECURSIVE clause

SELECT statement 541
words

reserved 4
write files

altering 261
creating 384

WRITETEXT statement
Transact-SQL syntax 608

X
XML

OPENXML function 165
XML data type 55
XMLAGG function 205
XMLCONCAT function 206
XMLELEMENT function 207
XMLFOREST function 208
XMLGEN function 209

XML data type
about 55

XMLAGG function
SQL syntax 205

XMLCONCAT function
SQL syntax 206

XMLELEMENT function
SQL syntax 207

XMLFOREST function
SQL syntax 208

XMLGEN function
SQL syntax 209

xp_cmdshell system procedure
syntax 759

xp_msver system procedure
syntax 760

xp_read_file system procedure
syntax 761

xp_scanf system procedure
syntax 762

xp_sendmail system procedure
syntax 756

xp_sprintf system procedure
syntax 761

xp_startmail system procedure
syntax 754

xp_startsmtp system procedure
syntax 755

xp_stopmail system procedure

820

Index

syntax 758
xp_stopsmtp system procedure

syntax 759
xp_write_file system procedure

syntax 762

Y
Y2K 78
year 2000

compliance 78
YEARS function

SQL syntax 210
YMD function

SQL syntax 211

821

	Adaptive Server Anywhere SQL Reference
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The Adaptive Server Anywhere sample database
	Finding out more and providing feedback

	SQL
	SQL Language Elements
	Keywords
	Reserved words

	Identifiers
	Strings
	Operators
	Comparison operators
	Logical operators
	Arithmetic operators
	String operators
	Bitwise operators
	Join operators
	Operator precedence

	Expressions
	Constants in expressions
	Column names in expressions
	Subqueries in expressions
	IF expressions
	CASE expressions
	Compatibility of expressions
	The quoted_identifier option

	Search conditions
	Subqueries in search conditions
	ALL or ANY conditions
	BETWEEN conditions
	LIKE conditions
	IN conditions
	EXISTS conditions
	IS NULL conditions
	Truth value conditions
	Trigger operation conditions
	Three-valued logic
	Explicit selectivity estimates

	Special values
	CURRENT DATABASE special value
	CURRENT DATE special value
	CURRENT PUBLISHER special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	CURRENT USER special value
	CURRENT UTC TIMESTAMP special value
	LAST USER special value
	SQLCODE special value
	SQLSTATE special value
	TIMESTAMP special value
	USER special value
	UTC TIMESTAMP special value

	Variables
	Local variables
	Connection-level variables
	Global variables
	@@identity global variable

	Comments
	NULL value

	SQL Data Types
	Character data types
	CHAR data type [Character]
	CHARACTER VARYING (VARCHAR) data type [Character]
	LONG VARCHAR data type [Character]
	TEXT data type [Character]
	UNIQUEIDENTIFIERSTR data type [Character]
	XML data type [Character]

	Numeric data types
	BIGINT data type [Numeric]
	DECIMAL data type [Numeric]
	DOUBLE data type [Numeric]
	FLOAT data type [Numeric]
	INT or INTEGER data type [Numeric]
	NUMERIC data type [Numeric]
	REAL data type [Numeric]
	SMALLINT data type [Numeric]
	TINYINT data type [Numeric]

	Money data types
	MONEY data type [Money]
	SMALLMONEY data type [Money]

	BIT data type
	Date and time data types
	Sending dates and times to the database
	Transact-SQL compatibility of string-to-date/time conversions

	Retrieving dates and times from the database
	Comparing dates and times in the database
	Using unambiguous dates and times
	DATE data type [Date and Time]
	DATETIME data type [Date and Time]
	SMALLDATETIME data type [Date and Time]
	TIME data type [Date and Time]
	TIMESTAMP data type [Date and Time]

	Binary data types
	BINARY data type [Binary]
	LONG BINARY data type [BINARY]
	IMAGE data type [BINARY]
	UNIQUEIDENTIFIER data type [Binary]
	VARBINARY data type [BINARY]

	Domains
	Data type conversions
	Conversion when using comparison operators

	Year 2000 compliance
	How dates are stored
	Sending and retrieving date values
	Leap years
	Ambiguous string to date conversions
	Date to string conversions

	SQL Functions
	Function types
	Aggregate functions
	Data type conversion functions
	Date and time functions
	Date parts

	Java and SQL user-defined functions
	Miscellaneous functions
	Numeric functions
	HTTP functions
	String functions
	System functions
	Text and image functions

