
Adaptive Server® Anywhere
Getting Started

Part number: 38122-01-0900-01

Last modified: June 2003



Copyright© 1989–2003 Sybase, Inc. Portions copyright© 2001–2003 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual,
optical, or otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsiduary of
Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio,
Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Library, APT-Translator, ASEP,
AvantGo, AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection,
AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application
Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BayCam, Bit-Wise, BizTracker,
Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data
Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue,
Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, Dynamo, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Electronic Case Management,
Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One, Fusion Powered e-Finance, Fusion Powered
Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow,
Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, M-Business Channel,
M-Business Network, M-Business Server, Mail Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere
Studio, MAP, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks, MethodSet,
ML Query, MobiCATS, My AvantGo, My AvantGo Media Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway,
Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange,
Open Client, Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New
Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, Powersoft Portfolio, Powersoft Professional, PowerStage,
PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, Relational Beans,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S.W.I.F.T. Message Format Libraries, SAFE,
SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU,
SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT,
SQL Server/DBM, SQL SMART, SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase
Central, Sybase Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase
Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program,
Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare, Syber Financial, SyberAssist, SybMD, SyBooks,
System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible
Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online
Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality, UltraLite,
UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Versacore, Viewer, VisualWriter, VQL,
Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and
XP Server are trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.

ii



Contents

About This Manual vii
SQL Anywhere Studio documentation . . . . . . . . . . . . . . . . . viii
Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . xi
The Adaptive Server Anywhere sample database . . . . . . . . . . . xiii
Finding out more and providing feedback . . . . . . . . . . . . . . . . xiv

1 Adaptive Server Anywhere Quick Start 1
Step 1: Start the Adaptive Server Anywhere database server . . . . 2
Step 2: Start Sybase Central . . . . . . . . . . . . . . . . . . . . . . 4
Step 3: Start Interactive SQL . . . . . . . . . . . . . . . . . . . . . . 6

2 Databases and Applications 9
Relational database concepts . . . . . . . . . . . . . . . . . . . . . . 10
SQL and database computing . . . . . . . . . . . . . . . . . . . . . . 15
The pieces of a database system . . . . . . . . . . . . . . . . . . . . 18
How the pieces fit together . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Introduction to Adaptive Server Anywhere 23
Introduction to Adaptive Server Anywhere . . . . . . . . . . . . . . . 24
Adaptive Server Anywhere intended uses . . . . . . . . . . . . . . . 25
Adaptive Server Anywhere hallmarks . . . . . . . . . . . . . . . . . . 26
The Adaptive Server Anywhere database server . . . . . . . . . . . 28
Adaptive Server Anywhere applications . . . . . . . . . . . . . . . . . 29

4 The Architecture of Database Applications 33
Application programming interfaces . . . . . . . . . . . . . . . . . . . 34
Inside Adaptive Server Anywhere . . . . . . . . . . . . . . . . . . . . 39

5 Designing and Building Your Database 43
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
The sample database . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Tutorial: Design and build a simple database . . . . . . . . . . . . . . 51

6 Connecting Your Application to its Database 61
Introduction to connections . . . . . . . . . . . . . . . . . . . . . . . 62
Creating an ODBC data source . . . . . . . . . . . . . . . . . . . . . 63

iii



7 Using Interactive SQL 67
Introduction to Interactive SQL . . . . . . . . . . . . . . . . . . . . . . 68
Starting Interactive SQL . . . . . . . . . . . . . . . . . . . . . . . . . 70
Using Interactive SQL to display data . . . . . . . . . . . . . . . . . . 75
Working with SQL statements in Interactive SQL . . . . . . . . . . . 80

8 Selecting Data from Database Tables 87
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Selecting a complete table . . . . . . . . . . . . . . . . . . . . . . . . 90
Selecting columns from a table . . . . . . . . . . . . . . . . . . . . . 92
Ordering query results . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Selecting rows from a table . . . . . . . . . . . . . . . . . . . . . . . 98

9 Selecting Data from Multiple Tables 105
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Joining tables using the cross product . . . . . . . . . . . . . . . . . 108
Using the ON phrase to restrict a join . . . . . . . . . . . . . . . . . . 109
Joining tables using key joins . . . . . . . . . . . . . . . . . . . . . . 111
Joining tables using natural joins . . . . . . . . . . . . . . . . . . . . 113
Joining tables using outer joins . . . . . . . . . . . . . . . . . . . . . 115

10 Selecting Aggregate Data 117
Summarizing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A first look at aggregate functions . . . . . . . . . . . . . . . . . . . . 119
Applying aggregate functions to grouped data . . . . . . . . . . . . . 120
Restricting groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11 Selecting Data Using Subqueries 125
Introducing subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Single-row and multiple-row subqueries . . . . . . . . . . . . . . . . 129
Using subqueries instead of joins . . . . . . . . . . . . . . . . . . . . 131

12 Updating the Database 133
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Adding rows to a table . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Modifying rows in a table . . . . . . . . . . . . . . . . . . . . . . . . . 136
Deleting rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Grouping changes into transactions . . . . . . . . . . . . . . . . . . . 138
Integrity checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

iv



13 System Tables 145
The system tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
The SYSCATALOG view . . . . . . . . . . . . . . . . . . . . . . . . . 147
The SYSCOLUMNS view . . . . . . . . . . . . . . . . . . . . . . . . 148
Other system tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14 Microsoft Visual Basic Quick Start 151
Tutorial: Developing a Visual Basic application . . . . . . . . . . . . . 152

15 Glossary 155

Index 173

v





About This Manual

Subject This book describes how to build simple databases and database applications
using Adaptive Server Anywhere.

Audience This manual is for beginning users of Adaptive Server Anywhere.

Before you begin This manual assumes some familiarity with basic programming concepts. It
also assumes a working knowledge of the operating system on which you
will be using Adaptive Server Anywhere.

vii



SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere
Studio documentation

The SQL Anywhere Studio documentation is available in a variety of forms:
in an online form that combines all books in one large help file; as separate
PDF files for each book; and as printed books that you can purchase. The
documentation consists of the following books:

♦ Introducing SQL Anywhere Studio This book provides an overview of
the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere
database-management system and introductory material on designing,
building, and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases and database servers.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book describes
how to build and deploy database applications using the C, C++, and Java
programming languages. Users of tools such as Visual Basic and
PowerBuilder can use the programming interfaces provided by those
tools. It also describes the Adaptive Server Anywhere ADO.NET data
provider.

viii



♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ SQL Anywhere Studio Security Guide This book provides
information about security features in Adaptive Server Anywhere
databases. Adaptive Server Anywhere 7.0 was awarded a TCSEC
(Trusted Computer System Evaluation Criteria) C2 security rating from
the U.S. Government. This book may be of interest to those who wish to
run the current version of Adaptive Server Anywhere in a manner
equivalent to the C2-certified environment.

♦ MobiLink Synchronization User’s Guide This book describes how to
use the MobiLink data synchronization system for mobile computing,
which enables sharing of data between a single Oracle, Sybase, Microsoft
or IBM database and many Adaptive Server Anywhere or UltraLite
databases.

♦ MobiLink Synchronization Reference This book is a reference guide
to MobiLink command line options, synchronization scripts, SQL
statements, stored procedures, utilities, system tables, and error messages.

♦ iAnywhere Solutions ODBC Drivers This book describes how to set
up ODBC drivers to access consolidated databases other than Adaptive
Server Anywhere from the MobiLink synchronization server and from
Adaptive Server Anywhere remote data access.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ SQL Anywhere Studio Help This book includes the context-sensitive
help for Sybase Central, Interactive SQL, and other graphical tools. It is
not included in the printed documentation set.

♦ UltraLite Database User’s Guide This book is intended for all
UltraLite developers. It introduces the UltraLite database system and
provides information common to all UltraLite programming interfaces.

♦ UltraLite Interface Guides A separate book is provided for each
UltraLite programming interface. Some of these interfaces are provided
as UltraLite components for rapid application development, and others
are provided as static interfaces for C, C++, and Java development.

ix



In addition to this documentation set, PowerDesigner and InfoMaker include
their own online documentation.

Documentation formats SQL Anywhere Studio provides documentation in the following formats:

♦ Online documentation The online documentation contains the
complete SQL Anywhere Studio documentation, including both the
books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product,
and is the most complete and up-to-date source of documentation.

To access the online documentation on Windows operating systems,
choose Start➤ Programs➤ SQL Anywhere 9➤ Online Books. You can
navigate the online documentation using the HTML Help table of
contents, index, and search facility in the left pane, as well as using the
links and menus in the right pane.

To access the online documentation on UNIX operating systems, see the
HTML documentation under your SQL Anywhere installation.

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in thepdf_docsdirectory.
You can choose to install them when running the setup program.

♦ Printed books The complete set of books is available from Sybase
sales or from eShop, the Sybase online store. You can access eShop by
clicking How to Buy➤ eShop athttp://www.ianywhere.com.

x



Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in upper case, like the words
ALTER TABLE in the following example:

ALTER TABLE [ owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the wordsownerandtable-namein the
following example:

ALTER TABLE [ owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis (three dots), likecolumn-constraintin the
following example:

ADD column-definition [ column-constraint , . . . ]

One or more list elements are allowed. In this example, if more than one
is specified, they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [ savepoint-name ]

These square brackets indicate that thesavepoint-nameis optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square brackets.

[ ASC | DESC ]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces and a bar is used to separate the
options.

[ QUOTES { ON | OFF } ]

If the QUOTES option is used, one of ON or OFF must be provided. The
brackets and braces should not be typed.

xi



Graphic icons The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as Sybase Adaptive Server Anywhere.

♦ A database. In some high-level diagrams, the icon may be used to
represent both the database and the database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data
among databases. Examples are the MobiLink Synchronization Server
and the SQL Remote Message Agent.

♦ A programming interface.

API


xii



The Adaptive Server Anywhere sample database
Many of the examples throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in a file namedasademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they
relate to each other.

xiii



Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on theforums.sybase.comnews server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure its
operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on the
newsgroup service when they have time available. They offer their help
on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

xiv



CHAPTER 1

Adaptive Server Anywhere Quick Start

About this chapter This chapter describes how to start an Adaptive Server Anywhere database
server and connect to the sample database from Sybase Central and
Interactive SQL.

This chapter is for those who have some familiarity with databases and want
to run the software right away.

☞ For introductory descriptions of databases and Adaptive Server
Anywhere in particular, see the chapters starting with“Databases and
Applications” on page 9.

Contents Topic: page

Step 1: Start the Adaptive Server Anywhere database server 2

Step 2: Start Sybase Central 4

Step 3: Start Interactive SQL 6

1



Step 1: Start the Adaptive Server Anywhere
database server

In this section you start the Adaptive Server Anywhere database server
running the sample database.

Adaptive Server Anywhere includes two versions of the database server. The
personal database server is provided for single-user, same-machine use. The
network database server supports client/server communication over a
network and is provided for multi-user operation. The two database servers
are exactly equivalent in their query processing and other internal
operations: the personal database server is not less powerful than the
network database server.

Adaptive Server Anywhere databases are held in operating system files. The
sample database is held in a file namedasademo.dbin your SQL Anywhere
installation directory.

❖ To start the personal database server running the sample
database (Windows)

1. From the Start menu, choose Programs➤ SQL Anywhere 9➤ Adaptive
Server Anywhere➤ Personal Server Sample.

The database server window appears.

❖ To start the database server running the sample database (Com-
mand line)

1. Open a command prompt.

2. Change the directory to the SQL Anywhere installation directory.

On Windows operating systems, the default installation directory is
C:\Program Files\Sybase\SQL Anywhere 9.

3. Start the database server running the sample database.

The way you start the database server depends on your operating system,
and on whether you wish to connect to the database from other machines
on the network.

♦ If you wish to connect only from the same machine on Windows or
UNIX operating systems, enter the following command to start the
personal database server:

dbeng9 -n asademo9 asademo.db

2



Chapter 1. Adaptive Server Anywhere Quick Start

♦ If you wish to connect to the database server from other machines on
the network on Windows or UNIX operating systems, enter the
following command to start the network database server:

dbsrv9 -n asademo9 asademo.db

♦ On NetWare, only the network database server is provided. Enter the
following command:

load dbsrv9.nlm -n asademo9 asademo.db

The database server window appears.

☞ For a complete list of options you can use when starting the database
server, see “The database server”[ASA Database Administration Guide,
page 124].

3



Step 2: Start Sybase Central
In this section you start Sybase Central, the graphical database
administration tool. These instructions assume that you have carried out the
instructions in“Step 1: Start the Adaptive Server Anywhere database server”
on page 2.

❖ To start Sybase Central and connect to the sample database
(Windows)

1. Choose Start➤ Programs➤ SQL Anywhere 9➤ Sybase Central.

2. Connect to the sample database.
♦ Choose Tools➤ Connect.

♦ If you are prompted to choose a plug-in, choose Adaptive Server
Anywhere 9 from the list of plug-ins and then click OK.

♦ On the Database tab, enter the Server nameasademo9. This identifies
the database server you started in the previous section.

♦ On the Identification tab, enter the user IDDBA and the password
SQL.

♦ Click OK to connect.

❖ To start Sybase Central and connect to the sample database
(Command line)

1. At a command prompt, type the following command:

scjview

The main Sybase Central window appears.

2. Connect to the sample database.
♦ Choose Tools➤ Connect.

♦ If you are prompted to choose a plug-in, choose Adaptive Server
Anywhere 9 from the list of plug-ins and then click OK.

♦ On the Database tab, enter the Server nameasademo9. This identifies
the database server you started in the previous section.

♦ On the Identification tab, enter the user IDDBA and the password
SQL.

♦ Click OK to connect.

You can now explore the tables and other objects in the sample database.

With Sybase Central you can carry out many database administration tasks,
including creating databases, backing up databases, creating tables and other
database objects, and modifying data in database tables.

4



Chapter 1. Adaptive Server Anywhere Quick Start

☞ For a tour of Sybase Central, see “Tutorial: Managing Databases with
Sybase Central”[Introducing SQL Anywhere Studio,page 47].

5



Step 3: Start Interactive SQL
In this section you start the Interactive SQL utility, connect to the sample
database, and enter a command.

❖ To start Interactive SQL and connect to the sample database
(Windows)

1. Start Interactive SQL:
♦ Choose Start➤ Programs➤ SQL Anywhere 9➤ Adaptive Server

Anywhere➤ Interactive SQL.
The Connect dialog appears.

2. Connect to the sample database.
♦ On the Database tab, enter the Server nameasademo9.

♦ On the Identification tab, enter the user IDDBA and the password
SQL.

♦ Click OK to connect.
The Interactive SQL window appears.

3. Enter a command.

In the SQL Statements pane, enter a SQL statement such as the following
and pressF5 to execute the query:

SELECT * FROM CUSTOMER

The result set for the query appears in the Results pane.

❖ To start Interactive SQL and connect to the sample database
(Command line)

1. From a command prompt, enter the following command:

dbisql

The Connect dialog appears.

2. Connect to the sample database.
♦ On the Database tab, enter the Server nameasademo9.

♦ On the Identification tab, enter the user IDDBA and the password
SQL.

♦ Click OK to connect.

3. Enter a command in the Interactive SQL window.

In the SQL Statements pane, enter a SQL statement such as the following
and pressF5 to execute the query:

6



Chapter 1. Adaptive Server Anywhere Quick Start

SELECT * FROM CUSTOMER

The result set for the query appears in the Results pane.

☞ You can enter any SQL statement against the database from within
Interactive SQL. For a complete list of SQL statements, see “SQL
Statements”[ASA SQL Reference,page 213].

☞ For more information about Interactive SQL, see“Using Interactive
SQL” on page 67.

7





CHAPTER 2

Databases and Applications

About this chapter This chapter introduces basic database concepts. It describes what a
relational database is, and what it is used for. It also describes how databases
and database applications work together.

Other parts of the documentation set assume that you are familiar with the
concepts introduced in this chapter.

Contents Topic: page

Relational database concepts 10

SQL and database computing 15

The pieces of a database system 18

How the pieces fit together 20

9



Relational database concepts
A relational database-management system(RDBMS) is a system for
storing and retrieving data, in which the data is organized in tables. A
relational database consists of a collection of tables that store interrelated
data.

This section introduces some of the terms and concepts that are important in
talking about relational databases.

☞ For a tutorial illustrating the concepts described here, see“Designing
and Building Your Database” on page 43.

Database tables

In a relational database, all data is held intables, which are made up ofrows
andcolumns.

Each table has one or more columns, and each column is assigned a specific
data type, such as an integer, a sequence of characters (for text), or a date.
Each row in the table has a single value for each column.

For example, a table containing employee information may look as follows:

emp_ID emp_lname emp_fname emp_phone

10057 Huong Zhang 1096

10693 Donaldson Anne 7821

Characteristics of
relational tables

The tables of a relational database have some important characteristics:

♦ There is no significance to the order of the columns or rows.

♦ Each row contains one and only one value for each column, or contains
NULL, which indicates that there is no value for that column.

10



Chapter 2. Databases and Applications

♦ All values for a given column have the same data type.

The following table lists some of the formal and informal relational database
terms describing tables and their contents, together with their equivalent in
non-relational databases. This manual uses the informal terms.

Informal relational

term

Formal relational

term

Non-relational term

Table Relation File

Column Attribute Field

Row Tuple Record

What do you keep in
each table?

Each table in the database should hold information about a specific thing,
such as employees, products, or customers.

By designing a database this way, you can set up a structure that eliminates
redundancy and the possible inconsistencies caused by redundancy. For
example, both the sales and accounts payable departments might enter and
look up information about customers. In a relational database, the
information about customers is stored only once, in a table that both
departments can access.

