
Adaptive Server® Anywhere
Programming Guide

Part number: 38130-01-0900-01

Last modified: June 2003

Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

ii

Contents

About This Manual vii
SQL Anywhere Studio documentation viii
Documentation conventions . xi
The Adaptive Server Anywhere sample database xiii
Finding out more and providing feedback xiv

1 Programming Interface Overview 1
The ODBC programming interface 2
The ADO.NET programming interface 3
The OLE DB and ADO programming interface 4
The Embedded SQL programming interface 5
The JDBC programming interface . 6
The Open Client programming interface 7
Code samples and other programming interfaces 9

2 Using SQL in Applications 11
Executing SQL statements in applications 12
Preparing statements . 14
Introduction to cursors . 17
Working with cursors . 21
Choosing cursor types . 26
Adaptive Server Anywhere cursors 30
Describing result sets . 45
Controlling transactions in applications 47

3 Introduction to Java in the Database 51
Introduction . 52
Java in the database Q & A . 54
A Java seminar . 59
The runtime environment for Java in the database 68
Tutorial: A Java in the database exercise 75

4 Using Java in the Database 81
Introduction . 82
Java-enabling a database . 84
Installing Java classes into a database 89
Special features of Java classes in the database 93
Configuring memory for Java . 99

iii

Java classes reference . 101

5 JDBC Programming 103
JDBC overview . 104
Using the jConnect JDBC driver . 110
Using the iAnywhere JDBC driver . 115
Establishing JDBC connections . 117
Using JDBC to access data . 124
Using JDBC escape syntax . 131

6 Embedded SQL Programming 135
Introduction . 136
Sample embedded SQL programs 143
Embedded SQL data types . 149
Using host variables . 153
The SQL Communication Area (SQLCA) 161
Fetching data . 166
Static and dynamic SQL . 176
The SQL descriptor area (SQLDA) 181
Sending and retrieving long values 190
Using stored procedures . 196
Embedded SQL programming techniques 201
The SQL preprocessor . 203
Library function reference . 207
Embedded SQL command summary 224

7 ODBC Programming 227
Introduction to ODBC . 228
Building ODBC applications . 230
ODBC samples . 234
ODBC handles . 236
Connecting to a data source . 239
Executing SQL statements . 243
Working with result sets . 247
Calling stored procedures . 251
Handling errors . 253

8 The Database Tools Interface 257
Introduction to the database tools interface 258
Using the database tools interface 259
DBTools functions . 267
DBTools structures . 278
DBTools enumeration types . 309

iv

9 The OLE DB and ADO Programming Interfaces 313
Introduction to OLE DB . 314
ADO programming with Adaptive Server Anywhere 315
Supported OLE DB interfaces . 322

10 Introduction to the Adaptive Server Anywhere .NET Data Provider 329
Adaptive Server Anywhere .NET data provider features 330
Running the sample projects . 331

11 Using the Adaptive Server Anywhere .NET Data Provider Sample Ap-
plications 333

Tutorial: Using the Simple code sample 334
Tutorial: Using the Table Viewer code sample 338

12 Developing Applications with the .NET Data Provider 343
Using the .NET provider in a Visual Studio .NET project 344
Connecting to a database . 346
Accessing and manipulating data . 349
Using stored procedures . 370
Transaction processing . 372
Error handling and the Adaptive Server Anywhere .NET data provider 374
Deploying the Adaptive Server Anywhere .NET data provider 375

13 Adaptive Server Anywhere .NET Data Provider API Reference 377
AsaCommand class . 379
AsaCommandBuilder class . 385
AsaConnection class . 389
AsaDataAdapter class . 395
AsaDataReader class . 404
AsaDbType enum . 418
AsaError class . 419
AsaErrorCollection class . 421
AsaException class . 423
AsaInfoMessageEventArgs class . 425
AsaInfoMessageEventHandler delegate 426
AsaParameter class . 427
AsaParameterCollection class . 433
AsaPermission class . 437
AsaPermissionAttribute class . 438
AsaRowUpdatedEventArgs class . 439
AsaRowUpdatingEventArgs class . 441
AsaRowUpdatedEventHandler delegate 443
AsaRowUpdatingEventHandler delegate 444
AsaTransaction class . 445

v

14 The Open Client Interface 447
What you need to build Open Client applications 448
Data type mappings . 449
Using SQL in Open Client applications 451
Known Open Client limitations of Adaptive Server Anywhere 454

15 Three-Tier Computing and Distributed Transactions 455
Introduction . 456
Three-tier computing architecture . 457
Using distributed transactions . 461
Using EAServer with Adaptive Server Anywhere 463

16 Deploying Databases and Applications 467
Deployment overview . 468
Understanding installation directories and file names 470
Using InstallShield for deployment 474
Using a silent installation for deployment 475
Deploying client applications . 478
Deploying administration tools . 487
Deploying database servers . 488
Deploying embedded database applications 491

17 SQL Preprocessor Error Messages 493
SQL Preprocessor error messages indexed by error message value 494
SQLPP errors . 498

Index 513

vi

About This Manual

Subject This book describes how to build and deploy database applications using the
C, C++, and Java programming languages, as well as Visual Studio .NET.
Users of tools such as Visual Basic and PowerBuilder can use the
programming interfaces provided by those tools.

Audience This manual is intended for application developers writing programs that
work directly with one of the Adaptive Server Anywhere interfaces.

You do not need to read this manual if you are using a development tool
such as PowerBuilder or Visual Basic, each of which has its own database
interface on top of ODBC.

vii

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

viii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

ix

In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

x

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [column-constraint , . . .]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi

Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API

xii

The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file namedasademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

xiii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xiv

CHAPTER 1

Programming Interface Overview

About this chapter This chapter introduces each of the programming interfaces for Adaptive
Server Anywhere. Any client application uses one of these interfaces to
communicate with the database.

Contents Topic: page

The ODBC programming interface 2

The ADO.NET programming interface 3

The OLE DB and ADO programming interface 4

The Embedded SQL programming interface 5

The JDBC programming interface 6

The Open Client programming interface 7

Code samples and other programming interfaces 9

1

The ODBC programming interface
ODBC (Open Database Connectivity) is a standard call level interface (CLI)
developed by Microsoft. It is based on the SQL Access Group CLI
specification. ODBC applications can run against any data source that
provides an ODBC driver. ODBC is a good choice for a programming
interface if you would like your application to be portable to other data
sources that have ODBC drivers.

ODBC is a low-level interface. Almost all the Adaptive Server Anywhere
functionality is available with this interface. ODBC is available as a DLL
under Windows operating systems with the exception of Windows CE. It is
provided as a library for UNIX.

The primary documentation for ODBC is the Microsoft ODBC Software
Development Kit. The current book provides some additional notes specific
to Adaptive Server Anywhere for ODBC developers.

☞ ODBC is described in“ODBC Programming” on page 227.

2

Chapter 1. Programming Interface Overview

The ADO.NET programming interface
ADO.NET is the latest data access API from Microsoft in the line of ODBC,
OLE DB, and ADO. It is the preferred data access component for the
Microsoft .NET Framework and allows you to access relational database
systems.

The Adaptive Server Anywhere .NET data provider implements the
iAnywhere.Data.AsaClient namespace and allows you to write programs in
any of the .NET supported languages, such as C# and Visual Basic .NET,
and access data from Adaptive Server Anywhere.

In addition to this book, you may wish to consult other materials on .NET
data access to help in your development efforts. For example,http://msdn.-
microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp.

☞ The ADO.NET programming interface is described in“Introduction to
the Adaptive Server Anywhere .NET Data Provider” on page 329, “Using
the Adaptive Server Anywhere .NET Data Provider Sample Applications”
on page 333, “Developing Applications with the .NET Data Provider” on
page 343, and“Adaptive Server Anywhere .NET Data Provider API
Reference” on page 377.

3

The OLE DB and ADO programming interface
OLE DB is a set of Component Object Model (COM) interfaces developed
by Microsoft, which provide applications with uniform access to data stored
in diverse information sources and which also provide the ability to
implement additional database services. These interfaces support the amount
of DBMS functionality appropriate to the data store, enabling it to share its
data.

ADO is an object model for programmatically accessing, editing, and
updating a wide variety of data sources through OLE DB system interfaces.
ADO is also developed by Microsoft. Most developers using the OLE DB
programming interface do so by writing to the ADO API rather than directly
to the OLE DB API.

Adaptive Server Anywhere includes an OLE DB provider for OLE DB and
ADO programmers.

The primary documentation for OLE DB and ADO programming is the
Microsoft Developer Network. The current book provides some additional
notes specific to Adaptive Server Anywhere for OLE DB and ADO
developers.

☞ The OLE DB provider is described in“The OLE DB and ADO
Programming Interfaces” on page 313.

Do not confuse the ADO interface with ADO.NET. ADO.NET is a separate
interface. For more information, see“The ADO.NET programming
interface” on page 3.

4

Chapter 1. Programming Interface Overview

The Embedded SQL programming interface
Embedded SQL is a system in which SQL commands are embedded right in
a C or C++ source file. A preprocessor translates these statements into calls
to a runtime library. Embedded SQL is an ISO/ANSI and IBM standard.

Embedded SQL is portable to other databases and other environments, and is
functionally equivalent in all operating environments. It is a comprehensive,
low-level interface that provides all of the functionality available in the
product. Embedded SQL requires knowledge of C or C++ programming
languages.

☞ Embedded SQL is described in“Embedded SQL Programming” on
page 135.

5

The JDBC programming interface
JDBC is a call-level interface for Java applications. Developed by Sun
Microsystems, JDBC provides Java programmers with a uniform interface to
a wide range of relational databases, and provides a common base on which
higher level tools and interfaces can be built. JDBC is now a standard part of
Java and is included in the JDK.

SQL Anywhere Studio includes a pure Java JDBC driver, named Sybase
jConnect. It also includes the iAnywhere JDBC driver, which is a type 2
driver. Both are described in“JDBC Programming” on page 103. For
information on choosing a driver, see“Choosing a JDBC driver” on
page 104.

In addition to using JDBC as a client side application programming
interface, you can also use JDBC inside the database server to access data
from Java in the database.

☞ The JDBC interface is described in“JDBC Programming” on page 103.

6

Chapter 1. Programming Interface Overview

The Open Client programming interface
Sybase Open Client provides customer applications, third-party products,
and other Sybase products with the interfaces needed to communicate with
Adaptive Server Anywhere and other Open Servers.

When to use Open Client You should consider using the Open Client interface if you are concerned
with Adaptive Server Enterprise compatibility or if you are using other
Sybase products that support the Open Client interface, such as Replication
Server.

☞ The Open Client interface is described in“The Open Client Interface”
on page 447. For more information about the Open Client interface, see
“Adaptive Server Anywhere as an Open Server”[ASA Database Administration
Guide,page 109].

Open Client architecture

Open Client can be thought of as comprising two components: programming
interfaces and network services.

Client Library and
DB-Library

Open Client provides two core programming interfaces for writing client
applications: DB-Library and Client-Library.

Open Client DB-Library provides support for older Open Client
applications, and is a completely separate programming interface from
Client-Library. DB-Library is documented in theOpen Client DB-Library/C
Reference Manual, provided with the Sybase Open Client product.

Client-Library programs also depend on CS-Library, which provides
routines that are used in both Client-Library and Server-Library applications.
Client-Library applications can also use routines from Bulk-Library to
facilitate high-speed data transfer.

Both CS-Library and Bulk-Library are included in the Sybase Open Client,
available separately.

Network services Open Client network services include Sybase Net-Library, which provides
support for specific network protocols such as TCP/IP and DECnet. The
Net-Library interface is invisible to application programmers. However, on
some platforms, an application may need a different Net-Library driver for
different system network configurations. Depending on your host platform,
the Net-Library driver is specified either by the system’s Sybase
configuration or when you compile and link your programs.

☞ Instructions for driver configuration can be found in theOpen
Client/Server Configuration Guide.

7

☞ Instructions for building Client-Library programs can be found in the
Open Client/Server Programmer’s Supplement.

8

Chapter 1. Programming Interface Overview

Code samples and other programming interfaces
Unsupported code that provides other interfaces to Adaptive Server
Anywhere is available for download.

♦ PHP module The Adaptive Server Anywhere PHP module can be used
to retrieve data from Adaptive Server Anywhere databases. To make PHP
connect to Adaptive Server Anywhere using the PHP module, you must
add the Adaptive Server Anywhere module’s files to PHP’s source tree,
then re-compile PHP.

The PHP module is available as a separate download. For more
information, seehttp://www.ianywhere.com/developer/code_-
samples/sqlany_php_module.html.

♦ Perl DBI driver DBD::ASAny is the Adaptive Server Anywhere
database driver for DBI, which is a database access Application
Programming Interface (API) for the Perl Language. The DBI API
Specification defines a set of functions, variables and conventions that
provide a consistent database interface independent of the actual database
being used. Using DBI and DBD::ASAny, your perl scripts will have
direct access to Sybase Adaptive Server Anywhere database servers.

For more information, see
http://www.ianywhere.com/developer/code_samples/dbd_asa_perl.html.

Code samples Application code samples are one of the most useful tools for application
developers. Code samples, utilities, and solution samples are available on
the iAnywhere website athttp://www.ianywhere.com/downloads.

9

CHAPTER 2

Using SQL in Applications

About this chapter Many aspects of database application development depend on your
application development tool, database interface, and programming
language, but there are some common problems and principles that affect
multiple aspects of database application development.

This chapter describes some principles and techniques common to most or
all interfaces and provides pointers for more information. It does not provide
a detailed guide for programming using any one interface.

Contents Topic: page

Executing SQL statements in applications 12

Preparing statements 14

Introduction to cursors 17

Working with cursors 21

Choosing cursor types 26

Adaptive Server Anywhere cursors 30

Describing result sets 45

Controlling transactions in applications 47

11

Executing SQL statements in applications
The way you include SQL statements in your application depends on the
application development tool and programming interface you use.

♦ ODBC If you are writing directly to the ODBC programming interface,
your SQL statements appear in function calls. For example, the following
C function call executes a DELETE statement:

SQLExecDirect(stmt,
"DELETE FROM employee

WHERE emp_id = 105",
SQL_NTS);

♦ ADO.NET You can execute SQL statements using a variety of
ADO.NET objects. The AsaCommand object is one example:

AsaCommand cmd = new AsaCommand(
"select emp_lname from employee", conn);

AsaDataReader reader = cmd.ExecuteReader();

♦ JDBC If you are using the JDBC programming interface, you can
execute SQL statements by invoking methods of thestatementobject.
For example,

stmt.executeUpdate(
"DELETE FROM employee

WHERE emp_id = 105");

♦ Embedded SQL If you are using embedded SQL, you prefix your C
language SQL statements with the keyword EXEC SQL. The code is then
run through a preprocessor before compiling. For example,

EXEC SQL EXECUTE IMMEDIATE
’DELETE FROM employee

WHERE emp_id = 105’;

♦ Sybase Open Client If you use the Sybase Open Client interface, your
SQL statements appear in function calls. For example, the following pair
of calls executes a DELETE statement:

ret = ct_command(cmd, CS_LANG_CMD,
"DELETE FROM employee

WHERE emp_id=105"
CS_NULLTERM,
CS_UNUSED);

ret = ct_send(cmd);

♦ Application Development Tools Application development tools such
as the members of the Sybase Enterprise Application Studio family

12

Chapter 2. Using SQL in Applications

provide their own SQL objects, which use either ODBC (PowerBuilder)
or JDBC (Power J) under the covers.

For more detailed information on how to include SQL in your application,
see your development tool documentation. If you are using ODBC or JDBC,
consult the software development kit for those interfaces.

For a detailed description of embedded SQL programming, see“Embedded
SQL Programming” on page 135.

Applications inside the
server

In many ways, stored procedures and triggers act as applications or parts of
applications running inside the server. You can use many of the techniques
here in stored procedures also. Stored procedures use statements very
similar to embedded SQL statements.

☞ For more information about stored procedures and triggers, see “Using
Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609].

☞ Java classes in the database can use the JDBC interface in the same way
as Java applications outside the server. This chapter discusses some aspects
of JDBC. For other information on using JDBC, see“JDBC Programming”
on page 103.

13

Preparing statements
Each time a statement is sent to a database, the server must firstprepare the
statement. Preparing the statement can include:

♦ Parsing the statement and transforming it into an internal form.

♦ Verifying the correctness of all references to database objects by
checking, for example, that columns named in a query actually exist.

♦ Causing the query optimizer to generate an access plan if the statement
involves joins or subqueries.

♦ Executing the statement after all these steps have been carried out.

Reusing prepared
statements can improve
performance

If you find yourself using the same statement repeatedly, for example,
inserting many rows into a table, repeatedly preparing the statement causes a
significant and unnecessary overhead. To remove this overhead, some
database programming interfaces provide ways of using prepared statements.
A prepared statementis a statement containing a series of placeholders.
When you want to execute the statement, all you have to do is assign values
to the placeholders, rather than prepare the entire statement over again.

Using prepared statements is particularly useful when carrying out many
similar actions, such as inserting many rows.

Generally, using prepared statements requires the following steps:

1. Prepare the statement In this step you generally provide the statement
with some placeholder character instead of the values.

2. Repeatedly execute the prepared statement In this step you supply
values to be used each time the statement is executed. The statement does
not have to be prepared each time.

3. Drop the statement In this step you free the resources associated with
the prepared statement. Some programming interfaces handle this step
automatically.

Do not prepare
statements that are used
only once

In general, you should not prepare statements if you’ll only execute them
once. There is a slight performance penalty for separate preparation and
execution, and it introduces unnecessary complexity into your application.

In some interfaces, however, you do need to prepare a statement to associate
it with a cursor.

☞ For information about cursors, see“Introduction to cursors” on page 17.

The calls for preparing and executing statements are not a part of SQL, and
they differ from interface to interface. Each of the Adaptive Server

14

Chapter 2. Using SQL in Applications

Anywhere programming interfaces provides a method for using prepared
statements.

How to use prepared statements

This section provides a brief overview of how to use prepared statements.
The general procedure is the same, but the details vary from interface to
interface. Comparing how to use prepared statements in different interfaces
illustrates this point.

❖ To use a prepared statement (generic)

1. Prepare the statement.

2. Set upbound parameters, which will hold values in the statement.

3. Assign values to the bound parameters in the statement.

4. Execute the statement.

5. Repeat steps 3 and 4 as needed.

6. Drop the statement when finished. This step is not required in JDBC, as
Java’s garbage collection mechanisms handle this for you.

❖ To use a prepared statement (embedded SQL)

1. Prepare the statement using the EXEC SQL PREPARE command.

2. Assign values to the parameters in the statement.

3. Execute the statement using the EXE SQL EXECUTE command.

4. Free the resources associated with the statement using the EXEC SQL
DROP command.

❖ To use a prepared statement (ODBC)

1. Prepare the statement usingSQLPrepare.

2. Bind the statement parameters usingSQLBindParameter.

3. Execute the statement usingSQLExecute.

4. Drop the statement usingSQLFreeStmt.

☞ For more information, see“Executing prepared statements” on
page 245and the ODBC SDK documentation.

15

❖ To use a prepared statement (ADO.NET)

1. Create an AsaCommand object holding the statement.

AsaCommand cmd = new AsaCommand(
"select emp_lname from employee", conn);

2. Declare data types for the parameters in the statement.

Use the AsaCommand.CreateParameter method.

3. Prepare the statement using the Prepare method.

cmd.Prepare();

4. Execute the statement.

AsaDataReader reader = cmd.ExecuteReader();

For more information, see

❖ To use a prepared statement (JDBC)

1. Prepare the statement using theprepareStatementmethod of the
connection object. This returns a prepared statement object.

2. Set the statement parameters using the appropriatesetType methods of
the prepared statement object. Here,Type is the data type assigned.

3. Execute the statement using the appropriate method of the prepared
statement object. For inserts, updates, and deletes this is the
executeUpdatemethod.

☞ For more information on using prepared statements in JDBC, see
“Using prepared statements for more efficient access” on page 129.

❖ To use a prepared statement (Open Client)

1. Prepare the statement using thect_dynamic function, with a
CS_PREPARE type parameter.

2. Set statement parameters usingct_param.

3. Execute the statement usingct_dynamicwith a CS_EXECUTE type
parameter.

4. Free the resources associated with the statement usingct_dynamicwith a
CS_DEALLOC type parameter.

☞ For more information on using prepared statements in Open Client,
see“Using SQL in Open Client applications” on page 451.

16

Chapter 2. Using SQL in Applications

Introduction to cursors
When you execute a query in an application, the result set consists of a
number of rows. In general, you do not know how many rows the
application is going to receive before you execute the query. Cursors provide
a way of handling query result sets in applications.

The way you use cursors, and the kinds of cursors available to you, depend
on the programming interface you use. For a list of cursor types available
from each interface, see“Availability of cursors” on page 26.

With cursors, you can carry out the following tasks within any programming
interface:

♦ Loop over the results of a query.

♦ Carry out inserts, updates, and deletes on the underlying data at any point
within a result set.

In addition, some programming interfaces allow you to use special features
to tune the way result sets return to your application, providing substantial
performance benefits for your application.

☞ For more information on the kinds of cursors available through different
programming interfaces, see“Availability of cursors” on page 26.

What are cursors?

A cursor is a name associated with a result set. The result set is obtained
from a SELECT statement or stored procedure call.

A cursor is a handle on the result set. At any time, the cursor has a
well-defined position within the result set. With a cursor you can examine
and possibly manipulate the data one row at a time. Adaptive Server
Anywhere cursors support forward and backward movement through the
query results.

Cursor positions Cursors can be positioned in the following places:

♦ Before the first row of the result set.

♦ On a row in the result set.

♦ After the last row of the result set.

17

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0
After last row

Before first row

Absolute row

from start

Absolute row

from end

Cursor position and result set are maintained in the database server. Rows
arefetchedby the client for display and processing either one at a time or a
few at a time. The entire result set does not need to be delivered to the client.

Benefits of using cursors

You do not need to use cursors in database applications, but they do provide
a number of benefits. These benefits follow from the fact that if you do not
use a cursor, the entire result set must be transferred to the client for
processing and display:

♦ Client-side memory For large results, holding the entire result set on
the client can lead to demanding memory requirements.

♦ Response time Cursors can provide the first few rows before the whole
result set is assembled. If you do not use cursors, the entire result set
must be delivered before any rows are displayed by your application.

♦ Concurrency control If you make updates to your data and do not use
cursors in your application, you must send separate SQL statements to

18

Chapter 2. Using SQL in Applications

the database server to apply the changes. This raises the possibility of
concurrency problems if the result set has changed since it was queried
by the client. In turn, this raises the possibility of lost updates.

Cursors act as pointers to the underlying data, and so impose proper
concurrency constraints on any changes you make.

Steps in using cursors

Using a cursor in embedded SQL is different than using a cursor in other
interfaces.

❖ To use a cursor (embedded SQL)

1. Prepare a statement.

Cursors generally use a statement handle rather than a string. You need to
prepare a statement to have a handle available.

☞ For information on preparing a statement, see“Preparing statements”
on page 14.

2. Declare the cursor.

Each cursor refers to a single SELECT or CALL statement. When you
declare a cursor, you state the name of the cursor and the statement it
refers to.

☞ For more information, see “DECLARE CURSOR statement [ESQL]
[SP]” [ASA SQL Reference,page 390].

3. Open the cursor.

☞ For more information, see “OPEN statement [ESQL] [SP]”[ASA SQL
Reference,page 498].

In the case of a CALL statement, opening the cursor executes the query
up to the point where the first row is about to be obtained.

4. Fetch results.

Although simple fetch operations move the cursor to the next row in the
result set, Adaptive Server Anywhere permits more complicated
movement around the result set. How you declare the cursor determines
which fetch operations are available to you.

☞ For more information, see “FETCH statement [ESQL] [SP]”[ASA
SQL Reference,page 436], and“Fetching data” on page 166.

5. Close the cursor.

When you have finished with the cursor, close it. This frees any locks
held on the underlying data.

19

☞ For more information, see “CLOSE statement [ESQL] [SP]”[ASA
SQL Reference,page 280].

6. Drop the statement.

To free the memory associated with the cursor and its associated
statement, you must free the statement.

☞ For more information, see “DROP STATEMENT statement [ESQL]”
[ASA SQL Reference,page 417].

❖ To use a cursor (ODBC, ADO.NET, JDBC, Open Client)

1. Prepare and execute a statement.

Execute a statement using the usual method for the interface. You can
prepare and then execute the statement, or you can execute the statement
directly.

With ADO.NET, only the AsaCommand.ExecuteReader command
returns a cursor. It provides a read-only, forward-only cursor.

2. Test to see if the statement returns a result set.

A cursor is implicitly opened when a statement that creates a result set is
executed. When the cursor is opened, it is positioned before the first row
of the result set.

3. Fetch results.

Although simple fetch operations move the cursor to the next row in the
result set, Adaptive Server Anywhere permits more complicated
movement around the result set.

4. Close the cursor.

When you have finished with the cursor, close it to free associated
resources.

5. Free the statement.

If you used a prepared statement, free it to reclaim memory.

Prefetching rows In some cases the interface library may carry out performance optimizations
under the covers (such as prefetching results), so these steps in the client
application may not correspond exactly to software operations.

20

Chapter 2. Using SQL in Applications

Working with cursors
This section describes how to carry out different kinds of operations using
cursors.

Cursor positioning

When a cursor is opened, it is positioned before the first row. You can move
the cursor position to an absolute position from the start or the end of the
query results, or to a position relative to the current cursor position. The
specifics of how you change cursor position, and what operations are
possible, is governed by the programming interface.

The number of row positions you can fetch in a cursor is governed by the
size of an integer. You can fetch rows numbered up to number 2147483646,
which is one less than the value that can be held in an integer. When using
negative numbers (rows from the end) you can fetch down to one more than
the largest negative value that can be held in an integer.

You can use special positioned update and delete operations to update or
delete the row at the current position of the cursor. If the cursor is positioned
before the first row or after the last row, aNo current row of cursor

error is returned.

Cursor positioning problems
Inserts and some updates to asensitive cursors can cause problems with
cursor positioning. Adaptive Server Anywhere does not put inserted rows
at a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occurs if a work table had to be
created to open the cursor (see “Use of work tables in query processing”
[ASA SQL User’s Guide,page 185]for a description).

The UPDATE statement may cause a row to move in the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing index
(a work table is not created). Using STATIC SCROLL cursors alleviates
these problems but requires more memory and processing.

Configuring cursors on opening

You can configure the following aspects of cursor behavior when you open
the cursor:

♦ Isolation level You can explicitly set the isolation level of operations on

21

a cursor to be different from the current isolation level of the transaction.
To do this, set the ISOLATION_LEVEL option.

☞ For more information, see “ISOLATION_LEVEL option
[compatibility]” [ASA Database Administration Guide,page 597].

♦ Holding By default, cursors in embedded SQL close at the end of a
transaction. Opening a cursorWITH HOLD allows you to keep it open
until the end of a connection, or until you explicitly close it. ODBC,
JDBC and Open Client leave cursors open at the end of transactions by
default.

Fetching rows through a cursor

The simplest way of processing the result set of a query using a cursor is to
loop through all the rows of the result set until there are no more rows.

❖ To loop through the rows of a result set

1. Declare and open the cursor (embedded SQL), or execute a statement that
returns a result set (ODBC, JDBC, Open Client) or AsaDataReader
object (ADO.NET).

2. Continue to fetch the next row until you get aRow Not Found error.

3. Close the cursor.

How step 2 of this operation is carried out depends on the interface you use.
For example,

♦ ODBC SQLFetch, SQLExtendedFetch,or SQLFetchScrolladvances
the cursor to the next row and returns the data.

☞ For more information on using cursors in ODBC, see“Working with
result sets” on page 247.

♦ ADO.NET Use the AsaDataReader.NextResult method. See
“NextResult method” on page 416.

♦ Embedded SQL The FETCH statement carries out the same operation.

☞ For more information on using cursors in embedded SQL, see“Using
cursors in embedded SQL” on page 167.

♦ JDBC Thenext method of theResultSetobject advances the cursor
and returns the data.

☞ For more information on using theResultSetobject in JDBC, see
“Queries using JDBC” on page 128.

22

Chapter 2. Using SQL in Applications

♦ Open Client Thect_fetch function advances the cursor to the next row
and returns the data.

☞ For more information on using cursors in Open Client applications,
see“Using cursors” on page 451.

Fetching multiple rows

This section discusses how fetching multiple rows at a time can improve
performance.

Multiple-row fetching should not be confused with prefetching rows, which
is described in the next section. Multiple row fetching is performed by the
application, while prefetching is transparent to the application, and provides
a similar performance gain.

Multiple-row fetches Some interfaces provide methods for fetching more than one row at a time
into the next several fields in an array. Generally, the fewer separate fetch
operations you execute, the fewer individual requests the server must
respond to, and the better the performance. A modified FETCH statement
that retrieves multiple-rows is also sometimes called awide fetch. Cursors
that use multiple-row fetches are sometimes calledblock cursorsor fat
cursors.

Using multiple-row
fetching

♦ In ODBC, you can set the number of rows that will be returned on each
call toSQLFetchScrollor SQLExtendedFetchby setting the
SQL_ROWSET_SIZE attribute.

♦ In embedded SQL, the FETCH statement uses an ARRAY clause to
control the number of rows fetched at a time.

♦ Open Client and JDBC do not support multi-row fetches. They do use
prefetching.

Fetching with scrollable cursors

ODBC and embedded SQL provide methods for using scrollable cursors and
dynamic scrollable cursors. These methods allow you to move several rows
forward at a time, or to move backwards through the result set.

The JDBC and Open Client interfaces do not support scrollable cursors.

Prefetching does not apply to scrollable operations. For example, fetching a
row in the reverse direction does not prefetch several previous rows.

Modifying rows through a cursor

Cursors can do more than just read result sets from a query. You can also

23

modify data in the database while processing a cursor. These operations are
commonly calledpositioned insert, update, and delete operations, orPUT
operations if the action is an insert.

Not all query result sets allow positioned updates and deletes. If you carry
out a query on a non-updatable view, then no changes occur to the
underlying tables. Also, if the query involves a join, then you must specify
which table you wish to delete from, or which columns you wish to update,
when you carry out the operations.

Inserts through a cursor can only be executed if any non-inserted columns in
the table allow NULL or have defaults.

If multiple rows are inserted into a value-sensitive (keyset driven) cursor,
they appear at the end of the cursor result set. The rows appear at the end
even if they do not match the WHERE clause of the query or if an ORDER
BY clause would normally have placed them at another location in the result
set. This behavior is independent of programming interface. For example, it
applies when using the embedded SQL PUT statement or the ODBC
SQLBulkOperations function. The value of an autoincrement column for the
most recent row inserted can be found by selecting the last row in the cursor.
For example, in embedded SQL the value could be obtained usingFETCH

ABSOLUTE -1 cursor-name . As a result of this behavior, the first
multiple-row insert for a value-sensitive cursor may be expensive.

ODBC, embedded SQL, and Open Client permit data modification using
cursors, but JDBC 1.1 does not. With Open Client, you can delete and
update rows, but you can only insert rows on a single-table query.

Which table are rows
deleted from?

If you attempt a positioned delete through a cursor, the table from which
rows are deleted is determined as follows:

1. If no FROM clause is included in the DELETE statement, the cursor
must be on a single table only.

2. If the cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

3. If a FROM clause is included, and no table owner is specified, the
table-spec value is first matched against any correlation names.

☞ For more information, see the “FROM clause”[ASA SQL Reference,
page 445].

4. If a correlation name exists, the table-spec value is identified with the
correlation name.

24

Chapter 2. Using SQL in Applications

5. If a correlation name does not exist, the table-spec value must be
unambiguously identifiable as a table name in the cursor.

6. If a FROM clause is included, and a table owner is specified, the
table-spec value must be unambiguously identifiable as a table name in
the cursor.

7. The positioned DELETE statement can be used on a cursor open on a
view as long as the view is updatable.

Canceling cursor operations

You can cancel a request through an interface function. From
Interactive SQL, you can cancel a request by pressing the Interrupt SQL
Statement button on the toolbar (or by choosing Stop from the SQL menu).

If you cancel a request that is carrying out a cursor operation, the position of
the cursor is indeterminate. After canceling the request, you must locate the
cursor by its absolute position, or close it.

25

Choosing cursor types
This section describes mappings between Adaptive Server Anywhere
cursors and the options available to you from the programming interfaces
supported by Adaptive Server Anywhere.

☞ For information on Adaptive Server Anywhere cursors, see“Adaptive
Server Anywhere cursors” on page 30.

Availability of cursors

Not all interfaces provide support for all types of cursors.

♦ ODBC and OLE DB (ADO) support all types of cursors.

☞ For more information, see“Working with result sets” on page 247.

♦ Embedded SQL supports all the types of cursors.

♦ ADO.NET provides only forward-only, read-only cursors.

♦ For JDBC:

• jConnect 4.x provides only asensitive cursors.

• jConnect 5.x supports all types of cursors, but there is a severe
performance penalty for scrollable cursors.

• The iAnywhere JDBC driver supports all types of cursors.

♦ Sybase Open Client supports only asensitive cursors. Also, a severe
performance penalty results when using updatable, non-unique cursors.

Cursor properties

You request a cursor type, either explicitly or implicitly, from the
programming interface. Different interface libraries offer different choices of
cursor types. For example, JDBC and ODBC specify different cursor types.

Each cursor type is defined by a number of characteristics:

♦ Uniqueness Declaring a cursor to be unique forces the query to return
all the columns required to uniquely identify each row. Often this means
returning all the columns in the primary key. Any columns required but
not specified are added to the result set. The default cursor type is
non-unique.

♦ Updatability A cursor declared as read only may not be used in a
positioned update or delete operation. The default cursor type us
updatable.

26

Chapter 2. Using SQL in Applications

♦ Scrollability You can declare cursors to behave different ways as you
move through the result set. Some cursors can fetch only the current row
or the following row. Others can move backwards and forwards through
the result set.

♦ Sensitivity Changes to the database may or may not be visible through
a cursor.

These characteristics may have significant side effects on performance and
on database server memory usage.

Adaptive Server Anywhere makes available cursors with a variety of mixes
of these characteristics. When you request a cursor of a given type, Adaptive
Server Anywhere matches those characteristics as well as it can. The details
of how Adaptive Server Anywhere cursors match the cursor types specified
in the programming interfaces are the subject of the following sections.

There are some occasions when not all characteristics can be supplied.
For example, insensitive cursors in Adaptive Server Anywhere must be
read-only, for reasons described below. If your application requests an
updatable insensitive cursor, a different cursor type (value-sensitive) is
supplied instead.

Requesting Adaptive Server Anywhere cursors

When you request a cursor type from your client application, Adaptive
Server Anywhere provides a cursor. Adaptive Server Anywhere cursors are
defined, not by the type as specified in the programming interface, but by the
sensitivity of the result set to changes in the underlying data. Depending on
the cursor type you ask for, Adaptive Server Anywhere provides a cursor
with behavior to match the type.

Adaptive Server Anywhere cursor sensitivity is set in response to the client
cursor type request.

ODBC and OLE DB

The following table illustrates the cursor sensitivity that is set in response to
different ODBC scrollable cursor types.

ODBC scrollable cursor type Adaptive Server Anywhere cursor

STATIC Insensitive

KEYSET Value-sensitive

DYNAMIC Sensitive

MIXED Value-sensitive

27

☞ For information on Adaptive Server Anywhere cursors and their
behavior, see“Adaptive Server Anywhere cursors” on page 30. For
information on how to request a cursor type in ODBC, see“Choosing a
cursor characteristics” on page 247.

Exceptions If a STATIC cursor is requested as updatable, a value-sensitive cursor is
supplied instead and a warning is issued.

If a DYNAMIC or MIXED cursor is requested and the query cannot be
executed without using work tables, a warning is issued and an asensitive
cursor is supplied instead.

ADO.NET

Forward-only, read-only cursors are available by using
AsaCommand.ExecuteReader. The AsaDataAdapter object uses a client-side
result set instead of cursors.

Embedded SQL

To request a cursor from an embedded SQL application, you specify the
cursor type on the DECLARE statement. The following table illustrates the
cursor sensitivity that is set in response to different requests:

Cursor type Adaptive Server Anywhere cursor

NO SCROLL Asensitive

DYNAMIC SCROLL Asensitive

SCROLL Value-sensitive

INSENSITIVE Insensitive

SENSITIVE Sensitive

Exceptions If an DYNAMIC SCROLL or NO SCROLL cursor is requested as
UPDATABLE, then a sensitive or value-sensitive cursor is supplied. It is not
guaranteed which of the two is supplied. This uncertainty fits the definition
of asensitive behavior.

If an INSENSITIVE cursor is requested as UPDATABLE, then a
value-sensitive cursor is supplied.

If a DYNAMIC SCROLL cursor is requested, if the PREFETCH database
option is set to OFF, and if the query execution plan involves no work tables,
then a sensitive cursor may be supplied. Again, this uncertainty fits the
definition of asensitive behavior.

28

Chapter 2. Using SQL in Applications

JDBC

Only one kind of cursor is available to JDBC applications. This is an
asensitive cursor. In JDBC you execute anExecuteQuerystatement to open
a cursor.

Open Client

Only one kind of cursor is available to Open Client applications. This is an
asensitive cursor.

Bookmarks and cursors

ODBC providesbookmarks, or values, used to identify rows in a cursor.
Adaptive Server Anywhere supports bookmarks for all kinds of cursors
except DYNAMIC cursors.

Block cursors

ODBC provides a cursor type called a block cursor. When you use a
BLOCK cursor, you can useSQLFetchScrollor SQLExtendedFetchto
fetch a block of rows, rather than a single row. Block cursors behave
identically to embedded SQL ARRAY fetches.

29

Adaptive Server Anywhere cursors
Any cursor, once opened, has an associated result set. The cursor is kept
open for a length of time. During that time, the result set associated with the
cursor may be changed, either through the cursor itself or, subject to
isolation level requirements, by other transactions. Some cursors permit
changes to the underlying data to be visible, while others do not reflect these
changes. The different behavior of cursors with respect to changes to the
underlying data is thesensitivity of the cursor.

Adaptive Server Anywhere provides cursors with a variety of sensitivity
characteristics. This section describes what sensitivity is, and describes the
sensitivity characteristics of cursors.

This section assumes that you have read“What are cursors?” on page 17.

Membership, order, and
value changes

Changes to the underlying data can affect the result set of a cursor in the
following ways:

♦ Membership The set of rows in the result set, as identified by their
primary key values.

♦ Order The order of the rows in the result set.

♦ Value The values of the rows in the result set.

For example, consider the following simple table with employee information
(emp_id is the primary key column):

emp_id emp_lname

1 Whitney

2 Cobb

3 Chin

A cursor on the following query returns all results from the table in primary
key order:

SELECT emp_id, emp_lname
FROM employee
ORDER BY emp_id

The membership of the result set could be changed by adding a new row or
deleting a row. The values could be changed by changing one of the names
in the table. The order could be changed by changing the primary key value
of one of the employees.

Visible and invisible
changes

Subject to isolation level requirements, the membership, order, and values of
the result set of a cursor can be changed after the cursor is opened.

30

Chapter 2. Using SQL in Applications

Depending on the type of cursor in use, the result set as seen by the
application may change to reflect these changes or may not.

Changes to the underlying data may bevisible or invisible through the
cursor. A visible change is a change that is reflected in the result set of the
cursor. Changes to the underlying data that are not reflected in the result set
seen by the cursor are invisible.

Cursor sensitivity overview

Adaptive Server Anywhere cursors are classified by their sensitivity with
respect to changes of the underlying data. In particular, cursor sensitivity is
defined in terms of which changes are visible.

♦ Insensitive cursors The result set is fixed when the cursor is opened.
No changes to the underlying data are visible.

☞ For more information, see“Insensitive cursors” on page 35.

♦ Sensitive cursors The result set can change after the cursor is opened.
All changes to the underlying data are visible.

☞ For more information, see“Sensitive cursors” on page 36.

♦ Asensitive cursors Changes may be reflected in the membership,
order, or values of the result set seen through the cursor, or may not be
reflected at all.

☞ For more information, see“Asensitive cursors” on page 38.

♦ Value-sensitive cursors Changes to the order or values of the
underlying data. The membership of the result set is fixed when the
cursor is opened.

☞ For more information, see“Value-sensitive cursors” on page 39.

The differing requirements on cursors place different constraints on
execution, and so performance. For more information, see“Cursor
sensitivity and performance” on page 41.

Cursor sensitivity example: a deleted row

This example uses a simple query to illustrate how different cursors respond
to a row in the result set being deleted.

Consider the following sequence of events:

1. An application opens a cursor on the following query against the sample
database.

31

SELECT emp_id, emp_lname
FROM employee
ORDER BY emp_id

emp_id emp_lname

102 Whitney

105 Cobb

160 Breault

.

2. The application fetches the first row through the cursor (102).

3. The application fetches the next row through the cursor (105).

4. A separate transaction deletes employee 102 (Whitney) and commits the
change.

The results of cursor actions in this situation depend on the cursor
sensitivity:

♦ Insensitive cursors The DELETE is not reflected in either the
membership or values of the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row
(absolute fetch)

Returns the original copy of the row (102).

Fetch the second row
(absolute fetch)

Returns the unchanged row (105).

♦ Sensitive cursors The membership of the result set has changed so that
row 105 is now the first row in the result set:

Action Result

Fetch previous row ReturnsRow Not Found error. There is no
previous row.

Fetch the first row
(absolute fetch)

Returns row 105.

Fetch the second row
(absolute fetch)

Returns row 160.

32

Chapter 2. Using SQL in Applications

♦ Value-sensitive cursors The membership of the result set is fixed, and
so row 105 is still the second row of the result set. The DELETE is
reflected in the values of the cursor, and creates an effective “hole” in the
result set.

Action Result

Fetch previous row ReturnsNo current row of cursor .
There is a hole in the cursor where the first row
used to be.

Fetch the first row
(absolute fetch)

ReturnsNo current row of cursor .
There is a hole in the cursor where the first row
used to be.

Fetch the second row
(absolute fetch)

Returns row 105.

♦ Asensitive cursors The membership and values of the result set are
indeterminate with respect to the changes. The response to a fetch of the
previous row, the first row, or the second row depends on the particular
optimization method for the query, whether that method involved the
formation of a work table, and whether the row being fetched was
prefetched from the client.

The benefit of asensitive cursors is that for many applications, sensitivity
is unimportant. In particular, if you are using a forward-only, read-only
cursor, no underlying changes are seen. Also, if you are running at a high
isolation level, underlying changes are disallowed.

Cursor sensitivity example: an updated row

This example uses a simple query to illustrate how different cursor types
respond to a row in the result set being updated in such a way as to change
the order of the result set.

Consider the following sequence of events:

1. An application opens a cursor on the following query against the sample
database.

SELECT emp_id, emp_lname
FROM employee

33

emp_id emp_lname

102 Whitney

105 Cobb

160 Breault

.

2. The application fetches the first row through the cursor (102).

3. The application fetches the next row through the cursor (105).

4. A separate transaction updates the employee ID of employee 102
(Whitney) to 165 and commits the change.

The results of the cursor actions in this situation depend on the cursor
sensitivity:

♦ Insensitive cursors The UPDATE is not reflected in either the
membership or values of the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row
(absolute fetch)

Returns the original copy of the row (102).

Fetch the second row
(absolute fetch)

Returns the unchanged row (105).

♦ Sensitive cursors The membership of the result set has changed so that
row 105 is now the first row in the result set:

Action Result

Fetch previous row ReturnsRow Not Found . The membership
of the result set has changed so that 105 is now
the first row. The cursor is moved to the position
before the first row.

Fetch the first row
(absolute fetch)

Returns row 105.

Fetch the second row
(absolute fetch)

Returns row 160.

In addition, a fetch on a sensitive cursor returns the warning
SQLE_ROW_UPDATED_WARNINGif the row has changed since the last

34

Chapter 2. Using SQL in Applications

reading. The warning is given only once. Subsequent fetches of the same
row do not produce the warning.

Similarly, a positioned update or delete through the cursor on a row since
it was last fetched returns the SQLE_ROW_UPDATED_SINCE_READ
error. An application must fetch the row again for an update or delete on
a sensitive cursor to work.

An update to any column causes the warning/error, even if the column is
not referenced by the cursor. For example, a cursor on a query returning
emp_lname would report the update even if only the salary column was
modified.

♦ Value-sensitive cursors The membership of the result set is fixed, and
so row 105 is still the second row of the result set. The UPDATE is
reflected in the values of the cursor, and creates an effective “hole” in the
result set.

Action Result

Fetch previous row ReturnsRow Not Found . The membership
of the result set has changed so that 105 is now
the first row: The cursor is positioned on the
hole: it is before row 105.

Fetch the first row
(absolute fetch)

ReturnsRow Not Found . The membership
of the result set has changed so that 105 is now
the first row: The cursor is positioned on the
hole: it is before row 105.

Fetch the second row
(absolute fetch)

Returns row 105.

♦ Asensitive cursors The membership and values of the result set are
indeterminate with respect to the changes. The response to a fetch of the
previous row, the first row, or the second row depends on the particular
optimization method for the query, whether that method involved the
formation of a work table, and whether the row being fetched was
prefetched from the client.

No warnings or errors in bulk operations mode
Update warning and error conditions do not occur in bulk operations mode
(-b database server option).

Insensitive cursors

These cursors have insensitive membership, order, and values. No changes
made after cursor open time are visible.

35

Insensitive cursors are used only for read-only cursor types.

Standards Insensitive cursors correspond to the ISO/ANSI standard definition of
insensitive cursors, and to ODBC static cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, OLE DB,
and ADO

Static If an updatable static cursor is re-
quested, a value-sensitive cursor is
used instead.

Embedded SQL INSENSI-
TIVE or NO
SCROLL

JDBC Unsupported

Open Client Unsupported

Description Insensitive cursors always return rows that match the query’s selection
criteria, in the order specified by any ORDER BY clause.

The result set of an insensitive cursor is fully materialized as a work table
when the cursor is opened. This has the following consequences:

♦ If the result set is very large, the disk space and memory requirements for
managing the result set may be significant.

♦ No row is returned to the application before the entire result set is
assembled as a work table. For complex queries, this may lead to a delay
before the first row is returned to the application.

♦ Subsequent rows can be fetched directly from the work table, and so are
returned quickly. The client library may prefetch several rows at a time,
further improving performance.

♦ Insensitive cursors are not affected by ROLLBACK or ROLLBACK TO
SAVEPOINT.

Sensitive cursors

These cursors have sensitive membership, order, and values.

Sensitive cursors can be used for read-only or updatable cursor types.

Standards Sensitive cursors correspond to the ISO/ANSI standard definition of
sensitive cursors, and to ODBC dynamic cursors.

Programming interfaces

36

Chapter 2. Using SQL in Applications

Interface Cursor type Comment

ODBC, OLE DB,
and ADO

Dynamic

Embedded SQL SENSITIVE Also supplied in response to a request
for a DYNAMIC SCROLL cursor
when no work table is required and
PREFETCH is off.

Description All changes are visible through the cursor, including changes through the
cursor and from other transactions. Higher isolation levels may hide some
changes made in other transactions because of locking.

Changes to cursor membership, order, and all column values are all visible.
For example, if a sensitive cursor contains a join, and one of the values of
one of the underlying tables is modified, then all result rows composed from
that base row show the new value. Result set membership and order may
change at each fetch.

Sensitive cursors always return rows that match the query’s selection
criteria, and are in the order specified by any ORDER BY clause. Updates
may affect the membership, order, and values of the result set.

The requirements of sensitive cursors place restrictions on the
implementation of sensitive cursors:

♦ Rows cannot be prefetched, as changes to the prefetched rows would not
be visible through the cursor. This may impact performance.

♦ Sensitive cursors must be implemented without any work tables being
constructed, as changes to those rows stored as work tables would not be
visible through the cursor.

♦ The no work table limitation restricts the choice of join method by the
optimizer and therefore may impact performance.

♦ For some queries, the optimizer is unable to construct a plan that does not
include a work table that would make a cursor sensitive.

Work tables are commonly used for sorting and grouping intermediate
results. A work table is not needed for sorting if the rows can be accessed
through an index. It is not possible to state exactly which queries employ
work tables, but the following queries do employ them:

• UNION queries, although UNION ALL do not necessarily use work
tables.

• Statements with an ORDER BY clause, if there is no index on the
ORDER BY column.

37

• Any query that is optimized using a hash join.

• Many queries involving DISTINCT or GROUP BY clauses.

In these cases, Adaptive Server Anywhere either returns an error to the
application, or changes the cursor type to an asensitive cursor and returns
a warning.

☞ For more information on query optimization and the use of work
tables, see “Query Optimization and Execution”[ASA SQL User’s Guide,
page 367].

Asensitive cursors

These cursors do not have well-defined sensitivity in their membership,
order, or values. The flexibility that is allowed in the sensitivity permits
asensitive cursors to be optimized for performance.

Asensitive cursors are used only for read-only cursor types.

Standards Asensitive cursors correspond to the ISO/ANSI standard definition of
asensitive cursors, and to ODBC cursors with unspecific sensitivity.

Programming interfaces

Interface Cursor type

ODBC, OLE DB, and ADO Unspecified sensitivity

Embedded SQL DYNAMIC SCROLL

Description A request for an asensitive cursor places few restrictions on the methods
Adaptive Server Anywhere can use to optimize the query and return rows to
the application. For these reasons, asensitive cursors provide the best
performance. In particular, the optimizer is free to employ any measure of
materialization of intermediate results as work tables, and rows can be
prefetched by the client.

Adaptive Server Anywhere makes no guarantees about the visibility of
changes to base underlying rows. Some changes may be visible, others not.
Membership and order may change at each fetch. In particular, updates to
base rows may result in only some of the updated columns being reflected in
the cursor’s result.

Asensitive cursors do not guarantee to return rows that match the query’s
selection and order. The row membership is fixed at cursor open time, but
subsequent changes to the underlying values are reflected in the results.

Asensitive cursors always return rows that matched the customer’s WHERE
and ORDER BY clauses at the time the cursor membership is established. If

38

Chapter 2. Using SQL in Applications

column values change after the cursor is opened, rows may be returned that
no longer match WHERE and ORDER BY clauses.

Value-sensitive cursors

These cursors are insensitive with respect to their membership, and sensitive
with respect to the order and values of the result set.

Value-sensitive cursors can be used for read-only or updatable cursor types.

Standards Value-sensitive cursors do not correspond to an ISO/ANSI standard
definition. They correspond to ODBC keyset-driven cursors.

Programming interfaces

Interface Cursor type

ODBC, OLE DB, and ADO Keyset-driven

Embedded SQL SCROLL

JDBC Keyset-driven

Open Client Keyset-driven

Description If the application fetches a row composed of a base underlying row that has
changed, then the application must be presented with the updated value, and
the SQL_ROW_UPDATED status must be issued to the application. If the
application attempts to fetch a row that was composed of a base underlying
row that was deleted, a SQL_ROW_DELETED status must be issued to the
application.

Changes to primary key values remove the row from the result set (treated as
a delete, followed by an insert). A special case occurs when a row in the
result set is deleted (either from cursor or outside) and a new row with the
same key value is inserted. This will result in the new row replacing the old
row where it appeared.

There is no guarantee that rows in the result set match the query’s selection
or order specification. Since row membership is fixed at open time,
subsequent changes that make a row not match the WHERE clause or
ORDER BY do not change a row’s membership nor position.

All values are sensitive to changes made through the cursor. The sensitivity
of membership to changes made through the cursor is controlled by the
ODBC option SQL_STATIC_SENSITIVITY. If this option is on, then
inserts through the cursor add the row to the cursor. Otherwise, they are not
part of the result set. Deletes through the cursor remove the row from the
result set, preventing a hole returning the SQL_ROW_DELETED status.

39

Value-sensitive cursors use akey set table. When the cursor is opened,
Adaptive Server Anywhere populates a work table with identifying
information for each row contributing to the result set. When scrolling
through the result set, the key set table is used to identify the membership of
the result set, but values are obtained, if necessary, from the underlying
tables.

The fixed membership property of value-sensitive cursors allows your
application to remember row positions within a cursor and be assured that
these positions will not change. For more information, see“Cursor
sensitivity example: a deleted row” on page 31.

♦ If a row was updated or may have been updated since the cursor was
opened, Adaptive Server Anywhere returns a
SQLE_ROW_UPDATED_WARNING when the row is fetched. The
warning is generated only once: fetching the same row again does not
produce the warning.

An update to any column of the row causes the warning, even if the
updated column is not referenced by the cursor. For example, a cursor on
emp_lname and emp_fname would report the update even if only the
birthdate column was modified. These update warning and error
conditions do not occur in bulk operations mode (-b database server
option) when row locking is disabled. See “Performance considerations
of moving data”[ASA SQL User’s Guide,page 522].

☞ For more information, see “Row has been updated since last time
read” [ASA Error Messages,page 293]

♦ An attempt to execute a positioned update or delete on a row that has
been modified since it was last fetched returns a
SQLE_ROW_UPDATED_SINCE_READ error and cancels the
statement. An application must FETCH the row again before the
UPDATE or DELETE is permitted.

An update to any column of the row causes the error, even if the updated
column is not referenced by the cursor. The error does not occur in bulk
operations mode.

☞ For more information, see “Row has changed since last read –
operation cancelled”[ASA Error Messages,page 293].

♦ If a row has been deleted after the cursor is opened, either through the
cursor or from another transaction, ahole is created in the cursor. The
membership of the cursor is fixed, so a row position is reserved, but the
DELETE operation is reflected in the changed value of the row. If you
fetch the row at this hole, you receive aNo Current Row of Cursor

error (SQL state 24503), indicating that there is no current row, and the

40

Chapter 2. Using SQL in Applications

cursor is left positioned on the hole. You can avoid holes by using
sensitive cursors, as their membership changes along with the values.

☞ For more information, see “No current row of cursor”[ASA Error
Messages,page 259].

Rows cannot be prefetched for value-sensitive cursors. This requirement
may impact performance in some cases.

Inserting multiple rows When inserting multiple rows through a value-sensitive cursor, the new rows
appear at the end of the result set. For more information, see“Modifying
rows through a cursor” on page 23.

Cursor sensitivity and performance

There is a trade-off between performance and other cursor properties. In
particular, making a cursor updatable places restrictions on the cursor query
processing and delivery that constrain performance. Also, putting
requirements on cursor sensitivity may constrain cursor performance.

To understand how the updatability and sensitivity of cursors affects
performance, you need to understand how the results that are visible through
a cursor are transmitted from the database to the client application.

In particular, results may be stored at two intermediate locations for
performance reasons:

♦ Work tables Either intermediate or final results may be stored as work
tables. Value-sensitive cursors employ a work table of primary key
values. Query characteristics may also lead the optimizer to use work
tables in its chosen execution plan.

♦ Prefetching The client side of the communication may retrieve rows
into a buffer on the client side to avoid separate requests to the database
server for each row.

Client

application

ODBC driver or

network library

Database server

� �
Prefetched

rows

Work table

41

Sensitivity and updatability limit the use of intermediate locations.

Any updatable cursor is prevented from using work tables and from
prefetching results. If either of these were used, the cursor would be
vulnerable to lost updates. The following example illustrates this problem:

1. An application opens a cursor on the following query against the sample
database.

SELECT id, quantity
FROM product

id quantity

300 28

301 54

302 75

.

2. The application fetches the row with id = 300 through the cursor.

3. A separate transaction updates the row is updated using the following
statement:

UPDATE product
SET quantity = quantity - 10
WHERE id = 300

4. The application updates the row through the cursor to a value of
(quantity - 5) .

5. The correct final value for the row would be 13. If the cursor had
prefetched the row, the new value of the row would be 23. The update
from the separate transaction is lost.

Similar restrictions govern sensitivity. For more information, see the
descriptions of distinct cursor types.

Prefetching rows

Prefetches and multiple-row fetches are different. Prefetches can be carried
out without explicit instructions from the client application. Prefetching
retrieves rows from the server into a buffer on the client side, but does not
make those rows available to the client application until the application
fetches the appropriate row.

42

Chapter 2. Using SQL in Applications

By default, the Adaptive Server Anywhere client library prefetches multiple
rows whenever an application fetches a single row. The Adaptive Server
Anywhere client library stores the additional rows in a buffer.

Prefetching assists performance by cutting down on client/server traffic, and
increases throughput by making many rows available without a separate
request to the server for each row or block of rows.

☞ For more information on controlling prefetches, see “PREFETCH
option [database]”[ASA Database Administration Guide,page 618].

Controlling prefetching
from an application

♦ The PREFETCH option controls whether or not prefetching occurs. You
can set the PREFETCH option to ON or OFF for a single connection. By
default, it is set to ON.

♦ In embedded SQL, you can control prefetching on a per-cursor basis
when you open a cursor on an individual FETCH operation using the
BLOCK clause.

The application can specify a maximum number of rows contained in a
single fetch from the server by specifying the BLOCK clause.
For example, if you are fetching and displaying 5 rows at a time, you
could use BLOCK 5. Specifying BLOCK 0 fetches 1 record at a time and
also causes a FETCH RELATIVE 0 to always fetch the row from the
server again.

Although you can also turn off prefetch by setting a connection parameter
on the application, it is more efficient to set BLOCK=0 than to set the
PREFETCH option to OFF.

☞ For more information, see “PREFETCH option [database]”[ASA
Database Administration Guide,page 618]

♦ In Open Client, you can control prefetching behavior usingct_cursor
with CS_CURSOR_ROWS after the cursor is declared, but before it is
opened.

Cursor sensitivity and isolation levels

Both cursor sensitivity and transaction isolation levels address the problem
of concurrency, but in different ways.

By choosing an isolation level for a transaction (often at the connection
level), you determine when locks are placed on rows in the database. Locks
prevent other transactions from accessing or modifying values in the
database.

By choosing a cursor sensitivity, you determine which changes are visible to
the application using the cursor. By setting cursor sensitivity you are not

43

determining when locks are placed on rows in the database, and you do not
limit the changes that can be made to the database itself.

44

Chapter 2. Using SQL in Applications

Describing result sets
Some applications build SQL statements which cannot be completely
specified in the application. In some cases, for example, statements depend
on a response from the user before the application knows exactly what
information to retrieve, such as when a reporting application allows a user to
select which columns to display.

In such a case, the application needs a method for retrieving information
about both the nature of theresult setand the contents of the result set. The
information about the nature of the result set, called adescriptor, identifies
the data structure, including the number and type of columns expected to be
returned. Once the application has determined the nature of the result set,
retrieving the contents is straightforward.

This result set metadata(information about the nature and content of the
data) is manipulated using descriptors. Obtaining and managing the result
set metadata is calleddescribing.

Since cursors generally produce result sets, descriptors and cursors are
closely linked, although some interfaces hide the use of descriptors from the
user. Typically, statements needing descriptors are either SELECT
statements or stored procedures that return result sets.

A sequence for using a descriptor with a cursor-based operation is as
follows:

1. Allocate the descriptor. This may be done implicitly, although some
interfaces allow explicit allocation as well.

2. Prepare the statement.

3. Describe the statement. If the statement is a stored procedure call or
batch, and the result set is not defined by a result clause in the procedure
definition, then the describe should occur after opening the cursor.

4. Declare and open a cursor for the statement (embedded SQL) or execute
the statement.

5. Get the descriptor and modify the allocated area if necessary. This is
often done implicitly.

6. Fetch and process the statement results.

7. Deallocate the descriptor.

8. Close the cursor.

9. Drop the statement. Some interfaces do this automatically.

45

Implementation notes ♦ In embedded SQL, a SQLDA (SQL Descriptor Area) structure holds the
descriptor information.

☞ For more information, see“The SQL descriptor area (SQLDA)” on
page 181.

♦ In ODBC, a descriptor handle allocated usingSQLAllocHandle provides
access to the fields of a descriptor. You can manipulate these fields using
SQLSetDescRec, SQLSetDescField, SQLGetDescRec, and
SQLGetDescField.

Alternatively, you can useSQLDescribeColandSQLColAttributes to
obtain column information.

♦ In Open Client, you can usect_dynamic to prepare a statement and
ct_describeto describe the result set of the statement. However, you can
also usect_commandto send a SQL statement without preparing it first
and usect_resultsto handle the returned rows one by one. This is the
more common way of operating in Open Client application development.

♦ In JDBC, thejava.SQL.ResultSetMetaDataclass provides information
about result sets.

♦ You can also use descriptors for sending data to the engine (for example,
with the INSERT statement); however, this is a different kind of
descriptor than for result sets.

☞ For more information about input and output parameters of the
DESCRIBE statement, see the “DESCRIBE statement [ESQL]”[ASA
SQL Reference,page 403].

46

Chapter 2. Using SQL in Applications

Controlling transactions in applications
Transactions are sets of atomic SQL statements. Either all statements in the
transaction are executed, or none. This section describes a few aspects of
transactions in applications.

☞ For more information about transactions, see “Using Transactions and
Isolation Levels”[ASA SQL User’s Guide,page 99].

Setting autocommit or manual commit mode

Database programming interfaces can operate in eithermanual commit
mode orautocommit mode.

♦ Manual commit mode Operations are committed only when your
application carries out an explicit commit operation or when the database
server carries out an automatic commit, for example when executing an
ALTER TABLE statement or other data definition statement. Manual
commit mode is also sometimes calledchained mode.

To use transactions in your application, including nested transactions and
savepoints, you must operate in manual commit mode.

♦ Autocommit mode Each statement is treated as a separate transaction.
Autocommit mode is equivalent to appending a COMMIT statement to
the end of each of your commands. Autocommit mode is also sometimes
calledunchained mode.

Autocommit mode can affect the performance and behavior of your
application. Do not use autocommit if your application requires
transactional integrity.

☞ For information on autocommit impact on performance, see “Turn off
autocommit mode”[ASA SQL User’s Guide,page 165].

Controlling autocommit behavior

The way to control the commit behavior of your application depends on the
programming interface you are using. The implementation of autocommit
may be client-side or server-side, depending on the interface.

☞ For more information, see“Autocommit implementation details” on
page 48.

47

❖ To control autocommit mode (ODBC)

1. By default, ODBC operates in autocommit mode. The way you turn off
autocommit depends on whether you are using ODBC directly, or using
an application development tool. If you are programming directly to the
ODBC interface, set the SQL_ATTR_AUTOCOMMIT connection
attribute.

❖ To control autocommit mode (ADO.NET)

1. By default, the ADO.NET provider operates in autocommit mode. To use
explicit transactions, use the AsaConnection.BeginTransaction method.

☞ For more information, see“Transaction processing” on page 372.

❖ To control autocommit mode (JDBC)

1. By default, JDBC operates in autocommit mode. To turn off autocommit,
use thesetAutoCommit method of the connection object:

conn.setAutoCommit(false);

❖ To control autocommit mode (Open Client)

1. By default, a connection made through Open Client operates in
autocommit mode. You can change this behavior by setting the
CHAINED database option to ON in your application using a statement
such as the following:

SET OPTION CHAINED=’ON’

❖ To control autocommit mode (embedded SQL)

1. By default, embedded SQL applications operate in manual commit mode.
To turn on autocommit, set the CHAINED database option to OFF using
a statement such as the following:

SET OPTION CHAINED=’OFF’

Autocommit implementation details

The previous section,“Controlling autocommit behavior” on page 47,
describes how autocommit behavior can be controlled from each of the
Adaptive Server Anywhere programming interfaces. Autocommit mode has
slightly different behavior depending on the interface you are using and how
you control the autocommit behavior.

Autocommit mode can be implemented in one of two ways:

48

Chapter 2. Using SQL in Applications

♦ Client-side autocommit When an application uses autocommit, the
client-library sends a COMMIT statement after each SQL statement
executed.

Adaptive Server Anywhere uses client-side autocommit for ODBC and
OLE DB applications.

♦ Server-side autocommit When an application uses autocommit, the
database server issues a commit after each SQL statement. This behavior
is controlled, implicitly in the case of JDBC, by the CHAINED database
option.

Adaptive Server Anywhere uses server-side autocommit for embedded
SQL, JDBC, and Open Client applications.

There is a difference between client-side and server-side autocommit in the
case of compound statements such as stored procedures or triggers. From
the client side, a stored procedure is a single statement, and so autocommit
sends a single commit statement after the whole procedure is executed.
From the database server perspective, the stored procedure may be
composed of many SQL statements, and so server-side autocommit issues a
COMMIT after each SQL statement within the procedure.

Do not mix client-side and server-side implementations
Do not combine use of the CHAINED option with autocommit in your
ODBC or OLE DB application.

Controlling the isolation level

You can set the isolation level of a current connection using the
ISOLATION_LEVEL database option.

Some interfaces, such as ODBC, allow you to set the isolation level for a
connection at connection time. You can reset this level later using the
ISOLATION_LEVEL database option.

Cursors and transactions

In general, a cursor closes when a COMMIT is performed. There are two
exceptions to this behavior:

♦ The CLOSE_ON_ENDTRANS database option is set to OFF.

♦ A cursor is opened WITH HOLD, which is the default with Open Client
and JDBC.

If either of these two cases is true, the cursor remains open on a COMMIT.

49

ROLLBACK and cursors If a transaction rolls back, then cursors close except for those cursors opened
WITH HOLD. However, don’t rely on the contents of any cursor after a
rollback.

The draft ISO SQL3 standard states that on a rollback, all cursors (even those
cursors opened WITH HOLD) should close. You can obtain this behavior by
setting the ANSI_CLOSE_CURSORS_AT_ROLLBACK option to ON.

Savepoints If a transaction rolls back to a savepoint, and if the
ANSI_CLOSE_CURSORS_AT_ROLLBACK option is ON, then all cursors
(even those cursors opened WITH HOLD) opened after the SAVEPOINT
close.

Cursors and isolation
levels

You can change the isolation level of a connection during a transaction using
the SET OPTION statement to alter the ISOLATION_LEVEL option.
However, this change affects only closed cursors.

50

CHAPTER 3

Introduction to Java in the Database

About this chapter This chapter provides motivation and concepts for using Java in the database.

Adaptive Server Anywhere is a runtime environment for Java. Java provides
an alternative to the SQL stored procedure language.

Contents Topic: page

Introduction 52

Java in the database Q & A 54

A Java seminar 59

The runtime environment for Java in the database 68

Tutorial: A Java in the database exercise 75

51

Introduction
Adaptive Server Anywhere is aruntime environment for Java. This means
that Java classes can be executed in the database server. Building a runtime
environment for Java classes into the database server provides powerful
ways of adding programming logic to a database.

Java in the database offers the following:

♦ You can reuse Java components in the different layers of your
application—client, middle-tier, or server—and use them wherever
makes the most sense to you. Adaptive Server Anywhere becomes a
platform for distributed computing.

♦ Java is a more powerful language than stored procedures for building
logic into the database.

♦ Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database.

Separately-licensable
component

Java in the database is a separately licensable component and must be
ordered before you can install it. To order this component, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

The SQLJ standard Java in the database is based on the SQLJ Part 1 proposed standard. SQLJ
Part 1 provides specifications for calling Java static methods as SQL stored
procedures and user-defined functions.

Learning about Java in the database

The following table outlines the documentation regarding the use of Java in
the database.

Title Purpose

“Introduction to Java in the
Database” on page 51(this
chapter)

Java concepts and how to apply them in
Adaptive Server Anywhere.

“Using Java in the Database”
on page 81

Practical steps to using Java in the database.

“JDBC Programming” on
page 103

Accessing data from Java classes, including
distributed computing.

“Debugging Logic in the
Database” [ASA SQL User’s
Guide,page 673]

Testing and debugging Java code running in
the database.

52

Chapter 3. Introduction to Java in the Database

Using the Java documentation

The following table is a guide to which parts of the Java documentation
apply to you, depending on your interests and background.

If you . . . Consider reading . . .

Are new to object-oriented program-
ming.

“A Java seminar” on page 59

Want an explanation of terms such as
instantiated, field, and class method.

“A Java seminar” on page 59

Are a Java developer who wants to just
get started.

“The runtime environment for Java
in the database” on page 68

“Tutorial: A Java in the database
exercise” on page 75

Want to know the key features of Java
in the database.

“Java in the database Q & A” on
page 54

Want to find out how to access data
from Java.

“JDBC Programming” on page 103

Want to prepare a database for Java. “Java-enabling a database” on
page 84

53

Java in the database Q & A
This section describes the key features of Java in the database.

What are the key features of Java in the database?

Detailed explanations of all the following points appear in later sections.

♦ You can run Java in the database server An internal Java Virtual
Machine (VM) runs Java code in the database server.

♦ You can call Java from SQL You can call Java functions (methods)
from SQL statements. Java methods provide a more powerful language
than SQL stored procedures for adding logic to the database.

♦ You can access data from Java An internal JDBC driver lets you
access data from Java.

♦ You can debug Java in the database You can use the Adaptive Server
Anywhere debugger to test and debug your Java classes in the database.

♦ SQL is preserved The use of Java does not alter the behavior of
existing SQL statements or other aspects of non-Java relational database
behavior.

How do I store Java instructions in the database?

Java is an object-oriented language, so its instructions (source code) come in
the form of classes. To execute Java in a database, you write the Java
instructions outside the database and compile them outside the database into
compiled classes (byte code) which are binary files holding Java
instructions.

You then install these compiled classes into a database. Once installed, you
can execute these classes in the database server.

Adaptive Server Anywhere is a runtime environment for Java classes, not a
Java development environment. You need a Java development environment,
such as the Sun Microsystems Java Development Kit, to write and compile
Java.

☞ For more information, see“Installing Java classes into a database” on
page 89.

How does Java get executed in a database?

Adaptive Server Anywhere includes aJava Virtual Machine (VM) which
runs in the database environment. The Adaptive Server Anywhere Java VM

54

Chapter 3. Introduction to Java in the Database

interprets compiled Java instructions and runs them in the database server.

In addition to the VM, the SQL request processor in the database server has
been extended so it can call into the VM to execute Java instructions. It can
also process requests from the VM to enable data access from Java.

Differences from a
standalone VM

There is a difference between executing Java code using a standard VM such
as the Sun Java VMjava.exeand executing Java code in the database. The
Sun VM runs from a command line, while the Adaptive Server Anywhere
Java VM is available at all times to perform a Java operation whenever it is
required as part of the execution of a SQL statement.

You cannot access the Java VM externally. It is only used when the
execution of a SQL statement requires a Java operation to take place. The
database server starts the VM automatically when needed: you do not have
to take any explicit action to start or stop the VM.

Why Java?

Java provides a number of features that make it ideal for use in the database:

♦ Thorough error checking at compile time.

♦ Built-in error handing with a well-defined error handling methodology.

♦ Built-in garbage collection (memory recovery).

♦ Elimination of many bug-prone programming techniques.

♦ Strong security features.

♦ Java code is interpreted, so no operations get executed without being
acceptable to the VM.

On what platforms is Java in the database supported?

Java in the database is not supported on Windows CE. It is supported on
other Windows operating systems, UNIX, and NetWare.

How do I use Java and SQL together?

A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality. Adaptive Server
Anywhere extends the range of SQL expressions to include properties and
methods of Java objects, so you can include Java operations in a SQL
statement.

55

You can use many of the classes that are part of the Java API as included in
the Sun Microsystems Java Development Kit. You can also use classes
created and compiled by Java developers.

What is the Java API?

The Java Application Programmer’s Interface (API) is a set of classes
created by Sun Microsystems. It provides a range of base functionality that
can be used and extended by Java developers. It is at the core of what you
can do with Java.

The Java API offers a tremendous amount of functionality in its own right.
A large portion of the Java API is available to any database able to use Java
code. This exposes the majority of non-visual classes from the Java API that
should be familiar to developers currently using the Sun Microsystems Java
Development Kit (JDK).

How do I access Java from SQL?

You can treat Java methods as stored provedures, which can be called from
SQL.

For example, the SQL function PI(*) returns the value for pi. The Java API
classjava.lang.Math has a parallel field named PI returning the same value.
But java.lang.Math also has a field named E that returns the base of the
natural logarithms, as well as a method that computes the remainder
operation on two arguments as prescribed by the IEEE 754 standard.

Other members of the Java API offer even more specialized functionality.
For example,java.util.Stack generates a last-in, first-out queue that can
store ordered lists;java.util.HashTable maps values to keys;
java.util.StringTokenizer breaks a string of characters into individual word
units.

Which Java classes are supported?

The database does not support all Java API classes. Some classes, for
example thejava.awtpackage containing user interface components for
applications, are inappropriate inside a database server. Other classes,
including parts ofjava.io, deal with writing information to disk, and this also
is unsupported in the database server environment.

How can I use my own Java classes in databases?

You can install your own Java classes into a database. For example, a
developer could design, write in Java, and compile with a Java compiler a

56

Chapter 3. Introduction to Java in the Database

user-created Employee class or Package class.

User-created Java classes can contain both information about the subject and
some computational logic. Once installed in a database, Adaptive Server
Anywhere lets you use these classes in all parts and operations of the
database and execute their functionality (in the form of class or instance
methods) as easily as calling a stored procedure.

Java classes and stored procedures are different
Java classes are different from stored procedures. Whereas stored proce-
dures are written in SQL, Java classes provide a more powerful language,
and can be called from client applications as easily and in the same way as
stored procedures.

☞ For more information, see“Installing Java classes into a database” on
page 89.

Can I access data using Java?

The JDBC interface is an industry standard, designed specifically to access
database systems. The JDBC classes are designed to connect to a database,
request data using SQL statements, and return result sets that can be
processed in the client application.

Normally, client applications use JDBC classes, and the database system
vendor supplies a JDBC driver that allows the JDBC classes to establish a
connection.

You can connect from a client application to Adaptive Server Anywhere via
JDBC, using jConnect or the iAnywhere JDBC driver. Adaptive Server
Anywhere also provides an internal JDBC driver which permits Java classes
installed in a database to use JDBC classes that execute SQL statements.

☞ For more information, see“JDBC Programming” on page 103.

Can I move classes from client to server?

You can create Java classes that can be moved between levels of an
enterprise application. The same Java class can be integrated into either the
client application, a middle tier, or the database—wherever is most
appropriate.

You can move a class containing business logic, data, or a combination of
both to any level of the enterprise system, including the server, allowing you
complete flexibility to make the most appropriate use of resources. It also
enables enterprise customers to develop their applications using a single
programming language in a multi-tier architecture with unparalleled

57

flexibility.

What can I not do with Java in the database?

Adaptive Server Anywhere is a runtime environment for Java classes, not a
Java development environment.

You cannot carry out the following tasks in the database:

♦ Edit class source files (*.java files).

♦ Compile Java class source files (*.java files).

♦ Execute unsupported Java APIs, such as applet and visual classes.

♦ Execute Java methods that require the execution of native methods. All
user classes installed into the database must be 100% Java.

The Java classes used in Adaptive Server Anywhere must be written and
compiled using a Java application development tool, and then installed into a
database for use, testing, and debugging.

58

Chapter 3. Introduction to Java in the Database

A Java seminar
This section introduces key Java concepts. After reading this section you
should be able to examine Java code, such as a simple class definition or the
invocation of a method, and understand what is taking place.

Java samples directory
Some of the classes used as examples in this manual are located in the Java
samples directory, which is theSamples\ASA\Javasubdirectory of your
SQL Anywhere directory.

Two files represent each Java class example: the Java source and the
compiled class. You can immediately install to a database (without modifi-
cation) the compiled version of the Java class examples.

Understanding Java classes

A Java class combines data and functionality—the ability to hold
information and perform computational operations. One way of
understanding the concept of a class is to view it as an entity, an abstract
representation of a thing.

You could design an Invoice class, for example, to mimic paper invoices,
such as those used every day in business operations. Just as a paper invoice
contains certain information (line-item details, who is being invoiced, the
date, payment amount, payment due-date), so also does an instance of an
Invoice class. Classes hold information in fields.

In addition to describing data, a class can make calculations and perform
logical operations. For example, the Invoice class could calculate the tax on
a list of line items for every Invoice object, and add it to the sub total to
produce a final total, without any user intervention. Such a class could also
ensure all essential pieces of information are present in the Invoice and even
indicate when payment is over due or partially paid. Calculations and other
logical operations are carried out by themethodsof the class.

Example The following Java code declares a class called Invoice. This class
declaration would be stored in a file namedInvoice.java, and then compiled
into a Java class using a Java compiler.

59

Compiling Java classes
Compiling the source for a Java class creates a new file with the same name
as the source file, but with a different extension. CompilingInvoice.java
creates a file calledInvoice.classwhich could be used in a Java application
and executed by a Java VM.

The Sun JDK tool for compiling class declarations isjavac.exe.
public class Invoice {

// So far, this class does nothing and knows nothing
}

Theclasskeyword is used, followed by the name of the class. There is an
opening and closing brace: everything declared between the braces, such as
fields and methods, becomes part of the class.

In fact, no Java code exists outside class declarations. Even the Java
procedure that a Java interpreter runs automatically to create and manage
other objects—themain method that is often the start of your
application—is itself located within a class declaration.

Subclasses in Java

You can define classes assubclassesof other classes. A class that is a
subclass of another class can use the fields and method of its parent: this is
calledinheritance. You can define additional methods and fields that apply
only to the subclass, and redefine the meaning of inherited fields and
methods.

Java is a single-hierarchy language, meaning that all classes you create or
use eventually inherit from one class. This means the low-level classes
(classes further up in the hierarchy) must be present before higher-level
classes can be used. The base set of classes required to run Java applications
is called theruntime Java classes, or theJava API.

Understanding Java objects

A classis a template that defines what an object is capable of doing, just as
an invoice form is a template that defines what information the invoice
should contain.

Classes contain no specific information about objects. Rather, your
application creates, orinstantiates, objects based on the class (template),
and the objects hold the data or perform calculations. The instantiated object
is aninstanceof the class. For example, an Invoice object is an instance of
the Invoice class. The class defines what the object is capable of but the
object is the incarnation of the class that gives the class meaning and
usefulness.

60

Chapter 3. Introduction to Java in the Database

In the invoice example, the invoice form defines what all invoices based on
that form can accomplish. There is one form and zero or many invoices
based on the form. The form contains the definition but the invoice
encapsulates the usefulness.

The Invoice object is created, stores information, is stored, retrieved, edited,
updated, and so on.

Just as one invoice template can create many invoices, with each invoice
separate and distinct from the other in its details, you can generate many
objects from one class.

Methods and fields A method is a part of a class that does something—a function that performs
a calculation or interacts with other objects—on behalf of the class. Methods
can accept arguments, and return a value to the calling function. If no return
value is necessary, a method can returnvoid. Classes can have any number
of methods.

A field is a part of a class that holds information. When you create an object
of typeJavaClass, the fields inJavaClasshold the state unique to that object.

Class constructors

You create an object by invoking a class constructor. Aconstructor is a
method that has the following properties:

♦ A constructor method has the same name as the class, and has no
declared data type. For example, a simple constructor for the Product
class would be declared as follows:

Product () {
...constructor code here...
}

♦ If you include no constructor method in your class definition, a default
method is used that is provided by the Java base object.

♦ You can supply more than one constructor for each class, with different
numbers and types of arguments. When a constructor is invoked, the one
with the proper number and type of arguments is used.

Understanding fields

There are two categories of Java fields:

♦ Instance fields Each object has its own set of instance fields, created
when the object was created. They hold information specific to that
instance. For example, alineItem1Description field in the Invoice class

61

holds the description for a line item on a particular invoice. You can
access instance fields only through an object reference.

♦ Class fields A class field holds information that is independent of any
particular instance. A class field is created when the class is first loaded,
and no further instances are created no matter how many objects are
created. Class fields can be accessed either through the class name or the
object reference.

To declare a field in a class, state its type, then its name, followed by a
semicolon. To declare a class field, use thestatic Java keyword in the
declaration. You declare fields in the body of the class and not within a
method; declaring a variable within a method makes it a part of the method,
not of the class.

Examples The following declaration of the class Invoice has four fields, corresponding
to information that might be contained on two line items on an invoice.

public class Invoice {

// Fields of an invoice contain the invoice data
public String lineItem1Description;
public int lineItem1Cost;

public String lineItem2Description;
public int lineItem2Cost;

}

Understanding methods

There are two categories of Java methods:

♦ Instance methods A totalSum method in the Invoice class could
calculate and add the tax, and return the sum of all costs, but would only
be useful if it is called in conjunction with anInvoice object, one that had
values for its line item costs. The calculation can only be performed for
an object, since the object (not the class) contains the line items of the
invoice.

♦ Class methods Class methods (also calledstatic methods) can be
invoked without first creating an object. Only the name of the class and
method is necessary to invoke a class method.

Similar to instance methods, class methods accept arguments and return
values. Typically, class methods perform some sort of utility or
information function related to the overall functionality of the class.

Class methods cannot access instance fields.

62

Chapter 3. Introduction to Java in the Database

To declare a method, you state its return type, its name and any parameters it
takes. Like a class declaration, the method uses an opening and closing
brace to identify the body of the method where the code goes.

public class Invoice {

// Fields
public String lineItem1Description;
public double lineItem1Cost;

public String lineItem2Description;
public double lineItem2Cost;

// A method
public double totalSum() {

double runningsum;

runningsum = lineItem1Cost + lineItem2Cost;
runningsum = runningsum * 1.15;

return runningsum;
}

}

Within the body of thetotalSum method, a variable namedrunningsum is
declared. First, this holds the sub total of the first and second line item cost.
This sub total is then multiplied by 15 per cent (the rate of taxation) to
determine the total sum.

The local variable (as it is known within the method body) is then returned
to the calling function. When you invoke thetotalSum method, it returns the
sum of the two line item cost fields plus the cost of tax on those two items.

Example TheparseInt method of thejava.lang.Integerclass, which is supplied with
Adaptive Server Anywhere, is one example of a class method. When given a
string argument, theparseInt method returns the integer version of the
string.

For example given the string value “1”, theparseInt method returns 1, the
integer value, without requiring an instance of thejava.lang.Integerclass to
first be created, as illustrated by this Java code fragment:

String num = "1";
int i = java.lang.Integer.parseInt(num);

Example The following version of the Invoice class now includes both an instance
method and a class method. The class method namedrateOfTaxation
returns the rate of taxation used by the class to calculate the total sum of the
invoice.

The advantage of making therateOfTaxation method a class method (as

63

opposed to an instance method or field) is that other classes and procedures
can use the value returned by this method without having to create an
instance of the class first. Only the name of the class and method is required
to return the rate of taxation used by this class.

Making rateofTaxation a method, as opposed to a field, allows the
application developer to change how the rate is calculated without adversely
affecting any objects, applications, or procedures that use its return value.
Future versions of Invoice could make the return value of the
rateOfTaxation class method based on a more complicated calculation
without affecting other methods that use its return value.

public class Invoice {
// Fields
public String lineItem1Description;
public double lineItem1Cost;
public String lineItem2Description;
public double lineItem2Cost;
// An instance method
public double totalSum() {

double runningsum;
double taxfactor = 1 + Invoice.rateOfTaxation();

runningsum = lineItem1Cost + lineItem2Cost;
runningsum = runningsum * taxfactor;

return runningsum;
}
// A class method
public static double rateOfTaxation() {

double rate;
rate = .15;

return rate;
}

}

Object oriented and procedural languages

If you are more familiar with procedural languages such as C, or the SQL
stored procedure language, than object-oriented languages, this section
explains some of the key similarities and differences between procedural and
object-oriented languages.

Java is based on classes The main structural unit of code in Java is aclass.

A Java class could be looked at as just a collection of procedures and
variables that have been grouped together because they all relate to a
specific, identifiable category.

64

Chapter 3. Introduction to Java in the Database

However the manner in which a class gets used sets object-oriented
languages apart from procedural languages. When an application written in
a procedural language is executed, it is typically loaded into memory once
and takes the user down a pre-defined course of execution.

In object-oriented languages such as Java, a class is used like a template: a
definition of potential program execution. Multiple copies of the class can be
created and loaded dynamically, as needed, with each instance of the class
capable of containing its own data, values, and course of execution. Each
loaded class could be acted on or executed independently of any other class
loaded into memory.