	Alphabetical list of functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATN2 function [Numeric]
	AVG function [Aggregate]
	BYTE_LENGTH function [String]
	BYTE_SUBSTR function [String]
	CAST function [Data type conversion]
	CEILING function [Numeric]
	CHAR function [String]
	CHARINDEX function [String]
	CHAR_LENGTH function [String]
	COALESCE function [Miscellaneous]
	COMPARE function [String]
	CONNECTION_PROPERTY function [System]
	CONVERT function [Data type conversion]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	CSCONVERT function [STRING]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_ID function [System]
	DB_NAME function [System]
	DB_EXTENDED_PROPERTY function [System]
	DB_PROPERTY function [System]
	DEGREES function [Numeric]
	DIFFERENCE function [String]
	DOW function [Date and time]
	ERRORMSG function [Miscellaneous]
	ESTIMATE function [Miscellaneous]
	ESTIMATE_SOURCE function [Miscellaneous]
	EVENT_CONDITION function [System]
	EVENT_CONDITION_NAME function [System]
	EVENT_PARAMETER function [System]
	EXP function [Numeric]
	EXPERIENCE_ESTIMATE function [Miscellaneous]
	EXPLANATION function [Miscellaneous]
	EXPRTYPE function [Miscellaneous]
	FLOOR function [Numeric]
	GET_IDENTITY function [Miscellaneous]
	GETDATE function [Date and time]
	GRAPHICAL_PLAN function [Miscellaneous]
	GRAPHICAL_ULPLAN function [Miscellaneous]
	GREATER function [Miscellaneous]
	GROUPING function [Aggregate]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	HTTP_HEADER function [HTTP]
	HTTP_VARIABLE function [HTTP]
	IDENTITY function [Miscellaneous]
	IFNULL function [Miscellaneous]
	INDEX_ESTIMATE function [Miscellaneous]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Data type conversion]
	ISNULL function [Data type conversion]
	ISNUMERIC function [Miscellaneous]
	LCASE function [String]
	LEFT function [String]
	LENGTH function [String]
	LESSER function [Miscellaneous]
	LIST function [Aggregate]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LONG_ULPLAN function [Miscellaneous]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NEXT_CONNECTION function [System]
	NEXT_DATABASE function [System]
	NEXT_HTTP_HEADER function [HTTP]
	NEXT_HTTP_VARIABLE function [HTTP]
	NOW function [Date and time]
	NULLIF function [Miscellaneous]
	NUMBER function [Miscellaneous]
	OPENXML function [String]
	PATINDEX function [String]
	PI function [Numeric]
	PLAN function [Miscellaneous]
	POWER function [Numeric]
	PROPERTY_DESCRIPTION function [System]
	PROPERTY function [System]
	PROPERTY_NAME function [System]
	PROPERTY_NUMBER function [System]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	RAND function [Numeric]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	REWRITE function [Miscellaneous]
	RIGHT function [String]
	ROUND function [Numeric]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SHORT_ULPLAN function [Miscellaneous]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SORTKEY function [String]
	SOUNDEX function [String]
	SPACE function [String]
	SQLDIALECT function [Miscellaneous]
	SQRT function [Numeric]
	STDDEV function [Aggregate]
	STDDEV_POP function [Aggregate]
	STDEV_SAMP function [Aggregate]
	STR function [String]
	STRING function [String]
	STRTOUUID function [STRING]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	TAN function [Numeric]
	TEXTPTR function [Text and image]
	TODAY function [Date and time]
	TRACEBACK function [Miscellaneous]
	TRANSACTSQL function [Miscellaneous]
	TRIM function [String]
	TRUNCATE function [Numeric]
	TRUNCNUM function [Numeric]
	UCASE function [String]
	UPPER function [String]
	UUIDTOSTR function [STRING]
	VAR_POP function [Aggregate]
	VAR_SAMP function [Aggregate]
	VARIANCE function [Aggregate]
	VAREXISTS function [Miscellaneous]
	WATCOMSQL function [Miscellaneous]
	WEEKS function [Date and time]
	XMLAGG function [String]
	XMLCONCAT function [String]
	XMLELEMENT function [String]
	XMLFOREST function [String]
	XMLGEN function [String]
	YEARS function [Date and time]
	YMD function [Date and time]

	SQL Statements
	Using the SQL statement reference
	Common elements in SQL syntax
	Syntax conventions
	Statement applicability indicators