☞ For more information about database design, see “Designing Your
Database”[ASA SQL User’s Guide,page 3].

☞ For instructions on how to create a table, see“Lesson 3: Design and
create a table” on page 53.

Relations between tables

A relational database is a set of related tables. You use primary keys and
foreign keys to describe relationships between the information in different
tables.Primary keys identify each row in a table uniquely, andforeign keys
define the relationships between rows in different tables.

Primary keys and foreign keys let you use relational databases to hold
information in an efficient manner, without redundancy.

Tables have a primary key

Each table in a relational database should have aprimary key . The primary
key is a column, or set of columns, that uniquely identifies each row. No two
rows in a table may have the same primary key value.

Examples In the sample database, the employee table stores information about
employees. It has a primary key column named emp_id, which holds a

11



unique ID number assigned to each employee. A single column holding an
ID number is a common way to assign primary keys, and has advantages
over names and other identifiers that may not always be unique.

A more complex primary key can be seen in the sales_order_items table of
the sample database. The table holds information about individual items on
orders from the company, and has the following columns:

♦ id An order number, identifying the order the item is part of.

♦ line_id A line number, identifying each item on any order.

♦ prod_id A product ID, identifying the product being ordered.

♦ quantity A quantity, displaying how many items were ordered.

♦ ship_date A ship date, displaying when the order was shipped.

A particular sales order item is identified by the order it is part of, and by a
line number on the order. These two numbers are stored in the id and line_id
columns. Items may share a single id value (corresponding to an order for
more than one item) or they may share a line_id number (all first items on
different orders have a line_id of 1). No two items share both values, and so
the primary key is made up of these two columns.

☞ For a tutorial example, see“Lesson 4: Identify and create primary keys”
on page 55.

Tables are related by foreign keys

The information in one table is related to that in other tables byforeign keys.

Example The sample database has one table holding employee information and one
table holding department information. The department table has the
following columns:

♦ dept_id An ID number for the department. This is the primary key for
the table.

♦ dept_name The name of the department.

♦ dept_head_id The employee ID for the department manager.

To find the name of a particular employee’s department, there is no need to
put the name of the employee’s department into the employee table. Instead,
the employee table contains a column holding a number that matches one of
the dept_id values in the department column.

The dept_id column in the employee table is called a foreign key to the
department table. A foreign key references a particular row in the table
containing the corresponding primary key.

12



Chapter 2. Databases and Applications

In this example, the employee table (which contains the foreign key in the
relationship) is called theforeign table or referencing table. The
department table (which contains the referenced primary key) is called the
primary table or thereferenced table.

☞ For a tutorial example, see“Lesson 5: Design column properties” on
page 56.

Other database objects

A relational database holds more than a set of related tables. Among the
other objects that make up a relational database are the following:

♦ Indexes Indexes allow quick lookup of information. Conceptually, an
index in a database is like an index in a book. In a book, the index relates
each indexed term to the page or pages on which that word appears. In a
database, the index relates each indexed column value to the physical
location at which the row of data containing the indexed value is stored.

Indexes are an important design element for high performance. You must
usually create indexes explicitly, but indexes for primary and foreign keys
and for unique columns are created automatically. Once created, the use
of indexes is transparent to the user.

♦ Views Views are computed tables, or virtual tables. They look like
tables to client applications, but they do not hold data. Instead, whenever
they are accessed, the information in them is computed from the
underlying tables.

The tables that actually hold the information are sometimes calledbase
tablesto distinguish them from views. A view is defined with a SQL
query on base tables or other views.

♦ Stored procedures and triggers These are routines held in the
database itself that act on the information in the database.

You can create and name your own stored procedures to execute specific
database queries and to perform other database tasks. Stored procedures
can take parameters. For example, you might create a stored procedure
that returns the names of all customers who have spent more than the
amount that you specify as a parameter in the call to the procedure.

A trigger is a special stored procedure that automatically fires whenever a
user updates, deletes, or inserts data, depending on how you define the
trigger. You associate a trigger with a table or columns within a table.
Triggers are useful for automatically maintaining business rules in a
database.

13



♦ Users and groups Each user of a database has a user ID and password.
You can set permissions for each user so that confidential information is
kept private and users are prevented from making unauthorized changes.
Users can be assigned to groups in order to make the administration of
permissions easier.

♦ Java objects You can install Java classes into the database. Java classes
provide a powerful way of building logic into your database, and a
special class of user-defined data types for holding information.

14



Chapter 2. Databases and Applications

SQL and database computing
When a client application wants to carry out a database task, such as
retrieving information using a query or inserting a new row into a table, it
does so usingStructured Query Language(SQL) statements. SQL is a
relational database language that has been standardized by the ANSI and
ISO standards bodies.

Depending on how you develop a client application, SQL statements could
be supplied in function calls from the programming language. Some
application development tools provide user interfaces for building and
generating SQL statements.

The programming interface delivers the SQL statement to the database
server. The database server receives the statement and executes it, returning
the required information (such as query results) back to the application.

Client/server communication protocols carry information between the client
application and the database server, and programming interfaces define how
an application sends the information. No matter what interface you use, and
what network protocol you use, it is SQL statements that are sent to a server,
and the results of SQL statements that are returned to the client application.

Example This SQL statement extracts the last names of all employees from the
employee table in the sample database:

SELECT emp_lname
FROM employee

You can send queries like this to the database server using Interactive SQL
or you can build the query into your own application.

Example This SQL statement creates a table called food that lists types of food and
the amount in stock in the employee cafeteria:

CREATE TABLE food (
food_id integer primary key,
food_type char(20),
quantity integer

)

☞ For an introduction to SQL, see the chapters beginning with“Selecting
Data from Database Tables” on page 87.

Queries

The “Q” in “SQL” stands forquery. You query (orretrieve) data from a
database with the SELECT statement. The basic query operations in a
relational system are projection, restriction, and join. The SELECT

15



statement implements all of them.

Projections and
restrictions

A projection is a subset of the columns in a table. Arestriction (also called
selection) is a subset of the rows in a table, based on some conditions.

For example, the following SELECT statement retrieves the names and
prices of all products that cost more than $15:

SELECT name, unit_price
FROM product
WHERE unit_price > 15

This query uses both a projection (SELECT name, unit_price ) and a
restriction (WHERE unit_price > 15).

☞ For more information, see“Selecting rows from a table” on page 98.

Joins A join links the rows in two or more tables by comparing the values in
columns of each table. For example, you might want to select the order item
identification numbers and product names for all order items that shipped
more than a dozen pieces of merchandise:

SELECT sales_order_items.id, product.name
FROM product JOIN sales_order_items
WHERE sales_order_items.quantity > 12

The product table and the sales_order_items table are joined together based
on the foreign key relationship between them.

☞ For more information, see the chapter“Selecting Data from Multiple
Tables” on page 105.

Other SQL statements

You can do more with SQL than just query. SQL includes statements that
create tables, views, and other database objects. It also includes statements
that modify tables (the INSERT, UPDATE, and DELETE statements), and
statements that perform many other database tasks discussed in this manual.

The system tables

Every Adaptive Server Anywhere database contains a set of system tables.
These are special tables that the system uses to manage data and the system.
These tables are also sometimes called thedata dictionary or thesystem
catalog.

System tables contain information about the database. You never alter the
system tables directly in the way that you can alter other tables. The system
tables hold information about the tables in a database, the users of a

16



Chapter 2. Databases and Applications

database, the columns in each table, and so on. This information is data
about data, ormetadata.

☞ For more information about the Adaptive Server Anywhere system
tables, see “System Tables”[ASA SQL Reference,page 611].

17



The pieces of a database system
This section describes how database applications and the database server
work together to manage databases.

Any information system contains the following pieces:

♦ A database Data is stored in a database. In diagrams in the
documentation, a database is indicated by a cylinder:

An Adaptive Server Anywhere database is a file, usually with an
extension of.db. Adaptive Server Anywhere includes a sample database
for you to work with: this is the fileasademo.dbin your Adaptive Server
Anywhere installation directory.

☞ For instructions on how to create a database, see“Designing and
Building Your Database” on page 43.

♦ A database server The database server manages the database. No
other application addresses the database file directly; they all
communicate with the database server.

☞ For instructions on starting database servers, see“Connecting Your
Application to its Database” on page 61.

In diagrams in the documentation, a database server is indicated as
follows:

Adaptive Server Anywhere provides two versions of its database server:
thepersonal database serverand thenetwork database server. In
addition to the features of the personal server, the network database
server supports client/server communications across a network, while the
personal database server can accept connections only from applications
running on the same machine. The request-processing engine is identical
in both servers.

☞ For more information, see“The Adaptive Server Anywhere database
server” on page 28.

18



Chapter 2. Databases and Applications

♦ A programming interface Applications communicate with the database
server using a programming interface. You can use ODBC, JDBC, OLE
DB, Sybase Open Client, or Embedded SQL.

Many application development tools provide their own programming
environment that hides the details of the underlying interface. For
example, if you develop an application using Sybase PowerBuilder, you
never have to make an ODBC function call. Nevertheless, behind the
scenes each of these tools is using one of the programming interfaces.

The programming interface provides a library of function calls for
communicating with the database. For ODBC and JDBC, the library is
commonly called adriver . The library is typically provided as a shared
library on UNIX operating systems or a dynamic link library (DLL) on
PC operating systems. The JDBC interface uses the Sybase jConnect
driver, which is a zip file of compiled Java classes.

In diagrams in the documentation, a programming interface is indicated
as follows:

API


♦ A client application Client applications use one of the programming
interfaces to communicate with the database server.

If you develop an application using a rapid application development
(RAD) tool such as Sybase PowerBuilder, you may find that the tool
provides its own methods for communicating with database servers, and
hides the details of the language interface. Nevertheless, all applications
do use one of the supported interfaces.

In diagrams in the documentation, a client application is indicated by the
following icon:

19



How the pieces fit together
Database applications can connect to a database server located on the same
machine as the application itself, or in the case of the network database
server, on a different machine. In addition, with Adaptive Server Anywhere
you can build distributed databases, with physically distinct databases on
different machines sharing data.

Personal applications and embedded databases

You can use Adaptive Server Anywhere to build a complete application and
database on a single computer. In the simplest arrangement, this is a
standalone applicationor personal application: it is self-contained with
no connection to other databases. In this case, the database server and the
database can be started by the client application, and it is common to refer to
the database as anembedded database: as far as the end user is concerned,
the database is a part of the application.

Standalone applications have the following architecture, with a client
application connecting through a programming interface to a database server
running on the same machine:

Interface


The Adaptive Server Anywhere personal database server is generally used
for standalone applications, although you can also use applications on the
same machine as the network server.

20



Chapter 2. Databases and Applications

Client/server applications and multi-user databases

You can use Adaptive Server Anywhere to build an installation with many
applications running on different machines, connected over a network to a
single database server running on a separate machine. This is aclient/server
environment, and has the following architecture. The interface library is
located on each client machine.

Network


Interface

library


In this case, the database server is the Adaptive Server Anywhere network
database server, which supports network communications. The database is
also called amulti-user database.

No changes are needed to a client application for it to work in a client/server
environment, except to identify the server to which it should connect.

21





CHAPTER 3

Introduction to Adaptive Server Anywhere

About this chapter This chapter introduces the Adaptive Server Anywhere relational database
system. It describes the uses and features of Adaptive Server Anywhere.

Contents Topic: page

Introduction to Adaptive Server Anywhere 24

Adaptive Server Anywhere intended uses 25

Adaptive Server Anywhere hallmarks 26

The Adaptive Server Anywhere database server 28

Adaptive Server Anywhere applications 29

23



Introduction to Adaptive Server Anywhere
The previous chapter,“Databases and Applications” on page 9, introduced
databases in a general manner. This chapter describes the particular
hallmarks of Adaptive Server Anywhere and describes the uses to which it
can be put.

Adaptive Server Anywhere provides a series of tools for storing and
managing data. You can use these tools to enter data into your database, to
change your database structure, and to view or alter your data.

The Adaptive Server Anywhere relational database-management system is
the heart of SQL Anywhere Studio. Adaptive Server Anywhere is designed
for tasks that require a full-featured SQL database. It is designed to operate
in varied environments. It takes advantage of available memory and CPU
resources, providing good performance in environments with ample
resources. It also operates well in environments with limited physical and
database administration resources, including mobile computing
environments, embedded database use, and use as a database server for small
and medium businesses.

24



Chapter 3. Introduction to Adaptive Server Anywhere

Adaptive Server Anywhere intended uses
Roles for which Adaptive Server Anywhere is ideally suited include the
following:

♦ A small and medium business database server Adaptive Server
Anywhere is built to handle the requirements of small and medium
businesses, with anywhere from a few users to several hundred users. It
provides a high-performance database for workgroups and companies,
well-suited for (but not limited to) environments where administration
and hardware resources are limited.

Adaptive Server Anywhere can employ multiple CPUs and use up to
64 Gb of memory. Our customers have Adaptive Server Anywhere
databases with tens of gigabytes of data in production use.

♦ An embedded database Many applications require a database “behind
the scenes”. Personal Information Managers, document management
systems, network monitoring applications—just about any application
that stores information. Adaptive Server Anywhere is intended to be the
database for these applications. The UltraLite deployment option is
intended for embedded environments that have very restricted resources.

A key feature of embedded databases is that they be able to run entirely
without administration. Adaptive Server Anywhere has demonstrated this
facility in many demanding commercial applications.

♦ Mobile computing Laptop and notebook computers are now common
in many workplaces. Adaptive Server Anywhere is intended to be the
SQL database for these computers. With MobiLink synchronization and
SQL Remote replication, Adaptive Server Anywhere extends
transaction-based computing throughout the enterprise. The UltraLite
deployment option and MobiLink synchronization technology provide
full database functionality on devices with limited resources, such as
hand-held computers.

25



Adaptive Server Anywhere hallmarks
Adaptive Server Anywhere is built around the following technological
hallmarks:

♦ Full SQL relational database-management system Adaptive Server
Anywhere is a transaction-processing relational database-management
system (RDBMS), with full recovery capabilities, online backup,
referential integrity actions, stored procedures, triggers, row-level
concurrency control, schedules and events, a rich SQL language, and all
the features you expect in a full SQL RDBMS.

♦ Economical hardware requirements Adaptive Server Anywhere
requires fewer memory and disk resources than other
database-management systems.

♦ Easy to use Adaptive Server Anywhere is self-tuning and easy to
manage. You can use Adaptive Server Anywhere without the extensive
database administration efforts usually associated with relational
database-management systems.

♦ Standalone and network use Adaptive Server Anywhere can be used
in a standalone manner, for example as an embedded database in a
data-centric application, or as a network server in a multi-user
client/server or three-tier environment. As an embedded database system,
it can be started automatically by an application when required.

♦ High performance While Adaptive Server Anywhere is designed with
simple administration and modest resource requirements in mind, it is a
scalable, high-performance DBMS. Adaptive Server Anywhere can run
on multiple CPUs, has an advanced query optimizer, and provides
performance monitoring and tuning tools.

♦ Industry standard interfaces Adaptive Server Anywhere provides a
native ODBC 3.5 driver for high performance from ODBC applications,
and an OLE DB driver for use from ActiveX Data Object (ADO)
programming environments. It has an ADO.NET data provider for
Adaptive Server Anywhere and it also comes with Sybase jConnect for
JDBC, as well as an iAnywhere JDBC driver, and supports embedded
SQL and Sybase Open Client interfaces.

♦ A cross-platform solution Adaptive Server Anywhere can be run on
many operating systems, including Windows, Novell NetWare, Sun
Solaris, and Linux.

☞ The components available on each platform may differ. For
information, see“Availability of components” on page 30.

26



Chapter 3. Introduction to Adaptive Server Anywhere

System requirements ☞ For more information on supported operating systems for components in
SQL Anywhere Studio, see “SQL Anywhere Studio Supported Platforms”
[Introducing SQL Anywhere Studio,page 121].

Network software requirements

If you are running an Adaptive Server Anywhere network server, you must
have appropriate networking software installed and running.

The Adaptive Server Anywhere network server is available for Windows,
Novell NetWare, Linux, and UNIX operating systems.

Adaptive Server Anywhere supports the TCP/IP network protocol and the
SPX protocol for Novell NetWare.

27



The Adaptive Server Anywhere database server
There are two versions of the Adaptive Server Anywhere database server
included in the product:

♦ The personal database server This server is provided for single-user,
same-machine use: for example, as an embedded database server. It is
also useful for development work.

The name of the personal server executable is as follows:

• On UNIX operating systems, it isdbeng9.

• On Windows, except Windows CE, it isdbeng9.exe.

♦ The network database server In addition to the features of the
personal server, the network server supports client/server
communications across a network. It is provided for multi-user use.

The name of the network server executable is as follows:

• On UNIX operating systems, it isdbsrv9.

• On Windows, including Windows CE, it isdbsrv9.exe.

• On Novell NetWare, the server is a NetWare Loadable Module (NLM)
calleddbsrv9.nlm.

Same SQL features in
each version

The request-processing engine is identical in the two versions of the server.
They support exactly the same SQL language, and exactly the same database
features. The personal server does not support communications across a
network, more than ten concurrent connections, or the use of more than two
CPUs. Applications developed against a personal server work unchanged
against a network server.

28



Chapter 3. Introduction to Adaptive Server Anywhere

Adaptive Server Anywhere applications
This section introduces some of the database applications that are supplied
with Adaptive Server Anywhere in the SQL Anywhere Studio product.
These applications help you design, build, and administer your databases.

Sybase Central

Sybase Central provides a graphical user interface for creating and
modifying databases and database objects, for inspecting the structure of
databases, and for database server administration.