A class that is loaded into memory for execution is said to have been
instantiated. An instantiated class is called an object: it is an application
derived from the class that is prepared to hold unique values or have its
methods executed in a manner independent of other class instances.

A Java glossary

The following items outline some of the details regarding Java classes. It is
by no means an exhaustive source of knowledge about the Java language, but
may aid in the use of Java classes in Adaptive Server Anywhere.

☞ For more information about the Java language, see the online book
Thinking in Java, by Bruce Eckel, included with Adaptive Server Anywhere
in the fileSamples\ASA\Java\Tjava.pdf.

Packages A packageis a grouping of classes that share a common purpose or category.
One member of a package has special privileges to access data and methods
in other members of the package, hence theprotectedaccess modifier.

A package is the Java equivalent of a library. It is a collection of classes
which can be made available using theimport statement. The following
Java statement imports the utility library from the Java API:

import java.util.*

Packages are typically held in JAR files, which have the extension.jar or
.zip.

Public versus private An access modifier determines the visibility (essentially thepublic, private,
or protectedkeyword used in front of any declaration) of a field, method or
class to other Java objects.

♦ A public class, method, or field is visible everywhere.

♦ A private class, method, or field is visible only in methods defined
within that class.

65

♦ A protectedmethod or field is visible to methods defined within that
class, within sublclasses of the class, or within other classes in the same
package.

♦ The default visibility, known as package, means that the method or field
is visible within the class and to other classes in the same package.

Constructors A constructor is a special method of a Java class that is called when an
instance of the class is created.

Classes can define their own constructors, including multiple, overriding
constructors. Which arguments were used in the attempt to create the object
determine which constructor is used. When the type, number, and order of
arguments used to create an instance of the class match one of the class’s
constructors, that constructor is used when creating the object.

Garbage collection Garbage collectionautomatically removes any object with no references to
it, with the exception of objects stored as values in a table.

There is no such thing as a destructor method in Java (as there is in C++).
Java classes can define their ownfinalize method for clean up operations
when an object is discarded during garbage collection.

Interfaces Java classes can inherit only from one class. Java uses interfaces instead of
multiple-inheritance. A class can implement multiple interfaces. Each
interface defines a set of methods and method profiles that must be
implemented by the class for the class to be compiled.

An interface defines what methods and static fields the class must declare.
The implementation of the methods and fields declared in an interface is
located within the class that uses the interface: the interface defines what the
class must declare; it is up to the class to determine how it is implemented.

Java error handling

Java error handling code is separate from the code for normal processing.

Errors generate an exception object representing the error. This is called
throwing an exception. A thrown exception terminates a Java program
unless it is caught and handled properly at some level of the application.

Both Java API classes and custom-created classes can throw exceptions. In
fact, users can create their own exception classes which throw their own
custom-created classes.

If there is no exception handler in the body of the method where the
exception occurred, then the search for an exception handler continues up
the call stack. If the top of the call stack is reached and no exception handler

66

Chapter 3. Introduction to Java in the Database

has been found, the default exception handler of the Java interpreter running
the application is called and the program terminates.

In Adaptive Server Anywhere, if a SQL statement calls a Java method, and
an unhandled exception is thrown, a SQL error is generated.

Error types in Java All errors in Java come from two types of error classes:Exceptionand
Error . Usually, Exception-based errors are handled by error handling code
in your method body. Error type errors are specifically for internal errors and
resource exhaustion errors inside the Java run-time system.

Exception class errors are thrown and caught. Exception handling code is
characterized bytry , catch, andfinally code blocks.

A try block executes code that may generate an error. Acatchblock is code
that executes if the execution of atry block generates (or throws) an error.

A finally block defines a block of code that executes regardless of whether
an error was generated and caught and is typically used for cleanup
operations. It is used for code that, under no circumstances, can be omitted.

There are two types of exception class errors: those that are runtime
exceptions and those that are not runtime exceptions.

Errors generated by the runtime system are known as implicit exceptions, in
that they do not have to be explicitly handled as part of every class or
method declaration.

For example, an array out of bounds exception can occur whenever an array
is used, but the error does not have to be part of the declaration of the class
or method that uses the array.

All other exceptions are explicit. If the method being invoked can throw an
error, it must be explicitly caught by the class using the exception-throwing
method, or this class must explicitly throw the error itself by identifying the
exception it may generate in its class declaration. Essentially, explicit
exceptions must be dealt with explicitly. A method must declare all the
explicit errors it throws, or catch all the explicit errors that may potentially
be thrown.

Non-runtime exceptions are checked at compile time. Java catches many
such errors during compilation, before running the code.

Every Java method is given an alternative path of execution so that all Java
methods complete, even if they are unable to complete normally. If the type
of error thrown is not caught, it’s passed to the next code block or method in
the stack.

67

The runtime environment for Java in the database
This section describes the Adaptive Server Anywhere runtime environment
for Java, and how it differs from a standard Java runtime environment.

Supported versions of Java and JDBC

The Java VM provides you with the choice of using the JDK 1.1, JDK 1.2,
or JDK 1.3 programming interfaces. The specific versions provided are JDK
versions 1.1.8 and 1.3.

Between release 1.0 of the JDK and release 1.1, several new APIs were
introduced. As well, a number were deprecated—the use of certain APIs
became no longer recommended and support for them may be dropped in
future releases.

A Java class file using deprecated APIs generates a warning when compiled,
but does still execute on a Java virtual machine built to release 1.1 standards,
such as the Adaptive Server Anywhere VM.

The internal JDBC driver supports JDBC version 2.

☞ For information on how to create a database that supports Java, see
“Java-enabling a database” on page 84.

The runtime Java classes

The runtime Java classes are the low-level classes that are made available to
a database when it is created or Java-enabled. These classes include a subset
of the Java API. These classes are part of the Sun Java Development Kit.

The runtime classes provide basic functionality on which to build
applications. The runtime classes are always available to classes in the
database.

You can incorporate the runtime Java classes in your own user-created
classes: either inheriting their functionality or using it within a calculation or
operation in a method.

Examples Some Java API classes included in the runtime Java classes include:

♦ Primitive Java data types All primitive (native) data types in Java have
a corresponding class. In addition to being able to create objects of these
types, the classes have additional, often useful, functionality.

The Javaint data type has a corresponding class injava.lang.Integer.

♦ The utility package The packagejava.util.* contains a number of very
helpful classes whose functionality has no parallel in the SQL functions

68

Chapter 3. Introduction to Java in the Database

available in Adaptive Server Anywhere.

Some of the classes include:
• Hashtable which maps keys to values.

• StringTokenizer which breaks a String down into individual words.

• Vector which holds an array of objects whose size can change
dynamically

• Stack which holds a last-in, first-out stack of objects.

♦ JDBC for SQL operations The packagejava.SQL.* contains the
classes needed by Java objects to extract data from the database using
SQL statements.

Unlike user-defined classes, the runtime classes are not stored in the
database. Instead, they are stored in files in thejava subdirectory of the
Adaptive Server Anywhere installation directory.

User-defined classes

User-defined classes are installed into a database using the INSTALL JAVA
statement. Once installed, they become available to other classes in the
database. If they are public classes, they are available from SQL as domains.

☞ For more information about installing classes, see“Installing Java
classes into a database” on page 89.

Identifying Java methods and fields

The dot in SQL In SQL statements, the dot identifies columns of tables, as in the following
query:

SELECT employee.emp_id
FROM employee

The dot also indicates object ownership in qualified object names:

SELECT emp_id
FROM DBA.employee

The dot in Java In Java, the dot is anoperator that invokes the methods or access for the
fields of a Java class or object. It is also part of an identifier, used to identify
class names, as in the fully qualified class namejava.util.Hashtable.

In the following Java code fragment, the dot is part of an identifier on the
first line of code. On the second line of code, it is an operator.

java.util.Random rnd = new java.util.Random();
int i = rnd.nextInt();

69

Java is case sensitive

Java syntax works as you would expect it to, and SQL syntax is unaltered by
the presence of Java classes. This is true even if the same SQL statement
contains both Java and SQL syntax. It’s a simple statement, but with
far-reaching implications.

Java is case sensitive. The Java classFindOut is a completely different class
from the classFindout. SQL is case insensitive with respect to keywords
and identifiers.

Java case sensitivity is preserved even when embedded in a SQL statement
that is case insensitive. The Java parts of the statement must be case
sensitive, even though the parts previous to and following the Java syntax
can be in either upper or lower case.

For example, the following SQL statements successfully execute because the
case of Java objects, classes, and operators is respected even though there is
variation in the case of the remaining SQL parts of the statement.

SeLeCt java.lang.Math.random();

Strings in Java and SQL

A set of double quotes identifies string literals in Java, as in the following
Java code fragment:

String str = "This is a string";

In SQL, however, single quotes mark strings, and double quotes indicate an
identifier, as illustrated by the following SQL statement:

INSERT INTO TABLE DBA.t1
VALUES(’Hello’)

You should always use the double quote in Java source code, and single
quotes in SQL statements.

For example, the following SQL statements are valid.

CREATE VARIABLE str char(20);
SET str = NEW java.lang.String(’Brand new object’)

The following Java code fragment is also valid, if used within a Java class.

String str = new java.lang.String(
"Brand new object");

70

Chapter 3. Introduction to Java in the Database

Printing to the command line

Printing to the standard output is a quick way of checking variable values
and execution results at various points of code execution. When the method
in the second line of the following Java code fragment is encountered, the
string argument it accepts prints out to standard output.

String str = "Hello world";
System.out.println(str);

In Adaptive Server Anywhere, standard output is the server window, so the
string appears there. Executing the above Java code within the database is
the equivalent of the following SQL statement.

MESSAGE ’Hello world’

Using the main method

When a class contains amain method matching the following declaration,
most Java run time environments, such as the Sun Java interpreter, execute it
automatically. Normally, this static method executes only if it is the class
being invoked by the Java interpreter

public static void main(String args[]) { }

Useful for testing the functionality of Java objects, you are always
guaranteed this method will be called first, when the Sun Java runtime
system starts.

In Adaptive Server Anywhere, the Java runtime system is always available.
The functionality of objects and methods can be tested in an ad hoc,
dynamic manner using SQL statements. In many ways this is far more
flexible for testing Java class functionality.

Scope and persistence

SQL variables are persistent only for the duration of the connection. This is
unchanged from previous versions of Adaptive Server Anywhere, and is
unaffected by whether the variable is a Java class or a native SQL data type.

The persistence of Java classes is analogous to tables in a database: tables
exist in the database until you drop them, regardless of whether they hold
data or even whether they are ever used. Java classes installed to a database
are similar: they are available for use until you explicitly remove them with
a REMOVE JAVA statement.

71

☞ For more information on removing classes, see “REMOVE statement”
[ASA SQL Reference,page 521].

A class method in an installed Java class can be called at any time from a
SQL statement. You can execute the following statement anywhere you can
execute SQL statements.

SELECT java.lang.Math.abs(-342)

A Java object is only available in two forms: as the value of a variable, or as
a value in a table.

Java escape characters in SQL statements

In Java code, you can use escape characters to insert certain special
characters into strings. Consider the following code, which inserts a new line
and tab in front of a sentence containing an apostrophe.

String str = " \n\t \This is an object \’s string literal";

Adaptive Server Anywhere permits the use of Java escape characters only
when being used by Java classes. From within SQL, however, you must
follow the rules that apply to strings in SQL.

For example, to pass a string value to a field using a SQL statement, you
could use the following statement (which includes SQL escape characters),
but the Java escape characters could not be used.

SET obj.str = ’ \nThis is the object’’s string field’;

☞ For more information on SQL string handling rules, see “Strings”[ASA
SQL Reference,page 8].

Use of import statements

It is common in a Java class declaration to include an import statement to
access classes in another package. You can reference imported classes using
unqualified class names.

For example, you can reference the Stack class of thejava.util package in
two ways:

♦ explicitly using the namejava.util.Stack, or

♦ using the nameStack, and including the following import statement:

import java.util.*;

Classes further up in the
hierarchy must also be
installed.

A class referenced by another class, either explicitly with a fully qualified

72

Chapter 3. Introduction to Java in the Database

name or implicitly using an import statement, must also be installed in the
database.

The import statement works as intended within compiled classes. However,
within the Adaptive Server Anywhere runtime environment, no equivalent to
the import statement exists. All class names used in SQL statements or
stored procedures must be fully qualified. For example, to create a variable
of type String, you would reference the class using the fully qualified name:
java.lang.String.

Using the CLASSPATH variable

Sun’s Java runtime environment and the Sun JDK Java compiler use the
CLASSPATH environment variable to locate classes referenced within Java
code. A CLASSPATH variable provides the link between Java code and the
actual file path or URL location of the classes being referenced. For
example,import java.io.* allows all the classes in thejava.io package
to be referenced without a fully qualified name. Only the class name is
required in the following Java code to use classes from thejava.io package.
The CLASSPATH environment variable on the system where the Java class
declaration is to be compiled must include the location of the Java directory,
the root of thejava.io package.

CLASSPATH ignored at
runtime

The CLASSPATH environment variable does not affect the Adaptive Server
Anywhere runtime environment for Java during the execution of Java
operations because the classes are stored in the database, instead of in
external files or archives.

CLASSPATH used to
install classes

The CLASSPATH variable can, however, be used to locate a file during the
installation of classes. For example, the following statement installs a
user-created Java class to a database, but only specifies the name of the file,
not its full path and name. (Note that this statement involves no Java
operations.)

INSTALL JAVA NEW
FROM FILE ’Invoice.class’

If the file specified is in a directory or zip file specified by the CLASSPATH
environmental variable, Adaptive Server Anywhere will successfully locate
the file and install the class.

Public fields

It is a common practice in object-oriented programming to define class fields
as private and make their values available only through public methods.

Many of the examples used in this documentation render fields public to

73

make examples more compact and easier to read. Using public fields in
Adaptive Server Anywhere also offers a performance advantage over
accessing public methods.

The general convention followed in this documentation is that a user-created
Java class designed for use in Adaptive Server Anywhere exposes its main
values in its fields. Methods contain computational automation and logic
that may act on these fields.

74

Chapter 3. Introduction to Java in the Database

Tutorial: A Java in the database exercise
This tutorial is a primer for invoking Java operations on Java classes and
objects using SQL statements. It describes how to install a Java class into the
database. It also describes how to access the class and its members and
methods from SQL statements. The tutorial uses the Invoice class created in
“A Java seminar” on page 59.

Requirements The tutorial assumes that you have installed Java in the database software. It
also assumes that you have a Java Development Kit (JDK) installed,
including the Java compiler (javac).

Resources Source code and batch files for this sample are provided in the directory
Samples\ASA\JavaInvoiceunder your SQL Anywhere directory.

Create and compile the sample Java class

The first step is to write the Java code and compile it. This is done outside
the database

❖ To create and compile the class

1. Create a file calledInvoice.javaholding the following code.

public class Invoice {

// Fields
public String lineItem1Description;
public double lineItem1Cost;

public String lineItem2Description;
public double lineItem2Cost;

// An instance method
public double totalSum() {

double runningsum;
double taxfactor = 1 + Invoice.rateOfTaxation();

runningsum = lineItem1Cost + lineItem2Cost;
runningsum = runningsum * taxfactor;

return runningsum;
}

// A class method
public static double rateOfTaxation() {

double rate;
rate = .15;

return rate;
}

}

75

You can find source code for this class as the file
Samples\ASA\JavaInvoice\Invoice.javaunder your SQL Anywhere
directory.

2. Compile the file to create the fileInvoice.class.

From a command prompt in the same directory asInvoice.java, execute
the following command.

javac *.java

The class is now compiled and ready to be installed into the database.

Install the sample Java class

Java classes must be installed into a database before they can be used. You
can install classes from Sybase Central or Interactive SQL. This section
provides instructions for both. Choose whichever you prefer.

❖ To install the class to the sample database (Sybase Central)

1. Start Sybase Central and connect to the sample database.

2. Open the Java Objects folder and double-click Add Java Class. The Java
Class Creation wizard appears.

3. Use the Browse button to locateInvoice.classin the
Samples\ASA\JavaInvoicesubdirectory of your SQL Anywhere
installation directory.

4. Click Finish to exit the wizard.

❖ To install the class to the sample database (Interactive SQL)

1. Start Interactive SQL and connect to the sample database.

2. In the SQL Statements pane of Interactive SQL, type the following
command:

INSTALL JAVA NEW
FROM FILE
’path \\samples \\ASA\\JavaInvoice \\Invoice.class’

wherepath is your SQL Anywhere directory.

The class is now installed into the sample database.

Notes ♦ At this point no Java in the database operations have taken place. The
class has been installed into the database and is ready for use as the data
type of a variable or column in a table.

76

Chapter 3. Introduction to Java in the Database

♦ Changes made to the class file from now on arenot automatically
reflected in the copy of the class in the database. You must re-install the
classes if you want the changes reflected.

☞ For more information on installing classes, and for information on
updating an installed class, see“Installing Java classes into a database” on
page 89.

Creating a SQL variable of type Invoice

This section creates a SQL variable that references a Java object of type
Invoice.

Case sensitivity
Java is case sensitive, so the portions of the following examples in this
section pertaining to Java syntax are written using the correct case. SQL
syntax is rendered in upper case.

1. From Interactive SQL, execute the following statement to create a SQL
variable namedInv of typeInvoice, whereInvoice is the Java class you
installed to a database:

CREATE VARIABLE Inv Invoice

Once you create a variable, it can only be assigned a value if its data type
and declared data type are identical or if the value is a subclass of the
declared data type. In this case, the variableInv can only contain a
reference to an object of typeInvoice or a subclass of Invoice.

Initially, the variableInv is NULL because no value has been passed to it.

2. Execute the following statement to identify the current value of the
variableInv .

SELECT IFNULL(Inv,
’No object referenced’,
’Variable not null: contains object reference’)

The variable currently has no object referenced.

3. Assign a value toInv .

You must instatiate an instance of theInvoice class using theNEW
keyword.

SET Inv = NEW Invoice()

TheInv variable now has a reference to a Java object. To verify this, you
can execute the statement from step 2.

77

TheInv variable contains a reference to a Java object of typeInvoice.
Using this reference, you can access any of the object’s fields or invoke
any of its methods.

Access fields and methods of the Java object

If a variable (or column value in a table) contains a reference to a Java
object, then the fields of the object can be passed values and its methods can
be invoked.

For example, the variable of type Invoice that you created in the previous
section contains a reference to anInvoice object and has four fields, the
value of which can be set using SQL statements.

❖ To access fields of the Invoice object

1. From Interactive SQL, execute the following SQL statements to set field
values for the variableInv .

SET Inv.lineItem1Description = ’Work boots’;
SET Inv.lineItem1Cost = ’79.99’;
SET Inv.lineItem2Description = ’Hay fork’;
SET Inv.lineItem2Cost = ’37.49’;

Each SQL statement passes a value to a field in the Java object referenced
by Inv .

2. Execute SELECT statements against the variable. Any of the following
SQL statements return the current value of a field in the Java object
referenced byInv .

SELECT Inv.lineItem1Description;
SELECT Inv.lineItem1Cost;
SELECT Inv.lineItem2Description;
SELECT Inv.lineItem2Cost;

3. Use a field of theInv variable in a SQL expression.

Execute the following SQL statement:

SELECT * FROM PRODUCT
WHERE unit_price < Inv.lineItem2Cost;

In addition to having public fields, theInvoice class has one instance
method, which you can invoke

78

Chapter 3. Introduction to Java in the Database

❖ To invoking methods of the Invoice object

1. From Interactive SQL, execute the following SQL statement, which
invokes thetotalSum() method of the object referenced by the variable
Inv . It returns the sum of the two cost fields plus the tax charged on this
sum.

SELECT Inv.totalSum();

Calling methods versus
referencing fields

Method names are always followed by parentheses, even when they take no
arguments. Field names are not followed by parentheses.

ThetotalSum() method takes no arguments, but returns a value. The
brackets are used because a Java operation is being invoked even though the
method takes no arguments.

For Java in the database, direct field access is faster than method invokation.
Accessing a field does not require the Java VM to be invoked, while
invoking a method requires the VM to execute the method.

As indicated by the Invoice class definition outlined at the beginning of this
section, thetotalSum instance method makes use of the class method
rateOfTaxation.

You can access this class method directly from a SQL statement.

SELECT Invoice.rateOfTaxation();

Notice the name of the class is used, not the name of a variable containing a
reference to anInvoice object. This is consistent with the way Java handles
class methods, even though it is being used in a SQL statement. A class
method can be invoked even if no object based on that class has been
instantiated.

Class methods do not require an instance of the class to work properly, but
they can still be invoked on an object. The following SQL statement yields
the same results as the previously executed SQL statement.

SELECT Inv.rateOfTaxation();

79

CHAPTER 4

Using Java in the Database

About this chapter This chapter describes how to add Java classes to your database, and how to
use these classes in a relational database.

Contents Topic: page

Introduction 82

Java-enabling a database 84

Installing Java classes into a database 89

Special features of Java classes in the database 93

Configuring memory for Java 99

Java classes reference 101

81

Introduction
This chapter describes how to accomplish tasks using Java in the database,
including the following:

♦ How to Java-enable a database You need to follow certain steps to
enable your database to use Java.

♦ Installing Java classes You need to install Java classes in a database to
make them available for use in Adaptive Server Anywhere.

Setting up the Java sample

Some of the examples in this chapter require you to add the JDBCExamples
class to the sample database.

Setting up the Java examples involves two steps:

1. Java-enable the sample database. Adaptive Server Anywhere databases
are not Java-enabled by default.

2. Add the JDBCExamples class to the database.

❖ To Java-enable the sample database

1. Start Sybase Central and connect to the sample database (ASA 9.0
Sample ODBC data source). An asademo9 database server appears with
an asademo database.

2. In the left pane of Sybase Central, right click the asademo database and
choose Upgrade Database from the popup menu. The Upgrade a
Database wizard appears.

3. Follow the instructions in the Upgrade a Database wizard. Choose the
option to Install Java Support with a JDK version of 1.3.

4. Restart the sample database.

When the Upgrade a Database wizard has completed, disconnect and
ensure that the sample database is shut down. The database must be shut
down and restarted before Java support can be used.

5. Confirm that Java support has been added:

♦ From Sybase Central, connect to the sample database.

♦ In the left pane of Sybase Central, right click the asademo database and
choose Properties from the popup menu.

♦ Confirm that Java JDK version is set to 1.3.

82

Chapter 4. Using Java in the Database

❖ To add the JDBCExamples class to the sample database

1. Start Sybase Central and connect to the sample database (ASA 9.0
Sample ODBC data source). An asademo9 database server appears with
an asademo database.

2. In the left pane of Sybase Central, open the Java Objects folder.

3. Right-click the right pane and choose New➤ Java Class from the popup
menu. The Create a New Java Class wizard appears.

4. Click Browse and locate JDBCExamples.class in theSamples\ASA\Java
subdirectory of your SQL Anywhere installation.

5. Click OK and click Finish to complete the installation.

Managing the runtime environment for Java

The runtime environment for Java consists of:

♦ The Adaptive Server Anywhere Java Virtual Machine Running within
the database server, the Adaptive Server Anywhere Java Virtual Machine
interprets and executes the compiled Java class files.

♦ The runtime Java classes When you create a database, a set of Java
classes becomes available to the database. Java applications in the
database require these runtime classes to work properly.

Management tasks for
Java

To provide a runtime environment for Java, you need to carry out the
following tasks:

♦ Java-enable your database This task involves ensuring the availability
of built-in classes and the upgrading of the database to Version 9.

☞ For more information, see“Java-enabling a database” on page 84.

♦ Install other classes your users need This task involves ensuring that
classes other than the runtime classes are installed and up to date.

☞ For more information, see“Installing Java classes into a database” on
page 89.

♦ Configuring your server You must configure your server to make the
necessary memory available to run Java tasks.

☞ For more information, see“Configuring memory for Java” on
page 99.

Tools for managing Java You can carry out all these tasks from Sybase Central or from
Interactive SQL.

83

Java-enabling a database
The Adaptive Server Anywhere Runtime environment for Java requires a
Java VM and theAdaptive Server Anywhere runtime Java classes. You
need to Java-enable a database for it to be able to use the runtime Java
classes.

Java in the database is a separately-licensed component of SQL Anywhere
Studio.

New databases are not Java-enabled by default
By default, databases created with Adaptive Server Anywhere are not
Java-enabled.

Java is a single-hierarchy language, meaning that all classes you create or
use eventually inherit from one class. This means the low-level classes
(classes further up in the hierarchy) must be present before you can use
higher-level classes. The base set of classes required to run Java applications
are the runtime Java classes, or the Java API.

When not to Java-enable
a database

Java-enabling a database adds many entries into the system tables. This adds
to the size of the database and, more significantly, adds about 200K to the
memory requirements for running the database, even if you do not use any
Java functionality.

If you are not going to use Java, and if you are running in a limited-memory
environment, you may wish to not Java-enable your database.

The Adaptive Server Anywhere runtime Java classes

The Adaptive Server Anywhere runtime Java classes are held on disk rather
than stored in a database like other classes. The following files contain the
Adaptive Server Anywhere runtime Java classes. The files are in theJava
subdirectory of your SQL Anywhere directory:

♦ 1.1\classes.zip This file, licensed from Sun Microsystems, contains a
subset of the Sun Microsystems Java runtime classes for JDK 1.1.8.

♦ 1.3\rt.jar This file, licensed from Sun Microsystems, contains a subset
of the Sun Microsystems Java runtime classes for JDK 1.3.

♦ asajdbc.zip This file contains Adaptive Server Anywhere internal
JDBC driver classes for JDK 1.1.

♦ asajrt12.zip This file contains Adaptive Server Anywhere internal
JDBC driver classes for JDK 1.2 and JDK 1.3.

84

Chapter 4. Using Java in the Database

When you Java-enable a database, you also update the system tables with a
list of available classes from the system JAR files. You can then browse the
class hierarchy from Sybase Central, but the classes themselves are not
present in the database.

JAR files The database stores runtime class names the under the following JAR files:

♦ ASACIS Classes required for remote data access are stored here.

♦ ASAJDBCDRV Class names fromjdbcdrv.zipare held here.
(com.sybase.jdbc package).

♦ ASAJIO

♦ ASAJRT Class names fromasajdbc.zipare held here.

♦ ASASystem Class names fromclasses.zipare held here.

♦ ASASystemUNIX Class names fromclasses.zipare held here.

Installed packages These runtime classes include the following packages:

♦ java Packages stored here include the supported Java runtime classes
from Sun Microsystems.

♦ com.sybase Packages stored here provide server-side JDBC support.

♦ sun Sun Microsystems provides the packages stored here.

♦ sybase.sql Packages stored here are part of the server-side JDBC
support.

Caution: do not install classes from another version of Sun’s JDK
Classes in Sun’s JDK share names with the Adaptive Server Anywhere
runtime Java classes that must be installed in any database intended to
execute Java operations.

You must not replace the classes.zip file included with Adaptive Server
Anywhere. Using another version of these classes could cause compatibil-
ity problems with the Adaptive Server Anywhere Java Virtual Machine.

You must only Java-enable a database using the methods outlined in this
section.

Ways of Java-enabling a database

You can Java-enable databases when you create them, when you upgrade
them, or in a separate operation at a later time.

85

Creating databases You can create a Java-enabled database using:

♦ the CREATE DATABASE statement.

☞ For details of the syntax, see “CREATE DATABASE statement”[ASA
SQL Reference,page 292].

♦ thedbinit utility.

☞ For details, see “Creating a database using the dbinit command-line
utility” [ASA Database Administration Guide,page 486].

♦ Sybase Central.

☞ For details, see “Creating a database”[ASA SQL User’s Guide,page 27].

Upgrading databases You can upgrade a database to a Java-enabled Version 9 database using:

♦ the ALTER DATABASE statement.

☞ For details of the syntax, see “ALTER DATABASE statement”[ASA
SQL Reference,page 225].

♦ thedbupgrad.exeupgrade utility.

☞ For details, see “Upgrading a database using the dbupgrad
command-line utility”[ASA Database Administration Guide,page 543].

♦ Sybase Central.

☞ For details, see“Java-enabling a database” on page 87.

If you choose not to install Java in the database, all database operations not
involving Java operations remain fully functional and work as expected.

New databases and Java

By default, Adaptive Server Anywhere does not install Adaptive Server
Anywhere runtime Java classes each time you create a database. The
installation of this separately-licensable component is optional, and
controlled by the method you use to create the database.

CREATE DATABASE
options

The CREATE DATABASE SQL statement has an option called JAVA. To
Java-enable a database, you can set the option to ON. To disable Java, set the
option to OFF. This option is set to OFF by default.

For example, the following statement creates a Java-enabled database file
namedtemp.db:

CREATE DATABASE ’c:\\sybase \\asa9 \\temp’ JAVA ON

The following statement creates a database file namedtemp2.db, which does
not support Java.

86

Chapter 4. Using Java in the Database

CREATE DATABASE ’c:\\sybase \\asa9 \\temp2’

Database initialization
utility

You can create databases using thedbinit.exedatabase initialization utility.
This utility has options that control whether or not to install the runtime Java
classes in the newly-created database. By default, the classes are not
installed.

The same options are available when creating databases using Sybase
Central.

Upgrading databases and Java

You can upgrade existing databases created with earlier versions of the
software using the Upgrade utility or the ALTER DATABASE statement.

Database upgrade utility You can upgrade databases to Adaptive Server Anywhere Version 9
standards using thedbupgrad.exeutility. Using the-jr Upgrade utility
option prevents the installation of Adaptive Server Anywhere runtime Java
classes.

☞ For information on the conditions under which Java in the database is
included in the upgraded database, see “Upgrading a database using the
dbupgrad command-line utility”[ASA Database Administration Guide,
page 543].

Java-enabling a database

If you have created a database, or upgraded a database to standards, but have
chosen not to Java-enable the database, you can add the necessary Java
classes at a later date, using either Sybase Central or Interactive SQL.

❖ To add the Java runtime classes to a database (Sybase Central)

1. Connect to the database from Sybase Central as a user with DBA
authority.

2. Right-click the database and choose Upgrade Database.

3. Click Next on the introductory page of the wizard.

4. Select the database you want to upgrade from the list.

5. You can choose to create a backup of the database if you wish. Click
Next.

6. You can choose to install jConnect meta-information support if you wish.
Click Next.

87

7. Select the Install Java Support option. You must also choose which
version of the JDK you want to install. The default classes are the JDK
1.3 classes.

8. Follow the remaining instructions in the wizard.

❖ To add the Java runtime classes to a database (SQL)

1. Connect to the database from Interactive SQL as a user with DBA
authority.

2. Execute the following statement:

ALTER DATABASE UPGRADE JAVA ON

☞ For more information, see “ALTER DATABASE statement”[ASA
SQL Reference,page 225].

3. Restart the database for the Java support to take effect.

Using Sybase Central to Java-enable a database

You can use Sybase Central to create databases using wizards. During the
creation or upgrade of a database, the wizard prompts you to choose whether
or not you have the Adaptive Server Anywhere runtime Java classes
installed. By default, this option Java-enables the database.

Using Sybase Central, you can create or upgrade a database by choosing:

♦ Choosing File➤ Create Database to create a new database.

♦ Clicking the database server in the left pane, clicking the Utilities tab in
the right pane, and double-clicking Upgrade Database to upgrade a
database from a previous version of the software to a database with Java
capabilities.

88

Chapter 4. Using Java in the Database

Installing Java classes into a database
Before you install a Java class into a database, you must compile it. You can
install Java classes into a database as:

♦ A single class You can install a single class into a database from a
compiled class file. Class files typically have extension.class.

♦ A JAR You can install a set of classes all at once if they are in either a
compressed or uncompressed JAR file. JAR files typically have the
extension.jar or .zip. Adaptive Server Anywhere supports all compressed
JAR files created with the Sun JAR utility, and some other JAR
compression schemes as well.

This section describes how to install Java classes once you have compiled
them. You must have DBA authority to install a class or JAR.

Creating a class

Although the details of each step may differ depending on whether you are
using a Java development tool, the steps involved in creating your own class
generally include the following:

❖ To create a class

1. Define your class Write the Java code that defines your class. If you
are using the Sun Java SDK then you can use a text editor. If you are
using a development tool, the development tool provides instructions.

Use only supported classes
User classes must be 100% Java. Native methods are not allowed.

2. Name and save your class Save your class declaration (Java code) in a
file with the extension.java. Make certain the name of the file is the same
as the name of the class and that the case of both names is identical.

For example, a class called Utility should be saved in a file called
Utility.java.

3. Compile your class This step turns your class declaration containing
Java code into a new, separate file containing byte code. The name of the
new file is the same as the Java code file but has an extension of.class.
You can run a compiled Java class in a Java runtime environment,
regardless of the platform you compiled it on or the operating system of
the runtime environment.

The Sun JDK contains a Java compiler,Javac.exe.

89

Java-enabled databases only
You can install any compiled Java class file in a database. However, Java
operations using an installed class can only take place if the database
has been Java-enabled as described in“Java-enabling a database” on
page 84.

Installing a class

To make your Java class available within the database, youinstall the class
into the database either from Sybase Central, or using the INSTALL JAVA
statement from Interactive SQL or other application. You must know the
path and file name of the class you wish to install.

You require DBA authority to install a class.

❖ To install a class (Sybase Central)

1. Connect to a database with DBA authority.

2. Open the Java Objects folder for the database.

3. Right-click in the right pane and choose New➤ Java Class from the
popup menu.

4. Follow the instructions in the wizard.

❖ To install a class (SQL)

1. Connect to a database with DBA authority.

2. Execute the following statement:

INSTALL JAVA NEW
FROM FILE ’path \\ClassName.class’

wherepath is the directory where the class file is, andClassName.classis
the name of the class file.

The double backslash ensures that the backslash is not treated as an
escape character.

For example, to install a class in a file namedUtility.class, held in the
directoryc:\source, you would enter the following statement:

INSTALL JAVA NEW
FROM FILE ’c: \\source \\Utility.class’

If you use a relative path, it must be relative to the current working
directory of the database server.

☞ For more information, see “INSTALL JAVA statement”[ASA SQL
Reference,page 480].

90

Chapter 4. Using Java in the Database

Installing a JAR

It is useful and common practice to collect sets of related classes together in
packages, and to store one or more packages in aJAR file.

You install a JAR file the same way as you install a class file. A JAR file can
have the extension JAR or ZIP. Each JAR file must have a name in the
database. Usually, you use the same name as the JAR file, without the
extension. For example, if you install a JAR file namedmyjar.zip, you would
generally give it a JAR name ofmyjar.

☞ For more information, see “INSTALL JAVA statement”[ASA SQL
Reference,page 480].

❖ To install a JAR (Sybase Central)

1. Connect to a database with DBA authority.

2. Open the Java Objects folder for the database.

3. Right click in the right pane and choose New➤ Jar File from the popup
menu.

4. Follow the instructions in the wizard.

❖ To install a JAR (SQL)

1. Connect to a database with DBA authority.

2. Enter the following statement:

INSTALL JAVA NEW
JAR ’jarname’
FROM FILE ’path \\JarName.jar’

Updating classes and Jars

You can update classes and JAR files using Sybase Central or by entering an
INSTALL JAVA statement in Interactive SQL or some other client
application.

To update a class or JAR, you must have DBA authority and a newer version
of the compiled class file or JAR file available in a file on disk.

When updated classes
take effect

Only new connections established after installing the class, or which use the
class for the first time after installing the class, use the new definition. Once
the Virtual Machine loads a class definition, it stays in memory until the
connection closes.

91

If you have been using a Java class or objects based on a class in the current
connection, you need to disconnect and reconnect to use the new class
definition.

☞ To understand why the updated classes take effect in this manner, you
need to know a little about how the VM works. For information, see
“Configuring memory for Java” on page 99.

❖ To update a class or JAR (Sybase Central)

1. Connect to a database with DBA authority.

2. Open the Java Objects folder.

3. Locate the class or JAR file you wish to update.

4. Right-click the class or JAR file and choose Update from the popup
menu.

5. In the resulting dialog, specify the name and location of the class or JAR
file to be updated. You can click Browse to search for it.

Tip
You can also update a Java class or JAR file by clicking Update Now on
the General tab of its property sheet.

❖ To update a class or JAR (SQL)

1. Connect to a database with DBA authority.

2. Execute the following statement:

INSTALL JAVA UPDATE
[JAR ’ jarname ’]
FROM FILE ’ filename ’

If you are updating a JAR, you must enter the name by which the JAR is
known in the database.

☞ For more information, see “INSTALL JAVA statement”[ASA SQL
Reference,page 480].

92

Chapter 4. Using Java in the Database

Special features of Java classes in the database
This section describes features of Java classes when used in the database.

Supported classes

You cannot use all classes from the JDK. The runtime Java classes available
for use in the database server belong to a subset of the Java API.

☞ For more information about supported packages, see“Supported Java
packages” on page 101.

Calling the main method

You typically start Java applications (outside the database) by running the
Java VM on a class that has amain method.

For example, theJDBCExamplesclass in the file
Samples\ASA\Java\JDBCExamples.javaunder your SQL Anywhere
directory has a main method. When you execute the class from the
command line using a command such as the following, it is the main method
that executes:

java JDBCExamples

☞ For more information about how to run theJDBCExamplesclass, see
“Establishing JDBC connections” on page 117.

❖ To call the main method of a class from SQL

1. Declare the method with an array of strings as an argument:

public static void main(java.lang.String[] args){
...
}

2. Invoke themain method using the CALL statement.

Each member of the array of strings must be of CHAR or VARCHAR
data type, or a literal string.

Example The following class contains amain method which writes out the arguments
in reverse order:

93

public class ReverseWrite {
public static void main(String[] args){

int i:
for(i = args.length; i > 0 ; i--){

System.out.print(args[i-1]);
}

}
}

You can execute this method from SQL as follows:

call ReverseWrite.main(’ one’, ’ two’, ’three’)

The database server window displays the output:

three two one

Using threads in Java applications

With features of thejava.lang.Threadpackage, you can use multiple threads
in a Java application. Each Java thread is an engine thread, and comes from
the number of threads permitted by the-gn database server option.

You can synchronize, suspend, resume, interrupt, or stop threads in Java
applications.

☞ For more information about database server threads, see “-gn server
option” [ASA Database Administration Guide,page 148].

Serialization of JDBC
calls

All calls to the server-side JDBC driver are serialized, such that only one
thread is actively executing JDBC at any one time.

Procedure Not Found error

If you supply an incorrect number of arguments when calling a Java method,
or if you use an incorrect data type, the server responds with aProcedure

Not Found error. You should check the number and type of arguments.

Returning result sets from Java methods

This section describes how to make result sets available from Java methods.
You must write a Java method that returns a result set to the calling
environment, and wrap this method in a SQL stored procedure declared to be
EXTERNAL NAME of LANGUAGE JAVA.

94

Chapter 4. Using Java in the Database

❖ To return result sets from a Java method

1. Ensure that the Java method is declared as public and static in a public
class.

2. For each result set you expect the method to return, ensure that the
method has a parameter of typejava.sql.ResultSet[]. These result set
parameters must all occur at the end of the parameter list.

3. In the method, first create an instance ofjava.sql.ResultSetand then
assign it to one of theResultSet[]parameters.

4. Create a SQL stored procedure of type EXTERNAL NAME
LANGUAGE JAVA. This type of procedure is a wrapper around a Java
method. You can use a cursor on the SQL procedure result set in the same
way as any other procedure that returns result sets.

☞ For more information about the syntax for stored procedures that are
wrappers for Java methods, see “CREATE PROCEDURE statement”
[ASA SQL Reference,page 324].

Example The following simple class has a single method which executes a query and
passes the result set back to the calling environment.

import java.sql.*;

public class MyResultSet {
public static void return_rset(ResultSet[] rset1)

throws SQLException {
Connection conn = DriverManager.getConnection(

"jdbc:default:connection");
Statement stmt = conn.createStatement();
ResultSet rset =

stmt.executeQuery (
"SELECT CAST(JName.lastName " +
"AS CHAR(50))" +
"FROM jdba.contact ");

rset1[0] = rset;
}

}

You can expose the result set using a CREATE PROCEDURE statement that
indicates the number of result sets returned from the procedure and the
signatureof the Java method.

A CREATE PROCEDURE statement indicating a result set could be defined
as follows:

CREATE PROCEDURE result_set()
DYNAMIC RESULT SETS 1
EXTERNAL NAME

’MyResultSet.return_rset ([Ljava/sql/ResultSet;)V’
LANGUAGE JAVA

95

You can open a cursor on this procedure, just as you can with any ASA
procedure returning result sets.

The string(Ljava/sql/ResultSet;)V is a Java method signature which is a
compact character representation of the number and type of the parameters
and return value.

☞ For more information about Java method signatures, see “CREATE
PROCEDURE statement”[ASA SQL Reference,page 324].

Returning values from Java via stored procedures

You can use stored procedures created using the EXTERNAL NAME
LANGUAGE JAVA as wrappers around Java methods. This section
describes how to write your Java method to exploit OUT or INOUT
parameters in the stored procedure.

Java does not have explicit support for INOUT or OUT parameters. Instead,
you can use an array of the parameter. For example, to use an integer OUT
parameter, create an array of exactly one integer:

public class TestClass {
public static boolean testOut(int[] param){

param[0] = 123;
return true;

}
}

The following procedure uses thetestOut method:

CREATE PROCEDURE sp_testOut (OUT p INTEGER)
EXTERNAL NAME ’TestClass/testOut ([I)Z’
LANGUAGE JAVA

The string([I)Z is a Java method signature, indicating that the method has a
single parameter, which is an array of integers, and returns a Boolean value.
You must define the method so that the method parameter you wish to use as
an OUT or INOUT parameter is an array of a Java data type that corresponds
to the SQL data type of the OUT or INOUT parameter.

☞ For more information about the syntax, including the method signature,
see “CREATE PROCEDURE statement”[ASA SQL Reference,page 324].

Security management for Java

Java provides security managers than you can use to control user access to
security-sensitive features of your applications, such as file access and
network access. Adaptive Server Anywhere provides the following support
for Java security managers in the database:

96

Chapter 4. Using Java in the Database

♦ Adaptive Server Anywhere provides a default security manager.

♦ You can provide your own security manager.

☞ For information, see“Implementing your own security manager” on
page 97.

The default security
manager

The default security manager is the class
com.sybase.asa.jrt.SAGenericSecurityManager. It carries out the
following tasks:

1. It checks the value of the database option JAVA_INPUT_OUTPUT.

2. It checks whether the database server was started in C2 security mode
using the -sc database server option.

3. If the connection property is OFF, it disallows access to Java file I/O
features.

4. If the database server is running in C2 security mode, it disallows access
to java.net packages.

5. When the security manager prevents a user from accessing a feature, it
returns ajava.lang.SecurityException.

☞ For more information, see “JAVA_INPUT_OUTPUT option [database]”
[ASA Database Administration Guide,page 601], and “-sc server option”[ASA
Database Administration Guide,page 158].

Controlling Java file I/O
using the default security
manager

Java file I/O is controlled through the JAVA_INPUT_OUTPUT database
option. By default this option is set to OFF, disallowing file I/O.

❖ To permit file access using the default security manager

1. Set the JAVA_INPUT_OUTPUT option to ON:

SET OPTION JAVA_INPUT_OUTOUT=’ON’

Implementing your own security manager

There are several steps to implementing your own security manager.

97

❖ To provide your own security manager

1. Implement a class that extendsjava.lang.SecurityManager.

The SecurityManager class has a number of methods to check whether a
particular action is allowed. If the action is permitted, the method returns
silently. If the method returns a value aSecurityException is thrown.

You must override methods that govern actions you wish to permit with
methods that return silently. You can do this by implementing apublic

void method.

2. Assign appropriate users to your security manager.

You use the add_user_security_manager, update_user_security_manager,
and delete_user_security_manager system stored procedures to assign
security managers to a user. For example, to assign the
MySecurityManager class as the security manager for a user, you would
execute the following command:

call dbo.add_user_security_manager(
user_name, ’MySecurityManager’, NULL)

Example The following class allows reading from files but disallows writing:

public class MySecurityManager extends SecurityManager
{ public void checkRead(FileDescriptor) {}

public void checkRead(String) {}
public void checkRead(String, Object) {}

}

TheSecurityManager.checkWritemethods are not overridden, and prevent
write operations on files. ThecheckReadmethods return silently, permitting
the action.

98

Chapter 4. Using Java in the Database

Configuring memory for Java
This section describes the memory requirements for running Java in the
database and how to set up your server to meet those requirements.

The Java VM requires a significant amount of cache memory.

☞ For information on tuning the cache, see “Using the cache to improve
performance”[ASA SQL User’s Guide,page 176].

Database and
connection-level
requirements

The Java VM uses memory on both a per-database and on a per-connection
basis.

♦ The per-database requirements are notrelocatable: they cannot be paged
out to disk. They must fit into the server cache. This type of memory is
not for the server; it is for each database. When estimating cache
requirements, you must sum the requirements for each database you run
on the server.

♦ The per-connection requirements are relocatable, but only as a unit. The
requirements for one connection are either all in cache, or all in the
temporary file.

How memory is used

Java in the database requires memory for several purposes:

♦ When Java is first used when a server is running, the VM is loaded into
memory, requiring over 1.5 Mb of memory. This is part of the
database-wide requirements. An additional VM is loaded for each
database that uses Java.

♦ For each connection that uses Java, a new instance of the VM loads for
that connection. The new instance requires about 200K per connection.

♦ Each class definition that is used in a Java application is loaded into
memory. This is held in database-wide memory: separate copies are not
required for individual connections.

♦ Each connection requires a working set of Java variables and application
stack space (used for method arguments and so on).

Managing memory You can control memory use in the following ways:

♦ Set the overall cache size You must use a cache size sufficient to meet
all the requirements for non-relocatable memory.

The cache size is set when the server is started using the-c option.

In many cases, a cache size of 8 Mb is sufficient.

99

♦ Set the namespace size The Java namespace size is the maximum
size, in bytes, of the per database memory allocation.

You can set this using the JAVA_NAMESPACE_SIZE option. The option
is global, and can only be set by a user with DBA authority.

♦ Set the heap size This JAVA_HEAP_SIZE option sets the maximum
size, in bytes, of per-connection memory.

This option can be set for individual connections, but as it affects the
memory available for other users it can be set only by a user with DBA
authority.

Starting and stopping the
VM

In addition to setting memory parameters for Java, you can unload the VM
when Java is not in use using the STOP JAVA statement. Only a user with
DBA authority can execute this statement. The syntax is simply:

STOP JAVA

The VM loads whenever a Java operation is carried out. If you wish to
explicitly load it in readiness for carrying out Java operations, you can do so
by executing the following statement:

START JAVA

100

Chapter 4. Using Java in the Database

Java classes reference
This section provides reference material on JDK classes and packages
supported within Adaptive Server Anywhere. User-defined classes and
packages are must be installed into the database by a user with DBA
authority before they can be used.

Supported Java packages

This section lists the packages of built-in classes available for use in a
Java-enabled database. For information about any classes within the package
that may be unsupported or partially supported, see“Unsupported Java
packages and classes” on page 102, and“Partially supported packages and
classes” on page 102.

Packages not listed here must be installed into your database before you can
use them.

♦ java.beans

♦ java.io. The classes that govern file access are supported only on certain
Windows operating systems, and only if the JAVA_INPUT_OUTPUT
option is set to ON. See “JAVA_INPUT_OUTPUT option [database]”
[ASA Database Administration Guide,page 601].

♦ java.lang

♦ java.lang.reflect

♦ java.lang.Thread

♦ java.math

♦ java.net

♦ java.net.PlainDatagramSocketImpl

♦ java.rmi

♦ java.rmi.dgc

♦ java.rmi.registry

♦ java.rmi.server

♦ java.security

♦ java.security.acl

♦ java.security.interfaces

101

♦ java.SQL. For details on support for JDBC 2.0 features, see“JDBC in the
database features” on page 106.

♦ java.text

♦ java.util

♦ java.util.zip

Unsupported Java packages and classes

Classes in the following packages are not supported in Adaptive Server
Anywhere:

♦ java.applet

♦ java.awt

♦ java.awt.datatransfer

♦ java.awt.event

♦ java.awt.image

♦ All packages prefixed bysun . For example,sun.audio .

Partially supported packages and classes

The following classes arepartially supported. They have some unsupported
native methods:

♦ java.lang.ClassLoader

♦ java.lang.Compiler

♦ java.lang.Runtime (exec/load/loadlibrary)

♦ java.io.File

♦ java.io.FileDescriptor

♦ java.io.FileInputStream

♦ java.io.FileOutputStream

♦ java.io.RandomAccessFile

♦ java.util.zip.Deflater

♦ java.util.zip.Inflater

102

CHAPTER 5

JDBC Programming

About this chapter This chapter describes how to use JDBC to access data.

JDBC can be used both from client applications and inside the database.
Java classes using JDBC provide a more powerful alternative to SQL stored
procedures for incorporating programming logic in the database.

Contents Topic: page

JDBC overview 104

Using the jConnect JDBC driver 110

Using the iAnywhere JDBC driver 115

Establishing JDBC connections 117

Using JDBC to access data 124

Using JDBC escape syntax 131

103

JDBC overview
JDBC provides a SQL interface for Java applications: if you want to access
relational data from Java, you do so using JDBC calls.

Rather than a thorough guide to the JDBC database interface, this chapter
provides some simple examples to introduce JDBC and illustrates how you
can use it on the client and in the database.

☞ The examples illustrate the distinctive features of using JDBC in
Adaptive Server Anywhere. For more information about JDBC
programming, see any JDBC programming book.

JDBC and Adaptive
Server Anywhere

You can use JDBC with Adaptive Server Anywhere in the following ways:

♦ JDBC on the client Java client applications can make JDBC calls to
Adaptive Server Anywhere. The connection takes place through a JDBC
driver. SQL Anywhere Studio includes two JDBC drivers: the jConnect
driver for pure Java applications and the iAnywhere JDBC driver, which
is a type 2 JDBC driver.

In this chapter, the phraseclient application applies both to applications
running on a user’s machine and to logic running on a middle-tier
application server.

♦ JDBC in the database Java classes installed into a database can make
JDBC calls to access and modify data in the database using an internal
JDBC driver.

JDBC resources ♦ Required software You need TCP/IP to use the Sybase jConnect driver.

The Sybase jConnect driver may already be available, depending on your
installation of Adaptive Server Anywhere.

For more information about the jConnect driver and its location, see“The
jConnect driver files” on page 110.

♦ Example source code You can find source code for the examples in
this chapter in the fileSamples\ASA\Java\JDBCExamples.javain your
SQL Anywhere directory.

☞ For more information about how to set up the Java examples,
including theJDBCExamplesclass, see“Setting up the Java sample” on
page 82.

Choosing a JDBC driver

Two JDBC drivers are provided for Adaptive Server Anywhere:

♦ jConnect This driver is a 100% pure Java driver. It communicates with
Adaptive Server Anywhere using the TDS client/server protocol.

104

Chapter 5. JDBC Programming

☞ For jConnect documentation, seehttp://sybooks.sybase.com/jc.html.

♦ iAnywhere JDBC driver This driver communicates with Adaptive
Server Anywhere using the Command Sequence client/server protocol.
Its behavior is consistent with ODBC, embedded SQL, and OLE DB
applications.

When choosing which driver to use, you may want to consider the following
factors:

♦ Features Both drivers are JDK 2 compliant. The iAnywhere JDBC
driver provides fully-scrollable cursors, which are not available in
jConnect.

♦ Pure Java The jConnect driver is a pure Java solution. The iAnywhere
JDBC driver requires the Adaptive Server Anywhere ODBC driver and is
not a pure Java solution.

♦ Performance The iAnywhere JDBC driver provides better performance
for most purposes than the jConnect driver.

♦ Compatibility The TDS protocol used by the jConnect driver is shared
with Adaptive Server Enterprise. Some aspects of the driver’s behavior
are governed by this protocol, and are configured to be compatible with
Adaptive Server Enterprise.

Both drivers are available on Windows 95/98/Me and Windows
NT/2000/XP, as well as supported UNIX and Linux operating systems. They
are not available on NetWare or Windows CE.

JDBC program structure

The following sequence of events typically occur in JDBC applications:

1. Create a Connection object Calling agetConnectionclass method of
theDriverManager class creates aConnectionobject, and establishes a
connection with a database.

2. Generate a Statement object TheConnectionobject generates a
Statementobject.

3. Pass a SQL statement A SQL statement that executed within the
database environment passes to theStatementobject. If the statement is
a query, this action returns aResultSetobject.

TheResultSetobject contains the data returned from the SQL statement,
but exposes it one row at a time (similar to the way a cursor works).

105

4. Loop over the rows of the result set Thenext method of the
ResultSetobject performs two actions:

♦ The current row (the row in the result set exposed through the
ResultSetobject) advances one row.

♦ A Boolean value (true/false) returns to indicate whether there is, in
fact, a row to advance to.

5. For each row, retrieve the values Values are retrieved for each column
in theResultSetobject by identifying either the name or position of the
column. You can use thegetDatemethod to get the value from a column
on the current row.

Java objects can use JDBC objects to interact with a database and get data
for their own use, for example to manipulate or for use in other queries.

JDBC in the database features

The version of JDBC that you can use from Java in the database is
determined by the JDK version that the database is set up to use.

♦ If your database is initialized with JDK 1.2 or JDK 1.3, you can use the
JDBC 2.0 API.

☞ For information on upgrading databases to JDK 1.2 or JDK 1.3, see
“ALTER DATABASE statement”[ASA SQL Reference,page 225]or
“Upgrading a database using the dbupgrad command-line utility”[ASA
Database Administration Guide,page 543].

♦ If your database is initialized with JDK 1.1, you can use JDBC 1.2
features. The internal JDBC driver for JDK 1.1 (asajdbc) makes some
features of JDBC 2.0 available from server-side Java applications, but
does not provide full JDBC 2.0 support.

☞ For more information, see“Using JDBC 2.0 features from JDK 1.1
databases” on page 106.

Using JDBC 2.0 features from JDK 1.1 databases

This section describes how to access JDBC 2.0 features from databases
initialized with JDK 1.1 support. For many purposes, a better solution is to
upgrade your version of Java in the database to 1.3.

For databases initialized with JDK 1.1 support, thesybase.sql.ASApackage
contains features that are part of JDBC 2.0. To use these JDBC 2.0 features
you must cast your JDBC objects into the corresponding classes in the
sybase.sql.ASApackage, rather than thejava.sql package. Classes that are
declared asjava.sql are restricted to JDBC 1.2 functionality only.

106

Chapter 5. JDBC Programming

The classes insybase.sql.ASAare as follows:

JDBC class Sybase internal driver class

java.sql.Connection sybase.sql.ASA.SAConnection

java.sql.Statement sybase.sql.ASA.SAStatement

java.sql.PreparedStatement sybase.sql.ASA.SAPreparedStatement

java.sql.CallableStatement sybase.sql.ASA.SACallableStatement

java.sql.ResultSetMetaData sybase.sql.ASA.SAResultSetMetaData

java.sql.ResultSet sybase.sql.SAResultSet

java.sql.DatabaseMetaData sybase.sql.SADatabaseMetaData

The following function provides aResultSetMetaDataobject for a prepared
statement without requiring aResultSetor executing the statement. This
function is not part of the JDBC 1.2 standard.

ResultSetMetaData sybase.sql.ASA.SAPreparedStatement.describe()

The following code fetches the previous row in a result set, a feature not
supported in JDBC 1.2:

import java.sql.*;
import sybase.sql.asa.*;
ResultSet rs;
// more code here
((sybase.sql.asa.SAResultSet)rs).previous();

JDBC 2.0 restrictions The following classes are part of the JDBC 2.0 core interface, but are not
available in thesybase.sql.ASApackage:

♦ java.sql.Blob

♦ java.sql.Clob

♦ java.sql.Ref

♦ java.sql.Struct

♦ java.sql.Array

♦ java.sql.Map

The following JDBC 2.0 core functions are not available in the
sybase.sql.ASApackage:

107

Class in sybase.sql.-

ASA

Missing functions

SAConnection java.util.Map getTypeMap()

void setTypeMap(java.util.Map map)

SAPreparedStatement void setRef(int pidx, java.sql.Ref r)

void setBlob(int pidx, java.sql.Blob b)

void setClob(int pidx, java.sql.Clob c)

void setArray(int pidx, java.sql.Array a)

SACallableStatement Object getObject(pidx, java.util.Map map)

java.sql.Ref getRef(int pidx)

java.sql.Blob getBlob(int pidx)

java.sql.Clob getClob(int pidx)

java.sql.Array getArray(int pidx)

SAResultSet Object getObject(int cidx, java.util.Map map)

java.sql.Ref getRef(int cidx)

java.sql.Blob getBlob(int cidx)

java.sql.Clob getClob(int cidx)

java.sql.Array getArray(int cidx)

Object getObject(String cName, java.util.Map
map)

java.sql.Ref getRef(String cName)

java.sql.Blob getBlob(String cName)

java.sql.Clob getClob(String cName)

java.sql.Array getArray(String cName)

Differences between client- and server-side JDBC connections

A difference between JDBC on the client and in the database server lies in
establishing a connection with the database environment.

♦ Client side In client-side JDBC, establishing a connection requires the
Sybase jConnect JDBC driver or the iAnywhere JDBC driver. Passing
arguments to theDriverManager.getConnectionestablishes the
connection. The database environment is an external application from the
perspective of the client application.

♦ Server-side When using JDBC within the database server, a connection
already exists. A value ofjdbc:default:connection passes to

108

Chapter 5. JDBC Programming

DriverManager.getConnection, which provides the JDBC application
with the ability to work within the current user connection. This is a
quick, efficient, and safe operation because the client application has
already passed the database security to establish the connection. The user
ID and password, having been provided once, do not need to be provided
again. The internal JDBC driver can only connect to the database of the
current connection.

You can write JDBC classes in such a way that they can run both at the client
and at the server by employing a single conditional statement for
constructing the URL. An external connection requires the machine name
and port number, while the internal connection requires
jdbc:default:connection.

109

Using the jConnect JDBC driver
If you wish to use JDBC from a client application or applet, you must have
the jConnect JDBC driver to connect to Adaptive Server Anywhere
databases.

jConnect is included with SQL Anywhere Studio. If you received Adaptive
Server Anywhere as part of another package, jConnect may or may not be
included. You must have jConnect in order to use JDBC from client
applications. You can use JDBC in the database without jConnect.

☞ For jConnect documentation, seehttp://sybooks.sybase.com/jc.html.

The jConnect driver files

The jConnect JDBC driver is installed into a set of directories under the
Sybase\Shareddirectory. Two versions of jConnect are supplied:

♦ jConnect 4.5 This version of jConnect is for use when developing JDK
1.1 applications. jConnect 4.5 is installed into the
Sybase\Shared\jConnect-4_5directory.

jConnect 4.5 is supplied as a set of classes.

♦ jConnect 5.5 This version of jConnect is for use when developing JDK
1.2 or later applications. jConnect 5.5 is installed into the
Sybase\Shared\jConnect-5_5directory.

jConnect 5.5 is supplied as a jar file namedjconn2.jar.

Examples in this chapter use jConnect 5.5. Users of jConnect 4.5 must make
appropriate substitutions.

Setting the CLASSPATH
for jConnect

For your application to use jConnect, the jConnect classes must be in your
classpath at compile time and run time, so the Java compiler and Java
runtime can locate the necessary files.

The following command adds the jConnect 5.5 driver to an existing
CLASSPATH environment variable wherepath is yourSybase\Shared
directory.

set classpath=%classpath%;path \jConnect-5_5 \classes \jconn2.jar

The following command adds the jConnect 4.5 driver to an existing
CLASSPATH environment variable:

set classpath=%classpath%;path \jConnect-4_5 \classes

Importing the jConnect
classes

The classes in jConnect are all in thecom.sybasepackage.

110

Chapter 5. JDBC Programming

If you are using jConnect 5.5, your application must access classes in
com.sybase.jdbc2.jdbc. You must import these classes at the beginning of
each source file:

import com.sybase.jdbc2.jdbc.*

If you are using jConnect 4.5, the classes are incom.sybase.jdbc. You must
import these classes at the beginning of each source file:

import com.sybase. jdbc.*

Installing jConnect system objects into a database

If you wish to use jConnect to access system table information (database
metadata), you must add the jConnect system objects to your database.

By default, the jConnect system objects are added to any new database. You
can choose to add the jConnect objects to the database when creating, when
upgrading, or at a later time.

You can install the jConnect system objects from Sybase Central or from
Interactive SQL.

❖ To add jConnect system objects to a database (Sybase Central)

1. Connect to the database from Sybase Central as a user with DBA
authority.

2. In the left pane, right-click the database and choose Upgrade database
from the popup menu.

The Upgrade a Database Wizard appears.

3. Follow the instructions in the wizard to add jConnect support to the
database.

111

❖ To add jConnect system objects to a database (Interactive SQL)

1. Connect to the database from Interactive SQL as a user with DBA
authority, and enter the following command in the SQL Statements pane:

read path \scripts \jcatalog.sql

wherepath is your SQL Anywhere directory.

Tip
You can also use a command prompt to add the jConnect system objects to
a database. At the command prompt, type:

dbisql -c "uid= user ;pwd= pwd" path \scripts \jcatalog.sql

whereuserandpwd identify a user with DBA authority, andpath is your
SQL Anywhere directory.

Loading the jConnect driver

Before you can use jConnect in your application, load the driver by entering
the following statement:

Class.forName("com.sybase.jdbc2.jdbc.SybDriver").newInstance();

Using thenewInstancemethod works around issues in some browsers.

Supplying a URL for the server

To connect to a database via jConnect, you need to supply a Uniform
Resource Locator (URL) for the database. An example given in the section
“Connecting from a JDBC client application using jConnect” on page 117is
as follows:

StringBuffer temp = new StringBuffer();
// Use the jConnect driver...
temp.append("jdbc:sybase:Tds:");
// to connect to the supplied machine name...
temp.append(_coninfo);
// on the default port number for ASA...
temp.append(":2638");
// and connect.
System.out.println(temp.toString());
conn = DriverManager.getConnection(temp.toString() , _props);

The URL is put together in the following way:

jdbc:sybase:Tds:machine-name:port-number

The individual components are:

112

Chapter 5. JDBC Programming

♦ jdbc:sybase:Tds The Sybase jConnect JDBC driver, using the TDS
application protocol.

♦ machine-name The IP address or name of the machine on which the
server is running. If you are establishing a same-machine connection, you
can uselocalhost, which means the current machine

♦ port number The port number on which the database server listens.
The port number assigned to Adaptive Server Anywhere is 2638. Use
that number unless there are specific reasons not to do so.

The connection string must be less than 253 characters in length.

Specifying a database on a server

Each Adaptive Server Anywhere server may have one or more databases
loaded at a time. The URL in the previous section specifies a server, but does
not specify a database. The connection attempt is made to the default
database on the server.

You can specify a particular database by providing an extended form of the
URL in one of the following ways.

Using the ServiceName
parameter

jdbc:sybase:Tds:machine-name:port-number?ServiceName=DBN

The question mark followed by a series of assignments is a standard way of
providing arguments to a URL. The case ofservicenameis not significant,
and there must be no spaces around the = sign. TheDBN parameter is the
database name.

Using the RemotePWD
parameter

A more general method allows you to provide additional connection
parameters such as the database name, or a database file, using the
RemotePWDfield. You setRemotePWDas a Properties field using the
setRemotePassword()method.

Here is sample code that illustrates how to use the field.

sybDrvr = (SybDriver)Class.forName(
"com.sybase.jdbc2.jdbc.SybDriver").newInstance();

props = new Properties();
props.put("User", "DBA");
props.put("Password", "SQL");
sybDrvr.setRemotePassword(

null, "dbf=asademo.db", props);
Connection con = DriverManager.getConnection(

"jdbc:sybase:Tds:localhost", props);

Using the database file parameterDBF, you can start a database on a server
using jConnect. By default, the database is started with autostop=YES. If

113

you specify a DBF or DBN ofutility_db , then the utility database will
automatically be started.

☞ For more information on the utility database, see “Using the utility
database”[ASA Database Administration Guide,page 262].

☞ For complete jConnect documentation, see
http://sybooks.sybase.com/jc.html.

Database options set for jConnect connections

When an application connects to the database using the jConnect driver, two
stored procedures are called:

1. sp_tsql_environment sets some database options for compatibility with
Adaptive Server Enterprise behavior.

2. The spt_mda procedure is then called, and sets some other options. In
particular, the spt_mda procedure determines the
QUOTED_IDENTIFIER setting. To change the default behavior, you
should modify the spt_mda procedure.

114

Chapter 5. JDBC Programming

Using the iAnywhere JDBC driver
The iAnywhere JDBC driver provides a JDBC driver that has some
performance benefits and feature benefits compared to the pure Java
jConnect JDBC driver, but which is not a pure-Java solution.

☞ For information on choosing which JDBC driver to use, see“Choosing a
JDBC driver” on page 104.

Required files ☞ The Java component of the iAnywhere JDBC driver is included in the
jodbc.jarfile installed into theJavasubdirectory of your SQL Anywhere
installation. For Windows, the native component isdbjodbc9.dllin the
win32 subdirectory of your SQL Anywhere installation; for UNIX and
Linux, the native component isdbjodbc9.so. This component must be in the
system path. When deploying applications using this driver, you must also
deploy the ODBC driver files.

Establishing a
connection

The following code illustrates how to establish a connection using the
iAnywhere JDBC driver:

String driver, url;
Connection conn;
driver="ianywhere.ml.jdbcodbc.IDriver";
url = "jdbc:odbc:dsn=ASA 9.0 Sample";
Class.forName(driver);
conn = DriverManager.getConnection(url);

There are several things to note about this code:

♦ As the classes are loaded usingClass.forName , the package containing
the iAnywhere JDBC driver does not have to be imported usingimport

statements.

♦ jodbc.jarmust be in your classpath when you run the application.

♦ The URL containsjdbc:odbc: followed by a standard ODBC connection
string. The connection string is commonly an ODBC data source, but you
can also use explicit semicolon separated individual connection
parameters in addition to or instead of the data source. For more
information on the parameters that you can use in a connection string, see
“Connection parameters”[ASA Database Administration Guide,page 70].

If you do not use a data source, you should specify the ODBC driver to
use by including the driver parameter in your connection string:

url = "jdbc:odbc:";
url += "driver=Adaptive Server Anywhere 9.0;...";

Character sets On UNIX the iAnywhere JDBC driver doesnot use ODBC Unicode
bindings or calls and does not carry out character translations. Sending

115

non-ASCII data through the iAnywhere JDBC driver leads to data
corruption.

On Windows the iAnywhere JDBC driverdoesuse ODBC Unicode bindings
and calls to translate among character sets.

116

Chapter 5. JDBC Programming

Establishing JDBC connections
This section presents classes that establish a JDBC database connection
from a Java application. The examples in this section use jConnect (client
side) or Java in the database (server side). For information on establishing
connections using the iAnywhere JDBC driver, see“Using the iAnywhere
JDBC driver” on page 115.

Connecting from a JDBC client application using jConnect

If you wish to access database system tables (database metadata) from a
JDBC application, you must add a set of jConnect system objects to your
database. The internal JDBC driver classes and jConnect share stored
procedures for database metadata support. These procedures are installed to
all databases by default. Thedbinit -i option prevents this installation.

☞ For more information about adding the jConnect system objects to a
database, see“Using the jConnect JDBC driver” on page 110.

The following complete Java application is a command-line application that
connects to a running database, prints a set of information to your
command-line, and terminates.

Establishing a connection is the first step any JDBC application must take
when working with database data.

☞ This example illustrates an external connection, which is a regular
client/server connection. For information on how to create an internal
connection from Java classes running inside the database server, see
“Establishing a connection from a server-side JDBC class” on page 120.

External connection example code

The following is the source code for the methods used to make a connection.
The source code can be found in themain method and theASAConnect
method of the fileJDBCExamples.javain theSamples\ASA\Javadirectory
under your SQL Anywhere directory:

import java.sql.*; // JDBC
import com.sybase.jdbc2.jdbc.*; // Sybase jConnect
import java.util.Properties; // Properties
import sybase.sql.*; // Sybase utilities
import asademo.*; // Example classes
public class JDBCExamples{

private static Connection conn;

117

public static void main(String args[]){
// Establish a connection
conn = null;
String machineName =

(args.length == 1 ? args[0] : "localhost");
ASAConnect("DBA", "SQL", machineName);
if(conn!=null) {

System.out.println("Connection successful");
}else{

System.out.println("Connection failed");
}

try{
getObjectColumn();
getObjectColumnCastClass();
insertObject();

}
catch(Exception e){

System.out.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

private static void ASAConnect(String userID,
String password,
String machineName) {

// Connect to an Adaptive Server Anywhere
String coninfo = new String(machineName);

Properties props = new Properties();
props.put("user", userID);
props.put("password", password);
props.put("DYNAMIC_PREPARE", "true");

// Load jConnect
try {

Class.forName(
"com.sybase.jdbc2.jdbc.SybDriver").newInstance();

String dbURL = "jdbc:sybase:Tds:" + machineName +
":2638/?JCONNECT_VERSION=5";

System.out.println(dbURL);
conn = DriverManager.getConnection(dbURL , props);

}
catch (Exception e) {

System.out.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

}

How the external connection example works

The external connection example is a Java command-line application.

118

Chapter 5. JDBC Programming

Importing packages The application requires several libraries, which are imported in the first
lines ofJDBCExamples.java:

♦ The java.sql package contains the Sun Microsystems JDBC classes,
which are required for all JDBC applications. You’ll find it in the
classes.zipfile in your Java subdirectory.

♦ Imported fromcom.sybase.jdbc2.jdbc, the Sybase jConnect JDBC
driver is required for all applications that connect using jConnect.

♦ The application uses aproperty list . Thejava.util.Properties class is
required to handle property lists. You’ll find it in theclasses.zipfile in
yourJavasubdirectory.

♦ Theasademopackage contains classes used in some samples. You’ll find
it in theSamples\ASA\Java\asademo.jarfile.

The main method Each Java application requires a class with a method namedmain, which is
the method invoked when the program starts. In this simple example,
JDBCExamples.mainis the only public method in the application.

TheJDBCExamples.mainmethod carries out the following tasks:

1. Processes the command-line argument, using the machine name if
supplied. By default, the machine name islocalhost, which is appropriate
for the personal database server.

2. Calls theASAConnectmethod to establish a connection.

3. Executes several methods that scroll data to your command-line.

The ASAConnect
method

TheJDBCExamples.ASAConnectmethod carries out the following tasks:

1. Connects to the default running database using Sybase jConnect.

♦ Class.forNameloads jConnect. Using thenewInstancemethod, it
works around issues in some browsers.

♦ TheStringBuffer statements build up a connection string from the
literal strings and the supplied machine name provided on the
command-line.

♦ DriverManager.getConnectionestablishes a connection using the
connection string.

2. Returns control to the calling method.

Running the external connection example

This section describes how to run the external connection example.

119

❖ To create and execute the external connection example applica-
tion
1. Open the command prompt.

2. Change to your SQL Anywhere directory.

3. Change to theSamples\ASA\Javasubdirectory.

4. Ensure the database is loaded onto a database server running TCP/IP. You
can start such a server on your local machine using the following
command (from theSamples\ASA\Javasubdirectory):

start dbeng9 .. \.. \.. \asademo

5. Enter the following at the command prompt to run the example:

java JDBCExamples

If you wish to try this against a server running on another machine, you
must enter the correct name of that machine. The default islocalhost,
which is an alias for the current machine name.

6. Confirm that a list of people and products appears at the command
prompt.

If the attempt to connect fails, an error message appears instead. Confirm
that you have executed all the steps as required. Check that your
CLASSPATH is correct. An incorrect CLASSPATH results in a failure to
locate a class.

☞ For more information about using jConnect, see“Using the jConnect
JDBC driver” on page 110, and see the online documentation for jConnect.

Establishing a connection from a server-side JDBC class

SQL statements in JDBC are built using thecreateStatementmethod of a
Connectionobject. Even classes running inside the server need to establish
a connection to create aConnectionobject.

Establishing a connection from a server-side JDBC class is more
straightforward than establishing an external connection. Because a user
already connected executes the server-side class, the class simply uses the
current connection.

Server-side connection example code

The following is the source code for the example. You can find the source
code in theInternalConnect method of

120

Chapter 5. JDBC Programming

Samples\ASA\Java\JDBCExamples.javaunder your SQL Anywhere
directory:

public static void InternalConnect() {
try {

conn =
DriverManager.getConnection("jdbc:default:connection");

System.out.println("Hello World");
}
catch (Exception e) {

System.out.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

}

How the server-side connection example works

In this simple example,InternalConnect() is the only method used in the
application.

The application requires only one of the libraries (JDBC) imported in the
first line of theJDBCExamples.javaclass. The others are for external
connections. The package namedjava.sql contains the JDBC classes.

TheInternalConnect() method carries out the following tasks:

1. Connects to the default running database using the current connection:

♦ DriverManager.getConnectionestablishes a connection using a
connection string ofjdbc:default:connection.

2. PrintsHello World to the current standard output, which is the server
window. System.out.println carries out the printing.

3. If there is an error in the attempt to connect, an error message appears in
the server window, together with the place where the error occurred.

Thetry andcatch instructions provide the framework for the error
handling.

4. Terminates the class.

Running the server-side connection example

This section describes how to run the server-side connection example.

121

❖ To create and execute the internal connection example applica-
tion
1. If you have not already done so, compile theJDBCExamples.javafile. If

you are using the JDK, you can do the following in the
Samples\ASA\Javadirectory from a command prompt:

javac JDBCExamples.java

2. Start a database server using the sample database. You can start such a
server on your local machine using the following command (from the
Samples\ASA\Javasubdirectory):

start dbeng9 .. \.. \.. \asademo

The TCP/IP network protocol is not necessary in this case since you are
not using jConnect.

3. Install the class into the sample database. Once connected to the sample
database, you can do this from Interactive SQL using the following
command:

INSTALL JAVA NEW
FROM FILE ’path \Samples \ASA\Java \JDBCExamples.class’

wherepath is the path to your installation directory.

You can also install the class using Sybase Central. While connected to
the sample database, open the Java Objects folder and choose File➤ New
➤ Java Class. Then follow the instructions in the wizard.

4. You can now call theInternalConnect method of this class just as you
would a stored procedure:

CALL JDBCExamples>>InternalConnect()

The first time a Java class is called in a session, the internal Java virtual
machine must be loaded. This can take a few seconds.

5. Confirm that the messageHello World prints on the server screen.

Notes on JDBC connections

♦ Autocommit behavior The JDBC specification requires that, by
default, a COMMIT is performed after each data modification statement.
Currently, the server-side JDBC behavior is to commit. You can control
this behavior using a statement such as the following:

conn.setAutoCommit(false) ;

whereconn is the current connection object.

122

Chapter 5. JDBC Programming

♦ Connection defaults From server-side JDBC, only the first call to
getConnection(" jdbc:default:connection") creates a new connection
with the default values. Subsequent calls return a wrapper of the current
connection with all connection properties unchanged. If you set
AutoCommit to OFF in your initial connection, any subsequent
getConnectioncalls within the same Java code return a connection with
AutoCommit set to OFF.

You may wish to ensure that closing a connection resets the connection
properties to their default values, so that subsequent connections are
obtained with standard JDBC values. The following type of code
achieves this:

Connection conn = DriverManager.getConnection("");
boolean oldAutoCommit = conn.getAutoCommit();
try {

// do code here
}
finally {

conn.setAutoCommit(oldAutoCommit);
}

This discussion applies not only to AutoCommit, but also to other
connection properties such as TransactionIsolation and isReadOnly.

123

Using JDBC to access data
Java applications that hold some or all classes in the database have
significant advantages over traditional SQL stored procedures. At an
introductory level, however, it may be helpful to use the parallels with SQL
stored procedures to demonstrate the capabilities of JDBC. In the following
examples, we write Java classes that insert a row into the Department table.

As with other interfaces, SQL statements in JDBC can be eitherstatic or
dynamic. Static SQL statements are constructed in the Java application and
sent to the database. The database server parses the statement, selects an
execution plan, and executes the statement. Together, parsing and selecting
an execution plan are referred to aspreparing the statement.

If a similar statement has to be executed many times (many inserts into one
table, for example), there can be significant overhead in static SQL because
the preparation step has to be executed each time.

In contrast, a dynamic SQL statement contains placeholders. The statement,
prepared once using these placeholders, can be executed many times without
the additional expense of preparing.

In this section, we use static SQL. Dynamic SQL is discussed in a later
section.

Preparing for the examples

This section describes how to prepare for the examples in the remainder of
the chapter.

Sample code The code fragments in this section are taken from the complete class
Samples\ASA\Java\JDBCExamples.java.

❖ To install the JDBCExamples class

1. If you have not already done so, install theJDBCExamples.classfile into
the sample database. Once connected to the sample database from
Interactive SQL, enter the following command in the SQL Statements
pane:

INSTALL JAVA NEW
FROM FILE ’path \Samples \ASA\Java \JDBCExamples.class’

wherepath is the path to your installation directory.

You can also install the class using Sybase Central. While connected to
the sample database, open the Java Objects folder and choose File➤ New
➤ Java Class. Then follow the instructions in the wizard.

124

Chapter 5. JDBC Programming

Inserts, updates, and deletes using JDBC

TheStatementobject executes static SQL statements. You execute SQL
statements such as INSERT, UPDATE, and DELETE, which do not return
result sets, using theexecuteUpdatemethod of theStatementobject.
Statements, such as CREATE TABLE and other data definition statements,
can also be executed usingexecuteUpdate.

The following code fragment illustrates how JDBC carries out INSERT
statements. It uses an internal connection held in the Connection object
namedconn. The code for inserting values from an external application
using JDBC would need to use a different connection, but otherwise would
be unchanged.

public static void InsertFixed() {
// returns current connection
conn = DriverManager.getConnection(

"jdbc:default:connection");
// Disable autocommit
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();

Integer IRows = new Integer(stmt.executeUpdate
("INSERT INTO Department (dept_id, dept_name)"

+ "VALUES (201, ’Eastern Sales’)"
));

// Print the number of rows updated
System.out.println(IRows.toString() + " row inserted");

}

Source code available
This code fragment is part of theInsertFixed method of theJDBCEx-
amples class included in theSamples\ASA\Javasubdirectory of your
installation directory.

Notes ♦ ThesetAutoCommit method turns off the AutoCommit behavior so
changes are only committed if you execute an explicit COMMIT
instruction.

♦ TheexecuteUpdatemethod returns an integer which reflects the number
of rows affected by the operation. In this case, a successful INSERT
would return a value of one (1).

♦ The integer return type converts to anInteger object. The Integer class is
a wrapper around the basicint data type, providing some useful methods
such astoString().

125

♦ The IntegerIRows converts to a string to be printed. The output goes to
the server window.

❖ To run the JDBC Insert example

1. Using Interactive SQL, connect to the sample database as user IDDBA.

2. Ensure the JDBCExamples class has been installed. It is installed
together with the other Java examples classes.

☞ For more information about installing the Java examples classes, see
“Setting up the Java sample” on page 82.

3. Call the method as follows:

CALL JDBCExamples>>InsertFixed()

4. Confirm that a row has been added to the department table.

SELECT *
FROM department

The row with ID 201 is not committed. You can execute a ROLLBACK
statement to remove the row.

In this example, you have seen how to create a very simple JDBC class.
Subsequent examples expand on this.

Passing arguments to Java methods

We can expand theInsertFixed method to illustrate how arguments are
passed to Java methods.

The following method uses arguments passed in the call to the method as the
values to insert:

126

Chapter 5. JDBC Programming

public static void InsertArguments(
String id, String name) {

try {
conn = DriverManager.getConnection(

"jdbc:default:connection");

String sqlStr = "INSERT INTO Department "
+ " (dept_id, dept_name)"
+ " VALUES (" + id + ", ’" + name + "’)";

// Execute the statement
Statement stmt = conn.createStatement();
Integer IRows = new Integer(

stmt.executeUpdate(sqlStr.toString()));

// Print the number of rows updated
System.out.println(IRows.toString() + " row inserted");

}
catch (Exception e) {

System.out.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

Notes ♦ The two arguments are the department ID (an integer) and the department
name (a string). Here, both arguments pass to the method as strings
because they are part of the SQL statement string.

♦ The INSERT is a static statement and takes no parameters other than the
SQL itself.

♦ If you supply the wrong number or type of arguments, you receive the
Procedure Not Found error.

❖ To use a Java method with arguments

1. If you have not already installed theJDBCExamples.classfile into the
sample database, do so.

2. Connect to the sample database from Interactive SQL and enter the
following command:

call JDBCExamples>>InsertArguments(
’203’, ’Northern Sales’)

3. Verify that an additional row has been added to the Department table:

SELECT *
FROM Department

4. Roll back the changes to leave the database unchanged:

127

ROLLBACK

Queries using JDBC

TheStatementobject executes static queries, as well as statements that do
not return result sets. For queries, you use theexecuteQuerymethod of the
Statementobject. This returns the result set in aResultSetobject.

The following code fragment illustrates how queries can be handled within
JDBC. The code fragment places the total inventory value for a product into
a variable namedinventory. The product name is held in theString variable
prodname. This example is available as theQuery method of the
JDBCExamplesclass.

The example assumes an internal or external connection has been obtained
and is held in the Connection object namedconn.

public static int Query () {
int max_price = 0;

try{
conn = DriverManager.getConnection(

"jdbc:default:connection");

// Build the query
String sqlStr = "SELECT id, unit_price "

+ "FROM product" ;

// Execute the statement
Statement stmt = conn.createStatement();
ResultSet result = stmt.executeQuery(sqlStr);

while(result.next()) {
int price = result.getInt(2);
System.out.println("Price is " + price);
if(price > max_price) {

max_price = price ;
}

}
}
catch(Exception e) {

System.out.println("Error: " + e.getMessage());
e.printStackTrace();

}
return max_price;

}

Running the example Once you have installed theJDBCExamplesclass into the sample database,
you can execute this method using the following statement in
Interactive SQL:

CALL JDBCExamples>>Query()

128

Chapter 5. JDBC Programming

Notes ♦ The query selects the quantity and unit price for all products named
prodname. These results are returned into theResultSetobject named
result.

♦ There is a loop over each of the rows of the result set. The loop uses the
next method.

♦ For each row, the value of each column is retrieved into an integer
variable using thegetInt method.ResultSetalso has methods for other
data types, such asgetString, getDate, andgetBinaryString.

The argument for thegetInt method is an index number for the column,
starting from 1.

♦ Adaptive Server Anywhere supports bidirectional scrolling cursors.
However, JDBC provides only thenext method, which corresponds to
scrolling forward through the result set.

♦ The method returns the value ofmax_price to the calling environment,
and Interactive SQL displays it on the Results tab in the Results pane.

Using prepared statements for more efficient access

If you use theStatementinterface, you parse each statement you send to the
database, generate an access plan, and execute the statement. The steps prior
to actual execution are calledpreparing the statement.

You can achieve performance benefits if you use thePreparedStatement
interface. This allows you to prepare a statement using placeholders, and
then assign values to the placeholders when executing the statement.

Using prepared statements is particularly useful when carrying out many
similar actions, such as inserting many rows.

☞ For more information about prepared statements, see“Preparing
statements” on page 14.

Example The following example illustrates how to use thePreparedStatement
interface, although inserting a single row is not a good use of prepared
statements.

The following method of theJDBCExamplesclass carries out a prepared
statement:

129

public static void JInsertPrepared(int id, String name)
try {

conn = DriverManager.getConnection(
"jdbc:default:connection");

// Build the INSERT statement
// ? is a placeholder character
String sqlStr = "INSERT INTO Department "

+ "(dept_id, dept_name) "
+ "VALUES (? , ?)" ;

// Prepare the statement
PreparedStatement stmt =

conn.prepareStatement(sqlStr);

stmt.setInt(1, id);
stmt.setString(2, name);
Integer IRows = new Integer(

stmt.executeUpdate());

// Print the number of rows updated
System.out.println(

IRows.toString() + " row inserted");
}
catch (Exception e) {

System.out.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

Running the example Once you have installed theJDBCExamplesclass into the sample database,
you can execute this example by entering the following statement:

call JDBCExamples>>InsertPrepared(
202, ’Eastern Sales’)

The string argument is enclosed in single quotes, which is appropriate for
SQL. If you invoke this method from a Java application, use double quotes
to delimit the string.