	ALLOCATE DESCRIPTOR statement [ESQL]
	ALTER DATABASE statement
	ALTER DBSPACE statement
	ALTER EVENT statement
	ALTER FUNCTION statement
	ALTER INDEX statement
	ALTER PROCEDURE statement
	ALTER PUBLICATION statement
	ALTER REMOTE MESSAGE TYPE statement [SQL Remote]
	ALTER SERVER statement
	ALTER SERVICE statement
	ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	ALTER SYNCHRONIZATION USER statement [MobiLink]
	ALTER TABLE statement
	ALTER TRIGGER statement
	ALTER VIEW statement
	ALTER WRITEFILE statement
	BACKUP statement
	BEGIN statement
	BEGIN TRANSACTION statement
	CALL statement
	CASE statement
	CHECKPOINT statement
	CLEAR statement [Interactive SQL]
	CLOSE statement [ESQL] [SP]
	COMMENT statement
	COMMIT statement
	CONFIGURE statement [Interactive SQL]
	CONNECT statement [ESQL] [Interactive SQL]
	CREATE COMPRESSED DATABASE statement
	CREATE DATABASE statement
	CREATE DBSPACE statement
	CREATE DECRYPTED FILE statement
	CREATE DOMAIN statement
	CREATE ENCRYPTED FILE statement
	CREATE EVENT statement
	CREATE EXISTING TABLE statement
	CREATE EXTERNLOGIN statement
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE MESSAGE statement [T-SQL]
	CREATE PROCEDURE statement
	CREATE PROCEDURE statement [T-SQL]
	CREATE PUBLICATION statement
	CREATE REMOTE MESSAGE TYPE statement [SQL Remote]
	CREATE SCHEMA statement
	CREATE SERVER statement
	CREATE SERVICE statement
	CREATE STATISTICS statement
	CREATE SUBSCRIPTION statement [SQL Remote]
	CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	CREATE SYNCHRONIZATION USER statement [MobiLink]
	CREATE TABLE statement
	CREATE TRIGGER statement
	CREATE TRIGGER statement [SQL Remote]
	CREATE TRIGGER statement [T-SQL]
	CREATE VARIABLE statement
	CREATE VIEW statement
	CREATE WRITEFILE statement
	DEALLOCATE statement
	DEALLOCATE DESCRIPTOR statement [ESQL]
	Declaration section [ESQL]
	DECLARE statement
	DECLARE CURSOR statement [ESQL] [SP]
	DECLARE CURSOR statement [T-SQL]
	DECLARE LOCAL TEMPORARY TABLE statement
	DELETE statement
	DELETE (positioned) statement [ESQL] [SP]
	DESCRIBE statement [ESQL]
	DISCONNECT statement [ESQL] [Interactive SQL]
	DROP statement
	DROP DATABASE statement
	DROP CONNECTION statement
	DROP EXTERNLOGIN statement
	DROP PUBLICATION statement
	DROP REMOTE MESSAGE TYPE statement [SQL Remote]
	DROP SERVER statement
	DROP SERVICE statement
	DROP STATEMENT statement [ESQL]
	DROP STATISTICS statement
	DROP SUBSCRIPTION statement [SQL Remote]
	DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	DROP SYNCHRONIZATION USER statement [MobiLink]
	DROP VARIABLE statement
	EXCEPT operation
	EXECUTE statement [ESQL]
	EXECUTE statement [T-SQL]
	EXECUTE IMMEDIATE statement [SP]
	EXIT statement [Interactive SQL]
	EXPLAIN statement [ESQL]
	FETCH statement [ESQL] [SP]
	FOR statement
	FORWARD TO statement
	FROM clause
	GET DATA statement [ESQL]
	GET DESCRIPTOR statement [ESQL]
	GET OPTION statement [ESQL]
	GOTO statement [T-SQL]
	GRANT statement
	GRANT CONSOLIDATE statement [SQL Remote]
	GRANT PUBLISH statement [SQL Remote]
	GRANT REMOTE statement [SQL Remote]
	GRANT REMOTE DBA statement [SQL Remote]
	HELP statement [Interactive SQL]
	IF statement
	IF statement [T-SQL]
	INCLUDE statement [ESQL]
	INPUT statement [Interactive SQL]
	INSERT statement
	INSTALL JAVA statement
	INTERSECT operation
	LEAVE statement
	LOAD STATISTICS statement
	LOAD TABLE statement
	LOCK TABLE statement
	LOOP statement
	MESSAGE statement
	OPEN statement [ESQL] [SP]
	OUTPUT statement [Interactive SQL]
	PARAMETERS statement [Interactive SQL]
	PASSTHROUGH statement [SQL Remote]
	PREPARE statement [ESQL]
	PREPARE TO COMMIT statement
	PRINT statement [T-SQL]
	PUT statement [ESQL]
	RAISERROR statement [T-SQL]
	READ statement [Interactive SQL]
	READTEXT statement [T-SQL]
	RELEASE SAVEPOINT statement
	REMOTE RESET statement [SQL Remote]
	REMOVE JAVA statement
	REORGANIZE TABLE statement
	RESIGNAL statement
	RESTORE DATABASE statement
	RESUME statement
	RETURN statement
	REVOKE statement
	REVOKE CONSOLIDATE statement [SQL Remote]
	REVOKE PUBLISH statement [SQL Remote]
	REVOKE REMOTE statement [SQL Remote]
	REVOKE REMOTE DBA statement [SQL Remote]
	ROLLBACK statement
	ROLLBACK TO SAVEPOINT statement
	ROLLBACK TRIGGER statement
	SAVEPOINT statement
	SELECT statement
	SET statement
	SET statement [T-SQL]
	SET CONNECTION statement [Interactive SQL] [ESQL]
	SET DESCRIPTOR statement [ESQL]
	SET OPTION statement
	SET OPTION statement [Interactive SQL]
	SET REMOTE OPTION statement [SQL Remote]
	SET SQLCA statement [ESQL]
	SETUSER statement
	SIGNAL statement
	START DATABASE statement
	START ENGINE statement [Interactive SQL]
	START JAVA statement
	START LOGGING statement [Interactive SQL]
	START SUBSCRIPTION statement [SQL Remote]
	START SYNCHRONIZATION DELETE statement [MobiLink]
	STOP DATABASE statement
	STOP ENGINE statement
	STOP JAVA statement
	STOP LOGGING statement [Interactive SQL]
	STOP SUBSCRIPTION statement [SQL Remote]
	STOP SYNCHRONIZATION DELETE statement [MobiLink]
	SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]
	SYSTEM statement [Interactive SQL]
	TRIGGER EVENT statement
	TRUNCATE TABLE statement
	UNION operation
	UNLOAD statement
	UNLOAD TABLE statement
	UPDATE statement
	UPDATE (positioned) statement [ESQL] [SP]
	UPDATE statement [SQL Remote]
	VALIDATE INDEX statement
	VALIDATE TABLE statement
	WAITFOR statement
	WHENEVER statement [ESQL]
	WHILE statement [T-SQL]
	WRITETEXT statement [T-SQL]