Sybase Central lets you perform such tasks as creating a new database,
adding a table, or adding a column to a table.

☞ For information on using Sybase Central, see“Lesson 2: Connect to
your database” on page 52.

The Sybase Central window is similar to Windows Explorer. The main
window is split into two vertically-aligned panes. The left pane displays a
hierarchical view of database objects orcontainers in a tree-like structure.
A container is a database object that can hold other database objects,
including other containers.

The right pane displays the contents of the container that has been selected
in the left pane. For example, to view a list of tables in the database, expand
the Adaptive Server Anywhere 9 plug-in icon in the left pane, and then open
the Tables folder in the left pane. A list of tables in the database appears on
the Tables tab in the right pane.

☞ For an introduction to Sybase Central, see “Tutorial: Managing
Databases with Sybase Central”[Introducing SQL Anywhere Studio,page 47].

29



Interactive SQL

Interactive SQL is an application for typing and sending SQL statements to a
database. Interactive SQL allows you to query and alter data in your
database, as well as modify the structure of your database.

Everything that can be done in Sybase Central can be done in
Interactive SQL, but administration tasks are easier in Sybase Central. For
this reason, this book uses Sybase Central whenever possible, but when a
task is important, or is simple to accomplish in Interactive SQL, the
Interactive SQL instructions are also included.

☞ For an introduction to Interactive SQL, see“Using Interactive SQL” on
page 67.

The Interactive SQL
panes

♦ The SQL Statements pane This is where you type SQL statements to
access and modify your data. The title bar above the SQL Statements
pane displays the current connection information.

♦ The Results pane This is a tabbed pane that displays query result sets,
messages from the database server, and information about query
execution. For example, if you enter a query asking how many customers
ordered five or more different types of products, that number appears on
the Results tab in the Results pane, and the query optimizer’s plan for
executing the statement appears on the Plan tab in the Results pane. You
can edit the result set on the Results tab.

☞ For more information about editing the result set, see“Editing table
values in Interactive SQL” on page 76.

Utilities

A set of utilities is available for carrying out administration tasks such as
backing up a database. Utilities are useful for including in batch files for
repeated use.

☞ For more information about administration utilities, see “Database
Administration Utilities” [ASA Database Administration Guide,page 455].

Availability of components

What components you have installed depends on which operating system
you are using, what choices you made when installing the software, and
whether you received the Adaptive Server Anywhere product or installed
Adaptive Server Anywhere as part of another product.

30



Chapter 3. Introduction to Adaptive Server Anywhere

For example, if you have received Adaptive Server Anywhere as part of
another product, you may not have both versions of the database server.

Not all components are available on all operating systems. For example,
there is no personal server for NetWare, only a network server.

The SQL Anywhere program group

For Windows operating systems, after the software is installed, you will have
a SQL Anywhereprogram group. You can reach the program group by
clicking the Start button and choosing Programs➤ SQL Anywhere 9.

Installing SQL Anywhere Studio under UNIX does not provide a program
group.

Program group items The program group contains some or all of the following items. The items
you see depend on the choices you made when installing the software.

♦ Adaptive Server Anywhere Contains the items:
• Interactive SQL Starts the Interactive SQL utility for sending SQL

statements to a database.

• Network Server Sample Starts the network database server and
loads the sample database.

• ODBC Administrator Starts the ODBC Administrator program for
setting up and editing ODBC data sources.

• Personal Server Sample Starts the personal server and loads the
sample database.

♦ MobiLink program group To access MobiLink synchronization
programs and samples.

♦ UltraLite program group To access UltraLite programs and samples.

♦ Check for updates To access a web page with information about the
latest updates to SQL Anywhere Studio.

♦ iAnywhere Online Resources Opens a web page with information
about iAnywhere Solutions.

♦ Sybase Central Starts Sybase Central, the database management tool.

♦ Check for updates Opens a web page where you get information about
updates available for your version of SQL Anywhere Studio.

♦ Online Books Opens the online documentation for Adaptive Server
Anywhere.

In addition, you may have items for InfoMaker and PowerDesigner.

31





CHAPTER 4

The Architecture of Database
Applications

About this chapter This chapter describes how database applications communicate with the
Adaptive Server Anywhere database server, and provides a glimpse into the
architecture of Adaptive Server Anywhere.

Contents Topic: page

Application programming interfaces 34

Inside Adaptive Server Anywhere 39

33



Application programming interfaces
The current section describes application architecture in more detail. An
overview of database application architecture was given in“How the pieces
fit together” on page 20.

Adaptive Server Anywhere supports a wide set of programming interfaces to
provide flexibility in the kinds of applications and application development
environments you can use.

Supported interfaces and protocols

The following diagram displays the supported interfaces, and the interface
libraries used. In most cases, the interface library is the same name as the
interface itself.

ASA


ODBC
jConnect

Embedded


SQL


JDBC
 Embedded SQL
 ODBC


OLE DB


OLE DB


Open

Client


Open Client


Client

Application


Driver or

interface library


Communication

Protocol


Tabular Data

Stream


Command

Sequence


Application

Programming

Interface


Database

Server


Database


The applications supplied with SQL Anywhere Studio use several of these
interfaces:

34



Chapter 4. The Architecture of Database Applications

ASA


ISQL


SQL Modeler


JDBC


ODBC


SybaseCentral


InfoMaker
 PowerDynamo


DB Tools


Embedded SQL


Communications protocols

Each interface library communicates with the database server using a
communication protocol. Adaptive Server Anywhere supports two
communication protocols,Tabular Data Stream (TDS) andCommand
Sequence. These protocols are internal, and for most purposes it does not
matter which one you are using. Your choice of development environment
will be governed by your available tools.

The major differences you will see are upon connecting to the database. The
Command Sequence applications and TDS applications use different
methods to identify a database and database server, and so connection
dialogs are different.

TDS This protocol is used by Sybase Adaptive Server Enterprise, Open
Client applications, and Java applications that use the jConnect JDBC driver
connect using TDS.

Command Sequence This protocol is used by Adaptive Server Anywhere,
Adaptive Server IQ, and is used by embedded SQL, ODBC, and OLE DB
applications.

35



ODBC applications

You can develop ODBC applications using a variety of development tools
and programming languages, as shown in the figure below.

VB
 PowerBuilder


ODBC


C/C++


Java


iAnywhere

JDBC driver


Delphi


For example, of the applications supplied with SQL Anywhere Studio,
InfoMaker and SQL Modeler use ODBC to connect to the database.

Embedded SQL applications

You can develop C or C++ applications using the embedded SQL
programming interface. The command-line database tools are examples of
applications developed in this manner.

Embedded SQL is also a programming interface for UltraLite applications.

36



Chapter 4. The Architecture of Database Applications

C/C++
 DB Tools


ESQL


Open Client applications

Open Client is an interface that is also supported by Sybase Adaptive Server
Enterprise. You can develop Open Client applications in C or C++. Other
Sybase applications, such as OmniConnect or Replication Server, use Open
Client.

C/C++
 OmniConnect


Open

Client


37



JDBC applications

You can develop applications that use JDBC to connect to Adaptive Server
Anywhere using Java. Several of the applications supplied with
SQL Anywhere Studio use JDBC: the stored procedure debugger, Sybase
Central, and Interactive SQL.

Debugger


Sybase Central
 Java


jConnect

JDBC


ISQL


Java and JDBC are also important programming languages for developing
UltraLite applications.

OLE DB applications

Adaptive Server Anywhere includes an OLE DB driver. You can develop
applications using Microsoft’s OLE DB interface directly, or using the
ActiveX Data Objects (ADO) interface. The ADO interface is included in
Visual Basic and other Microsoft programming tools. SQL Anywhere Studio
also includes and ADO.NET data provider for Adaptive Server Anywhere.

38



Chapter 4. The Architecture of Database Applications

Inside Adaptive Server Anywhere
While you never need to deal with the internals of the database server, a
glimpse behind the scenes may help you understand the process better.

Inside the database server

The Adaptive Server Anywhere database server has an internal structure that
allows many requests to be handled efficiently.

♦ A communications layer handles the actual exchange of data with client
applications. This layer receives requests from client applications, and
returns results. The timing of these actions is governed by a negotiation
between client and server to make sure that the network traffic is kept to a
minimum, but that the data is made available as soon as possible on the
client side.

♦ The parser checks each SQL statement sent to the database server, and
transforms it into an internal form for processing.

♦ If the request is a query, an update, or delete statement, there may be
many different ways of accessing the data, which may take massively
different times. The job of the optimizer is to select from among all these
possibilities the best route to getting the required data quickly.

♦ A Java Virtual Machine is built into the database server, and any Java
operations sent by client applications, or invoked internally by the
database server, are handled by the Java VM.

♦ The lowest level of the database server is concerned with reading and
writing data from the disk, caching data in memory to avoid unnecessary
disk access, and balancing the demands of different users.

39



ASA


Data Access


 Communications


Java VM

Optimizer


Parser


Inside the database

All the information in an Adaptive Server Anywhere database is usually
stored in a single database file, which can be copied from one machine to
another. It is possible to make databases of several files, but this is generally
only required for very large databases.

In addition to the database file, Adaptive Server Anywhere uses two other
files when it is running a database. These are the transaction log and the
temporary file.

♦ The database file Internally, the database file is composed of pages:
fixed size areas of disk. The data access layer reads and writes data one
page at a time. Many pages hold the data that is in the database tables, but
other pages hold index information, information about the distribution of
data within the database, and so on.

♦ The transaction log The transaction log is a separate file that contains
a record of all the operations performed on the database. Normally, it has
the same name as the database file, except that it ends with the suffix.log
instead of.db. It has three important functions.

• Record operations on your data to enable recovery You can
recreate your database from a backup together with the transaction log
if the database file is damaged.

• Improve performance By writing information to the transaction log,
the database server can safely process your statements without writing
to the database file as frequently.

• Enable database replication SQL Remote and the MobiLink client

40



Chapter 4. The Architecture of Database Applications

utility use this file to replicate the changes to your database on portable
computers which are occasionally connected to the network.

♦ The temporary file The temporary file is opened when the database
server starts, and is closed down when the server stops. As its name
suggests, the temporary file is used while the server is running to hold
temporary information. The temporary file does not hold information that
needs to be kept between sessions.

The temporary file is stored in your temporary directory. The location of
this directory is generally identified by your TEMP environment variable.

41





CHAPTER 5

Designing and Building Your Database

About this chapter This chapter introduces some principles of database design, and describes
how to create a database using Sybase Central. It uses the Adaptive Server
Anywhere sample database to illustrate the principles involved.

Contents Topic: page

Introduction 44

The sample database 46

Tutorial: Design and build a simple database 51

43



Introduction
It is worth spending some time designing even the simplest database: what
tables you will have, the keys that relate these tables, and so on.

Designing a database is not a difficult task for small and medium sized
databases, but it is an important one. Bad database design can lead to an
inefficient and possibly unreliable database system. Database applications
are built to work on specific parts of a database, and rely on the database
design, so a bad design can be difficult to revise at a later date.

Designing a large database is a complex task. There are formal approaches,
such as conceptual data modeling, that help you to create efficient designs.
Powerful tools, such as Sybase PowerDesigner and DataArchitect, enable
you to apply these techniques to design and maintain large database designs.

This chapter does not attempt to tackle design issues for large databases.
Instead, it helps you decide the kind of information you group together in a
single table, and the way in which to think about and classify relationships
between tables.

☞ For an elementary look at the principles of database design, see
“Designing Your Database”[ASA SQL User’s Guide,page 3]. For more
advanced treatments, see the Sybase PowerDesigner documentation or a
book devoted to database design.

This chapter assumes that you are familiar with the concepts of database
tables, primary keys, and foreign keys.

☞ For information on primary keys and foreign keys, see“Relations
between tables” on page 11.

About this chapter

If you want to know. . . Then see. . .

Where to find information about the
sample database

“The sample database” on page 46

How to connect to the sample database“Connect to the sample database”
on page 47

How to view tables “View a list of tables in the sample
database” on page 48

How to view columns “View the columns of a table” on
page 49

44



Chapter 5. Designing and Building Your Database

If you want to know. . . Then see. . .

How to create a database file “Lesson 1: Create a database file”
on page 51

How to connect to a database “Lesson 2: Connect to your
database” on page 52

How to create a table “Lesson 3: Design and create a
table” on page 53

How to create a primary key “Lesson 4: Identify and create
primary keys” on page 55

How to set column properties “Lesson 5: Design column proper-
ties” on page 56

How to create relationships between
tables

“Lesson 6: Design and create re-
lationships between tables” on
page 58

45



The sample database
There is a sample database included with Adaptive Server Anywhere. Many
of the examples throughout the documentation use this sample database.

The sample database represents a small company that makes a limited range
of sports clothing. It contains internal information about the company
(employees, departments, and financial data), as well as product information
(products) and sales information (sales orders, customers, and contacts). All
information in the sample database is fictional.

The following figure displays the tables in the sample database and how they
are related to each other. The boxes represent tables, and the arrows
represent foreign key relationships. Primary key columns are underlined.

We will use this database to illustrate the concepts described in this chapter.

Viewing the structure of the sample database using Sybase Central

This section describes how to use Sybase Central to view the contents of the
sample database.

46



Chapter 5. Designing and Building Your Database

Connect to the sample database

You need to connect to the sample database from Sybase Central in order to
view the tables and other objects in the database.

❖ To connect to the sample database from Sybase Central

1. Start Sybase Central.

♦ From the Start menu, choose Programs➤ SQL Anywhere 9➤ Sybase
Central.

or

♦ At a command prompt, enter the following command:

scjview

2. Open the Connect dialog.

♦ Choose Tools➤ Connect.

♦ If you are presented with a list of plug-ins, choose Adaptive Server
Anywhere from the list.

The Connect dialog appears:

3. Select ODBC Data Source Name and click Browse. From the resulting
list, choose ASA 9.0 Sample.

4. Click OK to connect.

47



View a list of tables in the sample database

Once you are connected to the sample database, you can open the folders in
the left pane to view the tables and other objects that make up the database.

☞ For information on connecting to a database from Sybase Central, see
“Connect to the sample database” on page 47.

❖ To view a list of tables in the database

1. In Sybase Central, open the Adaptive Server Anywhere 9 plug-in icon.

Each top-level folder on the left pane is aplug-in. A separate plug-in is
used to manage each software component. The Adaptive Server
Anywhere plug-in is used to manage all aspects of Adaptive Server
Anywhere.

2. Open the sample database.

Under the Adaptive Server Anywhere plug-in is a list of database servers
to which you have connections. When the sample database is started
using the ASA 9.0 Sample ODBC data source, the database server is
namedasademo9.

Each database server may be running one or more databases. In this case,
the sample database is named asademo. The database also has the user
name for the current connection next to it. In this case, you are connected
as a user namedDBA.

3. Open the Tables folder.

Each database contains a set of folders describing the different types of
database objects. Here, we are interested only in the tables in the
database. Open the Tables folder to list the available tables.

48



Chapter 5. Designing and Building Your Database

Notes Each table has anowner, who is listed in parentheses beside the table name
in the left pane. If you see more tables than appear in the figure, right-click
the asademo database, and choose Filter Objects By Owner from the popup
menu. Select DBA, and clear the other user IDs in the list. Click OK to
restrict the objects displayed to those owned by DBA.

View the columns of a table

Each table has tabs in the right pane with information about a table’s
columns, foreign keys, indexes, triggers, and data. Here, we look only at the
columns of the product table in the sample database.

☞ For information on viewing tables, see“View a list of tables in the
sample database” on page 48.

49



❖ To view information about the columns of the product table

1. In Sybase Central, open the product table. In the left pane, expand the
Tables folder, and then select the product table in the left pane.

Information about the product table appears on the tabs in the right pane.

2. In the right pane, click the Columns tab.

The name, data type, and other information about each column appears in
the right pane.

3. View the properties of the color column.

Select the color column, and then choose Properties from the File menu.

The color property sheet appears. This property sheet contains a detailed
description of the column. Some of the properties are useful for advanced
users only, and are not described in this book.

You can use Sybase Central to browse other aspects of the sample database,
including foreign keys, primary keys, and the data in each table. You are
encouraged to do so in order to be familiar with the sample database for
examples in the remainder of the documentation.

50



Chapter 5. Designing and Building Your Database

Tutorial: Design and build a simple database
When designing a database, you plan what items you want to store
information about, and what information you will keep about each item. You
also determine how these items are related. You classify the things in your
database as entities; the links between these entities are calledrelationships.

In this tutorial, you design and build a very simple database, modeled on the
product, sales_order_items, sales_order, and customer tables of the sample
database, but simplified. The database you create is not used in other parts of
the documentation, but it is still highly recommended that you work through
the tutorial to gain familiarity with the software and concepts.

Lesson 1: Create a database file

In this lesson, you create a database file to hold your database.

☞ For more information, see“The pieces of a database system” on page 18.

Concepts A database file is a container, ready to hold your database. The database file
contains system tables and other system objects that are common to all
databases, but you must add tables and the data they hold.

The collection of tables, indexes, and so on within the database, and all the
relationships between them, make up the databaseschema. The schema is
the database without the data. This tutorial describes how to design and
create a very simple database schema.

☞ For a conceptual introduction to some of these pieces, see“Relational
database concepts” on page 10.

The name of each object within the database, including tables, columns, and
indexes, is anidentifier . There are rules governing what you can use as
identifiers. You can use any set of letters, numbers, or symbols. However,
you must enclose a column name in double quotes if it contains characters
other than letters, numbers, or underscores, if it does not begin with a letter,
or if it is the same as a keyword.