Miscellaneous JDBC notes

♦ Access permissions Like all Java classes in the database, classes
containing JDBC statements can be accessed by any user. There is no
equivalent to the GRANT EXECUTE statement that grants permission to
execute procedures, and there is no need to qualify the name of a class
with the name of its owner.

♦ Execution permissions Java classes are executed with the permissions
of the connection executing them. This behavior is different to that of
stored procedures, which execute with the permissions of the owner.

130

Chapter 5. JDBC Programming

Using JDBC escape syntax
You can use JDBC escape syntax from any JDBC application, including
Interactive SQL. This escape syntax allows you to call stored procedures
regardless of the database management system you are using. The general
form for the escape syntax is

{{ keyword parameters}}

The bracesmustbe doubled. This doubling is specific to Interactive SQL.
There must not be a space between successive braces: “{{” is acceptable, but
“{ {” is not. As well, you cannot use newline characters in the statement.
The escape syntax cannot be used in stored procedures because they are not
executed by Interactive SQL.

You can use the escape syntax to access a library of functions implemented
by the JDBC driver that includes number, string, time, date, and system
functions.

For example, to obtain the name of the current user in a database
management system-neutral way, you would type the following:

select {{ fn user() }}

The functions that are available depend on the JDBC driver that you are
using. The following tables list the functions that are supported by jConnect,
and by the iAnywhere JDBC driver.

jConnect supported
functions

Numeric func-

tions

String func-

tions

System functions Time/Date func-

tions

ABS ASCII DATABASE CURDATE

ACOS CHAR IFNULL CURTIME

ASIN CONCAT USER DAYNAME

ATAN DIFFERENCE CONVERT DAYOFMONTH

ATAN2 LCASE DAYOFWEEK

CEILING LENGTH HOUR

COS REPEAT MINUTE

COT RIGHT MONTH

DEGREES SOUNDEX MONTHNAME

EXP SPACE NOW

131

Numeric func-

tions

String func-

tions

System functions Time/Date func-

tions

FLOOR SUBSTRING QUARTER

LOG UCASE SECOND

LOG10 TIMESTAMPADD

PI TIMESTAMPDIFF

POWER YEAR

RADIANS

RAND

ROUND

SIGN

SIN

SQRT

TAN

iAnywhere JDBC driver
supported functions

Numeric func-

tions

String functions System func-

tions

Time/Date func-

tions

ABS ASCII IFNULL CURDATE

ACOS CHAR USERNAME CURTIME

ASIN CONCAT DAYNAME

ATAN DIFFERENCE DAYOFMONTH

ATAN2 INSERT DAYOFWEEK

CEILING LCASE DAYOFYEAR

COS LEFT HOUR

COT LENGTH MINUTE

DEGREES LOCATE MONTH

EXP LOCATE_2 MONTHNAME

FLOOR LTRIM NOW

LOG REPEAT QUARTER

132

Chapter 5. JDBC Programming

Numeric func-

tions

String functions System func-

tions

Time/Date func-

tions

LOG10 RIGHT SECOND

MOD RTRIM WEEK

PI SOUNDEX YEAR

POWER SPACE

RADIANS SUBSTRING

RAND UCASE

ROUND

SIGN

SIN

SQRT

TAN

TRUNCATE

A statement using the escape syntax should work in Adaptive Server
Anywhere, Adaptive Server Enterprise, Oracle, SQL Server, or another
database management system to which you are connected.

For example, to obtain database properties with the sa_db_info procedure
using SQL escape syntax, you would type the following in the
SQL Statements pane in Interactive SQL:

{{CALL sa_db_info(1) }}

133

CHAPTER 6

Embedded SQL Programming

About this chapter This chapter describes how to use the embedded SQL programming
interface to Adaptive Server Anywhere.

Contents Topic: page

Introduction 136

Sample embedded SQL programs 143

Embedded SQL data types 149

Using host variables 153

The SQL Communication Area (SQLCA) 161

Fetching data 166

Static and dynamic SQL 176

The SQL descriptor area (SQLDA) 181

Sending and retrieving long values 190

Using stored procedures 196

Embedded SQL programming techniques 201

The SQL preprocessor 203

Library function reference 207

Embedded SQL command summary 224

135

Introduction
Embedded SQL is a database-programming interface for the C and C++
programming languages. It consists of SQL statements intermixed with
(embedded in) C or C++ source code. These SQL statements are translated
by aSQL preprocessorinto C or C++ source code, which you then compile.

At runtime, embedded SQL applications use an Adaptive Server Anywhere
interface library to communicatewith database server. The interface
library is a dynamic link library (DLL) or shared library on most platforms.

♦ On Windows operating systems, the interface library isdblib9.dll.

♦ On UNIX operating systems, the interface library islibdblib9.so,
libdblib9.sl,or libdblib9.a, depending on the operating system.

Adaptive Server Anywhere provides two flavors of embedded SQL. Static
embedded SQL is simpler to use but less flexible than dynamic embedded
SQL. Both flavors are discussed in this chapter.

136

Chapter 6. Embedded SQL Programming

Development process overview

C Source Code

SQL

Preprocessor

C Compiler

Linker

Custom

Application

DLL

DLL Import

Library

Database

Once the program has been successfully preprocessed and compiled, it is
linked with theimport library for the Adaptive Server Anywhere interface
library to form an executable file. When the database is running, this
executable file uses the Adaptive Server Anywhere DLL to interact with the
database. The database does not have to be running when the program is
preprocessed.

For Windows, there are separate import libraries for Watcom C/C++, for
Microsoft Visual C++, and for Borland C++.

☞ Using import libraries is the standard development method for
applications that call functions in DLLs. Adaptive Server Anywhere also
provides an alternative, and recommended method which avoids the use of
import libraries. For more information, see“Loading the interface library
dynamically” on page 141.

137

Running the SQL preprocessor

The SQL preprocessor is an executable namedsqlpp.exe.

Command line The SQLPP command line is as follows:

sqlpp [options] sql-filename [output-filename]

The SQL preprocessor processes a C program with embedded SQL before
the C or C++ compiler is run. The preprocessor translates the SQL
statements into C/C++ language source that is put into the output file. The
normal extension for source programs with embedded SQL is.sqc. The
default output filename is thesql-filenamewith an extension of.c. If the
sql-filenamealready has a.c extension, then the output filename extension is
.cc by default.

☞ For a full listing of the command-line options, see“The SQL
preprocessor” on page 203.

Supported compilers

The C language SQL preprocessor has been used in conjunction with the
following compilers:

Operating system Compiler Version

Windows Watcom C/C++ 9.5 and above

Windows Microsoft Visual C/C++ 1.0 and above

Windows Borland C++ 4.5

Windows CE Microsoft Visual C/C++ 5.0

UNIX GNU or native compiler

NetWare Watcom C/C++ 10.6, 11

☞ For instructions on building NetWare NLMs, see“Building NetWare
Loadable Modules” on page 142.

Embedded SQL header files

All header files are installed in theh subdirectory of your SQL Anywhere
installation directory.

138

Chapter 6. Embedded SQL Programming

Filename Description

sqlca.h Main header file included in all embedded SQL programs.
This file includes the structure definition for the SQL
Communication Area (SQLCA) and prototypes for all
embedded SQL database interface functions.

sqlda.h SQL Descriptor Area structure definition included in
embedded SQL programs that use dynamic SQL.

sqldef.h Definition of embedded SQL interface data types. This file
also contains structure definitions and return codes needed
for starting the database server from a C program.

sqlerr.h Definitions for error codes returned in thesqlcodefield of
the SQLCA.

sqlstate.h Definitions for ANSI/ISO SQL standard error states
returned in thesqlstatefield of the SQLCA.

pshpk1.h,
pshpk2.h,
poppk.h

These headers ensure that structure packing is handled
correctly. They support Watcom C/C++, Microsoft Visual
C++, IBM Visual Age, and Borland C/C++ compilers.

Import libraries

All import libraries are installed in thelib subdirectory, under the operating
system subdirectory of the SQL Anywhere installation directory. For
example, Windows import libraries are stored in thewin32\lib subdirectory.

Operating system Compiler Import library

Windows Watcom C/C++ dblibtw.lib

Windows Microsoft Visual C++ dblibtm.lib

Windows CE Microsoft Visual C++ dblib9.lib

NetWare Watcom C/C++ dblib9.lib

Solaris (unthreaded applica-
tions)

All compilers libdblib9.so,
libdbtasks9.so

Solaris (threaded applica-
tions)

All compilers libdblib9_r.so,
libdbtasks9_r.so

Thelibdbtasks9libraries are called by thelibdblib9 library. Some compilers
locatelibdbtasks9automatically, while for others you need to specify it
explicitly.

139

A simple example

The following is a very simple example of an embedded SQL program.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{

db_init(&sqlca);
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL UPDATE employee

SET emp_lname = ’Plankton’
WHERE emp_id = 195;

EXEC SQL COMMIT WORK;
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);

error:
printf("update unsuccessful -- sqlcode = %ld.n",

sqlca.sqlcode);
db_fini(&sqlca);
return(-1);

}

This example connects to the database, updates the last name of employee
number 195, commits the change, and exits. There is virtually no interaction
between the SQL and C code. The only thing the C code is used for in this
example is control flow. The WHENEVER statement is used for error
checking. The error action (GOTO in this example) is executed after any
SQL statement that causes an error.

☞ For a description of fetching data, see“Fetching data” on page 166.

Structure of embedded SQL programs

SQL statements are placed (embedded) within regular C or C++ code. All
embedded SQL statements start with the words EXEC SQL and end with a
semicolon (;). Normal C language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following
statement before any other embedded SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

The first embedded SQL statement executed by the C program must be a
CONNECT statement. The CONNECT statement is used to establish a
connection with the database server and to specify the user ID that is used

140

Chapter 6. Embedded SQL Programming

for authorizing all statements executed during the connection.

The CONNECT statement must be the first embedded SQL statement
executed. Some embedded SQL commands do not generate any C code, or
do not involve communication with the database. These commands are thus
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

Loading the interface library dynamically

The usual practice for developing applications that use functions from DLLs
is to link the application against animport library , which contains the
required function definitions.

This section describes an alternative to using an import library for
developing Adaptive Server Anywhere applications. The Adaptive Server
Anywhere interface library can be loaded dynamically, without having to
link against the import library, using theesqldll.cmodule in thesrc
subdirectory of your installation directory. Usingesqldll.cis recommended
because it is easier to use and more robust in its ability to locate the interface
DLL.

❖ To load the interface DLL dynamically

1. Your program must calldb_init_dll to load the DLL, and must call
db_fini_dll to free the DLL. Thedb_init_dll call must be before any
function in the database interface, and no function in the interface can be
called afterdb_fini_dll .

You must still call thedb_init anddb_fini library functions.

2. You must#include theesqldll.hheader file before the EXEC SQL
INCLUDE SQLCA statement or#include<sqlca.h> line in your
embedded SQL program.

3. A SQL OS macro must be defined. The header filesqlca.h, which is
included byesqdll.c, attempts to determine the appropriate macro and
define it. However, certain combinations of platforms and compilers may
cause this to fail. In this case, you must add a#defineto the top of this
file, or make the definition using a compiler option.

Macro Platforms

_SQL_OS_WINNT All Windows operating systems

_SQL_OS_UNIX UNIX

_SQL_OS_NETWARE NetWare

141

4. Compileesqldll.c.

5. Instead of linking against the imports library, link the object module
esqldll.objwith your embedded SQL application objects.

Sample You can find a sample program illustrating how to load the interface library
dynamically in theSamples\ASA\ESQLDynamicLoadsubdirectory of your
SQL Anywhere directory. The source code is in
Samples\ASA\ESQLDynamicLoad\sample.sqc.

Building NetWare Loadable Modules

You must use the Watcom C/C++ compiler, version 10.6 or 11.0, to compile
embedded SQL programs as NetWare Loadable Modules (NLM).

❖ To create an embedded SQL NLM

1. On Windows, preprocess the embedded SQL file using the following
command:

sqlpp -o NETWARE srcfile.sqc

This instruction creates a file with.c extension.

2. Compilefile.c using the Watcom compiler (10.6 or 11.0), using the
/bt=netware option.

3. Link the resulting object file using the Watcom linker with the following
options:

FORMAT NOVELL
MODULE dblib9
OPTION CASEEXACT
IMPORT @dblib9.imp
LIBRARY dblib9.lib

The filesdblib9.impanddblib9.lib are shipped with Adaptive Server
Anywhere, in thenlm\lib directory. The IMPORT and LIBRARY lines
may require a full path.

142

Chapter 6. Embedded SQL Programming

Sample embedded SQL programs
Sample embedded SQL programs are included with the Adaptive Server
Anywhere installation. They are placed in theSamples\ASA\Csubdirectory
of your SQL Anywhere directory.

♦ The static cursor embedded SQL example,Samples\ASA\C\cur.sqc,
demonstrates the use of static SQL statements.

♦ The dynamic cursor embedded SQL example,Samples\ASA\C\dcur.sqc,
demonstrates the use of dynamic SQL statements.

To reduce the amount of code that is duplicated by the sample programs, the
mainlines and the data printing functions have been placed into a separate
file. This ismainch.cfor character mode systems andmainwin.cfor
windowing environments.

The sample programs each supply the following three routines, which are
called from the mainlines.

♦ WSQLEX_Init Connects to the database and opens the cursor.

♦ WSQLEX_Process_Command Processes commands from the user,
manipulating the cursor as necessary.

♦ WSQLEX_Finish Closes the cursor and disconnect from the database.

The function of the mainline is to:

1. Call theWSQLEX_Init routine

2. Loop, getting commands from the user and calling
WSQL_Process_Commanduntil the user quits

3. Call theWSQLEX_Finish routine

Connecting to the database is accomplished with the embedded SQL
CONNECT command supplying the appropriate user ID and password.

In addition to these samples, you may find other programs and source files as
part of SQL Anywhere Studio which demonstrate features available for
particular platforms.

Building the sample programs

Files to build the sample programs are supplied with the sample code.

♦ For Windows and NetWare operating systems, hosted on Windows
operating systems, usemakeall.batto compile the sample programs.

143

♦ For UNIX, use the shell scriptmakeall.

♦ For Windows CE, use thedcur.dspproject file for Microsoft Visual C++.

The format of the command is as follows:

makeall {Example} {Platform} {Compiler}

The first parameter is the name of the example program that you want to
compile. It is one of the following:

♦ CUR static cursor example

♦ DCUR dynamic cursor example

♦ ODBC ODBC example

The second parameter is the target platform. It is one of the following:

♦ WINNT compile for Windows.

♦ NETWARE compile for NetWare NLM

The third parameter is the compiler to use to compile the program. The
compiler can be one of:

♦ WC use Watcom C/C++

♦ MC use Microsoft C

♦ BC use Borland C

Running the sample programs

The executable files are held in theSamples\ASA\Cdirectory, together with
the source code.

❖ To run the static cursor sample program

1. Start the program:

♦ Start the Adaptive Server Anywhere Personal Server Sample database.

♦ Run the fileSamples\ASA\C\curwnt.exe.

2. Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query
results on the screen. Type the letter of the command you wish to
perform. Some systems may require you to pressENTER after the letter.

144

Chapter 6. Embedded SQL Programming

❖ To run the dynamic cursor sample program

1. Start the program:
♦ Run the fileSamples\ASA\C\dcurwnt.exe.

2. Connect to a database:
♦ Each sample program presents a console-type user interface and

prompts you for a command. Enter the following connection string to
connect to the sample database:

DSN=ASA 9.0 Sample

3. Choose a table:
♦ Each sample program prompts you for a table. Choose one of the

tables in the sample database. For example, you may enterCustomer
or Employee.

4. Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query
results on the screen. Type the letter of the command you wish to
perform. Some systems may require you to pressENTER after the letter.

Windows samples The Windows versions of the example programs are real Windows
programs. However, to keep the user interface code relatively simple, some
simplifications have been made. In particular, these applications do not
repaint their Windows on WM_PAINT messages except to reprint the
prompt.

Static cursor sample

This example demonstrates the use of cursors. The particular cursor used
here retrieves certain information from theemployeetable in the sample
database. The cursor is declared statically, meaning that the actual SQL
statement to retrieve the information is “hard coded” into the source
program. This is a good starting point for learning how cursors work. The
next example (“Dynamic cursor sample” on page 146) takes this first
example and converts it to use dynamic SQL statements.

☞ For information on where the source code can be found and how to build
this example program, see“Sample embedded SQL programs” on page 143.

Theopen_cursorroutine both declares a cursor for the specific SQL
command and also opens the cursor.

Printing a page of information is accomplished by theprint routine. It loops
pagesizetimes, fetching a single row from the cursor and printing it out.
Note that the fetch routine checks for warning conditions (such asRow not

145

found) and prints appropriate messages when they arise. In addition, the
cursor is repositioned by this program to the row before the one that appears
at the top of the current page of data.

Themove, top, andbottom routines use the appropriate form of the FETCH
statement to position the cursor. Note that this form of the FETCH statement
doesn’t actually get the data—it only positions the cursor. Also, a general
relative positioning routine,move,has been implemented to move in either
direction depending on the sign of the parameter.

When the user quits, the cursor is closed and the database connection is also
released. The cursor is closed by a ROLLBACK WORK statement, and the
connection is release by a DISCONNECT.

Dynamic cursor sample

This sample demonstrates the use of cursors for a dynamic SQL SELECT
statement. It is a slight modification of the static cursor example. If you have
not yet looked at“Static cursor sample” on page 145, it would be helpful to
do so before looking at this sample.

☞ For information on where the source code can be found and how to build
this sample program, see“Sample embedded SQL programs” on page 143.

Thedcur program allows the user to select a table to look at with then
command. The program then presents as much information from that table
as fits on the screen.

When this program is run, it prompts for a connection string of the form:

uid=DBA;pwd=SQL;dbf=c: \asa \asademo.db

The C program with the embedded SQL is held in theSamples\ASA\C
subdirectory of your SQL Anywhere directory. The program looks much
like the static cursor sample with the exception of theconnect,
open_cursor, andprint functions.

Theconnectfunction uses the embedded SQL interface function
db_string_connectto connect to the database. This function provides the
extra functionality to support the connection string that is used to connect to
the database.

Theopen_cursorroutine first builds the SELECT statement

SELECT * FROM tablename

wheretablenameis a parameter passed to the routine. It then prepares a
dynamic SQL statement using this string.

146

Chapter 6. Embedded SQL Programming

The embedded SQL DESCRIBE command is used to fill in the SQLDA
structure the results of the SELECT statement.

Size of the SQLDA
An initial guess is taken for the size of the SQLDA (3). If this is not big
enough, the actual size of the select list returned by the database server is
used to allocate a SQLDA of the correct size.

The SQLDA structure is then filled with buffers to hold strings that
represent the results of the query. Thefill_s_sqlda routine converts all
data types in the SQLDA to DT_STRING and allocates buffers of the
appropriate size.

A cursor is then declared and opened for this statement. The rest of the
routines for moving and closing the cursor remain the same.

Thefetch routine is slightly different: it puts the results into the SQLDA
structure instead of into a list of host variables. Theprint routine has
changed significantly to print results from the SQLDA structure up to the
width of the screen. Theprint routine also uses the name fields of the
SQLDA to print headings for each column.

Service examples

The example programscur.sqcanddcur.sqc, when compiled for a version of
Windows that supports services, run optionally as services.

The two files containing the example code for Windows services are the
source filentsvc.cand the header filentsvc.h. The code allows a linked
executable to be run either as a regular executable or as a Windows service.

❖ To run one of the compiled examples as a Windows service

1. Start Sybase Central.

2. In the left pane, select Adaptive Server Anywhere 9.

3. In the right pane, select the Services tab.

4. From the File menu, choose New➤ Service.

The Service Creation wizard appears.

5. On the first page, enter a name for the service.

6. On the second page, select Sample program.

7. On the third page, browse to the sample program (curwnt.exeor
dcurwnt.exe) from theSamples\ASA\Csubdirectory of your
SQL Anywhere directory.

147

8. Complete the wizard to install the service.

9. Click Start on the main window to start the service.

When run as a service, the programs display the normal user interface if
possible. They also write the output to the Application Event Log. If it is not
possible to start the user interface, the programs print one page of data to the
Application Event Log and stop.

These examples have been tested with the Watcom C/C++ 10.5 compiler and
the Microsoft Visual C++ compiler.

148

Chapter 6. Embedded SQL Programming

Embedded SQL data types
To transfer information between a program and the database server, every
piece of data must have a data type. The embedded SQL data type constants
are prefixed with DT_, and can be found in thesqldef.hheader file. You can
create a host variable of any one of the supported types. You can also use
these types in a SQLDA structure for passing data to and from the database.

You can define variables of these data types using the DECL_ macros listed
in sqlca.h. For example, a variable holding a BIGINT value could be
declared with DECL_BIGINT.

The following data types are supported by the embedded SQL programming
interface:

♦ DT_BIT 8-bit signed integer

♦ DT_SMALLINT 16-bit signed integer.

♦ DT_UNSSMALLINT 16-bit unsigned integer

♦ DT_TINYINT 8-bit signed integer

♦ DT_BIGINT 64-bit signed integer

♦ DT_INT 32-bit signed integer.

♦ DT_UNSINT 16-bit unsigned integer

♦ DT_FLOAT 4-byte floating point number.

♦ DT_DOUBLE 8-byte floating point number.

♦ DT_DECIMAL Packed decimal number.

typedef struct DECIMAL {
char array[1];

} DECIMAL;

♦ DT_STRING NULL-terminated character string. The string is
blank-padded if the database is initialized with blank-padded strings.

♦ DT_DATE NULL-terminated character string that is a valid date.

♦ DT_TIME NULL-terminated character string that is a valid time.

♦ DT_TIMESTAMP NULL-terminated character string that is a valid
timestamp.

♦ DT_FIXCHAR Fixed-length blank padded character string.

149

♦ DT_VARCHAR Varying length character string with a two-byte length
field. When supplying information to the database server, you must set
the length field. When fetching information from the database server, the
server sets the length field (not padded).

typedef struct VARCHAR {
unsigned short int len;
char array[1];

} VARCHAR;

♦ DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

#define DECL_LONGVARCHAR(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size+1]; \

}

The DECL_LONGVARCHAR struct may be used with more than 32K of
data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once, or
in pieces by appending to a database variable using the SET statement.
The data is not null terminated.

☞ For more information, see“Sending and retrieving long values” on
page 190.

♦ DT_BINARY Varying length binary data with a two-byte length field.
When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field.

typedef struct BINARY {
unsigned short int len;
char array[1];

} BINARY;

♦ DT_LONGBINARY Long binary data. The macro defines a structure, as
follows:

#define DECL_LONGBINARY(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size]; \

}

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched all at once, or in pieces using the GET

150

Chapter 6. Embedded SQL Programming

DATA statement. Large data may be supplied to the server all at once, or
in pieces by appending to a database variable using the SET statement.

☞ For more information, see“Sending and retrieving long values” on
page 190.

♦ DT_TIMESTAMP_STRUCT SQLDATETIME structure with fields for
each part of a timestamp.

typedef struct sqldatetime {
unsigned short year; /* e.g. 1999 */
unsigned char month; /* 0-11 */
unsigned char day_of_week; /* 0-6 0=Sunday */
unsigned short day_of_year; /* 0-365 */
unsigned char day; /* 1-31 */
unsigned char hour; /* 0-23 */
unsigned char minute; /* 0-59 */
unsigned char second; /* 0-59 */
unsigned long microsecond; /* 0-999999 */

} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a
programmer to manipulate this data. Note that DATE, TIME, and
TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp
into the database, theday_of_year andday_of_week members are
ignored.

☞ For more information, see the DATE_FORMAT, TIME_FORMAT,
TIMESTAMP_FORMAT, and DATE_ORDER database options in
“Database Options”[ASA Database Administration Guide,page 555].

♦ DT_VARIABLE NULL-terminated character string. The character string
must be the name of a SQL variable whose value is used by the database
server. This data type is used only for supplying data to the database
server. It cannot be used when fetching data from the database server.

The structures are defined in thesqlca.hfile. The VARCHAR, BINARY, and
DECIMAL types contain a one-character array and are thus not useful for
declaring host variables but they are useful for allocating variables
dynamically or typecasting other variables.

DATE and TIME
database types

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are all
fetched and updated using either the SQLDATETIME structure or character
strings.

151

☞ For more information see “GET DATA statement [ESQL]”[ASA SQL
Reference,page 450]and “SET statement”[ASA SQL Reference,page 548].

152

Chapter 6. Embedded SQL Programming

Using host variables
Host variables are C variables that are identified to the SQL preprocessor.
Host variables can be used to send values to the database server or receive
values from the database server.

Host variables are quite easy to use, but they have some restrictions.
Dynamic SQL is a more general way of passing information to and from the
database server using a structure known as the SQL Descriptor Area
(SQLDA). The SQL preprocessor automatically generates a SQLDA for
each statement in which host variables are used.

☞ For information on dynamic SQL, see“Static and dynamic SQL” on
page 176.

Declaring host variables

Host variables are defined by putting them into adeclaration section.
According to the IBM SAA and ANSI embedded SQL standards, host
variables are defined by surrounding the normal C variable declarations with
the following:

EXEC SQL BEGIN DECLARE SECTION;
/* C variable declarations */
EXEC SQL END DECLARE SECTION;

These host variables can then be used in place of value constants in any SQL
statement. When the database server executes the command, the value of the
host variable is used. Note that host variables cannot be used in place of
table or column names: dynamic SQL is required for this. The variable
name is prefixed with a colon (:) in a SQL statement to distinguish it from
other identifiers allowed in the statement.

A standard SQL preprocessor does not scan C language code except inside a
DECLARE SECTION. Thus, TYPEDEF types and structures are not
allowed. Initializers on the variables are allowed inside a
DECLARE SECTION.

Example ♦ The following sample code illustrates the use of host variables on an
INSERT command. The variables are filled in by the program and then
inserted into the database:

153

EXEC SQL BEGIN DECLARE SECTION;
long employee_number;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];
EXEC SQL END DECLARE SECTION;
/* program fills in variables with appropriate values
*/
EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

☞ For a more extensive example, see“Static cursor sample” on
page 145.

C host variable types

Only a limited number of C data types are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in thesqlca.hheader file can be used to declare host
variables of the following types: VARCHAR, FIXCHAR, BINARY,
PACKED DECIMAL, LONG VARCHAR, LONG BINARY, or
SQLDATETIME structure. They are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(10) v_varchar;
DECL_FIXCHAR(10) v_fixchar;
DECL_LONGVARCHAR(32678) v_longvarchar;
DECL_BINARY(4000) v_binary;
DECL_LONGBINARY(128000) v_longbinary;
DECL_DECIMAL(10, 2) v_packed_decimal;
DECL_DATETIME v_datetime;
EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following table lists the C variable types that are allowed for host
variables and their corresponding embedded SQL interface data types.

C Data Type Embedded SQL Inter-

face Type

Description

short i;
short int i;
unsigned short int i;

DT_SMALLINT 16-bit signed integer

154

Chapter 6. Embedded SQL Programming

C Data Type Embedded SQL Inter-

face Type

Description

long l;
long int l;
unsigned long int l;

DT_INT 32-bit signed integer

float f; DT_FLOAT 4-byte floating point

double d; DT_DOUBLE 8-byte floating point

DECL_DECIMAL(p,s) DT_DECIMAL(p,s) Packed decimal

char a; /*n=1*/
DECL_FIXCHAR(n) a;
DECL_FIXCHAR a[n];

DT_FIXCHAR(n) Fixed length char-
acter string blank
padded.

char a[n]; /*n>=1*/ DT_STRING(n) NULL-terminated
string. The string
is blank-padded if
the database is ini-
tialized with blank-
padded strings.

char *a; DT_STRING(32767) NULL-terminated
string

DECL_VARCHAR(n) a; DT_VARCHAR(n) Varying length char-
acter string with
2-byte length field.
Not blank padded

DECL_BINARY(n) a; DT_BINARY(n) Varying length bi-
nary data with 2-
byte length field

DECL_DATETIME a; DT_TIMESTAMP_-
STRUCT

SQLDATETIME
structure

DECL_LONGVARCHAR(n) a;DT_LONGVARCHAR Varying length long
character string with
three 4-byte length
fields. Not blank
padded or NULL
terminated.

155

C Data Type Embedded SQL Inter-

face Type

Description

DECL_LONGBINARY(n) a; DT_LONGBINARY Varying length long
binary data with
three 4-byte length
fields. Not blank
padded.

Pointers to char A host variable declared as apointer to char (char *a) is considered by the
database interface to be 32 767 bytes long. Any host variable of typepointer
to char used to retrieve information from the database must point to a buffer
large enough to hold any value that could possibly come back from the
database.

This is potentially quite dangerous because somebody could change the
definition of the column in the database to be larger than it was when the
program was written. This could cause random memory corruption
problems. If you are using a 16-bit compiler, requiring 32 767 bytes could
make the program stack overflow. It is better to use a declared array, even as
a parameter to a function, where it is passed as apointer to char. This lets
the PREPARE statements know the size of the array.

Scope of host variables A standard host-variable declaration section can appear anywhere that C
variables can normally be declared. This includes the parameter declaration
section of a C function. The C variables have their normal scope (available
within the block in which they are defined). However, since the SQL
preprocessor does not scan C code, it does not respect C blocks.

As far as the SQL preprocessor is concerned, host variables are global; two
host variables cannot have the same name.

Host variable usage

Host variables can be used in the following circumstances:

♦ SELECT, INSERT, UPDATE and DELETE statements in any place
where a number or string constant is allowed.

♦ The INTO clause of SELECT and FETCH statements.

♦ Host variables can also be used in place of a statement name, a cursor
name, or an option name in commands specific to embedded SQL.

♦ For CONNECT, DISCONNECT, and SET CONNECT, a host variable
can be used in place of a user ID, password, connection name, connection
string, or database environment name.

156

Chapter 6. Embedded SQL Programming

♦ For SET OPTION and GET OPTION, a host variable can be used in
place of a user ID, option name, or option value.

♦ Host variables cannot be used in place of a table name or a column name
in any statement.

Examples ♦ The following is valid embedded SQL:

INCLUDE SQLCA;
long SQLCODE;
sub1() {

char SQLSTATE[6];
exec SQL CREATE TABLE ...

}

♦ The following is not valid embedded SQL:

INCLUDE SQLCA;
sub1() {

char SQLSTATE[6];
exec SQL CREATE TABLE...

}
sub2() {

exec SQL DROP TABLE...
// No SQLSTATE in scope of this statement

}

♦ The case of SQLSTATE and SQLCODE is important and the ISO/ANSI
standard requires that their definitions be exactly as follows:

long SQLCODE;
char SQLSTATE[6];

Indicator variables

Indicator variables are C variables that hold supplementary information
when you are fetching or putting data. There are several distinct uses for
indicator variables:

♦ NULL values To enable applications to handle NULL values.

♦ String truncation To enable applications to handle cases when fetched
values must be truncated to fit into host variables.

♦ Conversion errors To hold error information.

An indicator variable is a host variable of typeshort int that is placed
immediately following a regular host variable in a SQL statement. For
example, in the following INSERT statement,:ind_phone is an indicator
variable:

157

EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

Using indicator variables to handle NULL

In SQL data, NULL represents either an unknown attribute or inapplicable
information. The SQL concept of NULL is not to be confused with the C
language constant by the same name (NULL). The C constant is used to
represent a non-initialized or invalid pointer.

When NULL is used in the Adaptive Server Anywhere documentation, it
refers to the SQL database meaning given above. The C language constant is
referred to as thenull pointer (lower case).

NULL is not the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
something extra is required beyond regular host variables.Indicator
variablesare used for this purpose.

Using indicator variables
when inserting NULL

An INSERT statement could include an indicator variable as follows:

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
short int ind_phone;
EXEC SQL END DECLARE SECTION;

/*
program fills in empnum, empname,
initials and homephone
*/
if(/* phone number is unknown */) {

ind_phone = -1;
} else {

ind_phone = 0;
}
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of –1, a NULL is written. If it has a
value of 0, the actual value ofemployee_phoneis written.

Using indicator variables
when fetching NULL

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, an error is generated (SQLE_NO_INDICATOR).

158

Chapter 6. Embedded SQL Programming

Errors are explained in the next section.

Using indicator variables for truncated values

Indicator variables indicate whether any fetched values were truncated to fit
into a host variable. This enables applications to handle truncation
appropriately.

If a value is truncated on fetching, the indicator variable is set to a positive
value, containing the actual length of the database value before truncation. If
the length of the value is greater than 32 767, then the indicator variable
contains 32 767.

Using indicator values for conversion errors

By default, the CONVERSION_ERROR database option is set to ON, and
any data type conversion failure leads to an error, with no row returned.

You can use indicator variables to tell which column produced a data type
conversion failure. If you set the database option CONVERSION_ERROR
to OFF, any data type conversion failure gives a CANNOT_CONVERT
warning, rather than an error. If the column that suffered the conversion
error has an indicator variable, that variable is set to a value of –2.

If you set the CONVERSION_ERROR option to OFF when inserting data
into the database, a value of NULL is inserted when a conversion failure
occurs.

Summary of indicator variable values

The following table provides a summary of indicator variable usage.

Indicator

Value

Supplying Value to

database

Receiving value from database

> 0 Host variable value Retrieved value was truncated — actual
length in indicator variable

0 Host variable value Fetch successful, or CONVERSION_-
ERROR set to ON

–1 NULL value NULL result

–2 NULL value Conversion error (when
CONVERSION_ERROR is set to
OFF only). SQLCODE indicates a
CANNOT_CONVERT warning

< –2 NULL value NULL result

159

☞ For more information on retrieving long values, see “GET DATA
statement [ESQL]”[ASA SQL Reference,page 450].

160

Chapter 6. Embedded SQL Programming

The SQL Communication Area (SQLCA)
TheSQL Communication Area (SQLCA) is an area of memory that is
used on every database request for communicating statistics and errors from
the application to the database server and back to the application. The
SQLCA is used as a handle for the application-to-database communication
link. It is passed in to all database library functions that need to
communicate with the database server. It is implicitly passed on all
embedded SQL statements.

A global SQLCA variable is defined in the interface library. The
preprocessor generates an external reference for the global SQLCA variable
and an external reference for a pointer to it. The external reference is named
sqlcaand is of type SQLCA. The pointer is namedsqlcaptr. The actual
global variable is declared in the imports library.

The SQLCA is defined by thesqlca.hheader file, included in theh
subdirectory of your installation directory.

SQLCA provides error
codes

You reference the SQLCA to test for a particular error code. Thesqlcode
andsqlstatefields contain error codes when a database request has an error
(see below). Some C macros are defined for referencing thesqlcodefield,
thesqlstatefield, and some other fields.

SQLCA fields

The fields in the SQLCA have the following meanings:

♦ sqlcaid An 8-byte character field that contains the stringSQLCA as an
identification of the SQLCA structure. This field helps in debugging
when you are looking at memory contents.

♦ sqlcabc A long integer that contains the length of the SQLCA structure
(136 bytes).

♦ sqlcode A long integer that specifies the error code when the database
detects an error on a request. Definitions for the error codes can be found
in the header filesqlerr.h. The error code is 0 (zero) for a successful
operation, positive for a warning and negative for an error.

☞ For a full listing of error codes, see “Database Error Messages”[ASA
Error Messages,page 1].

♦ sqlerrml The length of the information in thesqlerrmc field.

♦ sqlerrmc Zero or more character strings to be inserted into an error
message. Some error messages contain one or more placeholder strings
(%1, %2, . . .) which are replaced with the strings in this field.

161

For example, if aTable Not Found error is generated,sqlerrmc
contains the table name, which is inserted into the error message at the
appropriate place.

☞ For a full listing of error messages, see “Database Error Messages”
[ASA Error Messages,page 1].

♦ sqlerrp Reserved.

♦ sqlerrd A utility array of long integers.

♦ sqlwarn Reserved.

♦ sqlstate The SQLSTATE status value. The ANSI SQL standard
(SQL-92) defines a new type of return value from a SQL statement in
addition to the SQLCODE value in previous standards. The SQLSTATE
value is always a five-character null-terminated string, divided into a
two-character class (the first two characters) and a three-character
subclass. Each character can be a digit from 0 through 9 or an upper case
alphabetic character A through Z.

Any class or subclass that begins with 0 through 4 or A through H is
defined by the SQL standard; other classes and subclasses are
implementation defined. The SQLSTATE value ‘00000’ means that there
has been no error or warning.

☞ For more SQLSTATE values, see “Database Error Messages”[ASA
Error Messages,page 1].

sqlerror array Thesqlerror field array has the following elements.

♦ sqlerrd[1] (SQLIOCOUNT) The actual number of input/output
operations that were required to complete a command.

The database does not start this number at zero for each command. Your
program can set this variable to zero before executing a sequence of
commands. After the last command, this number is the total number of
input/output operations for the entire command sequence.

♦ sqlerrd[2] (SQLCOUNT) The value of this field depends on which
statement is being executed.
• INSERT, UPDATE, PUT, and DELETE statements The number of

rows that were affected by the statement.
On a cursor OPEN, this field is filled in with either the actual number
of rows in the cursor (a value greater thanor equal to0) or an estimate
thereof (a negative number whose absolute value is the estimate). It is
the actual number of rows if the database server can compute it without
counting the rows. The database can also be configured to always
return the actual number of rows using the ROW_COUNT option.

162

Chapter 6. Embedded SQL Programming

• FETCH cursor statement The SQLCOUNT field is filled if a
SQLE_NOTFOUND warning is returned. It contains the number of
rows by which a FETCH RELATIVE or FETCH ABSOLUTE
statement goes outside the range of possible cursor positions (a cursor
can be on a row, before the first row, or after the last row). In the case
of a wide fetch, SQLCOUNT is the number of rows actually fetched,
and is less than or equal to the number of rows requested. During a
wide fetch, SQLE_NOTFOUND isnot set.
☞ For more information on wide fetches, see“Fetching more than
one row at a time” on page 170.
The value is 0 if the row was not found but the position is valid, for
example, executing FETCH RELATIVE 1 when positioned on the last
row of a cursor. The value is positive if the attempted fetch was beyond
the end of the cursor, and negative if the attempted fetch was before the
beginning of the cursor.

• GET DATA statement The SQLCOUNT field holds the actual length
of the value.

• DESCRIBE statement In the WITH VARIABLE RESULT clause
used to describe procedures that may have more than one result set,
SQLCOUNT is set to one of the following values:

• 0 The result set may change: the procedure call should be
described again following each OPEN statement.

• 1 The result set is fixed. No re-describing is required.

In the case of a syntax error, SQLE_SYNTAX_ERROR, this field
contains the approximate character position within the command string
where the error was detected.

♦ sqlerrd[3] (SQLIOESTIMATE) The estimated number of input/output
operations that are to complete the command. This field is given a value
on an OPEN or EXPLAIN command.

SQLCA management for multi-threaded or reentrant code

You can use embedded SQL statements in multi-threaded or reentrant code.
However, if you use a single connection, you are restricted to one active
request per connection. In a multi-threaded application, you should not use
the same connection to the database on each thread unless you use a
semaphore to control access.

There are no restrictions on using separate connections on each thread that
wishes to use the database. The SQLCA is used by the runtime library to
distinguish between the different thread contexts. Thus, each thread wishing
to use the database must have its own SQLCA.

163

Any given database connection is accessible only from one SQLCA, with
the exception of the cancel instruction, which must be issued from a separate
thread.

☞ For information on canceling requests, see“Implementing request
management” on page 201.

Using multiple SQLCAs

❖ To manage multiple SQLCAs in your application

1. You must use the option on the SQL preprocessor that generates reentrant
code (-r). The reentrant code is a little larger and a little slower because
statically initialized global variables cannot be used. However, these
effects are minimal.

2. Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with a call todb_fini.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail and the NetWare file server to fail.

3. The embedded SQL statement SET SQLCA (“SET SQLCA statement
[ESQL]” [ASA SQL Reference,page 562]) is used to tell the SQL
preprocessor to use a different SQLCA for database requests. Usually, a
statement such as: EXEC SQL SET SQLCA ‘task_data->sqlca’; is used
at the top of your program or in a header file to set the SQLCA reference
to point at task specific data. This statement does not generate any code
and thus has no performance impact. It changes the state within the
preprocessor so that any reference to the SQLCA uses the given string.

☞ For information about creating SQLCAs, see “SET SQLCA statement
[ESQL]” [ASA SQL Reference,page 562].

When to use multiple SQLCAs

You can use the multiple SQLCA support in any of the supported embedded
SQL environments, but it is only required in reentrant code.

The following list details the environments where multiple SQLCAs must be
used:

♦ Multi-threaded applications If more than one thread uses the same
SQLCA, a context option can cause more than one thread to be using the
SQLCA at the same time. Each thread must have its own SQLCA. This

164

Chapter 6. Embedded SQL Programming

can also happen when you have a DLL that uses embedded SQL and is
called by more than one thread in your application.

♦ Dynamic link libraries and shared libraries A DLL has only one data
segment. While the database server is processing a request from one
application, it may yield to another application that makes a request to the
database server. If your DLL uses the global SQLCA, both applications
are using it at the same time. Each Windows application must have its
own SQLCA.

♦ A DLL with one data segment A DLL can be created with only one
data segment or one data segment for each application. If your DLL has
only one data segment, you cannot use the global SQLCA for the same
reason that a DLL cannot use the global SQLCA. Each application must
have its own SQLCA.

Connection management with multiple SQLCAs

You do not need to use multiple SQLCAs to connect to more than one
database or have more than one connection to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an
active or current connection (see “SET CONNECTION statement
[Interactive SQL] [ESQL]”[ASA SQL Reference,page 553]). All operations on
a given database connection must use the same SQLCA that was used when
the connection was established.

Record locking
Operations on different connections are subject to the normal record
locking mechanisms and may cause each other to block and possibly to
deadlock. For information on locking, see the chapter “Using Transactions
and Isolation Levels”[ASA SQL User’s Guide,page 99].

165

Fetching data
Fetching data in embedded SQL is done using the SELECT statement.
There are two cases:

♦ The SELECT statement returns at most one row Use an INTO clause
to assign the returned values directly to host variables.

☞ For information, see“SELECT statements that return at most one
row” on page 166.

♦ The SELECT statement may return multiple rows Use cursors to
manage the rows of the result set.

☞ For more information, see“Using cursors in embedded SQL” on
page 167.

☞ LONG VARCHAR and LONG BINARY data types are handled
differently to other data types. For more information, see“Retrieving LONG
data” on page 191.

SELECT statements that return at most one row

A single row query retrieves at most one row from the database. A
single-row query SELECT statement has an INTO clause following the
select list and before the FROM clause. The INTO clause contains a list of
host variables to receive the value for each select list item. There must be the
same number of host variables as there are select list items. The host
variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables. If the query results contain
more than one row, the database server returns an error.

If the query results in no rows being selected, aRow Not Found warning is
returned. Errors and warnings are returned in the SQLCA structure, as
described in“The SQL Communication Area (SQLCA)” on page 161.

Example For example, the following code fragment returns 1 if a row from the
employee table is fetched successfully, 0 if the row doesn’t exist, and –1 if
an error occurs.

166

Chapter 6. Embedded SQL Programming

EXEC SQL BEGIN DECLARE SECTION;
long emp_id;
char name[41];
char sex;
char birthdate[15];
short int ind_birthdate;

EXEC SQL END DECLARE SECTION;
. . .
int find_employee(long employee)
{

emp_id = employee;
EXEC SQL SELECT emp_fname ||

’ ’ || emp_lname, sex, birth_date
INTO :name, :sex,

:birthdate:ind_birthdate
FROM "DBA".employee
WHERE emp_id = :emp_id;

if(SQLCODE == SQLE_NOTFOUND) {
return(0); /* employee not found */

} else if(SQLCODE < 0) {
return(-1); /* error */

} else {
return(1); /* found */

}
}

Using cursors in embedded SQL

A cursor is used to retrieve rows from a query that has multiple rows in its
result set. Acursor is a handle or an identifier for the SQL query and a
position within the result set.

☞ For an introduction to cursors, see“Working with cursors” on page 21.

❖ To manage a cursor in embedded SQL

1. Declare a cursor for a particular SELECT statement, using the
DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Retrieve results one row at a time from the cursor using the FETCH
statement.

4. Fetch rows until theRow Not Found warning is returned.

Errors and warnings are returned in the SQLCA structure, described in
“The SQL Communication Area (SQLCA)” on page 161.

5. Close the cursor, using the CLOSE statement.

167

By default, cursors are automatically closed at the end of a transaction (on
COMMIT or ROLLBACK). Cursors that are opened with a WITH HOLD
clause are kept open for subsequent transactions until they are explicitly
closed.

The following is a simple example of cursor usage:

void print_employees(void)
{

EXEC SQL BEGIN DECLARE SECTION;
char name[50];
char sex;
char birthdate[15];
short int ind_birthdate;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE C1 CURSOR FOR

SELECT emp_fname || ’ ’ || emp_lname,
sex, birth_date

FROM "DBA".employee;
EXEC SQL OPEN C1;
for(;;) {

EXEC SQL FETCH C1 INTO :name, :sex,
:birthdate:ind_birthdate;

if(SQLCODE == SQLE_NOTFOUND) {
break;

} else if(SQLCODE < 0) {
break;

}
if(ind_birthdate < 0) {

strcpy(birthdate, "UNKNOWN");
}
printf("Name: %s Sex: %c Birthdate:

%s.n",name, sex, birthdate);
}

EXEC SQL CLOSE C1;
}

☞ For complete examples using cursors, see“Static cursor sample” on
page 145and“Dynamic cursor sample” on page 146.

Cursor positioning A cursor is positioned in one of three places:

♦ On a row

♦ Before the first row

♦ After the last row

168

Chapter 6. Embedded SQL Programming

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0
After last row

Before first row

Absolute row

from start

Absolute row

from end

When a cursor is opened, it is positioned before the first row. The cursor
position can be moved using the FETCH command (see “FETCH statement
[ESQL] [SP]” [ASA SQL Reference,page 436]). It can be positioned to an
absolute position either from the start or from the end of the query results. It
can also be moved relative to the current cursor position.

There are specialpositionedversions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, aNo Current Row of Cursor error is returned.

The PUT statement can be used to insert a row into a cursor.

Cursor positioning
problems

Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database server does not put inserted
rows at a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occurs if a temporary table had to be
created to open the cursor.

169

☞ For a description, see “Use of work tables in query processing”[ASA
SQL User’s Guide,page 185].

The UPDATE statement may cause a row to move in the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing index
(a temporary table is not created).

Fetching more than one row at a time

The FETCH statement can be modified to fetch more than one row at a time,
which may improve performance. This is called awide fetchor anarray
fetch.

☞ Adaptive Server Anywhere also supports wide puts and inserts. For
information on these, see “PUT statement [ESQL]”[ASA SQL Reference,
page 513]and “EXECUTE statement [ESQL]”[ASA SQL Reference,page 425].

To use wide fetches in embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAYnnn is the last item of the FETCH statement. The fetch
countnnn can be a host variable. The number of variables in the SQLDA
must be the product ofnnn and the number of columns per row. The first
row is placed in SQLDA variables 0 to (columns per row) – 1, and so on.

Each column must be of the same type in each row of the SQLDA, or a
SQLDA_INCONSISTENT error is returned.

The server returns in SQLCOUNT the number of records that were fetched,
which is always greater than zero unless there is an error or warning. On a
wide fetch, a SQLCOUNT of one with no error condition indicates that one
valid row has been fetched.

Example The following example code illustrates the use of wide fetches. You can also
find this code assamples\ASA\esqlwidefetch\widefetch.sqcin your
SQL Anywhere directory.

170

Chapter 6. Embedded SQL Programming

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqldef.h"
EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR { PrintSQLError();
goto err; };

static void PrintSQLError()
/*************************/
{

char buffer[200];

printf("SQL error %d -- %s \n",
SQLCODE,
sqlerror_message(&sqlca,

buffer,
sizeof(buffer)));

}

static SQLDA * PrepareSQLDA(
a_sql_statement_number stat0,
unsigned width,
unsigned *cols_per_row)

/***/
/* Allocate a SQLDA to be used for fetching from

the statement identified by "stat0". "width"
rows will be retrieved on each FETCH request.
The number of columns per row is assigned to
"cols_per_row". */

{
int num_cols;
unsigned row, col, offset;
SQLDA * sqlda;
EXEC SQL BEGIN DECLARE SECTION;
a_sql_statement_number stat;
EXEC SQL END DECLARE SECTION;

stat = stat0;
sqlda = alloc_sqlda(100);
if(sqlda == NULL) return(NULL);
EXEC SQL DESCRIBE :stat INTO sqlda;
*cols_per_row = num_cols = sqlda->sqld;
if(num_cols * width > sqlda->sqln) {

free_sqlda(sqlda);
sqlda = alloc_sqlda(num_cols * width);
if(sqlda == NULL) return(NULL);
EXEC SQL DESCRIBE :stat INTO sqlda;

}

171

// copy first row in SQLDA setup by describe
// to following (wide) rows
sqlda->sqld = num_cols * width;
offset = num_cols;
for(row = 1; row < width; row++) {

for(col = 0;
col < num_cols;

col++, offset++) {
sqlda->sqlvar[offset].sqltype =

sqlda->sqlvar[col].sqltype;
sqlda->sqlvar[offset].sqllen =

sqlda->sqlvar[col].sqllen;
// optional: copy described column name

memcpy(&sqlda->sqlvar[offset].sqlname,
&sqlda->sqlvar[col].sqlname,
sizeof(sqlda->sqlvar[0].sqlname));

}
}
fill_s_sqlda(sqlda, 40);
return(sqlda);

err:
return(NULL);

}

static void PrintFetchedRows(SQLDA * sqlda,
unsigned cols_per_row)

/**/
/* Print rows already wide fetched in the SQLDA */
{

long rows_fetched;
int row, col, offset;

if(SQLCOUNT == 0) {
rows_fetched = 1;

} else {
rows_fetched = SQLCOUNT;

}
printf("Fetched %d Rows: \n", rows_fetched);
for(row = 0; row < rows_fetched; row++) {

for(col = 0; col < cols_per_row; col++) {
offset = row * cols_per_row + col;
printf(" \"%s\"",

(char *)sqlda->sqlvar[offset]
.sqldata);

}
printf(" \n");

}
}

172

Chapter 6. Embedded SQL Programming

static int DoQuery(char * query_str0,
unsigned fetch_width0)

/***/
/* Wide Fetch "query_str0" select statement

* using a width of "fetch_width0" rows" */
{

SQLDA * sqlda;
unsigned cols_per_row;
EXEC SQL BEGIN DECLARE SECTION;
a_sql_statement_number stat;
char * query_str;
unsigned fetch_width;
EXEC SQL END DECLARE SECTION;

query_str = query_str0;
fetch_width = fetch_width0;

EXEC SQL PREPARE :stat FROM :query_str;
EXEC SQL DECLARE QCURSOR CURSOR FOR :stat

FOR READ ONLY;
EXEC SQL OPEN QCURSOR;
sqlda = PrepareSQLDA(stat,

fetch_width,
&cols_per_row);

if(sqlda == NULL) {
printf("Error allocating SQLDA \n");
return(SQLE_NO_MEMORY);

}

for(;;) {
EXEC SQL FETCH QCURSOR INTO DESCRIPTOR sqlda

ARRAY :fetch_width;
if(SQLCODE != SQLE_NOERROR) break;

PrintFetchedRows(sqlda, cols_per_row);
}
EXEC SQL CLOSE QCURSOR;
EXEC SQL DROP STATEMENT :stat;
free_filled_sqlda(sqlda);

err:
return(SQLCODE);

}

173

void main(int argc, char *argv[])
/*********************************/
/* Optional first argument is a select statement,

* optional second argument is the fetch width */
{

char *query_str =
"select emp_fname, emp_lname from employee";

unsigned fetch_width = 10;

if(argc > 1) {
query_str = argv[1];
if(argc > 2) {

fetch_width = atoi(argv[2]);
if(fetch_width < 2) {

fetch_width = 2;
}

}
}
db_init(&sqlca);
EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";

DoQuery(query_str, fetch_width);

EXEC SQL DISCONNECT;
err:

db_fini(&sqlca);
}

Notes on using wide
fetches

♦ In the functionPrepareSQLDA, the SQLDA memory is allocated using
thealloc_sqldafunction. This allows space for indicator variables, rather
than using thealloc_sqlda_noindfunction.

♦ If the number of rows fetched is fewer than the number requested, but is
not zero (at the end of the cursor for example), the SQLDA items
corresponding to the rows that were not fetched are returned as NULL by
setting the indicator value. If no indicator variables are present, an error
is generated (SQLE_NO_INDICATOR: no indicator variable for NULL
result).

♦ If a row being fetched has been updated, generating a
SQLE_ROW_UPDATED_WARNING warning, the fetch stops on the
row that caused the warning. The values for all rows processed to that
point (including the row that caused the warning) are returned.
SQLCOUNT contains the number of rows that were fetched, including
the row that caused the warning. All remaining SQLDA items are marked
as NULL.

♦ If a row being fetched has been deleted or is locked, generating an
SQLE_NO_CURRENT_ROW or SQLE_LOCKED error, SQLCOUNT
contains the number of rows that were read prior to the error. This does

174

Chapter 6. Embedded SQL Programming

not include the row that caused the error. The SQLDA does not contain
values for any of the rows since SQLDA values are not returned on
errors. The SQLCOUNT value can be used to reposition the cursor, if
necessary, to read the rows.

175

Static and dynamic SQL
There are two ways to embed SQL statements into a C program:

♦ Static statements

♦ Dynamic statements

Until now, we have been discussing static SQL. This section compares static
and dynamic SQL.

Static SQL statements

All standard SQL data manipulation and data definition statements can be
embedded in a C program by prefixing them with EXEC SQL and suffixing
the command with a semicolon (;). These statements are referred to asstatic
statements.

Static statements can contain references to host variables, as described in
“Using host variables” on page 153. All examples to this point have used
static embedded SQL statements.

Host variables can only be used in place of string or numeric constants.
They cannot be used to substitute column names or table names; dynamic
statements are required to perform those operations.

Dynamic SQL statements

In the C language, strings are stored in arrays of characters. Dynamic
statements are constructed in C language strings. These statements can then
be executed using the PREPARE and EXECUTE statements. These SQL
statements cannot reference host variables in the same manner as static
statements since the C language variables are not accessible by name when
the C program is executing.

To pass information between the statements and the C language variables, a
data structure called theSQL Descriptor Area (SQLDA) is used. This
structure is set up for you by the SQL preprocessor if you specify a list of
host variables on the EXECUTE command in the USING clause. These
variables correspond by position to place holders in the appropriate positions
of the prepared command string.

☞ For information on the SQLDA, see“The SQL descriptor area
(SQLDA)” on page 181.

A place holder is put in the statement to indicate where host variables are to
be accessed. A place holder is either a question mark (?) or a host variable
reference as in static statements (a host variable name preceded by a colon).

176

Chapter 6. Embedded SQL Programming

In the latter case, the host variable name used in the actual text of the
statement serves only as a place holder indicating a reference to the SQL
descriptor area.

A host variable used to pass information to the database is called abind
variable.

Example For example:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
char address[30];
char city[20];
short int cityind;
long empnum;

EXEC SQL END DECLARE SECTION;
. . .

sprintf(comm, "update %s set address = :?,
city = :?"

" where employee_number = :?",
tablename);

EXEC SQL PREPARE S1 FROM :comm;
EXEC SQL EXECUTE S1 USING :address, :city:cityind, :empnum;

This method requires the programmer to know how many host variables
there are in the statement. Usually, this is not the case. So, you can set up
your own SQLDA structure and specify this SQLDA in the USING clause
on the EXECUTE command.

The DESCRIBE BIND VARIABLES statement returns the host variable
names of the bind variables that are found in a prepared statement. This
makes it easier for a C program to manage the host variables. The general
method is as follows:

177

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];

EXEC SQL END DECLARE SECTION;
. . .
sprintf(comm, "update %s set address = :address,

city = :city"
" where employee_number = :empnum",
tablename);

EXEC SQL PREPARE S1 FROM :comm;
/* Assume that there are no more than 10 host variables. See

next example if you can’t put
a limit on it */
sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE BIND VARIABLES FOR S1 USING DESCRIPTOR sqlda;
/* sqlda->sqld will tell you how many host variables there were.

*/
/* Fill in SQLDA_VARIABLE fields with values based on
name fields in sqlda */
. . .
EXEC SQL EXECUTE S1 USING DESCRIPTOR sqlda;
free_sqlda(sqlda);

SQLDA contents The SQLDA consists of an array of variable descriptors. Each descriptor
describes the attributes of the corresponding C program variable or the
location that the database stores data into or retrieves data from:

♦ data type

♦ length if type is a string type

♦ precision and scale iftype is a numeric type

♦ memory address

♦ indicator variable

☞ For a complete description of the SQLDA structure, see“The SQL
descriptor area (SQLDA)” on page 181

Indicator variables and
NULL

The indicator variable is used to pass a NULL value to the database or
retrieve a NULL value from the database. The indicator variable is also used
by the database server to indicate truncation conditions encountered during a
database operation. The indicator variable is set to a positive value when not
enough space was provided to receive a database value.

☞ For more information, see“Indicator variables” on page 157.

Dynamic SELECT statement

A SELECT statement that returns only a single row can be prepared
dynamically, followed by an EXECUTE with an INTO clause to retrieve the

178

Chapter 6. Embedded SQL Programming

one-row result. SELECT statements that return multiple rows, however, are
managed using dynamic cursors.

With dynamic cursors, results are put into a host variable list or a SQLDA
that is specified on the FETCH statement (FETCH INTO and
FETCH USING DESCRIPTOR). Since the number of select list items is
usually unknown to the C programmer, the SQLDA route is the most
common. The DESCRIBE SELECT LIST statement sets up a SQLDA with
the types of the select list items. Space is then allocated for the values using
thefill_sqlda() function, and the information is retrieved by the
FETCH USING DESCRIPTOR statement.

The typical scenario is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];

EXEC SQL END DECLARE SECTION;
int actual_size;
SQLDA * sqlda;

. . .
sprintf(comm, "select * from %s", table_name);
EXEC SQL PREPARE S1 FROM :comm;
/* Initial guess of 10 columns in result. If it is

wrong, it is corrected right after the first
DESCRIBE by reallocating sqlda and doing DESCRIBE again.

*/
sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE SELECT LIST FOR S1 USING DESCRIPTOR sqlda;
if(sqlda->sqld > sqlda->sqln){

actual_size = sqlda->sqld;
free_sqlda(sqlda);
sqlda = alloc_sqlda(actual_size);
EXEC SQL DESCRIBE SELECT LIST FOR S1

USING DESCRIPTOR sqlda;
}
fill_sqlda(sqlda);
EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
EXEC SQL WHENEVER NOTFOUND {break};
for(;;){

EXEC SQL FETCH C1 USING DESCRIPTOR sqlda;
/* do something with data */

}
EXEC SQL CLOSE C1;
EXEC SQL DROP STATEMENT S1;

Drop statements after use
To avoid consuming unnecessary resources, ensure that statements are
dropped after use.

179

☞ For a complete example using cursors for a dynamic select statement,
see“Dynamic cursor sample” on page 146.

☞ For details of the functions mentioned above, see“Library function
reference” on page 207.

180

Chapter 6. Embedded SQL Programming

The SQL descriptor area (SQLDA)
The SQLDA (SQL Descriptor Area) is an interface structure that is used for
dynamic SQL statements. The structure passes information regarding host
variables and SELECT statement results to and from the database. The
SQLDA is defined in the header filesqlda.h.

☞ There are functions in the database interface library or DLL that you can
use to manage SQLDAs. For descriptions, see“Library function reference”
on page 207.

When host variables are used with static SQL statements, the preprocessor
constructs a SQLDA for those host variables. It is this SQLDA that is
actually passed to and from the database server.

The SQLDA header file

The contents ofsqlda.hare as follows:

#ifndef _SQLDA_H_INCLUDED
#define _SQLDA_H_INCLUDED
#define II_SQLDA

#include "sqlca.h"

#if defined(_SQL_PACK_STRUCTURES)
#include "pshpk1.h"
#endif

#define SQL_MAX_NAME_LEN 30

#define _sqldafar
typedef short int a_SQL_type;
struct sqlname {

short int length; /* length of char data */
char data[SQL_MAX_NAME_LEN]; /* data */

};

struct sqlvar { /* array of variable descriptors */
short int sqltype; /* type of host variable */
short int sqllen; /* length of host variable */
void *sqldata; /* address of variable */
short int *sqlind; /* indicator variable pointer */
struct sqlname sqlname;

};

181

struct sqlda{
unsigned char sqldaid[8]; /* eye catcher "SQLDA"*/
a_SQL_int32 sqldabc; /* length of sqlda structure*/
short int sqln;

/* descriptor size in number of entries */
short int sqld;

/* number of variables found by DESCRIBE*/
struct sqlvar sqlvar[1];

/* array of variable descriptors */
};

#define SCALE(sqllen) ((sqllen)/256)
#define PRECISION(sqllen) ((sqllen)&0xff)
#define SET_PRECISION_SCALE(sqllen,precision,scale) \

sqllen = (scale)*256 + (precision)
#define DECIMALSTORAGE(sqllen) (PRECISION(sqllen)/2 + 1)

typedef struct sqlda SQLDA;
typedef struct sqlvar SQLVAR, SQLDA_VARIABLE;
typedef struct sqlname SQLNAME, SQLDA_NAME;

#ifndef SQLDASIZE
#define SQLDASIZE(n) (sizeof(struct sqlda) + \

(n-1) * sizeof(struct sqlvar))
#endif
#if defined(_SQL_PACK_STRUCTURES)
#include "poppk.h"
#endif
#endif

SQLDA fields

The SQLDA fields have the following meanings:

Field Description

sqldaid An 8-byte character field that contains the stringSQLDA as
an identification of the SQLDA structure. This field helps in
debugging when you are looking at memory contents.

sqldabc A long integer containing the length of the SQLDA struc-
ture.

sqln The number of variable descriptors in thesqlvar array.

sqld The number of variable descriptors which are valid (con-
tain information describing a host variable). This field is
set by the DESCRIBE statement and sometimes by the
programmer when supplying data to the database server.

sqlvar An array of descriptors of typestruct sqlvar, each describ-
ing a host variable.

182

Chapter 6. Embedded SQL Programming

SQLDA host variable descriptions

Eachsqlvar structure in the SQLDA describes a host variable. The fields of
thesqlvar structure have the following meanings:

♦ sqltype The type of the variable that is described by this descriptor (see
“Embedded SQL data types” on page 149).

The low order bit indicates whether NULL values are allowed. Valid
types and constant definitions can be found in thesqldef.hheader file.

This field is filled by the DESCRIBE statement. You can set this field to
any type when supplying data to the database server or retrieving data
from the database server. Any necessary type conversion is done
automatically.

♦ sqllen The length of the variable. What the length actually means
depends upon the type information and how the SQLDA is being used.

For DECIMAL types, this field is divided into two 1-byte fields. The high
byte is the precision and the low byte is the scale. The precision is the
total number of digits. The scale is the number of digits that appear after
the decimal point.

For LONG VARCHAR and LONG BINARY data types, thearray_len
field of the DT_LONGBINARY and DT_LONGVARCHAR data type
structure is used instead of thesqllenfield.

☞ For more information on the length field, see“SQLDA sqllen field
values” on page 184.

♦ sqldata A four-byte pointer to the memory occupied by this variable.
This memory must correspond to thesqltypeandsqllenfields.

☞ For storage formats, see“Embedded SQL data types” on page 149.

For UPDATE and INSERT commands, this variable is not involved in the
operation if thesqldatapointer is a null pointer. For a FETCH, no data is
returned if thesqldatapointer is a null pointer. In other words, the
column returned by thesqldatapointer is anunbound column.

If the DESCRIBE statement uses LONG NAMES, this field holds the
long name of the result set column. If, in addition, the DESCRIBE
statement is a DESCRIBE USER TYPES statement, then this field holds
the long name of the user-defined data type, instead of the column. If the
type is a base type, the field is empty.

♦ sqlind A pointer to the indicator value. An indicator value is ashort
int . A negative indicator value indicates a NULL value. A positive
indicator value indicates that this variable has been truncated by a

183

FETCH statement, and the indicator value contains the length of the data
before truncation. A value of –2 indicates a conversion error if the
CONVERSION_ERROR database option is set to OFF.

☞ For more information, see“Indicator variables” on page 157.

If the sqlind pointer is the null pointer, no indicator variable pertains to
this host variable.

Thesqlind field is also used by the DESCRIBE statement to indicate
parameter types. If the type is a user-defined data type, this field is set to
DT_HAS_USERTYPE_INFO. In such a case, you may wish to carry out
a DESCRIBE USER TYPES to obtain information on the user-defined
data types.

♦ sqlname A VARCHAR-like structure, as follows:

struct sqlname {
short int length;
char data[SQL_MAX_NAME_LEN];

};

It is filled by a DESCRIBE statement and is not otherwise used. This field
has a different meaning for the two formats of the DESCRIBE statement:

• SELECT LIST The name buffer is filled with the column heading of
the corresponding item in the select list.

• BIND VARIABLES The name buffer is filled with the name of the
host variable that was used as a bind variable, or “?” if an unnamed
parameter marker is used.

On a DESCRIBE SELECT LIST command, any indicator variables
present are filled with a flag indicating whether the select list item is
updatable or not. More information on this flag can be found in the
sqldef.hheader file.

If the DESCRIBE statement is a DESCRIBE USER TYPES statement,
then this field holds the long name of the user-defined data type instead of
the column. If the type is a base type, the field is empty.

SQLDA sqllen field values

Thesqllenfield length of thesqlvar structure in a SQLDA is used in the
following kinds of interactions with the database server:

♦ describing values The DESCRIBE statement gets information about
the host variables required to store data retrieved from the database, or
host variables required to pass data to the database.

☞ See“Describing values” on page 185.

184

Chapter 6. Embedded SQL Programming

♦ retrieving values Retrieving values from the database.

☞ See“Retrieving values” on page 187.

♦ sending values Sending information to the database.

☞ See“Sending values” on page 186.

♦ These interactions are described in this section.

The following tables detail each of these interactions. These tables list the
interface constant types (theDT_ types) found in thesqldef.hheader file.
These constants would be placed in the SQLDAsqltypefield.

☞ For information aboutsqltypefield values, see“Embedded SQL data
types” on page 149.

In static SQL, a SQLDA is still used but it is generated and completely filled
in by the SQL preprocessor. In this static case, the tables give the
correspondence between the static C language host variable types and the
interface constants.

Describing values

The following table indicates the values of thesqllenandsqltypestructure
members returned by the DESCRIBE command for the various database
types (both SELECT LIST and BIND VARIABLE DESCRIBE statements).
In the case of a user-defined database data type, the base type is described.

Your program can use the types and lengths returned from a DESCRIBE, or
you may use another type. The database server performs type conversions
between any two types. The memory pointed to by thesqldatafield must
correspond to thesqltypeandsqllenfields.

☞ For information on embedded SQL data types, see“Embedded SQL
data types” on page 149.

Database field type Embedded SQL type

returned

Length returned on

describe

BIGINT DT_BIGINT 8

BINARY(n) DT_BINARY n

BIT DT_BIT 1

CHAR(n) DT_FIXCHAR n

DATE DT_DATE length of longest for-
matted string

185

Database field type Embedded SQL type

returned

Length returned on

describe

DECIMAL(p,s) DT_DECIMAL high byte of length field
in SQLDA set to p, and
low byte set to s

DOUBLE DT_DOUBLE 8

FLOAT DT_FLOAT 4

INT DT_INT 4

LONG BINARY DT_LONGBINARY 32767

LONG VARCHAR DT_LONGVARCHAR 32767

REAL DT_FLOAT 4

SMALLINT DT_SMALLINT 2

TIME DT_TIME length of longest for-
matted string

TIMESTAMP DT_TIMESTAMP length of longest for-
matted string

TINYINT DT_TINYINT 1

UNSIGNED BIGINT DT_UNSBIGINT 8

UNSIGNED INT DT_UNSINT 4

UNSIGNED SMALL-
INT

DT_UNSSMALLINT 2

VARCHAR(n) DT_VARCHAR n

Sending values

The following table indicates how you specify lengths of values when you
supply data to the database server in the SQLDA.

Only the data types displayed in the table are allowed in this case. The
DT_DATE, DT_TIME, and DT_TIMESTAMP types are treated the same as
DT_STRING when supplying information to the database; the value must be
a NULL-terminated character string in an appropriate date format.

Embedded SQL Data Type Program action to set the length

DT_BIGINT No action required

186

Chapter 6. Embedded SQL Programming

Embedded SQL Data Type Program action to set the length

DT_BINARY(n) Length taken from field in BINARY struc-
ture

DT_BIT No action required

DT_DATE Length determined by terminating \0

DT_DECIMAL(p,s) high byte of length field in SQLDA set to
p, and low byte set to s

DT_DOUBLE No action required

DT_FIXCHAR(n) Length field in SQLDA determines length
of string

DT_FLOAT No action required

DT_INT No action required

DT_LONGBINARY Length field ignored. See“Sending LONG
data” on page 193

DT_LONGVARCHAR Length field ignored. See“Sending LONG
data” on page 193

DT_SMALLINT No action required

DT_STRING Length determined by terminating \0

DT_TIME Length determined by terminating \0

DT_TIMESTAMP Length determined by terminating \0

DT_TIMESTAMP_STRUCT No action required

DT_UNSBIGINT No action required

DT_UNSINT No action required

DT_UNSSMALLINT No action required

DT_VARCHAR(n) Length taken from field in VARCHAR
structure

DT_VARIABLE Length determined by terminating \0

Retrieving values

The following table indicates the values of the length field when you retrieve
data from the database using a SQLDA. Thesqllenfield is never modified

187

when you retrieve data.

Only the interface data types displayed in the table are allowed in this case.
The DT_DATE, DT_TIME, and DT_TIMESTAMP data types are treated
the same as DT_STRING when you retrieve information from the database.
The value is formatted as a character string in the current date format.

Embedded SQL Data

Type

What the program must

set length field to when

receiving

How the database re-

turns length informa-

tion after fetching a

value

DT_BIGINT No action required No action required

DT_BINARY(n) Maximum length of BI-
NARY structure (n+2)

len field of BINARY
structure set to actual
length

DT_BIT No action required No action required

DT_DATE Length of buffer \0 at end of string

DT_DECIMAL(p,s) High byte set to p and
low byte set to s

No action required

DT_DOUBLE No action required No action required

DT_FIXCHAR(n) Length of buffer Padded with blanks to
length of buffer

DT_FLOAT No action required No action required

DT_INT No action required No action required

DT_LONGBINARY Length field ignored.
See“Retrieving LONG
data” on page 191

Length field ignored.
See“Retrieving LONG
data” on page 191

DT_-
LONGVARCHAR

Length field ignored.
See“Retrieving LONG
data” on page 191

Length field ignored.
See“Retrieving LONG
data” on page 191

DT_SMALLINT No action required No action required

DT_STRING Length of buffer \0 at end of string

DT_TIME Length of buffer \0 at end of string

DT_TIMESTAMP Length of buffer \0 at end of string

DT_TIMESTAMP_
STRUCT

No action required No action required

188

Chapter 6. Embedded SQL Programming

Embedded SQL Data

Type

What the program must

set length field to when

receiving

How the database re-

turns length informa-

tion after fetching a

value

DT_UNSBIGINT No action required No action required

DT_UNSINT No action required No action required

DT_UNSSMALLINT No action required No action required

DT_VARCHAR(n) Maximum length of
VARCHAR structure
(n+2)

len field of VARCHAR
structure set to actual
length

189

Sending and retrieving long values
The method for sending and retrieving LONG VARCHAR and LONG
BINARY values in embedded SQL applications is different from that for
other data types. Although the standard SQLDA fields can be used, they are
limited to 32 kb data as the fields holding the information (sqldata, sqllen,
sqlind) are 16-bit values. Changing these values to 32-bit values would
break existing applications.

The method of describing LONG VARCHAR and LONG BINARY values is
the same as for other data types.

☞ For information about how to retrieve and send values, see“Retrieving
LONG data” on page 191, and“Sending LONG data” on page 193.

Static SQL usage Separate structures are used to hold the allocated, stored, and untruncated
lengths of LONG BINARY and LONG VARCHAR data types. The static
SQL data types are defined insqlca.has follows:

#define DECL_LONGVARCHAR(size) \
struct { a_sql_uint32 array_len; \

a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size+1]; \

}
#define DECL_LONGBINARY(size) \

struct { a_sql_uint32 array_len; \
a_sql_uint32 stored_len; \
a_sql_uint32 untrunc_len; \
char array[size]; \

}

Dynamic SQL usage For dynamic SQL, set thesqltypefield to DT_LONGVARCHAR or
DT_LONGBINARY as appropriate. The associated LONGBINARY and
LONGVARCHAR structures are as follows:

typedef struct LONGVARCHAR {
a_sql_uint32 array_len;

/* number of allocated bytes in array */
a_sql_uint32 stored_len;

/* number of bytes stored in array
* (never larger than array_len)
*/

a_sql_uint32 untrunc_len;
/* number of bytes in untruncated expression

* (may be larger than array_len)
*/

char array[1]; /* the data */
} LONGVARCHAR, LONGBINARY;

☞ For information about how to implement this feature in your

190

Chapter 6. Embedded SQL Programming

applications, see“Retrieving LONG data” on page 191, and“Sending
LONG data” on page 193.

Retrieving LONG data

This section describes how to retrieve LONG values from the database. For
background information, see“Sending and retrieving long values” on
page 190.

The procedures are different depending on whether you are using static or
dynamic SQL.

❖ To receive a LONG VARCHAR or LONG BINARY value (static SQL)

1. Declare a host variable of type DECL_LONGVARCHAR or
DECL_LONGBINARY, as appropriate.

2. Retrieve the data using FETCH, GET DATA, or EXECUTE INTO.
Adaptive Server Anywhere sets the following information:

♦ indicator variable The indicator variable is negative if the value is
NULL, 0 if there is no truncation, and is the positive untruncated
length in bytes up to a maximum of 32767.

☞ For more information, see“Indicator variables” on page 157.

♦ stored_len This DECL_LONGVARCHAR or
DECL_LONGBINARY field holds the number of bytes retrieved into
the array. It is never greater thanarray_len.

♦ untrunc_len This DECL_LONGVARCHAR or
DECL_LONGBINARY field holds the number of bytes held by the
database server. It is at least equal to thestored_lenvalue. It is set
even if the value is not truncated.

❖ To receive a value into a LONGVARCHAR or LONGBINARY struc-
ture (dynamic SQL)

1. Set thesqltypefield to DT_LONGVARCHAR or DT_LONGBINARY as
appropriate.

2. Set thesqldatafield to point to the LONGVARCHAR or
LONGBINARY structure.

You can use theLONGVARCHARSIZE(n)or LONGBINARYSIZE(n)

macros to determine the total number of bytes to allocate to holdn bytes
of data in the array field.

3. Set thearray_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes allocated for the array field.

191

4. Retrieve the data using FETCH, GET DATA, or EXECUTE INTO.
Adaptive Server Anywhere sets the following information:

♦ * sqlind Thissqldafield is negative if the value is NULL, 0 if there is
no truncation, and is the positive untruncated length in bytes up to a
maximum of 32767.

♦ stored_len This LONGVARCHAR or LONGBINARY field holds
the number of bytes retrieved into the array. It is never greater than
array_len.

♦ untrunc_len This LONGVARCHAR or LONGBINARY field holds
the number of bytes held by the database server. It is at least equal to
the stored_len value. It is set even if the value is not truncated.

The following code snippet illustrates the mechanics of retrieving LONG
VARCHAR data using dynamic embedded SQL. It is not intended to be a
practical application:

192

Chapter 6. Embedded SQL Programming

#define DATA_LEN 128000
void get_test_var()
/*****************/
{

LONGVARCHAR *longptr;
SQLDA *sqlda;
SQLVAR *sqlvar;

sqlda = alloc_sqlda(1);
longptr = (LONGVARCHAR *)malloc(

LONGVARCHARSIZE(DATA_LEN));
if(sqlda == NULL || longptr == NULL) {

fatal_error("Allocation failed");
}

// init longptr for receiving data
longptr->array_len = DATA_LEN;

// init sqlda for receiving data
// (sqllen is unused with DT_LONG types)
sqlda->sqld = 1; // using 1 sqlvar
sqlvar = &sqlda->sqlvar[0];
sqlvar->sqltype = DT_LONGVARCHAR;
sqlvar->sqldata = longptr;

printf("fetching test_var \n");
EXEC SQL PREPARE select_stmt FROM ’SELECT test_var’;
EXEC SQL EXECUTE select_stmt INTO DESCRIPTOR sqlda;
EXEC SQL DROP STATEMENT select_stmt;
printf("stored_len: %d, untrunc_len: %d,

1st char: %c, last char: %c \n",
longptr->stored_len,
longptr->untrunc_len,
longptr->array[0],
longptr->array[DATA_LEN-1]);

free_sqlda(sqlda);
free(longptr);

}

Sending LONG data

This section describes how to send LONG values to the database from
embedded SQL applications. For background information, see“Sending and
retrieving long values” on page 190.

The procedures are different depending on whether you are using static or
dynamic SQL.

193

❖ To send a LONG VARCHAR or LONG BINARY value (static SQL)

1. Declare a host variable of type DECL_LONGVARCHAR or
DECL_LONGBINARY, as appropriate.

2. If you are sending NULL and using an indicator variable, set the
indicator variable to a negative value.

☞ For more information, see“Indicator variables” on page 157.

3. Set thestored_lenfield of the DECL_LONGVARCHAR or
DECL_LONGBINARY structure to the number of bytes of data in the
array field.

4. Send the data by opening the cursor or executing the statement.

The following code snippet illustrates the mechanics of sending a LONG
VARCHAR using static embedded SQL. It is not intended to be a practical
application.

#define DATA_LEN 12800
EXEC SQL BEGIN DECLARE SECTION;
// SQLPP initializes longdata.array_len
DECL_LONGVARCHAR(128000) longdata;
EXEC SQL END DECLARE SECTION;

void set_test_var()
/*****************/
{

// init longdata for sending data
memset(longdata.array, ’a’, DATA_LEN);
longdata.stored_len = DATA_LEN;

printf("Setting test_var to %d a’s \n", DATA_LEN);
EXEC SQL SET test_var = :longdata;

}

❖ To send a value using a LONGVARCHAR or LONGBINARY struc-
ture (dynamic SQL)

1. Set the sqltype field to DT_LONGVARCHAR or DT_LONGBINARY as
appropriate.

2. If you are sending NULL, set* sqlind to a negative value.

3. Set thesqldatafield to point to the LONGVARCHAR or
LONGBINARY structure.

You can use theLONGVARCHARSIZE(n)or LONGBINARYSIZE(n)

macros to determine the total number of bytes to allocate to holdn bytes
of data in the array field.

194

Chapter 6. Embedded SQL Programming

4. Set thearray_len field of the LONGVARCHAR or LONGBINARY
structure to the number of bytes allocated for the array field.

5. Set thestored_lenfield of the LONGVARCHAR or LONGBINARY
structure to the number of bytes of data in the array field. This must not
be more thanarray_len.

6. Send the data by opening the cursor or executing the statement.

195

Using stored procedures
This section describes the use of SQL procedures in embedded SQL.

Using simple stored procedures

You can create and call stored procedures in embedded SQL.

You can embed a CREATE PROCEDURE just like any other data definition
statement, such as CREATE TABLE. You can also embed a CALL statement
to execute a stored procedure. The following code fragment illustrates both
creating and executing a stored procedure in embedded SQL:

EXEC SQL CREATE PROCEDURE pettycash(IN amount
DECIMAL(10,2))

BEGIN
UPDATE account
SET balance = balance - amount
WHERE name = ’bank’;

UPDATE account
SET balance = balance + amount
WHERE name = ’pettycash expense’;

END;
EXEC SQL CALL pettycash(10.72);

If you wish to pass host variable values to a stored procedure or to retrieve
the output variables, you prepare and execute a CALL statement. The
following code fragment illustrates the use of host variables. Both the
USING and INTO clauses are used on the EXECUTE statement.

196

Chapter 6. Embedded SQL Programming

EXEC SQL BEGIN DECLARE SECTION;
double hv_expense;
double hv_balance;

EXEC SQL END DECLARE SECTION;

// code here
EXEC SQL CREATE PROCEDURE pettycash(

IN expense DECIMAL(10,2),
OUT endbalance DECIMAL(10,2))

BEGIN
UPDATE account
SET balance = balance - expense
WHERE name = ’bank’;

UPDATE account
SET balance = balance + expense
WHERE name = ’pettycash expense’;

SET endbalance = (SELECT balance FROM account
WHERE name = ’bank’);

END;

EXEC SQL PREPARE S1 FROM ’CALL pettycash(?, ?)’;
EXEC SQL EXECUTE S1 USING :hv_expense INTO :hv_balance;

☞ For more information, see “EXECUTE statement [ESQL]”[ASA SQL
Reference,page 425], and “PREPARE statement [ESQL]”[ASA SQL Reference,
page 508].

Stored procedures with result sets

Database procedures can also contain SELECT statements. The procedure is
declared using a RESULT clause to specify the number, name, and types of
the columns in the result set. Result set columns are different from output
parameters. For procedures with result sets, the CALL statement can be used
in place of a SELECT statement in the cursor declaration:

197

EXEC SQL BEGIN DECLARE SECTION;
char hv_name[100];

EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE PROCEDURE female_employees()
RESULT(name char(50))
BEGIN

SELECT emp_fname || emp_lname FROM employee
WHERE sex = ’f’;

END;

EXEC SQL PREPARE S1 FROM ’CALL female_employees()’;

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
for(;;) {

EXEC SQL FETCH C1 INTO :hv_name;
if(SQLCODE != SQLE_NOERROR) break;
printf("%s \\n", hv_name);

}
EXEC SQL CLOSE C1;

In this example, the procedure has been invoked with an OPEN statement
rather than an EXECUTE statement. The OPEN statement causes the
procedure to execute until it reaches a SELECT statement. At this point, C1
is a cursor for the SELECT statement within the database procedure. You
can use all forms of the FETCH command (backward and forward scrolling)
until you are finished with it. The CLOSE statement terminates execution of
the procedure.

If there had been another statement following the SELECT in the procedure,
it would not have been executed. In order to execute statements following a
SELECT, use the RESUME cursor-name command. The RESUME
command either returns the warning SQLE_PROCEDURE_COMPLETE or
it returns SQLE_NOERROR indicating that there is another cursor. The
example illustrates a two-select procedure:

198

Chapter 6. Embedded SQL Programming

EXEC SQL CREATE PROCEDURE people()
RESULT(name char(50))
BEGIN

SELECT emp_fname || emp_lname
FROM employee;

SELECT fname || lname
FROM customer;

END;

EXEC SQL PREPARE S1 FROM ’CALL people()’;

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
while(SQLCODE == SQLE_NOERROR) {

for(;;) {
EXEC SQL FETCH C1 INTO :hv_name;
if(SQLCODE != SQLE_NOERROR) break;
printf("%s \\n", hv_name);

}
EXEC SQL RESUME C1;

}
EXEC SQL CLOSE C1;

Dynamic cursors for
CALL statements

These examples have used static cursors. Full dynamic cursors can also be
used for the CALL statement.

☞ For a description of dynamic cursors, see“Dynamic SELECT
statement” on page 178.

The DESCRIBE statement works fully for procedure calls. A DESCRIBE
OUTPUT produces a SQLDA that has a description for each of the result set
columns.

If the procedure does not have a result set, the SQLDA has a description for
each INOUT or OUT parameter for the procedure. A DESCRIBE INPUT
statement produces a SQLDA having a description for each IN or INOUT
parameter for the procedure.