	System Objects
	System Tables
	DUMMY system table
	RowGenerator system table
	SYSARTICLE system table
	SYSARTICLECOL system table
	SYSATTRIBUTE system table
	SYSATTRIBUTENAME system table
	SYSCAPABILITY system table
	SYSCAPABILITYNAME system table
	SYSCHECK system table
	SYSCOLLATION system table
	SYSCOLLATIONMAPPINGS system table
	SYSCOLPERM system table
	SYSCOLSTAT system table
	SYSCOLUMN system table
	SYSCONSTRAINT system table
	SYSDOMAIN system table
	SYSEVENT system table
	SYSEVENTTYPE system table
	SYSEXTENT system table
	SYSEXTERNLOGINS system table
	SYSFILE system table
	SYSFKCOL system table
	SYSFOREIGNKEY system table
	SYSGROUP system table
	SYSINDEX system table
	SYSINFO system table
	SYSIXCOL system table
	SYSJAR system table
	SYSJARCOMPONENT system table
	SYSJAVACLASS system table
	SYSLOGIN system table
	SYSOPTBLOCK system table
	SYSOPTION system table
	SYSOPTJOINSTRATEGY system table
	SYSOPTORDER system table
	SYSOPTQUANTIFIER system table
	SYSOPTREQUEST system table
	SYSOPTREWRITE system table
	SYSOPTSTAT system table
	SYSPROCEDURE system table
	SYSPROCPARM system table
	SYSPROCPERM system table
	SYSPUBLICATION system table
	SYSREMOTEOPTION system table
	SYSREMOTEOPTIONTYPE system table
	SYSREMOTETYPE system table
	SYSREMOTEUSER system table
	SYSSCHEDULE system table
	SYSSERVERS system table
	SYSSQLSERVERTYPE system table
	SYSSUBSCRIPTION system table
	SYSSYNC system table
	SYSTABLE system table
	SYSTABLEPERM system table
	SYSTRIGGER system table
	SYSTYPEMAP system table
	SYSUSERMESSAGES system table
	SYSUSERPERM system table
	SYSUSERTYPE system table
	SYSWEBSERVICE system table
	Other system tables
	Java system tables
	SQL Remote system tables