If the QUOTED_IDENTIFIER database option is set to OFF, double quotes
are used to delimit SQL strings and cannot be used for identifiers. However,
you can always use square brackets to delimit identifiers, regardless of the
setting of QUOTED_IDENTIFIER.

☞ For more information about identifiers, see “Identifiers”[ASA SQL
Reference,page 7].

Exercise

51



❖ To create a new database file

1. Start Sybase Central.

2. In the left pane, select the Adaptive Server Anywhere 9 plug-in, then
click the Utilities tab in the right pane. In the right pane, double-click
Create Database.

The Create Database wizard opens.

3. Read the information on the introductory page and click Next.

4. Select Create A Database On This Computer and click Next.

5. Choose a location and name for your database file:

♦ Enter the filenamec:\temp\mysample. If your temporary directory is
somewhere other thanc:\temp, specify a path of your own choice.

6. Click Finish to create the database.

Other options are available when creating a database, which you could
have viewed by clicking Next instead of Finish, but the default choices
are good for many purposes.

The Creating Database window displays the progress of the task. When
the file is created, click OK to close the window.

Lesson 2: Connect to your database

In this lesson, you connect to the database file you created.

☞ For more information, see“How the pieces fit together” on page 20.

Exercise Once your database is created, you can connect to it in order to create tables
and other database objects.

❖ To connect to your database

1. Start Sybase Central.

2. Choose Tools➤ Connect to open the Connect dialog. If you have
multiple plug-ins loaded, you may need to choose the Adaptive Server
Anywhere plug-in before the Connect dialog opens.

3. Specify the user ID and password.

On the first tab of the Connect dialog (the Identification tab), enter a user
ID of DBA and a password ofSQL. These are the values created for new
databases, and so grant access to your new database.

ChooseNone in the profile options at the bottom of the tab.

52



Chapter 5. Designing and Building Your Database

4. Specify your database file.

Click the Database tab. Enter the full path of your database file in the
Database File field. For example, if you followed the suggestion in the
previous lesson, you should enter the following:

c: \temp \mysample.db

5. Connect to the database.

Click OK. Sybase Central connects to the database.

Open the database server container in the left pane to see the mysample
database.

Lesson 3: Design and create a table

In this lesson, you add a table to your database.

Concepts Each table in your database should contain information about a single
subject. In the language of database design, you are identifyingentities. For
example, the sample database holds information about employees in one
table, and information about products in another table: employees and
products are entities within the database design.

☞ For an introduction to tables, see“Database tables” on page 10.

Each column in a table describes a particular characteristic of the thing that
you would like to store information about. For example, in the sample
database, the employee table has columns that hold an employee ID number,
first and last names, an address, and other particular information that
pertains to a particular employee.

In database diagrams, each table is depicted by a rectangular box. The name
of the table is at the top of the box, and the column names are listed inside
the box.

53



In the product table from the sample database, above, each product is an
item of sports clothing.

Exercise Create a simplified version of the product table, containing only the
identifier (id) and name columns.

❖ To create the product table

1. In Sybase Central, connect to your database if you are not already
connected.

2. Open the Tables folder in your database.

First open the server and database containers, then open the Tables folder.

3. From the File menu, choose➤ New ➤ Table.

The Table Creation wizard appears.

4. Name your tableproduct.

5. Click Finish.

6. Select the product table in the left pane, then click the Columns tab in the
right pane.

7. Create the columns.

From the File menu, choose Add column and add a column with the
following properties:

♦ Column Name Give the column a name ofid.

♦ PKey Select the checkbox beside the column name so that a
checkmark appears, indicating that the column is aprimary key .

♦ Data Type Give the column theinteger data type.
You can ignore the other properties. Add a second column with the
following properties:

♦ Column Name Give the column a name ofname. This column holds
the product name.

♦ Data Type Give the column thechar data type which holds character
strings, and enter a maximum length of15 in the Size column.

8. To finish, click the Save and Close icon on the far right of the toolbar.

54



Chapter 5. Designing and Building Your Database

You have now created a table in your database. The table data is held in the
database file. At present, the table is empty.

The next two lessons have more to say about columns and data types.

Lesson 4: Identify and create primary keys

In this lesson, you learn more about defining primary keys for your tables.
There is no exercise associated with this lesson.

For more information, see“Tables have a primary key” on page 11.

Concepts Theprimary key is a special column or columns used to uniquely identify a
row in a table. In the product table, the id column uniquely identifies each
product.

Each row has a unique value for the id column, and the values in each row
pertain only to a single product identifier by its id value. Two products might
have the same name or the same size, but not the same id number. In the
diagram, the id column is underlined to show that it is a primary key.

Creating a column specifically to hold an identifier which has no other
meaning is common practice in database design. You will know from your
bank, utility, or credit card statements that each account has a unique
identifier.

Using an
AUTOINCREMENT
primary key

You can make entering primary keys simple by assigning a primary key
column a default value of AUTOINCREMENT. The value for this column is
entered automatically each time a new row is added, and its value is one
more than the field’s value for the last row added.

❖ To create an AUTOINCREMENT primary key

1. Select the product table in the left pane and then click the Columns tab in
the right pane.

2. Select the primary key column. From the File menu, choose Properties
button to open the property sheet for the column.

3. Click the Value tab.

4. Select the Default Value option.

55



5. Click System-defined, and choose Autoincrement from the dropdown list.

6. Click OK to close the column property sheet.

7. To finish, choose File➤ Save Table.

Lesson 5: Design column properties

In this lesson, you learn more about choosing data types and other attributes
for the columns of your tables.

Concepts Each column has a data type associated with it. Thedata typedefines the
type of information the column holds. Choose a data type for the column
that is appropriate for the data in the column. For example, identifier
columns commonly have an integer data type, while columns holding names
or addresses must have character data types.

Data types are organized into the following categories:

♦ Numeric data types There are several numeric data types. Some are
exact (not affected by round-off errors during operations) and some are
approximate.

The data type of the column affects the maximum size of the column. For
example, if you specify SMALLINT, a column can contain a maximum
value of 32,767. If you specify INTEGER, the maximum value is
2,147,483,647.

☞ For a complete list, see “Numeric data types”[ASA SQL Reference,
page 56].

♦ Character data types These are used to hold strings of text, such as
names, addresses, and so on. These data types have a length indicating
the maximum length of string that can be stored in them.

☞ For a list, see “Character data types”[ASA SQL Reference,page 52].

♦ Binary data types These can be useful to hold information that may be
meaningful to an application, but is encoded in a binary format.

☞ For a list, see “Binary data types”[ASA SQL Reference,page 72].

♦ Date/time data types These hold times of the day, as well as dates.

☞ For a list, see “Date and time data types”[ASA SQL Reference,page 65].

♦ Long data types These are sometimes called blobs (binary large
objects). They can be used to hold long strings of text (called memo
fields in some databases), images, or other binary information.

56



Chapter 5. Designing and Building Your Database

☞ For more information, see “LONG BINARY data type [BINARY]”
[ASA SQL Reference,page 72], and “LONG VARCHAR data type
[Character]”[ASA SQL Reference,page 54].

In addition, Adaptive Server Anywhere supports user-defined data types and
special Java data types. These are not discussed in this introductory book.

NULL and NOT NULL If every row must contain a value for this column, you should define the
column as being NOT NULL. Otherwise, the column is allowed to contain
NULL, which represents a missing value. The default is to allow NULL, but
you should explicitly declare columns NOT NULL unless there is a good
reason to allow NULL.

☞ For a complete description of the NULL value, see “NULL value”[ASA
SQL Reference,page 48]. For information on its use in comparisons, see
“Search conditions”[ASA SQL Reference,page 22].

❖ To specify a data type for a column

1. Select the product table in the left pane, then click the Columns tab in the
right pane.

2. Select the primary key column and then choose File➤ Properties to open
the property sheet for a column.

The column’s property sheet opens.

3. Click the Data Type tab.

4. Select a data type from the Built-in Type dropdown list.

Exercise This lesson and the last lesson have introduced the basic concepts you need
to know in order to create database tables. You can put these to work by
adding some more tables to your database. These tables will be used in the
subsequent lessons in this chapter.

Add the following tables to your database:

♦ customer Add a table named customer, with the following columns:

• id An identification number for each customer. This column has
integer data type, and is theprimary key . Make this an autoincrement
key.

• company_name The company name. This column is acharacter
data type, with a maximum length of35characters.

♦ sales_order Add a table named sales_order, with the following
columns:

57



• id An identification number for each sales order. This column has
integer data type, and is theprimary key . Make this an autoincrement
key.

• order_date The date on which the order was placed. This column
hasdatedata type.

• cust_id The identification number of the customer who placed the
sales order. This column hasinteger data type.

♦ sales_order_items Add a table named sales_order_items to hold line
item information, with the following columns:
• id The identification number of the sales order of which the line item

is a part. This column hasinteger data type, and should be identified
as aprimary key column.

• line_id An identification number for each sales order. This column
hasinteger data type, and should be identified as aprimary key
column.

• prod_id The identification number for the product being ordered.
This column hasinteger data type.

You have now created four tables in your database. The tables are not yet
related in any way. In the next lesson, you define foreign keys to relate the
tables to one another.

Lesson 6: Design and create relationships between tables

In this lesson, you learn about designing and creating relationships between
tables, using foreign keys.

☞ For more information, see“Tables are related by foreign keys” on
page 12.

Concepts Although each table contains information about a single subject, two or
more tables may contain related information. For example, an employee is a
member of a department, or a sales order is for a set of products.
Relationships in a database may appear asforeign key relationships between
tables, or may appear as separate tables themselves. You will see examples
of each in this chapter.

You create relationships in your database to encode rules or practices that
govern the data in your tables. Once a relationship is built into the structure
of the database, there is no provision for exceptions.

Relationships among tables are classified as follows.

♦ One-to-one relationships Each item in one entity corresponds to either
zero or one entity in another. For example, in the sample database,one

58



Chapter 5. Designing and Building Your Database

employee managesonedepartment. There is nowhere to put a second
department manager. Duplicating the department entry would involve
duplicating the department ID, which is not possible because it is the
primary key.

It is often appropriate to combine the items in a one-to-one relationship
into a single table. There is a column in the department table for a
manager, rather than having a separate table named manager.

☞ For cases where it is appropriate to keep the items separate, see
“Designing Your Database”[ASA SQL User’s Guide,page 3].

♦ Many-to-one relationships A many-to-one relationship becomes a
foreign key relationship between tables. In a many-to-one relationship,
the primary key in theoneentity appears as a new foreign key column in
themanytable.

For example, in the database you just created,onecustomer can place
manyorders, but only one customer places each order. To represent the
one-to-many relationship, you need aforeign key column in the
sales_order table (cust_id) that maps to the primary key column in the
customer table (id). It is often convenient to give the two columns the
same name.

Each entry in the cust_id column of the sales_order table must match one
of the entries in the id column of the customer table. The sales_order
table (which contains the foreign key in the relationship) is called the
foreign table or referencing table. The customer table (which contains the
referenced primary key) is called the primary table or the referenced
table.

♦ Many to many relationships A many-to-many relationship is
represented by an intermediate table, and there is a foreign key
relationship from the intermediate table to each of the related entities.

For example, in the sample database, there is a many-to-many
relationship between products and sales orders. One sales order can be
for many products, and one product can appear on many sales orders.

59



In some cases, the intermediate table (sales_order_items) contains
additional information, such as the number of items of the product that
were ordered and the date they were shipped. In this case, the
intermediate table holds no additional information.

Exercise Add foreign keys to relate the tables in your database.

Add the following foreign keys:

♦ A foreign key from the id column in sales_order_items, referencing the id
column in sales_order. This key builds the many-to-one relationship
between sales orders and sales order items into the database.

♦ A foreign key from the prod_id column in sales_order_items, referencing
the id column in product. This key builds the many-to-one relationship
between sales order items and products into the database.

♦ A foreign key from the cust_id column in sales_order, referencing the id
column in customer. This key builds the many-to-one relationship
between sales orders and customers into the database.

The first two foreign keys taken together build the many-to-many
relationship between sales orders and products into the database.

❖ To create a foreign key

1. Select the table for which you wish to create a foreign key.

2. Click the Foreign Keys tab in the right pane.

3. From the File menu, choose New➤ Foreign Key to open the Foreign Key
Creation wizard.

4. Follow the instructions in the wizard.

This completes this introductory section on designing and building relational
databases. Remaining chapters in the book describe how to add and retrieve
data from databases. These chapters use the Adaptive Server Anywhere
sample database, which is a bigger database than the one you have just
created.

60



CHAPTER 6

Connecting Your Application to its
Database

About this chapter This chapter shows you how to establish a connection from your application
to the database it is working with.

Contents Topic: page

Introduction to connections 62

Creating an ODBC data source 63

61



Introduction to connections
Any client application that uses a database must establish a connection to
that database before any work can be done. The connection forms a channel
through which all activity from the client application takes place. For
example, your user ID determines permissions to carry out actions on the
database—and the database server has your user ID because it is part of the
request to establish a connection.

Many client applications, including application development systems, use
theOpen Database Connectivity(ODBC) interface to access Adaptive
Server Anywhere. An ODBC data source is a set of connection parameters
that are stored in the registry or in a file.

You can use ODBC data sources to connect to Adaptive Server Anywhere
databases from any of the following applications:

♦ Sybase Central and Interactive SQL.

♦ All the Adaptive Server Anywhere utilities.

♦ PowerDesigner and InfoMaker.

♦ Any application development environment that supports ODBC, such as
Microsoft Visual Basic, Sybase PowerBuilder, and Borland Delphi.

Adaptive Server Anywhere client applications on UNIX can use ODBC data
sources. On UNIX, the data source is stored as a file.

☞ Adaptive Server Anywhere supports several programming interfaces in
addition to ODBC. For more information, see “Introduction to connections”
[ASA Database Administration Guide,page 38].

62



Chapter 6. Connecting Your Application to its Database

Creating an ODBC data source
ODBC data sources are a convenient way of saving connection parameters
for repeated use. Once you have a data source, your connection string can
simply name the data source to use:

DSN=my data source

The Connect dialog in Sybase Central and Interactive SQL has fields for
entering an ODBC Data Source Name or ODBC Data Source File.

This section describes how to create a simple ODBC data source in
Windows.

☞ For more detailed information, see “Configuring ODBC data sources
using the ODBC Administrator”[ASA Database Administration Guide,page 56].

☞ For information about setting up ODBC data sources on UNIX, see
“Using ODBC data sources on UNIX”[ASA Database Administration Guide,
page 63].

❖ To create a simple ODBC data source

1. Start the ODBC Administrator:

♦ From the Windows Start menu, choose Programs➤ SQL Anywhere 9
➤ Adaptive Server Anywhere➤ ODBC Administrator.

or
From Sybase Central, choose Tools➤ Adaptive Server Anywhere 9➤
Open ODBC Administrator.

The ODBC Data Source Administrator appears, displaying a list of the
data sources you currently have installed on your computer. For example,

63



2. On the User DSN tab, click Add.

The Create New Data Source wizard appears.

3. SelectAdaptive Server Anywhere 9.0from the list of drivers, and click
Finish.

The Adaptive Server Anywhere ODBC Configuration dialog appears.

64



Chapter 6. Connecting Your Application to its Database

Many of the fields in this dialog are optional. Click the Help button at the
bottom of each tab for a description of all the fields on that tab. You
probably only need to use the following parameters:

♦ Data Source Name (ODBC tab) Type a name that will appear in the
Connect dialog. It can contain spaces, but should be short.
For example, for the database created in the previous chapter you could
enter a data source name ofMy Sample.

♦ User ID (Login tab) The database user ID you will use to connect. If
you omit the user ID, you will be prompted for it when you attempt to
connect.
For newly created databases, the default user ID isDBA.

♦ Password (Login tab) You should omit or encrypt the password if
there are security concerns with having passwords stored on your
machine. If you omit the password, you will be prompted for it when
you attempt to connect.
The default password for the DBA user ID isSQL.

♦ Database File (Database tab) You can select a database file by
browsing your machine.

65



For the database created in the previous chapter you would enter
c:\temp\mysample.db.

4. When you have specified the parameters you need, click OK to create the
data source and close the dialog.

☞ For descriptions of the fields on each tab in the ODBC Configuration
dialog, see “Configuring ODBC data sources using the ODBC
Administrator” [ASA Database Administration Guide,page 56].

☞ For a full description of database connections, see “Connecting to a
Database”[ASA Database Administration Guide,page 37].

☞ For more information about ODBC data sources, see “Working with
ODBC data sources”[ASA Database Administration Guide,page 53].

66



CHAPTER 7

Using Interactive SQL

About this chapter This chapter discusses how to run and use Interactive SQL. Interactive SQL
is a utility shipped with Adaptive Server Anywhere; it lets you execute SQL
statements, build scripts, and display database data.

Contents Topic: page

Introduction to Interactive SQL 68

Starting Interactive SQL 70

Using Interactive SQL to display data 75

Working with SQL statements in Interactive SQL 80

67



Introduction to Interactive SQL
Interactive SQL is a utility for sending SQL statements to the database
server. You can use it for the following purposes:

♦ Browsing the information in a database.

♦ Trying out SQL statements that you plan to include in an application.

♦ Loading data into a database and carrying out administrative tasks.

In addition, Interactive SQL can runcommand filesor script files. For
example, you can build repeatable scripts to run against a database and then
use Interactive SQL to execute these scripts in a batch fashion.

About this chapter

The following table lists the most common information how to run and use
Interactive SQL.

If you want to know. . . Then see. . .