DESCRIBE ALL DESCRIBE ALL describes IN, INOUT, OUT, and RESULT set parameters.
DESCRIBE ALL uses the indicator variables in the SQLDA to provide
additional information.

The DT_PROCEDURE_IN and DT_PROCEDURE_OUT bits are set in the
indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter.
Procedure RESULT columns have both bits clear.

After a describe OUTPUT, these bits can be used to distinguish between

199

statements that have result sets (need to use OPEN, FETCH, RESUME,
CLOSE) and statements that do not (need to use EXECUTE).

☞ For a complete description, see “DESCRIBE statement [ESQL]”[ASA
SQL Reference,page 403].

Multiple result sets If you have a procedure that returns multiple result sets, you must
re-describe after each RESUME statement if the result sets change shapes.

You need to describe the cursor, not the statement, to re-describe the current
position of the cursor.

200

Chapter 6. Embedded SQL Programming

Embedded SQL programming techniques
This section contains a set of tips for developers of embedded SQL
programs.

Implementing request management

The default behavior of the interface DLL is for applications to wait for
completion of each database request before carrying out other functions.
This behavior can be changed using request management functions. For
example, when using Interactive SQL, the operating system is still active
while Interactive SQL is waiting for a response from the database and
Interactive SQL carries out some tasks in that time.

You can achieve application activity while a database request is in progress
by providing acallback function. In this callback function you must not do
another database request exceptdb_cancel_request. You can use the
db_is_working function in your message handlers to determine if you have
a database request in progress.

Thedb_register_a_callbackfunction is used to register your application
callback functions.

☞ For more information, see the following:

♦ “db_register_a_callback function” on page 214

♦ “db_cancel_request function” on page 210

♦ “db_is_working function” on page 213

Backup functions

Thedb_backup function provides support for online backup in embedded
SQL applications. The backup utility makes use of this function. You should
only need to write a program to use this function if your backup
requirements are not satisfied by the Adaptive Server Anywhere backup
utility.

BACKUP statement is recommended
Although this function provides one way to add backup features to an
application, the recommended way to accomplish this task is to use the
BACKUP statement. For more information, see “BACKUP statement”
[ASA SQL Reference,page 263].

☞ You can also access the backup utility directly using the Database Tools
DBBackup function. For more information on this function, see“DBBackup

201

function” on page 267.

☞ For more information, see“db_backup function” on page 207.

202

Chapter 6. Embedded SQL Programming

The SQL preprocessor
The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler is run.

Syntax sqlpp [options] input-file [output-file]

Option Description

–c ”key-
word=value;. . .”

Supply reference database connection parameters
[UltraLite]

–d Favor data size

–e level Flag non-conforming SQL syntax as an error

–f Put the far keyword on generated static data

–g Do not display UltraLite warnings

–h line–width Limit the maximum line length of output

–k Include user declaration of SQLCODE

–m version Specify the version name for generated synchro-
nization scripts

–n Line numbers

–ooperating–sys Target operating system.

–p project UltraLite project name

–q Quiet mode—do not print banner

–r Generate reentrant code

–sstring–len Maximum string length for the compiler

–w level Flag non-conforming SQL syntax as a warning

–x Change multibyte SQL strings to escape sequences

–zsequence Specify collation sequence

See also “Introduction” on page 136

Description The SQL preprocessor processes a C or C++ program containing embedded
SQL before the compiler is run. SQLPP translates the SQL statements in the
input-file into C language source that is put into theoutput-file. The normal
extension for source programs with embedded SQL is.sqc. The default
output filename is theinput-file with an extension of.c. If input-file has a.c

203

extension, the default output filename extension is.cc.

Options –c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

–d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. This increases code size.

–e This option flags any embedded SQL that is not part of a specified set of
SQL/92 as an error.

The allowed values oflevel and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag syntax that is not supported by UltraLite

♦ w allow all supported syntax

–g Do not display warning specific to UltraLite code generation.

–h Limits the maximum length of lines output bysqlppto num. The
continuation character is a backslash (\) and the minimum value ofnum is
ten.

–k Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

–m Specify the version name for generated synchronization scripts. The
generated synchronization scripts can be used in a MobiLink consolidated
database for simple synchronization.

–n Generate line number information in the C file. This consists of#line
directives in the appropriate places in the generated C code. If the compiler
that you are using supports the#line directive, this option makes the
compiler report errors on line numbers in the SQC file (the one with the
embedded SQL) as opposed to reporting errors on line numbers in the C file
generated by the SQL preprocessor. Also, the#line directives are used
indirectly by the source level debugger so that you can debug while viewing
the SQC source file.

–o Specify the target operating system. Note that this option must match
the operating system where you run the program. A reference to a special
symbol is generated in your program. This symbol is defined in the interface

204

Chapter 6. Embedded SQL Programming

library. If you use the wrong operating system specification or the wrong
library, an error is detected by the linker. The supported operating systems
are:

♦ WINDOWS Windows 95/98/Me, Windows CE

♦ WINNT Microsoft Windows NT/2000/XP

♦ NETWARE Novell NetWare

♦ UNIX UNIX

–p Identifies the UltraLite project to which the embedded SQL files belong.
Applies only when processing files that are part of an UltraLite application.

–q Do not print the banner.

–r For more information on re-entrant code, see“SQLCA management for
multi-threaded or reentrant code” on page 163.

–s Set the maximum size string that the preprocessor puts into the C file.
Strings longer than this value are initialized using a list of characters
(‘a’ ,‘b’ ,‘c’ , etc). Most C compilers have a limit on the size of string literal
they can handle. This option is used to set that upper limit. The default value
is 500.

–w This option flags any embedded SQL that is not part of a specified set
of SQL/92 as a warning.

The allowed values oflevel and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag syntax that is not supported by UltraLite

♦ w allow all supported syntax

–x Change multibyte strings to escape sequences so that they can pass
through compilers.

–z This option specifies the collation sequence. For a listing of
recommended collation sequences, typedbinit –l at the command prompt.

The collation sequence is used to help the preprocessor understand the
characters used in the source code of the program, for example, in

205

identifying alphabetic characters suitable for use in identifiers. If-z is not
specified, the preprocessor attempts to determine a reasonable collation to
use based on the operating system and SQLLOCALE environment variable.

206

Chapter 6. Embedded SQL Programming

Library function reference
The SQL preprocessor generates calls to functions in the interface library or
DLL. In addition to the calls generated by the SQL preprocessor, a set of
library functions is provided to make database operations easier to perform.
Prototypes for these functions are included by the
EXEC SQL INCLUDE SQLCA command.

This section contains a reference description of these various functions.

DLL entry points The DLL entry points are the same except that the prototypes have a
modifier appropriate for DLLs.

You can declare the entry points in a portable manner using_esqlentry_,
which is defined insqlca.h. It resolves to the value __stdcall:

alloc_sqlda function

Prototype SQLDA *alloc_sqlda(unsigned numvar);

Description Allocates a SQLDA with descriptors fornumvarvariables. Thesqln field of
the SQLDA is initialized tonumvar. Space is allocated for the indicator
variables, the indicator pointers are set to point to this space, and the
indicator value is initialized to zero. A null pointer is returned if memory
cannot be allocated. It is recommended that you use this function instead of
alloc_sqlda_noind function.

alloc_sqlda_noind function

Prototype SQLDA *alloc_sqlda_noind(unsigned numvar);

Description Allocates a SQLDA with descriptors fornumvarvariables. Thesqln field of
the SQLDA is initialized tonumvar. Space is not allocated for indicator
variables; the indicator pointers are set to the null pointer. A null pointer is
returned if memory cannot be allocated.

db_backup function

Prototype void db_backup(
SQLCA * sqlca,
int op,
int file_num,
unsigned long page_num,
SQLDA * sqlda);

Authorization Must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote).

207

Description
BACKUP statement is recommended
Although this function provides one way to add backup features to an
application, the recommended way to accomplish this task is to use the
BACKUP statement. For more information, see “BACKUP statement”
[ASA SQL Reference,page 263].

The action performed depends on the value of theop parameter:

♦ DB_BACKUP_START Must be called before a backup can start. Only
one backup can be running at one time against any given database server.
Database checkpoints are disabled until the backup is complete
(db_backup is called with anop value of DB_BACKUP_END). If the
backup cannot start, the SQLCODE is
SQLE_BACKUP_NOT_STARTED. Otherwise, the SQLCOUNT field of
thesqlcais set to the size of each database page. (Backups are processed
one page at a time.)

Thefile_num, page_numandsqldaparameters are ignored.

♦ DB_BACKUP_OPEN_FILE Open the database file specified by
file_num, which allows pages of the specified file to be backed up using
DB_BACKUP_READ_PAGE. Valid file numbers are 0 through
DB_BACKUP_MAX_FILE for the root database files,
DB_BACKUP_TRANS_LOG_FILE for the transaction log file, and
DB_BACKUP_WRITE_FILE for the database write file if it exists. If the
specified file does not exist, the SQLCODE is SQLE_NOTFOUND.
Otherwise, SQLCOUNT contains the number of pages in the file,
SQLIOESTIMATE contains a 32-bit value (POSIXtime_t) which
identifies the time that the database file was created, and the operating
system file name is in thesqlerrmcfield of the SQLCA.

Thepage_numandsqldaparameters are ignored.

♦ DB_BACKUP_READ_PAGE Read one page of the database file
specified byfile_num. Thepage_numshould be a value from 0 to one
less than the number of pages returned in SQLCOUNT by a successful
call todb_backupwith the DB_BACKUP_OPEN_FILE operation.
Otherwise, SQLCODE is set to SQLE_NOTFOUND. Thesqlda
descriptor should be set up with one variable of type DT_BINARY
pointing to a buffer. The buffer should be large enough to hold binary
data of the size returned in the SQLCOUNT field on the call to
db_backupwith the DB_BACKUP_START operation.

DT_BINARY data contains a two-byte length followed by the actual
binary data, so the buffer must be two bytes longer than the page size.

208

Chapter 6. Embedded SQL Programming

Application must save buffer
This call makes a copy of the specified database page into the buffer,
but it is up to the application to save the buffer on some backup media.

♦ DB_BACKUP_READ_RENAME_LOG This action is the same as
DB_BACKUP_READ_PAGE, except that after the last page of the
transaction log has been returned, the database server renames the
transaction log and starts a new one.

If the database server is unable to rename the log at the current time (for
example in version 7.x or earlier databases there may be incomplete
transactions), the SQLE_BACKUP_CANNOT_RENAME_LOG_YET
error is set. In this case, do not use the page returned, but instead reissue
the request until you receive SQLE_NOERROR and then write the page.
Continue reading the pages until you receive the SQLE_NOTFOUND
condition.

The SQLE_BACKUP_CANNOT_RENAME_LOG_YET error may be
returned multiple times and on multiple pages. In your retry loop, you
should add a delay so as not to slow the server down with too many
requests.

When you receive the SQLE_NOTFOUND condition, the transaction log
has been backed up successfully and the file has been renamed. The name
for the old transaction file is returned in thesqlerrmcfield of the SQLCA.

You should check thesqlda->sqlvar[0].sqlind value after adb_backup
call. If this value is greater than zero, the last log page has been written
and the log file has been renamed. The new name is still in
sqlca.sqlerrmc, but the SQLCODE value is SQLE_NOERROR.

You should not calldb_backupagain after this, except to close files and
finish the backup. If you do, you get a second copy of your backed up log
file and you receive SQLE_NOTFOUND.

♦ DB_BACKUP_CLOSE_FILE Must be called when processing of one
file is complete to close the database file specified byfile_num.

Thepage_numandsqldaparameters are ignored.

♦ DB_BACKUP_END Must be called at the end of the backup. No other
backup can start until this backup has ended. Checkpoints are enabled
again.

Thefile_num, page_numandsqldaparameters are ignored.

Thedbbackupprogram uses the following algorithm. Note that this isnot C
code, and does not include error checking.

209

db_backup(... DB_BACKUP_START ...)
allocate page buffer based on page size in SQLCODE
sqlda = alloc_sqlda(1)
sqlda->sqld = 1;
sqlda->sqlvar[0].sqltype = DT_BINARY
sqlda->sqlvar[0].sqldata = allocated buffer
for file_num = 0 to DB_BACKUP_MAX_FILE

db_backup(... DB_BACKUP_OPEN_FILE, file_num ...)
if SQLCODE == SQLE_NO_ERROR

/* The file exists */
num_pages = SQLCOUNT
file_time = SQLE_IO_ESTIMATE
open backup file with name from sqlca.sqlerrmc
for page_num = 0 to num_pages - 1

db_backup(... DB_BACKUP_READ_PAGE,
file_num, page_num, sqlda)

write page buffer out to backup file
next page_num
close backup file
db_backup(... DB_BACKUP_CLOSE_FILE, file_num ...)

end if
next file_num
backup up file DB_BACKUP_WRITE_FILE as above
backup up file DB_BACKUP_TRANS_LOG_FILE as above
free page buffer
db_backup(... DB_BACKUP_END ...)

db_cancel_request function

Prototype int db_cancel_request(SQLCA *sqlca);

Description Cancels the currently active database server request. This function checks to
make sure a database server request is active before sending the cancel
request. If the function returns 1, then the cancel request was sent; if it
returns 0, then no request was sent.

A non-zero return value does not mean that the request was canceled. There
are a few critical timing cases where the cancel request and the response
from the database or server “cross”. In these cases, the cancel simply has no
effect, even though the function still returns TRUE.

Thedb_cancel_requestfunction can be called asynchronously. This
function anddb_is_working are the only functions in the database interface
library that can be called asynchronously using an SQLCA that might be in
use by another request.

If you cancel a request that is carrying out a cursor operation, the position of
the cursor is indeterminate. You must locate the cursor by its absolute
position or close it, following the cancel.

210

Chapter 6. Embedded SQL Programming

db_delete_file function

Prototype void db_delete_file(
SQLCA * sqlca,
char * filename);

Authorization Must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote).

Description Thedb_delete_filefunction requests the database server to deletefilename.
This can be used after backing up and renaming the transaction log (see
DB_BACKUP_READ_RENAME_LOG in“db_backup function” on
page 207) to delete the old transaction log. You must be connected to a user
ID with DBA authority.

db_find_engine function

Prototype unsigned short db_find_engine(
SQLCA *sqlca,
char *name);

Description Returns an unsigned short value, which indicates status information about
the database server whose name isname. If no server can be found with the
specified name, the return value is 0. A non-zero value indicates that the
server is currently running.

Each bit in the return value conveys some information. Constants that
represent the bits for the various pieces of information are defined in the
sqldef.hheader file. If a null pointer is specified forname, information is
returned about the default database environment.

db_fini function

Prototype unsigned short db_fini(SQLCA *sqlca);

Description This function frees resources used by the database interface or DLL. You
must not make any other library calls or execute any embedded SQL
commands afterdb_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0. If there are no errors,
a non-zero value is returned.

You need to calldb_fini once for each SQLCA being used.

Caution
Failure to calldb_fini for eachdb_init on NetWare can cause the database
server to fail and the NetWare file server to fail.

211

See also For information on using db_init in UltraLite applications, see “db_fini
function” [UltraLite Embedded SQL User’s Guide,page 103].

db_get_property function

Prototype unsigned int db_get_property(
SQLCA * sqlca,
a_db_property property ,
char * value_buffer ,
int value_buffer_size);

Description This function is used to obtain the address of the server to which you are
currently connected. It is used by thedbpingutility to print out the server
address.

The function can also be used to obtain the value of database properties.
Database properties can also be obtained in an interface-independent manner
by executing a SELECT statement, as described in “Database properties”
[ASA Database Administration Guide,page 647].

The arguments are as follows:

♦ a_db_property An enumwith the value
DB_PROP_SERVER_ADDRESS. DB_PROP_SERVER_ADDRESS
gets the current connection’s server network address as a printable string.
Shared memory and NamedPipes protocols always return the empty
string for the address. TCP/IP and SPX protocols return non-empty string
addresses.

♦ value_buffer This argument is filled with the property value as a null
terminated string.

♦ value_buffer_size The maximum length of the stringvalue_buffer,
including the terminating null character.

See also “Database properties”[ASA Database Administration Guide,page 647]

db_init function

Prototype unsigned short db_init(SQLCA *sqlca);

Description This function initializes the database interface library. This function must be
called before any other library call is made and before any embedded SQL
command is executed. The resources the interface library requires for your
program are allocated and initialized on this call.

Usedb_fini to free the resources at the end of your program. If there are any
errors during processing, they are returned in the SQLCA and 0 is returned.

212

Chapter 6. Embedded SQL Programming

If there are no errors, a non-zero value is returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the globalsqlcavariable defined in thesqlca.hheader file). If you are
writing a DLL or an application that has multiple threads using embedded
SQL, calldb_init once for each SQLCA that is being used.

☞ For more information, see“SQLCA management for multi-threaded or
reentrant code” on page 163.

Caution
Failure to calldb_fini for eachdb_init on NetWare can cause the database
server to fail, and the NetWare file server to fail.

See also For information on using db_init in UltraLite applications, see “db_init
function” [UltraLite Embedded SQL User’s Guide,page 104].

db_is_working function

Prototype unsigned db_is_working(SQLCA *sqlca);

Description Returns 1 if your application has a database request in progress that uses the
given sqlca and 0 if there is no request in progress that uses the given sqlca.

This function can be called asynchronously. This function and
db_cancel_requestare the only functions in the database interface library
that can be called asynchronously using an SQLCA that might be in use by
another request.

db_locate_servers function

Prototype unsigned int db_locate_servers(
SQLCA *sqlca,
SQL_CALLBACK_PARM callback_address,
void *callback_user_data);

Description Provides programmatic access to the information displayed by thedblocate
utility, listing all the Adaptive Server Anywhere database servers on the
local network that are listening on TCP/IP.

The callback function must have the following prototype:

int (*)(SQLCA *sqlca,
a_server_address *server_addr ,
void *callback_user_data);

The callback function is called for each server found. If the callback

213

function returns 0,db_locate_serversstops iterating through servers.

Thesqlcaandcallback_user_datapassed to the callback function are those
passed intodb_locate_servers. The second parameter is a pointer to an
a_server_addressstructure.a_server_addressis defined insqlca.h, with
the following definition:

typedef struct a_server_address {
a_SQL_uint32 port_type;
a_SQL_uint32 port_num;
char *name;
char *address;

} a_server_address;

♦ port_type Is always PORT_TYPE_TCP at this time (defined to be 6 in
sqlca.h).

♦ port_num Is the TCP port number on which this server is listening.

♦ name Points to a buffer containing the server name.

♦ address Points to a buffer containing the IP address of the server.

☞ For more information, see “The Server Location utility”[ASA Database
Administration Guide,page 518].

db_register_a_callback function

Prototype void db_register_a_callback(
SQLCA *sqlca,
a_db_callback_index index ,
(SQL_CALLBACK_PARM) callback);

Description This function registers callback functions.

If you do not register a DB_CALLBACK_WAIT callback, the default action
is to do nothing. Your application blocks, waiting for the database response,
and Windows changes the cursor to an hourglass.

To remove a callback, pass a null pointer as thecallbackfunction.

The following values are allowed for theindex parameter:

♦ DB_CALLBACK_DEBUG_MESSAGE The supplied function is called
once for each debug message and is passed a null-terminated string
containing the text of the debug message. The string normally has a
newline character (\n) immediately before the terminating null character.
The prototype of the callback function is as follows:

void SQL_CALLBACK debug_message_callback (
SQLCA *sqlca,
char * message_string);

214

Chapter 6. Embedded SQL Programming

♦ DB_CALLBACK_START The prototype is as follows:

void SQL_CALLBACK start_callback (SQLCA *sqlca);

This function is called just before a database request is sent to the server.
DB_CALLBACK_START is used only on Windows.

♦ DB_CALLBACK_FINISH The prototype is as follows:

void SQL_CALLBACK finish_callback (SQLCA * sqlca);

This function is called after the response to a database request has been
received by the interface DLL. DB_CALLBACK_FINISH is used only
on Windows operating systems.

♦ DB_CALLBACK_CONN_DROPPED The prototype is as follows:

void SQL_CALLBACK conn_dropped_callback (
SQLCA *sqlca,
char *conn_name);

This function is called when the database server is about to drop a
connection because of a liveness timeout, through a DROP
CONNECTION statement, or because the database server is being shut
down. The connection nameconn_nameis passed in to allow you to
distinguish between connections. If the connection was not named, it has
a value of NULL.

♦ DB_CALLBACK_WAIT The prototype is as follows:

void SQL_CALLBACK wait_callback (SQLCA *sqlca);

This function is called repeatedly by the interface library while the
database server or client library is busy processing your database request.

You would register this callback as follows:

db_register_a_callback(&sqlca,
DBCALLBACK_WAIT,
(SQL_CALLBACK_PARM)&db_wait_request);

♦ DB_CALLBACK_MESSAGE This is used to enable the application to
handle messages received from the server during the processing of a
request.

The callback prototype is as follows:

void SQL_CALLBACK message_callback (
SQLCA* sqlca,
unsigned char msg_type,
an_SQL_code code,
unsigned short length,
char* msg
);

215

Themsg_typeparameter states how important the message is and you
may wish to handle different message types in different ways. The
available message types are MESSAGE_TYPE_INFO,
MESSAGE_TYPE_WARNING, MESSAGE_TYPE_ACTION, and
MESSAGE_TYPE_STATUS. These constants are defined insqldef.h.
Thecodefield is an identifier. Thelength field tells you how long the
message is. The message isnot null-terminated.

For example, the Interactive SQL callback displays STATUS and INFO
message in the Messages pane, while messages of type ACTION and
WARNING go to a dialog. If an application does not register this
callback, there is a default callback, which causes all messages to be
written to the server logfile (if debugging is on and a logfile is specified).
In addition, messages of type MESSAGE_TYPE_WARNING and
MESSAGE_TYPE_ACTION are more prominently displayed, in an
operating system-dependent manner.

db_start_database function

Prototype unsigned int db_start_database(SQLCA * sqlca, char * parms);

Arguments sqlca A pointer to a SQLCA structure. For information, see“The SQL
Communication Area (SQLCA)” on page 161.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Description Start a database on an existing server if the database is not already running.
The steps carried out to start a database are described in “Starting a personal
server”[ASA Database Administration Guide,page 81]

The return value is true if the database was already running or successfully
started. Error information is returned in the SQLCA.

If a user ID and password are supplied in the parameters, they are ignored.

☞ The permission required to start and stop a database is set on the server
command line. For information, see “The database server”[ASA Database
Administration Guide,page 124].

db_start_engine function

Prototype unsigned int db_start_engine(SQLCA * sqlca, char * parms);

216

Chapter 6. Embedded SQL Programming

Arguments sqlca A pointer to a SQLCA structure. For information, see“The SQL
Communication Area (SQLCA)” on page 161.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Description Starts the database server if it is not running. The steps carried out by this
function are those listed in “Starting a personal server”[ASA Database
Administration Guide,page 81].

The return value is true if a database server was either found or successfully
started. Error information is returned in the SQLCA.

The following call todb_start_enginestarts the database server and names
it asademo, but does not load the database, despite the DBF connection
parameter:

db_start_engine(&sqlca,
"DBF=c: \\asa9 \\asademo.db; Start=dbeng9");

If you wish to start a database as well as the server, include the database file
in the START connection parameter:

db_start_engine(&sqlca,
"ENG=eng_name;START=dbeng9 c: \\asa \\asademo.db");

This call starts the server, names iteng_name, and starts theasademo
database on that server.

Thedb_start_enginefunction attempts to connect to a server before starting
one, to avoid attempting to start a server that is already running.

The FORCESTART connection parameter is used only by the
db_start_enginefunction. When set to YES, there is no attempt to connect
to a server before trying to start one. This enables the following pair of
commands to work as expected:

1. Start a database server named server_1:

start dbeng9 -n server_1 asademo.db

2. Force a new server to start and connect to it:

db_start_engine(&sqlda,
"START=dbeng9 -n server_2 asademo.db;ForceStart=YES")

217

If FORCESTART was not used, and without an ENG parameter, the second
command would have attempted to connect to server_1. The
db_start_enginefunction does not pick up the server name from the -n

option of the START parameter.

db_stop_database function

Prototype unsigned int db_stop_database(SQLCA * sqlca, char * parms);

Arguments sqlca A pointer to a SQLCA structure. For information, see“The SQL
Communication Area (SQLCA)” on page 161.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Description Stop the database identified byDatabaseNameon the server identified by
EngineName. If EngineNameis not specified, the default server is used.

By default, this function does not stop a database that has existing
connections. IfUnconditional is yes, the database is stopped regardless of
existing connections.

A return value of TRUE indicates that there were no errors.

☞ The permission required to start and stop a database is set on the server
command line. For information, see “The database server”[ASA Database
Administration Guide,page 124].

db_stop_engine function

Prototype unsigned int db_stop_engine(SQLCA * sqlca, char * parms);

Arguments sqlca A pointer to a SQLCA structure. For information, see“The SQL
Communication Area (SQLCA)” on page 161.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Description Terminates execution of the database server. The steps carried out by this

218

Chapter 6. Embedded SQL Programming

function are:

♦ Look for a local database server that has a name that matches the
EngineNameparameter. If noEngineNameis specified, look for the
default local database server.

♦ If no matching server is found, this function fails.

♦ Send a request to the server to tell it to checkpoint and shut down all
databases.

♦ Unload the database server.

By default, this function does not stop a database server that has existing
connections. IfUnconditional is yes, the database server is stopped
regardless of existing connections.

A C program can use this function instead of spawning DBSTOP. A return
value of TRUE indicates that there were no errors.

The use ofdb_stop_engineis subject to the permissions set with the -gk

server option.

☞ For more information, see “-gk server option”[ASA Database
Administration Guide,page 146].

db_string_connect function

Prototype unsigned int db_string_connect(SQLCA * sqlca, char * parms);

Arguments sqlca A pointer to a SQLCA structure. For information, see“The SQL
Communication Area (SQLCA)” on page 161.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Description Provides extra functionality beyond the embedded SQL CONNECT
command. This function carries out a connection using the algorithm
described in “Troubleshooting connections”[ASA Database Administration
Guide,page 75].

The return value is true (non-zero) if a connection was successfully
established and false (zero) otherwise. Error information for starting the
server, starting the database, or connecting is returned in the SQLCA.

219

db_string_disconnect function

Prototype unsigned int db_string_disconnect(
SQLCA * sqlca,
char * parms);

Arguments sqlca A pointer to a SQLCA structure. For information, see“The SQL
Communication Area (SQLCA)” on page 161.

parms A NULL-terminated string containing a semi-colon-delimited list
of parameter settings, each of the form KEYWORD=value. For example,

"UID=DBA;PWD=SQL;DBF=c: \\db\\mydatabase.db"

☞ For an available list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Description This function disconnects the connection identified by theConnectionName
parameter. All other parameters are ignored.

If no ConnectionNameparameter is specified in the string, the unnamed
connection is disconnected. This is equivalent to the embedded SQL
DISCONNECT command. The Boolean return value is true if a connection
was successfully ended. Error information is returned in the SQLCA.

This function shuts down the database if it was started with the
AutoStop=yesparameter and there are no other connections to the database.
It also stops the server if it was started with theAutoStop=yesparameter
and there are no other databases running.

db_string_ping_server function

Prototype unsigned int db_string_ping_server(
SQLCA * sqlca,
char * connect_string,
unsigned int connect_to_db);

Description Theconnect_stringis a normal connect string that may or may not contain
server and database information.

If connect_to_dbis non-zero (true), then the function attempts to connect to
a database on a server. It returns a non-zero (true) value only if the connect
string is sufficient to connect to the named database on the named server.

If connect_to_dbis zero, then the function only attempts to locate a server.
It returns a non-zero value only if the connect string is sufficient to locate a
server. It makes no attempt to connect to the database.

220

Chapter 6. Embedded SQL Programming

fill_s_sqlda function

Prototype struct sqlda * fill_s_sqlda(
struct sqlda * sqlda,
unsigned int maxlen);

Description The same asfill_sqlda, except that it changes all the data types insqldato
type DT_STRING. Enough space is allocated to hold the string
representation of the type originally specified by the SQLDA, up to a
maximum ofmaxlenbytes. The length fields in the SQLDA (sqllen) are
modified appropriately. Returnssqldaif successful and returns the null
pointer if there is not enough memory available.

fill_sqlda function

Prototype struct sqlda * fill_sqlda(struct sqlda * sqlda);

Description Allocates space for each variable described in each descriptor ofsqlda, and
assigns the address of this memory to thesqldatafield of the corresponding
descriptor. Enough space is allocated for the database type and length
indicated in the descriptor. Returnssqldaif successful and returns the null
pointer if there is not enough memory available.

free_filled_sqlda function

Prototype void free_filled_sqlda(struct sqlda * sqlda);

Description Free the memory allocated to eachsqldatapointer and the space allocated
for the SQLDA itself. Any null pointer is not freed.

Calling this function causesfree_sqldato be called automatically, and so
any descriptors allocated byalloc_sqldaare freed.

free_sqlda function

Prototype void free_sqlda(struct sqlda * sqlda);

Description Free space allocated to thissqldaand free the indicator variable space, as
allocated infill_sqlda. Do not free the memory referenced by eachsqldata
pointer.

free_sqlda_noind function

Prototype void free_sqlda_noind(struct sqlda * sqlda);

221

Description Free space allocated to thissqlda. Do not free the memory referenced by
eachsqldatapointer. The indicator variable pointers are ignored.

“Database properties”[ASA Database Administration Guide,page 647]

“The Ping utility” [ASA Database Administration Guide,page 514]

sql_needs_quotes function

Prototype unsigned int sql_needs_quotes(SQLCA *sqlca, char *str);

Description Returns a Boolean value that indicates whether the string requires double
quotes around it when it is used as a SQL identifier. This function formulates
a request to the database server to determine if quotes are needed. Relevant
information is stored in thesqlcodefield.

There are three cases of return value/code combinations:

♦ return = FALSE, sqlcode = 0 In this case, the string definitely does not
need quotes.

♦ return = TRUE In this case, sqlcode is always SQLE_WARNING, and
the string definitely does need quotes.

♦ return = FALSE If sqlcode is something other than SQLE_WARNING,
the test is inconclusive.

sqlda_storage function

Prototype unsigned long sqlda_storage(struct sqlda *sqlda, int varno);

Description Returns the amount of storage required to store any value for the variable
described insqlda->sqlvar[varno] .

sqlda_string_length function

Prototype unsigned long sqlda_string_length(SQLDA *sqlda, int varno);

Description Returns the length of the C string (type DT_STRING) that would be required
to hold the variablesqlda->sqlvar[varno] (no matter what its type is).

sqlerror_message function

Prototype char *sqlerror_message(SQLCA *sqlca, char * buffer , int max);

Description Return a pointer to a string that contains an error message. The error
message contains text for the error code in the SQLCA. If no error was

222

Chapter 6. Embedded SQL Programming

indicated, a null pointer is returned. The error message is placed in the
buffer supplied, truncated to lengthmax if necessary.

223

Embedded SQL command summary

EXEC SQL
ALL embedded SQL statements must be preceded with EXEC SQL and
end with a semicolon (;).

There are two groups of embedded SQL commands. Standard SQL
commands are used by simply placing them in a C program enclosed with
EXEC SQL and a semi-colon (;). CONNECT, DELETE, SELECT, SET, and
UPDATE have additional formats only available in embedded SQL. The
additional formats fall into the second category of embedded SQL specific
commands.

☞ For descriptions of the standard SQL commands, see “SQL Statements”
[ASA SQL Reference,page 213].

Several SQL commands are specific to embedded SQL and can only be used
in a C program.

☞ For more information about these embedded SQL commands, see “SQL
Language Elements”[ASA SQL Reference,page 3].

☞ Standard data manipulation and data definition statements can be used
from embedded SQL applications. In addition the following statements are
specifically for embedded SQL programming:

♦ ALLOCATE DESCRIPTOR allocate memory for a descriptor

☞ See “ALLOCATE DESCRIPTOR statement [ESQL]”[ASA SQL
Reference,page 223]

♦ CLOSE close a cursor

☞ See “CLOSE statement [ESQL] [SP]”[ASA SQL Reference,page 280]

♦ CONNECT connect to the database

☞ See “CONNECT statement [ESQL] [Interactive SQL]”[ASA SQL
Reference,page 287]

♦ DEALLOCATE DESCRIPTOR reclaim memory for a descriptor

☞ See “DEALLOCATE DESCRIPTOR statement [ESQL]”[ASA SQL
Reference,page 387]

♦ Declaration Section declare host variables for database communication

☞ See “Declaration section [ESQL]”[ASA SQL Reference,page 388]

♦ DECLARE CURSOR declare a cursor

224

Chapter 6. Embedded SQL Programming

☞ See “DECLARE CURSOR statement [ESQL] [SP]”[ASA SQL
Reference,page 390]

♦ DELETE (positioned) delete the row at the current position in a cursor

☞ See “DELETE (positioned) statement [ESQL] [SP]”[ASA SQL
Reference,page 401]

♦ DESCRIBE describe the host variables for a particular SQL statement

☞ See “DESCRIBE statement [ESQL]”[ASA SQL Reference,page 403]

♦ DISCONNECT disconnect from database server

☞ See “DISCONNECT statement [ESQL] [Interactive SQL]”[ASA SQL
Reference,page 407]

♦ DROP STATEMENT free resources used by a prepared statement

☞ See “DROP STATEMENT statement [ESQL]”[ASA SQL Reference,
page 417]

♦ EXECUTE execute a particular SQL statement

☞ See “EXECUTE statement [ESQL]”[ASA SQL Reference,page 425]

♦ EXPLAIN explain the optimization strategy for a particular cursor

☞ See “EXPLAIN statement [ESQL]”[ASA SQL Reference,page 434]

♦ FETCH fetch a row from a cursor

☞ See “FETCH statement [ESQL] [SP]”[ASA SQL Reference,page 436]

♦ GET DATA fetch long values from a cursor

☞ See “GET DATA statement [ESQL]”[ASA SQL Reference,page 450]

♦ GET DESCRIPTOR retrieve information about a variable in a SQLDA.

☞ See “GET DESCRIPTOR statement [ESQL]”[ASA SQL Reference,
page 452]

♦ GET OPTION get the setting for a particular database option

☞ See “GET OPTION statement [ESQL]”[ASA SQL Reference,page 454]

♦ INCLUDE include a file for SQL preprocessing

☞ See “INCLUDE statement [ESQL]”[ASA SQL Reference,page 471]

♦ OPEN open a cursor

☞ See “OPEN statement [ESQL] [SP]”[ASA SQL Reference,page 498]

225

♦ PREPARE prepare a particular SQL statement

☞ See “PREPARE statement [ESQL]”[ASA SQL Reference,page 508]

♦ PUT insert a row into a cursor

☞ See “PUT statement [ESQL]”[ASA SQL Reference,page 513]

♦ SET CONNECTION change active connection

☞ See “SET CONNECTION statement [Interactive SQL] [ESQL]”
[ASA SQL Reference,page 553]

♦ SET DESCRIPTOR describe the variables in a SQLDA and place data
into the SQLDA

☞ See “SET DESCRIPTOR statement [ESQL]”[ASA SQL Reference,
page 554]

♦ SET SQLCA use an SQLCA other than the default global one

☞ See “SET SQLCA statement [ESQL]”[ASA SQL Reference,page 562]

♦ UPDATE (positioned) update the row at the current location of a cursor

☞ See “UPDATE (positioned) statement [ESQL] [SP]”[ASA SQL
Reference,page 597]

♦ WHENEVER specify actions to occur on errors in SQL statements

☞ See “WHENEVER statement [ESQL]”[ASA SQL Reference,page 606]

226

CHAPTER 7

ODBC Programming

About this chapter This chapter presents information for developing applications that call the
ODBC programming interface directly.

The primary documentation for ODBC application development is the
Microsoft ODBC SDK documentation, available as part of the Microsoft
Data Access Components (MDAC) SDK. This chapter provides introductory
material and describes features specific to Adaptive Server Anywhere, but is
not an exhaustive guide to ODBC application programming.

Some application development tools that already have ODBC support
provide their own programming interface that hides the ODBC interface.
This chapter is not intended for users of those tools.

Contents Topic: page

Introduction to ODBC 228

Building ODBC applications 230

ODBC samples 234

ODBC handles 236

Connecting to a data source 239

Executing SQL statements 243

Working with result sets 247

Calling stored procedures 251

Handling errors 253

227

Introduction to ODBC
TheOpen Database Connectivity(ODBC) interface is an application
programming interface defined by Microsoft Corporation as a standard
interface to database-management systems on Windows operating systems.
ODBC is a call-based interface.

To write ODBC applications for Adaptive Server Anywhere, you need:

♦ Adaptive Server Anywhere.

♦ A C compiler capable of creating programs for your environment.

♦ Microsoft ODBC Software Development Kit. This is available on the
Microsoft Developer Network, and provides documentation and
additional tools for testing ODBC applications.

Supported platforms Adaptive Server Anywhere supports the ODBC API on UNIX and
Windows CE, in addition to Windows. Having multi-platform ODBC
support makes portable database application development much easier.

☞ For information on enlisting the ODBC driver in distributed transactions,
see“Three-tier Computing and Distributed Transactions” on page 455.

ODBC conformance

Adaptive Server Anywhere provides support for ODBC 3.5, which is
supplied as part of the Microsoft Data Access Kit 2.7.

Levels of ODBC support ODBC features are arranged according to level of conformance. Features are
eitherCore, Level 1, or Level 2, with Level 2 being the most complete level
of ODBC support. These features are listed in theODBC Programmer’s
Reference, which is available from Microsoft Corporation as part of the
ODBC software development kit or from the Microsoft Web site, at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/odbc/htm/odch21bpr_2.asp.

Features supported by
Adaptive Server
Anywhere

Adaptive Server Anywhere supports the ODBC 3.5 specification.

♦ Core conformance Adaptive Server Anywhere supports all Core level
features.

♦ Level 1 conformance Adaptive Server Anywhere supports all Level 1
features, except for asynchronous execution of ODBC functions.

Adaptive Server Anywhere supports multiple threads sharing a single
connection. The requests from the different threads are serialized by
Adaptive Server Anywhere.

228

Chapter 7. ODBC Programming

♦ Level 2 conformance Adaptive Server Anywhere supports all Level 2
features, except for the following:

• Three part names of tables and views. This is not applicable for
Adaptive Server Anywhere.

• Asynchronous execution of ODBC functions for specified individual
statements.

• Ability to time out login request and SQL queries.

ODBC backwards
compatibility

Applications developed using older versions of ODBC continue to work
with Adaptive Server Anywhere and the newer ODBC Driver Manager. The
new ODBC features are not provided for older applications.

The ODBC Driver
Manager

The ODBC Driver Manager is part of the ODBC software supplied with
Adaptive Server Anywhere. The ODBC Version 3 Driver Manager has a
new interface for configuring ODBC data sources.

229

Building ODBC applications
This section describes how to compile and link simple ODBC applications.

Including the ODBC header file

Every C source file that calls ODBC functions must include a
platform-specific ODBC header file. Each platform-specific header file
includes the main ODBC header fileodbc.h, which defines all the functions,
data types and constant definitions required to write an ODBC program.

❖ To include the ODBC header file in a C source file

1. Add an include line referencing the appropriate platform-specific header
file to your source file. The lines to use are as follows:

Operating system Include line

Windows #include "ntodbc.h"

UNIX #include "unixodbc.h"

Windows CE #include "ntodbc.h"

2. Add the directory containing the header file to the include path for your
compiler.

Both the platform-specific header files andodbc.hare installed in theh
subdirectory of your SQL Anywhere directory.

Linking ODBC applications on Windows

This section does not apply to Windows CE. For more information see
“Linking ODBC applications on Windows CE” on page 231.

When linking your application, you must link against the appropriate import
library file to have access to the ODBC functions. The import library defines
entry points for the ODBC Driver Managerodbc32.dll. The Driver Manager
in turn loads the Adaptive Server Anywhere ODBC driverdbodbc9.dll.

Separate import libraries are supplied for Microsoft, Watcom, and Borland
compilers.

230

Chapter 7. ODBC Programming

❖ To link an ODBC application (Windows)

1. Add the directory containing the platform-specific import library to the
list of library directories.

The import libraries are stored in thelib subdirectory of the directory
containing your Adaptive Server Anywhere executables and are named as
follows:

Operating system Compiler Import library

Windows Microsoft odbc32.lib

Windows Watcom C/C++ wodbc32.lib

Windows Borland bodbc32.lib

Windows CE Microsoft dbodbc9.lib

Linking ODBC applications on Windows CE

On Windows CE operating systems there is no ODBC Driver Manager. The
import library (dbodbc9.lib) defines entry points directly into the Adaptive
Server Anywhere ODBC driverdbodbc9.dll.

Separate versions of this DLL are provided for the different chips on which
Windows CE is available. The files are in operating-system specific
subdirectories of thece directory in your SQL Anywhere directory. For
example, the ODBC driver for Windows CE on the ARM chip is in the
following location:

C: \Program Files \Sybase \SQL Anywhere 9 \ce\arm.30

☞ For a list of supported versions of Windows CE, see “Windows and
NetWare operating systems”[Introducing SQL Anywhere Studio,page 125].

❖ To link an ODBC application (Windows CE)

1. Add the directory containing the platform-specific import library to the
list of library directories.

The import library is nameddbodbc9.liband is stored in an
operating-system specific location under thece directory in your
SQL Anywhere directory. For example, the import library for
Windows CE on the ARM chip is in the following location:

C: \Program Files \Sybase \SQL Anywhere 9 \ce\arm.30 \lib

2. Specify theDRIVER= parameter in the connection string supplied to the
SQLDriverConnect function.

231

szConnStrIn = "driver=ospath \dbodbc9.dll;dbf=c: \asademo.db"

whereospathis the full path to the chip-specific subdirectory of your
SQL Anywhere directory on the Windows CE device. For example:

\Program Files \Sybase \SQL Anywhere 9 \ce\arm.30 \lib

The sample program (odbc.c) uses a File data source (FileDSN connection
parameter) calledASA 9.0 Sample.dsn. You can create File data sources on
your desktop system from the ODBC Driver Manager and copy them to your
Windows CE device.

Windows CE and
Unicode

Adaptive Server Anywhere uses an encoding known as UTF-8, a multi-byte
character encoding which can be used to encode Unicode.

The Adaptive Server Anywhere ODBC driver supports either ASCII (8-bit)
strings or Unicode code (wide character) strings. The UNICODE macro
controls whether ODBC functions expect ASCII or Unicode strings. If your
application must be built with the UNICODE macro defined, but you want to
use the ASCII ODBC functions, then the SQL_NOUNICODEMAP macro
must also be defined.

TheSamples\ASA\C\odbc.csample file illustrates how to use the Unicode
ODBC features.

Linking ODBC applications on UNIX

An ODBC Driver Manager is not included with Adaptive Server Anywhere,
but there are third party Driver Managers available. This section describes
how to build ODBC applications that do not use an ODBC Driver Manager.

ODBC driver The ODBC driver is a shared object or shared library. Separate versions of
the Adaptive Server Anywhere ODBC driver are supplied for
single-threaded and multi-threaded applications.

The ODBC drivers are the following files:

Operating system Threading model ODBC driver

Solaris/Sparc Single threaded dbodbc9.so(dbodbc9.so.1)

Solaris/Sparc Multi-threaded dbodbc_r.so(dbodbc_r.so.1)

The libraries are installed as symbolic links to the shared library with a
version number (in parentheses).

232

Chapter 7. ODBC Programming

❖ To link an ODBC application (UNIX)

1. Link your application directly against the appropriate ODBC driver.

2. When deploying your application, ensure that the appropriate ODBC
driver is available in the user’s library path.

Data source information If Adaptive Server Anywhere does not detect the presence of an ODBC
Driver Manager, it uses~/.odbc.ini for data source information.

Using an ODBC Driver Manager on UNIX

Third-party ODBC Driver Managers for UNIX are available. An ODBC
Driver Manager includes the following files:

Operating system Files

Solaris/Sparc libodbc.so(libodbc.so.1)

libodbcinst.so(libodbcinst.so.1)

If your are deploying an application that requires an ODBC Driver Manager
and you are not using a third-party Driver Manager, create symbolic links for
both thelibodbc andlibodbcinstshared libraries to the Adaptive Server
Anywhere ODBC driver.

If an ODBC Driver Manager is present, Adaptive Server Anywhere queries
the Driver Manager rather than~/.odbc.ini for data source information.

Standard ODBC applications do not link directly against the ODBC driver.
Instead, ODBC function calls go through the ODBC Driver Manager. On
UNIX and Windows CE operating systems, Adaptive Server Anywhere does
not include an ODBC Driver Manager. You can still create ODBC
applications by linking directly against the Adaptive Server Anywhere
ODBC driver, but you can then access only Adaptive Server Anywhere data
sources.

233

ODBC samples
Several ODBC samples are included with Adaptive Server Anywhere. You
can find the samples in theSamples\ASAsubdirectory of your
SQL Anywhere directory. By default, this is

C: \Program Files \Sybase \SQL Anywhere 9 \Samples \ASA

The samples in directories starting withODBC illustrate separate and simple
ODBC tasks, such as connecting to a database and executing statements. A
complete sample ODBC program is supplied asSamples\ASA\C\odbc.c.
The program performs the same actions as the embedded SQL dynamic
cursor example program that is in the same directory.

☞ For a description of the associated embedded SQL program, see
“Sample embedded SQL programs” on page 143.

Building the sample ODBC program

The ODBC sample program inSamples\ASA\Cincludes a batch file (shell
script for UNIX) that can be used to compile and link the sample application.

❖ To build the sample ODBC program

1. Open a command prompt and change directory to theSamples\ASA\C
subdirectory of your SQL Anywhere directory.

2. Run themakeallbatch file or shell script

The format of the command is as follows:

makeall api platform compiler

The parameters are as follows:

♦ API Specifyodbc to compile the ODBC example rather than an
embedded SQL version of the application.

♦ Platform SpecifyWINNT to compile for Windows operating
systems.

♦ Compiler Specify the compiler to use to compile the program. The
compiler can be one of the following:

• WC use Watcom C/C++

• MC use Microsoft Visual C++

• BC use Borland C++ Builder

234

Chapter 7. ODBC Programming

Running the sample ODBC program

The sample programodbc.c, when compiled for versions of Windows that
support services, runs optionally as a service.

The two files containing the example code for Windows services are the
source filentsvc.cand the header filentsvc.h. The code allows the linked
executable to be run either as a regular executable or as a Windows service.

❖ To run the ODBC sample

1. Start the program:

♦ Run the fileSamples\ASA\C\odbcwnt.exe.

2. Choose a table:

♦ Choose one of the tables in the sample database. For example, you
may enterCustomeror Employee.

❖ To run the ODBC sample as a Windows service

1. Start Sybase Central.

2. In the left pane, select Adaptive Server Anywhere 9.

3. In the right pane, select the Services tab.

4. From the File menu, choose New➤ Service.

The Service Creation wizard appears.

5. On the first page, enter a name for the service.

6. On the second page, select Sample program.

7. On the third page, browse to the sample program (odbcwnt.exe) from the
Samples\ASA\Csubdirectory of your SQL Anywhere directory.

8. Complete the wizard to install the service.

9. Click Start on the main window to start the service.

When run as a service, the program displays the normal user interface if
possible. It also writes the output to the Application Event Log. If it is not
possible to start the user interface, the program prints one page of data to the
Application Event Log and stops.

235

ODBC handles
ODBC applications use a small set ofhandlesto define basic features such
as database connections and SQL statements. A handle is a 32-bit value.

The following handles are used in essentially all ODBC applications.

♦ Environment The environment handle provides a global context in
which to access data. Every ODBC application must allocate exactly one
environment handle upon starting, and must free it at the end.

The following code illustrates how to allocate an environment handle:

SQLHENV env;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL

_NULL_HANDLE, &env);

♦ Connection A connection is specified by an ODBC driver and a data
source. An application can have several connections associated with its
environment. Allocating a connection handle does not establish a
connection; a connection handle must be allocated first and then used
when the connection is established.

The following code illustrates how to allocate a connection handle:

SQLHDBC dbc;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

♦ Statement A statement handle provides access to a SQL statement and
any information associated with it, such as result sets and parameters.
Each connection can have several statements. Statements are used both
for cursor operations (fetching data) and for single statement execution
(e.g. INSERT, UPDATE, and DELETE).

The following code illustrates how to allocate a statement handle:

SQLHSTMT stmt;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

Allocating ODBC handles

The handle types required for ODBC programs are as follows:

236

Chapter 7. ODBC Programming

Item Handle type

Environment SQLHENV

Connection SQLHDBC

Statement SQLHSTMT

Descriptor SQLHDESC

❖ To use an ODBC handle

1. Call theSQLAllocHandle function.

SQLAllocHandle takes the following parameters:

♦ an identifier for the type of item being allocated

♦ the handle of the parent item

♦ a pointer to the location of the handle to be allocated

☞ For a full description, see SQLAllocHandle in the Microsoft
ODBC Programmer’s Reference.

2. Use the handle in subsequent function calls.

3. Free the object usingSQLFreeHandle.

SQLFreeHandletakes the following parameters:

♦ an identifier for the type of item being freed

♦ the handle of the item being freed

☞ For a full description, see SQLFreeHandle in the Microsoft ODBC
Programmer’s Reference.

Example The following code fragment allocates and frees an environment handle:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(

SQL_HANDLE_ENV,
SQL_NULL_HANDLE,
&env);

if(retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO) {

// success: application code here
}
SQLFreeHandle(SQL_HANDLE_ENV, env);

☞ For more information on return codes and error handling, see“Handling
errors” on page 253.

237

A first ODBC example

The following is a simple ODBC program that connects to the Adaptive
Server Anywhere sample database and immediately disconnects.

☞ You can find this sample as
Samples\ASA\ODBCConnect\odbcconnect.cppin your SQL Anywhere
directory.

#include <stdio.h>
#include "ntodbc.h"

int main(int argc, char* argv[])
{

SQLHENV env;
SQLHDBC dbc;
SQLRETURN retcode;

retcode = SQLAllocHandle(SQL_HANDLE_ENV,
SQL_NULL_HANDLE,
&env);

if (retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO) {

printf("env allocated \n");
/* Set the ODBC version environment attribute */
retcode = SQLSetEnvAttr(env,

SQL_ATTR_ODBC_VERSION,
(void*)SQL_OV_ODBC3, 0);

retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
if (retcode == SQL_SUCCESS

|| retcode == SQL_SUCCESS_WITH_INFO) {
printf("dbc allocated \n");
retcode = SQLConnect(dbc,

(SQLCHAR*) "ASA 9.0 Sample", SQL_NTS,
(SQLCHAR*) "DBA", SQL_NTS,
(SQLCHAR*) "SQL", SQL_NTS);

if (retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO) {

printf("Successfully connected \n");
}
SQLDisconnect(dbc);

}
SQLFreeHandle(SQL_HANDLE_DBC, dbc);

}
SQLFreeHandle(SQL_HANDLE_ENV, env);

return 0;
}

238

Chapter 7. ODBC Programming

Connecting to a data source
This section describes how to use ODBC functions to establish a connection
to an Adaptive Server Anywhere database.

Choosing an ODBC connection function

ODBC supplies a set of connection functions. Which one you use depends
on how you expect your application to be deployed and used:

♦ SQLConnect The simplest connection function.

SQLConnecttakes a data source name and optional user ID and
password. You may wish to useSQLConnect if you hard-code a data
source name into your application.

☞ For more information, see SQLConnect in the MicrosoftODBC
Programmer’s Reference.

♦ SQLDriverConnect Connects to a data source using a connection
string.

SQLDriverConnect allows the application to use Adaptive Server
Anywhere-specific connection information that is external to the data
source. Also, you can useSQLDriverConnect to request that the
Adaptive Server Anywhere driver prompt for connection information.

SQLDriverConnect can also be used to connect without specifying a
data source.

☞ For more information, see SQLDriverConnect in the Microsoft
ODBC Programmer’s Reference.

♦ SQLBrowseConnect Connects to a data source using a connection
string, likeSQLDriverConnect.

SQLBrowseConnectallows your application to build its own dialog
boxes to prompt for connection information and to browse for data
sources used by a particular driver (in this case the Adaptive Server
Anywhere driver).

☞ For more information, see SQLBrowseConnect in the Microsoft
ODBC Programmer’s Reference.

The examples in this chapter mainly useSQLDriverConnect.

☞ For a complete list of connection parameters that can be used in
connection strings, see “Connection parameters”[ASA Database
Administration Guide,page 174].

239

Establishing a connection

Your application must establish a connection before it can carry out any
database operations.

❖ To establish an ODBC connection

1. Allocate an ODBC environment.

For example:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &env);

2. Declare the ODBC version.

By declaring that the application follows ODBC version 3, SQLSTATE
values and some other version-dependent features are set to the proper
behavior. For example:

retcode = SQLSetEnvAttr(env,
SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

3. If necessary, assemble the data source or connection string.

Depending on your application, you may have a hard-coded data source
or connection string, or you may store it externally for greater flexibility.

4. Allocate an ODBC connection item.

For example:

retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

5. Set any connection attributes that must be set before connecting.

Some connection attributes must be set before establishing a connection,
while others can be set either before or after. For example:

retcode = SQLSetConnectAttr(dbc,
SQL_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

☞ For more information, see“Setting connection attributes” on
page 241.

6. Call the ODBC connection function.

For example:

240

Chapter 7. ODBC Programming

if (retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO) {

printf("dbc allocated \n");
retcode = SQLConnect(dbc,

(SQLCHAR*) "ASA 9.0 Sample", SQL_NTS,
(SQLCHAR*) "DBA", SQL_NTS,
(SQLCHAR*) "SQL", SQL_NTS);

if (retcode == SQL_SUCCESS
|| retcode == SQL_SUCCESS_WITH_INFO){

// successfully connected.

☞ You can find a complete sample as
Samples\ASA\ODBCConnect\odbcconnect.cppin your SQL Anywhere
directory.

Notes ♦ SQL_NTS Every string passed to ODBC has a corresponding length. If
the length is unknown, you can pass SQL_NTS indicating that it is aNull
Terminated String whose end is marked by the null character (\0).

♦ SQLSetConnectAttr By default, ODBC operates in auto-commit mode.
This mode is turned off by setting SQL_AUTOCOMMIT to false.

☞ For more information, see“Setting connection attributes” on
page 241.

Setting connection attributes

You use the SQLSetConnectAttr function to control details of the
connection. For example, the following statement turns off ODBC
autocommit behavior.

retcode = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

☞ For more information including a list of connection attributes, see
SQLSetConnectAttr in the MicrosoftODBC Programmer’s Reference.

Many aspects of the connection can be controlled through the connection
parameters. For information, see “Connection parameters”[ASA Database
Administration Guide,page 70].

Threads and connections in ODBC applications

You can develop multi-threaded ODBC applications for Adaptive Server
Anywhere. It is recommended that you use a separate connection for each
thread.

You can use a single connection for multiple threads. However, the database
server does not allow more than one active request for any one connection at

241

a time. If one thread executes a statement that takes a long time, all other
threads must wait until the request is complete.

242

Chapter 7. ODBC Programming

Executing SQL statements
ODBC includes several functions for executing SQL statements:

♦ Direct execution Adaptive Server Anywhere parses the SQL statement,
prepares an access plan, and executes the statement. Parsing and access
plan preparation are calledpreparing the statement.

♦ Prepared execution The statement preparation is carried out separately
from the execution. For statements that are to be executed repeatedly, this
avoids repeated preparation and so improves performance.

☞ See“Executing prepared statements” on page 245.

Executing statements directly

TheSQLExecDirect function prepares and executes a SQL statement. The
statement may be optionally include parameters.

The following code fragment illustrates how to execute a statement without
parameters. TheSQLExecDirect function takes a statement handle, a SQL
string, and a length or termination indicator, which in this case is a
null-terminated string indicator.

☞ The procedure described in this section is straightforward but inflexible.
The application cannot take any input from the user to modify the statement.
For a more flexible method of constructing statements, see“Executing
statements with bound parameters” on page 244.

❖ To execute a SQL statement in an ODBC application

1. Allocate a handle for the statement usingSQLAllocHandle.

For example, the following statement allocates a handle of type
SQL_HANDLE_STMTwith namestmt , on a connection with handledbc :

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2. Call the SQLExecDirect function to execute the statement:

For example, the following lines declare a statement and execute it. The
declaration ofdeletestmt would usually occur at the beginning of the
function:

SQLCHAR deletestmt[STMT_LEN] =
"DELETE FROM department WHERE dept_id = 201";

SQLExecDirect(stmt, deletestmt, SQL_NTS) ;

☞ For a complete sample with error checking, see
Samples\ASA\ODBCExecute\odbcexecute.cpp.

243

☞ For more information onSQLExecDirect, see SQLExecDirect in the
MicrosoftODBC Programmer’s Reference.

Executing statements with bound parameters

This section describes how to construct and execute a SQL statement, using
bound parameters to set values for statement parameters at runtime.

❖ To execute a SQL statement with bound parameters in an ODBC
application

1. Allocate a handle for the statement usingSQLAllocHandle.

For example, the following statement allocates a handle of type
SQL_HANDLE_STMTwith namestmt , on a connection with handledbc :

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2. Bind parameters for the statement usingSQLBindParameter.

For example, the following lines declare variables to hold the values for
the department ID, department name, and manager ID, as well as for the
statement string itself. They then bind parameters to the first, second, and
third parameters of a statement executed using thestmt statement handle.

#defined DEPT_NAME_LEN 20
SQLINTEGER cbDeptID = 0,

cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptname[DEPT_NAME_LEN];
SQLSMALLINT deptID, managerID;
SQLCHAR insertstmt[STMT_LEN] =

"INSERT INTO department "
"(dept_id, dept_name, dept_head_id)"
"VALUES (?, ?, ?,)";

SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&deptID, 0, &cbDeptID);

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
deptname, 0,&cbDeptName);

SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&managerID, 0, &cbManagerID);

3. Assign values to the parameters.

For example, the following lines assign values to the parameters for the
fragment of step 2.

deptID = 201;
strcpy((char *) deptname, "Sales East");
managerID = 902;

244

Chapter 7. ODBC Programming

Commonly, these variables would be set in response to user action.

4. Execute the statement usingSQLExecDirect.

For example, the following line executes the statement string held in
insertstmt on the statement handlestmt.

SQLExecDirect(stmt, insertstmt, SQL_NTS) ;

Bind parameters are also used with prepared statements to provide
performance benefits for statements that are executed more than once. For
more information, see“Executing prepared statements” on page 245

☞ The above code fragments to not include error checking. For a complete
sample, including error checking, see
Samples\ASA\ODBCExecute\odbcexecute.cpp.

☞ For more information onSQLExecDirect, see SQLExecDirect in the
MicrosoftODBC Programmer’s Reference.

Executing prepared statements

Prepared statements provide performance advantages for statements that are
used repeatedly. ODBC provides a full set of functions for using prepared
statements.

☞ For an introduction to prepared statements, see“Preparing statements”
on page 14.

❖ To execute a prepared SQL statement

1. Prepare the statement usingSQLPrepare.

For example, the following code fragment illustrates how to prepare an
INSERT statement:

SQLRETURN retcode;
SQLHSTMT stmt;
retcode = SQLPrepare(stmt,

"INSERT INTO department
(dept_id, dept_name, dept_head_id)
VALUES (?, ?, ?,)",

SQL_NTS);

In this example:
♦ retcode Holds a return code that should be tested for success or

failure of the operation.

♦ stmt Provides a handle to the statement so that it can be referenced
later.

♦ ? The question marks are placeholders for statement parameters.

245

2. Set statement parameter values usingSQLBindParameter.

For example, the following function call sets the value of the dept_id
variable:

SQLBindParameter(stmt,
1,
SQL_PARAM_INPUT,
SQL_C_SSHORT,
SQL_INTEGER,
0,
0,
&sDeptID,
0,
&cbDeptID);

In this example:
♦ stmt is the statement handle

♦ 1 indicates that this call sets the value of the first placeholder.

♦ SQL_PARAM_INPUT indicates that the parameter is an input
statement.

♦ SQL_C_SHORT indicates the C data type being used in the
application.

♦ SQL_INTEGER indicates SQL data type being used in the database.

♦ The next two parameters indicate the column precision and the number
of decimal digits: both zero for integers.

♦ &sDeptID is a pointer to a buffer for the parameter value.

♦ 0 indicates the length of the buffer, in bytes.

♦ &cbDeptID is a pointer to a buffer for the length of the parameter
value.

3. Bind the other two parameters and assign values tosDeptId.

4. Execute the statement:

retcode = SQLExecute(stmt);

Steps 2 to 4 can be carried out multiple times.

5. Drop the statement.

Dropping the statement frees resources associated with the statement
itself. You drop statements usingSQLFreeHandle.

☞ For a complete sample, including error checking, see
Samples\ASA\ODBCPrepare\odbcprepare.cpp.

☞ For more information onSQLPrepare, see SQLPrepare in the
MicrosoftODBC Programmer’s Reference.

246

Chapter 7. ODBC Programming

Working with result sets
ODBC applications use cursors to manipulate and update result sets.
Adaptive Server Anywhere provides extensive support for different kinds of
cursors and cursor operations.

☞ For an introduction to cursors, see“Working with cursors” on page 21.

Choosing a cursor characteristics

ODBC functions that execute statements and manipulate result sets use
cursors to carry out their tasks. Applications open a cursor implicitly
whenever they execute aSQLExecuteor SQLExecDirect function.

For applications that move through a result set only in a forward direction
and do not update the result set, cursor behavior is relatively straightforward.
By default, ODBC applications request this behavior. ODBC defines a
read-only, forward-only cursor, and Adaptive Server Anywhere provides a
cursor optimized for performance in this case.

☞ For a simple example of a forward-only cursor, see“Retrieving data” on
page 248.

For applications that need to scroll both forward and backward through a
result set, such as many graphical user interface applications, cursor
behavior is more complex. What does the application when it returns to a
row that has been updated by some other application? ODBC defines a
variety ofscrollable cursorsto allow you to build in the behavior that suits
your application. Adaptive Server Anywhere provides a full set of cursors to
match the ODBC scrollable cursor types.

You set the required ODBC cursor characteristics by calling the
SQLSetStmtAttr function that defines statement attributes. You must call
SQLSetStmtAttr before executing a statement that creates a result set.

You can use SQLSetStmtAttr to set many cursor characteristics. The
characteristics that determine the cursor type that Adaptive Server Anywhere
supplies include the following:

♦ SQL_ATTR_CURSOR_SCROLLABLE Set to SQL_SCROLLABLE for
a scrollable cursor and SQL_NONSCROLLABLE for a forward-only
cursor. SQL_NONSCROLLABLE is the default.

♦ SQL_ATTR_CONCURRENCY Set to one of the following values:

• SQL_CONCUR_READ_ONLY Disallow updates.
SQL_CONCUR_READ_ONLY is the default.

247

• SQL_CONCUR_LOCK Use the lowest level of locking sufficient to
ensure that the row can be updated.

• SQL_CONCUR_ROWVER Use optimistic concurrency control,
comparing row versions such as SQLBase ROWID or Sybase
TIMESTAMP.

• SQL_CONCUR_VALUES Use optimistic concurrency control,
comparing values.

☞ For more information, see SQLSetStmtAttr in the MicrosoftODBC
Programmer’s Reference.

Example The following fragment requests a read-only, scrollable cursor:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_SCROLLABLE,

SQL_SCROLLABLE, 0);

Retrieving data

To retrieve rows from a database, you execute a SELECT statement using
SQLExecute or SQLExecDirect. This opens a cursor on the statement. You
then useSQLFetchor SQLExtendedFetchto fetch rows through the
cursor. When an application free the statement usingSQLFreeHandle it
closes the cursor.

To fetch values from a cursor, your application can use eitherSQLBindCol
or SQLGetData. If you useSQLBindCol, values are automatically
retrieved on each fetch. If you useSQLGetData, you must call it for each
column after each fetch.

SQLGetData is used to fetch values in pieces for columns such as LONG
VARCHAR or LONG BINARY. As an alternative, you can set the
SQL_MAX_LENGTH statement attribute to a value large enough to hold
the entire value for the column. The default value for
SQL_ATTR_MAX_LENGTH is 256 kb.

☞ The following code fragment opens a cursor on a query and retrieves
data through the cursor. Error checking has been omitted to make the
example easier to read. The fragment is taken from a complete sample,
which can be found atSamples\ASA\ODBCSelect\odbcselect.cpp.

SQLINTEGER cbDeptID = 0, cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptname[DEPT_NAME_LEN];
SQLSMALLINT deptID, managerID;
SQLHENV env;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;

248

Chapter 7. ODBC Programming

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
SQLSetEnvAttr(env,

SQL_ATTR_ODBC_VERSION,
(void*)SQL_OV_ODBC3, 0);

SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLConnect(dbc,

(SQLCHAR*) "ASA 9.0 Sample", SQL_NTS,
(SQLCHAR*) "DBA", SQL_NTS,
(SQLCHAR*) "SQL", SQL_NTS);

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLBindCol(stmt, 1,

SQL_C_SSHORT, &deptID, 0, &cbDeptID);
SQLBindCol(stmt, 2,

SQL_C_CHAR, deptname,
sizeof(deptname), &cbDeptName);

SQLBindCol(stmt, 3,
SQL_C_SSHORT, &managerID, 0, &cbManagerID);

SQLExecDirect(stmt, (SQLCHAR *)
"SELECT dept_id, dept_name, dept_head_id FROM DEPARTMENT "

"ORDER BY dept_id", SQL_NTS);
while((retcode = SQLFetch(stmt)) != SQL_NO_DATA){

printf("%d %20s %d \n", deptID, deptname, managerID);
}
SQLFreeHandle(SQL_HANDLE_STMT, stmt);
SQLDisconnect(dbc);
SQLFreeHandle(SQL_HANDLE_DBC, dbc);
SQLFreeHandle(SQL_HANDLE_ENV, env);

The number of row positions you can fetch in a cursor is governed by the
size of an integer. You can fetch rows numbered up to number 2147483646,
which is one less than the value that can be held in an integer. When using
negative numbers (rows from the end) you can fetch down to one more than
the largest negative value that can be held in an integer.

Updating and deleting rows through a cursor

The Microsoft ODBC Programmer’s Reference suggests that you use
SELECT. . . FOR UPDATE to indicate that a query is updateable using
positioned operations. You do not need to use the FOR UPDATE clause in
Adaptive Server Anywhere: SELECT statements are automatically
updateable as long as the following conditions are met:

♦ The underlying query supports updates.

That is to say, as long as a data modification statement on the columns in
the result is meaningful, then positioned data modification statements can
be carried out on the cursor.

The ANSI_UPDATE_CONSTRAINTS database option limits the type of
queries that are updateable.

249

☞ For more information, see “ANSI_UPDATE_CONSTRAINTS
option [compatibility]” [ASA Database Administration Guide,page 576].

♦ The cursor type supports updates.

If you are using a read-only cursor, you cannot update the result set.

ODBC provides two alternatives for carrying out positioned updates and
deletes:

♦ Use theSQLSetPosfunction.

Depending on the parameters supplied (SQL_POSITION,
SQL_REFRESH, SQL_UPDATE, SQL_DELETE)SQLSetPossets the
cursor position and allows an application to refresh data, or update, or
delete data in the result set.

This is the method to use with Adaptive Server Anywhere.

♦ Send positioned UPDATE and DELETE statements usingSQLExecute.
This method should not be used with Adaptive Server Anywhere.

Using bookmarks

ODBC providesbookmarks, which are values used to identify rows in a
cursor. Adaptive Server Anywhere supports bookmarks for all kinds of
cursors except dynamic cursors.

Before ODBC 3.0, a database could specify only whether it supported
bookmarks or not: there was no interface to provide this information for
each cursor type. There was no way for a database server to indicate for
what kind of cursor bookmarks were supported. For ODBC 2 applications,
Adaptive Server Anywhere returns that it does support bookmarks. There is
therefore nothing to prevent you from trying to use bookmarks with dynamic
cursors; however, you should not use this combination.

250

Chapter 7. ODBC Programming

Calling stored procedures
This section describes how to create and call stored procedures and process
the results from an ODBC application.

☞ For a full description of stored procedures and triggers, see “Using
Procedures, Triggers, and Batches”[ASA SQL User’s Guide,page 609].

Procedures and result
sets

There are two types of procedures: those that return result sets and those that
do not. You can useSQLNumResultColsto tell the difference: the number
of result columns is zero if the procedure does not return a result set. If there
is a result set, you can fetch the values usingSQLFetchor
SQLExtendedFetchjust like any other cursor.

Parameters to procedures should be passed using parameter markers
(question marks). UseSQLBindParameter to assign a storage area for each
parameter marker, whether it is an INPUT, OUTPUT, or INOUT parameter.

To handle multiple result sets, ODBC must describe the currently executing
cursor, not the procedure-defined result set. Therefore, ODBC does not
always describe column names as defined in the RESULT clause of the
stored procedure definition. To avoid this problem, you can use column
aliases in your procedure result set cursor.

Example This example creates and calls a procedure that does not return a result set.
The procedure takes one INOUT parameter, and increments its value. In the
example, the variablenum_colwill have the value zero, since the procedure
does not return a result set. Error checking has been omitted to make the
example easier to read.

HDBC dbc;
HSTMT stmt;
long i;
SWORD num_col;

/* Create a procedure */
SQLAllocStmt(dbc, &stmt);
SQLExecDirect(stmt,

"CREATE PROCEDURE Increment(INOUT a INT)" \
" BEGIN" \

" SET a = a + 1" \
" END", SQL_NTS);

/* Call the procedure to increment ’i’ */
i = 1;
SQLBindParameter(stmt, 1, SQL_C_LONG, SQL_INTEGER, 0,

0, &i, NULL);
SQLExecDirect(stmt, "CALL Increment(?)",

SQL_NTS);
SQLNumResultCols(stmt, &num_col);
do_something(i);

251

Example This example calls a procedure that returns a result set. In the example, the
variablenum_colwill have the value 2 since the procedure returns a result
set with two columns. Again, error checking has been omitted to make the
example easier to read.

HDBC dbc;
HSTMT stmt;
SWORD num_col;
RETCODE retcode;
char emp_id[10];
char emp_lname[20];

/* Create the procedure */
SQLExecDirect(stmt,

"CREATE PROCEDURE employees()" \
" RESULT(emp_id CHAR(10), emp_lname CHAR(20))" \
" BEGIN" \
" SELECT emp_id, emp_lname FROM employee" \
" END", SQL_NTS);

/* Call the procedure - print the results */
SQLExecDirect(stmt, "CALL employees()", SQL_NTS);
SQLNumResultCols(stmt, &num_col);
SQLBindCol(stmt, 1, SQL_C_CHAR, &emp_id,

sizeof(emp_id), NULL);
SQLBindCol(stmt, 2, SQL_C_CHAR, &emp_lname,

sizeof(emp_lname), NULL);

for(;;) {
retcode = SQLFetch(stmt);
if(retcode == SQL_NO_DATA_FOUND) {

retcode = SQLMoreResults(stmt);
if(retcode == SQL_NO_DATA_FOUND) break;

} else {
do_something(emp_id, emp_lname);

}
}

252

Chapter 7. ODBC Programming

Handling errors
Errors in ODBC are reported using the return value from each of the ODBC
function calls and either theSQLError function or theSQLGetDiagRec
function. TheSQLError function was used in ODBC versions up to, but not
including, version 3. As of version 3 theSQLError function has been
deprecated and replaced by theSQLGetDiagRecfunction.

Every ODBC function returns aSQLRETURN, which is one of the
following status codes:

Status code Description

SQL_SUCCESS No error.

SQL_SUCCESS_WITH_-
INFO

The function completed, but a call toSQLEr-
ror will indicate a warning.

The most common case for this status is that
a value being returned is too long for the
buffer provided by the application.

SQL_ERROR The function did not complete because of an
error. CallSQLError to get more informa-
tion on the problem.

SQL_INVALID_HANDLE An invalid environment, connection, or
statement handle was passed as a parameter.

This often happens if a handle is used after
it has been freed, or if the handle is the null
pointer.

SQL_NO_DATA_FOUND There is no information available.

The most common use for this status is when
fetching from a cursor; it indicates that there
are no more rows in the cursor.

SQL_NEED_DATA Data is needed for a parameter.

This is an advanced feature described in the
ODBC SDK documentation underSQL-
ParamDataandSQLPutData.

Every environment, connection, and statement handle can have one or more
errors or warnings associated with it. Each call toSQLError or
SQLGetDiagRecreturns the information for one error and removes the
information for that error. If you do not callSQLError or SQLGetDiagRec

253

to remove all errors, the errors are removed on the next function call that
passes the same handle as a parameter.

Each call toSQLError passes three handles for an environment,
connection, and statement. The first call uses SQL_NULL_HSTMT to get
the error associated with a connection. Similarly, a call with both
SQL_NULL_DBC and SQL_NULL_HSTMT get any error associated with
the environment handle.

Each call toSQLGetDiagReccan pass either an environment, connection or
statement handle. The first call passes in a handle of type
SQL_HANDLE_DBC to get the error associated with a connection. The
second call passes in a handle of type SQL_HANDLE_STMT to get the
error associated with the statement that was just executed.

SQLError andSQLGetDiagRecreturn SQL_SUCCESS if there is an error
to report (not SQL_ERROR), and SQL_NO_DATA_FOUND if there are no
more errors to report.

Example 1 The following code fragment usesSQLError and return codes:

/* Declare required variables */
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;
UCHAR errmsg[100];
/* code omitted here */
retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(retcode == SQL_ERROR){

SQLError(env, dbc, SQL_NULL_HSTMT, NULL, NULL,
errmsg, sizeof(errmsg), NULL);

/* Assume that print_error is defined */
print_error("Allocation failed", errmsg);
return;

}

/* Delete items for order 2015 */
retcode = SQLExecDirect(stmt,

"delete from sales_order_items where id=2015",
SQL_NTS);

if(retcode == SQL_ERROR) {
SQLError(env, dbc, stmt, NULL, NULL,

errmsg, sizeof(errmsg), NULL);
/* Assume that print_error is defined */
print_error("Failed to delete items", errmsg);
return;

}

Example 2 The following code fragment usesSQLGetDiagRecand return codes:

254

Chapter 7. ODBC Programming

/* Declare required variables */
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN retcode;
SQLSMALLINT errmsglen;
SQLINTEGER errnative;
UCHAR errmsg[255];
UCHAR errstate[5];
/* code omitted here */
retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(retcode == SQL_ERROR){

SQLGetDiagRec(SQL_HANDLE_DBC, dbc, 1, errstate,
&errnative, errmsg, sizeof(errmsg), &errmsglen);

/* Assume that print_error is defined */
print_error("Allocation failed", errstate,

errnative, errmsg);
return;

}
/* Delete items for order 2015 */
retcode = SQLExecDirect(stmt,

"delete from sales_order_items where id=2015",
SQL_NTS);

if(retcode == SQL_ERROR) {
SQLGetDiagRec(SQL_HANDLE_STMT, stmt, recnum,

errstate,
&errnative, errmsg, sizeof(errmsg), &errmsglen);

/* Assume that print_error is defined */
print_error("Failed to delete items", errstate,

errnative, errmsg);
return;

}

255

CHAPTER 8

The Database Tools Interface

About this chapter This chapter describes how to use the database tools library that is provided
with Adaptive Server Anywhere to add database management features to C
or C++ applications.

Contents Topic: page

Introduction to the database tools interface 258

Using the database tools interface 259

DBTools functions 267

DBTools structures 278

DBTools enumeration types 309

257

Introduction to the database tools interface
Sybase Adaptive Server Anywhere includes Sybase Central and a set of
utilities for managing databases. These database management utilities carry
out tasks such as backing up databases, creating databases, translating
transaction logs to SQL, and so on.

Supported platforms All the database management utilities use a shared library called the
database tools library. It is supplied for each of the Windows operating
systems. The name of this library isdbtool9.dll.

You can develop your own database management utilities or incorporate
database management features into your applications by calling the database
tools library. This chapter describes the interface to the database tools
library. In this chapter, we assume you are familiar with how to call DLLs
from the development environment you are using.

The database tools library has functions, or entry points, for each of the
database management utilities. In addition, functions must be called before
use of other database tools functions and when you have finished using other
database tools functions.

Windows CE Thedbtool9.dll library is supplied for Windows CE, but includes only entry
points for DBToolsInit, DBToolsFini, DBRemoteSQL, and
DBSynchronizeLog. Other tools are not provided for Windows CE.

The dbtools.h header file The dbtools header file included with Adaptive Server Anywhere lists the
entry points to the DBTools library and also the structures used to pass
information to and from the library. Thedbtools.hfile is installed into theh
subdirectory under your installation directory. You should consult the
dbtools.hfile for the latest information about the entry points and structure
members.

Thedbtools.hheader file includes two other files:

♦ sqlca.h This is included for resolution of various macros, not for the
SQLCA itself.

♦ dllapi.h Defines preprocessor macros for operating-system dependent
and language-dependent macros.

Also, thesqldef.hheader file includes error return values.

258

Chapter 8. The Database Tools Interface

Using the database tools interface
This section provides an overview of how to develop applications that use
the DBTools interface for managing databases.

Using the import libraries

In order to use the DBTools functions, you must link your application against
a DBToolsimport library which contains the required function definitions.

Supported platforms Import libraries are compiler-specific and are supplied for Windows
operating systems with the exception of Windows CE. Import libraries for
the DBTools interface are provided with Adaptive Server Anywhere, and can
be found in thelib subdirectory of each operating system’s directory, under
your installation directory. The provided DBTools import libraries are as
follows:

Compiler Library

Watcom win32\dbtlstw.lib

Microsoft win32\dbtlstM.lib

Borland win32\dbtlstB.lib

Starting and finishing the DBTools library

Before using any other DBTools functions, you must call DBToolsInit.
When you are finished using the DBTools DLL, you must call DBToolsFini.

The primary purpose of the DBToolsInit and DBToolsFini functions is to
allow the DBTools DLL to load the Adaptive Server Anywhere language
DLL. The language DLL contains localized versions of all error messages
and prompts that DBTools uses internally. If DBToolsFini is not called, the
reference count of the language DLL is not decremented and it will not be
unloaded, so be careful to ensure there is a matched pair of
DBToolsInit/DBToolsFini calls.

The following code fragment illustrates how to initialize and clean up
DBTools:

259

// Declarations
a_dbtools_info info;
short ret;

//Initialize the a_dbtools_info structure
memset(&info, 0, sizeof(a_dbtools_info));
info.errorrtn = (MSG_CALLBACK)MyErrorRtn;

// initialize DBTools
ret = DBToolsInit(&info);
if(ret != EXIT_OKAY) {

// DLL initialization failed
...

}
// call some DBTools routines . . .
...
// cleanup the DBTools dll
DBToolsFini(&info);

Calling the DBTools functions

All the tools are run by first filling out a structure, and then calling a function
(or entry point) in the DBTools DLL. Each entry point takes a pointer to a
single structure as argument.

The following example shows how to use the DBBackup function on a
Windows operating system.

// Initialize the structure
a_backup_db backup_info;
memset(&backup_info, 0, sizeof(backup_info));

// Fill out the structure
backup_info.version = DB_TOOLS_VERSION_NUMBER;
backup_info.output_dir = "C: \BACKUP";
backup_info.connectparms ="uid=DBA;pwd=SQL;dbf=asademo.db";
backup_info.startline = "dbeng9.EXE";
backup_info.confirmrtn = (MSG_CALLBACK) ConfirmRtn ;
backup_info.errorrtn = (MSG_CALLBACK) ErrorRtn ;
backup_info.msgrtn = (MSG_CALLBACK) MessageRtn ;
backup_info.statusrtn = (MSG_CALLBACK) StatusRtn ;
backup_info.backup_database = TRUE;

// start the backup
DBBackup(&backup_info);

☞ For information about the members of the DBTools structures, see
“DBTools structures” on page 278.

260

Chapter 8. The Database Tools Interface

Software component return codes

All database tools are provided as entry points in a DLL. These entry points
use the following return codes:

Code Explanation

0 Success

1 General failure

2 Invalid file format

3 File not found, unable to open

4 Out of memory

5 Terminated by the user

6 Failed communications

7 Missing a required database name

8 Client/server protocol mismatch

9 Unable to connect to the database server

10 Database server not running

11 Database server not found

254 Reached stop time

255 Invalid parameters on the command-line

Using callback functions

Several elements in DBTools structures are of type MSG_CALLBACK.
These are pointers to callback functions.

Uses of callback
functions

Callback functions allow DBTools functions to return control of operation to
the user’s calling application. The DBTools library uses callback functions
to handle messages sent to the user by the DBTools functions for four
purposes:

♦ Confirmation Called when an action needs to be confirmed by the user.
For example, if the backup directory does not exist, the tools DLL asks if
it needs to be created.

♦ Error message Called to handle a message when an error occurs, such

261

as when an operation is out of disk space.

♦ Information message Called for the tools to display some message to
the user (such as the name of the current table being backed up).

♦ Status information Called for the tools to display the status of an
operation (such as the percentage done when unloading a table).

Assigning a callback
function to a structure

You can directly assign a callback routine to the structure. The following
statement is an example using a backup structure:

backup_info.errorrtn = (MSG_CALLBACK) MyFunction

MSG_CALLBACK is defined in thedllapi.h header file supplied with
Adaptive Server Anywhere. Tools routines can call back to the Calling
application with messages that should appear in the appropriate user
interface, whether that be a windowing environment, standard output on a
character-based system, or other user interface.

Confirmation callback
function example

The following example confirmation routine asks the user to answer YES or
NO to a prompt and returns the user’s selection:

extern short _callback ConfirmRtn(
char far * question)

{
int ret;
if(question != NULL) {

ret = MessageBox(HwndParent, question,
"Confirm", MB_ICONEXCLAMTION|MB_YESNO);

}
return(0);

}

Error callback function
example

The following is an example of an error message handling routine, which
displays the error message in a message box.

extern short _callback ErrorRtn(
char far * errorstr)

{
if(errorstr != NULL) {

ret = MessageBox(HwndParent, errorstr,
"Backup Error", MB_ICONSTOP|MB_OK);

}
return(0);

}

Message callback
function example

A common implementation of a message callback function outputs the
message to the screen:

262

Chapter 8. The Database Tools Interface

extern short _callback MessageRtn(
char far * errorstr)

{
if(messagestr != NULL) {
OutputMessageToWindow(messagestr);
}
return(0);

}

Status callback function
example

A status callback routine is called when the tools needs to display the status
of an operation (like the percentage done unloading a table). Again, a
common implementation would just output the message to the screen:

extern short _callback StatusRtn(
char far * statusstr)

{
if(statusstr == NULL) {

return FALSE;
}
OutputMessageToWindow(statustr);
return TRUE;

}

Version numbers and compatibility

Each structure has a member that indicates the version number. You should
use this version member to hold the version of the DBTools library that your
application was developed against. The current version of the DBTools
library is included as the constant in thedbtools.hheader file.

❖ To assign the current version number to a structure

1. Assign the version constant to the version member of the structure before
calling the DBTools function. The following line assigns the current
version to a backup structure:

backup_info.version = DB_TOOLS_VERSION_NUMBER;

Compatibility The version number allows your application to continue working against
newer versions of the DBTools library. The DBTools functions use the
version number supplied by your application to allow the application to
work, even if new members have been added to the DBTools structure.

Applications will not work against older versions of the DBTools library.

Using bit fields

Many of the DBTools structures use bit fields to hold Boolean information in
a compact manner. For example, the backup structure has the following bit

263

fields:

a_bit_field backup_database : 1;
a_bit_field backup_logfile : 1;
a_bit_field backup_writefile: 1;
a_bit_field no_confirm : 1;
a_bit_field quiet : 1;
a_bit_field rename_log : 1;
a_bit_field truncate_log : 1;
a_bit_field rename_local_log: 1;

Each bit field is one bit long, indicated by the 1 to the right of the colon in
the structure declaration. The specific data type used depends on the value
assigned toa_bit_field, which is set at the top ofdbtools.h, and is operating
system-dependent.