	System Views
	Introduction
	System view definitions
	SYSARTICLECOLS system view
	SYSARTICLES system view
	SYSCAPABILITIES system view
	SYSCATALOG system view
	SYSCOLAUTH system view
	SYSCOLSTATS system view
	SYSCOLUMNS system view
	SYSFOREIGNKEYS system view
	SYSGROUPS system view
	SYSINDEXES system view
	SYSOPTIONS system view
	SYSOPTORDERS system view
	SYSOPTPLANS system view
	SYSOPTSTRATEGIES system view
	SYSPROCAUTH system view
	SYSPROCPARMS system view
	SYSPUBLICATIONS system view
	SYSREMOTEOPTION2 system view
	SYSREMOTEOPTIONS system view
	SYSREMOTETYPES system view
	SYSREMOTEUSERS system view
	SYSSUBSCRIPTIONS system view
	SYSSYNCDEFINITIONS system view
	SYSSSYNCPUBLICATIONDEFAULTS system view
	SYSSYNC2 system view
	SYSSSYNCS system view
	SYSSYNCSITES system view
	SYSSYNCSUBSCRIPTIONS system view
	SYSSYNCTEMPLATES system view
	SYSSYNCUSERS system view
	SYSTABAUTH system view
	SYSTRIGGERS system view
	SYSUSERAUTH system view
	SYSUSERLIST system view
	SYSUSEROPTIONS system view
	SYSUSERPERMS system view
	SYSVIEWS system view

	Views for Transact-SQL compatibility

	System Procedures and Functions
	System procedure overview
	System procedure and function definitions

	System and catalog stored procedures
	sa_audit_string system procedure
	sa_check_commit system procedure
	sa_conn_activity system procedure
	sa_conn_compression_info system procedure
	sa_conn_info system procedure
	sa_conn_properties system procedure
	sa_conn_properties_by_conn system procedure
	sa_conn_properties_by_name system procedure
	sa_db_info system procedure
	sa_db_properties system procedure
	sa_disable_auditing_type
	sa_disk_free_space system procedure
	sa_enable_auditing_type
	sa_eng_properties system procedure
	sa_flush_cache system procedure
	sa_flush_statistics system procedure
	sa_get_dtt system procedure
	sa_get_histogram system procedure
	sa_get_request_profile system procedure
	sa_get_request_times system procedure
	sa_get_server_messages system procedure
	sa_index_density system procedure
	sa_index_levels system procedure
	sa_java_loaded_classes system procedure
	sa_locks system procedure
	sa_make_object system procedure
	sa_migrate system procedure
	sa_migrate_create_fks system procedure
	sa_migrate_create_remote_fks_list system procedure
	sa_migrate_create_remote_table_list system procedure
	sa_migrate_create_tables system procedure
	sa_migrate_data system procedure
	sa_migrate_drop_proxy_tables system procedure
	sa_procedure_profile system procedure
	sa_procedure_profile_summary system procedure
	sa_reset_identity system procedure
	sa_server_option system procedure
	sa_set_http_header system procedure
	sa_set_http_option system procedure
	sa_statement_text system procedure
	sa_table_fragmentation system procedure
	sa_table_page_usage system procedure
	sa_validate system procedure
	sp_login_environment system procedure
	sp_remote_columns system procedure
	sp_remote_exported_keys system procedure
	sp_remote_imported_keys system procedure
	sp_remote_primary_keys system procedure
	sp_remote_tables system procedure
	sp_servercaps system procedure
	sp_tsql_environment system procedure

	System extended stored procedures
	Extended stored procedures for MAPI and SMTP
	xp_startmail system procedure
	xp_startsmtp system procedure
	xp_sendmail system procedure
	xp_stopmail system procedure
	xp_stopsmtp system procedure

	Other system extended stored procedures
	xp_cmdshell system procedure
	xp_msver system procedure
	xp_read_file system procedure
	xp_sprintf system procedure
	xp_scanf system procedure
	xp_write_file system procedure

	Adaptive Server Enterprise system and catalog procedures
	Adaptive Server Enterprise system procedures
	Adaptive Server Enterprise catalog procedures

	Index