How to start Interactive SQL “Starting Interactive SQL” on
page 70

How to connect to a database “Connecting Your Application to
its Database” on page 61

How to use the Interactive SQL toolbar “Interactive SQL main window
description” on page 70

How to open a new Interactive SQL
window

“Opening multiple windows” on
page 71

What keyboard shortcuts are available
in Interactive SQL

“Interactive SQL keyboard short-
cuts” on page 72

How to display data “Using Interactive SQL to display
data” on page 75

How to execute SQL commands in
Interactive SQL

“Working with SQL statements in
Interactive SQL” on page 80

Where to find more detailed informa-
tion on selecting data

“Selecting Data from Database
Tables” on page 87

Where to find information about using
the Query Editor to build SELECT
statements

“Introducing the Query Editor”
[SQL Anywhere Studio Help,
page 190]

68



Chapter 7. Using Interactive SQL

If you want to know. . . Then see. . .

Where to find more information on
loading and unloading data

“Introduction to import and export”
[ASA SQL User’s Guide,page 522]

How to set Interactive SQL options “Options dialog” [SQL Anywhere
Studio Help,page 144]

How to automate common tasks “Running SQL command files”
[ASA SQL User’s Guide,page 553]

How to use JDBC escape syntax “Using JDBC escape syntax” [ASA
Programming Guide,page 131]

How to print from Interactive SQL “Printing SQL statements” on
page 83

How to print the graphical plan from
Interactive SQL

“Graphical plans” [ASA SQL User’s
Guide,page 429]

How to analyze queries using the Index
Consultant

“Starting the Index Consultant”
[ASA SQL User’s Guide,page 65]

69



Starting Interactive SQL
You can start Interactive SQL in two ways: from Sybase Central or on its
own. The way that you start Interactive SQL on its own depends on your
operating system.

For detailed information on connecting to databases, see “Connecting to a
Database”[ASA Database Administration Guide,page 37].

❖ To start Interactive SQL from Sybase Central

1. To start Interactive SQL, right-click a database in Sybase Central and
choose File➤ Open Interactive SQL.

In this case Interactive SQL automatically connects to the database.

or

2. To start Interactive SQL without a connection to a database, choose Tools
➤ Adaptive Server Anywhere 9➤ Open Interactive SQL.

The Connect dialog appears.

❖ To start Interactive SQL (Command line)

1. On Windows, choose Start➤ Programs➤ SQL Anywhere 9➤ Adaptive
Server Anywhere➤ Interactive SQL. The Connect dialog appears.

or

Type the following at a command prompt:

dbisql

The Connect dialog appears.

2. Enter the required information to connect to a database and click OK to
connect.

Interactive SQL main window description

Interactive SQL has the following panes:

♦ SQL Statements Provides a place for you to type SQL statements.

♦ Results Displays the results of commands that you execute. For
example, if you use SQL statements to search for specific data in the
database, the Results tab in this pane displays the columns and rows that
match the search criteria. If the information exceeds the size of the pane,
scroll bars automatically appear for the pane. You can edit the result set
on the Results tab.

70



Chapter 7. Using Interactive SQL

☞ For more information about editing the result set, see“Editing table
values in Interactive SQL” on page 76.

The Messages tab displays messages from the database server about the
SQL statements that you execute in Interactive SQL.

The Plan tab and the UltraLite Plan tab in the Results pane display the
query optimizer’s execution plan for a SQL statement.

You can set options for the tabs and panes in the main Interactive SQL
window from the Options dialog found in the Tools menu.

The title bar at the top of the window displays connection information, as
follows:

database-name ( userid ) on server-name

For example, if you connect to the sample database using the ASA 9.0
Sample ODBC data source, the title bar is as follows:

asademo ( dba ) on asademo9

Using the Interactive SQL toolbar

The Interactive SQL toolbar appears at the top of the Interactive SQL
window. It provides you with buttons for executing common commands.
With the buttons on this toolbar, you can:

♦ Recall the executed SQL statement immediately before your current
position in the history list.

♦ View a list of up to 50 previously executed SQL statements.

♦ Recall the executed SQL statement immediately after your current
position in the history list.

♦ Execute the SQL statement currently appearing in the SQL Statements
pane.

♦ Interrupt the execution of the current SQL statement.

As an easy reminder of what these buttons do, you can hold your cursor over
each button to see a popup description.

Opening multiple windows

You can open multiple Interactive SQL windows. Each window corresponds
to a separate database connection. You can connect simultaneously to two
(or more) different databases on different servers, or you can open
concurrent connections to a single database.

71



❖ To open a new Interactive SQL window

1. Choose Window➤ New Window.

The Connect dialog appears.

2. In the Connect dialog, enter connection options, and click OK to connect.

The connection information (including the database name, your user ID,
and the database server name) appears on the title bar above the SQL
Statements pane.

You can also connect to or disconnect from a database with the Connect and
Disconnect commands in the SQL menu, or by executing a CONNECT or
DISCONNECT statement.

Interactive SQL keyboard shortcuts

Interactive SQL provides the following keyboard shortcuts:

Function key Description

ALT+F4 Exits Interactive SQL.

ALT+LEFT CUR-

SOR

Displays the previous SQL statement in the history list.

ALT+RIGHT CUR-

SOR

Displays the next SQL statement in the history list.

CTRL+BREAK Interrupts the SQL statement that is being executed.

CTRL+C Copies the selected row(s) and column headings to the
clipboard in the Results pane.

In the SQL Statements pane, copies the selected text to
the clipboard.

CTRL+END Moves to the bottom of the current pane.

CTRL+H Displays the history of your executed SQL.

CTRL+HOME Moves to the top of the current pane.

CTRL+N Clears the contents of the Interactive SQL window.

CTRL+P Prints the contents of the SQL Statements pane. You
can configure the appearance of the printed text in the
Interactive SQL Options dialog.

☞ For information about setting print options, see
“Print tab” [SQL Anywhere Studio Help,page 151].

72



Chapter 7. Using Interactive SQL

Function key Description

CTRL+Q Displays the Query Editor.

The Query Editor helps you build SQL queries. When
you have finished building your query, click OK to export
it back into the SQL Statements pane.

CTRL+S Saves the contents of the SQL Statements pane.

ESC Clears the SQL Statements pane.

F1 Opens Help.

F2 Edits the selected value in the result set. You can tab
from column to column within the row.

F5 Executes all text in the SQL Statements pane.

You can also perform this operation by clicking the
Execute SQL Statement button on the toolbar.

F7 Displays the Lookup Table Name dialog.

In this dialog, you can find and select a table and then
pressENTER to insert the table name into the SQL
Statements pane at the cursor position. Or, with a
table selected in the list, pressF7 again to display the
columns in that table. You can then select a column and
pressENTER to insert the column name into the SQL
Statements pane at the cursor position.

F8 Displays the Lookup Procedure Name dialog.

In this dialog, you can find and select a procedure and
then pressENTER to insert the procedure name into the
SQL Statements pane at the cursor position.

F9 Executes the text that is selected in the SQL Statements
pane.

If no text is selected, all of the statements are executed.

PGDN Moves a page down in the current pane.

PGUP Moves a page up in the current pane.

SHIFT+F5 Displays the plan for the statement in the SQL Statements
pane without executing the statement.

The following keyboard shortcuts are available when the SQL Statements
pane has the focus:

73



Function key Description

CTRL+] Moves the cursor to the matching brace. Brace match-
ing matches parentheses, braces, brackets, and angle
brackets.

CTRL+BACKSPACE Deletes the word to the left of the cursor.

CTRL+DEL Deletes the word to the right of the cursor.

CTRL+G Opens the Go To dialog where you can specify the line
you want to go to.

CTRL+L Deletes the current line from the SQL Statements pane
and puts the line onto the clipboard.

CTRL+SHIFT+] Extends the selection to the matching brace. Brace
matching matches parentheses, braces, brackets, and
angle brackets.

CTRL+SHIFT+L Deletes the current line.

CTRL+SHIFT+U Changes the selection to uppercase characters.

CTRL+U Changes the selection to lowercase characters.

F3 Finds the next occurrence of the selected text.

HOME Moves the cursor to the start of the current line or to
the first word on the current line.

SHIFT+F3 Finds the previous occurrence of the selected text.

SHIFT+HOME Extends the selection to the start of the text on the
current line.

74



Chapter 7. Using Interactive SQL

Using Interactive SQL to display data
One of the principal uses of Interactive SQL is to browse table data. This
section shows how to query the information in the sample database.

You can display database information using the SELECT statement in
Interactive SQL. The following example shows the command to type in the
SQL Statements pane. Once you have typed the command, you must click
the Execute SQL Statement button on the toolbar to carry out the command.

After you execute the statement, the data (called a result set) appears on the
Results tab in the Results pane. You can use the scroll bars to see areas of
the table that are outside your current view of the pane. By default, row
numbers appear to the left of the result set.

❖ To list all the columns and rows of the employee table

1. Start Interactive SQL and connect to the sample database.

2. Type the following in the SQL Statements pane:

SELECT *
FROM employee

3. On the toolbar, click the Execute SQL Statement button.

emp_id manager_id emp_lname emp_fname . . .

102 501 Fran Whitney . . .

105 501 Matthew Cobb . . .

129 902 Philip Chin . . .

148 1293 Julie Jordan . . .

. . .

☞ For more information about SELECT statements, see“Selecting Data
from Database Tables” on page 87.

You can add, delete, and update rows within the result set.

☞ For more information about editing the result set, see“Editing table
values in Interactive SQL” on page 76.

75



Editing table values in Interactive SQL

Once you execute a query in Interactive SQL, you can edit the result set to
modify the database. You can also select rows from the result set and copy
them for use in other applications. Interactive SQL supports editing,
inserting, and deleting rows. These actions have the same effect as executing
UPDATE, INSERT, and DELETE statements.

To edit a row or value in the result set, you must have the proper permissions
on the table or column you want to modify values from. For example, if you
want to delete a row, then you must have DELETE permission for the table
the row belongs to.

Editing the result set may fail if you:

♦ attempt to edit a row or column you do not have permission on.

♦ select columns from a table with a primary key, but you do not select all
of the primary key columns.

♦ attempt to edit the result set of a JOIN (for example, there is data from
more than one table in the result set).

♦ enter an invalid value (for example, a string in a numeric column or a
NULL in a column that does not allow NULLs).

When editing fails, an Interactive SQL error message appears explaining the
error, and the database table values remain unchanged.

Once you make changes to table values, you must enter a COMMIT
statement to make the changes permanent. If you want to undo your
changes, you must execute a ROLLBACK statement.

☞ For more information, see “COMMIT statement”[ASA SQL Reference,
page 284]and “ROLLBACK statement”[ASA SQL Reference,page 537].

Editing table values from the Interactive SQL result set

From Interactive SQL you can change any or all of the values within existing
rows in database tables. You must have UPDATE permission on the columns
being modified. When you edit the result set, you can only make changes to
the values in one row at a time.

76



Chapter 7. Using Interactive SQL

❖ To edit a row in the result set

1. Click the value you want to change.

2. Right-click the result set and choose Edit from the popup menu. You can
also pressF2 to edit the result set.

A blinking cursor appears in the table cell containing the value.

3. Enter the new value.

You cannot enter invalid data types into a column. For example, you
cannot enter a string into a column that accepts the INT data type.

If you are done editing values in the row, press Enter to update the
database. If you want to change other values in the row, pressTAB or
SHIFT+TAB to move to the other values.

You can press theESC key to cancel the change that was made to the
selected value.

4. Execute a COMMIT statement to make your changes to the table
permanent.

Editing computed
columns

Once you edit values in the result set, the database is updated with the
modified values. Computed columns are recalculated based on the modified
values whether or not they are part of the result set. However, if there are
computed columns in your result set, and you modify a value in the
computed column, the database is updated with the modified value.

Inserting rows into the database from the Interactive SQL result set

Interactive SQL also allows you to add new rows to result sets. You tab
between columns in the result set to add values to the row. When you add
values to the table, characters are stored in the same case as they are entered.
You must have INSERT permission on the table to add new rows.

❖ To insert a new row into the result set

1. Right-click the result set and choose Add from the popup menu.

A new blank row appears with a blinking cursor in the first value in the
row.

PressTAB to move the cursor from column to column across the row. You
can also insert a value by clicking on the value within the selected row.

2. Enter the new value.

You cannot enter invalid data types into a column. For example, you
cannot enter a string into a column that accepts the INT data type.

77



3. PressTAB to move to the next column.

4. Repeat steps 2 and 3 until all the column values are added.

5. PressENTER to update the database.

6. Execute a COMMIT statement to make your changes to the table
permanent.

Inserting values into
computed columns

If the result set contains a computed column and you do not specify a value
for the computed column, the value is calculated when the database is
updated. However, if you specify a value for the computed column, the
database is updated with the specified value, and a value is not calculated for
the computed column.

Deleting rows from the database using Interactive SQL

You can also delete rows from a database table in Interactive SQL. You must
have DELETE permission on the table to delete rows. You can select only
consecutive rows in the result set.

❖ To delete a row from the result set

1. Select the row(s) you want to delete. To select a row(s):

♦ Press and hold theSHIFT key while clicking the row(s)

♦ Press and hold theSHIFT key while using the Up or Down arrow

If you want to delete non-consecutive rows, you must delete each row
individually.

2. Right-click the result set and choose Delete from the popup menu. You
can also delete the selected row(s) by pressing theDELETE key.

The selected row(s) are removed from the database table.

3. Execute a COMMIT statement to make your changes to the table
permanent.

Copying rows from the Interactive SQL result set

You can copy rows directly from the result set in Interactive SQL and then
paste them into other applications. Copying rows also copies the column
headings. Copied data is comma-delimited, which allows other applications,
such as Microsoft Excel, to format the copied data correctly. Copied data is
in ASCII format, and all of the strings are enclosed in single quotes. You can
select only consecutive rows in the result set.

78



Chapter 7. Using Interactive SQL

❖ To copy rows from the Interactive SQL result set

1. Select the row(s) you want to copy. To select a row(s):

♦ Press and hold theSHIFT key while clicking the row(s)

♦ Press and hold theSHIFT key while using the Up or Down arrow

2. Right-click the result set and choose Copy from the popup menu. You
can also copy the selected row(s) by pressingCTRL+C.

The selected row(s), including their column headings, are copied to the
clipboard. You can paste them into other applications.

Copying individual values
from the result set

You can copy a single value from the result set by selecting a value,
right-clicking the result set and choosing Copy Cell from the popup menu.
When you do this, no column headings are copied—only the data is copied.

79



Working with SQL statements in Interactive SQL
The following sections describe some of the commands you can use in
Interactive SQL. This section describes general tasks for working with
commands in Interactive SQL.

All SQL statements can be entered as commands in the top pane of the
Interactive SQL window. When you are finished typing, you need to execute
the statement to view its results.

❖ To execute a SQL statement, do one of the following

1. Press the Execute SQL Statement button,or choose SQL➤ Execute,or
pressF5.

❖ To clear the SQL Statements pane

1. Choose Edit➤ Clear SQLor pressESCAPE.

Canceling an Interactive SQL command

The Interrupt button on the Interactive SQL toolbar cancels a command.

A Cancel operation stops current processing and prompts for the next
command. If a command file was being processed, or if there is more than
one statement in the SQL Statements pane, you are prompted for an action to
take (Stop Command File, Continue, or Exit Interactive SQL). These actions
can be controlled with the Interactive SQL ON_ERROR option.

☞ For information about the ON_ERROR option, see “ON_ERROR
option [ISQL]” [ASA Database Administration Guide,page 611].

Reported messages When an interruption is detected, one of three different messages is reported
depending upon when the interruption is detected.

1. If the interruption is detected when Interactive SQL is processing the
request (as opposed to the database server), then the following message
appears:

ISQL command terminated by user

Interactive SQL stops processing immediately and the current database
transaction is left alone.

2. If the interruption is detected by the database server while processing a
data manipulation command (SELECT, INSERT, DELETE, or
UPDATE), then the following message appears:

Statement interrupted by user.

80



Chapter 7. Using Interactive SQL

The effects of the current command are undone, but the rest of the
transaction is left intact.

3. If the interruption is detected while the database server is processing a
data definition command (CREATE, DROP, ALTER, etc.), the following
message appears:

Terminated by user - transaction rolled back

Since data definition commands all perform a COMMIT automatically
before the command starts, the effect of the ROLLBACK is to just cancel
the current command.

This message also occurs when the database server is running in bulk
operations mode executing a command that modifies the database
(INSERT, UPDATE, or DELETE). In this case, ROLLBACK cancels not
only the current command, but everything that has been done since the
last COMMIT. In some cases, it may take a considerable amount of time
for the database server to perform the automatic ROLLBACK.

Executing multiple statements

The Interactive SQL environment allows multiple statements to be entered at
the same time. This can be done by ending each statement with a command
delimiter. The command delimiter is a configurable option in
Interactive SQL that you can change using the COMMAND_DELIMITER
option. By default, it is a semicolon (;).

☞ For more information, see “COMMAND_DELIMITER option [ISQL]”
[ASA Database Administration Guide,page 583].

❖ To enter multiple statements in SQL Statements pane

1. Enter the following three commands into the SQL Statements pane.

UPDATE employee
SET dept_id = 400,

manager_id = 1576
WHERE emp_id = 467;

UPDATE employee
SET dept_id = 400,

manager_id = 1576
WHERE emp_id = 195;

SELECT *
FROM employee
WHERE emp_id IN ( 195, 467 );

81



2. On the toolbar, click the Execute SQL Statement button. All three
statements are executed. After execution, the commands remain in the
SQL Statements pane.

3. Roll back your changes by typingROLLBACKin the SQL Statements pane
and executing the statement.

Using go as an
alternative

An alternative to using the semicolon is to entergo on a line by itself, at the
beginning of the line.