You assign an integer value of 0 or 1 to a bit field to pass Boolean
information to the structure.

A DBTools example

You can find this sample and instructions for compiling it in the
Samples\ASA\DBToolssubdirectory of your SQL Anywhere directory. The
sample program itself isSamples\ASA\DBTools\main.c. The sample
illustrates how to use the DBTools library to carry out a backup of a
database.

define WINNT

#include <stdio.h>
#include "windows.h"
#include "string.h"
#include "dbtools.h"

extern short _callback ConfirmCallBack(char far * str){
if(MessageBox(NULL, str, "Backup",

MB_YESNO|MB_ICONQUESTION) == IDYES) {
return 1;

}
return 0;

}

extern short _callback MessageCallBack(char far * str){
if(str != NULL) {

fprintf(stdout, "%s", str);
fprintf(stdout, " \n");
fflush(stdout);

}
return 0;

}

264

Chapter 8. The Database Tools Interface

extern short _callback StatusCallBack(char far * str){
if(str != NULL) {

fprintf(stdout, "%s", str);
fprintf(stdout, " \n");
fflush(stdout);

}
return 0;

}

extern short _callback ErrorCallBack(char far * str){
if(str != NULL) {

fprintf(stdout, "%s", str);
fprintf(stdout, " \n");
fflush(stdout);

}
return 0;

}

// Main entry point into the program.
int main(int argc, char * argv[]){

a_backup_db backup_info;
a_dbtools_info dbtinfo;
char dir_name[_MAX_PATH + 1];
char connect[256];
HINSTANCE hinst;
FARPROC dbbackup;
FARPROC dbtoolsinit;
FARPROC dbtoolsfini;

// Always initialize to 0 so new versions
//of the structure will be compatible.
memset(&backup_info, 0, sizeof(a_backup_db));
backup_info.version = DB_TOOLS_VERSION_9_0_00;
backup_info.quiet = 0;
backup_info.no_confirm = 0;
backup_info.confirmrtn =

(MSG_CALLBACK)ConfirmCallBack;
backup_info.errorrtn = (MSG_CALLBACK)ErrorCallBack;
backup_info.msgrtn = (MSG_CALLBACK)MessageCallBack;
backup_info.statusrtn = (MSG_CALLBACK)StatusCallBack;

if(argc > 1) {
strncpy(dir_name, argv[1], _MAX_PATH);

} else {
// DBTools does not expect (or like) the
// trailing slash
strcpy(dir_name, "c: \\temp");

}
backup_info.output_dir = dir_name;

265

if(argc > 2) {
strncpy(connect, argv[2], 255);

} else {
// Assume that the engine is already running.
strcpy(connect, "DSN=ASA 9.0 Sample");

}
backup_info.connectparms = connect;
backup_info.startline = "";
backup_info.quiet = 0;
backup_info.no_confirm = 0;
backup_info.backup_database = 1;
backup_info.backup_logfile = 1;
backup_info.backup_writefile = 1;
backup_info.rename_log = 0;
backup_info.truncate_log = 0;

hinst = LoadLibrary("dbtool9.dll");
if(hinst == NULL) {

// Failed
return 0;

}

dbtinfo.errorrtn = (MSG_CALLBACK)ErrorCallBack;
dbbackup = GetProcAddress((HMODULE)hinst,

"_DBBackup@4");
dbtoolsinit = GetProcAddress((HMODULE)hinst,

"_DBToolsInit@4");
dbtoolsfini = GetProcAddress((HMODULE)hinst,

"_DBToolsFini@4");
(*dbtoolsinit)(&dbtinfo);
(*dbbackup)(&backup_info);
(*dbtoolsfini)(&dbtinfo);
FreeLibrary(hinst);
return 0;

}

266

Chapter 8. The Database Tools Interface

DBTools functions
This section describes the functions available in the DBTools library. The
functions are listed alphabetically.

DBBackup function

Function Database backup function. This function is used by thedbbackup
command-line utility.

Prototype short DBBackup (const a_backup_db * backup-db);

Parameters

Parameter Description

backup-db Pointer to“a_backup_db structure” on page 278

Return value A return code, as listed in“Software component return codes” on page 261.

Usage The DBBackup function manages all database backup tasks.

☞ For descriptions of these tasks, see “The Backup utility”[ASA Database
Administration Guide,page 458].

See also “a_backup_db structure” on page 278

DBChangeLogName function

Function Changes the name of the transaction log file. This function is used by the
dblog command-line utility.

Prototype short DBChangeLogName (const a_change_log * change-log);

Parameters

Parameter Description

change-log Pointer to“a_change_log structure” on page 280

Return value A return code, as listed in“Software component return codes” on page 261.

Usage The-t option of thedblog command-line utility changes the name of the
transaction log. DBChangeLogName provides a programmatic interface to
this function.

☞ For descriptions of thedblog utility, see “The Transaction Log utility”
[ASA Database Administration Guide,page 527].

See also “a_change_log structure” on page 280

267

DBChangeWriteFile function

Function Changes a write file to refer to another database file. This function is used by
thedbwrite command-line utility when the -d option is applied.

Prototype short DBChangeWriteFile (const a_writefile * writefile);

Parameters

Parameter Description

writefile Pointer to“a_writefile structure” on page 306

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Write File utility and its features, see “The
Write File utility” [ASA Database Administration Guide,page 551].

See also “DBCreateWriteFile function” on page 269

“DBStatusWriteFile function” on page 272

“a_writefile structure” on page 306

DBCollate function

Function Extracts a collation sequence from a database.

Prototype short DBCollate (const a_db_collation * db-collation);

Parameters

Parameter Description

db-collation Pointer to“a_db_collation structure” on page 286

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the collation utility and its features, see “The
Collation utility” [ASA Database Administration Guide,page 462]

See also “a_db_collation structure” on page 286

DBCompress function

Function Compresses a database file. This function is used by thedbshrink
command-line utility.

Prototype short DBCompress (const a_compress_db * compress-db);

Parameters

268

Chapter 8. The Database Tools Interface

Parameter Description

compress-db Pointer to“a_compress_db structure” on page 282

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Compression utility and its features, see “The
Compression utility”[ASA Database Administration Guide,page 468].

See also “a_compress_db structure” on page 282

DBCreate function

Function Creates a database. This function is used by thedbinit command-line utility.

Prototype short DBCreate (const a_create_db * create-db);

Parameters

Parameter Description

create-db Pointer to“a_create_db structure” on page 284

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the initialization utility, see “The Initialization
utility” [ASA Database Administration Guide,page 485].

See also “a_create_db structure” on page 284

DBCreateWriteFile function

Function Creates a write file. This function is used by thedbwrite command-line
utility when the-c option is applied.

Prototype short DBCreateWriteFile (const a_writefile * writefile);

Parameters

Parameter Description

writefile Pointer to“a_writefile structure” on page 306

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Write File utility and its features, see “The
Write File utility” [ASA Database Administration Guide,page 551].

See also “DBChangeWriteFile function” on page 268

“DBStatusWriteFile function” on page 272

“a_writefile structure” on page 306

269

DBCrypt function

Function Encrypts a database file. This function is used by thedbinit command-line
utility when -e options are applied.

Prototype short DBCrypt (const a_crypt_db * crypt-db);

Parameters

Parameter Description

crypt-db Pointer to“a_crypt_db structure” on page 286

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about encrypting databases, see “Creating a database
using the dbinit command-line utility”[ASA Database Administration Guide,
page 486].

See also “a_crypt_db structure” on page 286

DBErase function

Function Erases a database file and/or transaction log file. This function is used by the
dberasecommand-line utility.

Prototype short DBErase (const an_erase_db * erase-db);

Parameters

Parameter Description

erase-db Pointer to“an_erase_db structure” on page 292

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Erase utility and its features, see “The Erase
utility” [ASA Database Administration Guide,page 478].

See also “an_erase_db structure” on page 292

DBExpand function

Function Uncompresses a database file. This function is used by thedbexpand
command-line utility.

Prototype short DBExpand (const an_expand_db * expand-db);

Parameters

270

Chapter 8. The Database Tools Interface

Parameter Description

expand_db Pointer to“an_expand_db structure” on page 293

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Uncompression utility and its features, see
“The Uncompression utility”[ASA Database Administration Guide,page 531].

See also “an_expand_db structure” on page 293

DBInfo function

Function Returns information about a database file. This function is used by the
dbinfo command-line utility.

Prototype short DBInfo (const a_db_info * db-info);

Parameters

Parameter Description

db-info Pointer to“a_db_info structure” on page 288

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Information utility and its features, see “The
Information utility” [ASA Database Administration Guide,page 483].

See also “DBInfoDump function” on page 271

“DBInfoFree function” on page 272

“a_db_info structure” on page 288

DBInfoDump function

Function Returns information about a database file. This function is used by the
dbinfo command-line utility when the-u option is used.

Prototype short DBInfoDump (const a_db_info * db-info);

Parameters

Parameter Description

db-info Pointer to“a_db_info structure” on page 288

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Information utility and its features, see “The
Information utility” [ASA Database Administration Guide,page 483].

271

See also “DBInfo function” on page 271

“DBInfoFree function” on page 272

“a_db_info structure” on page 288

DBInfoFree function

Function Called to free resources after the DBInfoDump function is called.

Prototype short DBInfoFree (const a_db_info * db-info);

Parameters

Parameter Description

db-info Pointer to“a_db_info structure” on page 288

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Information utility and its features, see “The
Information utility” [ASA Database Administration Guide,page 483].

See also “DBInfo function” on page 271

“DBInfoDump function” on page 271

“a_db_info structure” on page 288

DBLicense function

Function Called to modify or report the licensing information of the database server.

Prototype short DBLicense (const a_db_lic_info * db-lic-info);

Parameters

Parameter Description

db-lic-info Pointer to“a_dblic_info structure” on page 291

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Information utility and its features, see “The
Information utility” [ASA Database Administration Guide,page 483].

See also “a_dblic_info structure” on page 291

DBStatusWriteFile function

Function Gets the status of a write file. This function is used by thedbwrite
command-line utility when the-s option is applied.

272

Chapter 8. The Database Tools Interface

Prototype short DBStatusWriteFile (const a_writefile * writefile);

Parameters

Parameter Description

writefile Pointer to“a_writefile structure” on page 306

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Write File utility and its features, see “The
Write File utility” [ASA Database Administration Guide,page 551].

See also “DBChangeWriteFile function” on page 268

“DBCreateWriteFile function” on page 269

“a_writefile structure” on page 306

DBSynchronizeLog function

Function Synchronize a database with a MobiLink synchronization server.

Prototype short DBSynchronizeLog(const a _sync_db * sync-db);

Parameters

Parameter Description

sync-db Pointer to“a_sync_db structure” on page 295

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the features you can access, see “Initiating
synchronization”[MobiLink Synchronization User’s Guide,page 185].

DBToolsFini function

Function Decrements the counter and frees resources when an application is finished
with the DBTools library.

Prototype short DBToolsFini (const a_dbtools_info * dbtools-info);

Parameters

Parameter Description

dbtools-info Pointer to“a_dbtools_info structure” on page 292

Return value A return code, as listed in“Software component return codes” on page 261.

Usage The DBToolsFini function must be called at the end of any application that

273

uses the DBTools interface. Failure to do so can lead to lost memory
resources.

See also “DBToolsInit function” on page 274

“a_dbtools_info structure” on page 292

DBToolsInit function

Function Prepares the DBTools library for use.

Prototype short DBToolsInit(const a_dbtools_info * dbtools-info);

Parameters

Parameter Description

dbtools-info Pointer to“a_dbtools_info structure” on page 292

Return value A return code, as listed in“Software component return codes” on page 261.

Usage The primary purpose of the DBToolsInit function is to load the Adaptive
Server Anywhere language DLL. The language DLL contains localized
versions of error messages and prompts that DBTools uses internally.

The DBToolsInit function must be called at the start of any application that
uses the DBTools interface, before any other DBTools functions.

Example ♦ The following code sample illustrates how to initialize and clean up
DBTools:

a_dbtools_info info;
short ret;

memset(&info, 0, sizeof(a_dbtools_info));
info.errorrtn = (MSG_CALLBACK)MakeProcInstance(

(FARPROC)MyErrorRtn, hInst);

// initialize DBTools
ret = DBToolsInit(&info);
if(ret != EXIT_OKAY) {

// DLL initialization failed
...

}
// call some DBTools routines . . .
...
// cleanup the DBTools dll
DBToolsFini(&info);

See also “DBToolsFini function” on page 273

“a_dbtools_info structure” on page 292

274

Chapter 8. The Database Tools Interface

DBToolsVersion function

Function Returns the version number of the DBTools library.

Prototype short DBToolsVersion (void);

Return value A short integer indicating the version number of the DBTools library.

Usage Use the DBToolsVersion function to check that the DBTools library is not
older than one against which your application is developed. While
applications can run against newer versions of DBTools, they cannot run
against older versions.

See also “Version numbers and compatibility” on page 263

DBTranslateLog function

Function Translates a transaction log file to SQL. This function is used by thedbtran
command-line utility.

Prototype short DBTranslateLog (const a_translate_log * translate-log);

Parameters

Parameter Description

translate-log Pointer to“a_translate_log structure” on page 299

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the log translation utility, see “The Log
Translation utility” [ASA Database Administration Guide,page 508].

See also “a_translate_log structure” on page 299

DBTruncateLog function

Function Truncates a transaction log file. This function is used by thedbbackup
command-line utility.

Prototype short DBTruncateLog (const a_truncate_log * truncate-log);

Parameters

Parameter Description

truncate-log Pointer to“a_truncate_log structure” on page 301

Return value A return code, as listed in“Software component return codes” on page 261.

275

Usage ☞ For information about the backup utility, see “The Backup utility”[ASA
Database Administration Guide,page 458]

See also “a_truncate_log structure” on page 301

DBUnload function

Function Unloads a database. This function is used by thedbunloadcommand-line
utility and also by thedbxtractutility for SQL Remote.

Prototype short DBUnload (const an_unload_db * unload-db);

Parameters

Parameter Description

unload-db Pointer to“an_unload_db structure” on page 302

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the Unload utility, see “The Unload utility”[ASA
Database Administration Guide,page 533].

See also “an_unload_db structure” on page 302

DBUpgrade function

Function Upgrades a database file. This function is used by thedbupgrade
command-line utility.

Prototype short DBUpgrade (const an_upgrade_db * upgrade-db);

Parameters

Parameter Description

upgrade-db Pointer to“an_upgrade_db structure” on page 303

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the upgrade utility, see “The Upgrade utility”
[ASA Database Administration Guide,page 542].

See also “an_upgrade_db structure” on page 303

DBValidate function

Function Validates all or part of a database. This function is used by thedbvalid
command-line utility.

Prototype short DBValidate (const a_validate_db * validate-db);

276

Chapter 8. The Database Tools Interface

Parameters

Parameter Description

validate-db Pointer to“a_validate_db structure” on page 305

Return value A return code, as listed in“Software component return codes” on page 261.

Usage ☞ For information about the upgrade utility, see “The Validation utility”
[ASA Database Administration Guide,page 547].

See also “a_validate_db structure” on page 305

277

DBTools structures
This section lists the structures that are used to exchange information with
the DBTools library. The structures are listed alphabetically.

Many of the structure elements correspond to command-line options on the
corresponding utility. For example, several structures have a member named
quiet, which can take on values of 0 or 1. This member corresponds to the
quiet operation (-q) command-line option used by many of the utilities.

a_backup_db structure

Function Holds the information needed to carry out backup tasks using the DBTools
library.

Syntax typedef struct a_backup_db {
unsigned short version;
const char * output_dir;
const char * connectparms;
const char * startline;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field backup_database : 1;
a_bit_field backup_logfile : 1;
a_bit_field backup_writefile : 1;
a_bit_field no_confirm : 1;
a_bit_field quiet : 1;
a_bit_field rename_log : 1;
a_bit_field truncate_log : 1;
a_bit_field rename_local_log: 1;
const char * hotlog_filename;
char backup_interrupted;
} a_backup_db;

Parameters

Member Description

Version DBTools version number

output_dir Path to the output directory. For example:

"c: \backup"

278

Chapter 8. The Database Tools Interface

Member Description

connectparms Parameters needed to connect to the database. They
take the form of connection strings, such as the follow-
ing:

"UID=DBA;PWD=SQL;DBF=c: \asa \
asademo.db"

For the full range of connection string options, see
“Connection parameters” [ASA Database Administra-
tion Guide,page 70]

startline Command-line used to start the database engine. The
following is an example start line:

"c: \asa \win32 \dbeng9.exe"

The default start line is used if this member is NULL

confirmrtn Callback routine for confirming an action

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

backup_database Backup the database file (1) or not (0)

backup_logfile Backup the transaction log file (1) or not (0)

backup_writefile Backup the database write file (1) or not (0), if a write
file is being used

no_confirm Operate with (0) or without (1) confirmation

quiet Operate without printing messages (1), or print mes-
sages (0)

rename_log Rename the transaction log

truncate_log Delete the transaction log

rename_local_log Rename the local backup of the transaction log

hotlog_filename File name for the live backup file

backup_interrupted Indicates that the operation was interrupted

See also “DBBackup function” on page 267

For more information on callback functions, see“Using callback functions”
on page 261.

279

a_change_log structure

Function Holds the information needed to carry outdblog tasks using the DBTools
library.

Syntax typedef struct a_change_log {
unsigned short version;
const char * dbname;
const char * logname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field query_only : 1;
a_bit_field quiet : 1;
a_bit_field mirrorname_present : 1;
a_bit_field change_mirrorname : 1;
a_bit_field change_logname : 1;
a_bit_field ignore_ltm_trunc : 1;
a_bit_field ignore_remote_trunc : 1;
a_bit_field set_generation_number : 1;
a_bit_field ignore_dbsync_trunc : 1;
const char * mirrorname;
unsigned short generation_number;
const char * key_file;
char * zap_current_offset;
char * sap_starting_offset;
char * encryption_key;
} a_change_log;

Parameters

Member Description

version DBTools version number

dbname Database file name

logname The name of the transaction log. If set to NULL,
there is no log

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information mes-
sage

query_only If 1, just display the name of the transaction log. If
0, permit changing of the log name

quiet Operate without printing messages (1), or print
messages (0)

280

Chapter 8. The Database Tools Interface

Member Description

mirrorname_present Set to 1. Indicates that the version of DBTools is
recent enough to support the mirrorname field

change_mirrorname If 1, permit changing of the log mirror name

change_logname If 1, permit changing of the transaction log name

ignore_ltm_trunc When using the Log Transfer Manager, performs
the same function as the dbcc settrunc(‘ltm’,
‘gen_id’, n) Replication Server function:

For information on dbcc, see your Replication
Server documentation

ignore_remote_trunc For SQL Remote. Resets the offset kept for the
purposes of the DELETE_OLD_LOGS option,
allowing transaction logs to be deleted when they
are no longer needed

set_generation_-
number

When using the Log Transfer Manager, used after a
backup is restored to set the generation number

ignore_dbsync_trunc When using dbmlsync, resets the offset kept for
the purposes of the DELETE_OLD_LOGS option,
allowing transaction logs to be deleted when they
are no longer needed

mirrorname The new name of the transaction log mirror file

generation_number The new generation number. Used together with
set_generation_number

key_file A file holding the encryption key

zap_current_offset Change the current offset to the specified value.
This is for use only in resetting a transaction log
after an unload and reload to matchdbremoteor
dbmlsyncsettings.

zap_starting_offset Change the starting offset to the specified value.
This is for use only in resetting a transaction log
after an unload and reload to matchdbremoteor
dbmlsyncsettings.

encryption_key The encryption key for the database file.

See also “DBChangeLogName function” on page 267

281

For more information on callback functions, see“Using callback functions”
on page 261.

a_compress_db structure

Function Holds the information needed to carry out database compression tasks using
the DBTools library.

Syntax typedef struct a_compress_db {
unsigned short version;
const char * dbname;
const char * compress_name;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field display_free_pages : 1;
a_bit_field quiet : 1;
a_bit_field record_unchanged : 1;
a_compress_stats * stats;
MSG_CALLBACK confirmrtn;
a_bit_field noconfirm : 1;
const char * encryption_key
} a_compress_db;

Parameters

Member Description

version DBTools version number

dbname The file name of the database to compress

compress_name The file name of the compressed database

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

display_free_pages Display the free page information.

quiet Operate without printing messages (1), or print mes-
sages (0)

record_unchanged Set to 1. Indicates that the a_compress_stats structure
is recent enough to have anunchangedmember

a_compress_stats Pointer to a structure of type a_compress_stats. This
is filled in if the member is not NULL and display_-
free_pages is not zero

282

Chapter 8. The Database Tools Interface

Member Description

confirmrtn Callback routine for confirming an action

noconfirm Operate with (0) or without (1) confirmation

encryption_key The encryption key for the database file.

See also “DBCompress function” on page 268

“a_compress_stats structure” on page 283

For more information on callback functions, see“Using callback functions”
on page 261.

a_compress_stats structure

Function Holds information describing compressed database file statistics.

Syntax typedef struct a_compress_stats {
a_stats_line tables;
a_stats_line indices;
a_stats_line other;
a_stats_line free;
a_stats_line total;
a_sql_int32 free_pages;
a_sql_int32 unchanged;
} a_compress_stats;

Parameters

Member Description

tables Holds compression information regarding tables

indices Holds compression information regarding indexes

other Holds other compression information

free Holds information regarding free space

total Holds overall compression information

free_pages Holds information regarding free pages

unchanged The number of pages that the compression algorithm was
unable to shrink

See also “DBCompress function” on page 268

“a_compress_db structure” on page 282

283

a_create_db structure

Function Holds the information needed to create a database using the DBTools library.

Syntax typedef struct a_create_db {
unsigned short version;
const char * dbname;
const char * logname;
const char * startline;
short page_size;
const char * default_collation;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
short database_version;
char verbose;
a_bit_field blank_pad : 2;
a_bit_field respect_case : 1;
a_bit_field encrypt : 1;
a_bit_field debug : 1;
a_bit_field dbo_avail : 1;
a_bit_field mirrorname_present : 1;
a_bit_field avoid_view_collisions : 1;
short collation_id;
const char * dbo_username;
const char * mirrorname;
const char * encryption_dllname;
a_bit_field java_classes : 1;
a_bit_field jconnect : 1;
const char * data_store_type
const char * encryption_key;
const char * encryption_algorithm;
const char * jdK_version;
} a_create_db;

Parameters

Member Description

version DBTools version number

dbname Database file name

logname New transaction log name

startline The command-line used to start the database engine.
The following is an example start line:

"c: \asa \win32 \dbeng9.exe"

The default start line is used if this member is NULL

284

Chapter 8. The Database Tools Interface

Member Description

page_size The page size of the database

default_collation The collation for the database

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information mes-
sage

database_version The version number of the database

verbose Run in verbose mode

blank_pad Treat blanks as significant in string comparisons and
hold index information to reflect this

respect_case Make string comparisons case sensitive and hold
index information to reflect this

encrypt Encrypt the database

debug Reserved

dbo_avail Set to 1. The dbo user is available in this database

mirrorname_present Set to 1. Indicates that the version of DBTools is
recent enough to support the mirrorname field

avoid_view_-
collisions

Omit the generation of Watcom SQL compat-
ibility views SYS.SYSCOLUMNS and SYS.-
SYSINDEXES

collation_id Collation identifier

dbo_username No longer used: set to NULL

mirrorname Transaction log mirror name

encryption_dllname The DLL used to encrypt the database.

java_classes Create a Java-enabled database.

jconnect Include system procedures needed for jConnect

data_store_type Reserved. Use NULL.

encryption_key The encryption key for the database file.

encryption_algorithm EitherAES or MDSR.

jdk_version One of the values for thedbinit -jdk option.

285

See also “DBCreate function” on page 269

For more information on callback functions, see“Using callback functions”
on page 261.

a_crypt_db structure

Function Holds the information needed to encrypt a database file as used by thedbinit
command-line utility.

Syntax typedef struct a_crypt_db {
const char _fd_ * dbname;
const char _fd_ * dllname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
char verbose;
a_bit_field quiet : 1;
a_bit_field debug : 1;
} a_crypt_db;

Parameters

Member Description

dbname Database file name

dllname The name of the DLL used to carry out the encryption

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

verbose Operate in verbose mode

quiet Operate without messages

debug Reserved

See also “DBCrypt function” on page 270

“Creating a database using the dbinit command-line utility”[ASA Database
Administration Guide,page 486]

a_db_collation structure

Function Holds the information needed to extract a collation sequence from a
database using the DBTools library.

286

Chapter 8. The Database Tools Interface

Syntax typedef struct a_db_collation {
unsigned short version;
const char * connectparms;
const char * startline;
const char * collation_label;
const char * filename;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field include_empty : 1;
a_bit_field hex_for_extended : 1;
a_bit_field replace : 1;
a_bit_field quiet : 1;
const char * input_filename;
const char _fd_ * mapping_filename;
} a_db_collation;

Parameters

Member Description

version DBTools version number

connectparms The parameters needed to connect to the database.
They take the form of connection strings, such as the
following:

"UID=DBA;PWD=SQL;DBF=c: \asa \
asademo.db"

For the full range of connection string options, see
“Connection parameters” [ASA Database Administra-
tion Guide,page 70]

startline The command-line used to start the database engine.
The following is an example start line:

"c: \asa \win32 \dbeng9.exe"

The default start line is used if this member is NULL

confirmrtn Callback routine for confirming an action

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

include_empty Write empty mappings for gaps in the collations
sequence

hex_for_extended Use two-digit hexadecimal numbers to represent high-
value characters

287

Member Description

replace Operate without confirming actions

quiet Operate without messages

input_filename Input collation definition

mapping_filename syscollationmapping output

See also “DBCollate function” on page 268

For more information on callback functions, see“Using callback functions”
on page 261.

a_db_info structure

Function Holds the information needed to returndbinfo information using the
DBTools library.

Syntax typedef struct a_db_info {
unsigned short version;
MSG_CALLBACK errorrtn;
const char * dbname;
unsigned short dbbufsize;
char * dbnamebuffer;
unsigned short logbufsize;
char * lognamebuffer;
unsigned short wrtbufsize;
char * wrtnamebuffer;
a_bit_field quiet : 1;
a_bit_field mirrorname_present : 1;
a_sysinfo sysinfo;
unsigned long free_pages;
a_bit_field compressed : 1;
const char * connectparms;
const char * startline;

288

Chapter 8. The Database Tools Interface

MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field page_usage : 1;
a_table_info * totals;
unsigned long file_size;
unsigned long unused_pages;
unsigned long other_pages;
unsigned short mirrorbufsize;
char * mirrornamebuffer;
char * unused_field;
char * collationnamebuffer;
unsigned short collationnamebufsize;
char * classesversionbuffer;
unsigned short classesversionbufsize;
} a_db_info;

Parameters

Member Description

version DBTools version number

errortrn Callback routine for handling an error message

dbname Database file name

dbbufsize The length of the dbnamebuffer member

dbnamebuffer Database file name

logbufsize The length of the lognamebuffer member

lognamebuffer Transaction log file name

wrtbufsize The length of the wrtnamebuffer member

wrtnamebuffer The write file name

quiet Operate without confirming messages

mirrorname_present Set to 1. Indicates that the version of DBTools is
recent enough to support the mirrorname field

sysinfo Pointer to a_sysinfo structure

free_pages Number of free pages

compressed 1 if compressed, otherwise 0

289

Member Description

connectparms The parameters needed to connect to the database.
They take the form of connection strings, such as the
following:

"UID=DBA;PWD=SQL;DBF=c: \Program
Files \Sybase \SQL Anywhere 9 \
asademo.db"

For the full range of connection string options, see
“Connection parameters” [ASA Database Administra-
tion Guide,page 70]

startline The command-line used to start the database engine.
The following is an example start line:

"c: \asa \win32 \dbeng9.exe"

The default start line is used if this member is NULL

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

page_usage 1 to report page usage statistics, otherwise 0

totals Pointer to a_table_info structure

file_size Size of database file

unused_pages Number of unused pages

other_pages Number of pages that are neither table nor index
pages

mirrorbufsize The length of the mirrornamebuffer member

mirrornamebuffer The transaction log mirror name

collationnamebuffer The database collation name and label (the maximum
size is 128+1)

collationnamebuf-
size

The length of the collationnamebuffer member

classesversionbuffer The JDK version of the installed Java classes, such
as 1.1.3, 1.1.8, 1.3, or an empty string if Java classes
are not installed in the database (the maximum size is
10+1)

classesversionbuf-
size

The length of the classesversionbuffer member

290

Chapter 8. The Database Tools Interface

See also “DBInfo function” on page 271

For more information on callback functions, see“Using callback functions”
on page 261.

a_dblic_info structure

Function Holds information containing licensing information. You must use this
information only in a manner consistent with your license agreement.

Syntax typedef struct a_dblic_info {
unsigned short version;
char * exename;
char * username;
char * compname;
char * platform_str;
a_sql_int32 nodecount;
a_sql_int32 conncount;
a_license_type type;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
a_bit_field query_only : 1;
} a_dblic_info;

Parameters

Member Description

version DBTools version number

exename Executable name

username User name for licensing

compname Company name for licensing

platform_str Operating system: WinNT or NLM or UNIX

nodecount Number of nodes licensed.

conncount Must be 1000000L

type Seelictype.h for values

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages (0)

291

Member Description

query_only If 1, just display the license information. If 0, permit
changing the information

a_dbtools_info structure

Function Holds the information needed to start and finish working with the DBTools
library.

Syntax typedef struct a_dbtools_info {
MSG_CALLBACK errorrtn;
} a_dbtools_info;

Parameters

Member Description

errorrtn Callback routine for handling an error message

See also “DBToolsFini function” on page 273

“DBToolsInit function” on page 274

For more information on callback functions, see“Using callback functions”
on page 261.

an_erase_db structure

Function Holds information needed to erase a database using the DBTools library.

Syntax typedef struct an_erase_db {
unsigned short version;
const char * dbname;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
a_bit_field erase : 1;
const char * encryption_key;
} an_erase_db;

Parameters

Member Description

version DBTools version number

dbname Database file name to erase

292

Chapter 8. The Database Tools Interface

Member Description

confirmrtn Callback routine for confirming an action

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

quiet Operate without printing messages (1), or print messages
(0)

erase Erase without confirmation (1) or with confirmation (0)

encryption_-
key

The encryption key for the database file.

See also “DBErase function” on page 270

For more information on callback functions, see“Using callback functions”
on page 261.

an_expand_db structure

Function Holds information needed for database expansion using the DBTools library.

Syntax typedef struct an_expand_db {
unsigned short version;
const char * compress_name;
const char * dbname;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
MSG_CALLBACK confirmrtn;
a_bit_field noconfirm : 1;
const char * key_file;
const char * encryption_key;
} an_expand_db;

Parameters

Member Description

version DBTools version number

compress_name Name of compressed database file

dbname Database file name

errorrtn Callback routine for handling an error message

293

Member Description

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

quiet Operate without printing messages (1), or print messages
(0)

confirmrtn Callback routine for confirming an action

noconfirm Operate with (0) or without (1) confirmation

key_file A file holding the encryption key

encryption_key The encryption key for the database file.

See also “DBExpand function” on page 270

For more information on callback functions, see“Using callback functions”
on page 261.

a_name structure

Function Holds a linked list of names. This is used by other structures requiring lists
of names.

Syntax typedef struct a_name {
struct a_name * next;
char name[1];
} a_name, * p_name;

Parameters

Member Description

next Pointer to the next a_name structure in the list

name The name

p_name Pointer to the previous a_name structure

See also “a_translate_log structure” on page 299

“a_validate_db structure” on page 305

“an_unload_db structure” on page 302

a_stats_line structure

Function Holds information needed for database compression and expansion using the

294

Chapter 8. The Database Tools Interface

DBTools library.

Syntax typedef struct a_stats_line {
long pages;
long bytes;
long compressed_bytes;
} a_stats_line;

Parameters

Member Description

pages Number of pages

bytes Number of bytes for uncompressed database

compressed_bytes Number of bytes for compressed database

See also “a_compress_stats structure” on page 283

a_sync_db structure

Function Holds information needed for thedbmlsyncutility using the DBTools
library.

Syntax typedef struct a_sync_db {
unsigned short version;
char _fd_ * connectparms;
char _fd_ * publication;
const char _fd_ * offline_dir;
char _fd_ * extended_options;
char _fd_ * script_full_path;
const char _fd_ * include_scan_range;
const char _fd_ * raw_file;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK logrtn;

295

a_SQL_uint32 debug_dump_size;
a_SQL_uint32 dl_insert_width;
a_bit_field verbose : 1;
a_bit_field debug : 1;
a_bit_field debug_dump_hex : 1;
a_bit_field debug_dump_char : 1;
a_bit_field debug_page_offsets : 1;
a_bit_field use_hex_offsets : 1;
a_bit_field use_relative_offsets : 1;
a_bit_field output_to_file : 1;
a_bit_field output_to_mobile_link : 1;
a_bit_field dl_use_put : 1;
a_bit_field dl_use_upsert : 1;
a_bit_field kill_other_connections : 1;
a_bit_field retry_remote_behind : 1;
a_bit_field ignore_debug_interrupt : 1;

SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;
char * default_window_title;
MSG_QUEUE_CALLBACK msgqueuertn;
MSG_CALLBACK progress_msg_rtn;
SET_PROGRESS_CALLBACK progress_index_rtn;
char ** argv;
char ** ce_argv;

a_bit_field connectparms_allocated : 1;
a_bit_field entered_dialog : 1;
a_bit_field used_dialog_allocation : 1;
a_bit_field ignore_scheduling : 1;
a_bit_field ignore_hook_errors : 1;
a_bit_field changing_pwd : 1;
a_bit_field prompt_again : 1;
a_bit_field retry_remote_ahead : 1;
a_bit_field rename_log : 1;
a_bit_field hide_conn_str : 1;
a_bit_field hide_ml_pwd : 1;
a_bit_field delay_ml_disconn : 1;
a_SQL_uint32 dlg_launch_focus;
char _fd_ * mlpassword;
char _fd_ * new_mlpassword;
char _fd_ * verify_mlpassword;

296

Chapter 8. The Database Tools Interface

a_SQL_uint32 pub_name_cnt;
char ** pub_name_list;
USAGE_CALLBACK usage_rtn;
a_sql_uint32 hovering_frequency;
a_bit_short ignore_hovering : 1;
a_bit_short verbose_upload : 1;
a_bit_short verbose_upload_data : 1;
a_bit_short verbose_download : 1;
a_bit_short verbose_download_data : 1;
a_bit_short autoclose : 1;
a_bit_short ping : 1;
a_bit_short _unused : 9;
char _fd_ * encryption_key;
a_syncpub _fd_ * upload_defs;
char _fd_ * log_file_name;
char _fd_ * user_name;
} a_sync_db;

Parameters The parameters correspond to features accessible from thedbmlsync
command-line utility.

See thedbtools.hheader file for additional comments.

☞ For more information, see “MobiLink synchronization client”[MobiLink
Synchronization Reference,page 36].

See also “DBSynchronizeLog function” on page 273

a_syncpub structure

Function Holds information needed for thedbmlsyncutility.

Syntax typedef struct a_syncpub {
struct a_syncpub _fd_ * next;
char _fd_ * pub_name;
char _fd_ * ext_opt;
a_bit_field alloced_by_dbsync: 1;

} a_syncpub;

Parameters

297

Member Description

a_syncpub pointer to the next node in the list, NULL for the
last node

pub_name publication name(s) specified for this-n option.
This is the exact string following -n on the com-
mand line.

ext_opt extended options specified using the-eu option

encryption 1 if the database is encrypted, 0 otherwise

alloced_by_dbsync FALSE, except for nodes created indbtool9.dll

a_sysinfo structure

Function Holds information needed fordbinfo anddbunloadutilities using the
DBTools library.

typedef struct a_sysinfo {
a_bit_field valid_data : 1;
a_bit_field blank_padding : 1;
a_bit_field case_sensitivity : 1;
a_bit_field encryption : 1;
char default_collation[11];
unsigned short page_size;
} a_sysinfo;

Parameters

Member Description

valid_date Bit-field indicating whether the following values are set

blank_padding 1 if blank padding is used in this database, 0 otherwise

case_sensitivity 1 if the database is case-sensitive, 0 otherwise

encryption 1 if the database is encrypted, 0 otherwise

default_-
collation

The collation sequence for the database

page_size The page size for the database

See also “a_db_info structure” on page 288

a_table_info structure

Function Holds information about a table needed as part of the a_db_info structure.

298

Chapter 8. The Database Tools Interface

Syntax typedef struct a_table_info {
struct a_table_info * next;
unsigned short table_id;
unsigned long table_pages;
unsigned long index_pages;
unsigned long table_used;
unsigned long index_used;
char * table_name;
a_sql_uint32 table_used_pct;
a_sql_uint32 index_used_pct;
} a_table_info;

Parameters

Member Description

next Next table in the list

table_id ID number for this table

table_pages Number of table pages

index_pages Number of index pages

table_used Number of bytes used in table pages

index_used Number of bytes used in index pages

table_name Name of the table

table_used_pct Table space utilization as a percentage

index_used_pct Index space utilization as a percentage

See also “a_db_info structure” on page 288

a_translate_log structure

Function Holds information needed for transaction log translation using the DBTools
library.

Syntax typedef struct a_translate_log {
unsigned short version;
const char * logname;
const char * sqlname;
p_name userlist;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
char userlisttype;

299

a_bit_field remove_rollback : 1;
a_bit_field ansi_SQL : 1;
a_bit_field since_checkpoint: 1;
a_bit_field omit_comments : 1;
a_bit_field replace : 1;
a_bit_field debug : 1;
a_bit_field include_trigger_trans : 1;
a_bit_field comment_trigger_trans : 1;
unsigned long since_time;
const char _fd_ * reserved_1;
const char _fd_ * reserved_2;
a_sql_uint32 debug_dump_size;

a_bit_field debug_sql_remote : 1;
a_bit_field debug_dump_hex : 1;
a_bit_field debug_dump_char : 1;
a_bit_field debug_page_offsets : 1;
a_bit_field reserved_3 : 1;
a_bit_field use_hex_offsets : 1;
a_bit_field use_relative_offsets : 1;
a_bit_field include_audit : 1;
a_bit_field chronological_order : 1;
a_bit_field force_recovery : 1;
a_bit_field include_subsets : 1;
a_bit_field force_chaining : 1;
a_sql_uint32 recovery_ops;
a_sql_uint32 recovery_bytes;

const char _fd_ * include_source_sets;
const char _fd_ * include_destination_sets;
const char _fd_ * include_scan_range;
const char _fd_ * repserver_users;
const char _fd_ * include_tables;
const char _fd_ * include_publications;
const char _fd_ * queueparms;
a_bit_field generate_reciprocals :1;
a_bit_field match_mode :1;
const char _fd_ * match_pos;
MSG_CALLBACK statusrtn;
const char _fd_ * encryption_key;
a_bit_field show_undo :1;
const char _fd_ * logs_dir;
} a_translate_log;

Parameters The parameters correspond to features accessible from thedbtran
command-line utility.

See thedbtools.hheader file for additional comments.

300

Chapter 8. The Database Tools Interface

See also “DBTranslateLog function” on page 275

“a_name structure” on page 294

“dbtran_userlist_type enumeration” on page 310

For more information on callback functions, see“Using callback functions”
on page 261.

a_truncate_log structure

Function Holds information needed for transaction log truncation using the DBTools
library.

Syntax typedef struct a_truncate_log {
unsigned short version;
const char * connectparms;
const char * startline;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
a_bit_field quiet : 1;
char truncate_interrupted;
} a_truncate_log;

Parameters

Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database.
They take the form of connection strings, such as the
following:

"UID=DBA;PWD=SQL;DBF=c: \asa \
asademo.db"

For the full range of connection string options, see
“Connection parameters” [ASA Database Administra-
tion Guide,page 70]

startline The command-line used to start the database engine.
The following is an example start line:

"c: \asa \win32 \dbeng9.exe"

The default start line is used if this member is NULL

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

301

Member Description

quiet Operate without printing messages (1), or print mes-
sages (0)

truncate_-
interrupted

Indicates that the operation was interrupted

See also “DBTruncateLog function” on page 275

For more information on callback functions, see“Using callback functions”
on page 261.

an_unload_db structure

Function Holds information needed to unload a database using the DBTools library or
extract a remote database for SQL Remote. Those fields used by thedbxtract
SQL Remote extraction utility are indicated.

Syntax typedef struct an_unload_db {
unsigned short version;
const char * connectparms;
const char * startline;
const char * temp_dir;
const char * reload_filename;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
MSG_CALLBACK confirmrtn;
char unload_type;
char verbose;

a_bit_field unordered : 1;
a_bit_field no_confirm : 1;
a_bit_field use_internal_unload : 1;
a_bit_field dbo_avail : 1;
a_bit_field extract : 1;
a_bit_field table_list_provided : 1;
a_bit_field exclude_tables : 1;
a_bit_field more_flag_bits_present : 1;
a_sysinfo sysinfo;
const char * remote_dir;
const char * dbo_username;
const char * subscriber_username;
const char * publisher_address_type;
const char * publisher_address;
unsigned short isolation_level;

302

Chapter 8. The Database Tools Interface

a_bit_field start_subscriptions : 1;
a_bit_field exclude_foreign_keys : 1;
a_bit_field exclude_procedures : 1;
a_bit_field exclude_triggers : 1;
a_bit_field exclude_views : 1;
a_bit_field isolation_set : 1;
a_bit_field include_where_subscribe : 1;
a_bit_field debug : 1;
p_name table_list;
a_bit_short escape_char_present : 1;
a_bit_short view_iterations_present : 1;

unsigned short view_iterations;
char escape_char;
char _fd_ * reload_connectparms;
char _fd_ * reload_db_filename;
a_bit_field output_connections:1;
char unload_interrupted;
a_bit_field replace_db:1;
const char _fd_ * locale;
const char _fd_ * site_name;
const char _fd_ * template_name;
a_bit_field preserve_ids:1;
a_bit_field exclude_hooks:1;
char _fd_ * reload_db_logname;
const char _fd_ * encryption_key;
const char _fd_ * encryption_algorithm;
a_bit_field syntax_version_7:1;
a_bit_field remove_java:1;
} an_unload_db;

Parameters The parameters correspond to features accessible from thedbunloadand
dbxtract, andmlxtract command-line utilities.

See thedbtools.hheader file for additional comments.

See also “DBUnload function” on page 276

“a_name structure” on page 294

“dbunload type enumeration” on page 310

For more information on callback functions, see“Using callback functions”
on page 261.

an_upgrade_db structure

Function Holds information needed to upgrade a database using the DBTools library.

303

Syntax typedef struct an_upgrade_db {
unsigned short version;
const char * connectparms;
const char * startline;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
a_bit_field dbo_avail : 1;
const char * dbo_username;
a_bit_field java_classes : 1;
a_bit_field jconnect : 1;
a_bit_field remove_java : 1;
a_bit_field java_switch_specified : 1;
const char * jdk_version;
} an_upgrade_db;

Parameters

Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database. They
take the form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c: \asa \
asademo.db"

For the full range of connection string options, see “Con-
nection parameters” [ASA Database Administration Guide,
page 70]

startline The command-line used to start the database engine. The
following is an example start line:

"c: \asa \win32 \dbeng9.exe"

The default start line is used if this member is NULL

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

quiet Operate without printing messages (1), or print messages
(0)

dbo_avail Set to 1. Indicates that the version of DBTools is recent
enough to support the dbo_username field

dbo_username The name to use for the dbo

304

Chapter 8. The Database Tools Interface

Member Description

java_classes Upgrade the database to be Java-enabled

jconnect Upgrade the database to include jConnect procedures

remove_java Upgrade the database, removing the Java features

jdk_version One of the values for thedbinit -jdk option.

See also “DBUpgrade function” on page 276

For more information on callback functions, see“Using callback functions”
on page 261.

a_validate_db structure

Function Holds information needed for database validation using the DBTools library.

Syntax typedef struct a_validate_db {
unsigned short version;
const char * connectparms;
const char * startline;
p_name tables;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
MSG_CALLBACK statusrtn;
a_bit_field quiet : 1;
a_bit_field index : 1;
a_validate_type type;
} a_validate_db;

Parameters

Member Description

version DBTools version number.

connectparms The parameters needed to connect to the database. They take
the form of connection strings, such as the following:

"UID=DBA;PWD=SQL;DBF=c: \asa \
asademo.db"

For the full range of connection string options, see “Con-
nection parameters” [ASA Database Administration Guide,
page 70]

305

Member Description

startline The command-line used to start the database engine. The
following is an example start line:

"c: \Program Files \Sybase \SA\win32 \
dbeng9.exe"

The default start line is used if this member is NULL

tables Pointer to a linked list of table names

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

statusrtn Callback routine for handling a status message

quiet Operate without printing messages (1), or print messages (0)

index Validate indexes

type See“a_validate_type enumeration” on page 310

See also “DBValidate function” on page 276

“a_name structure” on page 294

☞ For more information on callback functions, see“Using callback
functions” on page 261.

a_writefile structure

Function Holds information needed for database write file management using the
DBTools library.

306

Chapter 8. The Database Tools Interface

Syntax typedef struct a_writefile {
unsigned short version;
const char * writename;
const char * wlogname;
const char * dbname;
const char * forcename;
MSG_CALLBACK confirmrtn;
MSG_CALLBACK errorrtn;
MSG_CALLBACK msgrtn;
char action;
a_bit_field quiet : 1;
a_bit_field erase : 1;
a_bit_field force : 1;
a_bit_field mirrorname_present : 1;
const char * wlogmirrorname;
a_bit_field make_log_and_mirror_names: 1;
const char * encryption_key;
} a_writefile;

Parameters

Member Description

version DBTools version number

writename Write file name

wlogname Used only when creating write files

dbname Used when changing and creating write files

forcename Forced file name reference

confirmrtn Callback routine for confirming an action. Only used
when creating a write file

errorrtn Callback routine for handling an error message

msgrtn Callback routine for handling an information message

action Reserved for use by Sybase

quiet Operate without printing messages (1), or print mes-
sages (0)

erase Used for creating write files only. Erase without
confirmation (1) or with confirmation (0)

force If 1, force the write file to point to a named file

307

Member Description

mirrorname_present Used when creating only. Set to 1. Indicates that the
version of DBTools is recent enough to support the
mirrorname field

wlogmirrorname Name of the transaction log mirror

make_log_and_-
mirror_names

If TRUE, use the values in wlogname and wlogmir-
rorname to determine filenames.

encryption_key The encryption key for the database file.

See also “DBChangeWriteFile function” on page 268

“DBCreateWriteFile function” on page 269

“DBStatusWriteFile function” on page 272

For more information on callback functions, see“Using callback functions”
on page 261.

308

Chapter 8. The Database Tools Interface

DBTools enumeration types
This section lists the enumeration types that are used by the DBTools library.
The enumerations are listed alphabetically.

Verbosity enumeration

Function Specifies the volume of output.

Syntax enum {
VB_QUIET,
VB_NORMAL,
VB_VERBOSE
};

Parameters

Value Description

VB_QUIET No output

VB_NORMAL Normal amount of output

VB_VERBOSE Verbose output, useful for debugging

See also “a_create_db structure” on page 284

“an_unload_db structure” on page 302

Blank padding enumeration

Function Used in the“a_create_db structure” on page 284, to specify the value of
blank_pad.

Syntax enum {
NO_BLANK_PADDING,
BLANK_PADDING
};

Parameters

Value Description

NO_BLANK_PADDING Does not use blank padding

BLANK_PADDING Uses blank padding

See also “a_create_db structure” on page 284

309

dbtran_userlist_type enumeration

Function The type of a user list, as used by an“a_translate_log structure” on page 299.

Syntax typedef enum dbtran_userlist_type {
DBTRAN_INCLUDE_ALL,
DBTRAN_INCLUDE_SOME,
DBTRAN_EXCLUDE_SOME
} dbtran_userlist_type;

Parameters

Value Description

DBTRAN_INCLUDE_ALL Include operations from all users

DBTRAN_INCLUDE_SOME Include operations only from the users
listed in the supplied user list

DBTRAN_EXCLUDE_-
SOME

Exclude operations from the users listed in
the supplied user list

See also “a_translate_log structure” on page 299

dbunload type enumeration

Function The type of unload being performed, as used by the“an_unload_db
structure” on page 302.

Syntax enum {
UNLOAD_ALL,
UNLOAD_DATA_ONLY,
UNLOAD_NO_DATA
};

Parameters

Value Description

UNLOAD_ALL Unload both data and schema

UNLOAD_DATA_ONLY Unload data. Do not unload schema

UNLOAD_NO_DATA Unload schema only

See also “an_unload_db structure” on page 302

a_validate_type enumeration

Function The type of validation being performed, as used by the“a_validate_db

310

Chapter 8. The Database Tools Interface

structure” on page 305.

Syntax typedef enum {
VALIDATE_NORMAL = 0,
VALIDATE_DATA,
VALIDATE_INDEX,
VALIDATE_EXPRESS,
VALIDATE_FULL
} a_validate_type;

Parameters

Value Description

VALIDATE_-
NORMAL

Validate with the default check only.

VALIDATE_DATA Validate with data check in addition to the default
check.

VALIDATE_INDEX Validate with index check in addition to the default
check.

VALIDATE_EXPRESS Validate with express check in addition to the
default and data checks.

VALIDATE_FULL Validate with both data and index check in addition
toe the default check.

See also “Validating a database using the dbvalid command-line utility”[ASA
Database Administration Guide,page 548]

“VALIDATE TABLE statement” [ASA SQL Reference,page 603]

311

CHAPTER 9

The OLE DB and ADO Programming
Interfaces

About this chapter This chapter describes how to use the OLE DB interface to Adaptive Server
Anywhere.

Many applications that use the OLE DB interface do so through the
Microsoft ActiveX Data Objects (ADO) programming model, rather than
directly. This chapter also describes ADO programming with Adaptive
Server Anywhere.

Contents Topic: page

Introduction to OLE DB 314

ADO programming with Adaptive Server Anywhere 315

Supported OLE DB interfaces 322

313

Introduction to OLE DB
OLE DB is a data access model from Microsoft. It uses the Component
Object Model (COM) interfaces and, unlike ODBC, OLE DB does not
assume that the data source uses a SQL query processor.

Adaptive Server Anywhere includes anOLE DB provider named
ASAProv. This provider is available for current Windows and Windows CE
platforms.

You can also access Adaptive Server Anywhere using the Microsoft
OLE DB Provider for ODBC (MSDASQL), together with the Adaptive
Server Anywhere ODBC driver.

Using the Adaptive Server Anywhere OLE DB provider brings several
benefits:

♦ Some features, such as updating through a cursor, are not available using
the OLE DB/ODBC bridge.

♦ If you use the Adaptive Server Anywhere OLE DB provider, ODBC is
not required in your deployment.

♦ MSDASQL allows OLE DB clients to work with any ODBC driver but
does not guarantee that you can use the full range of functionality of each
ODBC driver. Using the Adaptive Server Anywhere provider, you can get
full access to Adaptive Server Anywhere features from OLE DB
programming environments.

Supported platforms

The Adaptive Server Anywhere OLE DB provider is designed to work with
OLE DB 2.5 and later. For Windows CE and its successors, the OLE DB
provider is designed for ADOCE 3.0 and later.

ADOCE is the Microsoft ADO for Windows CE SDK and provides database
functionality for applications developed with the Windows CE Toolkits for
Visual Basic 5.0 and Visual Basic 6.0.

☞ For a list of supported platforms, see “Operating system versions”
[Introducing SQL Anywhere Studio,page 138].

Distributed transactions

The OLE DB driver can be used as a resource manager in a distributed
transaction environment.

☞ For more information, see“Three-tier Computing and Distributed
Transactions” on page 455.

314

Chapter 9. The OLE DB and ADO Programming Interfaces

ADO programming with Adaptive Server Anywhere
ADO (ActiveX Data Objects) is a data access object model exposed through
an Automation interface, which allows client applications to discover the
methods and properties of objects at runtime without any prior knowledge of
the object. Automation allows scripting languages like Visual Basic to use a
standard data access object model. ADO uses OLE DB to provide data
access.

Using the Adaptive Server Anywhere OLE DB provider, you get full access
to Adaptive Server Anywhere features from an ADO programming
environment.

This section describes how to carry out basic tasks while using ADO from
Visual Basic. It is not a complete guide to programming using ADO.

Code samples from this section can be found in the following files:

Development tool Sample

Microsoft Visual Basic
6.0

Samples\ASA\VBSampler\vbsampler.vbp

Microsoft eMbedded
Visual Basic 3.0

Samples\ASA\ADOCE\OLEDB_PocketPC.ebp

☞ For information on programming in ADO, see your development tool
documentation.

Connecting to a database with the Connection object

This section describes a simple Visual Basic routine that connects to a
database.

Sample code You can try this routine by placing a command button namedCommand1
on a form, and pasting the routine into itsClick event. Run the program and
click the button to connect and then disconnect.

315

Private Sub cmdTestConnection_Click()
’ Declare variables
Dim myConn As New ADODB.Connection
Dim myCommand As New ADODB.Command
Dim cAffected As Long

On Error GoTo HandleError

’ Establish the connection
myConn.Provider = "ASAProv"
myConn.ConnectionString = _

"Data Source=ASA 9.0 Sample"
myConn.Open
MsgBox "Connection succeeded"
myConn.Close
Exit Sub

HandleError:
MsgBox "Connection failed"
Exit Sub

End Sub

Notes The sample carries out the following tasks:

♦ It declares the variables used in the routine.

♦ It establishes a connection, using the Adaptive Server Anywhere
OLE DB provider, to the sample database.

♦ It uses a Command object to execute a simple statement, which displays a
message on the database server window.

♦ It closes the connection.

When theASAProv provider is installed, it registers itself. This registration
process includes making registry entries in the COM section of the registry,
so that ADO can locate the DLL when theASAProv provider is called. If
you change the location of your DLL, you must reregister it.

❖ To register the OLE DB provider

1. Open a command prompt.

2. Change to the directory where the OLE DB provider is installed.

3. Enter the following command to register the provider:

regsvr32 dboledb9.dll

☞ For more information about connecting to a database using OLE DB,
see “Connecting to a database using OLE DB”[ASA Database Administration
Guide,page 68].

316

Chapter 9. The OLE DB and ADO Programming Interfaces

Executing statements with the Command object

This section describes a simple routine that sends a simple SQL statement to
the database.

Sample code You can try this routine by placing a command button namedCommand2
on a form, and pasting the routine into itsClick event. Run the program and
click the button to connect, display a message on the database server
window, and then disconnect.

Private Sub cmdUpdate_Click()
’ Declare variables
Dim myConn As New ADODB.Connection
Dim myCommand As New ADODB.Command
Dim cAffected As Long
’ Establish the connection
myConn.Provider = "ASAProv"
myConn.ConnectionString = _

"Data Source=ASA 9.0 Sample"
myConn.Open

’Execute a command
myCommand.CommandText = _
"update customer set fname=’Liz’ where id=102"
Set myCommand.ActiveConnection = myConn
myCommand.Execute cAffected
MsgBox CStr(cAffected) +

" rows affected.", vbInformation

myConn.Close
End Sub

Notes After establishing a connection, the example code creates a Command
object, sets itsCommandTextproperty to an update statement, and sets its
ActiveConnectionproperty to the current connection. It then executes the
update statement and displays the number of rows affected by the update in a
message box.

In this example, the update is sent to the database and committed as soon as
it is executed.

☞ For information on using transactions within ADO, see“Using
transactions” on page 320.

You can also carry out updates through a cursor.

☞ For more information, see“Updating data through a cursor” on
page 319.

317

Querying the database with the Recordset object

The ADORecordsetobject represents the result set of a query. You can use
it to view data from a database.

Sample code You can try this routine by placing a command button namedcmdQuery on
a form and pasting the routine into itsClick event. Run the program and
click the button to connect, display a message on the database server
window, execute a query and display the first few rows in message boxes,
and then disconnect.

Private Sub cmdQuery_Click()
’ Declare variables

Dim myConn As New ADODB.Connection
Dim myCommand As New ADODB.Command
Dim myRS As New ADODB.Recordset

On Error GoTo ErrorHandler:

’ Establish the connection
myConn.Provider = "ASAProv"
myConn.ConnectionString = _

"Data Source=ASA 9.0 Sample"
myConn.CursorLocation = adUseServer
myConn.Mode = adModeReadWrite
myConn.IsolationLevel = adXactCursorStability
myConn.Open

’Execute a query
Set myRS = New Recordset
myRS.CacheSize = 50
myRS.Source = "Select * from customer"
myRS.ActiveConnection = myConn
myRS.CursorType = adOpenKeyset
myRS.LockType = adLockOptimistic
myRS.Open

’Scroll through the first few results
myRS.MoveFirst
For i = 1 To 5

MsgBox myRS.Fields("company_name"), vbInformation
myRS.MoveNext

Next

myRS.Close
myConn.Close
Exit Sub

ErrorHandler:
MsgBox Error(Err)
Exit Sub

End Sub

318

Chapter 9. The OLE DB and ADO Programming Interfaces

Notes TheRecordsetobject in this example holds the results from a query on the
Customer table. TheFor loop scrolls through the first several rows and
displays the company_name value for each row.

This is a simple example of using a cursor from ADO.

☞ For more advanced examples of using a cursor from ADO, see
“Working with Recordset object” on page 319.

Working with Recordset object

When working with Adaptive Server Anywhere, the ADORecordset
represents a cursor. You can choose the type of cursor by declaring a
CursorType property of theRecordsetobject before you open the
Recordset. The choice of cursor type controls the actions you can take on
theRecordsetand has performance implications.

Cursor types The set of cursor types supported by Adaptive Server Anywhere is described
in “Cursor properties” on page 26. ADO has its own naming convention for
cursor types.

The available cursor types, the corresponding cursor type constants, and the
Adaptive Server Anywhere types they are equivalent to, are as follows:

ADO cursor type ADO constant Adaptive Server Any-

where type

Dynamic cursor adOpenDynamic Dynamic scroll cursor

Keyset cursor adOpenKeyset Scroll cursor

Static cursor adOpenStatic Insensitive cursor

Forward only adOpenForwardOnly No-scroll cursor

☞ For information on choosing a cursor type that is suitable for your
application, see“Choosing cursor types” on page 26.

Sample code The following code sets the cursor type for an ADORecordsetobject:

Dim myRS As New ADODB.Recordset
myRS.CursorType = adOpenDynamic

Updating data through a cursor

The Adaptive Server Anywhere OLE DB provider lets you update a result
set through a cursor. This capability is not available through the MSDASQL
provider.

Updating record sets You can update the database through a record set.

319

Private Sub Command6_Click()
Dim myConn As New ADODB.Connection
Dim myRS As New ADODB.Recordset
Dim SQLString As String
’ Connect
myConn.Provider = "ASAProv"
myConn.ConnectionString = _

"Data Source=ASA 9.0 Sample"
myConn.Open
myConn.BeginTrans
SQLString = "Select * from customer"
myRS.Open SQLString, _

myConn, adOpenDynamic, adLockBatchOptimistic

If myRS.BOF And myRS.EOF Then
MsgBox "Recordset is empty!", _
16, "Empty Recordset"

Else
MsgBox "Cursor type: " + _
CStr(myRS.CursorType), vbInformation
myRS.MoveFirst
For i = 1 To 3

MsgBox "Row: " + CStr(myRS.Fields("id")), _
vbInformation

If i = 2 Then
myRS.Update "City", "Toronto"
myRS.UpdateBatch

End If
myRS.MoveNext

Next i
’ myRS.MovePrevious

myRS.Close
End If
myConn.CommitTrans
myConn.Close

End Sub

Notes If you use the adLockBatchOptimistic setting on the recordset, the
myRS.Updatemethod does not make any changes to the database itself.
Instead, it updates a local copy of theRecordset.

ThemyRS.UpdateBatchmethod makes the update to the database server,
but does not commit it, because it is inside a transaction. If anUpdateBatch
method was invoked outside a transaction, the change would be committed.

ThemyConn.CommitTrans method commits the changes. TheRecordset
object has been closed by this time, so there is no issue of whether the local
copy of the data is changed or not.

Using transactions

By default, any change you make to the database using ADO is committed

320

Chapter 9. The OLE DB and ADO Programming Interfaces

as soon as it is executed. This includes explicit updates, as well as the
UpdateBatchmethod on aRecordset. However, the previous section
illustrated that you can use theBeginTransandRollbackTrans or
CommitTrans methods on theConnectionobject to use transactions.

Transaction isolation level is set as a property of the Connection object. The
IsolationLevel property can take on one of the following values:

ADO isolation level Constant ASA level

Unspecified adXactUnspecified Not applicable. Set to
0

Chaos adXactChaos Unsupported. Set to 0

Browse adXactBrowse 0

Read uncommitted adXactReadUncommit-
ted

0

Cursor stability adXactCursorStability 1

Read committed adXactReadCommitted 1

Repeatable read adXactRepeatableRead 2

Isolated adXactIsolated 3

Serializable adXactSerializable 3

☞ For more information on isolation levels, see “Isolation levels and
consistency”[ASA SQL User’s Guide,page 104].

321

Supported OLE DB interfaces
The OLE DB API consists of a set of interfaces. The following table
describes the support for each interface in the Adaptive Server Anywhere
OLE DB driver.

Interface Purpose Limitations

IAccessor Define bindings between
client memory and data
store values.

DBACCESSOR_-
PASSBYREF not sup-
ported.

DBACCESSOR_-
OPTIMIZED not sup-
ported.

IAlterIndex

IAlterTable

Alter tables, indexes, and
columns.

Not supported.

IChapteredRowset A chaptered rowset allows
rows of a rowset to be ac-
cessed in separate chapters.

Not supported. Adap-
tive Server Anywhere
does not support chap-
tered rowsets.

IColumnsInfo Get simple information
about the columns of a
rowset.

Not on CE.

IColumnsRowset Get information about op-
tional metadata columns in
a rowset, and get a rowset
of column metadata.

Not on CE.

ICommand Execute SQL commands. Does not support
calling. Icom-
mandProperties:
GetProperties
with DBPROPSET_-
PROPERTIESINERROR
to find properties that
could not have been
set.

322

Chapter 9. The OLE DB and ADO Programming Interfaces

Interface Purpose Limitations

ICommandPersist Persist the state of a com-
mand object (but not any
active rowsets). These per-
sistent command objects
can subsequently be enu-
merated using the PROCE-
DURES or VIEWS rowset.

Not on CE.

ICommandPrepare Prepare commands. Not on CE.

ICommandProperties Set Rowset properties for
rowsets created by a com-
mand. Most commonly
used to specify the inter-
faces the rowset should
support.

Supported.

ICommandText Set the SQL command text
for ICommand.

Only the DBGUID_-
DEFAULT SQL di-
alect is supported.

IcommandWithPa-
rameters

Set or get parameter infor-
mation for a command.

No support for param-
eters stored as vectors
of scalar values.

No support for BLOB
parameters.

Not on CE.

IConvertType Supported.

Limited on CE.

IDBAsynchNotify

IDBAsyncStatus

Asynchronous processing.

Notify client of events in
the asynchronous process-
ing of data source initial-
ization, populating rowsets,
and so on.

Not supported.

IDBCreateCommand Create commands from a
session.

Supported.

IDBCreateSession Create a session from a data
source object.

Supported.

323

Interface Purpose Limitations

IDBDataSourceAd-
min

Create/destroy/modify data
source objects, which are
COM objects used by
clients. This interface is
not used to manage data
stores (databases).

Not supported.

IDBInfo Find information about
keywords unique to this
provider (that is, to find
non-standard SQL key-
words).

Also, find information
about literals, special char-
acters used in text matching
queries, and other literal
information.

Not on CE.

IDBInitialize Initialize data source ob-
jects and enumerators.

Not on CE.

IDBProperties Manage properties on a
data source object or enu-
merator.

Not on CE.

IDBSchemaRowset Get information about sys-
tem tables, in a standard
form (a rowset).

Not on CE.

IErrorInfo

IErrorLookup

IErrorRecords

ActiveX error object sup-
port.

Not on CE.

IGetDataSource Returns an interface pointer
to the session’s data source
object.

Supported.

IIndexDefinition Create or drop indexes in
the data store.

Not supported.

IMultipleResults Retrieve multiple results
(rowsets or row counts)
from a command.

Supported.

324

Chapter 9. The OLE DB and ADO Programming Interfaces

Interface Purpose Limitations

IOpenRowset Non-SQL way to access a
database table by its name.

Supported.

Opening a table by its
name is supported, not
by a GUID.

IParentRowset Access chap-
tered/hierarchical rowsets.

Not supported.

IRowset Access rowsets. Supported.

IRowsetChange Allow changes to rowset
data, reflected back to the
data store.

InsertRow/SetData for
blobs not yet implemented.

Not on CE.

IRowsetChapter-
Member

Access chap-
tered/hierarchical rowsets.

Not supported.

IRowsetCurrentIndex Dynamically change the
index for a rowset.

Not supported.

IRowsetFind Find a row within a rowset
matching a specified value.

Not supported.

IRowsetIdentity Compare row handles. Not supported.

IRowsetIndex Access database indexes. Not supported.

IRowsetInfo Find information about a
rowset properties or to find
the object that created the
rowset.

Not on CE.

IRowsetLocate Position on rows of a
rowset, using bookmarks.

Not on CE.

IRowsetNotify Provides a COM callback
interface for rowset events.

Supported.

IRowsetRefresh Get the latest value of data
that is visible to a transac-
tion.

Not supported.

IRowsetResynch Old OLEDB 1.x interface,
superseded by IRowsetRe-
fresh.

Not supported.

325

Interface Purpose Limitations

IRowsetScroll Scroll through rowset to
fetch row data.

Not supported.

IRowsetUpdate Delay changes to rowset
data until Update is called.

Supported.

Not on CE.

IRowsetView Use views on an existing
rowset.

Not supported.

ISequentialStream Retrieve a blob column. Supported for reading
only.

No support for SetData
with this interface.

Not on CE.

ISessionProperties Get session property infor-
mation.

Supported.

ISourcesRowset Get a rowset of data source
objects and enumerators.

Not on CE.

ISQLErrorInfo

ISupportErrorInfo

ActiveX error object sup-
port.

Optional on CE.

ITableDefinition

ITableDefinitionWithConstraints

Create, drop, and alter
tables, with constraints.

Not on CE.

ITransaction Commit or abort transac-
tions.

Not all the flags are
supported.

Not on CE.

ITransactionJoin Support distributed transac-
tions.

Not all the flags are
supported.

Not on CE.

ITransactionLocal Handle transactions on a
session.

Not all the flags are sup-
ported.

Not on CE.

ITransactionOptions Get or set options on a
transaction.

Not on CE.

326

Chapter 9. The OLE DB and ADO Programming Interfaces

Interface Purpose Limitations

IViewChapter Work with views on an
existing rowset, specifically
to apply post-processing
filters/sorting on rows.

Not supported.

IViewFilter Restrict contents of a
rowset to rows matching
a set of conditions.

Not supported.

IViewRowset Restrict contents of a
rowset to rows matching
a set of conditions, when
opening a rowset.

Not supported.

IViewSort Apply sort order to a view. Not supported.

327

CHAPTER 10

Introduction to the Adaptive Server
Anywhere .NET Data Provider

About this chapter This chapter introduces you to the Adaptive Server Anywhere .NET data
provider.

Contents Topic: page

Adaptive Server Anywhere .NET data provider features 330

Running the sample projects 331

329

Adaptive Server Anywhere .NET data provider
features

If you are using Visual Studio .NET on Windows NT/2000/XP, the following
data providers are supported for accessing Adaptive Server Anywhere:

♦ iAnywhere.Data.AsaClient uses the Adaptive Server Anywhere .NET
data provider described in this book.

♦ System.Data.Oledb is a general-purpose data provider for OLE DB
data sources. It is part of the Microsoft .NET Framework. You can use
System.Data.Oledb together with the Adaptive Server Anywhere
OLE DB driver to access Adaptive Server Anywhere databases.

♦ System.Data.Odbc is a general-purpose data provider for ODBC data
sources. It is part of the Microsoft .NET Framework. You can use
System.Data.Odbc together with the Adaptive Server Anywhere ODBC
driver to access Adaptive Server Anywhere databases.

On Windows CE, only the Adaptive Server Anywhere .NET data provider is
supported.

There are some key benefits to using the Adaptive Server Anywhere .NET
data provider:

♦ The Adaptive Server Anywhere .NET data provider is faster than the
OLE DB provider.

♦ In the .NET environment, the Adaptive Server Anywhere .NET data
provider provides native access to Adaptive Server Anywhere. Unlike the
other supported providers, it communicates directly with Adaptive Server
Anywhere and does not require bridge technology.

330

Chapter 10. Introduction to the Adaptive Server Anywhere .NET Data Provider

Running the sample projects
There are three sample projects included with the Adaptive Server
Anywhere .NET data provider. They are:

♦ SimpleCE A Compact Framework Windows CE sample that
demonstrates a simple list box that is filled with the names from the
employee table when you click the Connect button.

♦ SimpleWin32 A Windows sample that demonstrates a simple list box
that is filled with the names from the employee table when you click the
Connect button.

♦ TableViewer A Windows program that allows you to enter and execute
SQL statements.

☞ For tutorials explaining the win32 and Table Viewer samples, see
“Using the Adaptive Server Anywhere .NET Data Provider Sample
Applications” on page 333.

Note If your SQL Anywhere installation directory is not the default
(C:\Program Files\Sybase\SQL Anywhere 9), you may receive an error
referencing the data provider DLL when you load the sample projects. If this
happens, add a new reference toiAnywhere.Data.AsaClient.dll.

☞ For instructions on adding a reference to the DLL, see“Adding a
reference to the data provider DLL in your project” on page 344.

331

CHAPTER 11

Using the Adaptive Server Anywhere .NET
Data Provider Sample Applications

About this chapter This chapter explains how to use the Simple and Table Viewer sample
projects included with the Adaptive Server Anywhere .NET data provider.

If your SQL Anywhere installation directory is not the default
(C:\Program Files\Sybase\SQL Anywhere 9), you may receive an error
referencing the data provider DLL when you load the sample projects. If this
happens, add a new reference toiAnywhere.Data.AsaClient.dll.

☞ For instructions on adding a reference to the DLL, see“Adding a
reference to the data provider DLL in your project” on page 344.

Contents Topic: page

Tutorial: Using the Simple code sample 334

Tutorial: Using the Table Viewer code sample 338

333

Tutorial: Using the Simple code sample
This tutorial is based on the Simple project that is included with the .NET
data provider.

The complete application can be found in your SQL Anywhere installation
directory atSamples\ASA\ADO.NET\SimpleWin32\Simple.csproj.

The Simple project illustrates the following features:

♦ connecting to a database

♦ executing a query using the AsaCommand object

♦ using the AsaDataReader object

♦ basic error handling

☞ For more information about how the sample works, see“Understanding
the Simple sample project” on page 335.

❖ To run the Simple code sample in Visual Studio .NET

1. Start Visual Studio .NET.

2. Choose File➤ Open➤ Project.

3. Browse toSamples\ASA\ADO.NET\SimpleWin32in your SQL
Anywhere installation directory and open theSimple.csprojproject.

4. When you use the Adaptive Server Anywhere .NET data provider in a
project, you must add a reference to the data provider DLL. This has
already been done in the Simple code sample. You can view the reference
to the data provider DLL in the following location:

♦ In the Solution Explorer window, open the References folder.

♦ You should see iAnywhere.Data.AsaClient in the list.

☞ For instructions about adding a reference to the data provider
DLL, see“Adding a reference to the data provider DLL in your
project” on page 344.

5. You must also add ausing directive to your source code to reference the
data provider classes. This has already been done in the Simple code
sample. To view theusing directive:

♦ Open the source code for the project.

• In the Solution Explorer window, selectForm1.cs.
• Choose View➤ Code.

334

Chapter 11. Using the Adaptive Server Anywhere .NET Data Provider Sample Applications

♦ In theusing directives in the top section, you should see the following
line:

using iAnywhere.Data.AsaClient;

This line is required for C# projects. If you are using Visual
Basic .NET, you need to add a different line to your source code.
☞ For more information, see“Referencing the data provider classes
in your source code” on page 344.

6. To run the Simple sample, choose Debug➤ Start Without Debugging or
press Ctrl+F5.

The AsaSample dialog appears.
♦ In the AsaSample dialog, click Connect.

The application connects to the Adaptive Server Anywhere sample
database and puts the last name of each employee in the dialog, as
follows:

7. Click the X in the upper right corner of the screen to terminate the
application and disconnect from the sample database. This also shuts
down the database server.

You have now run the application. The next section describes the application
code.

Understanding the Simple sample project

This section illustrates some key features of the Adaptive Server
Anywhere .NET data provider by walking through some of the code from
the Simple code sample. The Simple code sample uses the Adaptive Server
Anywhere sample database,asademo.db, which is held in your SQL
Anywhere installation directory.

☞ For information about the sample database, including the tables in the
database and the relationships between them, see “The sample database”
[ASA Getting Started,page 46].

335

In this section, the code is described a few lines at a time. Not all code from
the sample is included here. To see the whole code, open the sample project
atSamples\ASA\ADO.NET\SimpleWin32\Simple.csproj.

Declaring controls The following code declares a button named
btnConnect and a ListBox named listEmployees.

private System.Windows.Forms.Button btnConnect;
private System.Windows.Forms.ListBox listEmployees;

Connecting to the database The btnConnect_Click method declares and
initializes a connection object (new AsaConnection).

private void btnConnect_Click(object sender,
System.EventArgs e)
AsaConnection conn = new AsaConnection(

"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL");

The AsaConnection object uses the connection string to connect to the
sample database.

conn.Open();

☞ For more information about the AsaConnection object, see
“AsaConnection class” on page 389.

Executing a query The following code uses the Command object
(AsaCommand) to define and execute a SQL statement (SELECT

emp_lname FROM employee). Then, it returns the DataReader object
(AsaDataReader).

AsaCommand cmd = new AsaCommand(
"select emp_lname from employee", conn);

AsaDataReader reader = cmd.ExecuteReader();

☞ For more information about the Command object, see“AsaCommand
class” on page 379.

Displaying the results The following code loops through the rows held in
the AsaDataReader object and adds them to the ListBox control. The
DataReader usesGetString(0) to get the first value from the row.

Each time the Read method is called, the DataReader gets another row back
from the result set. A new item is added to the ListBox for each row that is
read.

listEmployees.BeginUpdate();
while(reader.Read()) {

listEmployees.Items.Add(reader.GetString(0));
}
listEmployees.EndUpdate();

336

Chapter 11. Using the Adaptive Server Anywhere .NET Data Provider Sample Applications

☞ For more information about the AsaDataReader object, see
“AsaDataReader class” on page 404.

Finishing off The following code at the end of the method closes the
reader and connection objects.

reader.Close();
conn.Close();

Error handling Any errors that occur during execution and that originate
with Adaptive Server Anywhere .NET data provider objects are handled by
displaying them in a message box. The following code catches the error and
displays its message:

catch(AsaException ex) {
MessageBox.Show(ex.Errors[0].Message);

}

☞ For more information about the AsaException object, see
“AsaException class” on page 423.

337

Tutorial: Using the Table Viewer code sample
This tutorial is based on the Table Viewer project that is included with the
Adaptive Server Anywhere .NET data provider.

The complete application can be found in your SQL Anywhere installation
directory atSamples\ASA\ado.net\TableViewer\TableViewer.csproj.

The Table Viewer project is more complex than the Simple project. It
illustrates the following features:

♦ connecting to a database

♦ working with the AsaDataAdapter object

♦ more advanced error handling and result checking

☞ For more information about how the sample works, see“Understanding
the Table Viewer sample project” on page 340.

❖ To run the Table Viewer code sample in Visual Studio .NET

1. Start Visual Studio .NET.

2. Choose File➤ Open➤ Project.

3. Browse toSamplesASA\ado.net\TableViewerin your SQL Anywhere
installation directory and open theTableViewer.csprojproject.

4. If you want to use the Adaptive Server Anywhere .NET data provider in a
project, you must add a reference to the data provider DLL. This has
already been done in the Table Viewer code sample. You can view the
reference to the data provider DLL in the following location:

♦ In the Solution Explorer window, Open the References folder.

♦ You should see iAnywhere.Data.AsaClient in the list.

☞ For instructions about adding a reference to the data provider
DLL, see“Adding a reference to the data provider DLL in your
project” on page 344.

5. You must also add ausing directive to your source code to reference the
data provider classes. This has already been done in the Table Viewer
code sample. To view theusing directive:

♦ Open the source code for the project.

• In the Solution Explorer window, selectTableViewer.cs.
• Choose View➤ Code.

338

Chapter 11. Using the Adaptive Server Anywhere .NET Data Provider Sample Applications

♦ In theusing directives in the top section, you should see the following
line:

using iAnywhere.Data.AsaClient;

This line is required for C# projects. If you are using Visual
Basic .NET, you need to add anImports line to your source code.
☞ For more information, see“Referencing the data provider classes
in your source code” on page 344.

6. Choose Debug➤ Start Without Debugging to run the Table Viewer
project.

The Table Viewer dialog appears.
♦ In the Table Viewer dialog, click Connect.

The application connects to the Adaptive Server Anywhere sample
database.

♦ In the Table Viewer dialog, click Execute.
The application retrieves the data from the employee table in the
sample database and puts the query results in the Results DataList, as
follows:

If you attempt to execute the query without first connecting to a
database, a message appears instructing you to connect to a database.

♦ You can also execute other SQL statements from this application: enter
a SQL statement in the SQL Statement pane and then click Execute.

7. Click the X in the upper right corner of the screen to terminate the
application and disconnect from the sample database. This also shuts
down the database server.

You have now run the application. The next section describes the application
code.

339

Understanding the Table Viewer sample project

This section illustrates some key features of the Adaptive Server
Anywhere .NET data provider by walking through some of the code from
the Table Viewer code sample. The Table Viewer project uses the Adaptive
Server Anywhere sample database,asademo.db, which is held in your SQL
Anywhere installation directory.

☞ For information about the sample database, including the tables in the
database and the relationships between them, see “The sample database”
[ASA Getting Started,page 46].

In this section the code is described a few lines at a time. Not all code from
the sample is included here. To see the whole code, open the sample project
atSamples\ASA\ado.net\Tableviewer\TableViewer.csproj.

Declaring controls The following code declares a TextBox labeled
Connection String, a button named btnConnect, a TextBox labeled
txtSQLStatement, a button named btnExecute, and a DataGrid labeled
dgResults.

Private System.Windows.Forms.Label label1;
private System.Windows.Forms.TextBox txtConnectString;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.Button btnConnect;
private System.Windows.Forms.TextBox txtSQLStatement;
private System.Windows.Forms.Button btnExecute;
private System.Windows.Forms.DataGrid dgResults;

Declaring a global variable The AsaConnection function is used to
declare a global variable. This connection is used for the initial connection
to the database, as well as when you click Execute to retrieve the result set
from the database.

private AsaConnection _conn;

☞ For more information about the AsaConnection function, see
“AsaConnection constructors” on page 389.

Connecting to the database The following code provides a default value
for the connection string that appears in the Connection String field by
default.

this.txtConnectString.Text =
"Data Source=ASA 9.0 Sample";

The Connection object later uses the connection string ("Data

Source=ASA 9.0 Sample") to connect to the sample database.

340

Chapter 11. Using the Adaptive Server Anywhere .NET Data Provider Sample Applications

_conn = new AsaConnection(txtConnectString.Text);
_conn.Open();

☞ For more information about the Connection object, see“AsaConnection
class” on page 389.

Defining a query The following code defines the default query that
appears in the SQL Statement field.

this.txtSQLStatement.Text = "SELECT * FROM employee";

Displaying the results Before the results are fetched, the application
checks whether the Connection object has been initialized. If it has, it
ensures that the connection state is open.

if(_conn == null || _conn.State !=
ConnectionState.Open) {
MessageBox.Show("Connect to a database first",

"Not connected");
return;

Once you are connected to the database, the following code creates a new
DataSet and uses the DataAdapter object (AsaDataAdapter) to execute a
SQL statement (SELECT * FROM employee), and fill the DataSet. The last
two lines bind the DataSet to the grid on the screen.

DataSet ds =new DataSet ();
AsaDataAdapter da=new AsaDataAdapter(

txtSQLStatement.Text, _conn);
da.Fill(ds, "Results")
dgResults.DataSource = ds.Tables["Results"];

Because a global variable is used to declare the connection, the connection
that was opened earlier is reused to execute the SQL statement.

☞ For more information about the DataAdapter object, see
“AsaDataAdapter class” on page 395.

Error handling If there is an error when the application attempts to
connect to the database, the following code catches the error and displays its
message:

try {
_conn = new AsaConnection(txtConnectString.Text);
_conn.Open();

} catch(AsaException ex) {
MessageBox.Show(ex.Errors[0].Source + " : "

+ ex.Errors[0].Message + " (" +
ex.Errors[0].NativeError.ToString() + ")",

"Failed to connect");
}

341

CHAPTER 12

Developing Applications with the .NET
Data Provider

About this chapter This chapter describes how to develop and deploy applications with the
Adaptive Server Anywhere .NET data provider.

Contents Topic: page

Using the .NET provider in a Visual Studio .NET project 344

Connecting to a database 346

Accessing and manipulating data 349

Using stored procedures 370

Transaction processing 372

Error handling and the Adaptive Server Anywhere .NET data
provider

374

Deploying the Adaptive Server Anywhere .NET data provider 375

343

Using the .NET provider in a Visual Studio .NET
project

Once you have installed the Adaptive Server Anywhere .NET data provider,
you must make two changes to your Visual Studio .NET project to be able to
use it:

♦ add a reference to the Adaptive Server Anywhere .NET data provider
DLL

♦ add a line to your source code to reference the Adaptive Server Anywhere
.NET data provider classes

☞ For information about installing and registering the Adaptive Server
Anywhere .NET data provider, see“Deploying the Adaptive Server
Anywhere .NET data provider” on page 375.

Adding a reference to the
data provider DLL in your
project

Adding a reference tells Visual Studio .NET which DLL to include to find
the code for the Adaptive Server Anywhere .NET data provider.

❖ To add a reference to the Adaptive Server Anywhere .NET data
provider in a Visual Studio .NET project
1. Start Visual Studio .NET and open your project.

2. In the Solution Explorer window, right-click the References folder and
choose Add Reference from the popup menu.

The Add Reference dialog appears.

3. On the .NET tab, click Browse to locateiAnywhere.Data.AsaClient.dll.
(The default location is\Program Files\Sybase\SQL Anywhere 9\win32).
Select the DLL and click Open.

Note that there is a separate version of the DLL for each of Windows and
Windows CE.

☞ For a complete list of installed DLLs, see“Adaptive Server
Anywhere .NET data provider required files” on page 375.

4. You can verify that the DLL is added to your project. Open the Add
Reference dialog and then click the .NET tab.
iAnywhere.Data.AsaClient.dllappears in the Selected Components list.
Click OK to close the dialog.

The DLL is added to the References folder in the Solution Explorer
window of your project.

Referencing the data
provider classes in your
source code

In order to use the Adaptive Server Anywhere .NET data provider, you must
also add a line to your source code to reference the data provider. You must
add a different line for C# than for Visual Basic .NET.

344

Chapter 12. Developing Applications with the .NET Data Provider

❖ To reference the data provider classes in your code

1. Start Visual Studio .NET and open your project.

2. If you are using C#, add the following line to the list ofusing directives
at the beginning of your project:

using iAnywhere.Data.AsaClient;

3. If you are using Visual Basic .NET, add the following line at the
beginning of your project before the linePublic Class Form1 :

Imports iAnywhere.Data.AsaClient

This line is not strictly required. However, it allows you to use short
forms for the Adaptive Server Anywhere classes. Without it, you can still
use

iAnywhere.Data.AsaClient.AsaConnection
conn = new iAnywhere.Data.AsaClient.AsaConnection()

instead of

AsaConnection conn = new AsaConnection()

in your code.