UPDATE employee
SET dept_id = 400,

manager_id = 1576
WHERE emp_id = 467
go

UPDATE employee
SET dept_id = 400,

manager_id = 1576
WHERE emp_id = 195
go

SELECT *
FROM employee
WHERE emp_id IN ( 195, 467 )
go

Tip
You can pressF9 to execute only the selected text in the SQL Statements
pane.

Looking up tables, columns, and procedures

While you are entering commands in Interactive SQL, you can look up the
names of tables, columns, or procedures stored in the current database and
insert them at your cursor position.

❖ To look up the names of tables in the database

1. Choose Tools➤ Lookup Table Name or pressF7.

2. Find and select the table.

3. Click OK to insert the table name into the SQL Statements pane at the
current cursor position.

82



Chapter 7. Using Interactive SQL

❖ To look up column names in the database

1. Choose Tools➤ Lookup Table Name or pressF7.

2. Find and select the table containing the column.

3. Click Show Columns.

4. Select the column and click OK to insert the column name into the SQL
Statements pane at the current cursor position.

❖ To look up the names of procedures in the database

1. Choose Tools➤ Lookup Procedure Name or pressF8.

2. Find and select the procedure.

3. Click OK to insert the procedure name into the SQL Statements pane at
the current cursor position.

In the tables and procedures lookup dialogs, you can enter the first few
characters of the table or procedure you are looking for. After you type
something in the field, the dialog narrows the list to include only those items
that start with the text you entered.

You can use the SQL wildcard characters ‘%’ (percent sign) and ‘_’
(underscore) to help narrow your search. ‘%’ matches any string of zero or
more characters, while ‘_’ matches any one character.

For example, to list all the tables that contain the word profile, type
%profile% .

If you want to search for a percent sign or underscore within a table name,
you must prefix the percent sign or underscore with an escape character. The
escape character depends on the JDBC driver that you are using. If you are
connected via jConnect, the escape character is ‘\’ (backslash) while the
escape character for the iAnywhere JDBC driver is ‘~’ (tilde).

Printing SQL statements

You can print the contents of the SQL Statements pane by pressingCTRL+P
or by choosing Print from the File menu. You can add a header or footer and
configure other formatting options in the Interactive SQL Options dialog.

☞ For information about configuring print options, see “Print tab”[SQL
Anywhere Studio Help,page 151].

☞ For information about print graphical plans in Interactive SQL, see
“Graphical plans”[ASA SQL User’s Guide,page 429].

83



Recalling commands

When you execute a command, Interactive SQL automatically saves it in a
history list that persists between Interactive SQL sessions. Interactive SQL
maintains a record of up to 50 of the most recent commands.

You can view the entire list of commands in the Command History dialog.
To access the Command History dialog, pressCTRL+H, or click the book
icon in the toolbar.

The most recent commands appear at the bottom of the list. To recall a
command, select it and click OK. It will appear in the SQL Statements pane
of Interactive SQL.

You can also recall commands without the Command History dialog. Use
the arrows in the toolbar to scroll back and forward through your commands,
or pressALT+RIGHT ARROW andALT+LEFT ARROW.

84



Chapter 7. Using Interactive SQL

Note
If you execute a SQL statement that contains password information
(GRANT CONNECT, GRANT REMOTE DBA, CONNECT, or CREATE
EXTERNLOGIN), the password information appears in the Command
History dialog for the duration of the current Interactive SQL session.

When the command history is viewed in subsequent Interactive SQL
sessions, passwords are replaced with ... in any of these statements that
contain password information. For example, if you execute the following
statement in Interactive SQL:

GRANT CONNECT TO testuser IDENTIFIED BY testpassword

the following appears in the Command History dialog in subsequent
Interactive SQL sessions:

GRANT CONNECT TO testuser IDENTIFIED BY ...

When Interactive SQL saves the command history between sessions, it
removes password information from the statements listed above.

Copying commands in
the Command History
dialog

You can copy a command to the clipboard, by selecting it in the Command
History dialog and then pressingCTRL+C or clicking the Copy button when
the dialog has the focus. If you want to copy selected commands to the SQL
Statements pane, click OK. When you copy multiple commands, they are
separated by the command delimiter (a semicolon by default).

Removing commands
from the Command
History dialog

The contents of the Command History dialog persist between
Interactive SQL sessions. You can remove commands from the dialog in one
of two ways:

♦ Select one or more commands and click the Delete button or press the
DELETE key to remove the selected command(s) from the dialog. This
action cannot be undone.

♦ Remove all the commands from the dialog by clicking the Clear History
button. This action cannot be undone.

You can also save commands in text files so that you can use them in a
subsequent Interactive SQL session.

❖ To save the command history to a file

1. Open the Command History dialog.

2. Click the Save button or pressCTRL+S.

3. In the Save As dialog, specify a location and name for the file.

The command history file has a.SQL extension.

85



4. Click Save when finished.

Logging commands

With the Interactive SQL logging feature, you can record commands as you
execute them. Interactive SQL continues to record until you stop the logging
process, or until you end the current session. The recorded commands are
stored in a log file.

❖ To begin logging Interactive SQL commands

1. Choose SQL➤ Start Logging.

2. In the Save As dialog, specify a location and name for the log file.

A log file must have the.SQL extension.

3. Click Save when finished.

❖ To stop logging Interactive SQL commands

1. Choose SQL➤ Stop Logging.

Tips
You can also start and stop logging by typing in the SQL Statements pane.
To start logging, type and executeSTART LOGGING ‘c :\filename.sql’,
wherec:\filename.sqlis the path, name, and extension of the log file. A
log file must have the.SQL extension. You only need to include the single
quotation marks if the path contains embedded spaces. To stop logging,
type and executeSTOP LOGGING .

Once you start logging, all commands that you try to execute are logged,
including ones that do not execute properly.

86



CHAPTER 8

Selecting Data from Database Tables

About this chapter This chapter introduces queries, which retrieve data from a database. It
describes how to retrieve data from a single table.

☞ For information about selecting data from multiple related tables, see
“Selecting Data from Multiple Tables” on page 105. In addition,“Selecting
Aggregate Data” on page 117describes how to group your data and perform
calculations on the data in one or more columns.

Contents Topic: page

Introduction 88

Selecting a complete table 90

Selecting columns from a table 92

Ordering query results 95

Selecting rows from a table 98

87



Introduction
All interaction between applications (clients) and database servers is carried
out by sending SQL statements to the database server, which returns
information to the client.

The SELECT statement retrieves information from a database for use by the
client application. SELECT statements are also calledqueries. The
information is delivered to the client in the form of a result set. The client
application can then process the result set. For example, Interactive SQL
displays the result set in the Results pane. Result sets consist of a set of
rows, just like tables in the database.

SELECT statements can become highly complex in applications retrieving
very specific information from many tables. This chapter uses only simple
SELECT statements: more advanced queries are described in later tutorials.

☞ For the full syntax of the SELECT statement, see “SELECT statement”
[ASA SQL Reference,page 541].

About this chapter

If you want to know. . . Then see. . .

How to order query results “Ordering query results” on
page 95

How to select columns from a table “Selecting columns from a table”
on page 92

How to select rows from a table “Selecting rows from a table” on
page 98

How to compare dates in queries “Comparing dates in search condi-
tions” on page 99

How to use pattern matching “Pattern matching in search condi-
tions” on page 100

How to match rows by sound “Matching rows by sound” on
page 101

How to use compound search condi-
tions

“Using compound search condi-
tions” on page 102

Where to find information about short-
cuts for search conditions

“Shortcuts for compound search
conditions” on page 102

88



Chapter 8. Selecting Data from Database Tables

Notes You should run the Adaptive Server Anywhere software on your computer
while you read and work through the examples in this chapter.

Each example instructs you to type commands into Interactive SQL and
describes what you will see on your computer screen. If you cannot run the
software as you read the tutorials, you will still be able to learn about SQL,
but you will not have the opportunity to experiment on your own.

The examples assume that you have started Interactive SQL and are
connected to the sample database.

☞ For instructions, see“Adaptive Server Anywhere Quick Start” on page 1.

89



Selecting a complete table
The simplest SELECT statement retrieves all the data in a single table. This
SELECT statement has the following syntax:

SELECT * FROM table-name

wheretable-nameshould be replaced with the name of the table you are
querying. The asterisk (*) is a short form for a list of all columns.

❖ List all products sold by the company

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT * FROM Product

The SELECT statement retrieves all the rows and columns of the product
table, and displays them on the Results tab in the Results pane:

id name description size color quantity unit_price

300 Tee Shirt Tank Top Small White 28 9

301 Tee Shirt V-neck Medium Orange 54 14

302 Tee Shirt Crew Neck One size fits all Black 75 14

400 Baseball Cap Cotton Cap One size fits all Black 112 9

. . . . . . . . . . . . . . . . . . . . .

The Product table contains seven columns. Each column has a name,
such as color or id. There is a row for each product that the company
sells, and each row has a single value in each column. For example, the
product with ID 301 is a Tee Shirt. It is a V-neck style in medium size,
and is orange in color.

Notes ♦ Table names are case insensitive The table name Product starts with
an upper case P, even though the real table name is all lower case.
Adaptive Server Anywhere databases can be created as case-sensitive or
case-insensitive in their string comparisons, but are always case
insensitive in their use of identifiers such as table names and column
names.

☞ For information on creating databases, see “Creating a database”
[ASA SQL User’s Guide,page 27], or “The Initialization utility” [ASA
Database Administration Guide,page 485].

90



Chapter 8. Selecting Data from Database Tables

♦ SQL keywords are case insensitive You can enterselector Select
instead ofSELECT. In the documentation, upper case letters are
generally used for SQL keywords.

♦ Line breaks are not important You can type the statements all on one
line, or break them up by pressing Enter at the end of each line. Some
SQL statements, such as the SELECT statement, consist of several parts,
calledclauses. In many examples, each clause is placed on a separate line
for easier reading, so the statement in the example is commonly written
as follows in the documentation:

SELECT *
FROM product

♦ Row order in the result set is insignificant There is no guarantee of
the order in which rows are returned from the database, and no meaning
to the order. If you wish to retrieve rows in a particular order, you must
specify the order in the query.

☞ For more information, see“Ordering query results” on page 95.

Exercise Try querying other tables in the sample database, such as the employee,
customer, contact, or sales_order tables.

91



Selecting columns from a table
You can limit the columns that a SELECT statement retrieves by listing the
desired columns immediately after the SELECT keyword. This SELECT
statement has the following syntax:

SELECT column-name-1, column-name-2,. . .
FROM table-name

wherecolumn-name-1, column-name-2, andtable-nameshould be replaced
with the names of the desired columns and table you are querying.

The list of result-set columns is called theselect list. It is separated by
commas. There is no comma after the last column in the list, or if there is
only one column in the list. Limiting the columns in this way is sometimes
called aprojection.

❖ List the name, description, and color of each product

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT name, description, color
FROM product

name description color

Tee Shirt Tank Top White

Tee Shirt V-neck Orange

Tee Shirt Crew Neck Black

Baseball Cap Cotton Cap Black

. . . . . . . . .

Rearranging columns The columns appear in the order in which you type them in the SELECT
statement. If you want to rearrange the columns, simply change the order of
the column names in the statement. For example, to put thedescription
column on the left, use the following statement:

SELECT description, name, color
FROM product

Using calculated columns

The columns of the result set do not need to be just columns in tables. They
can also be expressions calculated from the underlying data. You can

92



Chapter 8. Selecting Data from Database Tables

combine table columns into a single result-set column, and you can use a
wide variety of functions and operators to control the results you get.

❖ List the value in stock of each product

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT id, ( unit_price * quantity ) AS value
FROM product

id value

300 252

301 756

302 1050

400 1008

. . . . . .

Notes ♦ Columns can be given an alias By default the column name is the
expression listed in the select list, but for calculated columns the
expression is cumbersome and not very informative. Here the calculated
column is renamed in the select list as value. value is thealias for the
column.

♦ Other operators are available In the above example, the multiplication
operator is used to combine the columns. You can use other operators,
including the standard arithmetic operators as well as logical operators
and string operators.

For example, the following query lists the full names of all customers:

SELECT id, (fname || ’ ’ || lname ) AS "Full name"
FROM customer

The || operator concatenates strings. In this query, the alias for the
column has spaces, and so must be surrounded by double quotes. This
rule applies not only to column aliases, but to table names and other
identifiers in the database.

☞ For a complete list of operators, see “Operators”[ASA SQL Reference,
page 10].

♦ Functions can be used In addition to combining columns, you can use
a wide range of built-in functions to produce the results you want.

For example, the following query lists the product names in upper case:

93



SELECT id, UCASE( name )
FROM product

id UCASE(product.name)

300 TEE SHIRT

301 TEE SHIRT

302 TEE SHIRT

400 BASEBALL CAP

. . . . . .

☞ For a complete list of functions, see “Alphabetical list of functions”
[ASA SQL Reference,page 97].

94



Chapter 8. Selecting Data from Database Tables

Ordering query results
Unless otherwise requested, the database server returns the rows of a table in
an order that has no meaning. Often it is useful to look at the rows in a table
in a more meaningful sequence. For example, you might like to see products
in alphabetical order.

You order the rows in a result set by an ORDER BY clause to the end of the
SELECT statement. This SELECT statement has the following syntax:

SELECT column-name-1, column-name-2,. . .
FROM table-name
ORDER BY order-by-column-name

wherecolumn-name-1, column-name-2, andtable-nameshould be replaced
with the names of the desired columns and table you are querying, and
whereorder-by-column-nameis a column in the table. As before, you can
use the asterisk as a short form for all the columns in the table.

❖ List the products in alphabetical order

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT id, name, description
FROM product
ORDER BY name

id name description

400 Baseball Cap Cotton Cap

401 Baseball Cap Wool cap

700 Shorts Cotton Shorts

600 Sweatshirt Hooded Sweatshirt

. . . . . . . . .

Notes ♦ The order of clauses is important The ORDER BY clause must
follow the FROM clause and the SELECT clause.

♦ You can specify either ascending or descending order The default
order is ascending. You can specify a descending order by adding the
keyword DESC to the end of the clause, as in the following query:

SELECT id, quantity
FROM product
ORDER BY quantity DESC

95



id quantity

400 112

700 80

302 75

301 54

600 39

. . . . . .

♦ You can order by several columns The following query sorts first by
size (alphabetically), and then by name:

SELECT id, name, size
FROM product
ORDER BY size, name

id name size

600 Sweatshirt Large

601 Sweatshirt Large

700 Shorts Medium

301 Tee Shirt Medium

. . . . . . . . .

♦ The ORDER BY column does not need to be in the select list The
following query sorts products by unit price, even though the price is not
included in the result set

SELECT id, name, size
FROM product
ORDER BY unit_price

id name size

500 Visor One size fits all

501 Visor One size fits all

300 Tee Shirt Small

400 Baseball Cap One size fits all

. . . . . . . . .

♦ If you do not use an ORDER BY clause, and you execute a query

96



Chapter 8. Selecting Data from Database Tables

more than once, you may appear to get different results This is
because Adaptive Server Anywhere may return the same result set in a
different order. In the absence of an ORDER BY clause, Adaptive Server
Anywhere returns rows in whatever order is most efficient. This means
the appearance of result sets may vary depending on when you last
accessed the row and other factors. The only way to ensure that rows are
returned in a particular order is to use ORDER BY.

Using indexes to improve ORDER BY performance

Sometimes there is more than one possible way for the Adaptive Server
Anywhere database server to execute a query with an ORDER BY clause.
You can use indexes to enable the database server to search the tables more
efficiently.

Queries with WHERE
and ORDER BY clauses

An example of a query that can be executed in more than one possible way is
one that has both a WHERE clause and an ORDER BY clause.

SELECT *
FROM customer
WHERE id > 300
ORDER BY company_name

In this example, Adaptive Server Anywhere must decide between two
strategies:

1. Go through the entire customer table in order by company name,
checking each row to see if the customer id is greater than 300.

2. Use the key on the id column to read only the companies with id greater
than 300. The results would then need to be sorted by company name.

If there are very few id values greater than 300, the second strategy is better
because only a few rows are scanned and quickly sorted. If most of the id
values are greater than 300, the first strategy is much better because no
sorting is necessary.

Solving the problem Creating a two-column index on id and company_name could solve the
example above. Adaptive Server Anywhere can use this index to select rows
from the table in the correct order. However, keep in mind that indexes take
up space in the database file and involve some overhead to keep up to date.
Do not create indexes indiscriminately.

☞ For more information, see “Using indexes”[ASA SQL User’s Guide,
page 163].

97



Selecting rows from a table
You can limit the rows that a SELECT statement retrieves by adding a
WHERE clause to your query. This is sometimes called applying a
restriction to the result set. The WHERE clause includes asearch
condition that specifies the rows to be returned. This SELECT statement has
the following syntax:

SELECT column-name-1, column-name-2,. . .
FROM table-name
WHERE search-condition

where, as before,column-name-1, column-name-2, andtable-nameshould
be replaced with the names of the desired columns and table you are
querying. Thesearch-conditionis described more below. If you use an
ORDER BY clause, it must come after the WHERE clause.

❖ List all products colored black

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT *
FROM product
WHERE color = ’black’

id name description size color quantity unit_price

302 Tee Shirt Crew Neck One size fits all Black 75 14

400 Baseball Cap Cotton Cap One size fits all Black 112 9

501 Visor Plastic Visor One size fits all Black 28 7

. . . . . . . . . . . . . . . . . . . . .

Notes ♦ The WHERE clause includes a search condition to select rows. In this
case the search condition iscolor = ’black’ . Other search conditions
are described in the following sections.

☞ For information on search conditions, see “Search conditions”[ASA
SQL Reference,page 22].

♦ The single quotes aroundblack are required. They indicate thatblack is
a character string. Double quotes have a different meaning. Double
quotes can be used to make otherwise invalid strings valid for column
names and other identifiers.

☞ For information about strings, see “Strings”[ASA SQL Reference,
page 8].

98



Chapter 8. Selecting Data from Database Tables

♦ The sample database is not case sensitive, so you would get the same
results whether you searched forBLACK , black, or Black.

♦ How you order clauses is important. The SELECT list is followed by the
FROM clause, followed by the WHERE clause, and then the ORDER BY
clause. Typing the clauses in a different order gives a syntax error.

Exercise Try some queries that combine what you have learned in this chapter. Here is
one query that lists the names and birth dates of all employees named John.

SELECT ( emp_fname || ’ ’ || emp_lname) AS Name,
birth_date

FROM employee
WHERE emp_fname = ’John’
ORDER BY birth_date

Name birth_date

John Letiecq 4/27/1939

John Sheffield 9/25/1955

Comparing dates in search conditions

You can use operators other than equals to select a set of rows that satisfy the
search condition. The inequality operators (< and>) can be used to
compare numbers, dates, and even character strings.

❖ List all employees born before March 13, 1964

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date < ’March 13, 1964’
ORDER BY birth_date DESC

emp_lname birth_date

Ahmed 12/12/1963

Dill 7/19/1963

Rebeiro 4/12/1963

Garcia 1/23/1963

Pastor 7/14/1962

. . . . . .

Notes

99



♦ Automatic conversion to dates The Adaptive Server Anywhere
database server knows that the birth_date column contains dates, and
automatically converts the string’March 13, 1964’ to a date.

♦ Ways of specifying dates There are many ways of specifying dates.
The following are all accepted by Adaptive Server Anywhere:

’March 13, 1964’
’1964/03/13’
’1964-03-13’

You can tune the interpretation of dates in queries by setting a database
option. Dates in the formatyyyy/mm/dd or yyyy-mm-dd are always
recognized unambiguously as dates, regardless of the DATE_ORDER
setting.

☞ For information on controlling allowable date formats in queries, see
“DATE_ORDER option [compatibility]”[ASA Database Administration
Guide,page 588], and “Setting options”[ASA Database Administration Guide,
page 556].

♦ Other comparison operators For a complete list of available
comparison operators, see “Comparison operators”[ASA SQL Reference,
page 10].

Pattern matching in search conditions

Pattern matching is a versatile way of identifying character data. In SQL, the
LIKE keyword is used to search for patterns. Pattern matching employs
wildcard characters to match different combinations of characters.

❖ List all employees whose last name begins with BR

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE ’br%’

emp_lname emp_fname

Breault Robert

Braun Jane

The% in the search condition indicates that any number of other
characters may follow the lettersBR.

100



Chapter 8. Selecting Data from Database Tables

❖ List all employees whose last name begins with BR, followed by
zero or more letters and a T, followed by zero or more letters

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE ’BR%T%’

emp_lname emp_fname

Breault Robert

The first% sign matches the stringeaul, while the second % sign
matches the empty string (no characters).

Another special character that can be used with LIKE is the_ (underscore)
character, which matches exactly one character. For example, the pattern
’BR_U%’ matches all names starting withBRand havingU as the fourth
letter. InBraun the_ character matches the letterA and the%matchesN.

☞ For more information, see “LIKE conditions”[ASA SQL Reference,
page 24].

Matching rows by sound

With the SOUNDEX function, you can match rows by sound. For example,
suppose a phone message was left for a name that sounded like “Ms.
Brown”. Which employees in the company have names that sound like
Brown?

❖ List employees with a last name that sound like Brown

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, emp_fname
FROM employee
WHERE SOUNDEX( emp_lname ) = SOUNDEX( ’Brown’ )

emp_lname emp_fname

Braun Jane

The algorithm used by SOUNDEX makes it useful mainly for
English-language databases.

☞ For more information, see “SOUNDEX function [String]”[ASA SQL
Reference,page 187].

101



Using compound search conditions

Search conditions can be combined using the AND and OR logical operators
to make compound search conditions. Each individual piece of the search
condition is sometimes called apredicate.

❖ List all employees born before March 13, 1964, except the em-
ployee named Whitney

1. In Interactive SQL, type the following in the SQL Statements pane:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date < ’1964-3-13’
AND emp_lname <> ’whitney’

emp_lname birth_date

Cobb 12/4/1960

Jordan 12/13/1951

Breault 5/13/1947

Espinoza 12/14/1939

Dill 7/19/1963

Francis 9/12/1954

Shortcuts for compound search conditions

Using the short form
BETWEEN

SQL has two short forms for compound search conditions. The first,
BETWEEN, is used when you are looking for a range of values. For
example the following two queries are equivalent:

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date BETWEEN ’1963-1-1’ AND ’1965-3-31’

and

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date >= ’1963-1-1’
AND birth_date <= ’1965-3-31’

Using the short form IN The second short form, IN, may be used when looking for one of a number
of values. The following two statements are equivalent:

102



Chapter 8. Selecting Data from Database Tables

SELECT emp_lname, emp_id
FROM employee
WHERE emp_lname IN (’yeung’,’bucceri’,’charlton’)

and

SELECT emp_lname, emp_id
FROM employee
WHERE emp_lname = ’yeung’
OR emp_lname = ’bucceri’
OR emp_lname = ’charlton’

103





CHAPTER 9

Selecting Data from Multiple Tables

About this chapter This chapter describes database queries that look at information in more than
one table. To do this, SQL provides theJOIN operator. There are several
different ways to join tables together in queries, and this chapter describes
some of the more important ones.

Contents Topic: page

Introduction 106

Joining tables using the cross product 108

Using the ON phrase to restrict a join 109

Joining tables using key joins 111

Joining tables using natural joins 113

Joining tables using outer joins 115

105



Introduction
Sometimes it is necessary to view data from multiple related tables. This
chapter explains how to use ajoin to view the data in a useful and
meaningful way.

About this chapter

If you want to know. . . Then see. . .

How to display a list of tables “Displaying a list of tables” on
page 106

How to display all combinations of
data from two tables

“Joining tables using the cross
product” on page 108

How to make a join useful “Using the ON phrase to restrict a
join” on page 109

How to join two tables in which the
join’s foreign keys have the same name

“Joining tables using key joins” on
page 111

How to join tables on columns with the
same names

“Joining tables using natural joins”
on page 113

Displaying a list of tables

In Interactive SQL, you can display a list of tables by pressing theF7 key.

106



Chapter 9. Selecting Data from Multiple Tables

Select a table and click Show Columns to see the columns for that table. The
ESCAPEkey takes you back to the table list, and pressing it again will take
you back to the SQL Statements pane. PressingENTER instead ofESCAPE

copies the selected table or column name into the SQL Statements pane at
the current cursor position.

PressESCAPEto leave the list.

☞ For a diagram of the tables in the sample database, see“The sample
database” on page 46.

107



Joining tables using the cross product
One of the tables in the sample database is sales_order, which lists the orders
placed to the company. Each order has a sales_rep column, containing the
employee ID of the sales representative responsible for the order. There are
648 rows in the sales_order table and 75 rows in the employee table.

The cross product join is a simple starting point for understanding joins, but
not very useful in itself.

❖ List all data in the employee and sales_order tables

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT *
FROM sales_order CROSS JOIN employee

The results of this query, which appear on the Results tab in the
Interactive SQL Results pane, match every row in the employee table
with every row in the sales_order table. Since there are 75 rows in the
employee table and 648 rows in the sales_order table, there are
75× 648 = 48,600 rows in the result of the join. Each row consists of all
columns from the sales_order table followed by all columns from the
employee table. This join is called afull cross product.

Subsequent sections describe how to construct more selective joins. The
more selective joins can be thought of as applying a restriction to the cross
product table.

☞ For more information, see “Cross joins”[ASA SQL User’s Guide,page 272].

108



Chapter 9. Selecting Data from Multiple Tables

Using the ON phrase to restrict a join
The ON phrase applies a restriction to the rows in a join, in much the same
way that the WHERE clause applies restrictions to the rows of a query.

The ON phrase allows more useful joins than the CROSS JOIN to be
constructed. For example, you can apply the ON phrase to a join of the
sales_order and employee table to retrieve only those rows for which the
sales_rep in the sales_order table is the same as the one in the employee
table in every row of the result. Then each row contains information about
an order and the sales representative responsible for it.

❖ List all sales orders with their dates, and the employee responsi-
ble for each
1. In Interactive SQL, type the following in the SQL Statements pane and

pressF5 to execute the statement.

SELECT employee.emp_lname,
sales_order.id,
sales_order.order_date

FROM sales_order JOIN employee
ON sales_order.sales_rep = employee.emp_id

emp_lname id order_date

Chin 2008 4/2/2001

Chin 2020 3/4/2001

Chin 2032 7/5/2001

Chin 2044 7/15/2000

Chin 2056 4/15/2001

. . . . . . . . .

Notes The table name is given as a prefix to identify the columns. Using the table
name prefix clarifies the statement, and is required when two tables have a
column with the same name.

The results of this query contain only 648 rows (one for each row in the
sales_order table). Of the 48,600 rows in the cross product, only 648 of them
have the employee number equal in the two tables.

The ordering of the results has no meaning. You could add an ORDER BY
clause to impose a particular order on the query.

The ON clause includes columns that are not included in the final result set.

109



☞ For more information, see “Explicit join conditions (the ON phrase)”
[ASA SQL User’s Guide,page 269].

110



Chapter 9. Selecting Data from Multiple Tables

Joining tables using key joins
Many common joins are between two tables related by a foreign key. The
most common join restricts foreign key values to be equal to primary key
values.

The KEY JOIN operator joins two tables based on foreign key relationship.
In other words, Adaptive Server Anywhere generates an ON clause that
equates the primary key column from one table with the foreign key column
of the other.

The example in the previous section restricts foreign key values in the
sales_order table to be equal to the primary key values in the employee table.

SELECT employee.emp_lname,
sales_order.id,
sales_order.order_date

FROM sales_order JOIN employee
ON sales_order.sales_rep = employee.emp_id

The query can be more simply expressed using a KEY JOIN:

SELECT employee.emp_lname,
sales_order.id,
sales_order.order_date

FROM sales_order KEY JOIN employee

KEY JOIN is just a shortcut for typing the ON clause; the two queries are
identical. Key join is the default when you specify JOIN, but do not specify
CROSS, NATURAL, KEY, or use an ON clause.

If you look at the diagram of the employee database, lines between tables
represent foreign keys. You can use the KEY JOIN operator anywhere two
tables are joined by a line in the diagram.

☞ For a diagram of the sample database, see“The sample database” on
page 46.

Joining more than two
tables

Two or more tables can be joined using join operators. The following query
uses four tables to list the total value of the orders placed by each customer.
It connects the four tables customer, sales_order, sales_order_items, and
product using the single foreign-key relationships between each pair of these
tables.

111



❖ List companies and the total value of their orders

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT company_name,
SUM( sales_order_items.quantity *

product.unit_price) AS value
FROM ( ( customer KEY JOIN sales_order )

KEY JOIN sales_order_items )
KEY JOIN product

GROUP BY company_name

company_name value

Bensoul’s Boutique 1332

Bush Pro Shop 2940

Sterling & Co. 6804

Ocean Sports 3744

. . . . . .

Notes Your result set may appear in a different order. There is no significance to
the order of the rows in the result set.

The example uses the SUM operator, which is an aggregate function.
Aggregate functions work with GROUP BY clauses to return values for each
row group. In this example, the sum ofsales_order_items.quantity

* product.unit_price —that is, the total amount of money paid per
product type—is calculated for eachcompany_name, thereby returning each
company’s sales.

The parentheses in the FROM clause help to clarify the order in which the
joins are made.

☞ For more information on aggregate functions, see“A first look at
aggregate functions” on page 119.

☞ For more information on complex key joins, see “Key joins”[ASA SQL
User’s Guide,page 292].

112



Chapter 9. Selecting Data from Multiple Tables

Joining tables using natural joins
The NATURAL JOIN operator joins two tables based on common column
names. In other words, Adaptive Server Anywhere generates an ON clause
that equates the common columns from each table.

❖ List all employees and their departments

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT emp_lname, dept_name
FROM employee NATURAL JOIN department

emp_lname dept_name

Whitney R & D

Cobb R & D

Breault R & D

Shishov R & D

Driscoll R & D

. . . . . .

Adaptive Server Anywhere looks at the two tables and determines that the
only column name they have in common is dept_id. The following ON
CLAUSE is internally generated and used to perform the join:

FROM employee JOIN department
ON employee.dept_id = department.dept_id

NATURAL JOIN is just a shortcut for typing the ON clause; the two queries
are identical.

Errors using NATURAL
JOIN

This join operator can cause problems by equating columns you may not
intend to be equated. For example, the following query generates unwanted
results:

SELECT *
FROM sales_order NATURAL JOIN customer

The result of this query has no rows. Adaptive Server Anywhere internally
generates the following ON clause:

FROM sales_order JOIN customer
ON sales_order.id = customer.id

The id column in the sales_order table is an ID number for theorder. The id

113



column in the customer table is an ID number for thecustomer. None of
them matched. Of course, even if a match were found, it would be a
meaningless one.

☞ For more information, see “Natural joins”[ASA SQL User’s Guide,
page 288].

114



Chapter 9. Selecting Data from Multiple Tables

Joining tables using outer joins
In the previous examples, you created joins that returned rows only if they
satisfied the join conditions. These joins are calledinner joins, and are the
default. Sometimes, you may wish to preserve all the rows in one table. To
do this, you use anouter join .

You can specify aright outer join , which preserves all the rows in the right
table; aleft outer join , which preserves the left table; or afull outer join ,
which preserves all the rows in both tables.

❖ List all customers, and the dates of any orders they have placed

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT lname, order_date, city
FROM customer KEY LEFT OUTER JOIN sales_order
WHERE customer.state = ’NY’
ORDER BY order_date

lname order_date city

Thompson (NULL) Bancroft

Reiser 1993-01-22 Rockwood

Clarke 1993-01-27 Rockwood

Mentary 1993-01-30 Rockland

. . . . . . . . .

The statement includes all customers, whether or not they have placed an
order. If a particular customer has placed no orders, each column in the
result that corresponds to order information contains NULL.

☞ For more information, see “Outer joins”[ASA SQL User’s Guide,page 274].

115





CHAPTER 10

Selecting Aggregate Data

About this chapter This chapter describes how to construct queries that tell you aggregate
information. Examples of aggregate information are as follows:

♦ The total of all values in a column.

♦ The number of distinct entries in a column.

♦ The average value of entries in a column.

Contents Topic: page

Summarizing data 118

A first look at aggregate functions 119

Applying aggregate functions to grouped data 120

Restricting groups 122

117



Summarizing data
Some queries examine aspects of the data in your table that reflect properties
of groups of rows rather than of individual rows. For example, you may wish
to find the average amount of money that a customer pays for an order, or to
see how many employees work for each department. For these types of
tasks, you useaggregatefunctions and the GROUP BY clause.

About this chapter

If you want to know. . . Then see. . .

How to view summary information
about an entire table

“A first look at aggregate functions”
on page 119

How to view summary information
about groups in a table

“Applying aggregate functions to
grouped data” on page 120

How to view summary data about a
restricted set of groups in a table

“Restricting groups” on page 122

118



Chapter 10. Selecting Aggregate Data

A first look at aggregate functions
Aggregate functions return a single value for a set of rows. If there is no
GROUP BY clause, an aggregate function returns a single value for all the
rows that satisfy other aspects of the query.

❖ List the number of employees in the company

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT COUNT( * )
FROM employee

COUNT(*)

75

The result set consists of only one column, with titleCOUNT( * ) , and
one row, which contains the total number of employees.

❖ List the number of employees in the company and the birth dates
of the oldest and youngest employee

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT COUNT(*), MIN(birth_date), MAX(birth_date)
FROM employee

COUNT(*) MIN(employee.birth_date) MAX(employee.birth_date)

75 1/2/1936 1/18/1973

The functions COUNT, MIN, and MAX are calledaggregate functions,
which are functions that summarize information. Other aggregate functions
include statistical functions such as AVG, STDDEV, and VARIANCE. All
but COUNT have the name of a column as a parameter.

☞ For more information, see “Aggregate functions”[ASA SQL Reference,
page 84].

119



Applying aggregate functions to grouped data
In addition to providing information about an entire table, aggregate
functions can be used on groups of rows. The GROUP BY clause arranges
rows into groups, and aggregate functions return a single value for each
group of rows.

Example

❖ List the sales representatives and the number of orders each has
taken
1. In Interactive SQL, type the following in the SQL Statements pane and

pressF5 to execute the statement.

SELECT sales_rep, count( * )
FROM sales_order
GROUP BY sales_rep
ORDER BY sales_rep

sales_rep count(*)

129 57

195 50

299 114

467 56

. . . . . .

A GROUP BY clause tells Adaptive Server Anywhere to partition the set of
all the rows that would otherwise be returned. All rows in each partition, or
group, have the same values in the named column or columns. There is only
one group for each unique value or set of values. In this case, all the rows in
each group have the same sales_rep value.

Aggregate functions such as COUNT are applied to the rows in each group.
Thus, this result set displays the total number of rows in each group. The
results of the query consist of one row for each sales rep ID number. Each
row contains the sales rep ID, and the total number of sales orders for that
sales representative.

Whenever GROUP BY is used, the resulting table has one row for each
column or set of columns named in the GROUP BY clause.

☞ For more information, see “The GROUP BY clause: organizing query
results into groups”[ASA SQL User’s Guide,page 237].