345

Connecting to a database
Before you can carry out any operations on the data, your application must
connect to the database. This section describes how to write code to connect
to an Adaptive Server Anywhere database.

☞ For more information, see“AsaConnection class” on page 389and
“ConnectionString property” on page 390.

❖ To connect to an Adaptive Server Anywhere database

1. Allocate an AsaConnection object.

The following code creates an AsaConnection object named conn:

AsaConnection conn = new AsaConnection(

You can have more than one connection to a database from your
application. Some applications use a single connection to an Adaptive
Server Anywhere database, and keep the connection open all the time. To
do this, you can declare a global variable for the connection:

private AsaConnection _conn;

☞ For more information, see the sample code in
Samples\ASA\ado.net\TableViewer\TableViewer.csprojand
“Understanding the Table Viewer sample project” on page 340.

2. Specify the connection string used to connect to the database.

For example:

"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL");

☞ For a complete list of connection parameters, see “Connection
parameters”[ASA Database Administration Guide,page 174].

Instead of supplying a connection string, you could prompt users for their
user ID and password if you wish.

3. Open a connection to the database.

The following code attempts to connect to a database. It autostarts the
database server if necessary.

conn.Open();

4. Catch connection errors.

Your application should be designed to catch any errors that occur when
attempting to connect to the database. The following code demonstrates
how to catch an error and display its message:

346

Chapter 12. Developing Applications with the .NET Data Provider

try {
_conn = new AsaConnection(txtConnectString.Text);
_conn.Open();

} catch(AsaException ex) {
MessageBox.Show(ex.Errors[0].Source + " : "

+ ex.Errors[0].Message + " (" +
ex.Errors[0].NativeError.ToString() + ")",

"Failed to connect");

Alternately, you can use the ConnectionString property to set the
connection string, rather than passing the connection string when the
AsaConnection object is created:

AsaConnection _conn;
_conn = new AsaConnection();
_conn.ConnectionString =

"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL";
_conn.Open();

5. Close the connection to the database. Connections to the database stay
open until they are explicitly closed using theconn.Close() method.

Visual Basic .NET
connection example

The following Visual Basic .NET code opens a connection to the Adaptive
Server Anywhere sample database:

Private Sub Button1_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles Button1.Click
’ Declare the connection object
Dim myConn As New _

iAnywhere.Data.AsaClient.AsaConnection()
myConn.ConnectionString = _

"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL"
myConn.Open()
myConn.Close()

End Sub

Connection pooling

The Adaptive Server Anywhere .NET provider supports connection pooling.
Connection pooling allows your application to reuse existing connections
from a pool by saving the connection handle to a pool so it can be reused,
rather than repeatedly creating a new connection to the database. Connection
pooling is turned on by default.

The pool size is set in your connection string using the POOLING option.
You can also specify the minimum and maximum pool sizes. For example,

"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL;POOLING=TRUE;Max
Pool Size=50;Min Pool Size=5"

347

When your application first attempts to connect to the database, it checks the
pool for an existing connection that uses the same connection parameters
you have specified. If a matching connection is found, that connection is
used. Otherwise, a new connection is used. When you disconnect, the
connection is returned to the pool so that it can be reused.

☞ For more information about connection pooling, see“ConnectionString
property” on page 390.

Checking the connection state

Once your application has established a connection to the database, you can
check the connection state to ensure that the connection is open before you
fetch data from the database to update it. If a connection is lost or is busy, or
if another command is being processed, you can return an appropriate
message to the user.

The AsaConnection class has a state property that checks the state of the
connection. Possible state values are Open and Closed.

The following code checks whether the Connection object has been
initialized, and if it has, it ensures that the connection is open. A message is
returned to the user if the connection is not open.

if(_conn == null || _conn.State !=
ConnectionState.Open) {
MessageBox.Show("Connect to a database first",

"Not connected");
return;

☞ For more information, see“State property” on page 393.

348

Chapter 12. Developing Applications with the .NET Data Provider

Accessing and manipulating data
With the Adaptive Server Anywhere .NET data provider, there are two ways
you can access data: using the AsaCommand object or using the
AsaDataAdapter object.

♦ AsaCommand object The AsaCommand object is the recommended
way of accessing and manipulating data in .NET.

The AsaCommand object allows you to execute SQL statements that
retrieve or modify data directly from the database. Using the
AsaCommand object, you can issue SQL statements and call stored
procedures directly against the database.

Within an AsaCommand object, the AsaDataReader is used to return
read-only result sets from a query or stored procedure. The
AsaDataReader returns only one row at a time, but this does not degrade
performance because the Adaptive Server Anywhere client-side libraries
use prefetch buffering to prefetch several rows at a time.

Using the AsaCommand object allows you to group your changes into
transactions rather than operating in autocommit mode. When you use
the AsaTransaction object, locks are placed on the rows so that other
users cannot modify them.

☞ For more information, see“AsaCommand class” on page 379and
“AsaDataReader class” on page 404.

♦ AsaDataAdapter object The AsaDataAdapter object retrieves the
entire result set into a DataSet. A DataSet is a disconnected store for data
that is retrieved from a database. You can then edit the data in the DataSet
and when you are finished, the AsaDataAdapter object updates the
database with the changes made to the DataSet. When you use the
AsaDataAdapter, there is no way to prevent other users from modifying
the rows in your DataSet. You need to include logic within your
application to resolve any conflicts that may occur.

☞ For more information about conflicts, see“Resolving conflicts when
using the AsaDataAdapter” on page 358.

☞ For more information about the AsaDataAdapter object, see
“AsaDataAdapter class” on page 395.

There is no performance impact from using the AsaDataReader within an
AsaCommand object to fetch rows from the database rather than the
AsaDataAdapter object.

349

Using the AsaCommand object to retrieve and manipulate data

The following sections describe how to retrieve data and how to insert,
update, or delete rows using the AsaDataReader.

Getting data using the AsaCommand object

The AsaCommand object allows you to issue a SQL statement or call a
stored procedure against an Adaptive Server Anywhere database. You can
issue the following types of commands to retrieve data from the database:

♦ ExecuteReader Used to issue a command that returns a result set. This
method uses a forward-only, read-only cursor. You can loop quickly
through the rows of the result set only in one direction.

☞ For more information, see“ExecuteReader method” on page 382.

♦ ExecuteScalar Used to issue a command that returns a single value.
This can be the first column in the first row of the result set, or a SQL
statement that returns an aggregate value such as COUNT or AVG. This
method uses a forward-only, read-only cursor.

☞ For more information, see“ExecuteScalar method” on page 382.

When using the AsaCommand object you can use the AsaDataReader to
retrieve a result set that is based on a join. However, you can only make
changes (inserts, updates, or deletes) to data that is from a single table. You
cannot update result sets that are based on joins.

The following instructions use the Simple code sample included with the
.NET data provider.

☞ For more information about the Simple code sample, see
“Understanding the Simple sample project” on page 335.

❖ To issue a command that returns a complete result set

1. Declare and initialize a Connection object.

AsaConnection conn = new AsaConnection(
"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL");

2. Open the connection.

try {
conn.Open();

3. Add a Command object to define and execute a SQL statement.

350

Chapter 12. Developing Applications with the .NET Data Provider

AsaCommand cmd = new AsaCommand(
"select emp_lname from employee", conn);

If you are calling a stored procedure, you must specify the parameters for
the stored procedure.

☞ For more information, see“Using stored procedures” on page 370
and“AsaParameter class” on page 427.

4. Call the ExecuteReader method to return the DataReader object.

AsaDataReader reader = cmd.ExecuteReader();

5. Display the results.

listEmployees.BeginUpdate();
while(reader.Read()) {

listEmployees.Items.Add(reader.GetString(0));
}
listEmployees.EndUpdate();

6. Close the DataReader and Connection objects.

reader.Close();
conn.Close();

❖ To issue a command that returns only one value

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
"Data Source=ASA 9.0 Sample");

2. Open the connection.

conn.Open();

3. Add an AsaCommand object to define and execute a SQL statement.

AsaCommand cmd = new AsaCommand(
"select count(*) from employee where sex = ’M’",
conn);

If you are calling a stored procedure, you must specify the parameters for
the stored procedure.

☞ For more information, see“Using stored procedures” on page 370.

4. Call the ExecuteScalar method to return the object containing the value.

int count = (int) cmd.ExecuteScalar();

351

5. Close the AsaConnection object.

conn.Close();

When using the AsaDataReader, there are several Get methods available that
you can use to return the results in desired the data type.

☞ For more information, see“AsaDataReader class” on page 404.

Visual Basic .NET
DataReader example

The following Visual Basic .NET code opens a connection to the Adaptive
Server Anywhere sample database and uses the DataReader to return the last
name of the first five employees in the result set:

Dim myConn As New .AsaConnection()
Dim myCmd As _

New .AsaCommand _
("select emp_lname from employee", myConn)

Dim myReader As AsaDataReader
Dim counter As Integer
myConn.ConnectionString = _

"Data Source=ASA 9.0 Sample;UID=DBA;PWD=SQL"
myConn.Open()
myReader = myCmd.ExecuteReader()
counter = 0
Do While (myReader.Read())

MsgBox(myReader.GetString(0))
counter = counter + 1
If counter >= 5 Then Exit Do

Loop
myConn.Close()

Inserting, updating, and deleting rows using the AsaCommand object

In order to perform an insert, update, or delete with the AsaCommand
object, you use the ExecuteNonQuery function. The ExecuteNonQuery
function issues a command (SQL statement or stored procedure) that does
not return a result set.

☞ For more information, see“ExecuteNonQuery method” on page 382.

You can only make changes (inserts, updates, or deletes) to data that is from
a single table. You cannot update result sets that are based on joins. You
must be connected to a database to use the AsaCommand object.

☞ For information about obtaining primary key values for autoincrement
primary keys, see“Obtaining primary key values” on page 364.

If you want to set the isolation level for a command, you must use the
AsaCommand object as part of an AsaTransaction object. When you modify
data without an AsaTransaction object, the .NET provider operates in
autocommit mode and any changes that you make are applied immediately.

352

Chapter 12. Developing Applications with the .NET Data Provider

☞ For more information, see“Transaction processing” on page 372.

❖ To issue a command that inserts a row

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
c_connStr);

2. Open the connection.

conn.Open();

3. Add an AsaCommand object to define and execute an INSERT statement.

You can use an INSERT, UPDATE, or DELETE statement with the
ExecuteNonQuery method.

AsaCommand insertCmd = new AsaCommand(
"INSERT INTO department(dept_id, dept_name)
VALUES(?, ?)", conn);

If you are calling a stored procedure, you must specify the parameters for
the stored procedure.

☞ For more information, see“Using stored procedures” on page 370
and“AsaParameter class” on page 427.

4. Set the parameters for the AsaCommand object.

The following code defines parameters for the dept_id and dept_name
columns respectively.

AsaParameter parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Integer;
insertCmd.Parameters.Add(parm);
parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Char;
insertCmd.Parameters.Add(parm);

5. Insert the new values and call the ExecuteNonQuery method to apply the
changes to the database.

insertCmd.Parameters[0].Value = 600;
insertCmd.Parameters[1].Value = "Eastern Sales";
int recordsAffected = insertCmd.ExecuteNonQuery();
insertCmd.Parameters[0].Value = 700;
insertCmd.Parameters[1].Value = "Western Sales";
int recordsAffected = insertCmd.ExecuteNonQuery();

6. Display the results and bind them to the grid on the screen.

353

AsaCommand selectCmd = new AsaCommand(
"SELECT * FROM department", conn);

AsaDataReader dr = selectCmd.ExecuteReader();
dataGrid.DataSource = dr;

7. Close the AsaDataReader and AsaConnection objects.

dr.Close();
conn.Close();

❖ To issue a command that updates a row

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
c_connStr);

2. Open the connection.

conn.Open();

3. Add an AsaCommand object to define and execute an UPDATE
statement.

You can use an INSERT, UPDATE, or DELETE statement with the
ExecuteNonQuery method.

AsaCommand updateCmd = new AsaCommand(
"UPDATE department SET dept_name = ’Engineering’
WHERE dept_id=100", conn);

If you are calling a stored procedure, you must specify the parameters for
the stored procedure.

☞ For more information, see“Using stored procedures” on page 370
and“AsaParameter class” on page 427.

4. Call the ExecuteNonQuery method to apply the changes to the database.

int recordsAffected = updateCmd.ExecuteNonQuery();

5. Display the results and bind them to the grid on the screen.

AsaCommand selectCmd = new AsaCommand(
"SELECT * FROM department", conn);

AsaDataReader dr = selectCmd.ExecuteReader();
dataGrid.DataSource = dr;

6. Close the AsaDataReader and AsaConnection objects.

dr.Close();
conn.Close();

354

Chapter 12. Developing Applications with the .NET Data Provider

❖ To issue a command that deletes a row

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
c_connStr);

2. Open the connection.

conn.Open();

3. Create an AsaCommand object to define and execute a DELETE
statement.

You can use an INSERT, UPDATE, or DELETE statement with the
ExecuteNonQuery method.

AsaCommand deleteCmd = new AsaCommand(
"DELETE FROM department WHERE (dept_id > 500)", conn

);

If you are calling a stored procedure, you must specify the parameters for
the stored procedure.

☞ For more information, see“Using stored procedures” on page 370
and“AsaParameter class” on page 427.

4. Call the ExecuteNonQuery method to apply the changes to the database.

int recordsAffected = deleteCmd.ExecuteNonQuery();

5. Close the AsaConnection object.

conn.Close();

Obtaining DataReader schema information

You can obtain schema information about columns in the result set.

If you are using the AsaDataReader, you can use the GetSchemaTable
method to obtain information about the result set. The GetSchemaTable
method returns the standard .NET DataTable object, which provides
information about all the columns in the result set, including column
properties.

☞ For more information about the GetSchemaTable method, see
“GetSchemaTable method” on page 412.

355

❖ To obtain information about a result set using the GetSchemaT-
able method
1. Declare and initialize a connection object.

AsaConnection conn = new AsaConnection(
c_connStr);

2. Open the connection.

conn.Open();

3. Create an AsaCommand object with the SELECT statement you want to
use. The schema is returned for the result set of this query.

AsaCommand cmd = new AsaCommand(
"SELECT * FROM employee", conn);

4. Create an AsaDataReader object and execute the Command object you
created.

AsaDataReader dr = cmd.ExecuteReader();

5. Fill the DataTable with the schema from the data source.

DataTable schema = dr.GetSchemaTable();

6. Close the AsaDataReader and AsaConnection objects.

dr.Close();
conn.Close();

7. Bind the DataTable to the grid on the screen.

dataGrid.DataSource = schema;

Using the AsaDataAdapter object to access and manipulate data

The following sections describe how to retrieve data and how to insert,
update, or delete rows using the AsaDataAdapter.

Getting data using the AsaDataAdapter object

The AsaDataAdapter allows you to view the entire result set by using the
Fill method to fill a DataSet with the results from a query by binding the
DataSet to the display grid.

Using the AsaDataAdapter, you can pass any string (SQL statement or
stored procedure) that returns a result set. When you use the
AsaDataAdapter, all the rows are fetched in one operation using a

356

Chapter 12. Developing Applications with the .NET Data Provider

forward-only, read-only cursor. Once all the rows in the result set have been
read, the cursor is closed. The AsaDataAdapter allows you to make changes
to the DataSet. Once your changes are complete, you must reconnect to the
database to apply the changes.

You can use the AsaDataAdapter object to retrieve a result set that is based
on a join. However, you can only make changes (inserts, updates, or deletes)
to data that is from a single table. You cannot update result sets that are
based on joins.

Caution
Any changes you make to the DataSet are made while you are disconnected.
This means that your application does not have locks on these rows in the
database. Your application must be designed to resolve any conflicts that
may occur when changes from the DataSet are applied to the database in
the event that another user changes the data you are modifying before your
changes are applied to the database.

☞ For more information about the AsaDataAdapter, see“AsaDataAdapter
class” on page 395.

AsaDataAdapter
example

The following example shows how to fill a DataSet using the
AsaDataAdapter.

❖ To retrieve data using the AsaDataAdapter object

1. Connect to the database.

2. Create a new DataSet. In this case, the DataSet is called Results.

DataSet ds =new DataSet ();

3. Create a new AsaDataAdapter object to execute a SQL statement and fill
the DataSet.

AsaDataAdapter da=new AsaDataAdapter(
txtSQLStatement.Text, _conn);

da.Fill(ds, "Results")

4. Bind the DataSet to the grid on the screen.

dgResults.DataSource = ds.Tables["Results"]

Inserting, updating, and deleting rows using the AsaDataAdapter object

The AsaDataAdapter retrieves the result set into a DataSet. A DataSet is a
collection of tables and the relationships and constraints between those

357

tables. The DataSet is built into the .NET Framework, and is independent of
the data provider used to connect to your database.

When you use the AsaDataAdapter, you must be connected to the database
to fill the DataSet and to update the database with changes made to the
DataSet. However, once the DataSet is filled, you can modify the DataSet
while disconnected from the database.

If you do not want to apply your changes to the database right away, you can
write the DataSet, including the data and/or the schema, to an XML file
using the WriteXML method. Then, you apply the changes at a later time by
loading a DataSet with the ReadXML method.

☞ For more information, see the .NET Framework documentation for
WriteXML and ReadXML.

When you call the Update method to apply changes from the DataSet to the
database, the AsaDataAdapter analyzes the changes that have been made and
then invokes the appropriate commands, INSERT, UPDATE, or DELETE, as
necessary. When you use the DataSet, you can only make changes (inserts,
updates, or deletes) to data that is from a single table. You cannot update
result sets that are based on joins. If another user has a lock on the row you
are trying to update, an exception is thrown.

Caution
Any changes you make to the DataSet are made while you are disconnected.
This means that your application does not have locks on these rows in the
database. Your application must be designed to resolve any conflicts that
may occur when changes from the DataSet are applied to the database in
the event that another user changes the data you are modifying before your
changes are applied to the database.

Resolving conflicts when
using the
AsaDataAdapter

When you use the AsaDataAdapter, no locks are placed on the rows in the
database. This means there is the potential for conflicts to arise when you
apply changes from the DataSet to the database. Your application should
include logic to resolve or log conflicts that arise.

Some of the conflicts that your application logic should address include:

♦ Unique primary keys If two users insert new rows into a table, each
row must have a unique primary key. For tables with autoincrement
primary keys, the values in the DataSet may become out of sync with the
values in the data source.

☞ For information about obtaining primary key values for
autoincrement primary keys, see“Obtaining primary key values” on
page 364.

358

Chapter 12. Developing Applications with the .NET Data Provider

♦ Updates made to the same value If two users modify the same value,
your application should include logic to determine which value is correct.

♦ Schema changes If a user modifies the schema of a table you have
updated in the DataSet, the update will fail when you apply the changes
to the database.

♦ Data concurrency Concurrent applications should see a consistent set
of data. The AsaDataAdapter does not place a lock on rows that it
fetches, so another user can update a value in the database once you have
retrieved the DataSet and are working offline.

Many of these potential problems can be avoided by using the
AsaCommand, AsaDataReader, and AsaTransaction objects to apply
changes to the database. The AsaTransaction object is recommended
because it allows you to set the isolation level for the transaction and it
places locks on the rows so that other users cannot modify them.

☞ For more information about using transactions to apply your changes to
the database, see“Inserting, updating, and deleting rows using the
AsaCommand object” on page 352.

To simplify the process of conflict resolution, you can design your insert,
update, or delete statement to be a stored procedure call. By including
INSERT, UPDATE, and DELETE statements in stored procedures, you can
catch the error if the operation fails. In addition to the statement, you can
add error handling logic to the stored procedure so that if the operation fails
the appropriate action is taken, such as recording the error to a log file, or
trying the operation again.

❖ To insert rows into a table using the AsaDataAdapter

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
c_connStr);

2. Open the connection.

conn.Open();

3. Create a new AsaDataAdapter object.

AsaDataAdapter adapter = new AsaDataAdapter();
adapter.MissingMappingAction =

MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =

MissingSchemaAction.Add;

359

4. Create the necessary AsaCommand objects and define any necessary
parameters.

The following code creates a SELECT and an INSERT command and
defines the parameters for the INSERT command.

adapter.SelectCommand = new AsaCommand(
"SELECT * FROM department", conn);

adapter.InsertCommand = new AsaCommand(
"INSERT INTO department(dept_id, dept_name)
VALUES(?, ?)", conn);

adapter.InsertCommand.UpdatedRowSource =
UpdateRowSource.None;

AsaParameter parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Integer;
parm.SourceColumn = "dept_id";
parm.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(

parm);
parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Char;
parm.SourceColumn = "dept_name";
parm.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(parm);

5. Fill the DataTable with the results of the SELECT statement.

DataTable dataTable = new DataTable("department");
int rowCount = adapter.Fill(dataTable);

6. Insert the new rows into the DataTable and apply the changes to the
database.

DataRow row1 = dataTable.NewRow();
row1[0] = 600;
row1[1] = "Eastern Sales";
dataTable.Rows.Add(row1);
DataRow row2 = dataTable.NewRow();
row2[0] = 700;
row2[1] = "Western Sales";
dataTable.Rows.Add(row2);
recordsAffected = adapter.Update(dataTable);

7. Display the results of the updates.

dataTable.Clear();
rowCount = adapter.Fill(dataTable);
dataGrid.DataSource = dataTable;

8. Close the connection.

conn.Close();

360

Chapter 12. Developing Applications with the .NET Data Provider

❖ To update rows using the AsaDataAdapter object

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(c_connStr);

2. Open the connection.

conn.Open();

3. Create a new AsaDataAdapter object.

AsaDataAdapter adapter = new AsaDataAdapter();
adapter.MissingMappingAction =

MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =

MissingSchemaAction.Add;

4. Create an AsaCommand object and define its parameters.

The following code creates a SELECT and an UPDATE command and
defines the parameters for the UPDATE command.

adapter.SelectCommand = new AsaCommand(
"SELECT * FROM department WHERE dept_id > 500",
conn);

adapter.UpdateCommand = new AsaCommand(
"UPDATE department SET dept_name = ?
WHERE dept_id = ?", conn);

adapter.UpdateCommand.UpdatedRowSource =
UpdateRowSource.None;

AsaParameter parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Char;
parm.SourceColumn = "dept_name";
parm.SourceVersion = DataRowVersion.Current;
adapter.UpdateCommand.Parameters.Add(parm);
parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Integer;
parm.SourceColumn = "dept_id";
parm.SourceVersion = DataRowVersion.Original;
adapter.UpdateCommand.Parameters.Add(parm);

5. Fill the DataTable with the results of the SELECT statement.

DataTable dataTable = new DataTable("department");
int rowCount = adapter.Fill(dataTable);

6. Update the DataTable with the updated values for the rows and apply the
changes to the database.

foreach (DataRow row in dataTable.Rows)
{
row[1] = (string) row[1] + "_Updated";
}
recordsAffected = adapter.Update(dataTable);

361

7. Bind the results to the grid on the screen.

dataTable.Clear();
adapter.SelectCommand.CommandText =

"SELECT * FROM department";
rowCount = adapter.Fill(dataTable);
dataGrid.DataSource = dataTable;

8. Close the connection.

conn.Close();

❖ To delete rows from a table using the AsaDataAdapter object

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(c_connStr);

2. Open the connection.

conn.Open();

3. Create an AsaDataAdapter object.

AsaDataAdapter adapter = new AsaDataAdapter();
adapter.MissingMappingAction =

MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =

MissingSchemaAction.AddWithKey;

4. Create the required AsaCommand objects and define any necessary
parameters.

The following code creates a SELECT and a DELETE command and
defines the parameters for the DELETE command.

adapter.SelectCommand = new AsaCommand(
"SELECT * FROM department WHERE dept_id > 500",
conn);

adapter.DeleteCommand = new AsaCommand(
"DELETE FROM department WHERE dept_id = ?",
conn);

adapter.DeleteCommand.UpdatedRowSource =
UpdateRowSource.None;

AsaParameter parm = new AsaParameter();
parm.AsaDbType = AsaDbType.Integer;
parm.SourceColumn = "dept_id";
parm.SourceVersion = DataRowVersion.Original;
adapter.DeleteCommand.Parameters.Add(parm);

5. Fill the DataTable with the results of the SELECT statement.

DataTable dataTable = new DataTable("department");
int rowCount = adapter.Fill(dataTable);

362

Chapter 12. Developing Applications with the .NET Data Provider

6. Modify the DataTable and apply the changes to the database.

for each (DataRow in dataTable.Rows)
{

row.Delete();
}
recordsAffected = adapter.Update(dataTable)

7. Bind the results to the grid on the screen.

dataTable.Clear();
rowCount = adapter.Fill(dataTable);
dataGrid.DataSource = dataTable;

8. Close the connection.

conn.Close();

Obtaining AsaDataAdapter schema information

When using the AsaDataAdapter, you can use the FillSchema method to
obtain schema information about the result set in the DataSet. The
FillSchema method returns the standard .NET DataTable object, which
provides the names of all the columns in the result set.

☞ For more information about the FillSchema method, see“FillSchema
method” on page 398.

❖ To obtain DataSet schema information using the FillSchema
method
1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
c_connStr);

2. Open the connection.

conn.Open();

3. Create an AsaDataAdapter with the SELECT statement you want to use.
The schema is returned for the result set of this query.

AsaDataAdapter adapter = new AsaDataAdapter(
"SELECT * FROM employee", conn);

4. Create a new DataTable object, in this case called Table, to fill with the
schema.

DataTable dataTable = new DataTable(
"Table");

363

5. Fill the DataTable with the schema from the data source.

adapter.FillSchema(dataTable, SchemaType.Source);

6. Close the AsaConnection object.

conn.Close();

7. Bind the DataSet to the grid on the screen.

dataGrid.DataSource = dataTable;

Obtaining primary key values

If the table you are updating has an autoincremented primary key, uses
UUIDs, or if the primary key comes from a primary key pool, you can use a
stored procedure to obtain values generated by the data source.

When using the AsaDataAdapter, this technique can be used to fill the
columns in the DataSet with the primary key values generated by the data
source. If you want to use this technique with the AsaCommand object, you
can either get the key columns from the parameters or reopen the
DataReader.

Examples The following examples use a table called adodotnet_primarykey that
contains two columns, id and name. The primary key for the table is id. It is
an INTEGER and contains an autoincremented value. The name column is
CHAR(40).

These examples call the following stored procedure to retrieve the
autoincremented primary key value from the database.

CREATE PROCEDURE sp_adodotnet_primarykey(out p_id int, in p_
name char(40))

BEGIN
INSERT INTO adodotnet_primarykey(name) VALUES(

p_name);
SELECT @@IDENTITY INTO p_id;

END

❖ To insert a new row with an autoincremented primary key using
the AsaCommand object

1. Connect to the database.

AsaConnection conn = OpenConnection();

2. Create a new AsaCommand object to insert new rows into the DataTable.
In the following code, the lineint id1 = (int) parmId.Value;

verifies the primary key value of the row.

364

Chapter 12. Developing Applications with the .NET Data Provider

AsaCommand cmd = conn.CreateCommand();
cmd.CommandText = "sp_adodotnet_primarykey";
cmd.CommandType = CommandType.StoredProcedure;
AsaParameter parmId = new AsaParameter();
parmId.AsaDbType = AsaDbType.Integer;
parmId.Direction = ParameterDirection.Output;
cmd.Parameters.Add(parmId);
AsaParameter parmName = new AsaParameter();
parmName.AsaDbType = AsaDbType.Char;
parmName.Direction = ParameterDirection.Input;
cmd.Parameters.Add(parmName);
parmName.Value = "R & D --- Command";
cmd.ExecuteNonQuery();
int id1 = (int) parmId.Value;
parmName.Value = "Marketing --- Command";
cmd.ExecuteNonQuery();
int id2 = (int) parmId.Value;
parmName.Value = "Sales --- Command";
cmd.ExecuteNonQuery();
int id3 = (int) parmId.Value;
parmName.Value = "Shipping --- Command";
cmd.ExecuteNonQuery();
int id4 = (int) parmId.Value;

3. Bind the results to the grid on the screen and apply the changes to the
database.

cmd.CommandText = "select * from " +
adodotnet_primarykey";

cmd.CommandType = CommandType.Text;
AsaDataReader dr = cmd.ExecuteReader();
dataGrid.DataSource = dr;

4. Close the connection.

conn.Close();

❖ To insert a new row with an autoincremented primary key using
the AsaDataAdapter object

1. Create a new AsaDataAdapter.

DataSet dataSet = new DataSet();
AsaConnection conn = OpenConnection();
AsaDataAdapter adapter = new AsaDataAdapter();
adapter.MissingMappingAction =

MissingMappingAction.Passthrough;
adapter.MissingSchemaAction =

MissingSchemaAction.AddWithKey;

2. Fill the data and schema of the DataSet. The SelectCommand is called by
the AsaDataAdapter.Fill method to do this. You can also create the

365

DataSet manually without using the Fill method and SelectCommand if
you do not need the existing records.

adapter.SelectCommand = new AsaCommand("select * from +
adodotnet_primarykey", conn);

3. Create a new AsaCommand to obtain the primary key values from the
database.

adapter.InsertCommand = new AsaCommand(
"sp_adodotnet_primarykey", conn);

adapter.InsertCommand.CommandType =
CommandType.StoredProcedure;

adapter.InsertCommand.UpdatedRowSource =
UpdateRowSource.OutputParameters;

AsaParameter parmId = new AsaParameter();
parmId.AsaDbType = AsaDbType.Integer;
parmId.Direction = ParameterDirection.Output;
parmId.SourceColumn = "id";
parmId.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(parmId);
AsaParameter parmName = new AsaParameter();
parmName.AsaDbType = AsaDbType.Char;
parmName.Direction = ParameterDirection.Input;
parmName.SourceColumn = "name";
parmName.SourceVersion = DataRowVersion.Current;
adapter.InsertCommand.Parameters.Add(parmName);

4. Fill the DataSet.

adapter.Fill(dataSet);

5. Insert the new rows into the DataSet.

DataRow row = dataSet.Tables[0].NewRow();
row[0] = -1;
row[1] = "R & D --- Adapter";
dataSet.Tables[0].Rows.Add(row);
row = dataSet.Tables[0].NewRow();
row[0] = -2;
row[1] = "Marketing --- Adapter";
dataSet.Tables[0].Rows.Add(row);
row = dataSet.Tables[0].NewRow();
row[0] = -3;
row[1] = "Sales --- Adapter";
dataSet.Tables[0].Rows.Add(row);
row = dataSet.Tables[0].NewRow();
row[0] = -4;
row[1] = "Shipping --- Adapter";
dataSet.Tables[0].Rows.Add(row);

6. Apply the changes in the DataSet to the database. When the Update()
method is called, the primary key values are changed to the values
obtained from the database.

366

Chapter 12. Developing Applications with the .NET Data Provider

adapter.Update(dataSet);
dataGrid.DataSource = dataSet.Tables[0];

When you add new rows to the DataTable and call the Update method,
the AsaDataAdapter calls the InsertCommand and maps the output
parameters to the key columns for each new row. The Update method is
called only once, but the InsertCommand is called by the Update method
as many times as necessary for each new row being added.

7. Close the connection to the database.

conn.Close();

Handling BLOBs

When fetching long string values or binary data, there are methods that you
can use to fetch the data in pieces. For binary data, use the GetBytes method,
and for string data, use the GetChars method. Otherwise, BLOB data is
treated in the same manner as any other data you fetch from the database.

☞ For more information, see“GetBytes method” on page 406and
“GetChars method” on page 407.

❖ To issue a command that returns a string using the GetChars
method
1. Declare and initialize a Connection object.

2. Open the connection.

3. Add a Command object to define and execute a SQL statement.

AsaCommand cmd = new AsaCommand(
"select int_col, blob_col from test", conn);

4. Call the ExecuteReader method to return the DataReader object.

AsaDataReader reader = cmd.ExecuteReader();

The following code reads the two columns from the result set. The first
column is an integer (GetInt32(0)), while the second column is a
LONG VARCHAR. GetChars is used to read 100 characters at a time
from the LONG VARCHAR column.

367

int length = 100;
char[] buf = new char[length];
int intValue;
long dataIndex = 0;
long charsRead = 0;
long blobLength = 0;
while(reader.Read()) {

intValue = reader.GetInt32(0);
while ((charsRead = reader.GetChars(

1, dataIndex, buf, 0, length)) == (long)
length) {

dataIndex += length;
}
blobLength = dataIndex + charsRead;
}

5. Close the DataReader and Connection objects.

reader.Close();
conn.Close();

Obtaining time values

The .NET Framework does not have a Time structure. If you want to fetch
time values from Adaptive Server Anywhere, you must use the
GetTimeSpan method. Using this method returns the data as a .NET
Framework TimeSpan object.

☞ For more information about the GetTimeSpan method, see
“GetTimeSpan method” on page 413.

❖ To convert a time value using the GetTimeSpan method

1. Declare and initialize a connection object.

AsaConnection conn = new AsaConnection(
"Data Source=dsn-time-test;uid=dba;pwd=sql");

2. Open the connection.

conn.Open();

3. Add a Command object to define and execute a SQL statement.

AsaCommand cmd = new AsaCommand(
"SELECT id, time_col FROM time_test", conn)

4. Call the ExecuteReader method to return the DataReader object.

AsaDataReader reader = cmd.ExecuteReader();

368

Chapter 12. Developing Applications with the .NET Data Provider

The following code uses the GetTimeSpan method to return the time as
TimeSpan.

while (reader.Read())
{

int id = reader.GetInt32();
TimeSpan time = reader.GetTimeSpan();

}

5. Close the DataReader and Connection objects.

reader.Close();
conn.Close();

369

Using stored procedures
You can use stored procedures with the .NET data provider. The
ExecuteReader method is used to call stored procedures that return a result
set, while the ExecuteNonQuery method is used to call stored procedures
that do not return a result set. The ExecuteScalar method is used to call
stored procedures that return only a single value.

When you call a stored procedure, you must create an AsaParameter object.
Use a question mark as a placeholder for parameters, as follows:

sp_producttype(?, ?)

☞ For more information about the Parameter object, see“AsaParameter
class” on page 427.

❖ To execute a stored procedure

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
"Data Source=ASA 9.0 Sample");

2. Open the connection.

conn.Open();

3. Add an AsaCommand object to define and execute a SQL statement. The
following code uses the CommandType property to identify the command
as a stored procedure.

AsaCommand cmd = new AsaCommand("sp_product_info",
conn);

cmd.CommandType = CommandType.StoredProcedure;

If you do not specify the CommandType property, then you must use a
question mark as a placeholder for parameters, as follows:

AsaCommand cmd = new AsaCommand(
"call sp_product_info(?)", conn);

cmd.CommandType = CommandType.Text;

4. Add an AsaParameter object to define the parameters for the stored
procedure. You must create a new AsaParameter object for each
parameter the stored procedure requires.

AsaParameter param = cmd.CreateParameter();
param.AsaDbType = AsaDbType.Int32;
param.Direction = ParameterDirection.Input;
param.Value = 301;
cmd.Parameters.Add(param);

370

Chapter 12. Developing Applications with the .NET Data Provider

☞ For more information about the Parameter object, see“AsaParameter
class” on page 427.

5. Call the ExecuteReader method to return the DataReader object. The Get
methods are used to return the results in the desired data type.

AsaDataReader reader = cmd.ExecuteReader();
reader.Read();
int id = reader.GetInt32(0);
string name = reader.GetString(1);
string descrip = reader.GetString(2);
decimal price = reader.GetDecimal(6);

6. Close the AsaDataReader and AsaConnection objects.

reader.Close();
conn.Close();

Alternative way to call a
stored procedure

Step 3 in the above instructions presents two ways you can call a stored
procedure. Another way you can call a stored procedure, without using a
Parameter object, is to call the stored procedure from your source code, as
follows:

AsaCommand cmd = new AsaCommand(
"call sp_product_info(301)", conn);

☞ For information about calling stored procedures that return a result set or
a single value, see“Getting data using the AsaCommand object” on
page 350.

☞ For information about calling stored procedures that do not return a
result set, see“Inserting, updating, and deleting rows using the
AsaCommand object” on page 352.

371

Transaction processing
With the Adaptive Server Anywhere .NET provider, you can use the
AsaTransaction object to group statements together. Each transaction ends
with a COMMIT or ROLLBACK, which either makes your changes to the
database permanent or cancels all the operations in the transaction. Once the
transaction is complete, you must create a new AsaTransaction object to
make further changes. This behavior is different from ODBC and embedded
SQL, where a transaction persists after you execute a COMMIT or
ROLLBACK until the transaction is closed.

If you do not create a transaction, the Adaptive Server Anywhere .NET
provider operates in autocommit mode by default. There is an implicit
COMMIT after each insert, update, or delete, and once an operation is
completed, the change is made to the database. In this case, the changes
cannot be rolled back.

☞ For more information about the AsaTransaction object, see
“AsaTransaction class” on page 445.

Setting the isolation level
for transactions

The database isolation level is used by default for transactions. However,
you may choose to specify the isolation level for a transaction using the
IsolationLevel property when you begin the transaction. The isolation level
applies to all commands executed within the transaction.

☞ For more information about isolation levels, see “Isolation levels and
consistency”[ASA SQL User’s Guide,page 104].

The locks that Adaptive Server Anywhere uses when you enter a SELECT
statement depend on the transaction’s isolation level.

☞ For more information about locking and isolation levels, see “Locking
during queries”[ASA SQL User’s Guide,page 134].

☞ The following example uses an AsaTransaction object to issue and then
roll back a SQL statement. The transaction uses isolation level 2
(RepeatableRead), which places a write lock on the row being modified so
that no other database user can update the row.

❖ To use an AsaTransaction object to issue a command

1. Declare and initialize an AsaConnection object.

AsaConnection conn = new AsaConnection(
"Data Source=ASA 9.0 Sample");

2. Open the connection.

conn.Open();

372

Chapter 12. Developing Applications with the .NET Data Provider

3. Issue a SQL statement to change the price of Tee shirts.

string stmt = "update product set unit_price =
2000.00 where name = ’Tee shirt’";

4. Create an AsaTransaction object to issue the SQL statement using a
Command object.

Using a transaction allows you to specify the isolation level. Isolation
level 2 (RepeatableRead) is used in this example so that another database
user cannot update the row.

AsaTransaction trans = conn.BeginTransaction(
IsolationLevel.RepeatableRead);

AsaCommand cmd = new AsaCommand(stmt, conn,
trans);

int rows = cmd.ExecuteNonQuery();

5. Roll back the changes.

trans.Rollback();

The AsaTransaction object allows you to commit or roll back your
changes to the database. If you do not use a transaction, the .NET data
provider operates in autocommit mode and you cannot roll back any
changes that you make to the database. If you want to make the changes
permanent, you would use the following:

trans.Commit();

6. Close the AsaConnection object.

conn.Close();

373

Error handling and the Adaptive Server Anywhere
.NET data provider

Your application must be designed to handle any errors that occur, including
ADO.NET errors. ADO.NET errors are handled within your code in the
same way that you handle other errors in your application.

The Adaptive Server Anywhere .NET data provider throws AsaException
objects whenever errors occur during execution. Each AsaException object
consists of a list of AsaError objects, and these error objects include the
error message and code.

Errors are different from conflicts. Conflicts arise when changes are applied
to the database. Your application should include a process to compute
correct values or to log conflicts when they arise.

☞ For more information about handling conflicts, see“Resolving conflicts
when using the AsaDataAdapter” on page 358.

.NET provider error
handling example

The following example is from the Simple sample project. Any errors that
occur during execution and that originate with Adaptive Server Anywhere
.NET data provider objects are handled by displaying them in a message
box. The following code catches the error and displays its message:

catch(AsaException ex) {
MessageBox.Show(ex.Errors[0].Message);

}

Connection error
handling example

The following example is from the Table Viewer sample project. If there is
an error when the application attempts to connect to the database, the
following code uses a try and catch block to catch the error and display its
message:

try {
_conn = new AsaConnection(txtConnectString.Text);
_conn.Open();

} catch(AsaException ex) {
MessageBox.Show(ex.Errors[0].Source + " : "

+ ex.Errors[0].Message + " (" +
ex.Errors[0].NativeError.ToString() + ")",

"Failed to connect");

☞ For more error handling examples, see“Understanding the Simple
sample project” on page 335and“Understanding the Table Viewer sample
project” on page 340.

☞ For more information about error handling, see“AsaException class” on
page 423and“AsaError class” on page 419.

374

Chapter 12. Developing Applications with the .NET Data Provider

Deploying the Adaptive Server Anywhere .NET
data provider

The following sections describe how to deploy the Adaptive Server
Anywhere .NET data provider.

Adaptive Server Anywhere .NET data provider system requirements

In order to use the Adaptive Server Anywhere .NET data provider, you must
have the following installed on your machine or handheld device:

♦ the .NET Framework and/or .NET Compact Framework

♦ Visual Studio .NET 1.0, Visual Studio .NET 2003, or a .NET language
compiler, such as C# (required only for development)

Adaptive Server Anywhere .NET data provider required files

The Adaptive Server Anywhere .NET data provider consists of two DLLs
for each platform.

Windows required files For Windows (except Windows CE) the following DLLs are required:

♦ win32\iAnywhere.Data.AsaClient.dll

♦ win32\dbdata9.dll

The first DLL (iAnywhere.Data.AsaClient.dll) is the main DLL that is
referenced by Visual Studio projects. The second DLL (dbdata9.dll)
contains utility code.

Windows CE required
files

These files must be installed in your SQL Anywhere installation directory
(the default location isC:\Program Files\Sybase\SQL Anywhere 9\win32)
because they require the language DLLs that are also located in your SQL
Anywhere installation directory.

For Windows CE,iAnywhere.Data.AsaClient.dllis the main DLL that is
referenced by Visual Studio projects. There is a separatedbdata9.dllfile for
each of the supported Windows CE platforms. The Windows CE DLLs are:

♦ ce\iAnywhere.Data.AsaClient.dll

♦ ce\arm.30\dbdata9.dll

♦ ce\emulator.30\dbdata9.dll

♦ ce\mips.30\dbdata9.dll

375

♦ ce\x86\dbdata9.dll

The utility DLL (dbdata9.dll) must be placed in the Windows directory on
your device. Visual Studio .NET deploys the .NET data provider DLL
(iAnywhere.Data.Asaclient.dll) to your device along with your program. If
you are not using Visual Studio .NET, you need to copy the data provider
DLL to the device along with your program. It can go in the same directory
as your application, or in the Windows directory.

Registering the Adaptive Server Anywhere .NET data provider DLL

The Adaptive Server Anywhere .NET data provider DLL
(win32\iAnywhere.Data.AsaClient.dll) needs to be registered in the Global
Assembly Cache on Windows (except Windows CE). The Global Assembly
Cache lists all the registered programs on your machine. When you install
the .NET data provider, the .NET data provider installation program
registers it. On Windows CE you do not need to register the DLL.

If you are deploying the .NET data provider, you must register the .NET data
provider DLL (win32\iAnywhere.Data.AsaClient.dll) using thegacutil
utility that is included with the .NET Framework.

376

CHAPTER 13

Adaptive Server Anywhere .NET Data
Provider API Reference

About this chapter This chapter describes the API for the Adaptive Server Anywhere .NET data
provider.

Note: Many of the properties and methods in this chapter are very similar to
the OLE DB .NET data provider. You can find more information and
examples in the Microsoft .NET Framework documentation.

Contents Topic: page

AsaCommand class 379

AsaCommandBuilder class 385

AsaConnection class 389

AsaDataAdapter class 395

AsaDataReader class 404

AsaDbType enum 418

AsaError class 419

AsaErrorCollection class 421

AsaException class 423

AsaInfoMessageEventArgs class 425

AsaInfoMessageEventHandler delegate 426

AsaParameter class 427

AsaParameterCollection class 433

AsaPermission class 437

AsaPermissionAttribute class 438

AsaRowUpdatedEventArgs class 439

AsaRowUpdatingEventArgs class 441

377

Topic: page

AsaRowUpdatedEventHandler delegate 443

AsaRowUpdatingEventHandler delegate 444

AsaTransaction class 445

378

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaCommand class
Description A SQL statement or stored procedure that is executed against an Adaptive

Server Anywhere database.

Base classes Component

Implemented interfaces IDbCommand, IDisposable

See also “Using the AsaCommand object to retrieve and manipulate data” on
page 350

“Accessing and manipulating data” on page 349

AsaCommand constructors

Description Initializes an AsaCommand object.

Syntax 1 void AsaCommand()

Syntax 2 void AsaCommand(string cmdText)

Syntax 3 void AsaCommand(
string cmdText ,
AsaConnection connection
)

Syntax 4 void AsaCommand(
string cmdText ,
AsaConnection connection,
AsaTransaction transaction
)

Parameters cmdText The text of the SQL statement or stored procedure. For
parameterized statements, use a question mark (?) placeholder to pass
parameters.

connection The current connection.

transaction The AsaTransaction in which the AsaConnection executes.

Cancel method

Description Cancels the execution of an AsaCommand object.

Syntax void Cancel()

Usage If there is nothing to cancel, nothing happens. If there is a command in
process and the attempt to cancel fails, no exception is generated.

Implements IDbCommand.Cancel

379

CommandText property

Description The text of a SQL statement or stored procedure.

Syntax string CommandText

Access Read-write

Property value The SQL statement or the name of the stored procedure to execute. The
default is an empty string.

Implements IDbCommand.CommandText

See also “AsaCommand constructors” on page 379

CommandTimeout property

Description The wait time in seconds before terminating an attempt to execute a
command and generating an error.

Syntax int CommandTimeout

Access Read-write

Implements IDbCommand.CommandTimeout

Default 30 seconds

Usage A value of 0 indicates no limit. This should be avoided because it may cause
the attempt to execute a command to wait indefinitely.

CommandType property

Description The type of command represented by an AsaCommand.

Syntax CommandType CommandType

Access Read-write

Implements IDbCommand.CommandType

Usage Supported command types are as follows:

♦ CommandType.StoredProcedure When you specify this
CommandType, the command text must be the name of a stored
procedure and you must supply any arguments as AsaParameter objects.

♦ CommandType.Text This is the default value.

380

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

When the CommandType property is set to StoredProcedure, the
CommandText property should be set to the name of the stored procedure.
The command executes this stored procedure when you call one of the
Execute methods.

Use a question mark (?) placeholder to pass parameters. For example:

SELECT * FROM Customers WHERE CustomerID = ?

The order in which AsaParameter objects are added to the
AsaParameterCollection must directly correspond to the position of the
question mark placeholder for the parameter.

Connection property

Description The connection object to which the AsaCommand object applies.

Syntax AsaConnection Connection

Access Read-write

Default The default value is a null reference. In Visual Basic it is Nothing.

CreateParameter method

Description Provides an AsaParameter object for supplying parameters to AsaCommand
objects.

Syntax AsaParameter CreateParameter()

Return value A new parameter, as an AsaParameter object.

Usage Stored procedures and some other SQL statements can take parameters,
indicated in the text of a statement by a question mark (?).

The CreateParameter method provides an AsaParameter object. You can set
properties on the AsaParameter to specify the value, data type, and so on for
the parameter.

See also “AsaParameter class” on page 427

DesignTimeVisible property

Description A value that indicates if the AsaCommand should be visible in a customized
Windows Form Designer control. The default is false.

Syntax bool DesignTimeVisible

Access Read-write

381

ExecuteNonQuery method

Description Executes a statement that does not return a result set, such as an INSERT,
UPDATE, DELETE, or a data definition statement.

Syntax int ExecuteNonQuery()

Return value The number of rows affected.

Implements IDbCommand.ExecuteNonQuery

Usage You can use ExecuteNonQuery to change the data in a database without
using a DataSet. Do this by executing UPDATE, INSERT, or DELETE
statements.

Although ExecuteNonQuery does not return any rows, output parameters or
return values that are mapped to parameters are populated with data.

For UPDATE, INSERT, and DELETE statements, the return value is the
number of rows affected by the command. For all other types of statements,
and for rollbacks, the return value is -1.

ExecuteReader method

Description Executes a SQL statement that returns a result set.

Syntax 1 AsaDataReader ExecuteReader()

Syntax 2 AsaDataReader ExecuteReader(CommandBehavior behavior)

Parameters behavior One ofCloseConnection, Default, KeyInfo , SchemaOnly,
SequentialAccess, SingleResult, or SingleRow.

☞ For more information about this parameter, see the .NET Framework
documentation for CommandBehavior Enumeration.

Return value The result set as an AsaDataReader object.

Usage The statement is the current AsaCommand object, with CommandText and
Parameters as needed. The AsaDataReader object is a read-only,
forward-only result set. For modifiable result sets, use an AsaDataAdapter.

See also “AsaDataReader class” on page 404

“AsaDataAdapter class” on page 395

ExecuteScalar method

Description Executes a statement that returns a single value. If this method is called on a

382

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

query that returns multiple rows and columns, only the first column of the
first row is returned.

Syntax object ExecuteScalar()

Return Value The first column of the first row in the result set, or a null reference if the
result set is empty.

Implements IDbCommand.ExecuteScalar

Parameters property

Description A collection of parameters for the current statement. Use question marks in
the CommandText to indicate parameters.

Syntax AsaParameterCollection Parameters

Access Read-only

Property Value The parameters of the SQL statement or stored procedure. The default value
is an empty collection.

Usage When CommandType is set to Text, pass parameters using the question mark
placeholder. For example:

SELECT * FROM Customers WHERE CustomerID = ?

The order in which AsaParameter objects are added to the
AsaParameterCollection must directly correspond to the position of the
question mark placeholder for the parameter in the command text.

When the parameters in the collection do not match the requirements of the
query to be executed, an error may result or an exception may be thrown.

See also “AsaParameterCollection class” on page 433

Prepare method

Description Prepares or compiles the AsaCommand on the data source.

Syntax void Prepare()

Implements IDbCommand.Prepare

Usage Before you call Prepare, specify the data type of each parameter in the
statement to be prepared.

If you call an Execute method after calling Prepare, any parameter value that
is larger than the value specified by the Size property is automatically
truncated to the original specified size of the parameter, and no truncation

383

errors are returned.

Output parameters (whether prepared or not) must have a user-specified data
type.

ResetCommandTimeout method

Description Resets the CommandTimeout property to its default value of 30 seconds.

Syntax void ResetCommandTimeout()

Transaction property

Description Associates the current command with a transaction.

Syntax AsaTransaction Transaction

Access Read-write

Usage The default value is a null reference. In Visual Basic this is Nothing.

You cannot set the Transaction property if it is already set to a specific value
and the command is executing. If you set the transaction property to an
AsaTransaction object that is not connected to the same AsaConnection as
the AsaCommand object, an exception will be thrown the next time you
attempt to execute a statement.

See also “AsaTransaction class” on page 445

“Transaction processing” on page 372

UpdatedRowSource property

Description How command results are applied to the DataRow when used by the Update
method of the AsaDataAdapter.

Syntax UpdateRowSource UpdatedRowSource

Access Read-write

Implements IDbCommand.UpdatedRowSource

Property value One of the UpdatedRowSource values. If the command is automatically
generated, the default is None. Otherwise, the default is Both.

384

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaCommandBuilder class
Description A way to generatesingle-tableSQL statements that reconcile changes made

to a DataSet with the data in the associated database.

Base classes Component

Implemented interfaces IDisposable

AsaCommandBuilder constructors

Description Initializes an AsaCommandBuilder object.

Syntax 1 void AsaCommandBuilder()

Syntax 2 void AsaCommandBuilder(AsaDataAdapter adapter)

Parameters adapter An AsaDataAdapter object for which to generate reconciliation
statements.

DataAdapter property

Description The AsaDataAdapter for which to generate statements.

Syntax AsaDataAdapter DataAdapter

Access Read-write

Property value An AsaDataAdapter object.

Usage When you create a new instance of AsaCommandBuilder, any existing
AsaCommandBuilder that is associated with this AsaDataAdapter is
released.

DeriveParameters method

Description Populates the Parameters collection of the specified AsaCommand object.
This is used for the stored procedure specified in the AsaCommand.

Syntax void DeriveParameters(AsaCommand command)

Parameters command An AsaCommand object for which to derive parameters.

Usage DeriveParameters overwrites any existing parameter information for the
AsaCommand.

DeriveParameters requires an extra call to the database server. If the
parameter information is known in advance, it is more efficient to populate
the Parameters collection by setting the information explicitly.

385

GetDeleteCommand method

Description The generated AsaCommand object that performs DELETE operations on
the database when AsaDataAdapter.Update() is called.

Syntax AsaCommand GetDeleteCommand()

Return value The automatically generated AsaCommand object required to perform
deletions.

Usage The GetDeleteCommand method returns the AsaCommand object to be
executed, so it may be useful for informational or troubleshooting purposes.

You can also use GetDeleteCommand as the basis of a modified command.
For example, you might call GetDeleteCommand and modify the
CommandTimeout value, and then explicitly set that value on the
AsaDataAdapter.

SQL statements are first generated when the application calls Update or
GetDeleteCommand. After the SQL statement is first generated, the
application must explicitly call RefreshSchema if it changes the statement in
any way. Otherwise, the GetDeleteCommand will still be using information
from the previous statement.

GetInsertCommand method

Description The generated AsaCommand object that performs INSERT operations on the
database when an AsaDataAdapter.Update() is called.

Syntax AsaCommand GetInsertCommand()

Return value The automatically generated AsaCommand object required to perform
insertions.

Usage The GetInsertCommand method returns the AsaCommand object to be
executed, so it may be useful for informational or troubleshooting purposes.

You can also use GetInsertCommand as the basis of a modified command.
For example, you might call GetInsertCommand and modify the
CommandTimeout value, and then explicitly set that value on the
AsaDataAdapter.

SQL statements are first generated either when the application calls Update
or GetInsertCommand. After the SQL statement is first generated, the
application must explicitly call RefreshSchema if it changes the statement in
any way. Otherwise, the GetInsertCommand will be still be using
information from the previous statement, which might not be correct.

386

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

GetUpdateCommand method

Description The generated AsaCommand object that performs UPDATE operations on
the database when an AsaDataAdapter.Update() is called.

Syntax AsaCommand GetUpdateCommand()

Return value The automatically generated AsaCommand object required to perform
updates.

Usage The GetUpdateCommand method returns the AsaCommand object to be
executed, so it may be useful for informational or troubleshooting purposes.

You can also use GetUpdateCommand as the basis of a modified command.
For example, you might call GetUpdateCommand and modify the
CommandTimeout value, and then explicitly set that value on the
AsaDataAdapter.

SQL statements are first generated when the application calls Update or
GetUpdateCommand. After the SQL statement is first generated, the
application must explicitly call RefreshSchema if it changes the statement in
any way. Otherwise, the GetUpdateCommand will be still be using
information from the previous statement, which might not be correct.

QuotePrefix property

Description The beginning character or characters to use when specifying database
object names that contain characters such as spaces.

Syntax string QuotePrefix

Access Read-write

Property value The beginning character or characters to use. This can be square brackets,
or, if the Adaptive Server Anywhere QUOTED_IDENTIFIER option is set
to off, it can be double quotes. The default is an empty string.

Usage Adaptive Server Anywhere objects can contain characters such as spaces,
commas, and semicolons. The QuotePrefix and QuoteSuffix properties
specify delimiters to encapsulate the object name.

Although you cannot change the QuotePrefix or QuoteSuffix properties after
an INSERT, UPDATE, or DELETE operation, you can change their settings
after calling the Update method of a DataAdapter.

See also “Identifiers” [ASA SQL Reference,page 7]

“QUOTED_IDENTIFIER option [compatibility]”[ASA Database

387

Administration Guide,page 620]

QuoteSuffix property

Description The ending character or characters to use when specifying database objects
whose names contain characters such as spaces.

Syntax string QuoteSuffix

Access Read-write

Property value The ending character or characters to use. This can be square brackets, or, if
the Adaptive Server Anywhere QUOTED_IDENTIFIER option is set to off,
it can be double quotes. The default is an empty string.

Usage Adaptive Server Anywhere objects can contain characters such as spaces,
commas, and semicolons. The QuotePrefix and QuoteSuffix properties
specify delimiters to encapsulate the object name.

Although you cannot change the QuotePrefix or QuoteSuffix properties after
an INSERT, UPDATE, or DELETE operation, you can change their settings
after calling the Update method of a DataAdapter.

See also “Identifiers” [ASA SQL Reference,page 7]

“QUOTED_IDENTIFIER option [compatibility]”[ASA Database
Administration Guide,page 620]

RefreshSchema method

Description Refreshes the database schema information used to generate INSERT,
UPDATE, or DELETE statements.

Syntax void RefreshSchema()

Usage Call RefreshSchema whenever the SelectCommand value of the associated
AsaDataAdapter changes.

388

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaConnection class
Description Represents a connection to an Adaptive Server Anywhere database.

Base classes Component

Implemented interfaces IDbConnection, IDisposable

See also “Connecting to a database” on page 346

AsaConnection constructors

Description Initializes an AsaConnection object. The connection must then be opened
before you can carry out any operations against the database.

Syntax 1 void AsaConnection()

Syntax 2 void AsaConnection(string connectionString)

Parameters connectionString An Adaptive Server Anywhere connection string. A
connection string is a semicolon-separated list of keyword-value pairs.

☞ For a list of parameters, see “Connection parameters”[ASA Database
Administration Guide,page 70].

Example The following statement initializes an AsaConnection object for a
connection to a database named policies running on an Adaptive Server
Anywhere database server named hr. The connection uses a user ID of
admin with a password of money.

AsaConnection conn = new AsaConnection(
"uid=admin;pwd=money;eng=hr;dbn=policies");
conn.Open();

BeginTransaction method

Description Returns a transaction object. Commands associated with a transaction object
are executed as a single transaction. The transaction is terminated with a
Commit() or Rollback().

Syntax 1 AsaTransaction BeginTransaction()

Syntax 2 AsaTransaction BeginTransaction(IsolationLevel isolationLevel)

Parameters isolationLevel A member of the IsolationLevel enumeration. The default
value is ReadCommitted.

Return value An object representing the new transaction.

389

Usage To associate a command with a transaction object, use the
AsaCommand.Transaction property.

Example AsaTransaction tx = conn.BeginTransaction(
IsolationLevel.ReadUncommitted);

See also “Commit method” on page 445

“Rollback method” on page 446

“Transaction processing” on page 372

“Typical types of inconsistency”[ASA SQL User’s Guide,page 104]

ChangeDatabase method

Description Changes the current database for an open AsaConnection.

Syntax void ChangeDatabase(string database)

Parameters database The name of the database to use instead of the current database.

Implements IDbConnection.ChangeDatabase

Close method

Description Closes a database connection.

Syntax void Close()

Implements IDbConnection.Close

Usage The Close method rolls back any pending transactions. It then releases the
connection to the connection pool, or closes the connection if connection
pooling is disabled. If Close is called while handling a StateChange event,
no additional StateChange events are fired. An application can call Close
more than one time.

ConnectionString property

Description A database connection string.

Syntax string ConnectionString

Access Read-write

Implements IDbConnection.ConnectionString

Usage The default value of connection pooling is true (pooling=true).

390

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

The ConnectionString is designed to match the Adaptive Server Anywhere
connection string format as closely as possble with the following exception:

♦ When Persist Security Info value is set to false (the default), the
connection string that is returned is the same as the user-set
ConnectionString minus security information. The Adaptive Server
Anywhere .NET data provider does not persist or return the password in a
connection string unless you set Persist Security Info to true.

You can use the ConnectionString property to connect to a variety of data
sources.

You can set the ConnectionString property only when the connection is
closed. Many of the connection string values have corresponding read-only
properties. When the connection string is set, all of these properties are
updated, unless an error is detected. If an error is detected, none of the
properties are updated. AsaConnection properties return only those settings
contained in the ConnectionString.

If you reset the ConnectionString on a closed connection, all connection
string values and related properties are reset, including the password.

When the property is set, a preliminary validation of the connection string is
performed. When an application calls the Open method, the connection
string is fully validated. A runtime exception is generated if the connection
string contains invalid or unsupported properties.

Values may be delimited by single or double quotes. Either single or double
quotes may be used within a connection string by using the other delimiter,
for example,name="value’s" or name= ’value"s’ , but not
name=’value’s’ or name= ""value"" . Blank characters are ignored
unless they are placed within a value or within quotes. Keyword-value pairs
must be separated by a semicolon. If a semicolon is part of a value, it must
also be delimited by quotes. Escape sequences are not supported, and the
value type is irrelevant. Names are not case sensitive. If a property name
occurs more than once in the connection string, the value associated with the
last occurrence is used.

You should use caution when constructing a connection string based on user
input, such as when retrieving a user ID and password from a dialog box,
and appending it to the connection string. The application should not allow a
user to embed extra connection string parameters in these values.

Example The following statements set a connection string for an ODBC data source
namedASA 9.0 Sampleand open the connection.

AsaConnection conn = new AsaConnection();
conn.ConnectionString = "dsn=ASA 9.0 Sample";
conn.Open();

391

ConnectionTimeout property

Description The number of seconds before a connection attempt times out with an error.

Syntax int ConnectionTimeout

Access Read-only

Default 15 seconds

Implements IDbConnection.ConnectionTimeout

Example The following statement displays the value of the ConnectionTimeout.

MessageBox.Show(conn.ConnectionTimeout.ToString());

CreateCommand method

Description Initializes an AsaCommand object. You can use the properties of the
AsaCommand to control its behavior.

Syntax AsaCommand CreateCommand()

Return value An AsaCommand object.

Usage The command object is associated with the AsaConnection.

Database property

Description The name of the current database to be used after a connection is opened.

Syntax string Database

Access Read-only

Implements IDbConnection.Database

Usage AsaConnection looks in the connection string in the following order:
DatabaseName, dbn, DataSourceName, DataSource, dsn, DatabaseFile, dbf.

DataSource property

Description The name of a running database server to which to connect.

Syntax string DataSource

Access Read-only

Usage AsaConnection looks in the connection string in the following order:

392

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Enginename, Servername, Eng.

InfoMessage event

Description Occurs when the provider sends a warning or an informational message.

Syntax event AsaInfoMessageEventHandler InfoMessage

Usage The event handler receives an argument of type AsaInfoMessageEventArgs
containing data related to this event. The following
AsaInfoMessageEventArgs properties provide information specific to this
event: ErrorCode, Errors, Message, and Source.

☞ For more information, see the .NET Framework documentation for
OleDbConnection.InfoMessage Event.

Open method

Description Opens a connection to a database, using the previously-specified connection
string.

Syntax void Open()

Implements IDbConnection.Open

Usage The AsaConnection draws an open connection from the connection pool if
one is available. Otherwise, it establishes a new connection to the data
source.

If the AsaConnection goes out of scope, it is not closed. Therefore, you must
explicitly close the connection by calling Close or Dispose.

ServerVersion property

Description The software version of the Adaptive Server Anywhere database server.

Syntax string ServerVersion

Access Read-only

Usage The version is##.##.####, where the first two digits are the major version,
the next two digits are the minor version, and the last four digits are the
release version. The appended string is of the formmajor.minor.build, where
major andminor are two digits andbuild is four digits.

State property

Description The current state of the connection.

393

Syntax ConnectionState State

Access Read-only

Default The default value is Closed.

Implements IDbConnection.State

See also “Checking the connection state” on page 348

StateChange event

Description Occurs when the state of the connection changes.

Syntax event StateChangeEventHandler StateChange

Usage The event handler receives an argument of type StateChangeEventArgs with
data related to this event. The following StateChangeEventArgs properties
provide information specific to this event:CurrentState andOriginalState.

☞ For more information, see the .NET Framework documentation for
OleDbConnection.StateChange Event.

394

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaDataAdapter class
Description Represents a set of commands and a database connection used to fill a

DataSet and to update a database.

Base classes Component

Implemented interfaces IDbDataAdapter, IDisposable

Usage The DataSet provides a way to work with data offline. The AsaDataAdapter
provides methods to associate a DataSet with a set of SQL statements.

See also “Using the AsaDataAdapter object to access and manipulate data” on
page 356

“Accessing and manipulating data” on page 349

AsaDataAdapter constructors

Description Initializes an AsaDataAdapter object.

Syntax 1 void AsaDataAdapter()

Syntax 2 void AsaDataAdapter(AsaCommand selectCommand)

Syntax 3 void AsaDataAdapter(
string selectCommandText ,
AsaConnection selectConnection
)

Syntax 4 void AsaDataAdapter(
string selectCommandText ,
string selectConnectionString
)

Parameters selectCommand An AsaCommand object that is used during Fill to select
records from the data source for placement in the DataSet.

selectCommandText A SELECT statement or stored procedure to be used
by the SelectCommand property of the AsaDataAdapter.

selectConnection An AsaConnection object that defines a connection to a
database.

selectConnectionString A connection string for an Adaptive Server
Anywhere database.

Example The following code initializes an AsaDataAdapter object:

AsaDataAdapter da = new AsaDataAdapter(
"SELECT emp_id, emp_lname FROM employee, conn);

395

AcceptChangesDuringFill property

Description A value that indicates whether AcceptChanges is called on a DataRow after
it is added to the DataTable.

Syntax bool AcceptChangesDuringFill

Access Read-write

Usage When this property is true, DataAdapter calls the AcceptChanges function
on the DataRow. If false, AcceptChanges is not called, and the newly added
rows are treated as inserted rows. The default is true.

ContinueUpdateOnError property

Description A value that specifies whether to generate an exception when an error is
encountered during a row update.

Syntax bool ContinueUpdateOnError

Access Read-write

Usage The default is false. Set this property to true to continue the update without
generating an exception.

If ContinueUpdateOnError is true, no exception is thrown when an error
occurs during the update of a row. The update of the row is skipped and the
error information is placed in the RowError property of the row. The
DataAdapter continues to update subsequent rows.

If ContinueUpdateOnError is false, an exception is thrown when an error
occurs.

DeleteCommand property

Description An AsaCommand object that is executed against the database when Update()
is called to delete rows in the database that correspond to deleted rows in the
DataSet.

Syntax AsaCommand DeleteCommand

Access Read-write

Usage If this property is not set and primary key information is present in the
DataSet during Update, DeleteCommand can be generated automatically by
setting SelectCommand and using the AsaCommandBuilder. In that case,
the AsaCommandBuilder generates any additional commands that you do
not set. This generation logic requires key column information to be present

396

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

in the SelectCommand.

When DeleteCommand is assigned to an existing AsaCommand object, the
AsaCommand object is not cloned. The DeleteCommand maintains a
reference to the existing AsaCommand.

See also “Update method” on page 402

“SelectCommand property” on page 401

Fill method

Description Adds or refreshes rows in a DataSet or DataTable object with data from the
database.

Syntax 1 int Fill(DataSet dataSet)

Syntax 2 int Fill(
DataSet dataSet ,
string srcTable
)

Syntax 3 int Fill(
DataSet dataSet ,
int startRecord ,
int maxRecords,
string srcTable
)

Syntax 4 int Fill(DataTable dataTable)

Parameters dataSet A DataSet to fill with records and optionally schema.

srcTable The name of the source table to use for table mapping.

startRecord The zero-based record number to start with.

maxRecords The maximum number of records to be read into the DataSet.

dataTable A DataTable to fill with records and optionally schema.

Return Value The number of rows successfully added or refreshed in the DataSet.

Usage Even if you use the startRecord argument to limit the number of records that
are copied to the DataSet, all records in the AsaDataAdapter query are
fetched from the database to the client. For large result sets, this can have a
significant performance impact.

An alternative is to use an AsaDataReader when a read-only, forward-only
result set is sufficient, perhaps with SQL statements (ExecuteNonQuery) to
carry out modifications. Another alternative is to write a stored procedure

397

that returns only the result you need.

If SelectCommand does not return any rows, no tables are added to the
DataSet and no exception is raised.

See also “Getting data using the AsaDataAdapter object” on page 356

FillError event

Description Returned when an error occurs during a fill operation.

Syntax event FillErrorEventHandler FillError

Usage The FillError event allows you to determine whether or not the fill operation
should continue after the error occurs. Examples of when the FillError event
might occur are:

♦ The data being added to a DataSet cannot be converted to a common
language runtime type without losing precision.

♦ The row being added contains data that violates a Constraint that must be
enforced on a DataColumn in the DataSet.

FillSchema method

Description Adds DataTables to a DataSet and configures the schema to match the
schema in the data source.

Syntax 1 DataTable[] FillSchema(
DataSet dataSet ,
SchemaType schemaType

)

Syntax 2 DataTable[] FillSchema(
DataSet dataSet ,
SchemaType schemaType,
string srcTable
)

Syntax 3 DataTable FillSchema(
DataTable dataTable,
SchemaType schemaType
)

Parameters dataSet A DataSet to fill with records and optionally schema.

schemaType One of the SchemaType values that specify how to insert the
schema.

srcTable The name of the source table to use for table mapping.

398

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

dataTable A DataTable.

Return Value For syntax 1 and 2, the return value is a reference to a collection of
DataTable objects that were added to the DataSet. For syntax 3, the return
value is a reference to a DataTable.

See also “Obtaining AsaDataAdapter schema information” on page 363

GetFillParameters method

Description The parameters set by the user when executing a SELECT statement.

Syntax AsaParameter[] GetFillParameters()

Return value An array of IDataParameter objects that contains the parameters set by the
user.

Implements IDataAdapter.GetFillParameters

InsertCommand property

Description An AsaCommand that is executed against the database when an Update() is
called that adds rows to the database to correspond to rows that were
inserted in the DataSet.

Syntax AsaCommand InsertCommand

Access Read-write

Usage The AsaCommandBuilder does not require key columns to generate
InsertCommand.

When InsertCommand is assigned to an existing AsaCommand object, the
AsaCommand is not cloned. The InsertCommand maintains a reference to
the existing AsaCommand.

If this command returns rows, the rows may be added to the DataSet
depending on how you set the UpdatedRowSource property of the
AsaCommand object.

See also “Update method” on page 402

“Inserting, updating, and deleting rows using the AsaCommand object” on
page 352

“Inserting, updating, and deleting rows using the AsaDataAdapter object” on
page 357

399

MissingMappingAction property

Description Determines the action to take when incoming data does not have a matching
table or column.

Syntax MissingMappingAction MissingMappingAction

Access Read-write

Property Value One of the MissingMappingAction values. The default is Passthrough.

Implements IDataAdapter.MissingMappingAction

MissingSchemaAction property

Description Determines the action to take when the existing DataSet schema does not
match incoming data.

Syntax MissingSchemaAction MissingSchemaAction

Access Read-write

Property Value One of the MissingSchemaAction values. The default is Add.

Implements IDataAdapter.MissingSchemaAction

RowUpdated event

Description Occurs during update after a command is executed against the data source.
The attempt to update is made, so the event fires.

Syntax event AsaRowUpdatedEventHandler RowUpdated

Usage The event handler receives an argument of type AsaRowUpdatedEventArgs
containing data related to this event. The following
AsaRowUpdatedEventArgs properties provide information specific to this
event:

♦ Command

♦ Errors

♦ RecordsAffected

♦ Row

♦ StatementType

♦ Status

400

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

♦ TableMapping

☞ For more information, see the .NET Framework documentation for
OleDbDataAdapter.RowUpdated Event.

RowUpdating event

Description Occurs during update before a command is executed against the data source.
The attempt to update is made, so the event fires.

Syntax event AsaRowUpdatingEventHandler RowUpdating

Usage The event handler receives an argument of type AsaRowUpdatingEventArgs
containing data related to this event. The following
AsaRowUpdatingEventArgs properties provide information specific to this
event:

♦ Command

♦ Errors

♦ Row

♦ StatementType

♦ Status

♦ TableMapping

☞ For more information, see the .NET Framework documentation for
OleDbDataAdapter.RowUpdating Event.

SelectCommand property

Description An AsaCommand that is used during Fill or FillSchema to obtain a result set
from the database for copying into a DataSet.

Syntax AsaCommand SelectCommand

Access Read-write

Usage When SelectCommand is assigned to a previously created AsaCommand,
the AsaCommand is not cloned. The SelectCommand maintains a reference
to the previously created AsaCommand object.

If the SelectCommand does not return any rows, no tables are added to the
DataSet, and no exception is raised.

The SELECT statement can also be specified in the AsaDataAdapter
constructor.

401

TableMappings property

Description A collection that provides the master mapping between a source table and a
DataTable.

Syntax DataTableMappingCollection TableMappings

Access Read-only

Usage The default value is an empty collection.

When reconciling changes, the AsaDataAdapter uses the
DataTableMappingCollection collection to associate the column names used
by the data source with the column names used by the DataSet.

Update method

Description Updates the tables in a database with the changes made to the DataSet.

Syntax 1 int Update(DataSet dataSet)

Syntax 2 int Update(
DataSet dataSet ,
string srcTable
)

Syntax 3 int Update(DataTable dataTable)

Syntax 4 int Update(DataRow[] dataRows)

Parameters dataSet A DataSet to update with records and optionally schema.

srcTable The name of the source table to use for table mapping.

dataTable A DataTable to update with records and optionally schema.

dataRows An array of DataRow objects used to update the data source.

Return Value The number of rows successfully updated from the DataSet.

Usage The Update is carried out using the InsertCommand, UpdateCommand, and
DeleteCommand on each row in the data set that has been inserted, updated,
or deleted.

See also “DeleteCommand property” on page 396

“InsertCommand property” on page 399

“UpdateCommand property” on page 403

402

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

“Inserting, updating, and deleting rows using the AsaDataAdapter object” on
page 357

UpdateCommand property

Description An AsaCommand that is executed against the database when Update() is
called to update rows in the database that correspond to updated rows in the
DataSet.

Syntax AsaCommand UpdateCommand

Access Read-write

Usage During Update, if this property is not set and primary key information is
present in the SelectCommand, the UpdateCommand can be generated
automatically if you set the SelectCommand property and use the
AsaCommandBuilder. Then, any additional commands that you do not set
are generated by the AsaCommandBuilder. This generation logic requires
key column information to be present in the SelectCommand.

When UpdateCommand is assigned to a previously created AsaCommand,
the AsaCommand is not cloned. The UpdateCommand maintains a reference
to the previously created AsaCommand object.

If execution of this command returns rows, these rows may be merged with
the DataSet depending on how you set the UpdatedRowSource property of
the AsaCommand object.

See also “Update method” on page 402

403

AsaDataReader class
Description A read-only, forward-only result set from a query or stored procedure.

Base classes MarshalByRefObject

Implemented interfaces IDataReader, IDisposable, IDataRecord

Usage There is no constructor for AsaDataReader. To get an AsaDataReader
object, execute an AsaCommand:

AsaCommand cmd = new AsaCommand(
"Select emp_id from employee", conn);

AsaDataReader reader = cmd.ExecuteReader();

You can only move forward through an AsaDataReader. If you need a more
flexible object to manipulate results, use an AsaDataAdapter.

The AsaDataReader retrieves rows as needed, whereas the AsaDataAdapter
must retrieve all rows of a result set before you can carry out any action on
the object. For large result sets, this difference gives the AsaDataReader a
much faster response time.

See also “ExecuteReader method” on page 382

“Accessing and manipulating data” on page 349

Close method

Description Closes the AsaDataReader.

Syntax void Close()

Implements IDataReader.Close

Usage You must explicitly call the Close method when you are through using the
AsaDataReader.

Depth property

Description A value indicating the depth of nesting for the current row. The outermost
table has a depth of zero.

Syntax int Depth

Access Read-only

Property Value The depth of nesting for the current row.

Implements IDataReader.Depth

404

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Dispose method

Description Frees the resources associated with the object.

Syntax void Dispose()

FieldCount property

Description The number of columns in the result set.

Syntax int FieldCount

Access Read-only

Property Value When not positioned in a valid record set, 0; otherwise the number of
columns in the current record. The default is -1.

Implements IDataRecord.FieldCount

Usage When not positioned in a valid record set, this property has a value of 0;
otherwise it is the number of columns in the current record. The default is
-1. After executing a query that does not return rows, FieldCount returns 0.

GetBoolean method

Description The value of the specified column as a Boolean.

Syntax bool GetBoolean(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return value The value of the column.

Implements IDataRecord.GetBoolean

Usage No conversions are performed, so the data retrieved must already be a
Boolean.

GetByte method

Description The value of the specified column as a Byte.

Syntax byte GetByte(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return value The value of the column.

405

Implements IDataRecord.GetByte

Usage No conversions are performed, so the data retrieved must already be a byte.

GetBytes method

Description Reads a stream of bytes from the specified column offset into the buffer as
an array starting at the given buffer offset.

Syntax long GetBytes(
int ordinal ,
long dataIndex ,
byte[] buffer ,
int bufferIndex ,
int length
)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

dataIndex The index within the column value from which to read bytes.

buffer An array in which to store the data.

bufferIndex The index in the array to start copying data.

length The maximum length to copy into the specified buffer.

Return value The number of bytes read.

Implements IDataRecord.GetBytes

Usage GetBytes returns the number of available bytes in the field. In most cases
this is the exact length of the field. However, the number returned may be
less than the true length of the field if GetBytes has already been used to
obtain bytes from the field. This may be the case, for example, when the
AsaDataReader is reading a large data structure into a buffer.

If you pass a buffer that is a null reference (Nothing in Visual Basic),
GetBytes returns the length of the field in bytes.

No conversions are performed, so the data retrieved must already be a byte
array.

GetChar method

Description The value of the specified column as a character.

Syntax char GetChar(int ordinal)

406

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return value The value of the column.

Implements IDataRecord.GetChar

Usage No conversions are performed, so the data retrieved must already be a
character.

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetChars method

Description Reads a stream of characters from the specified column offset into the buffer
as an array starting at the given buffer offset.

Syntax long GetChars(
int ordinal ,
long dataIndex ,
char[] buffer ,
int bufferIndex ,
int length
)

Parameters ordinal The zero-based column ordinal.

dataIndex The index within the row from which to begin the read
operation.

buffer The buffer into which to copy data.

bufferIndex The index for buffer to begin the read operation.

length The number of characters to read.

Return value The actual number of characters read.

Implements IDataRecord.GetChars

Usage GetChars returns the number of available characters in the field. In most
cases this is the exact length of the field. However, the number returned may
be less than the true length of the field if GetChars has already been used to
obtain characters from the field. This may be the case, for example, when
the AsaDataReader is reading a large data structure into a buffer.

If you pass a buffer that is a null reference (Nothing in Visual Basic),
GetChars returns the length of the field in characters.

407

No conversions are performed, so the data retrieved must already be a
character array.

See also “Handling BLOBs” on page 367

GetDataTypeName method

Description The name of the source data type.

Syntax string GetDataTypeName(int index)

Parameters index The zero-based column ordinal.

Return Value The name of the back-end data type.

Implements IDataRecord.GetDataTypeName

GetDateTime method

Description The value of the specified column as a DateTime object.

Syntax DateTime GetDateTime(int ordinal)

Parameters ordinal The zero-based column ordinal.

Return Value The value of the specified column.

Implements IDataRecord.GetDateTime

Usage No conversions are performed, so the data retrieved must already be a
DateTime object.

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetDecimal method

Description The value of the specified column as a Decimal object.

Syntax decimal GetDecimal(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetDecimal

Usage No conversions are performed, so the data retrieved must already be a

408

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Decimal object.

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetDouble method

Description The value of the specified column as a double-precision floating point
number.

Syntax double GetDouble(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetDouble

Usage No conversions are performed, so the data retrieved must already be a
double-precision floating point number.

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetFieldType method

Description The Type that is the data type of the object.

Syntax Type GetFieldType(int index)

Parameters index The zero-based column ordinal.

Return Value The type that is the data type of the object.

Implements IDataRecord.GetFieldType

GetFloat method

Description The value of the specified column as a single-precision floating point
number.

Syntax float GetFloat(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

409

Return Value The value of the specified column.

Implements IDataRecord.GetFloat

Usage No conversions are performed, so the data retrieved must already be a
single-precision floating point number.

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetGuid method

Description The value of the specified column as a global unique identifier (GUID).

Syntax Guid GetGuid(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetGuid

Usage The data retrieved must already be a globally-unique identifier or binary(16).

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetInt16 method

Description The value of the specified column as a 16-bit signed integer.

Syntax short GetInt16(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetInt16

Usage No conversions are performed, so the data retrieved must already be a 16-bit
signed integer.

GetInt32 method

Description The value of the specified column as a 32-bit signed integer.

410

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Syntax int GetInt32(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetInt32

Usage No conversions are performed, so the data retrieved must already be a 32-bit
signed integer.

GetInt64 method

Description The value of the specified column as a 64-bit signed integer.

Syntax long GetInt64(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetInt64

Usage No conversions are performed, so the data retrieved must already be a 64-bit
signed integer.

GetName method

Description The name of the specified column.

Syntax string GetName(int index)

Parameters index The zero-based index of the column.

Return value The name of the specified column.

Implements IDataRecord.GetName

GetOrdinal method

Description The column ordinal, given the column name.

Syntax int GetOrdinal(string name)

Parameters name The column name.

Return Value The zero-based column ordinal.

Implements IDataRecord.GetOrdinal

411

Usage GetOrdinal performs a case-sensitive lookup first. If it fails, a second
case-insensitive search is made.

GetOrdinal is Japanese kana-width insensitive.

Because ordinal-based lookups are more efficient than named lookups, it is
inefficient to call GetOrdinal within a loop. Save time by calling GetOrdinal
once and assigning the results to an integer variable for use within the loop.

GetSchemaTable method

Description Returns a DataTable that describes the column metadata of the
AsaDataReader.

Syntax DataTable GetSchemaTable()

Return value A DataTable that describes the column metadata.

Implements IDataReader.GetSchemaTable

Usage This method returns metadata about each column in the following order:

♦ ColumnName

♦ ColumnOrdinal

♦ ColumnSize

♦ NumericPrecision

♦ NumericScale

♦ IsUnique

♦ IsKey

♦ BaseCatalogName

♦ BaseColumnName

♦ BaseSchemaName

♦ BaseTableName

♦ DataType

♦ AllowDBNull

♦ ProviderType

♦ IsAliased

412

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

♦ IsExpression

♦ IsIdentity

♦ IsAutoIncrement

♦ IsRowVersion

♦ Is Hidden

♦ IsLong

♦ IsReadOnly

☞ For more information about these columns, see the .NET Framework
documentation for SqlDataReader.GetSchemaTable.

See also “Obtaining DataReader schema information” on page 355

GetString method

Description The value of the specified column as a string.

Syntax string GetString(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Implements IDataRecord.GetString

Usage No conversions are performed, so the data retrieved must already be a string.

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “IsDBNull method” on page 416

GetTimeSpan method

Description The value of the specified column as a TimeSpan object.

Syntax TimeSpan GetTimeSpan(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Usage The column must be ASA time data type. The data is converted to
TimeSpan. The Days property of TimeSpan is always set to 0.

413

Call AsaDataReader.IsDBNull to check for null values before calling this
method.

See also “Obtaining time values” on page 368

GetUInt16 method

Description The value of the specified column as a 16-bit unsigned integer.

Syntax UInt16 GetUInt16(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Usage No conversions are performed, so the data retrieved must already be a 16-bit
unsigned integer.

GetUInt32 method

Description The value of the specified column as a 32-bit unsigned integer.

Syntax UInt32 GetUInt32(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Usage No conversions are performed, so the data retrieved must already be a 32-bit
unsigned integer.

GetUInt64 method

Description The value of the specified column as a 64-bit unsigned integer.

Syntax UInt64 GetUInt64(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value of the specified column.

Usage No conversions are performed, so the data retrieved must already be a 64-bit
unsigned integer.

GetValue method

Description The value of the column at the specified ordinal in its native format.

414

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Syntax object GetValue(int ordinal)

Parameters ordinal An ordinal number indicating the column from which the value is
obtained. The numbering is zero-based.

Return Value The value to return.

Implements IDataRecord.GetValue

Usage This method returns DBNull for null database columns.

GetValues method

Description All the attribute columns in the current row.

Syntax int GetValues(object[] values)

Parameters values An array of objects that holds an entire row of the result set.

Return value The number of objects in the array.

Implements IDataRecord GetValues

Usage For most applications, the GetValues method provides an efficient means for
retrieving all columns, rather than retrieving each column individually.

You can pass an Object array that contains fewer than the number of
columns contained in the resulting row. Only the amount of data the Object
array holds is copied to the array. You can also pass an Object array whose
length is more than the number of columns contained in the resulting row.

This method returns DBNull for null database columns.

Gets the value of the column at the specified ordinal in its native format.

IsClosed property

Description Returns true if the AsaDataReader is closed. Otherwise it returns false.

Syntax bool IsClosed

Access Read-only

Property Value True if the AsaDataReader is closed; otherwise, false.

Implements IDataReader.IsClosed

Usage IsClosed and RecordsAffected are the only properties that you can call after
the AsaDataReader is closed.

415

IsDBNull method

Description A value indicating whether the column contains null values.

Syntax bool IsDBNull(int ordinal)

Parameters ordinal The zero-based column ordinal.

Return value True if the specified column value is equivalent to DBNull. Otherwise, false.

Implements IDataRecord.IsDbNull

Usage Call this method to check for null column values before calling the typed get
methods (for example, GetByte, GetChar, and so on) to avoid raising an
exception.

Item property

Description The value of a column in its native format. In C#, this property is the indexer
for the AsaDataReader class.

Syntax 1 object this[int index]

Syntax 2 object this[string name]

Parameters index The column ordinal.

name The column name.

Access Read-only

Implements IDataRecord.Item

NextResult method

Description Advances the AsaDataReader to the next result, when reading the results of
batch SQL statements.

Syntax bool NextResult()

Return value True if there are more result sets. Otherwise, false.

Implements IDataReader.NextResult

Usage Used to process multiple results, which can be generated by executing batch
SQL statements.

By default, the data reader is positioned on the first result.

416

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Read method

Description Reads the next row of the result set and moves the AsaDataReader to that
row.

Syntax bool Read()

Return value Returns true if there are more rows. Otherwise, it returns false.

Implements IDataReader.Read

Usage The default position of the AsaDataReader is prior to the first record.
Therefore, you must call Read to begin accessing any data.

Example The following code fills a list box with the values in a single column of
results.

while(reader.Read())
{

listResults.Items.Add(
reader.GetValue(0).ToString());

}
listResults.EndUpdate();
reader.Close();

RecordsAffected property

Description The number of rows changed, inserted, or deleted by execution of the SQL
statement.

Syntax int RecordsAffected

Access Read-only

Property Value The number of rows changed, inserted, or deleted. This is 0 if no rows were
affected or the statement failed, or -1 for SELECT statements.

Implements IDataReader.RecordsAffected

Usage The number of rows changed, inserted, or deleted. The value is 0 if no rows
were affected or the statement failed, and -1 for SELECT statements.

The value of this property is cumulative. For example, if two records are
inserted in batch mode, the value of RecordsAffected will be two.

IsClosed and RecordsAffected are the only properties that you can call after
the AsaDataReader is closed.

417

AsaDbType enum
Specifies Adaptive Server Anywhere data types.

Members BigInt

Binary

Bit

Char

Date

Decimal

Double

Float

Integer

LongBinary

LongVarchar

Numeric

SmallInt

Time

TimeStamp

TinyInt

UnsignedBigInt

UnsignedInt

UnsignedSmallInt

VarBinary

VarChar

UniqueIdentifier

418

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaError class
Description Collects information relevant to a warning or error returned by the data

source.

Base classes Object

There is no constructor for AsaError.

See also “Error handling and the Adaptive Server Anywhere .NET data provider” on
page 374

Message property

Description A short description of the error.

Syntax string Message

Access Read-only

NativeError property

Description Database-specific error information.

Syntax int NativeError

Access Read-only

Source property

Description The name of the provider that generated the error.

Syntax string Source

Access Read-only

SqlState property

Description The Adaptive Server Anywhere five-character SQL state following the ANSI
SQL standard. If the error can be issued from more than one place, the
five-character error code identifies the source of the error.

Syntax string SqlState

Access Read-only

419

ToString method

Description The complete text of the error message.

Syntax string ToString()

Usage The return value is a string is in the form “AsaError:”, followed by the
Message. For example,

AsaError:UserId or Password not valid.

420

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaErrorCollection class
Description Collects all errors generated by the Adaptive Server Anywhere ADO.NET

data provider.

Base classes Object

Implemented interfaces ICollection, IEnumerable

There is no constructor for AsaErrorCollection. Typically, an
AsaErrorCollection is obtained from the AsaException.Errors property.

See also “Errors property” on page 423

“Error handling and the Adaptive Server Anywhere .NET data provider” on
page 374

CopyTo method

Description Copies the elements of the AsaErrorCollection into an array, starting at the
given index within the array.

Syntax void CopyTo(
Array array ,
int index
)

Parameters array The array into which to copy the elements.

index The starting index of the array.

Implements ICollection.CopyTo

Count property

Description The number of errors in the collection.

Syntax int Count

Access Read-only

Implements ICollection.Count

Item property

Description The error at the specified index.

Syntax AsaError this[int index]

Parameters index The zero-based index of the error to retrieve.

421

Property Value An AsaError that contains the error at the specified index.

Access Read-only

422

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaException class
Description The exception that is thrown when Adaptive Server Anywhere returns a

warning or error.

Base classes SystemException

There is no constructor for AsaException. Typically, an AsaException object
is declared in a catch. For example:

...
catch(AsaException ex)
{

MessageBox.Show(ex.Errors[0].Message, "Error");
}

See also “Error handling and the Adaptive Server Anywhere .NET data provider” on
page 374

Errors property

Description A collection of one or more AsaError objects.

Syntax AsaErrorCollection Errors

Access Read-only

Usage The AsaErrorCollection class always contains at least one instance of the
AsaError class.

GetObjectData method

Description This member overrides Exception.GetObjectData.

Syntax void GetObjectData(
SerializationInfo info,
StreamingContext context
)

Parameters info The SerializationInfo that holds the serialized object data about the
exception being thrown.

context The StreamingContext that contains contextual information about
the source or destination.

Message property

Description The text describing the error.

Syntax string Message

423

Access Read-only

Usage This method returns a single string that contains a concatenation of all of the
Message properties of all of the AsaError objects in the Errors collection.
Each message, except the last one, is followed by a carriage return.

Source property

Description The name of the provider that generated the error.

Syntax string Source

Access Read-only

424

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaInfoMessageEventArgs class
Description Provides data for the InfoMessage event.

Base classes EventArgs

There is no constructor for AsaInfoMessageEventArgs.

Errors property

Description The collection of warnings sent from the data source.

Syntax AsaErrorCollection Errors

Access Read-only

Message property

Description The full text of the error sent from the data source.

Syntax string Message

Access Read-only

Source property

Description The name of the object that generated the error.

Syntax string Source

Access Read-only

ToString method

Description Retrieves a string representation of the InfoMessage event.

Syntax string ToString()

Return value A string representing the InfoMessage event.

425

AsaInfoMessageEventHandler delegate
Description Represents the method that will handle the InfoMessage event of an

AsaConnection.

Syntax void AsaInfoMessageEventHandler (
object sender ,
AsaInfoMessageEventArgs e
)

Parameters sender The source of the event.

e The AsaInfoMessageEventArgs object that contains the event data.

426

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaParameter class
Description Represents a parameter to an AsaCommand and optionally, its mapping to a

DataSet column.

Base classes MarshalByRefObject

Implemented interfaces IDbDataParameter, IDataParameter

AsaParameter constructors

Syntax 1 void AsaParameter()

Syntax 2 void AsaParameter(
string parameterName,
object value
)

Syntax 3 void AsaParameter(
string parameterName,
AsaDbType dbType
)

Syntax 4 void AsaParameter(
string parameterName,
AsaDbType dbType,
int size
)

Syntax 5 void AsaParameter(
string parameterName,
AsaDbType dbType,
int size,
string sourceColumn
)

Syntax 6 void AsaParameter(
string parameterName,
AsaDbType dbType,
int size,
ParameterDirection direction,
bool isNullable,
byte precision,
byte scale,
string sourceColumn,
DataRowVersion sourceVersion,
object value
)

427

Parameters value An Object that is the value of the parameter.

size The length of the parameter.

sourceColumn The name of the source column to map.

parameterName The name of the parameter.

dbType One of the AsaDbType values.

direction One of the ParameterDirection values.

isNullable True if the value of the field can be null; otherwise, false.

precision The total number of digits to the left and right of the decimal
point to which Value is resolved.

scale The total number of decimal places to which Value is resolved.

sourceVersion One of the DataRowVersion values.

AsaDbType property

Description The AsaDbType of the parameter.

Syntax AsaDbType AsaDbType

Access Read-write

Usage The AsaDbType and DbType are linked. Therefore, setting the DbType
changes the AsaDbType to a supporting AsaDbType.

The value must be a member of the AsaDbType enumerator.

DbType property

Description The DbType of the parameter.

Syntax DbType DbType

Access Read-write

Usage The AsaDbType and DbType are linked. Therefore, setting the DbType
changes the AsaDbType to a supporting AsaDbType.

The value must be a member of the AsaDbType enumerator.

Direction property

Description A value indicating whether the parameter is input-only, output-only,
bidirectional, or a stored procedure return value parameter.

428

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Syntax ParameterDirection Direction

Access Read-write

Usage If the ParameterDirection is output, and execution of the associated
AsaCommand does not return a value, the AsaParameter contains a null
value. After the last row from the last result set is read, Output, InputOut,
and ReturnValue parameters are updated.

IsNullable property

Description A value indicating whether the parameter accepts null values.

Syntax bool IsNullable

Access Read-write

Usage This property is true if null values are accepted; otherwise it is false. The
default is false. Null values are handled using the DBNull class.

Offset property

Description The offset to the Value property.

Syntax int Offset

Access Read-write

Property value The offset to the value. The default is 0.

ParameterName property

Description The name of the AsaParameter.

Syntax string ParameterName

Access Read-write

Implements IDataParameter.ParameterName

Usage The Adaptive Server Anywhere .NET data provider uses positional
parameters that are marked with a question mark (?) instead of named
parameters.

The default is an empty string.

Precision property

Description The maximum number of digits used to represent the Value property.

429

Syntax byte Precision

Access Read-write

Implements IDbDataParameter.Precision

Usage The value of this property is the maximum number of digits used to
represent the Value property. The default value is 0, which indicates that the
data provider sets the precision for the Value property.

The Precision property is only used for decimal and numeric input
parameters.

Scale property

Description The number of decimal places to which Value is resolved.

Syntax byte Scale

Access Read-write

Implements IDbDataParameter.Scale

Usage The default is 0. The Scale property is only used for decimal and numeric
input parameters.

Size property

Description The maximum size, in bytes, of the data within the column.

Syntax int Size

Access Read-write

Implements IDbDataParameter.Size

Usage The value of this property is the maximum size, in bytes, of the data within
the column. The default value is inferred from the parameter value.

The Size property is used for binary and string types.

For variable length data types, the Size property describes the maximum
amount of data to transmit to the server. For example, the Size property can
be used to limit the amount of data sent to the server for a string value to the
first one hundred bytes.

If not explicitly set, the size is inferred from the actual size of the specified
parameter value. For fixed width data types, the value of Size is ignored. It
can be retrieved for informational purposes, and returns the maximum

430

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

amount of bytes the provider uses when transmitting the value of the
parameter to the server.

SourceColumn property

Description The name of the source column mapped to the DataSet and used for loading
or returning the value.

Syntax string SourceColumn

Access Read-write

Implements IDbDataParameter.SourceColumn

Usage When SourceColumn is set to anything other than an empty string, the value
of the parameter is retrieved from the column with the SourceColumn name.
If Direction is set to Input, the value is taken from the DataSet. If Direction
is set to Output, the value is taken from the data source. A Direction of
InputOutput is a combination of both.

SourceVersion property

Description The DataRowVersion to use when loading Value.

Syntax DataRowVersion SourceVersion

Access Read-write

Implements IDbDataParameter.SourceVersion

Usage Used by UpdateCommand during an Update operation to determine whether
the parameter value is set to Current or Original. This allows primary keys to
be updated. This property is ignored by InsertCommand and
DeleteCommand. This property is set to the version of the DataRow used by
the Item property, or the GetChildRows method of the DataRow object.

ToString method

Description A string containing the ParameterName.

Syntax string ToString()

Access Read-write

Value property

Description The value of the parameter.

431

Syntax object Value

Access Read-write

Implements IDataParameter.Value

Usage For input parameters, the value is bound to the AsaCommand that is sent to
the server. For output and return value parameters, the value is set on
completion of the AsaCommand and after the AsaDataReader is closed.

When sending a null parameter value to the server, the user must specify
DBNull, not null. The null value in the system is an empty object that has no
value. DBNull is used to represent null values.

If the application specifies the database type, the bound value is converted to
that type when the provider sends the data to the server. The provider
attempts to convert any type of value if it supports the IConvertible interface.
Conversion errors may result if the specified type is not compatible with the
value.

Both the DbType and AsaDbType properties can be inferred by setting the
Value.

The Value property is overwritten by Update.

432

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaParameterCollection class
Description Represents all parameters to an AsaCommand and optionally, their mapping

to a DataSet column.

Base classes Object

Implemented interfaces ICollection, IEnumerable, IDataParameterCollection

Usage There is no constructor for AsaParameterCollection. You obtain an
AsaParameterCollection from the AsaCommand.Parameters property.

See also “Parameters property” on page 383

Add method

Description Adds an AsaParameter to the AsaCommand.

Syntax 1 int Add(object value)

Syntax 2 int Add(AsaParameter value)

Syntax 3 int Add(
string parameterName,
object value
)

Syntax 4 int Add(
string parameterName,
AsaDbType asaDbType
)

Syntax 5 int Add(
string parameterName,
AsaDbType asaDbType,
int size
)

Syntax 6 int Add(
string parameterName,
AsaDbType asaDbType,
int size,
string sourceColumn
)

Parameters value For syntax 1 and 2, value is the AsaParameter object to add to the
collection. For syntax 3, value is the value of the parameter to add to the
connection.

parameterName The name of the parameter.

433

asaDbType One of the AsaDbType values.

size The length of the column.

sourceColumn The name of the source column.

Return Value The index of the new AsaParameter object.

Clear method

Description Removes all items from the collection.

Syntax void Clear()

Implements IList.Clear

Contains method

Description A value indicating whether an AsaParameter exists in the collection.

Syntax 1 bool Contains(object value)

Syntax 2 bool Contains(string value)

Parameters value The value of the AsaParameter object to find. In syntax 2, this is the
name.

Return value True if the collection contains the AsaParameter. Otherwise, it is false.

Implements Syntax 1 implements IList.Contains

Syntax 2 implements IDataParameterCollection.Contains

CopyTo method

Description Copies AsaParameter objects from the AsaParameterCollection to the
specified array.

Syntax void CopyTo(
array array
int index
)

Parameters array The array into which to copy the AsaParameter objects.

index The starting index of the array.

Implements ICollection.CopyTo

434

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

Count property

Description The number of AsaParameter objects in the collection.

Syntax int Count

Access Read-only

Implements ICollection.Count

IndexOf method

Description The location of the AsaParameter in the collection.

Syntax 1 int IndexOf(object value)

Syntax 2 int IndexOf(string parameterName)

Parameters value The AsaParameter object to locate.

parameterName The name of the AsaParameter object to locate.

Return Value The zero-based location of the AsaParameter in the collection.

Implements Syntax 1 implements IList.IndexOf

Syntax 2 implements IDataParameterCollection.IndexOf

Insert method

Description Inserts an AsaParameter in the collection at the specified index.

Syntax void Insert(
int index
object value)

Parameters index The zero-based index where the parameter is to be inserted within
the collection.

value The AsaParameter to add to the collection.

Implements IList.Insert

Item property

Description The AsaParameter at the specified index or name.

Syntax 1 AsaParameter this[int index]

Syntax 2 AsaParameter this[string parameterName]

435

Parameters index The zero-based index of the parameter to retrieve.

parameterName The name of the parameter to retrieve.

Property value An AsaParameter.

Access Read-write

Usage In C#, this property is the indexer for the AsaParameterCollection class.

Remove method

Description Removes the specified AsaParameter from the collection.

Syntax void Remove(object value)

Parameters value The AsaParameter object to remove from the collection.

Implements IList.Remove

RemoveAt method

Description Removes the specified AsaParameter from the collection.

Syntax 1 void RemoveAt(int index)

Syntax 2 void RemoveAt(string parameterName)

Parameters index The zero-based index of the parameter to remove.

parameterName The name of the AsaParameter object to remove.

Implements Syntax 1 implements IList.RemoveAt

Syntax 2 implements IDataParameterCollection.RemoveAt

436

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaPermission class
Description Enables the Adaptive Server Anywhere .NET data provider to ensure that a

user has a security level adequate to access an Adaptive Server Anywhere
data source.

Base classes DBDataPermission

AsaPermission constructors

Description Initializes a new instance of the AsaPermission class.

Syntax 1 void AsaPermission()

Syntax 2 void AsaPermission(PermissionState state)

Syntax 3 void AsaPermission(
PermissionState state,
bool allowBlankPassword
)

Parameters state One of the PermissionState values.

allowBlankPassword Indicates whether a blank password is allowed.

437

AsaPermissionAttribute class
Description Associates a security action with a custom security attribute.

Base classes DBDataPermissionAttribute

AsaPermissionAttribute constructor

Description Initializes a new instance of the AsaPermissionAttribute class.

Syntax void AsaPermissionAttribute(SecurityAction action)

Parameters action One of the SecurityAction values representing an action that can be
performed using declarative security.

Return Value An AsaPermissionAttribute object.

CreatePermission method

Description Returns an AsaPermission object that is configured according to the attribute
properties.

Syntax IPermission CreatePermission()

438

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaRowUpdatedEventArgs class
Description Provides data for the RowUpdated event.

Base classes RowUpdatedEventArgs

AsaRowUpdatedEventArgs constructors

Description Initializes a new instance of the AsaRowUpdatedEventArgs class.

Syntax void AsaRowUpdatedEventArgs(
DataRow dataRow ,
IDbCommand command ,
StatementType statementType,
DataTableMapping tableMapping
)

Parameters dataRow The DataRow sent through an Update.

command The IDbCommand executed when Update is called.

statementType One of the StatementType values that specifies the type of
query executed.

tableMapping The DataTableMapping sent through an Update.

Command property

Description The AsaCommand executed when Update is called.

Syntax AsaCommand Command

Access Read-only

Errors property

Description Any errors generated by Adaptive Server Anywhere when the Command
was executed. Inherited from RowUpdatedEventArgs.

Syntax Exception Errors

Property value The errors generated by Adaptive Server Anywhere when the Command was
executed.

Access Read-write

RecordsAffected property

Description The number of rows changed, inserted, or deleted by execution of the SQL

439

statement. Inherited from RowUpdatedEventArgs.

Syntax int RecordsAffected

Property value The number of rows changed, inserted, or deleted; 0 if no rows were affected
or the statement failed; and -1 for SELECT statements.

Access Read-only

Row property

Description The DataRow sent through an Update. Inherited from
RowUpdatedEventArgs.

Syntax DataRow Row

Access Read-only

StatementType property

Description The type of the SQL statement that was executed. Inherited from
RowUpdatedEventArgs.

Syntax StatementType StatementType

Access Read-only

Usage StatementType can be one ofSelect, Insert, Update, or Delete.

Status property

Description The UpdateStatus of the Command property. Inherited from
RowUpdatedEventArgs.

Syntax UpdateStatus Status

Property Value One of the UpdateStatus values:Continue, ErrorsOccurred ,
SkipAllRemainingRows, or SkipCurrentRow . The default isContinue.

Access Read-write

TableMapping property

Description The DataTableMapping sent through an Update. Inherited from
RowUpdatedEventArgs.

Syntax DataTableMapping TableMapping

Access Read-only

440

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaRowUpdatingEventArgs class
Description Provides data for the RowUpdating event.

Base classes RowUpdatingEventArgs

AsaRowUpdatingEventArgs constructors

Description Initializes a new instance of the AsaRowUpdatingEventArgs class.

Syntax void AsaRowUpdatingEventArgs(
DataRow row ,
IDbCommand command ,
StatementType statementType,
DataTableMapping tableMapping
)

Parameters row The DataRow to update.

command The IDbCommand to execute during update.

statementType One of the StatementType values that specifies the type of
query executed.

tableMapping The DataTableMapping sent through an Update.

Command property

Description The AsaCommand to execute when performing the Update.

Syntax AsaCommand Command

Access Read-write

Errors property

Description Any errors generated by Adaptive Server Anywhere when the Command
was executed. Inherited from RowUpdatingEventArgs.

Syntax Exception Errors

Property value The errors generated by Adaptive Server Anywhere when the Command was
executed.

Access Read-write

Row property

Description The DataRow sent through an Update. Inherited from

441

RowUpdatingEventArgs.

Syntax DataRow Row

Access Read-only

StatementType property

Description The type of the SQL statement that was executed. Inherited from
RowUpdatingEventArgs.

Syntax StatementType StatementType

Access Read-only

Usage StatementType can be one ofSelect, Insert, Update, or Delete.

Status property

Description The UpdateStatus of the Command property. Inherited from
RowUpdatingEventArgs.

Syntax UpdateStatus Status

Property Value One of the UpdateStatus values:Continue, ErrorsOccurred ,
SkipAllRemainingRows, or SkipCurrentRow . The default isContinue.

Access Read-write

TableMapping property

Description The DataTableMapping sent through an Update. Inherited from
RowUpdatingEventArgs.

Syntax DataTableMapping TableMapping

Access Read-only

442

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaRowUpdatedEventHandler delegate
Description Represents the method that will handle the RowUpdated event of an

AsaDataAdapter.

Syntax void AsaRowUpdatedEventHandler (
object sender ,
AsaRowUpdatedEventArgs e
)

Parameters sender The source of the event.

e The AsaRowUpdatedEventArgs that contains the event data.

443

AsaRowUpdatingEventHandler delegate
Description Represents the method that will handle the RowUpdating event of an

AsaDataAdapter.

Syntax void AsaRowUpdatingEventHandler (
object sender ,
AsaRowUpdatingEventArgs e
)

Parameters sender The source of the event.

e The AsaRowUpdatingEventArgs that contains the event data.

444

Chapter 13. Adaptive Server Anywhere .NET Data Provider API Reference

AsaTransaction class
Description Represents a SQL transaction.

Base classes Object

Implemented interfaces IDbTransaction

Usage There is no constructor for AsaTransaction. To obtain an AsaTransaction
object, use the AsaConnection.BeginTransaction() method.

To associate a command with a transaction, use the
AsaCommand.Transaction property.

See also “BeginTransaction method” on page 389

“Transaction property” on page 384

“Transaction processing” on page 372

“Inserting, updating, and deleting rows using the AsaCommand object” on
page 352

Commit method

Description Commits the database transaction.

Syntax void Commit()

Implements IDbTransaction.Commit

Connection property

Description The AsaConnection object associated with the transaction, or a null
reference (Nothing in Visual Basic) if the transaction is no longer valid.

Syntax AsaConnection Connection

Access Read-only

Usage A single application may have multiple database connections, each with zero
or more transactions. This property enables you to determine the connection
object associated with a particular transaction created by BeginTransaction.

IsolationLevel property

Description Specifies the isolation level for this transaction.

Syntax IsolationLevel IsolationLevel

445

Access Read-only

Property Value The IsolationLevel for this transaction. This can be one ofReadCommitted,
ReadUncommitted, RepeatableRead, or Serializable.The default is
ReadCommitted.

Implements IDbTransaction.IsolationLevel

Usage Parallel transactions are not supported. Therefore, the IsolationLevel applies
to the entire transaction.

Rollback method

Description Rolls back a transaction from a pending state.

Syntax 1 void Rollback()

Syntax 2 void Rollback(string savePoint)

Parameters savePoint The name of the savepoint to which to roll back.

Usage The transaction can only be rolled back from a pending state (after
BeginTransaction has been called, but before Commit is called).

Save method

Description Creates a savepoint in the transaction that can be used to roll back a portion
of the transaction, and specifies the savepoint name.

Syntax void Save(string savePoint)

Parameters savePoint The name of the savepoint to which to roll back.

446

CHAPTER 14

The Open Client Interface

About this chapter This chapter describes the Open Client programming interface for Adaptive
Server Anywhere.

The primary documentation for Open Client application development is the
Open Client documentation, available from Sybase. This chapter describes
features specific to Adaptive Server Anywhere, but it is not an exhaustive
guide to Open Client application programming.

Contents Topic: page

What you need to build Open Client applications 448

Data type mappings 449

Using SQL in Open Client applications 451

Known Open Client limitations of Adaptive Server Anywhere 454

447

What you need to build Open Client applications
To run Open Client applications, you must install and configure Open Client
components on the machine where the application is running. You may have
these components present as part of your installation of other Sybase
products or you can optionally install these libraries with Adaptive Server
Anywhere, subject to the terms of your license agreement.

Open Client applications do not need any Open Client components on the
machine where the database server is running.

To build Open Client applications, you need the development version of
Open Client, available from Sybase.

By default, Adaptive Server Anywhere databases are created as
case-insensitive, while Adaptive Server Enterprise databases are case
sensitive.

☞ For more information on running Open Client applications with
Adaptive Server Anywhere, see “Adaptive Server Anywhere as an Open
Server”[ASA Database Administration Guide,page 109].

448

Chapter 14. The Open Client Interface

Data type mappings
Open Client has its own internal data types, which differ in some details
from those available in Adaptive Server Anywhere. For this reason, Adaptive
Server Anywhere internally maps some data types between those used by
Open Client applications and those available in Adaptive Server Anywhere.

To build Open Client applications, you need the development version of
Open Client. To use Open Client applications, the Open Client runtimes
must be installed and configured on the computer where the application runs.

The Adaptive Server Anywhere server does not require any external
communications runtime in order to support Open Client applications.

Each Open Client data type is mapped onto the equivalent Adaptive Server
Anywhere data type. All Open Client data types are supported

Adaptive Server
Anywhere data types
with no direct counterpart
in Open Client

The following table lists the mappings of data types supported in Adaptive
Server Anywhere that have no direct counterpart in Open Client.

ASA data type Open Client data type

unsigned short int

unsigned int bigint

unsigned bigint bigint

date smalldatetime

time smalldatetime

serialization longbinary

string varchar

timestamp struct datetime

Range limitations in data type mapping

Some data types have different ranges in Adaptive Server Anywhere than in
Open Client. In such cases, overflow errors can occur during retrieval or
insertion of data.

The following table lists Open Client application data types that can be
mapped to Adaptive Server Anywhere data types, but with some restriction
in the range of possible values.

In most cases, the Open Client data type is mapped to an Adaptive Server

449

Anywhere data type that has a greater range of possible values. As a result, it
is possible to pass a value to Adaptive Server Anywhere that will be
accepted and stored in a database, but one that is too large to be fetched by
an Open Client application.

Data type Open Client lower

range

Open Client up-

per range

ASA lower range ASA upper

range

MONEY –922 377 203 685
477.5808

922 377 203 685
477.5807

–1e15 + 0.0001 1e15 – 0.0001

SMALLMONEY –214 748.3648 214 748.3647 –214 748.3648 214 748.3647

DATETIME Jan 1, 1753 Dec 31, 9999 Jan 1, 0001 Dec 31, 9999

SMALLDATETIME Jan 1, 1900 June 6, 2079 March 1, 1600 Dec 31, 7910

Example For example, the Open Client MONEY and SMALLMONEY data types do
not span the entire numeric range of their underlying Adaptive Server
Anywhere implementations. Therefore, it is possible to have a value in an
Adaptive Server Anywhere column which exceeds the boundaries of the
Open Client data type MONEY. When the client fetches any such offending
values via Adaptive Server Anywhere, an error is generated.

Timestamps The Adaptive Server Anywhere implementation of the Open Client
TIMESTAMP data type, when such a value is passed in Adaptive Server
Anywhere, is different from that of Adaptive Server Enterprise. In Adaptive
Server Anywhere, the value is mapped to the Adaptive Server Anywhere
DATETIME data type. The default value is NULL in Adaptive Server
Anywhere and no guarantee is made of its uniqueness. By contrast, Adaptive
Server Enterprise ensures that the value is monotonically increasing in value,
and so, is unique.

By contrast, the Adaptive Server Anywhere TIMESTAMP data type
contains year, month, day, hour, minute, second, and fraction of second
information. In addition, the DATETIME data type has a greater range of
possible values than the Open Client data types that are mapped to it by
Adaptive Server Anywhere.

450

Chapter 14. The Open Client Interface

Using SQL in Open Client applications
This section provides a very brief introduction to using SQL in Open Client
applications, with a particular focus on Adaptive Server Anywhere-specific
issues.

☞ For an introduction to the concepts, see“Using SQL in Applications” on
page 11. For a complete description, see your Open Client documentation.

Executing SQL statements

You send SQL statements to a database by including them in Client Library
function calls. For example, the following pair of calls executes a DELETE
statement:

ret = ct_command(cmd, CS_LANG_CMD,
"DELETE FROM employee

WHERE emp_id=105"
CS_NULLTERM,
CS_UNUSED);

ret = ct_send(cmd);

Thect_command function is used for a wide range of purposes.

Using prepared statements

Thect_dynamic function is used to manage prepared statements. This
function takes atype parameter which describes the action you are taking.

❖ To use a prepared statement in Open Client

1. Prepare the statement using thect_dynamic function, with a
CS_PREPAREtype parameter.

2. Set statement parameters usingct_param .

3. Execute the statement usingct_dynamic with a CS_EXECUTEtype
parameter.

4. Free the resources associated with the statement usingct_dynamic with
a CS_DEALLOCtype parameter.

☞ For more information on using prepared statements in Open Client, see
your Open Client documentation

Using cursors

Thect_cursor function is used to manage cursors. This function takes a
type parameter which describes the action you are taking.

451

Supported cursor types Not all the types of cursor that Adaptive Server Anywhere supports are
available through the Open Client interface. You cannot use scroll cursors,
dynamic scroll cursors, or insensitive cursors through Open Client.

Uniqueness and updatability are two properties of cursors. Cursors can be
unique (each row carries primary key or uniqueness information, regardless
of whether it is used by the application) or not. Cursors can be read only or
updatable. If a cursor is updatable and not unique, performance may suffer,
as no prefetching of rows is done in this case, regardless of the
CS_CURSOR_ROWS setting (see below).

The steps in using
cursors

In contrast to some other interfaces, such as Embedded SQL, Open Client
associates a cursor with a SQL statement expressed as a string. Embedded
SQL first prepares a statement and then the cursor is declared using the
statement handle.

❖ To use cursors in Open Client

1. To declare a cursor in Open Client, you usect_cursor with
CS_CURSOR_DECLARE as thetype parameter.

2. After declaring a cursor, you can control how many rows are prefetched
to the client side each time a row is fetched from the server using
ct_cursor with CS_CURSOR_ROWS as thetype parameter.

Storing prefetched rows at the client side cuts down the number of calls
to the server and this improves overall throughput as well as turnaround
time. Prefetched rows are not immediately passed on to the application;
they are stored in a buffer at the client side ready for use.

The setting of the PREFETCH database option controls prefetching of
rows for other interfaces. It is ignored by Open Client connections. The
CS_CURSOR_ROWS setting is ignored for non-unique, updatable
cursors.

3. To open a cursor in Open Client, you usect_cursor with
CS_CURSOR_OPEN as thetype parameter.

4. To fetch each row in to the application, you usect_fetch .

5. To close a cursor, you use ct_cursor with CS_CURSOR_CLOSE.

6. In Open Client, you also need to deallocate the resources associated with
a cursor. You do this using ct_cursor with CS_CURSOR_DEALLOC.
You can also use CS_CURSOR_CLOSE with the additional parameter
CS_DEALLOC to carry out these operations in a single step.

452

Chapter 14. The Open Client Interface

Modifying rows through a cursor

With Open Client, you can delete or update rows in a cursor, as long as the
cursor is for a single table. The user must have permissions to update the
table and the cursor must be marked for update.

❖ To modify rows through a cursor

1. Instead of carrying out a fetch, you can delete or update the current row
of the cursor using ct_cursor with CS_CURSOR_DELETE or
CS_CURSOR_UPDATE, respectively.

You cannot insert rows through a cursor in Open Client applications.

Describing query results in Open Client

Open Client handles result sets in a different way than some other Adaptive
Server Anywhere interfaces.

In Embedded SQL and ODBC, youdescribea query or stored procedure in
order to set up the proper number and types of variables to receive the
results. The description is done on the statement itself.

In Open Client, you do not need to describe a statement. Instead, each row
returned from the server can carry a description of its contents. If you use
ct_command andct_send to execute statements, you can use the
ct_results function to handle all aspects of rows returned in queries.

If you do not wish to use this row-by-row method of handling result sets,
you can usect_dynamic to prepare a SQL statement and use
ct_describe to describe its result set. This corresponds more closely to
the describing of SQL statements in other interfaces.

453

Known Open Client limitations of Adaptive Server
Anywhere

Using the Open Client interface, you can use an Adaptive Server Anywhere
database in much the same way as you would an Adaptive Server Enterprise
database. There are some limitations, including the following:

♦ Commit Service Adaptive Server Anywhere does not support the
Adaptive Server Enterprise Commit Service.

♦ Capabilities A client/server connection’scapabilitiesdetermine the
types of client requests and server responses permitted for that
connection. The following capabilities are not supported:

• CS_REG_NOTIF

• CS_CSR_ABS

• CS_CSR_FIRST

• CS_CSR_LAST

• CS_CSR_PREV

• CS_CSR_REL

• CS_DATA_BOUNDARY

• CS_DATA_SENSITIVITY

• CS_PROTO_DYNPROC

• CS_REQ_BCP

♦ Security options, such as SSL and encrypted passwords, are not
supported.

♦ Open Client applications may connect to Adaptive Server Anywhere
using TCP/IP or using local machine NamedPipes protocol where
available.

☞ For more information on capabilities, see theOpen Server
Server-Library C Reference Manual.

454

CHAPTER 15

Three-Tier Computing and Distributed
Transactions

About this chapter This chapter describes how to use Adaptive Server Anywhere in a three-tier
environment with an application server. It focuses on how to enlist Adaptive
Server Anywhere in distributed transactions.

Contents Topic: page

Introduction 456

Three-tier computing architecture 457

Using distributed transactions 461

Using EAServer with Adaptive Server Anywhere 463

455

Introduction
You can use Adaptive Server Anywhere as a database server orresource
manager, participating in distributed transactions coordinated by a
transaction server.

A three-tier environment, where an application server sits between client
applications and a set of resource managers, is a common
distributed-transaction environment. Sybase EAServer and some other
application servers are also transaction servers.

Sybase EAServer and Microsoft Transaction Server both use the Microsoft
Distributed Transaction Coordinator (DTC) to coordinate transactions.
Adaptive Server Anywhere provides support for distributed transactions
controlled by the DTC service, so you can use Adaptive Server Anywhere
with either of these application servers, or any other product based on the
DTC model.

When integrating Adaptive Server Anywhere into a three-tier environment,
most of the work needs to be done from the Application Server. This chapter
provides an introduction to the concepts and architecture of three-tier
computing, and an overview of relevant Adaptive Server Anywhere features.
It does not describe how to configure your Application Server to work with
Adaptive Server Anywhere. For more information, see your Application
Server documentation.

456

Chapter 15. Three-Tier Computing and Distributed Transactions

Three-tier computing architecture
In three-tier computing, application logic is held in an application server,
such as Sybase EAServer, which sits between the resource manager and the
client applications. In many situations, a single application server may
access multiple resource managers. In the Internet case, client applications
are browser-based, and the application server is generally a Web server
extension.

Application

Server

Sybase EAServer stores application logic in the form of components, and
makes these components available to client applications. The components
may be PowerBuilder components, JavaBeans, or COM components.

☞ For more information, see the Sybase EAServer documentation.

Distributed transactions in three-tier computing

When client applications or application servers work with a single
transaction processing database, such as Adaptive Server Anywhere, there is

457

no need for transaction logic outside the database itself, but when working
with multiple resource managers, transaction control must span the
resources involved in the transaction. Application servers provide
transaction logic to their client applications—guaranteeing that sets of
operations are executed atomically.

Many transaction servers, including Sybase EAServer, use the Microsoft
Distributed Transaction Coordinator (DTC) to provide transaction services
to their client applications. DTC usesOLE transactions, which in turn use
thetwo-phase commitprotocol to coordinate transactions involving
multiple resource managers. You must have DTC installed in order to use
the features described in this chapter.

Adaptive Server
Anywhere in distributed
transactions

Adaptive Server Anywhere can take part in transactions coordinated by
DTC, which means that you can use Adaptive Server Anywhere databases in
distributed transactions using a transaction server such as Sybase EAServer
or Microsoft Transaction Server. You can also use DTC directly in your
applications to coordinate transactions across multiple resource managers.

The vocabulary of distributed transactions

This chapter assumes some familiarity with distributed transactions. For
information, see your transaction server documentation. This section
describes some commonly used terms.

♦ Resource managersare those services that manage the data involved in
the transaction.

The Adaptive Server Anywhere database server can act as a resource
manager in a distributed transaction when accessed through OLE DB or
ODBC. The ODBC driver and OLE DB provider act as resource manager
proxies on the client machine.

♦ Instead of communicating directly with the resource manager, application
components may communicate withresource dispensers, which in turn
manage connections or pools of connections to the resource managers.

Adaptive Server Anywhere supports two resource dispensers: the ODBC
driver manager and OLE DB.

♦ When a transactional component requests a database connection (using a
resource manager), the application serverenlistseach database
connection takes part in the transaction. DTC and the resource dispenser
carry out the enlistment process.

Two-phase commit Distributed transactions are managed using two-phase commit. When the
work of the transaction is complete, the transaction manager (DTC) asks all

458

Chapter 15. Three-Tier Computing and Distributed Transactions

the resource managers enlisted in the transaction whether they are ready to
commit the transaction. This phase is calledpreparing to commit.

If all the resource managers respond that they are prepared to commit, DTC
sends a commit request to each resource manager, and responds to its client
that the transaction is completed. If one or more resource manager does not
respond, or responds that it cannot commit the transaction, all the work of
the transaction is rolled back across all resource managers.

How application servers use DTC

Sybase EAServer and Microsoft Transaction Server are both component
servers. The application logic is held in the form of components, and made
available to client applications.

Each component has a transaction attribute that indicates how the
component participates in transactions. The application developer building
the component must program the work of the transaction into the
component—the resource manager connections, the operations on the data
for which each resource manager is responsible. However, the application
developer does not need to add transaction management logic to the
component. Once the transaction attribute is set, to indicate that the
component needs transaction management, EAServer uses DTC to enlist the
transaction and manage the two-phase commit process.

Distributed transaction architecture

The following diagram illustrates the architecture of distributed transactions.
In this case, the resource manager proxy is either ODBC or OLE DB.

459

DTC
DTC

DTC

Resource

Manager

Proxy

Resource

Manager

Proxy

Application

Server

Client

system

Server

system 1

Server

system 2

In this case, a single resource dispenser is used. The Application Server asks
DTC to prepare a transaction. DTC and the resource dispenser enlist each
connection in the transaction. Each resource manager must be in contact
with both DTC and the database, so as to carry out the work and to notify
DTC of its transaction status when required.

A DTC service must be running on each machine in order to operate
distributed transactions. You can control DTC services from the Services
icon in the Windows control panel; the DTC service is namedMSDTC.

☞ For more information, see your DTC or EAServer documentation.

460

Chapter 15. Three-Tier Computing and Distributed Transactions

Using distributed transactions
While Adaptive Server Anywhere is enlisted in a distributed transaction, it
hands transaction control over to the transaction server, and Adaptive Server
Anywhere ensures that it does not carry out any implicit transaction
management. The following conditions are imposed automatically by
Adaptive Server Anywhere when it participates in distributed transactions:

♦ Autocommit is automatically turned off, if it is in use.

♦ Data definition statements (which commit as a side effect) are disallowed
during distributed transactions.

♦ An explicit COMMIT or ROLLBACK issued by the application directly
to Adaptive Server Anywhere, instead of through the transaction
coordinator, generates an error. The transaction is not aborted, however.

♦ A connection can participate in only a single distributed transaction at a
time.

♦ There must be no uncommitted operations at the time the connection is
enlisted in a distributed transaction.

DTC isolation levels

DTC has a set of isolation levels, which the application server specifies.
These isolation levels map to Adaptive Server Anywhere isolation levels as
follows:

DTC isolation level Adaptive Server Anywhere

isolation level

ISOLATIONLEVEL_UNSPECIFIED 0

ISOLATIONLEVEL_CHAOS 0

ISOLATIONLEVEL_-
READUNCOMMITTED

0

ISOLATIONLEVEL_BROWSE 0

ISOLATIONLEVEL_CURSORSTABILITY 1

ISOLATIONLEVEL_READCOMMITTED 1

ISOLATIONLEVEL_REPEATABLEREAD 2

ISOLATIONLEVEL_SERIALIZABLE 3

ISOLATIONLEVEL_ISOLATED 3

461

Recovery from distributed transactions

If the database server faults while uncommitted operations are pending, it
must either rollback or commit those operations on startup to preserve the
atomic nature of the transaction.

If uncommitted operations from a distributed transaction are found during
recovery, the database server attempts to connect to DTC and requests that it
be re-enlisted in the pending or in-doubt transactions. Once the re-enlistment
is complete, DTC instructs the database server to roll back or commit the
outstanding operations.

If the reenlistment process fails, Adaptive Server Anywhere has no way of
knowing whether the in-doubt operations should be committed or rolled
back, and recovery fails. If you want the database in such a state to recover,
regardless of the uncertain state of the data, you can force recovery using the
following database server options:

♦ -tmf If DTC cannot be located, the outstanding operations are rolled
back and recovery continues.

☞ For more information, see “-tmf server option”[ASA Database
Administration Guide,page 160].

♦ -tmt If re-enlistment is not achieved before the specified time, the
outstanding operations are rolled back and recovery continues.

☞ For more information, see “-tmt server option”[ASA Database
Administration Guide,page 160].

462

Chapter 15. Three-Tier Computing and Distributed Transactions

Using EAServer with Adaptive Server Anywhere
This section provides an overview of the actions you need to take in
EAServer 3.0 or later to work with Adaptive Server Anywhere. For more
detailed information, see the EAServer documentation.

Configuring EAServer

All components installed in a Sybase EAServer share the same transaction
coordinator.

EAServer 3.0 and later offer a choice of transaction coordinators. You must
use DTC as the transaction coordinator if you are including Adaptive Server
Anywhere in the transactions. This section describes how to configure
EAServer 3.0 to use DTC as its transaction coordinator.

The component server in EAServer is named Jaguar.

❖ To configure an EAServer to use the Microsoft DTC transaction
model
1. Ensure that your Jaguar server is running.

On Windows, the Jaguar server commonly runs as a service. To manually
start the installed Jaguar server that comes with EAServer 3.0, select Start
➤ Programs➤ Sybase➤ EAServer➤ EAServer.

2. Start Jaguar Manager.

From the Windows desktop, select Start➤ Programs➤ Sybase➤
EAServer➤ Jaguar Manager.

3. Connect to the Jaguar server from Jaguar Manager.

From the Sybase Central menu, choose Tools➤ Connect➤ Jaguar
Manager. In the connection dialog, enterjagadmin as the User Name,
leave the Password field blank, and enter a Host Name oflocalhost.
Click OK to connect.

4. Set the transaction model for the Jaguar server.

In the left pane, open the Servers folder. In the right pane, right click on
the server you wish to configure, and select Server Properties from the
drop down menu. Click the Transactions tab, and choose Microsoft DTC
as the transaction model. Click OK to complete the operation.

Setting the component transaction attribute

In EAServer you may implement a component that carries out operations on
more than one database. You assign atransaction attribute to this

463

component that defines how it participates in transactions. The transaction
attribute can have the following values:

♦ Not Supported The component’s methods never execute as part of a
transaction. If the component is activated by another component that is
executing within a transaction, the new instance’s work is performed
outside the existing transaction. This is the default.

♦ Supports Transaction The component can execute in the context of a
transaction, but a connection is not required in order to execute the
component’s methods. If the component is instantiated directly by a base
client, EAServer does not begin a transaction. If component A is
instantiated by component B, and component B is executing within a
transaction, component A executes in the same transaction.

♦ Requires Transaction The component always executes in a
transaction. When the component is instantiated directly by a base client,
a new transaction begins. If component A is activated by component B,
and B is executing within a transaction, then A executes within the same
transaction; if B is not executing in a transaction, then A executes in a
new transaction.

♦ Requires New Transaction Whenever the component is instantiated, a
new transaction begins. If component A is activated by component B, and
B is executing within a transaction, then A begins a new transaction that
is unaffected by the outcome of B’s transaction; if B is not executing in a
transaction, then A executes in a new transaction.

For example, in the Sybase Virtual University sample application, included
with EAServer as the SVU package, theSVUEnrollment component
enroll() method carries out two separate operations (reserves a seat in a
course, bills the student for the course). These two operations need to be
treated as a single transaction.

Microsoft Transaction Server provides the same set of attribute values.

❖ To set the transaction attribute of a component

1. In Jaguar Manager, locate the component.

To find theSVUEnrollment component in the Jaguar sample application,
connect to the Jaguar server, open the Packages folder, and open the SVU
package. The components in the package are listed in the right pane.

2. Set the transaction attribute for the desired component.

Right click the component, and select Component Properties from the
popup menu. Click the Transaction tab, and choose the transaction
attribute value from the list. Click OK to complete the operation.

464

Chapter 15. Three-Tier Computing and Distributed Transactions

TheSVUEnrollment component is already marked as Requires
Transaction.

Once the component transaction attribute is set, you can carry out Adaptive
Server Anywhere operations from that component, and be assured of
transaction processing at the level you have specified.

465

CHAPTER 16

Deploying Databases and Applications

About this chapter This chapter describes how to deploy Adaptive Server Anywhere
components. It identifies the files required for deployment, and addresses
related issues such as connection settings.

Check your license agreement
Redistribution of files is subject to your license agreement. No statements
in this document override anything in your license agreement. Please check
your license agreement before considering deployment.

Contents Topic: page

Deployment overview 468

Understanding installation directories and file names 470

Using InstallShield for deployment 474

Using a silent installation for deployment 475

Deploying client applications 478

Deploying administration tools 487

Deploying database servers 488

Deploying embedded database applications 491

467

Deployment overview
When you have completed a database application, you must deploy the
application to your end users. Depending on the way in which your
application uses Adaptive Server Anywhere (as an embedded database, in a
client/server fashion, and so on) you may have to deploy components of the
Adaptive Server Anywhere software along with your application. You may
also have to deploy configuration information, such as data source names,
that enable your application to communicate with Adaptive Server
Anywhere.

Check your license agreement
Redistribution of files is subject to your license agreement with Sybase. No
statements in this document override anything in your license agreement.
Please check your license agreement before considering deployment.

The following deployment steps are examined in this chapter:

♦ Determining required files based on the choice of application platform
and architecture.

♦ Configuring client applications.

Much of the chapter deals with individual files and where they need to be
placed. However, the recommended way of deploying Adaptive Server
Anywhere components is to use the Installshield objects or to use a silent
installation. For information, see“Using InstallShield objects and templates
for deployment” on page 474, and“Using a silent installation for
deployment” on page 475.

Deployment models

The files you need to deploy depend on the deployment model you choose.
Here are some possible deployment models:

♦ Client deployment You may deploy only the client portions of
Adaptive Server Anywhere to your end-users, so that they can connect to
a centrally located network database server.

♦ Network server deployment You may deploy network servers to
offices, and then deploy clients to each of the users within those offices.

♦ Embedded database deployment You may deploy an application that
runs with the personal database server. In this case, both client and
personal server need to be installed on the end-user’s machine.

468

Chapter 16. Deploying Databases and Applications

♦ SQL Remote deployment Deploying a SQL Remote application is an
extension of the embedded database deployment model.

♦ MobiLink deployment For information on deploying MobiLink
synchronization servers, see “Deploying MobiLink Applications”
[MobiLink Synchronization Reference,page 337].

♦ Admininstration tools deployment You may deploy Interactive SQL,
Sybase Central and other management tools.

Ways to distribute files

There are two ways to deploy Adaptive Server Anywhere:

♦ Use the Adaptive Server Anywhere installation You can make the
Setup program available to your end-users. By selecting the proper
option, each end-user is guaranteed of getting the files they need.

This is the simplest solution for many deployment cases. In this case, you
must still provide your end users with a method for connecting to the
database server (such as an ODBC data source).

☞ For more information, see“Using a silent installation for
deployment” on page 475.

♦ Develop your own installation There may be reasons for you to
develop your own installation program that includes Adaptive Server
Anywhere files. This is a more complicated option, and most of this
chapter addresses the needs of those who are developing their own
installation.

If Adaptive Server Anywhere has already been installed for the server
type and operating system required by the client application architecture,
the required files can be found in the appropriately named subdirectory,
located in the Adaptive Server Anywhere installation directory.

For example, assuming the default installation directory was chosen, the
win32 subdirectory of your installation directory contains the files
required to run the server for Windows operating systems.

As well, users of InstallShield Professional 5.5 and up can use the
SQL Anywhere Studio InstallShield Template Projects to deploy their
own application. This feature allows you to quickly build your
application’s installation using the entire template project, or just the
parts that apply to your install.

Whichever option you choose, you must not violate the terms of your license
agreement.

469

Understanding installation directories and file
names

For a deployed application to work properly, the database server and client
libraries must each be able to locate the files they need. The deployed files
should be located relative to each other in the same fashion as your Adaptive
Server Anywhere installation.

In practice, this means that on PCs, most files belong in a single directory.
For example, on Windows both client and database server required files are
installed in a single directory, which is thewin32 subdirectory of the
Adaptive Server Anywhere installation directory.

☞ For a full description of the places where the software looks for files, see
“How Adaptive Server Anywhere locates files”[ASA Database Administration
Guide,page 242].

UNIX deployment issues

UNIX deployments are different from PC deployments in some ways:

♦ Directory structure For UNIX installations, the directory structure is
as follows:

Directory Contents

/opt/sybase/SYBSsa9/bin Executable files

/opt/sybase/SYBSsa9/lib Shared objects and libraries

/opt/sybase/SYBSsa9/res String files

On AIX, the default root directory is/usr/lpp/sybase/SYBSsa9instead of
/opt/sybase/SYBSsa9.

♦ File extensions In the tables in this chapter, the shared objects are
listed with an extension.so. For HP-UX, the extension is.sl.

On the AIX operating system, shared objects that applications need to
link to are given the extension.a.

♦ Symbolic links Each shared object is installed as a symbolic link to a
file of the same name with the additional extension.1 (one). For
example, thelibdblib9.sois a symbolic link to the filelibdblib9.so.1in
the same directory.

If patches are required to the Adaptive Server Anywhere installation,
these will be supplied with extension.2, and the symbolic link must be
redirected.

470

Chapter 16. Deploying Databases and Applications

♦ Threaded and unthreaded applications Most shared objects are
provided in two forms, one of which has the additional characters_r
before the file extension. For example, in addition tolibdblib9.so, there is
a file namedlibdblib9_r.so. In this case, threaded applications must be
linked to the_r shared object, while non-threaded applications must be
linked to the shared object without the_r characters.

♦ Character set conversion If you want to use database server character
set conversion (the-ct server option), you need to include the following
files:

• libunic.so

• charsets/ directory subtree

• asa.cvf

☞ For a description of the places where the software looks for files, see
“How Adaptive Server Anywhere locates files”[ASA Database Administration
Guide,page 242].

File naming conventions

Adaptive Server Anywhere uses consistent file naming conventions to help
identify and group system components.

These conventions include:

♦ Version number The Adaptive Server Anywhere version number is
indicated in the filename of the main server components (.exeand.dll
files).

For example, the filedbeng9.exeis a Version 9 executable.

♦ Language The language used in a language resource library is
indicated by a two-letter code within its filename. The two characters
before the version number indicate the language used in the library. For
example,dblgen9.dllis the language resource library for English. These
two-letter codes are specified by ISO standard 639.

☞ For more information about language labels, see “Understanding the
locale language”[ASA Database Administration Guide,page 301].

You can download an International Resources Deployment Kit containing
language resource deployment DLLs free of charge from the Sybase Web
site.

471

❖ To download the International Resources Deployment Kit from
the Sybase Web site

1. Open the following URL in your Web browser:

http://www.ianywhere.com/developer/

2. Under the heading Downloads on the left hand side of the page, click
EBFs/Patches.

3. Login to your Sybase Web account.

Click Create a New Account to create a Sybase Web account if you do
not have one already.

4. From the list of available downloads, select the International Resources
Deployment Kit that matches the platform and version of Adaptive
Server Anywhere that you are currently using.

☞ For a list of the languages available in Adaptive Server Anywhere, see
“Choosing collations”[ASA Database Administration Guide,page 307].

Identifying other file
types

The following table identifies the platform and function of Adaptive Server
Anywhere files according to their file extension. Adaptive Server Anywhere
follows standard file extension conventions where possible.

File extension Platform File type

.nlm Novell NetWare NetWare Loadable
Module

.chm, .chw Windows Help system file

.lib Varies by development
tool

Static runtime libraries
for the creation of em-
bedded SQL executa-
bles

.cfg, .cpr, .dat, .loc, .spr,

.srt, .xlt
Windows Sybase Adaptive Server

Enterprise components

.cmd .bat Windows Command files

.res NetWare, UNIX Language resource file
for non-Windows envi-
ronments

.dll Windows Dynamic Link Library

472

Chapter 16. Deploying Databases and Applications

File extension Platform File type

.so .sl .a UNIX Shared object (Sun So-
laris and IBM AIX) or
shared library (HP-UX)
file. The equivalent of a
Windows DLL.

Database file names Adaptive Server Anywhere databases are composed of two elements:

♦ Database file This is used to store information in an organized format.
This file uses a.db file extension.

♦ Transaction log file This is used to record all changes made to data
stored in the database file. This file uses a.log file extension, and is
generated by Adaptive Server Anywhere if no such file exists and a log
file is specified to be used. A mirrored transaction log has the default
extension of.mlg.

♦ Write file If your application uses a write file, it typically has a.wrt file
extension.

♦ Compressed database file If you supply a read-only compressed
database file, it typically has extension.cdb.

These files are updated, maintained and managed by the Adaptive Server
Anywhere relational database-management system.

473

Using InstallShield for deployment
InstallShield has used a variety of ways for including install components into
an InstallShield project:

♦ If you are using InstallShield 7 or later, you can include SQL Anywhere
Studio InstallShield Merge Modules in your install program. These
modules can be found in thedeployment\MergeModulessubdirectory of
your SQL Anywhere installation.

♦ If you are using InstallShield 6 and later, you can include SQL Anywhere
Studio InstallShield Objects in your install program. The objects for
deploying clients, personal database servers, network servers, and
administration tools are found in thedeployment\Objectdirectory under
your SQL Anywhere directory.

♦ If you are using InstallShield Professional 5.5 and later, you can use
SQL Anywhere Studio InstallShield Template Projects to ease the
deployment workload. Templates for deploying a network server,
personal server, client interfaces, and administration tools can be found in
theSQL Anywhere 9\deployment\Templatesfolder.

If you are using InstallShield 7 or later, the Merge Modules are
recommended. If you have InstallShield 6, the Objects are recommended
rather than the templates, as they are more easily incorporated into an install
along with other components.

☞ For instructions on incorporating these InstallShield components into
your install program, see your InstallShield documentation.

Notes: When building the media, you may see warnings about empty file groups.
These warnings are caused by empty file groups which have been added to
the templates as placeholders for your application’s files. To remove these
warnings, you can either add your application’s files to the file groups, or
delete or rename the file groups.

474

Chapter 16. Deploying Databases and Applications

Using a silent installation for deployment
Silent installations run without user input and with no indication to the user
that an installation is occurring. On Windows operating systems you can call
the Adaptive Server Anywhere InstallShield setup program from your own
setup program in such a way that the Adaptive Server Anywhere installation
is silent. Silent installs are also used with Microsoft’s Systems Management
Server (see“SMS Installation” on page 477).

You can use a silent installation for any of the deployment models described
in “Deployment models” on page 468. You can also use a silent installation
for deploying MobiLink synchronization servers.

Creating a silent install

The installation options used by a silent installation are obtained from a
response file. The response file is created by running the Adaptive Server
Anywheresetupprogram using the-r option. A silent install is performed
by runningsetupusing the-s option.

Do not use the browse buttons
When creating a silent install do not use the browse buttons. The recording
of the browse buttons is not reliable.

❖ To create a silent install

1. (Optional) Remove any existing installations of Adaptive Server
Anywhere.

2. Open a system command prompt, and change to the directory containing
the install image (includingsetup.exe, setup.ins, and so on).

3. Install the software, using Record mode.

Type the following command:

setup -r

This command runs the Adaptive Server Anywhere setup program and
creates the response file from your selections. The response file is named
setup.iss, and is located in yourWindowsdirectory. This file contains the
responses you made to the dialog boxes during installation.

When run in record mode, the installation program does not offer to
reboot your operating system, even if a reboot is needed.

4. Install Adaptive Server Anywhere using the options, and settings that you
want to be used when you deploy Adaptive Server Anywhere on the

475

end-user’s machine for use with your application. You can override the
paths during the silent install.

Running a silent install

Your own installation program must call the Adaptive Server Anywhere
silent install using the-s option. This section describes how to use a silent
install.

❖ To use a silent install

1. Add the command to invoke the Adaptive Server Anywhere silent install
to your installation procedure.

If the response file is present in the install image directory, you can run
the silent install by entering the following command from the directory
containing the install image:

setup -s

If the response file is located elsewhere you must specify the response file
location using the-f1 option. There must be no space betweenf1 and
the quotation mark in the following command line.

setup -s -f1"c: \winnt \setup.iss"

To invoke the install from another InstallShield script you could use the
following:

DoInstall("ASA_install_image_path \SETUP.INS",
"-s", WAIT);

You can use options to override the choices of paths for both the Adaptive
Server Anywhere directory and the shared directory:

setup TARGET_DIR=dirname SHARED_DIR=shared_dir -s

The TARGET_DIR and SHARED_DIR arguments must precede all
other options.

2. Check whether the target computer needs to reboot.

Setup creates a file namedsilent.login the target directory. This file
contains a single section calledResponseResultcontaining the following
line:

Reboot=value

This line indicates whether the target computer needs to be rebooted to
complete the installation, and has a value of 0 or 1, with the following
meanings.

476

Chapter 16. Deploying Databases and Applications

♦ Reboot=0 No reboot is needed.

♦ Reboot=1 The BATCH_INSTALL flag was set during the
installation, and the target computer does need to be rebooted. The
installation procedure that called the silent install is responsible for
checking the Reboot entry and for rebooting the target computer, if
necessary.

3. Check that the setup completed properly.

Setup creates a file namedsetup.login the directory containing the
response file. The log file contains a report on the silent install. The last
section of this file is calledResponseResult, and contains the following
line:

ResultCode=value

This line indicates whether the installation was successful. A non-zero
ResultCode indicates an error occurred during installation. For a
description of the error codes, see your InstallShield documentation.

SMS Installation

Microsoft System Management Server (SMS) requires a silent install that
does not reboot the target computer. The Adaptive Server Anywhere silent
install does not reboot the computer.

Your SMS distribution package should contain the response file, the install
image and theasa9.pdfpackage definition file (provided on the Adaptive
Server Anywhere CD ROM in the\extrasfolder). The setup command in the
PDF file contains the following options:

♦ The-s option for a silent install

♦ The-SMS option to indicate that it is being invoked by SMS.

♦ The-m option to generate a MIF file. The MIF file is used by SMS to
determine whether the installation was successful.

477

Deploying client applications
In order to deploy a client application that runs against a network database
server, you must provide each end user with the following items:

♦ Client application The application software itself is independent of the
database software, and so is not described here.

♦ Database interface files The client application requires the files for the
database interface it uses (ODBC, JDBC, embedded SQL, or Open
Client).

♦ Connection information Each client application needs database
connection information.

The interface files and connection information required varies with the
interface your application is using. Each interface is described separately in
the following sections.

The simplest way to deploy clients is to use the supplied InstallShield
objects. For more information, see“Using InstallShield objects and
templates for deployment” on page 474.

Deploying OLE DB and ADO clients

The simplest way to deploy OLE DB client libraries is to use the
InstallShield objects or templates. For information, see“Using InstallShield
objects and templates for deployment” on page 474. If you wish to create
your own installation, this section describes the files to deploy to the end
users.

Each OLE DB client machine must have the following:

♦ A working OLE DB installation OLE DB files and instructions for their
redistribution are available for redistribution from Microsoft Corporation.
They are not described in detail here.

♦ The Adaptive Server Anywhere OLE DB provider The following table
shows the files needed for a working Adaptive Server Anywhere OLE
DB provider. These files should be placed in a single directory. The
Adaptive Server Anywhere installation places them all in the
operating-system subdirectory of your SQL Anywhere installation
directory (for example:win32).

478

Chapter 16. Deploying Databases and Applications

Description Windows Windows CE

OLE DB driver file dboledb9.dll dboledb9.dll

OLE DB driver file dboledba9.dll dboledba9.dll

Language-resource library dblgen9.dll dblgen9.dll

Connect dialog dbcon9.dll N/A

OLE DB providers require many registry entries. You can make these by
self-registering the DLLs using theregsvr32utility on Windows or the
regsvrceutility on Windows CE.

☞ For more information, see “Creating databases for Windows CE”[ASA
Database Administration Guide,page 312], and“Linking ODBC applications on
Windows CE” on page 231.

Deploying ODBC clients

The simplest way to deploy ODBC clients is to use the InstallShield objects
or templates. For information, see“Using InstallShield objects and
templates for deployment” on page 474.

Each ODBC client machine must have the following:

♦ A working ODBC installation ODBC files and instructions for their
redistribution are available for redistribution from Microsoft Corporation.
They are not described in detail here.

Microsoft provides their ODBC Driver Manager for Windows operating
systems. SQL Anywhere Studio includes an ODBC Driver Manager for
UNIX. There is no ODBC Driver Manager for Windows CE.

ODBC applications can run without the driver manager. On platforms for
which an ODBC driver manager is available, this is not recommended.

Update ODBC if needed
The SQL Anywhere Setup program updates old installations of the
Microsoft Data Access Components, including ODBC. If you are
deploying your own application, you must ensure that the ODBC
installation is sufficient for your application.

♦ The Adaptive Server Anywhere ODBC driver This is the file
dbodbc9.dlltogether with some additional files.

☞ For more information, see“ODBC driver required files” on page 480.

♦ Connection information The client application must have access to the
information needed to connect to the server. This information is typically

479

included in an ODBC data source.

ODBC driver required files

The following table shows the files needed for a working Adaptive Server
Anywhere ODBC driver. These files should be placed in a single directory.
The Adaptive Server Anywhere installation places them all in the
operating-system subdirectory of your SQL Anywhere installation directory
(for example:win32).

Description Windows Windows CE UNIX

ODBC driver dbodbc9.dll dbodbc9.dll libdbodbc9.so
libdbtasks9.so

Language-
resource library

dblgen9.dll dblgen9.dll dblgen9.res

Connect dialog dbcon9.dll N/A N/A

Notes ♦ Your end user must have a working ODBC installation, including the
driver manager. Instructions for deploying ODBC are included in the
Microsoft ODBC SDK.

♦ The Connect dialog is needed if your end users are to create their own
data sources, if they need to enter user IDs and passwords when
connecting to the database, or if they need to display the Connect dialog
for any other purpose.

♦ For multi-threaded applications on UNIX, uselibdbodbc9_r.soand
libdbtasks9_r.so.

Configuring the ODBC driver

In addition to copying the ODBC driver files onto disk, your Setup program
must also make a set of registry entries to install the ODBC driver properly.

Windows The Adaptive Server Anywhere Setup program makes changes to the
Registry to identify and configure the ODBC driver. If you are building a
setup program for your end users, you should make the same settings.

You can use theregeditutility to inspect registry entries.

The Adaptive Server Anywhere ODBC driver is identified to the system by a
set of registry values in the following registry key:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBCINST.INI \

Adaptive Server Anywhere 9.0

480

Chapter 16. Deploying Databases and Applications

The values are as follows:

Value name Value type Value data

Driver String path\dbodbc9.dll

Setup String path\dbodbc9.dll

There is also a registry value in the following key:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBCINST.INI \

ODBC Drivers

The value is as follows:

Value name Value type Value data

Adaptive Server Anywhere 9.0 String Installed

Third party ODBC drivers If you are using a third-party ODBC driver on an operating system other
than Windows, consult the documentation for that driver on how to configure
the ODBC driver.

Deploying connection information

ODBC client connection information is generally deployed as an ODBC data
source. You can deploy an ODBC data source in one of the following ways:

♦ Programmatically Add a data source description to your end-user’s
Registry or ODBC initialization files.

♦ Manually Provide your end-users with instructions, so that they can
create an appropriate data source on their own machine.

You create a data source manually using the ODBC Administrator, from
the User DSN tab or the System DSN tab. The Adaptive Server
Anywhere ODBC driver displays the configuration dialog for entering
settings. Data source settings include the location of the database file, the
name of the database server, as well as any start up parameters and other
options.

This section provides you with the information you need to know for either
approach.

Types of data source There are three kinds of data sources: User data sources, System data
sources, and File data sources.

User data source definitions are stored in the part of the registry containing
settings for the specific user currently logged on to the system. System data

481

sources, however, are available to all users and to Windows services, which
run regardless of whether a user is logged onto the system or not. Given a
correctly configured System data source named MyApp, any user can use
that ODBC connection by providing DSN=MyApp in the ODBC connection
string.

File data sources are not held in the registry, but are held in a special
directory. A connection string must provide a FileDSN connection
parameter to use a File data source.

Data source registry
entries

Each user data source is identified to the system by registry entries.

You must enter a set of registry values in a particular registry key. For User
data sources the key is as follows:

HKEY_CURRENT_USER\
SOFTWARE\

ODBC\
ODBC.INI \

userdatasourcename

For System data sources the key is as follows:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBC.INI \

systemdatasourcename

The key contains a set of registry values, each of which corresponds to a
connection parameter. For example, the ASA 9.0 Sample key corresponding
to the ASA 9.0 Sample data source contains the following settings:

Value name Value type Value data

Autostop String Yes

DatabaseFile String Path\asademo.db

Description String Adaptive Server Anywhere Sample Database

Driver String Path\win32\dbodbc9.dll

PWD String sql

Start String Path\win32\dbeng9.exe -c 8m

UID String dba

In these entries,path is the Adaptive Server Anywhere installation directory.

In addition, you must add the data source to the list of data sources in the
registry. For User data sources, you use the following key:

482

Chapter 16. Deploying Databases and Applications

HKEY_CURRENT_USER\
SOFTWARE\

ODBC\
ODBC.INI \

ODBC Data Sources

For System data sources, use the following key:

HKEY_LOCAL_MACHINE\
SOFTWARE\

ODBC\
ODBC.INI \

ODBC Data Sources.

The value associates each data source with an ODBC driver. The value name
is the data source name, and the value data is the ODBC driver name. For
example, the User data source installed by Adaptive Server Anywhere is
named ASA 9.0 Sample, and has the following value:

Value name Value type Value data

ASA 9.0 Sample String Adaptive Server Anywhere 9.0

Caution: ODBC settings are easily viewed
User data source configurations can contain sensitive database settings
such as a user’s ID and password. These settings are stored in the registry
in plain text, and can be view using the Windows registry editors regedit.-
exe or regedt32.exe, which are provided by Microsoft with the operating
system. You can choose to encrypt passwords, or require users to enter
them on connecting.

Required and optional
connection parameters

You can identify the data source name in an ODBC configuration string in
this manner,

DSN=userdatasourcename

When a DSN parameter is provided in the connection string, the Current
User data source definitions in the Registry are searched, followed by
System data sources. File data sources are searched only when FileDSN is
provided in the ODBC connection string.

The following table illustrates the implications to the user and developer
when a data source exists and is included in the application’s connection
string as a DSN or FileDSN parameter.

483

When the data

source. . .

The connection string

must also identify. . .

The user must sup-

ply. . .

Contains the ODBC
driver name and loca-
tion; the name of the
database file/server;
startup parameters; and
the user ID and pass-
word.

No additional informa-
tion

No additional informa-
tion.

Contains only the name
and location of the
ODBC driver.

The name of the database
file/ server; and, option-
ally, the user ID and the
password.

User ID and password
if not provided in the
DSN or ODBC con-
nection string.

Does not exist The name of the ODBC
driver to be used, in the
following format:

Driver={ODBCdrivername}

Also, the name of the
database, the database file
or the database server;
and, optionally, other
connection parameters
such as user ID and pass-
word.

User ID and password
if not provided in the
ODBC connection
string.

☞ For more information on ODBC connections and configurations, see the
following:

♦ “Connecting to a Database”[ASA Database Administration Guide,page 37].

♦ The Open Database Connectivity (ODBC) SDK, available from
Microsoft.

Deploying embedded SQL clients

The simplest way to deploy embedded SQL clients is to use the InstallShield
objects or templates. For information, see“Using InstallShield objects and
templates for deployment” on page 474.

Deploying embedded SQL clients involves the following:

♦ Installed files Each client machine must have the files required for an
Adaptive Server Anywhere embedded SQL client application.

484

Chapter 16. Deploying Databases and Applications

♦ Connection information The client application must have access to the
information needed to connect to the server. This information may be
included in an ODBC data source.

Installing files for embedded SQL clients

The following table shows which files are needed for embedded SQL clients.

Description Windows UNIX

Interface library dblib9.dll libdblib9.so,
libdbtasks9.so

Language resource li-
brary

dblgen9.dll dblgen9.res

Connect dialog dbcon9.dll N/A

Notes ♦ The network ports DLL is not required if the client is working only with
the personal database server.

♦ If the client application uses an ODBC data source to hold the connection
parameters, your end user must have a working ODBC installation.
Instructions for deploying ODBC are included in the Microsoft ODBC
SDK.

☞ For more information on deploying ODBC information, see
“Deploying ODBC clients” on page 479.

♦ The Connect dialog is needed if your end users will be creating their own
data sources, if they will need to enter user IDs and passwords when
connecting to the database, or if they need to display the Connect dialog
for any other purpose.

♦ For multi-threaded applications on UNIX, uselibdblib9_r.soand
libdbtasks9_r.so.

Connection information

You can deploy embedded SQL connection information in one of the
following ways:

♦ Manual Provide your end-users with instructions for creating an
appropriate data source on their machine.

♦ File Distribute a file that contains connection information in a format
that your application can read.

♦ ODBC data source You can use an ODBC data source to hold
connection information. In this case, you need a subset of the ODBC

485

redistributable files, available from Microsoft. For details see“Deploying
ODBC clients” on page 479.

♦ Hard coded You can hard code connection information into your
application. This is an inflexible method, which may be limiting, for
example when databases are upgraded.

Deploying JDBC clients

In addition to a Java Runtime Environment, each JDBC client requires
jConnect or the iAnywhere JDBC driver.

☞ For jConnect documentation, seehttp://sybooks.sybase.com/jc.html.

To deploy the iAnywhere JDBC driver, you must deploy the following files:

♦ jodbc.jar This must be in the application’s classpath.

♦ dbjodbc9.dll This must be in the system path. On UNIX or Linux
environments, the file is a shared library (dbjodbc9.so).

♦ The ODBC driver files. For more information, see“ODBC driver
required files” on page 480.

Your Java application needs a URL in order to connect to the database. This
URL specifies the driver, the machine to use, and the port on which the
database server is listening.

☞ For more information on URLs, see“Supplying a URL for the server”
on page 112.

Deploying Open Client applications

In order to deploy Open Client applications, each client machine needs the
Sybase Open Client product. You must purchase the Open Client software
separately from Sybase. It contains its own installation instructions.

☞ Connection information for Open Client clients is held in the interfaces
file. For information on the interfaces file, see the Open Client
documentation and “Configuring Open Servers”[ASA Database Administration
Guide,page 114].

486

Chapter 16. Deploying Databases and Applications

Deploying administration tools
Subject to your license agreement, you can deploy a set of administration
tools including Interactive SQL, Sybase Central, and the dbconsole
monitoring utility.

The simplest way to deploy the administration tools is to use the supplied
InstallShield merge modules or objects. For more information, see“Using
InstallShield objects and templates for deployment” on page 474.

Deploying
Interactive SQL

If your customer application is running on machines with limited resources,
you may want to deploy the C version of Interactive SQL, (dbisqlc.exe)
instead of the standard version (dbisql.exeand its associated Java classes).

Thedbisqlcexecutable requires the standard embedded SQL client-side
libraries.

☞ For information on system requirements for administration tools, see
“SQL Anywhere Studio Supported Platforms”[Introducing SQL Anywhere
Studio,page 121].

487

Deploying database servers
You can deploy a database server by making the SQL Anywhere Studio
Setup program available to your end-users. By selecting the proper option,
each end-user is guaranteed of getting the files they need.

The simplest way to deploy a personal database server or a network database
server is to use the supplied InstallShield objects. For more information, see
“Using InstallShield objects and templates for deployment” on page 474.

In order to run a database server, you need to install a set of files. The files
are listed in the following table. All redistribution of these files is governed
by the terms of your license agreement. You must confirm whether you have
the right to redistribute the database server files before doing so.

Windows UNIX NetWare

dbeng9.exe dbeng9 N/A

dbsrv9.exe dbsrv9 dbsrv9.nlm

dbserv9.dll libdbserv9.so,
libdbtasks9_r.so

N/A

dblgen9.dll dblgen9.res dblgen9.res

dbjava9.dll(1) libdbjava9.so(1) dbjava9.nlm(1)

dbctrs9.dll N/A N/A

dbextf.dll (2) libdbextf.so(2) dbextf.nlm(2)

asajdbc.zip(1,3) asajdbc.zip(1,3) asajdbc.zip(1,3)

asajrt12.zip(1,3) asajrt12.zip(1,3) asajrt12.zip(1,3)

classes.zip(1,3) classes.zip(1,3) classes.zip(1,3)

dbmem.vxd(4) N/A N/A

dbunic9.dll libunic.so N/A

asa.cvf asa.cvf asa.cvf

charsets\directory charsets/ directory N/A

1. Required only if using Java in the database. For databases initialized
using JDK 1.1, distribute asajdbc.zip. For databases initialized using JDK
1.2 or JDK 1.3, distribute asajrt13.zip.

2. Required only if using system extended stored procedures and functions

488

Chapter 16. Deploying Databases and Applications

(xp_).

3. Install such that the CLASSPATH environment variable can locate classes
in this file.

4. Required on Windows 95/98/Me if using dynamic cache sizing.

Notes ♦ Depending on your situation, you should choose whether to deploy the
personal database server (dbeng9) or the network database server
(dbsrv9).

♦ The Java DLL (dbjava9.dll) is required only if the database server is to
use the Java in the Database functionality.

♦ The table does not include files needed to run utilities such asdbbackup.

☞ For information about deploying utilities, see“Deploying
administration tools” on page 487.

♦ The zip files are required only for applications that use Java in the
database, and must be installed into a location in the user’s CLASSPATH
environment variable.

Deploying databases

You deploy a database file by installing the database file onto your end user’s
disk.

As long as the database server shuts down cleanly, you do not need to deploy
a transaction log file with your database file. When your end-user starts
running the database, a new transaction log is created.

For SQL Remote applications, the database should be created in a properly
synchronized state, in which case no transaction log is needed. You can use
the Extraction utility for this purpose.

Deploying databases on read-only media

You can distribute databases on read-only media, such as a CD-ROM, as
long as you run them in read-only mode or use a write file.

☞ For more information on running databases in read-only mode, see “-r
server option”[ASA Database Administration Guide,page 157].

To enable changes to be made to Adaptive Server Anywhere databases
distributed on read-only media such as a CD-ROM, you can use awrite file .
The write file records changes made to a read-only database file, and is
located on a read/write storage media such as a hard disk.

489

In this case, the database file is placed on the CD-ROM, while the write file
is placed on disk. The connection is made to the write file, which maintains
a transaction log file on disk.

☞ For more information on write files, see “Working with write files”[ASA
Database Administration Guide,page 260].

490

Chapter 16. Deploying Databases and Applications

Deploying embedded database applications
This section provides information on deploying embedded database
applications, where the application and the database both reside on the same
machine.

An embedded database application includes the following:

♦ Client application This includes the Adaptive Server Anywhere client
requirements.

☞ For information on deploying client applications, see“Deploying
client applications” on page 478.

♦ Database server The Adaptive Server Anywhere personal database
server.

☞ For information on deploying database servers, see“Deploying
database servers” on page 488.

♦ SQL Remote If your application uses SQL Remote replication, you
must deploy the SQL Remote Message Agent.

♦ The database You must deploy a database file holding the data the
application uses.

Deploying personal servers

When you deploy an application that uses the personal server, you need to
deploy both the client application components and the database server
components.

The language resource library (dblgen9.dll) is shared between the client and
the server. You need only one copy of this file.

It is recommended that you follow the Adaptive Server Anywhere
installation behavior, and install the client and server files in the same
directory.

Remember to provide the Java zip files and the Java DLL if your application
takes advantage of Java in the Database.

Deploying database utilities

If you need to deploy database utilities (such asdbbackup.exe) along with
your application, then you need the utility executable together with the
following additional files:

491

Description Windows UNIX

Database tools library dbtool9.dll libdbtools9.so,
libdbtasks9.so

Language resource library dblgen9.dll dblgen9.res

Connect dialog (dbisqlc only) dbcon9.dll

Notes ♦ The database tools are embedded SQL applications, and you must supply
the files required for such applications, as listed in“Deploying embedded
SQL clients” on page 484.

♦ For multi-threaded applications on UNIX, uselibdbtools9_r.soand
libdbtasks9_r.so.

Deploying SQL Remote

If you are deploying the SQL Remote Message Agent, you need to include
the following files:

Description Windows UNIX

Message Agent dbremote.exe dbremote

Database tools library dbtool9.dll libdbtools9.so,
libdbtasks9.so

Language resource library dblgen9.dll dblgen9.res

VIM message link library1 dbvim9.dll

SMTP message link library1 dbsmtp9.dll

FILE message link library1 dbfile9.dll libdbfile9.so

FTP message link library1 dbftp9.dll

MAPI message link library1 dbmapi9.dll

Interface Library dblib9.dll

1 Only deploy the library for the message link you are using.

It is recommended that you follow the Adaptive Server Anywhere
installation behavior, and install the SQL Remote files in the same directory
as the Adaptive Server Anywhere files.

For multi-threaded applications on UNIX, uselibdbtools9_r.soand
libdbtasks9_r.so.

492

CHAPTER 17

SQL Preprocessor Error Messages

About this chapter This chapter presents a list of all SQL preprocessor errors and warnings.

Contents Topic: page

SQL Preprocessor error messages indexed by error message value494

SQLPP errors 498

493

SQL Preprocessor error messages indexed by
error message value

Message value Message

2601 “subscript value %1 too large” on page 509

2602 “combined pointer and arrays not supported for host
types” on page 502

2603 “only one dimensional arrays supported for char
type” on page 508

2604 “VARCHAR type must have a length” on page 501

2605 “arrays of VARCHAR not supported” on page 501

2606 “VARCHAR host variables cannot be pointers” on
page 501

2607 “initializer not allowed on VARCHAR host vari-
able” on page 505

2608 “FIXCHAR type must have a length” on page 499

2609 “arrays of FIXCHAR not supported” on page 501

2610 “arrays of this type not supported” on page 502

2611 “precision must be specified for decimal type” on
page 509

2612 “arrays of decimal not allowed” on page 502

2613 “Unknown hostvar type” on page 501

2614 “invalid integer” on page 506

2615 “‘%1’ host variable must be a C string type” on
page 498

2617 “‘%1’ symbol already defined” on page 498

2618 “invalid type for sql statement variable” on page 507

2619 “Cannot find include file ‘%1”’ on page 498

2620 “host variable ‘%1’ is unknown” on page 504

2621 “indicator variable ‘%1’ is unknown” on page 505

494

Chapter 17. SQL Preprocessor Error Messages

Message value Message

2622 “invalid type for indicator variable ‘%1”’ on
page 507

2623 “invalid host variable type on ‘%1”’ on page 506

2625 “host variable ‘%1’ has two different definitions” on
page 504

2626 “statement ‘%1’ not previously prepared” on
page 509

2627 “cursor ‘%1’ not previously declared” on page 502

2628 “unknown statement ‘%1”’ on page 510

2629 “host variables not allowed for this cursor” on
page 504

2630 “host variables specified twice - on declare and
open” on page 504

2631 “must specify a host list or using clause on %1” on
page 507

2633 “no INTO clause on SELECT statement” on
page 508

2634 “incorrect SQL language usage – that is a ‘%1’
extension” on page 505

2635 “incorrect Embedded SQL language usage – that is
a ‘%1’ extension” on page 505

2636 “incorrect Embedded SQL syntax” on page 505

2637 “missing ending quote of string” on page 507

2639 “token too long” on page 510

2640 “‘%1’ host variable must be an integer type” on
page 498

2641 “must specify an SQLDA on a DESCRIBE” on
page 508

2642 “Two SQLDAs specified of the same type (INTO or
USING)” on page 500

2646 “cannot describe static cursors” on page 502

2647 “Macros cannot be redefined” on page 500

495

Message value Message

2648 “Invalid array dimension” on page 500

2649 “invalid descriptor index” on page 506

2650 “invalid field for SET DESCRIPTOR” on page 506

2651 “field used more than once in SET DESCRIPTOR
statement” on page 503

2652 “data value must be a host variable” on page 503

2660 “Into clause not allowed on declare cursor - ignored”
on page 500

2661 “unrecognized SQL syntax” on page 511

2662 “unknown sql function ‘%1”’ on page 510

2663 “wrong number of parms to sql function ‘%1”’ on
page 511

2664 “static statement names will not work properly if
used by 2 threads” on page 509

2665 “host variable ‘%1’ has been redefined” on page 504

2666 “vendor extension” on page 511

2667 “intermediate SQL feature” on page 506

2668 “full SQL feature” on page 503

2669 “transact SQL extension” on page 510

2680 “no declare section and no INCLUDE SQLCA
statement” on page 508

2681 “unable to open temporary file” on page 510

2682 “error reading temporary file” on page 503

2683 “error writing output file” on page 503

2690 “Inconsistent number of host variables for this
cursor” on page 500

2691 “Inconsistent host variable types for this cursor” on
page 499

2692 “Inconsistent indicator variables for this cursor” on
page 499

496

Chapter 17. SQL Preprocessor Error Messages

Message value Message

2693 “Feature not available with UltraLite” on page 499

2694 “no OPEN for cursor ‘%1”’ on page 508

2695 “no FETCH or PUT for cursor ‘%1”’ on page 508

2696 “Host variable ‘%1’ is in use more than once with
different indicators” on page 499

2697 “long binary/long varchar size limit is 65535 for
UltraLite” on page 507

497

SQLPP errors
This section lists messages generated by the SQL preprocessor. The
messages may be errors or warnings, or either depending on which
command-line options are set.

☞ For more information about the SQL Preprocessor and its command-line
options, see“The SQL preprocessor” on page 203.

‘%1’ host variable must be a C string type

Message value Message Type

2615 Error

Probable cause A C string was required in an embedded SQL statement (for a cursor name,
option name etc.) and the value supplied was not a C string.

‘%1’ host variable must be an integer type

Message value Message Type

2640 Error

Probable cause You have used a host variable that is not of integer type in a statement where
only an integer type host variable is allowed.

‘%1’ symbol already defined

Message value Message Type

2617 Error

Probable cause You defined a host variable twice.

Cannot find include file ‘%1’

Message value Message Type

2619 Error

Probable cause The specified include file was not found. Note that the preprocessor will use
the INCLUDE environment variable to search for include files.

498

Chapter 17. SQL Preprocessor Error Messages

FIXCHAR type must have a length

Message value Message Type

2608 Error

Probable cause You have used the DECL_FIXCHAR macro to declare a host variable of
type FIXCHAR but have not specified a length.

Feature not available with UltraLite

Message value Message Type

2693 Flag (warning or error)

Probable cause You have used a feature that is not supported by UltraLite.

Host variable ‘%1’ is in use more than once with different indicators

Message value Message Type

2696 Error

Probable cause You have used the same host variable multiple times with different indicator
variables in the same statement. This is not supported.

Inconsistent host variable types for this cursor

Message value Message Type

2691 Error

Probable cause You have used a host variable with a different type or length than the type or
length previously used with the cursor. Host variable types must be
consistent for the cursor.

Inconsistent indicator variables for this cursor

Message value Message Type

2692 Error

Probable cause You have used an indicator variable when one was not previously used with
the cursor, or you have not used an indicator variable when one was
previously used with the cursor. Indicator variable usage must be consistent
for the cursor.

499

Inconsistent number of host variables for this cursor

Message value Message Type

2690 Error

Probable cause You have used a different number of host variables than the number
previously used with the cursor. The number of host variables must be
consistent for the cursor.

Into clause not allowed on declare cursor - ignored

Message value Message Type

2660 Warning

Probable cause You have used an INTO clause on a DECLARE CURSOR statement. The
INTO clause will be ignored.

Invalid array dimension

Message value Message Type

2648 Error

Probable cause The array dimension of the variable is negative.

Macros cannot be redefined

Message value Message Type

2647 Error

Probable cause A preprocessor macro has been defined twice, possibly in a header file.

Two SQLDAs specified of the same type (INTO or USING)

Message value Message Type

2642 Error

Probable cause You have specified two INTO DESCRIPTOR or two USING DESCRIPTOR
clauses for this statement.

500

Chapter 17. SQL Preprocessor Error Messages

Unknown hostvar type

Message value Message Type

2613 Error

Probable cause You declared a host variable of a type not understood by the SQL
preprocessor.

VARCHAR host variables cannot be pointers

Message value Message Type

2606 Error

Probable cause You have attempted to declare a host variable as a pointer to a VARCHAR or
BINARY. This is not a legal host variable type.

VARCHAR type must have a length

Message value Message Type

2604 Error

Probable cause You have attempted to declare a VARCHAR or BINARY host variable using
the DECL_VARCHAR or DECL_BINARY macro but have not specified a
size for the array.

arrays of FIXCHAR not supported

Message value Message Type

2609 Error

Probable cause You have attempted to declare a host variable as an array of FIXCHAR
arrays. This is not a legal host variable type.

arrays of VARCHAR not supported

Message value Message Type

2605 Error

Probable cause You have attempted to declare a host variable as an array of VARCHAR or
BINARY. This is not a legal host variable type.

501

arrays of decimal not allowed

Message value Message Type

2612 Error

Probable cause You have attempted to declare a host variable as an array of DECIMAL. A
decimal array is not a legal host variable type.

arrays of this type not supported

Message value Message Type

2610 Error

Probable cause You have attempted to declare a host variable array of a type that is not
supported.

cannot describe static cursors

Message value Message Type

2646 Error

Probable cause You have described a static cursor. When describing a cursor, the cursor
name must be specified in a host variable.

combined pointer and arrays not supported for host types

Message value Message Type

2602 Error

Probable cause You have used an array of pointers as a host variable. This is not legal.

cursor ‘%1’ not previously declared

Message value Message Type

2627 Error

Probable cause An embedded SQL cursor name has been used (in a FETCH, OPEN,
CLOSE etc.) without first being declared.

502

Chapter 17. SQL Preprocessor Error Messages

data value must be a host variable

Message value Message Type

2652 Error

Probable cause The variable used in the SET DESCRIPTOR statement hasn’t been declared
as a host variable.

error reading temporary file

Message value Message Type

2682 Error

Probable cause An error occurred while reading from a temporary file.

error writing output file

Message value Message Type

2683 Error

Probable cause An error occurred while writing to the output file.

field used more than once in SET DESCRIPTOR statement

Message value Message Type

2651 Error

Probable cause The same keyword has been used more than once inside a single SET
DESCRIPTOR statement.

full SQL feature

Message value Message Type

2668 Flag (warning or error)

Probable cause You have used a full-SQL/92 feature and preprocessed with the -ee, -ei, -we
or -wi flagging switch.

503

host variable ‘%1’ has been redefined

Message value Message Type

2665 Warning

Probable cause You have redefined the same host variable with a different host type. As far
as the preprocessor is concerned, host variables are global; two host
variables with different types cannot have the same name.

host variable ‘%1’ has two different definitions

Message value Message Type

2625 Error

Probable cause The same host variable name was defined with two different types within the
same module. Note that host variable names are global to a C module.

host variable ‘%1’ is unknown

Message value Message Type

2620 Error

Probable cause You have used a host variable in a statement and that host variable has not
been declared in a declare section.

host variables not allowed for this cursor

Message value Message Type

2629 Error

Probable cause Host variables are not allowed on the declare statement for the specified
cursor. If the cursor name is provided through a host variable, then you
should use full dynamic SQL and prepare the statement. A prepared
statement may have host variables in it.

host variables specified twice - on declare and open

Message value Message Type

2630 Error

Probable cause You have specified host variables for a cursor on both the declare and the

504

Chapter 17. SQL Preprocessor Error Messages

open statements. In the static case, you should specify the host variables on
the declare statement. In the dynamic case, specify them on the open.

incorrect Embedded SQL language usage – that is a ‘%1’ extension

Message value Message Type

2635 Error

incorrect Embedded SQL syntax

Message value Message Type

2636 Error

Probable cause An embedded SQL specific statement (OPEN, DECLARE, FETCH etc.) has
a syntax error.

incorrect SQL language usage – that is a ‘%1’ extension

Message value Message Type

2634 Error

indicator variable ‘%1’ is unknown

Message value Message Type

2621 Error

Probable cause You have used a indicator variable in a statement and that indicator variable
has not been declared in a declare section.

initializer not allowed on VARCHAR host variable

Message value Message Type

2607 Error

Probable cause You can not specify a C variable initializer for a host variable of type
VARCHAR or BINARY. You must initialize this variable in regular C
executable code.

505

intermediate SQL feature

Message value Message Type

2667 Flag (warning or error)

Probable cause You have used an intermediate-SQL/92 feature and preprocessed with the
-ee or -we flagging switch.

invalid descriptor index

Message value Message Type

2649 Error

Probable cause You have allocated less than one variable with the ALLOCATE
DESCRIPTOR statement.

invalid field for SET DESCRIPTOR

Message value Message Type

2650 Error

Probable cause An invalid or unknown keyword is present in a SET DESCRIPTOR
statement. The keywords can only be TYPE, PRECISION, SCALE,
LENGTH, INDICATOR, or DATA.

invalid host variable type on ‘%1’

Message value Message Type

2623 Error

Probable cause You have used a host variable that is not a string type in a place where the
preprocessor was expecting a host variable of a string type.

invalid integer

Message value Message Type

2614 Error

Probable cause An integer was required in an embedded SQL statement (for a fetch offset,
or a host variable array index, etc.) and the preprocessor was unable to
convert what was supplied into an integer.

506

Chapter 17. SQL Preprocessor Error Messages

invalid type for indicator variable ‘%1’

Message value Message Type

2622 Error

Probable cause Indicator variables must be of type short int. You have used a variable of a
different type as an indicator variable.

invalid type for sql statement variable

Message value Message Type

2618 Error

Probable cause A host variable used as a statement identifier should be of type
a_sql_statement_number. You attempted to use a host variable of some other
type as a statement identifier.

long binary/long varchar size limit is 65535 for UltraLite

Message value Message Type

2697 Error

Probable cause When using DECL_LONGBINARY or DECL_LONGVARCHAR with
UltraLite, the maximum size for the array is 64K.

missing ending quote of string

Message value Message Type

2637 Error

Probable cause You have specified a string constant in an embedded SQL statement, but
there is no ending quote before the end of line or end of file.

must specify a host list or using clause on %1

Message value Message Type

2631 Error

Probable cause The specified statement requires host variables to be specified either in a
host variable list or from an SQLDA.

507

must specify an SQLDA on a DESCRIBE

Message value Message Type

2641 Error

no FETCH or PUT for cursor ‘%1’

Message value Message Type

2695 Error

Probable cause A cursor is declared and opened, but is never used.

no INTO clause on SELECT statement

Message value Message Type

2633 Error

Probable cause You specified an embedded static SELECT statement but you did not specify
an INTO clause for the results.

no OPEN for cursor ‘%1’

Message value Message Type

2694 Error

Probable cause A cursor is declared, and possibly used, but is never opened.

no declare section and no INCLUDE SQLCA statement

Message value Message Type

2680 Error

Probable cause The EXEC SQL INCLUDE SQLCA statement is missing from the source
file.

only one dimensional arrays supported for char type

Message value Message Type

2603 Error

508

Chapter 17. SQL Preprocessor Error Messages

Probable cause You have attempted to declare a host variable as an array of character arrays.
This is not a legal host variable type.

precision must be specified for decimal type

Message value Message Type

2611 Error

Probable cause You must specify the precision when declaring a packed decimal host
variable using the DECL_DECIMAL macro. The scale is optional.

statement ‘%1’ not previously prepared

Message value Message Type

2626 Error

Probable cause An embedded SQL statement name has been used (EXECUTE) without first
being prepared.

static statement names will not work properly if used by 2 threads

Message value Message Type

2664 Warning

Probable cause You have used a static statement name and preprocessed with the -r
reentrancy switch. Static statement names cause static variables to be
generated that are filled in by the database. If two threads use the same
statement, contention arises over this variable. Use a local host variable as
the statement identifier instead of a static name.

subscript value %1 too large

Message value Message Type

2601 Error

Probable cause You have attempted to index a host variable that is an array with a value too
large for the array.

509

token too long

Message value Message Type

2639 Error

Probable cause The SQL preprocessor has a maximum token length of 2K. Any token
longer than 2K will produce this error. For constant strings in embedded
SQL commands (the main place this error shows up) use string
concatenation to make a longer string.

transact SQL extension

Message value Message Type

2669 Flag (warning or error)

Probable cause You have used a Sybase Transact SQL feature that is not defined by SQL/92
and preprocessed with the -ee, -ei, -ef, -we, -wi or -wf flagging switch.

unable to open temporary file

Message value Message Type

2681 Error

Probable cause An error occurred while attempting to open a temporary file.

unknown sql function ‘%1’

Message value Message Type

2662 Warning

Probable cause You have used a SQL function that is unknown to the preprocessor and will
probably cause an error when the statement is sent to the database engine.

unknown statement ‘%1’

Message value Message Type

2628 Error

Probable cause You attempted to drop an embedded SQL statement that doesn’t exist.

510

Chapter 17. SQL Preprocessor Error Messages

unrecognized SQL syntax

Message value Message Type

2661 Warning

Probable cause You have used a SQL statement that will probably cause a syntax error when
the statement is sent to the database engine.

vendor extension

Message value Message Type

2666 Flag (warning or error)

Probable cause You have used an Adaptive Server Anywhere feature that is not defined by
SQL/92 and preprocessed with the -ee, -ei, -ef, -we, -wi or -wf flagging
switch.

wrong number of parms to sql function ‘%1’

Message value Message Type

2663 Warning

Probable cause You have used a SQL function with the wrong number of parameters. This
will likely cause an error when the statement is sent to the database engine.

511

512

Index

Symbols
-gn option

threads 94
.NET provider

about 329
accessing data 349
adding a reference to the DLL in a C#

project 344
adding a reference to the DLL in a

Visual Basic .NET project 344
API reference 377
connecting to a database 346
connection pooling 347
deleting data 349
deploying 375
error handling 374
executing stored procedures 370
features 330
files required for deployment 375
inserting data 349
obtaining time values 368
POOLING option 347
referencing the provider classes in

your source code 344
registering 376
running the sample projects 331
supported languages 3
system requirements 375
transaction processing 372
updating data 349
using the code samples 333
using the Simple code sample 334
using the Table Viewer code sample

338
.NET provider API

AcceptChangesDuringFill property
396

Add method 433
AsaCommand class 379
AsaCommand constructor 379
AsaCommandBuilder class 385
AsaCommandBuilder constructor 385

AsaConnection class 389
AsaConnection constructor 389
AsaDataAdapter class 395
AsaDataAdapter constructor 395
AsaDataReader class 404
AsaDbType enum 418
AsaDbType property 428
AsaError class 419
AsaErrorCollection class 421
AsaException class 423
AsaInfoMessageEventArgs class 425
AsaInfoMessageEventHandler

delegate 426
AsaParameter class 427
AsaParameter constructor 427
AsaParameterCollection class 433
AsaPermission class 437
AsaPermission constructor 437
AsaPermissionAttribute class 438
AsaPermissionAttribute constructor

438
AsaRowUpdatedEventArgs class 439
AsaRowUpdatedEventArgs

constructor 439
AsaRowUpdatedEventHandler

delegate 443
AsaRowUpdatingEventArgs class 441
AsaRowUpdatingEventArgs method

441
AsaRowUpdatingEventHandler

delegate 444
AsaTransaction class 445
BeginTransaction method 389
Cancel method 379
ChangeDatabase method 390
Clear method 434
Close method 390, 404
Command property 439, 441
CommandText property 380
CommandTimeout property 380
CommandType property 380
Commit method 445

513

Index

Connection property 381, 445
ConnectionString property 390
ConnectionTimeout property 392
Contains method 434
ContinueUpdateOnError property 396
CopyTo method 421, 434, 435
Count property 421, 435
CreateCommand method 392
CreateParameter method 381
CreatePermission method 438
DataAdapter property 385
Database property 392
DataSource property 392
DbType property 428
DeleteCommand property 396
Depth property 404
DeriveParameters method 385
DesignTimeVisible property 381
Direction property 428
Dispose method 405
Errors property 423, 425, 439, 441
ExecuteNonQuery method 382
ExecuteReader method 382
ExecuteScalar method 382
FieldCount property 405
Fill method 397
FillError event 398
FillSchema method 398
GetBoolean method 405
GetByte method 405
GetBytes method 406
GetChar method 406
GetChars method 407
GetDataTypeName method 408
GetDateTime method 408
GetDecimal method 408
GetDeleteCommand method 386
GetDouble method 409
GetFieldType method 409
GetFillParameters method 399
GetFloat method 409
GetGuid method 410
GetInsertCommand method 386
GetInt16 method 410
GetInt32 method 410
GetInt64 method 411
GetName method 411

GetObjectData method 423
GetOrdinal method 411
GetSchemaTable method 412
GetString method 413
GetTimeSpan method 413
GetUInt16 method 414
GetUInt32 method 414
GetUInt64 method 414
GetUpdateCommand method 387
GetValue method 414
GetValues method 415
InfoMessage event 393
Insert method 435
InsertCommand property 399
IsClosed property 415
IsDBNull method 416
IsNullable property 429
IsolationLevel property 445
Item property 416, 421, 435
Message property 419, 423, 425
MissingMappingAction property 400
MissingSchemaAction property 400
NativeError property 419
NextResult method 416
Offset property 429
Open method 393
ParameterName property 429
Parameters property 383
Precision property 429
Prepare method 383
QuotePrefix property 387
QuoteSuffix property 388
Read method 417
RecordsAffected property 417, 439
RefreshSchema method 388
Remove method 436
RemoveAt method 436
ResetCommandTimeout method 384
Rollback method 446
Row property 440, 441
RowUpdated event 400
RowUpdating event 401
Save method 446
Scale property 430
SelectCommand property 401
ServerVersion property 393
Size property 430

514

Index

Source property 419, 424, 425
SourceColumn property 431
SourceVersion property 431
SqlState property 419
State property 393
StateChange event 394
StatementType property 440, 442
Status property 440, 442
TableMapping property 440, 442
TableMappings property 402
ToString method 420, 425, 431
Transaction property 384
Update method 402
UpdateCommand property 403
UpdatedRowSource property 384
Value property 431

>> operator
Java in the database methods 69

A
a_backup_db structure 278
a_change_log structure 280
a_compress_db structure 282
a_compress_stats structure 283
a_create_db structure 284
a_crypt_db structure 286
a_db_collation structure 286
a_db_info structure 288
a_dblic_info structure 291
a_dbtools_info structure 292
a_name structure 294
a_stats_line structure 294
a_sync_db structure 295
a_syncpub structure 297
a_sysinfo structure 298
a_table_info structure 298
a_translate_log structure 299
a_truncate_log structure 301
a_validate_db structure 305
a_validate_type enumeration 310
a_writefile structure 306
AcceptChangesDuringFill property

.NET provider API 396
access modifiers

Java 65
accessing and manipulating data

using the .NET provider 349

ActiveX Data Objects
about 315

Add method
.NET provider API 433

adding
JAR files 91
Java in the database classes 90

ADO
about 315
Command object 317
commands 317
Connection object 315
connections 315
cursor types 26
cursors 27, 319
introduction to programming 4
queries 318, 319
Recordset object 318, 319
updates 319
using SQL statements in applications

12
ADO.NET

Adaptive Server Anywhere .NET data
provider API 377

autocommit mode 47
cursor support 28
introduction to programming 3

alloc_sqlda function
about 207

alloc_sqlda_noind function
about 207

ALTER DATABASE statement
Java in the database 85, 87

an_erase_db structure 292
an_expand_db structure 293
an_unload_db structure 302
an_upgrade_db structure 303
API reference

.NET data provider API 377
applications

deploying 467, 478
deploying embedded SQL 484
SQL 12

ARRAY clause
FETCH statement 170

array fetches
about 170

515

Index

AsaCommand class
.NET provider API 379
about 349
deleting data 352
inserting data 352
retrieving data 350
updating data 352
using 350
using in a Visual Studio .NET project

336
AsaCommand constructors

.NET provider API 379
AsaCommandBuilder class

.NET provider API 385
AsaCommandBuilder constructors

.NET provider API 385
AsaConnection class

.NET provider API 389
connecting to a database 346
using in a Visual Studio .NET project

336, 340
AsaConnection constructors

.NET provider API 389
AsaConnection function

using in a Visual Studio .NET project
340

AsaDataAdapter
obtaining primary key values 364

AsaDataAdapter class
.NET provider API 395
about 349
deleting data 357
inserting data 357
obtaining result set schema

information 363
retrieving data 356
updating data 357
using 356
using in a Visual Studio .NET project

341
AsaDataAdapter constructors

.NET provider API 395
AsaDataReader class

.NET provider API 404
using 350
using in a Visual Studio .NET project

336

AsaDbType enum
.NET provider API 418
data types 418

AsaDbType property
.NET provider API 428

AsaError class
.NET provider API 419

AsaErrorCollection class
.NET provider API 421

AsaException class
.NET provider API 423

AsaInfoMessageEventArgs class
.NET provider API 425

AsaInfoMessageEventHandler delegate
.NET provider API 426

asajdbc.zip
deploying database servers 488
runtime classes 84

ASAJDBCDRV JAR file
about 85

ASAJRT JAR file
about 85

asajrt12.zip
runtime classes 84

AsaParameter class
.NET provider API 427

AsaParameter constructors
.NET provider API 427

AsaParameterCollection class
.NET provider API 433

AsaPermission class
.NET provider API 437

AsaPermission constructors
.NET provider API 437

AsaPermissionAttribute class
.NET provider API 438

AsaPermissionAttribute constructors
.NET provider API 438

ASAProv
OLE DB provider 314

AsaRowUpdatedEventArgs class
.NET provider API 439

AsaRowUpdatedEventArgs constructors
.NET provider API 439

AsaRowUpdatedEventHandler delegate
.NET provider API 443

AsaRowUpdatingEventArgs class

516

Index

.NET provider API 441
AsaRowUpdatingEventArgs method

.NET provider API 441
AsaRowUpdatingEventHandler delegate

.NET provider API 444
ASASystem JAR file

about 85
AsaTransaction class

.NET provider API 445
using 372

asensitive cursors
about 38
delete example 31
introduction 31
update example 33

autocommit
controlling 47
implementation 48
JDBC 122
ODBC 238
transactions 47

autoincrement
finding most recent row inserted 24

B
background processing

callback functions 201
backups

DBBackup DBTools function 267
DBTools example 264
embedded SQL functions 201

BeginTransaction method
.NET provider API 389

BINARY data types
embedded SQL 154

bind parameters
prepared statements 15

bind variables
about 176

bit fields
using 263

blank padding
strings in embedded SQL 149

Blank padding enumeration 309
BLOBs

embedded SQL 190
retrieving in embedded SQL 191

sending in embedded SQL 193
block cursors 23

ODBC 29
bookmarks 29

ODBC cursors 250
Borland C++

embedded SQL support 138
byte code

Java classes 54

C
C programming language

data types 154
C#

support in .NET provider 3
cache

Java in the database 99
CALL statement

embedded SQL 196
callback functions

embedded SQL 201
registering 214

callbacks
DB_CALLBACK_CONN_DROPPED

215
DB_CALLBACK_DEBUG_-

MESSAGE
214

DB_CALLBACK_FINISH 215
DB_CALLBACK_MESSAGE 215
DB_CALLBACK_START 215
DB_CALLBACK_WAIT 215

Cancel method
.NET provider API 379

canceling requests
embedded SQL 201

capabilities
supported 454

case sensitivity
Java in the database and SQL 70

catch block
Java 67

CD-ROM
deploying databases on 489

chained mode
controlling 47
implementation 48

517

Index

transactions 47
CHAINED option

JDBC 122
ChangeDatabase method

.NET provider API 390
character strings 205
character-set translation

iAnywhere JDBC driver 115
class fields

about 61
class methods

about 62
Class.forName method

loading jConnect 112
classes

about 59
compiling 59
constructors 61
creating 89
installing 89
instances 64
Java 64
partially supported 102
runtime 68
supported 56, 101
unsupported 102
updating 91
versions 91

classes.zip
deploying database servers 488
runtime classes 84

CLASSPATH environment variable
about 73
Java in the database 73
jConnect 110
setting 119

clauses
WITH HOLD 21

Clear method
.NET provider API 434

client-side autocommit
about 48

Close method
.NET provider API 390, 404

CLOSE statement
about 167

code samples

downloads 9
com.sybase package

runtime classes 84
Command ADO object

ADO 317
command line utilities

deploying 491
Command property

.NET provider API 439, 441
commands

ADO Command object 317
CommandText property

.NET provider API 380
CommandTimeout property

.NET provider API 380
CommandType property

.NET provider API 380
Commit method

.NET provider API 445
COMMIT statement

autocommit mode 47
cursors 49
JDBC 122

committing
transactions from ODBC 238

CommitTrans ADO method
ADO programming 320
updating data 320

compile and link process 137
compilers

supported 138
components

transaction attribute 463
Connection ADO object

ADO 315
ADO programming 320

connection handles
ODBC 236

connection pooling
.NET provider 347

Connection property
.NET provider API 381, 445

connection state
.NET provider 348

connections
ADO Connection object 315

518

Index

connecting to a database using the
.NET provider 346

functions 219
jConnect 113
jConnect URL 112
JDBC 108, 117
JDBC client applications 117
JDBC defaults 122
JDBC example 117, 120
JDBC in the server 120
ODBC attributes 241
ODBC functions 239
ODBC programming 240

ConnectionString property
.NET provider API 390

ConnectionTimeout property
.NET provider API 392

console [dbconsole] utility
deploying 487

constructors
about 61
AsaCommand 379
AsaCommandBuilder method 385
AsaConnection constructor 389
AsaDataAdapter method 395
AsaParameter 427
AsaPermission constructor 437
AsaPermissionAttribute constructor

438
AsaRowUpdatedEventArgs

constructor 439
Java 66

Contains method
.NET provider API 434

ContinueUpdateOnError property
.NET provider API 396

conventions
documentation x
file names 471

conversion
data types 159

CopyTo method
.NET provider API 421, 434

Count property
.NET provider API 421, 435

CREATE DATABASE statement
Java in the database 85, 86

CREATE PROCEDURE statement
embedded SQL 196

CreateCommand method
.NET provider API 392

CreateParameter method
.NET provider API 381

CreatePermission method
.NET provider API 438

CS_CSR_ABS 454
CS_CSR_FIRST 454
CS_CSR_LAST 454
CS_CSR_PREV 454
CS_CSR_REL 454
CS_DATA_BOUNDARY 454
CS_DATA_SENSITIVITY 454
CS_PROTO_DYNPROC 454
CS_REG_NOTIF 454
CS_REQ_BCP 454
ct_command function

Open Client 451, 453
ct_cursor function

Open Client 451
ct_dynamic function

Open Client 451
ct_results function

Open Client 453
ct_send function

Open Client 453
cursor positioning

troubleshooting 21
cursors 29

about 17
ADO 27
ADO.NET 28
asensitive 38
availability 26
canceling 25, 210
choosing ODBC cursor characteristics

247
delete 453
describing 45
dynamic 36
DYNAMIC SCROLL 21, 26, 38
embedded SQL 28, 167
example C code 143
fat 23
fetching multiple rows 23

519

Index

fetching rows 21, 22
insensitive 26, 35
inserting multiple rows 24
inserting rows 23
internals 30
introduction 17
isolation level 21
keyset-driven 39
membership 30
NO SCROLL 26, 35
ODBC 27, 247
ODBC bookmarks 250
ODBC deletes 249
ODBC result sets 248
ODBC updates 249
OLE DB 27
Open Client 451
order 30
performance 41, 42
platforms 26
positioning 21
prepared statements 20
read-only 26
requesting 27
result sets 17
savepoints 50
SCROLL 26, 39
scrollable 23
sensitive 36
sensitivity 30, 31
sensitivity examples 31, 33
static 35
step-by-step 19
stored procedures 197
transactions 49
unique 26
unspecified sensitivity 38
update 453
updating 319
updating and deleting rows 23
uses 17
using 21
value-sensitive 39
values 30
visible changes 30
work tables 41

D
data

accessing with the .NET provider 349
manipulating with the .NET provider

349
data type conversion

indicator variables 159
data types

AsaDbType enum 418
C data types 154
dynamic SQL 181
embedded SQL 149
host variables 154
mapping 449
Open Client 449
ranges 449
SQLDA 183

DataAdapter
about 349
deleting data 357
inserting data 357
obtaining primary key values 364
obtaining result set schema

information 363
retrieving data 356
updating data 357
using 356

DataAdapter property
.NET provider API 385

database options
set for jConnect 114

database properties
db_get_property function 212

Database property
.NET provider API 392

database servers
deploying 488
functions 219

database tools interface
a_backup_db structure 278
a_change_log structure 280
a_compress_db structure 282
a_compress_stats structure 283
a_create_db structure 284
a_crypt_db structure 286
a_db_collation structure 286
a_db_info structure 288

520

Index

a_dblic_info structure 291
a_dbtools_info structure 292
a_name structure 294
a_stats_line structure 294
a_sync_db structure 295
a_syncpub structure 297
a_sysinfo structure 298
a_table_info structure 298
a_translate_log structure 299
a_truncate_log structure 301
a_validate_db structure 305
a_validate_type enumeration 310
a_writefile structure 306
about 257
an_erase_db structure 292
an_expand_db structure 293
an_unload_db structure 302
an_upgrade_db structure 303
Blank padding enumeration 309
DBBackup function 267
DBChangeLogName function 267
DBChangeWriteFile function 268
DBCollate function 268
DBCompress function 268
DBCreate function 269
DBCreateWriteFile function 269
DBCrypt function 270
DBErase function 270
DBExpand function 270
DBInfo function 271
DBInfoDump function 271
DBInfoFree function 272
DBLicense function 272
DBStatusWriteFile function 272
DBToolsFini function 273
DBToolsInit function 274
DBToolsVersion function 275
dbtran_userlist_type enumeration 310
DBTranslateLog function 275
DBTruncateLog function 275
DBUnload function 276
dbunload type enumeration 310
DBUpgrade function 276
DBValidate function 276
dbxtract 276
verbosity enumeration 309

databases

deploying 489
Java-enabling 84, 85, 87
URL 113

DataSet
.NET provider 357

DataSource property
.NET provider API 392

db_backup function
about 201, 207

DB_BACKUP_CLOSE_FILE parameter
207

DB_BACKUP_END parameter 207
DB_BACKUP_OPEN_FILE parameter

207
DB_BACKUP_READ_PAGE parameter

207
DB_BACKUP_READ_RENAME_LOG

parameter 207
DB_BACKUP_START parameter 207
DB_CALLBACK_CONN_DROPPED

callback parameter 215
DB_CALLBACK_DEBUG_MESSAGE

callback parameter 214
DB_CALLBACK_FINISH callback

parameter 215
DB_CALLBACK_MESSAGE callback

parameter 215
DB_CALLBACK_START callback

parameter 215
DB_CALLBACK_WAIT callback

parameter 215
db_cancel_request function

about 210
request management 201

db_delete_file function
about 211

db_find_engine function
about 211

db_fini function
about 211

db_fini_dll
calling 141

db_get_property function
about 212

db_init function
about 212

db_init_dll

521

Index

calling 141
db_is_working function

about 213
request management 201

db_locate_servers function
about 213

db_register_a_callback function
about 214
request management 201

db_start_database function
about 216

db_start_engine function
about 216

db_stop_database function
about 218

db_stop_engine function
about 218

db_string_connect function
about 219

db_string_disconnect function
about 220

db_string_ping_server function
about 220

DBBackup function 267
DBChangeLogName function 267
DBChangeWriteFile function 268
DBCollate function 268
DBCompress function 268
dbcon9.dll

deploying database utilities 491
deploying embedded SQL clients 485
deploying ODBC clients 480
deploying OLE DB clients 478

dbconsole utility
deploying 487

DBCreate function 269
DBCreateWriteFile function 269
DBCrypt function 270
dbctrs9.dll

deploying database servers 488
dbeng9

deploying database servers 488
DBErase function 270
DBExpand function 270
dbextf.dll

deploying database servers 488
dbfile.dll

deploying SQL Remote 492
DBInfo function 271
DBInfoDump function 271
DBInfoFree function 272
dbinit utility

Java in the database 85, 86
dbjava9.dll

deploying database servers 488
dblgen9.dll

deploying database servers 488
deploying database utilities 491
deploying embedded SQL clients 485
deploying ODBC clients 480
deploying OLE DB clients 478
deploying SQL Remote 492

dblib9.dll
deploying embedded SQL clients 485
interface libraries 136

DBLicense function 272
dbmapi.dll

deploying SQL Remote 492
dbmlsync utility

building your own 295
C API for 295

dbodbc9.dll
deploying ODBC clients 480

dbodbc9.lib
Windows CE ODBC import library232

dbodbc9.so
UNIX ODBC driver 233

dboledb9.dll
deploying OLE DB clients 478

dboledba9.dll
deploying OLE DB clients 478

dbremote
deploying SQL Remote 492

dbserv9.dll
deploying database servers 488

dbsmtp.dll
deploying SQL Remote 492

dbsrv9
deploying database servers 488

DBStatusWriteFile function 272
DBSynchronizeLog function 273
dbtool9.dll

deploying database utilities 491
deploying SQL Remote 492

522

Index

Windows CE 258
DBTools interface

about 257
calling DBTools functions 260
enumerations 309
example program 264
finishing 259
functions 267
introduction 258
starting 259
using 259

DBToolsFini function 273
DBToolsInit function 274
DBToolsVersion function 275
dbtran_userlist_type enumeration 310
DBTranslateLog function 275
DBTruncateLog function 275
DbType property

.NET provider API 428
DBUnload function 276
dbunload type enumeration 310
dbunload utility

building your own 302
header file 302

dbupgrad utility
Java in the database 85, 87

DBUpgrade function 276
DBValidate function 276
dbvim.dll

deploying SQL Remote 492
dbxtract utility

building your own 302
database tools interface 276
header file 302

DECIMAL data type
embedded SQL 154

DECL_BINARY macro 154
DECL_DECIMAL macro 154
DECL_FIXCHAR macro 154
DECL_LONGBINARY macro 154
DECL_LONGVARCHAR macro 154
DECL_VARCHAR macro 154
declaration section

about 153
DECLARE statement

about 167
declaring

embedded SQL data types 149
host variables 153

delegates
AsaInfoMessageEventHandler

delegate 426
AsaRowUpdatedEventHandler

delegate 443
AsaRowUpdatingEventHandler

delegate 444
DELETE statement

positioned 23
DeleteCommand property

.NET provider API 396
deploying

.NET provider applications 375
about 467
administration tools 487
applications 478
applications and databases 467
database servers 488
databases 489
databases on CD-ROM 489
dbconsole utility 487
embedded databases 491
embedded SQL 484
file locations 470
iAnywhere JDBC driver 486
InstallShield 474
Interactive SQL 487
Java in the database 488
jConnect 486
JDBC clients 486
MobiLink synchronization server 475
models 468
ODBC 479
ODBC driver 480
ODBC settings 480, 481
OLE DB provider 478
Open Client 486
overview 468
personal database server 491
read-only databases 489
registry settings 480, 481
silent installation 475
SQL Remote 492
Sybase Central 487
System Management Server 477

523

Index

write files 473
deploying the Adaptive Server Anywhere

.NET provider 375
deprecated Java classes

about 68
Depth property

.NET provider API 404
DeriveParameters method

.NET provider API 385
DESCRIBE statement

about 178
multiple result sets 200
SQLDA fields 183
sqllen field 185
sqltype field 185

describing
result sets 45

descriptors
describing result sets 45

DesignTimeVisible property
.NET provider API 381

destructors
Java 66

developing applications with the .NET
data provider 343

Direction property
.NET provider API 428

directory structure
UNIX 470

Dispose method
.NET provider API 405

Distributed Transaction Coordinator
three-tier computing 459

distributed transactions
about 455, 456, 461
architecture 458, 459
EAServer 463
enlistment 458
recovery 462
three-tier computing 457

DLL entry points 207
DLLs

multiple SQLCAs 164
documentation

conventions x
SQL Anywhere Studio viii

dot operator

Java and SQL 69
downloads

code samples 9
perl DBI driver 9
PHP module 9

DT_BIGINT embedded SQL data type
149

DT_BINARY embedded SQL data type
150

DT_BIT embedded SQL data type 149
DT_DATE embedded SQL data type 149
DT_DECIMAL embedded SQL data

type 149
DT_DOUBLE embedded SQL data type

149
DT_FIXCHAR embedded SQL data type

149
DT_FLOAT embedded SQL data type149
DT_INT embedded SQL data type 149
DT_LONGBINARY embedded SQL

data type 151
DT_LONGVARCHAR embedded SQL

data type 150
DT_SMALLINT embedded SQL data

type 149
DT_STRING data type 222
DT_TIME embedded SQL data type 149
DT_TIMESTAMP embedded SQL data

type 149
DT_TIMESTAMP_STRUCT embedded

SQL data type 151
DT_TINYINT embedded SQL data type

149
DT_UNSINT embedded SQL data type

149
DT_UNSSMALLINT embedded SQL

data type 149
DT_VARCHAR embedded SQL data

type 150
DT_VARIABLE embedded SQL data

type 151
DTC

three-tier computing 459
dynamic cursors

about 36
ODBC 27
sample 146

524

Index

DYNAMIC SCROLL cursors
about 26, 38
embedded SQL 28
troubleshooting 21

dynamic SQL
about 176
SQLDA 181

E
EAServer

component transaction attribute 463
distributed transactions 463
three-tier computing 459
transaction coordinator 463

embedded databases
deploying 491

embedded SQL
about 135
authorization 204
autocommit mode 47
character strings 205
command summary 224
compile and link process 137
cursor types 26
cursors 28, 143, 167
development 136
dynamic cursors 146
dynamic statements 176
example program 140
fetching data 166
functions 207
header files 138
host variables 153
import libraries 139
introduction to programming 5
line numbers 204
SQL statements 12
static statements 176

encryption
DBTools interface 270

enlistment
distributed transactions 458

entry points
calling DBTools functions 260

enumerations
DBTools interface 309

environment handles

ODBC 236
error handling

.NET provider 374
Java 66
ODBC 253

error messages
embedded SQL function 222

errors
codes 161
SQLCODE 161
sqlcode SQLCA field 161

Errors property
.NET provider API 423, 425, 439, 441

escape characters
Java in the database 72
SQL 72

escape syntax
Interactive SQL 131

esqldll.c
about 141

events
FillError event 398
InfoMessage event 393
RowUpdated event 400
RowUpdating event 401
StateChange event 394

exceptions
Java 66

EXEC SQL
embedded SQL development 140

EXECUTE statement 176
stored procedures in embedded SQL

196
ExecuteNonQuery method

.NET provider API 382
executeQuery method

about 128
ExecuteReader method

.NET provider API 382
using 350

ExecuteScalar method
.NET provider API 382
using 351

executeUpdate JDBC method 16
about 125

525

Index

F
fat cursors 23
feedback

documentation xiv
providing xiv

fetch operation
cursors 22
multiple rows 23
scrollable cursors 23

FETCH statement
about 166, 167
dynamic queries 178
multi-row 170
wide 170

fetching
embedded SQL 166
limits 21
ODBC 248

FieldCount property
.NET provider API 405

fields
class 61
instance 61
Java in the database 61
private 65
protected 65
public 65, 73

file names
conventions 471
language 471
version number 471

files
deployment location 470
naming conventions 471

Fill method
.NET provider API 397

fill_s_sqlda function
about 221

fill_sqlda function
about 221

FillError event
.NET provider API 398

FillSchema method
.NET provider API 398
using 363

finally block
Java 67

FIXCHAR data type
embedded SQL 154

ForceStart [FORCESTART] connection
parameter

db_start_engine 217
free_filled_sqlda function

about 221
free_sqlda function

about 221
free_sqlda_noind function

about 221
functions

calling DBTools functions 260
DBTools 267
embedded SQL 207

G
GetBoolean method

.NET provider API 405
GetByte method

.NET provider API 405
GetBytes method

.NET provider API 406
using 367

GetChar method
.NET provider API 406

GetChars method
.NET provider API 407
using 367

getConnection method
instances 122

GetDataTypeName method
.NET provider API 408

GetDateTime method
.NET provider API 408

GetDecimal method
.NET provider API 408

GetDeleteCommand method
.NET provider API 386

GetDouble method
.NET provider API 409

GetFieldType method
.NET provider API 409

GetFillParameters method
.NET provider API 399

GetFloat method
.NET provider API 409

526

Index

GetGuid method
.NET provider API 410

GetInsertCommand method
.NET provider API 386

GetInt16 method
.NET provider API 410

GetInt32 method
.NET provider API 410

GetInt64 method
.NET provider API 411

GetName method
.NET provider API 411

GetObjectData method
.NET provider API 423

GetOrdinal method
.NET provider API 411

GetSchemaTable method
.NET provider API 412
using 355

GetString method
.NET provider API 413

GetTimeSpan method
.NET provider API 413
using 368

GetUInt16 method
.NET provider API 414

GetUInt32 method
.NET provider API 414

GetUInt64 method
.NET provider API 414

GetUpdateCommand method
.NET provider API 387

GetValue method
.NET provider API 414

GetValues method
.NET provider API 415

GNU compiler
embedded SQL support 138

GRANT statement
JDBC 130

H
handles

about ODBC 236
allocating ODBC 236

header files
embedded SQL 138

ODBC 230
heap size

Java in the database 100
host variables

about 153
data types 154
declaring 153
SQLDA 183
uses 156

I
iAnywhere JDBC driver

choosing a JDBC driver 104
connecting 115
deploying JDBC clients 486
required files 115
using 115

iAnywhere.Data.AsaClient.DLL
adding a reference to in a Visual

Studio .NET project 344
icons

used in manuals xii
identifiers

needing quotes 222
import libraries

alternatives 141
DBTools 259
embedded SQL 139
introduction 137
NetWare 142
ODBC 230
Windows CE ODBC 232

import statement
Java 65
Java in the database 72
jConnect 110

INCLUDE statement
SQLCA 161

IndexOf method
.NET provider API 435

indicator variables
about 157
data type conversion 159
NULL 158
SQLDA 183
summary of values 159
truncation 159

527

Index

InfoMessage event
.NET provider API 393

INOUT parameters
Java in the database 96

insensitive cursors
about 26, 35
delete example 31
embedded SQL 28
introduction 31
update example 33

Insert method
.NET provider API 435

INSERT statement
JDBC 125, 126
multi-row 170
performance 14
wide 170

InsertCommand property
.NET provider API 399

INSTALL JAVA statement
introduction 69
using 90, 91

installation
silent 475

installation programs
deploying 469

installing
JAR files into a database 91
Java classes into a database 89, 90

InstallSheidl
templates 474

InstallShield
deploying Adaptive Server Anywhere

474
merge modules 474
objects 474
silent installation 475

instance fields
about 61

instance methods
about 62

instances
Java classes 64

instantiated
definition 64

Interactive SQL
deploying 487

JDBC escape syntax 131
interface libraries

about 136
dynamic loading 141
filename 136

interfaces
Java 66

introduction to the Adaptive Server
Anywhere .NET provider 329

IsClosed property
.NET provider API 415

IsDBNull method
.NET provider API 416

IsNullable property
.NET provider API 429

isolation levels
applications 49
cursor sensitivity and 43
cursors 21
setting for the AsaTransaction object

372
IsolationLevel property

.NET provider API 445
Item property

.NET provider API 416, 421, 435

J
Jaguar

EAServer 463
JAR and ZIP file creation wizard

using 91
JAR files

adding 91
installing 89, 91
Java 65
updating 91
versions 91

Java
Adaptive Server Anywhere sample 82
catch block 67
classes 64
constructors 66
destructors 66
error handling 66
finally block 67
interfaces 66
JDBC 104

528

Index

supported classes 101
try block 67
unsupported classes 102

Java 2
supported versions 68

Java class creation wizard
using 76, 90, 121

Java classes
adding 90
built-in 101
installing 90

Java in the database
API 56, 68
compiling classes 59
deploying 488
enabling a database 84, 85, 87
escape characters 72
fields 61
heap size 100
installing classes 89
introduction 52, 59
key features 54
licensing 52
main method 71, 93
memory issues 99
methods 61
namespace 99
objects 60
overview 82
persistence 71
Procedure Not Found error 94
Q & A 54
runtime classes 84
runtime environment 68, 83
security management about 96
supported classes 56
supported platforms 55
tutorial 75
using the documentation 53
version 68
virtual machine 54, 100

Java package
runtime classes 84

Java security management
about 97

Java stored procedures
about 94

example 95
java.applet package

unsupported classes 102
java.awt package

unsupported classes 102
java.awt.datatransfer package

unsupported classes 102
java.awt.event package

unsupported classes 102
java.awt.image package

unsupported classes 102
java.beans package

supported classes 101
java.io package

supported classes 101
java.io.File

partially supported classes 102
java.io.FileDescriptor

partially supported classes 102
java.io.FileInputStream

partially supported classes 102
java.io.FileOutputStream

partially supported classes 102
java.io.RandomAccessFile

partially supported classes 102
java.lang package

supported classes 101
java.lang.ClassLoader

partially supported classes 102
java.lang.Compiler

partially supported classes 102
java.lang.reflect package

supported classes 101
java.lang.Runtime

partially supported classes 102
java.lang.Thread

partially supported classes 101
java.math package

supported classes 101
java.net package

supported classes 101
java.net.PlainDatagramSocketImpl

supported classes 101
java.rmi package

supported classes 101
java.rmi.dgc package

supported classes 101

529

Index

java.rmi.registry package
supported classes 101

java.rmi.server package
supported classes 101

java.security package
supported classes 101

java.security.acl package
supported classes 101

java.security.interfaces package
supported classes 101

java.SQL package
supported classes 101

java.text package
supported classes 102

java.util package
supported classes 102

java.util.zip package
supported classes 102

java.util.zip.Deflater
partially supported classes 102

java.util.zip.Inflater
partially supported classes 102

JAVA_HEAP_SIZE option
using 100

JAVA_NAMESPACE_SIZE option
using 99

jcatalog.sql file
jConnect 111

jConnect
about 110
choosing a JDBC driver 104
CLASSPATH environment variable

110
connections 117, 120
database setup 111
deploying JDBC clients 486
loading 112
packages 110
system objects 111
URL 112
versions supplied 110

JDBC
about 104
applications overview 105
autocommit 122
autocommit mode 47
client connections 117

client-side 108
connecting 117
connecting to a database 113
connection code 117
connection defaults 122
connections 108
cursor types 26
data access 124
deploying JDBC clients 486
escape syntax in Interactive SQL 131
examples 104, 117
INSERT statement 125, 126
introduction to programming 6
jConnect 110
non-standard classes 106
permissions 130
prepared statements 129
requirements 104
runtime classes 84
SELECT statement 128
server-side 108
server-side connections 120
SQL statements 12
version 68, 106
version 2.0 features 106
ways to use 104

JDBC drivers
choosing 104
compatibility 104
performance 104

JDBC escape syntax
using in Interactive SQL 131

JDBC-ODBC bridge
iAnywhere JDBC driver 104

JDBCExamples class
about 124

JDBCExamples.java file 104
JDK

definition 56
version 68, 84

K
keyset-driven cursors

about 39
ODBC 27

530

Index

L
language DLL

obtaining 471
languages

file names 471
length SQLDA field

about 183, 184
libraries

embedded SQL 139
library functions

embedded SQL 207
line length

SQL preprocessor output 204
line numbers

SQL preprocessor 204
liveness

connections 215
LONG BINARY data type

embedded SQL 154, 190
retrieving in embedded SQL 191
sending in embedded SQL 193

LONG VARCHAR data type
embedded SQL 154, 190
retrieving in embedded SQL 191
sending in embedded SQL 193

M
macros

_SQL_OS_NETWARE 141
_SQL_OS_UNIX 141
_SQL_OS_WINNT 141

main method
Java in the database 71, 93

manual commit mode
controlling 47
implementation 48
transactions 47

membership
result sets 30

memory
Java in the database 99

merge modules
InstallShield 474

Message property
.NET provider API 419, 423, 425

messages

callback 215
server 215

methods
>> operator 69
Add method 433
AsaRowUpdatingEventArgs method

441
BeginTransaction method 389
Cancel method 379
ChangeDatabase method 390
class 62
Clear method 434
Close method 390, 404
Commit method 445
Contains method 434
CopyTo method 421, 434, 435
CreateCommand method 392
CreateParameter method 381
CreatePermission method 438
declaring 63
DeriveParameters method 385
Dispose method 405
dot operator 69
ExecuteNonQuery method 382
ExecuteReader method 382
ExecuteScalar method 382
Fill method 397
FillSchema method 398
GetBoolean method 405
GetByte method 405
GetBytes method 406
GetChar method 406
GetChars method 407
GetDataTypeName method 408
GetDateTime method 408
GetDecimal method 408
GetDeleteCommand method 386
GetDouble method 409
GetFieldType method 409
GetFillParameters method 399
GetFloat method 409
GetGuid method 410
GetInsertCommand method 386
GetInt16 method 410
GetInt32 method 410
GetInt64 method 411
GetName method 411

531

Index

GetObjectData method 423
GetOrdinal method 411
GetSchemaTable method 412
GetString method 413
GetTimeSpan method 413
GetUInt16 method 414
GetUInt32 method 414
GetUInt64 method 414
GetUpdateCommand method 387
GetValue method 414
GetValues method 415
Insert method 435
instance 62
IsDBNull method 416
Item property 421, 435
Java in the database 61
NextResult method 416
Open method 393
Prepare method 383
private 65
protected 65
public 65
Read method 417
RefreshSchema method 388
Remove method 436
RemoveAt method 436
ResetCommandTimeout method 384
Rollback method 446
Save method 446
static 62
ToString method 420, 425, 431
Update method 402

Microsoft Transaction Server
three-tier computing 459

Microsoft Visual C++
embedded SQL support 138

MissingMappingAction property
.NET provider API 400

MissingSchemaAction property
.NET provider API 400

mixed cursors
ODBC 27

mlxtract utility
building your own 302
header file 302

MobiLink synchronization servers
deploying 475

MSDASQL
OLE DB provider 314

multi-row fetches 170
multi-row inserts 170
multi-row puts 170
multi-row queries

cursors 167
multi-threaded applications

embedded SQL 163, 164
Java in the database 94
ODBC 228, 241
UNIX 232

multiple result sets
DESCRIBE statement 200
ODBC 251

N
name SQLDA field

about 183
namespace

Java in the database 99
NativeError property

.NET provider API 419
NetWare

embedded SQL programs 142
newsgroups

technical support xiv
NextResult method

.NET provider API 416
NLM

embedded SQL programs 142
NO SCROLL cursors

about 26, 35
embedded SQL 28

ntodbc.h
about 230

NULL
dynamic SQL 181
indicator variables 157

NULL-terminated string
embedded SQL data type 149

O
object-oriented programming

Java in the database 64
style 73

objects

532

Index

.NET data provider API 377
Java in the database 60
storage format 92
types 60

obtaining time values 368
ODBC

autocommit mode 47
backwards compatibility 229
compatibility 229
conformance 228
cursor types 26
cursors 27, 247
data sources 482
deploying 479
driver deployment 480
error checking 253
handles 236
header files 230
import libraries 230
introduction 228
introduction to programming 2
linking 230
multi-threaded applications 241
multiple result sets 251
no Driver Manager 233
prepared statements 245
programming 227
registry entries 482
result sets 251
sample application 238
sample program 234
SQL statements 12
stored procedures 251
UNIX development 232, 233
version supported 228
Windows CE 231, 232

ODBC drivers
UNIX 233

ODBC settings
deploying 480, 481

odbc.h
about 230

Offset property
.NET provider API 429

OLE DB
about 314
Adaptive Server Anywhere 314

cursor types 26
cursors 27, 319
deploying 478
introduction to programming 4
ODBC and 314
provider deployment 478
supported interfaces 322
supported platforms 314
updates 319

OLE transactions
three-tier computing 457, 458

online backups
embedded SQL 201

Open Client
Adaptive Server Anywhere limitations

454
autocommit mode 47
cursor types 26
data type ranges 449
data types 449
data types compatibility 449
deploying Open Client applications

486
interface 447
introduction 7
limitations 454
requirements 448
SQL 451
SQL statements 12

Open method
.NET provider API 393

OPEN statement
about 167

operating system
file names 471

OUT parameters
Java in the database 96

overflow errors
data type conversion 449

P
packages

installing 91
Java 65
Java in the database 72
jConnect 110
supported 101

533

Index

unsupported 102
ParameterName property

.NET provider API 429
parameters

CreateParameter method 381
Parameters property

.NET provider API 383
partially supported classes

java.io.File 102
java.io.FileDescriptor 102
java.io.FileInputStream 102
java.io.FileOutputStream 102
java.io.RandomAccessFile 102
java.lang.ClassLoader 102
java.lang.Compiler 102
java.lang.Runtime

(exec/load/loadlibrary) 102
java.lang.Thread 101
java.util.zip.Deflater 102
java.util.zip.Inflater 102

performance
cursors 41, 42
JDBC 129
JDBC drivers 104
prepared statements 14, 245

perl DBI interface
Adaptive Server Anywhere interface 9

perl interface
download 9

permissions
JDBC 130

persistence
Java in the database classes 71

personal server
deploying 491

PHP
Adaptive Server Anywhere interface 9

PHP module
download 9

place holders
dynamic SQL 176

platforms
cursors 26
Java in the database support 55

POOLING option
.NET provider 347

positioned delete operation 23

positioned update operation 23
positioned updates

about 21
Precision property

.NET provider API 429
prefetch

cursor performance 41
cursors 42
fetching multiple rows 23

PREFETCH option
cursors 42

Prepare method
.NET provider API 383

PREPARE statement 176
PREPARE TRANSACTION statement

and Open Client 454
prepared statements

ADO.NET overview 15
bind parameters 15
cursors 20
dropping 15
JDBC 129
ODBC 245
Open Client 451
using 14

PreparedStatement interface
about 129

prepareStatement method
JDBC 16

preparing
to commit 458

preprocessor
about 136
running 138

primary keys
obtaining values for 364

println method
Java in the database 71

private
Java access 65

procedure not found error
Java methods 127

procedures
embedded SQL 196
ODBC 251
result sets 197

program structure

534

Index

embedded SQL 140
properties

AcceptChangesDuringFill property
396

AsaDbType property 428
Command property 439, 441
CommandText property 380
CommandTimeout property 380
CommandType property 380
Connection property 381, 445
ConnectionString property 390
ConnectionTimeout property 392
ContinueUpdateOnError property 396
Count property 421, 435
DataAdapter property 385
Database property 392
DataSource property 392
db_get_property function 212
DbType property 428
DeleteCommand property 396
Depth property 404
DesignTimeVisible property 381
Direction property 428
Errors property 423, 425, 439, 441
FieldCount property 405
InsertCommand property 399
IsClosed property 415
IsNullable property 429
IsolationLevel property 445
Item property 416
Message property 419, 423, 425
MissingMappingAction property 400
MissingSchemaAction property 400
NativeError property 419
Offset property 429
ParameterName property 429
Parameters property 383
Precision property 429
QuotePrefix property 387
QuoteSuffix property 388
RecordsAffected property 417, 439
Row property 440, 441
Scale property 430
SelectCommand property 401
ServerVersion property 393
Size property 430
Source property 419, 424, 425

SourceColumn property 431
SourceVersion property 431
SqlState property 419
State property 393
StatementType property 440, 442
Status property 440, 442
TableMapping property 440, 442
TableMappings property 402
Transaction property 384
UpdateCommand property 403
UpdatedRowSource property 384
Value property 431

protected
Java 65
Java access 65

providers
supported in .NET 330

public
Java access 65

public fields
issues 73

PUT statement
modifying rows through a cursor 23
multi-row 170
wide 170

Q
queries

ADO Recordset object 318, 319
JDBC 128
single-row 166

quoted identifiers
sql_needs_quotes function 222

QUOTED_IDENTIFIER option
jConnect setting 114

QuotePrefix property
.NET provider API 387

quotes
Java in the database strings 70

QuoteSuffix property
.NET provider API 388

R
Read method

.NET provider API 417
read-only

deploying databases 489

535

Index

read-only cursors
about 26

record sets
ADO programming 319

RecordsAffected property
.NET provider API 417, 439

Recordset ADO object
ADO 318
ADO programming 320
updating data 319

Recordset object
ADO 319

recovery
distributed transactions 462

RefreshSchema method
.NET provider API 388

registering the .NET provider 376
registry

deploying 480, 481
ODBC 482

relocatable
defined 99

REMOTEPWD
using 113

Remove method
.NET provider API 436

RemoveAt method
.NET provider API 436

request processing
embedded SQL 201

requests
aborting 210

requirements
Open Client applications 448

ResetCommandTimeout method
.NET provider API 384

resource dispensers
three-tier computing 458

resource managers
about 456
three-tier computing 458

response file
definition 475

response time
AsaDataAdapter 395
AsaDataReader 404

result sets

ADO Recordset object 318, 319
cursors 17
Java in the database methods 94
Java in the database stored procedures

94
metadata 45
multiple ODBC 251
ODBC 247, 251
Open Client 453
retrieving ODBC 248
stored procedures 197
using 21

retrieving
ODBC 248
SQLDA and 187

return codes 261
ODBC 253

Rollback method
.NET provider API 446

ROLLBACK statement
cursors 49

ROLLBACK TO SAVEPOINT statement
cursors 50

RollbackTrans ADO method
ADO programming 320
updating data 320

Row property
.NET provider API 440, 441

RowUpdated event
.NET provider API 400

RowUpdating event
.NET provider API 401

rt.jar
runtime classes 84

runtime classes
contents 84
installing 84
Java in the database 68

runtime environment
Java in the database 83

S
samples

.NET provider 333
DBTools program 264
downloads 9
embedded SQL 143, 144

536

Index

embedded SQL applications 143
Java in the database 82
ODBC 234
static cursors in embedded SQL 145,

146
Windows services 235

Save method
.NET provider API 446

savepoints
cursors 50

Scale property
.NET provider API 430

scope
Java 65

SCROLL cursors
about 26, 39
embedded SQL 28

scrollable cursors 23
JDBC support 104

security
Java in the database 96, 97

SecurityManager class
about 96, 97

SELECT statement
dynamic 178
JDBC 128
single row 166

SelectCommand property
.NET provider API 401

sensitive cursors
about 36
delete example 31
embedded SQL 28
introduction 31
update example 33

sensitivity
cursors 30, 31
delete example 31
isolation levels and 43
update example 33

serialization
objects in tables 92

server address
embedded SQL function 212

server-side autocommit
about 48

servers

locating 220
ServerVersion property

.NET provider API 393
services

example code 147
sample code 235

setAutocommit method
about 122

setting
values using the SQLDA 186

setup program
silent installation 475

Size property
.NET provider API 430

software
return codes 261

Source property
.NET provider API 419, 424, 425

SourceColumn property
.NET provider API 431

SourceVersion property
.NET provider API 431

sp_tsql_environment system procedure
setting options for jConnect 114

spt_mda stored procedure
setting options for jConnect 114

SQL
ADO applications 12
applications 12
embedded SQL applications 12
JDBC applications 12
ODBC applications 12
Open Client applications 12

SQL Anywhere Studio
documentation viii

SQL Communications Area
about 161

SQL preprocessor
about 203
command line 203
running 138

SQL Remote
deploying 492

SQL statements
executing 451

SQL/92
SQL preprocessor 204

537

Index

SQL92
SQL preprocessor 204

SQL_ATTR_MAX_LENGTH attribute
about 248

SQL_CALLBACK type declaration 214
SQL_CALLBACK_PARM type

declaration 214
SQL_ERROR

ODBC return code 253
SQL_INVALID_HANDLE

ODBC return code 253
SQL_NEED_DATA

ODBC return code 253
sql_needs_quotes function

about 222
SQL_NO_DATA_FOUND

ODBC return code 253
SQL_SUCCESS

ODBC return code 253
SQL_SUCCESS_WITH_INFO

ODBC return code 253
SQLAllocHandle ODBC function

about 236
binding parameters 244
executing statements 243
using 236

SQLBindCol ODBC function
about 247, 248

SQLBindParameter ODBC function 15
about 244
prepared statements 245
stored procedures 251

SQLBrowseConnect ODBC function
about 239

SQLCA
about 161
changing 163
fields 161
length of 161
multiple 164
threads 163

sqlcabc SQLCA field
about 161

sqlcaid SQLCA field
about 161

sqlcode SQLCA field
about 161

SQLConnect ODBC function
about 239

SQLCOUNT
sqlerror SQLCA field element 162

sqld SQLDA field
about 182

SQLDA
about 176, 181
allocating 207
descriptors 46
fields 182
filling 221
freeing 221
host variables 183
sqllen field 184
strings 221

sqlda_storage function
about 222

sqlda_string_length function
about 222

sqldabc SQLDA field
about 182

sqldaif SQLDA field
about 182

sqldata SQLDA field
about 183

sqldef.h
data types 149

SQLDriverConnect ODBC function
about 239

sqlerrd SQLCA field
about 162

sqlerrmc SQLCA field
about 161

sqlerrml SQLCA field
about 161

SQLError ODBC function
about 253

sqlerror SQLCA field
elements 162
SQLCOUNT 162
SQLIOCOUNT 162
SQLIOESTIMATE 163

sqlerror_message function
about 222

sqlerrp SQLCA field
about 162

538

Index

SQLExecDirect ODBC function
about 243
bound parameters 244

SQLExecute ODBC function 15
SQLExtendedFetch ODBC function

about 248
stored procedures 251

SQLFetch ODBC function
about 248
stored procedures 251

SQLFreeHandle ODBC function
using 236

SQLFreeStmt ODBC function 15
SQLGetData ODBC function

about 247, 248
sqlind SQLDA field

about 183
SQLIOCOUNT

sqlerror SQLCA field element 162
SQLIOESTIMATE

sqlerror SQLCA field element 163
SQLJ standard

about 52
sqllen SQLDA field

about 183, 184
DESCRIBE statement 185
describing values 185
retrieving values 187
sending values 186

sqlname SQLDA field
about 183

SQLNumResultCols ODBC function
stored procedures 251

sqlpp utility
about 136
running 138
syntax 203

SQLPrepare ODBC function 15
about 245

SQLRETURN
ODBC return code type 253

SQLSetConnectAttr ODBC function
about 241

SQLSetPos ODBC function
about 249

SQLSetStmtAttr ODBC function
cursor characteristics 247

SqlState property
.NET provider API 419

sqlstate SQLCA field
about 162

SQLTransact ODBC function
about 238

sqltype SQLDA field
about 183
DESCRIBE statement 185

sqlvar SQLDA field
about 182, 183
contents 183

sqlwarn SQLCA field
about 162

standard output
Java in the database 71

standards
SQLJ 52

START JAVA statement
using 100

starting
databases using jConnect 113

State property
.NET provider 348
.NET provider API 393

StateChange event
.NET provider API 394

statement handles
ODBC 236

statements
COMMIT 49
DELETE positioned 23
insert 14
PUT 23
ROLLBACK 49
ROLLBACK TO SAVEPOINT 50
UPDATE positioned 23

StatementType property
.NET provider API 440, 442

static cursors
about 35
ODBC 27

static methods
about 62

static SQL
about 176

Status property

539

Index

.NET provider API 440, 442
STOP JAVA statement

using 100
stored procedures

.NET provider 370
creating in embedded SQL 196
embedded SQL 196
executing in embedded SQL 196
INOUT parameters and Java 96
Java in the database 94
OUT parameters and Java 96
result sets 197

string
data type 222

strings
blank padding of DT_STRING 149
Java in the database 70

structure packing
header files 138

sun package
runtime classes 84

sun.* packages
unsupported classes 102

support
newsgroups xiv

supported classes
java.beans 101
java.io 101
java.lang 101
java.lang.reflect 101
java.math 101
java.net 101
java.net.PlainDatagramSocketImpl 101
java.rmi 101
java.rmi.dgc 101
java.rmi.registry 101
java.rmi.server 101
java.security 101
java.security.acl 101
java.security.interfaces 101
java.SQL 101
java.text 102
java.util 102
java.util.zip 102

supported platforms
OLE DB 314

Sybase Central

adding JAR files 91
adding Java classes 90
adding ZIP files 91
deploying 487
Java-enabling a database 87

sybase.sql package
runtime classes 84

sybase.sql.ASA package
JDBC 2.0 features 106

System Management Server
deploying 477

system requirements
.NET provider 375

T
TableMapping property

.NET provider API 440, 442
TableMappings property

.NET provider API 402
technical support

newsgroups xiv
threaded applications

UNIX 470
threads

embedded SQL 163, 164
Java in the database 94
ODBC 228
ODBC applications 241
UNIX development 232

three-tier computing
about 455
architecture 457
Distributed Transaction Coordinator

459
distributed transactions 457
EAServer 459
Microsoft Transaction Server 459
resource dispensers 458
resource managers 458

Time structure
time values in .NET provider 368

times
obtaining with .NET provider 368

TimeSpan
.NET provider 368

TIMESTAMP data type
conversion 449

540

Index

ToString method
.NET provider API 420, 425, 431

transaction attribute
component 463

transaction coordinator
EAServer 463

transaction processing
using the .NET provider 372

Transaction property
.NET provider API 384

transactions
ADO 320
application development 47
autocommit mode 47
cursors 49
distributed 456, 461
isolation level 49
ODBC 238
OLE DB 320

troubleshooting
cursor positioning 21
Java in the database methods 94

truncation
FETCH statement 159
indicator variables 159
on FETCH 158

try block
Java 67

tutorials
using the .NET provider Simple code

sample 334
using the .NET provider Table Viewer

code sample 338
two-phase commit

and Open Client 454
three-tier computing 457, 458

type
objects 60

U
unchained mode

controlling 47
implementation 48
transactions 47

Unicode
ODBC 231
Windows CE 231

unique cursors
about 26

UNIX
deployment issues 470
directory structure 470
multi-threaded applications 470
ODBC 232, 233
ODBC applications 233

unixodbc.h
about 230

unsupported classes
java.applet 102
java.awt 102
java.awt.datatransfer 102
java.awt.event 102
java.awt.image 102
sun.* 102

Update method
.NET provider API 402

UPDATE statement
positioned 23

UpdateBatch ADO method
ADO programming 320
updating data 320

UpdateCommand property
.NET provider API 403

UpdatedRowSource property
.NET provider API 384

updates
cursor 319

upgrade database wizard
Java-enabling a database 87

URL
database 113
jConnect 112

user-defined classes
Java in the database 69

using Java in the database 81
using the Adaptive Server Anywhere

.NET provider sample
applications 333

utilities
deploying database utilities 491
SQL preprocessor 203

V
Value property

541

Index

.NET provider API 431
value-sensitive cursors

about 39
delete example 31
introduction 31
update example 33

VARCHAR data type
embedded SQL 154

verbosity enumeration 309
version

Java in the database 68
JDBC 68
JDK 68

version number
file names 471

visible changes
cursors 30

Visual Basic
support in .NET provider 3

Visual C++
embedded SQL support 138

VM
Java virtual machine 54
starting 100
stopping 100

void
Java in the database methods 61

W
Watcom C/C++

embedded SQL support 138
wide fetches 23

about 170
wide inserts 170
wide puts 170
Windows

providers supported in .NET 330
services 235

Windows CE
Java in the database unsupported 55
ODBC 231, 232
OLE DB 314
providers supported in .NET 330
supported versions 314

Windows services
example code 147

Windows CE

dbtool9.dll 258
WITH HOLD clause

cursors 21
wizards

JAR and ZIP file creation 91
Java class creation 76, 90, 121
upgrade database wizard 87

work tables
cursor performance 41

write files
deployment 473

Z
zip files

Java 65

542

	Adaptive Server Anywhere Programming Guide
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The Adaptive Server Anywhere sample database
	Finding out more and providing feedback

	Programming Interface Overview
	The ODBC programming interface
	The ADO.NET programming interface
	The OLE DB and ADO programming interface
	The Embedded SQL programming interface
	The JDBC programming interface
	The Open Client programming interface
	Open Client architecture

	Code samples and other programming interfaces

	Using SQL in Applications
	Executing SQL statements in applications
	Preparing statements
	How to use prepared statements

	Introduction to cursors
	What are cursors?
	Benefits of using cursors
	Steps in using cursors

	Working with cursors
	Cursor positioning
	Configuring cursors on opening
	Fetching rows through a cursor
	Fetching multiple rows
	Fetching with scrollable cursors
	Modifying rows through a cursor
	Canceling cursor operations

	Choosing cursor types
	Availability of cursors
	Cursor properties
	Requesting Adaptive Server Anywhere cursors
	ODBC and OLE DB
	ADO.NET
	Embedded SQL
	JDBC
	Open Client

	Bookmarks and cursors
	Block cursors

	Adaptive Server Anywhere cursors
	Cursor sensitivity overview
	Cursor sensitivity example: a deleted row
	Cursor sensitivity example: an updated row
	Insensitive cursors
	Sensitive cursors
	Asensitive cursors
	Value-sensitive cursors
	Cursor sensitivity and performance
	Prefetching rows

	Cursor sensitivity and isolation levels

	Describing result sets
	Controlling transactions in applications
	Setting autocommit or manual commit mode
	Controlling autocommit behavior
	Autocommit implementation details

	Controlling the isolation level
	Cursors and transactions

	Introduction to Java in the Database
	Introduction
	Learning about Java in the database
	Using the Java documentation

	Java in the database Q & A
	What are the key features of Java in the database?
	How do I store Java instructions in the database?
	How does Java get executed in a database?
	Why Java?
	On what platforms is Java in the database supported?
	How do I use Java and SQL together?
	What is the Java API?
	How do I access Java from SQL?
	Which Java classes are supported?
	How can I use my own Java classes in databases?
	Can I access data using Java?
	Can I move classes from client to server?
	What can I not do with Java in the database?

	A Java seminar
	Understanding Java classes
	Subclasses in Java

	Understanding Java objects
	Class constructors

	Understanding fields
	Understanding methods
	Object oriented and procedural languages
	A Java glossary
	Java error handling

	The runtime environment for Java in the database
	Supported versions of Java and JDBC
	The runtime Java classes
	User-defined classes

	Identifying Java methods and fields
	Java is case sensitive
	Strings in Java and SQL
	Printing to the command line
	Using the main method
	Scope and persistence
	Java escape characters in SQL statements
	Use of import statements
	Using the CLASSPATH variable
	Public fields

	Tutorial: A Java in the database exercise
	Create and compile the sample Java class
	Install the sample Java class
	Creating a SQL variable of type Invoice
	Access fields and methods of the Java object

	Using Java in the Database
	Introduction
	Setting up the Java sample
	Managing the runtime environment for Java

	Java-enabling a database
	The Adaptive Server Anywhere runtime Java classes
	Ways of Java-enabling a database
	New databases and Java
	Upgrading databases and Java
	Java-enabling a database
	Using Sybase Central to Java-enable a database

	Installing Java classes into a database
	Creating a class
	Installing a class
	Installing a JAR
	Updating classes and Jars

	Special features of Java classes in the database
	Supported classes
	Calling the main method
	Using threads in Java applications
	Procedure Not Found error
	Returning result sets from Java methods
	Returning values from Java via stored procedures
	Security management for Java
	Implementing your own security manager

	Configuring memory for Java
	How memory is used

	Java classes reference
	Supported Java packages
	Unsupported Java packages and classes
	Partially supported packages and classes

	JDBC Programming
	JDBC overview
	Choosing a JDBC driver
	JDBC program structure
	JDBC in the database features
	Using JDBC 2.0 features from JDK 1.1 databases

	Differences between client- and server-side JDBC connections

	Using the jConnect JDBC driver
	The jConnect driver files
	Installing jConnect system objects into a database
	Loading the jConnect driver
	Supplying a URL for the server
	Specifying a database on a server
	Database options set for jConnect connections

	Using the iAnywhere JDBC driver
	Establishing JDBC connections
	Connecting from a JDBC client application using jConnect
	External connection example code
	How the external connection example works
	Running the external connection example

	Establishing a connection from a server-side JDBC class
	Server-side connection example code
	How the server-side connection example works
	Running the server-side connection example

	Notes on JDBC connections

	Using JDBC to access data
	Preparing for the examples
	Inserts, updates, and deletes using JDBC
	Passing arguments to Java methods
	Queries using JDBC
	Using prepared statements for more efficient access
	Miscellaneous JDBC notes

	Using JDBC escape syntax

	Embedded SQL Programming
	Introduction
	Development process overview
	Running the SQL preprocessor
	Supported compilers
	Embedded SQL header files
	Import libraries
	A simple example
	Structure of embedded SQL programs
	Loading the interface library dynamically
	Building NetWare Loadable Modules

	Sample embedded SQL programs
	Building the sample programs
	Running the sample programs
	Static cursor sample
	Dynamic cursor sample
	Service examples

	Embedded SQL data types
	Using host variables
	Declaring host variables
	C host variable types
	Host variable usage
	Indicator variables
	Using indicator variables to handle NULL
	Using indicator variables for truncated values
	Using indicator values for conversion errors
	Summary of indicator variable values

	The SQL Communication Area (SQLCA)
	SQLCA fields
	SQLCA management for multi-threaded or reentrant code
	Using multiple SQLCAs
	When to use multiple SQLCAs
	Connection management with multiple SQLCAs

	Fetching data
	SELECT statements that return at most one row
	Using cursors in embedded SQL
	Fetching more than one row at a time

	Static and dynamic SQL
	Static SQL statements
	Dynamic SQL statements
	Dynamic SELECT statement

	The SQL descriptor area (SQLDA)
	The SQLDA header file
	SQLDA fields
	SQLDA host variable descriptions
	SQLDA sqllen field values
	Describing values
	Sending values
	Retrieving values

	Sending and retrieving long values
	Retrieving LONG data
	Sending LONG data

	Using stored procedures
	Using simple stored procedures
	Stored procedures with result sets

	Embedded SQL programming techniques
	Implementing request management
	Backup functions

	The SQL preprocessor
	Library function reference
	alloc_sqlda function
	alloc_sqlda_noind function
	db_backup function
	db_cancel_request function
	db_delete_file function
	db_find_engine function
	db_fini function
	db_get_property function
	db_init function
	db_is_working function
	db_locate_servers function
	db_register_a_callback function
	db_start_database function
	db_start_engine function
	db_stop_database function
	db_stop_engine function
	db_string_connect function
	db_string_disconnect function
	db_string_ping_server function
	fill_s_sqlda function
	fill_sqlda function
	free_filled_sqlda function
	free_sqlda function
	free_sqlda_noind function
	sql_needs_quotes function
	sqlda_storage function
	sqlda_string_length function
	sqlerror_message function

	Embedded SQL command summary

	ODBC Programming
	Introduction to ODBC
	ODBC conformance

	Building ODBC applications
	Including the ODBC header file
	Linking ODBC applications on Windows
	Linking ODBC applications on Windows CE
	Linking ODBC applications on UNIX
	Using an ODBC Driver Manager on UNIX

	ODBC samples
	Building the sample ODBC program
	Running the sample ODBC program

	ODBC handles
	Allocating ODBC handles
	A first ODBC example

	Connecting to a data source
	Choosing an ODBC connection function
	Establishing a connection
	Setting connection attributes
	Threads and connections in ODBC applications

	Executing SQL statements
	Executing statements directly
	Executing statements with bound parameters
	Executing prepared statements

	Working with result sets
	Choosing a cursor characteristics
	Retrieving data
	Updating and deleting rows through a cursor
	Using bookmarks

	Calling stored procedures
	Handling errors

	The Database Tools Interface
	Introduction to the database tools interface
	Using the database tools interface
	Using the import libraries
	Starting and finishing the DBTools library
	Calling the DBTools functions
	Software component return codes
	Using callback functions
	Version numbers and compatibility
	Using bit fields
	A DBTools example

	DBTools functions
	DBBackup function
	DBChangeLogName function
	DBChangeWriteFile function
	DBCollate function
	DBCompress function
	DBCreate function
	DBCreateWriteFile function
	DBCrypt function
	DBErase function
	DBExpand function
	DBInfo function
	DBInfoDump function
	DBInfoFree function
	DBLicense function
	DBStatusWriteFile function
	DBSynchronizeLog function
	DBToolsFini function
	DBToolsInit function
	DBToolsVersion function
	DBTranslateLog function
	DBTruncateLog function
	DBUnload function
	DBUpgrade function
	DBValidate function

	DBTools structures
	a_backup_db structure
	a_change_log structure
	a_compress_db structure
	a_compress_stats structure
	a_create_db structure
	a_crypt_db structure
	a_db_collation structure
	a_db_info structure
	a_dblic_info structure
	a_dbtools_info structure
	an_erase_db structure
	an_expand_db structure
	a_name structure
	a_stats_line structure
	a_sync_db structure
	a_syncpub structure
	a_sysinfo structure
	a_table_info structure
	a_translate_log structure
	a_truncate_log structure
	an_unload_db structure
	an_upgrade_db structure
	a_validate_db structure
	a_writefile structure

	DBTools enumeration types
	Verbosity enumeration
	Blank padding enumeration
	dbtran_userlist_type enumeration
	dbunload type enumeration
	a_validate_type enumeration

	The OLE DB and ADO Programming Interfaces
	Introduction to OLE DB
	Supported platforms
	Distributed transactions

	ADO programming with Adaptive Server Anywhere
	Connecting to a database with the Connection object
	Executing statements with the Command object
	Querying the database with the Recordset object
	Working with Recordset object
	Updating data through a cursor
	Using transactions

	Supported OLE DB interfaces

	Introduction to the Adaptive Server Anywhere .NET Data Provider
	Adaptive Server Anywhere .NET data provider features
	Running the sample projects

	Using the Adaptive Server Anywhere .NET Data Provider Sample Applications
	Tutorial: Using the Simple code sample
	Understanding the Simple sample project

	Tutorial: Using the Table Viewer code sample
	Understanding the Table Viewer sample project

	Developing Applications with the .NET Data Provider
	Using the .NET provider in a Visual Studio .NET project
	Connecting to a database
	Connection pooling
	Checking the connection state

	Accessing and manipulating data
	Using the AsaCommand object to retrieve and manipulate data
	Getting data using the AsaCommand object
	Inserting, updating, and deleting rows using the AsaCommand object
	Obtaining DataReader schema information

	Using the AsaDataAdapter object to access and manipulate data
	Getting data using the AsaDataAdapter object
	Inserting, updating, and deleting rows using the AsaDataAdapter object
	Obtaining AsaDataAdapter schema information

	Obtaining primary key values
	Handling BLOBs
	Obtaining time values

	Using stored procedures
	Transaction processing
	Error handling and the Adaptive Server Anywhere .NET data provider
	Deploying the Adaptive Server Anywhere .NET data provider
	Adaptive Server Anywhere .NET data provider system requirements
	Adaptive Server Anywhere .NET data provider required files
	Registering the Adaptive Server Anywhere .NET data provider DLL

	Adaptive Server Anywhere .NET Data Provider API Reference
	AsaCommand class
	AsaCommand constructors
	Cancel method
	CommandText property
	CommandTimeout property
	CommandType property
	Connection property
	CreateParameter method
	DesignTimeVisible property
	ExecuteNonQuery method
	ExecuteReader method
	ExecuteScalar method
	Parameters property
	Prepare method
	ResetCommandTimeout method
	Transaction property
	UpdatedRowSource property

	AsaCommandBuilder class
	AsaCommandBuilder constructors
	DataAdapter property
	DeriveParameters method
	GetDeleteCommand method
	GetInsertCommand method
	GetUpdateCommand method
	QuotePrefix property
	QuoteSuffix property
	RefreshSchema method

	AsaConnection class
	AsaConnection constructors
	BeginTransaction method
	ChangeDatabase method
	Close method
	ConnectionString property
	ConnectionTimeout property
	CreateCommand method
	Database property
	DataSource property
	InfoMessage event
	Open method
	ServerVersion property
	State property
	StateChange event

	AsaDataAdapter class
	AsaDataAdapter constructors
	AcceptChangesDuringFill property
	ContinueUpdateOnError property
	DeleteCommand property
	Fill method
	FillError event
	FillSchema method
	GetFillParameters method
	InsertCommand property
	MissingMappingAction property
	MissingSchemaAction property
	RowUpdated event
	RowUpdating event
	SelectCommand property
	TableMappings property
	Update method
	UpdateCommand property

	AsaDataReader class
	Close method
	Depth property
	Dispose method
	FieldCount property
	GetBoolean method
	GetByte method
	GetBytes method
	GetChar method
	GetChars method
	GetDataTypeName method
	GetDateTime method
	GetDecimal method
	GetDouble method
	GetFieldType method
	GetFloat method
	GetGuid method
	GetInt16 method
	GetInt32 method
	GetInt64 method
	GetName method
	GetOrdinal method
	GetSchemaTable method
	GetString method
	GetTimeSpan method
	GetUInt16 method
	GetUInt32 method
	GetUInt64 method
	GetValue method
	GetValues method
	IsClosed property
	IsDBNull method
	Item property
	NextResult method
	Read method
	RecordsAffected property

	AsaDbType enum
	AsaError class
	Message property
	NativeError property
	Source property
	SqlState property
	ToString method

	AsaErrorCollection class
	CopyTo method
	Count property
	Item property

	AsaException class
	Errors property
	GetObjectData method
	Message property
	Source property

	AsaInfoMessageEventArgs class
	Errors property
	Message property
	Source property
	ToString method

	AsaInfoMessageEventHandler delegate
	AsaParameter class
	AsaParameter constructors
	AsaDbType property
	DbType property
	Direction property
	IsNullable property
	Offset property
	ParameterName property
	Precision property
	Scale property
	Size property
	SourceColumn property
	SourceVersion property
	ToString method
	Value property

	AsaParameterCollection class
	Add method
	Clear method
	Contains method
	CopyTo method
	Count property
	IndexOf method
	Insert method
	Item property
	Remove method
	RemoveAt method

	AsaPermission class
	AsaPermission constructors

	AsaPermissionAttribute class
	AsaPermissionAttribute constructor
	CreatePermission method

	AsaRowUpdatedEventArgs class
	AsaRowUpdatedEventArgs constructors
	Command property
	Errors property
	RecordsAffected property
	Row property
	StatementType property
	Status property
	TableMapping property

	AsaRowUpdatingEventArgs class
	AsaRowUpdatingEventArgs constructors
	Command property
	Errors property
	Row property
	StatementType property
	Status property
	TableMapping property

	AsaRowUpdatedEventHandler delegate
	AsaRowUpdatingEventHandler delegate
	AsaTransaction class
	Commit method
	Connection property
	IsolationLevel property
	Rollback method
	Save method

	The Open Client Interface
	What you need to build Open Client applications
	Data type mappings
	Range limitations in data type mapping

	Using SQL in Open Client applications
	Executing SQL statements
	Using prepared statements
	Using cursors
	Modifying rows through a cursor

	Describing query results in Open Client

	Known Open Client limitations of Adaptive Server Anywhere

	Three-Tier Computing and Distributed Transactions
	Introduction
	Three-tier computing architecture
	Distributed transactions in three-tier computing
	The vocabulary of distributed transactions
	How application servers use DTC
	Distributed transaction architecture

	Using distributed transactions
	DTC isolation levels
	Recovery from distributed transactions

	Using EAServer with Adaptive Server Anywhere
	Configuring EAServer
	Setting the component transaction attribute

	Deploying Databases and Applications
	Deployment overview
	Deployment models
	Ways to distribute files

	Understanding installation directories and file names
	UNIX deployment issues
	File naming conventions

	Using InstallShield for deployment
	Using a silent installation for deployment
	Creating a silent install
	Running a silent install
	SMS Installation

	Deploying client applications
	Deploying OLE DB and ADO clients
	Deploying ODBC clients
	ODBC driver required files
	Configuring the ODBC driver
	Deploying connection information

	Deploying embedded SQL clients
	Installing files for embedded SQL clients
	Connection information

	Deploying JDBC clients
	Deploying Open Client applications

	Deploying administration tools
	Deploying database servers
	Deploying databases
	Deploying databases on read-only media

	Deploying embedded database applications
	Deploying personal servers
	Deploying database utilities
	Deploying SQL Remote

	SQL Preprocessor Error Messages
	SQL Preprocessor error messages indexed by error message value
	SQLPP errors
	`%1' host variable must be a C string type
	`%1' host variable must be an integer type
	`%1' symbol already defined
	Cannot find include file `%1'
	FIXCHAR type must have a length
	Feature not available with UltraLite
	Host variable `%1' is in use more than once with different indicators
	Inconsistent host variable types for this cursor
	Inconsistent indicator variables for this cursor
	Inconsistent number of host variables for this cursor
	Into clause not allowed on declare cursor - ignored
	Invalid array dimension
	Macros cannot be redefined
	Two SQLDAs specified of the same type (INTO or USING)
	Unknown hostvar type
	VARCHAR host variables cannot be pointers
	VARCHAR type must have a length
	arrays of FIXCHAR not supported
	arrays of VARCHAR not supported
	arrays of decimal not allowed
	arrays of this type not supported
	cannot describe static cursors
	combined pointer and arrays not supported for host types
	cursor `%1' not previously declared
	data value must be a host variable
	error reading temporary file
	error writing output file
	field used more than once in SET DESCRIPTOR statement
	full SQL feature
	host variable `%1' has been redefined
	host variable `%1' has two different definitions
	host variable `%1' is unknown
	host variables not allowed for this cursor
	host variables specified twice - on declare and open
	incorrect Embedded SQL language usage -- that is a `%1' extension
	incorrect Embedded SQL syntax
	incorrect SQL language usage -- that is a `%1' extension
	indicator variable `%1' is unknown
	initializer not allowed on VARCHAR host variable
	intermediate SQL feature
	invalid descriptor index
	invalid field for SET DESCRIPTOR
	invalid host variable type on `%1'
	invalid integer
	invalid type for indicator variable `%1'
	invalid type for sql statement variable
	long binary/long varchar size limit is 65535 for UltraLite
	missing ending quote of string
	must specify a host list or using clause on %1
	must specify an SQLDA on a DESCRIBE
	no FETCH or PUT for cursor `%1'
	no INTO clause on SELECT statement
	no OPEN for cursor `%1'
	no declare section and no INCLUDE SQLCA statement
	only one dimensional arrays supported for char type
	precision must be specified for decimal type
	statement `%1' not previously prepared
	static statement names will not work properly if used by 2 threads
	subscript value %1 too large
	token too long
	transact SQL extension
	unable to open temporary file
	unknown sql function `%1'
	unknown statement `%1'
	unrecognized SQL syntax
	vendor extension
	wrong number of parms to sql function `%1'

	Index