A common error with
GROUP BY

A common error with GROUP BY is to try to get information that cannot

120



Chapter 10. Selecting Aggregate Data

properly be put in a group. For example,

-- This query is incorrect
SELECT sales_rep, emp_lname, COUNT( * )
FROM sales_order KEY JOIN employee
GROUP BY sales_rep

gives the following error:

Function or column reference to ’emp_lname’ in the

select list must also appear in a GROUP BY

An error is reported because Adaptive Server Anywhere cannot be sure that
each of the result rows for an employee with a given ID all have the same
last name.

To fix this error, add the column to the GROUP BY clause.

SELECT sales_rep, emp_lname, COUNT( * )
FROM sales_order KEY JOIN employee
GROUP BY sales_rep, emp_lname
ORDER BY sales_rep

If this is not appropriate, you can instead use an aggregate function to select
only one value, as shown:

SELECT sales_rep, MAX( emp_lname ), COUNT( * )
FROM sales_order KEY JOIN employee
GROUP BY sales_rep
ORDER BY sales_rep

The MAX function chooses the maximum (last alphabetically) last name
from the detail rows for each group. This statement is valid because there
can be only one distinct maximum value. In this case, the same last name
appears on every detail row within a group.

121



Restricting groups
You have already seen how to restrict rows in a result set using the WHERE
clause. You restrict the rows in groups using the HAVING clause.

❖ List all sales representatives with more than 55 orders

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT sales_rep, count( * ) AS orders
FROM sales_order KEY JOIN employee
GROUP BY sales_rep
HAVING count( * ) > 55
ORDER BY orders DESC

sales_rep orders

299 114

129 57

1142 57

467 56

Order of clauses
A GROUP BY must always appear before a HAVING clause. If both are
present, a WHERE clause must appear before a GROUP BY clause.

HAVING clauses and WHERE clauses can both be used in a single query.
Conditions in the HAVING clause logically restrict the rows of the result
only after the groups have been constructed. Criteria in the WHERE clause
are logically evaluated before the groups are constructed, and so save time.

☞ For more information, see “The HAVING clause: selecting groups of
data” [ASA SQL User’s Guide,page 242].

Combining WHERE and HAVING clauses

Sometimes you can specify the same set of rows using either a WHERE
clause or a HAVING clause. In such cases, one method is not more or less
efficient than the other. The optimizer always automatically analyzes each
statement you type and selects an efficient means of executing it. It is best to
use the syntax that most clearly describes the desired result. In general, that
means eliminating undesired rows in earlier clauses.

Example To list all sales reps with more than 55 orders and an ID of more than 1000,

122



Chapter 10. Selecting Aggregate Data

type the following statement.

SELECT sales_rep, count( * )
FROM sales_order KEY JOIN employee
WHERE sales_rep > 1000
GROUP BY sales_rep
HAVING count( * ) > 55
ORDER BY sales_rep

The following statement produces the same results.

SELECT sales_rep, count( * )
FROM sales_order KEY JOIN employee
GROUP BY sales_rep
HAVING count( * ) > 55 AND sales_rep > 1000
ORDER BY sales_rep

Adaptive Server Anywhere detects that both statements describe the same
result set, and so executes each efficiently.

123





CHAPTER 11

Selecting Data Using Subqueries

About this chapter This chapter shows how to use the results of one query as part of another
SELECT statement. This is a useful tool in building more complex and
informative queries.

Contents Topic: page

Introducing subqueries 126

Introduction 127

Single-row and multiple-row subqueries 129

Using subqueries instead of joins 131

125



Introducing subqueries
A relational database allows you to store related data in more than one table.
The chapter“Selecting Data from Multiple Tables” on page 105outlines one
way of extracting data from related tables. A second method involves
subqueries—queries that appear in another query’s WHERE clause or
HAVING clause. Subqueries make some queries easier to write than joins,
and there are queries that cannot be written without using subqueries.

About this chapter

If you want to know. . . Then see. . .

When subqueries are used “Introduction” on page 127

How to compare column values to a
single value returned by a subquery

“Single-row and multiple-row sub-
queries” on page 129

How to use a subquery instead of a join“Using subqueries instead of joins”
on page 131

126



Chapter 11. Selecting Data Using Subqueries

Introduction
Subqueries use the results of one query as part of another query. This section
illustrates a situation where subqueries can be used by building a query that
lists order items for products that are low in stock.

There are two queries involved in producing this list. This section first
describes them separately, and then shows the single query that produces the
same result.

❖ List all products for which there are less than 20 items in stock

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT id, description, quantity
FROM product
WHERE quantity < 20

id description quantity

401 Wool cap 12

The query shows that only wool caps are low in stock.

❖ List all order items for wool caps

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT *
FROM sales_order_items
WHERE prod_id = 401
ORDER BY ship_date DESC

id line_id prod_id quantity ship_date

2082 1 401 48 7/9/2001

2053 1 401 60 6/30/2001

2125 2 401 36 6/28/2001

2027 1 401 12 6/17/2001

. . . . . . . . . . . . . . .

This two-step process of identifying items low in stock and identifying
orders for those items can be combined into a single query using subqueries.

127



❖ List all order items for items that are low in stock

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

SELECT *
FROM sales_order_items
WHERE prod_id IN

( SELECT id
FROM product
WHERE quantity < 20 )

ORDER BY ship_date DESC

id line_id prod_id quantity ship_date

2082 1 401 48 7/9/2001

2053 1 401 60 6/30/2001

2125 2 401 36 6/28/2001

2027 1 401 12 6/17/2001

. . . . . . . . . . . . . . .

The subquery in the statement is the phrase enclosed in parentheses:

( SELECT id
FROM product
WHERE quantity < 20 )

The subquery makes a list of all values in the id column in the product table,
satisfying the WHERE clause search condition.

The subquery returns a set of rows, but only a single column. The IN
keyword treats each value as a member of a set and tests whether each row
in the main query is a member of the set.

128



Chapter 11. Selecting Data Using Subqueries

Single-row and multiple-row subqueries
There are constraints on the number of rows and columns that a subquery
may return. If you use IN, ANY, or ALL, the subquery may return several
rows, but only one column. If you use other operators, the subquery must
return a single value.

A multiple-row subquery Two tables in the sample database are concerned with financial results. The
fin_code table is a small table holding the different codes for financial data
and their meanings:

To list the revenue items from the fin_data table, type the following:

SELECT *
FROM fin_data
WHERE fin_data.code IN

( SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’ )

year quarter code amount

1999 Q1 r1 1023

1999 Q2 r1 2033

1999 Q3 r1 2998

1999 Q4 r1 3014

2000 Q1 r1 3114

This example has used qualifiers to clearly identify the table to which the
code column in each reference belongs. In this particular example, the
qualifiers could have been omitted.

Two other keywords can be used as qualifiers for operators to allow them to
work with multiple rows: ANY and ALL.

The following query is identical to the successful query above:

SELECT *
FROM fin_data
WHERE fin_data.code = ANY

( SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’ )

While the=ANYcondition is identical to the IN condition, ANY can also be
used with inequalities such as< or > to give more flexible use of subqueries.

The ALL keyword is similar to the word ANY. For example, the following

129



query lists financial data that is not revenues:

SELECT *
FROM fin_data
WHERE fin_data.code <> ALL

( SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’ )

This is equivalent to the following command using NOT IN:

SELECT *
FROM fin_data
WHERE fin_data.code NOT IN

( SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’ )

A common error using
subqueries

In general, subquery result sets are restricted to a single column. The
following example does not make sense because Adaptive Server Anywhere
would not know which column from fin_code to compare to the
fin_data.code column.

-- this query is incorrect
SELECT *
FROM fin_data
WHERE fin_data.code IN

( SELECT fin_code.code, fin_code.type
FROM fin_code
WHERE type = ’revenue’ )

Single-row subqueries While subqueries used with an IN condition may return a set of rows, a
subquery used with a comparison operator must return only one row. For
example the following command results in an error since the subquery
returns two rows:

-- this query is incorrect
SELECT *
FROM fin_data
WHERE fin_data.code =

( SELECT fin_code.code
FROM fin_code
WHERE type = ’revenue’ )

130



Chapter 11. Selecting Data Using Subqueries

Using subqueries instead of joins
Suppose you need a chronological list of orders and the company that placed
them, but would like the company name instead of their customer ID. You
can get this result using a join as follows:

Using a join To list the order id, date, and company name for each order since the
beginning of 2001, type the following:

SELECT sales_order.id,
sales_order.order_date,
customer.company_name

FROM sales_order
KEY JOIN customer

WHERE order_date > ’2001/01/01’
ORDER BY order_date

id order_date company_name

2473 1/4/2001 Peachtree Active Wear

2474 1/4/2001 Sampson & Sons

2106 1/5/2001 Salt & Pepper’s

2475 1/5/2001 Cinnamon Rainbow’s

2036 1/5/2001 Hermanns

☞ For more on joins, see“Selecting Data from Multiple Tables” on
page 105.

Using a subquery The following statement obtains the same results using a subquery instead of
a join:

SELECT sales_order.id,
sales_order.order_date,
( SELECT company_name FROM customer

WHERE customer.id = sales_order.cust_id )
FROM sales_order
WHERE order_date > ’2001/01/01’
ORDER BY order_date

The subquery refers to the cust_id column in the sales_order table even
though the sales_order table is not part of the subquery. Instead, the
sales_order.cust_id column refers to the sales_order table in the main body
of the statement. This is called anouter reference. Any subquery that
contains an outer reference is called acorrelated subquery.

A subquery can be used instead of a join whenever only one column is
required from the other table. (Recall that subqueries can only return one

131



column.) In this example, you only needed the company_name column so
the join could be changed into a subquery.

If the subquery might have no result, this method is called an outer join. The
join in previous sections of the tutorial is more fully called an inner join.

Using an outer join To list all customers in Washington state, together with their most recent
order ID, type the following:

SELECT company_name, state,
( SELECT MAX( id )

FROM sales_order
WHERE sales_order.cust_id = customer.id )

FROM customer
WHERE state = ’WA’

company_name state MAX(sales_order.id)

Custom Designs WA 2547

It’s a Hit! WA (NULL)

The It’s a Hit! company placed no orders, and the subquery returns NULL
for this customer. Companies who have not placed an order are not listed
when inner joins are used.

You could also specify an outer join explicitly. In this case, a GROUP BY
clause is also required.

SELECT company_name, state,
MAX( sales_order.id )

FROM customer
KEY LEFT OUTER JOIN sales_order

WHERE state = ’WA’
GROUP BY company_name, state

132



CHAPTER 12

Updating the Database

About this chapter This chapter describes how to make changes to the contents of your
database. It includes descriptions of how to add rows, remove rows, and
change the contents of rows, as well as how to make changes permanent or
correct changes you have made.

Contents Topic: page

Introduction 134

Adding rows to a table 135

Modifying rows in a table 136

Deleting rows 137

Grouping changes into transactions 138

Integrity checking 141

133



Introduction
This chapter describes how to make changes to the data in your database.
There are three basic operations:

♦ Insert You can add rows to tables to include new data.

♦ Delete You can delete rows in tables to remove data.

♦ Update You can modify existing rows in tables.

Each operation is carried out by executing a SQL statement.

About this chapter

If you want to know. . . Then see. . .

How to add rows to your table “Adding rows to a table” on
page 135

How to update rows in your table “Modifying rows in a table” on
page 136

How to delete rows in your table “Deleting rows” on page 137

How to implement transactions “Grouping changes into transac-
tions” on page 138

How Adaptive Server Anywhere
checks for errors in your data

“Integrity checking” on page 141

134



Chapter 12. Updating the Database

Adding rows to a table
Suppose that the company decides to sell a new product, a brown acrylic
vest. This action requires you to add data to the product table of the sample
database.

❖ Add a brown acrylic vest to the product table

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

INSERT
INTO product ( id, name, description, size, color,

quantity, unit_price )
VALUES ( 800, ’Vest’, ’Acrylic Vest’, ’Extra Large’,

’Brown’, 42, 20.00 )

If you make a mistake and forget to specify one of the columns, Adaptive
Server Anywhere reports an error.

You can also add new rows to database tables from the result set in
Interactive SQL.

☞ For more information, see“Editing table values in Interactive SQL” on
page 76.

NULL values in columns The NULL value is a special value used to indicate that something is either
not known or not applicable. Some columns are allowed to contain the
NULL value, and others are not.

135



Modifying rows in a table
In most databases, you need to update records that are already stored in the
database. For example, the manager ID should change when employees are
transferred between departments, as well as the department ID.

❖ Transfer employee #195 to department 400 in Interactive SQL

1. In Interactive SQL, type the following in the SQL Statements pane and
pressF5 to execute the statement.

UPDATE employee
SET dept_id = 400, manager_id = 1576
WHERE emp_id = 195

The statement carries out both updates at the same time for employee
Marc Dill (employee ID 195).

Since Adaptive Server Anywhere updates all rows that satisfy the conditions
of the WHERE clause, sometimes more than one row is updated at one time.
For example, if a group of sales employees are transferred into marketing
and have their dept_id column updated, the following statement sets the
manager_id for all employees in the marketing department to 1576.

UPDATE employee
SET manager_id = 1576
WHERE dept_id = 400

For employees already in the marketing department, no change is made.

You can also modify rows from the result set in Interactive SQL.

☞ For more information, see“Editing table values in Interactive SQL” on
page 76.

136



Chapter 12. Updating the Database

Deleting rows
Sometimes you will want to remove rows from a table. Suppose Rodrigo
Guevara (employee ID 249) leaves the company. The following statement
deletes Rodrigo Guevara from the employee table.

DELETE
FROM employee
WHERE emp_id = 249

With UPDATE and DELETE, the search condition can be as complicated as
you need. For example, if the employee table is being reorganized, the
following statement removes from the employee table all male employees
hired between March 3, 1989 and March 3, 1990.

DELETE
FROM employee
WHERE sex = ’m’

AND start_date BETWEEN ’1988-03-03’
AND ’1989-03-03’

You can also delete rows from database tables from the Interactive SQL
result set.

☞ For more information, see“Editing table values in Interactive SQL” on
page 76.

Since you have made changes to the database that you do not want to keep,
you should undo the changes as follows:

ROLLBACK

137



Grouping changes into transactions
Adaptive Server Anywhere expects you to group your commands into
transactions. You commit a transaction to make changes to your database
permanent. When you alter your data, your alterations are not made
permanent right away. Instead, they are stored in yourtransaction logand
are made permanent when you enter the COMMIT command.

Knowing which commands or actions signify the start or end of a transaction
lets you take full advantage of transactions.

Starting transactions Transactions start with one of the following events:

♦ The first statement following a connection to a database.

♦ The first statement following the end of a transaction.

Completing transactions Transactions complete with one of the following events:

♦ A COMMIT statement makes the changes to the database permanent.

♦ A ROLLBACK statement undoes all the changes made by the transaction.

♦ A statement with a side effect of an automatic commit is executed:
Database definition commands, such as ALTER, CREATE, COMMENT,
and DROP all have the side effect of an automatic commit.

♦ A disconnection from a database performs an implicit rollback.

Options in
Interactive SQL

Interactive SQL provides you with two options which let you control when
and how transactions end:

♦ If you set the option AUTO_COMMIT to ON, Interactive SQL
automatically commits your results following every successful statement
and automatically performs a ROLLBACK after each failed statement.

♦ The setting of the option COMMIT_ON_EXIT controls what happens to
uncommitted changes when you exit Interactive SQL. If this option is set
to ON (the default), Interactive SQL does a COMMIT; otherwise it
undoes your uncommitted changes with a ROLLBACK statement.

If you are using a data source
By default, ODBC operates in autocommit mode. Even if you have set
the AUTO_COMMIT option to OFF in Interactive SQL, ODBC’s setting
will override Interactive SQL’s. You can change ODBC’s setting using the
SQL_ATTR_AUTOCOMMIT connection attribute. ODBC autocommit is
independent of the CHAINED option.

138



Chapter 12. Updating the Database

Adaptive Server Anywhere also supports Transact-SQL commands, such as
BEGIN TRANSACTION, for compatibility with Sybase Adaptive Server
Enterprise.

☞ For further information, see “An overview of Transact-SQL support”
[ASA SQL User’s Guide,page 440].

Making changes permanent

The COMMIT statement makes all changes permanent.

You should use the COMMIT statement after groups of statements that make
sense together. For example, if you want to transfer money from one
customer’s account to another, you should add money to one customer’s
account, then delete it from the other’s, and then commit, since in this case it
does not make sense to leave your database with less or more money than it
started with.

You can instruct Adaptive Server Anywhere to commit your changes
automatically by setting the AUTO_COMMIT option to ON. This is an
Interactive SQL option. When AUTO_COMMIT is set to ON, Adaptive
Server Anywhere must update the database after every insert, update, and
delete statement you make to it. This can slow down performance
considerably. Therefore, it is a good idea to leave the AUTO_COMMIT
option set to OFF.

Use COMMIT with care
When trying the examples in this tutorial, be careful not to COMMIT
any changes until you are sure that you want to change the database
permanently.

☞ For more information about Interactive SQL options, see “Interactive
SQL options”[ASA Database Administration Guide,page 571].

Canceling changes

Any uncommitted change you make can be cancelled. SQL allows you to
undo all of the changes you made since your last commit with the
ROLLBACK statement.

The ROLLBACK statement undoes all changes you have made to the
database since the last time you made changes permanent (see“Making
changes permanent” on page 139).

☞ For more information on Interactive SQL options, see “Interactive SQL
options” [ASA Database Administration Guide,page 571].

139



Transactions and data recovery

Suppose that a system failure or power outage suddenly takes your database
server down. Adaptive Server Anywhere is carefully designed to protect the
integrity of your database in such circumstances. It provides you with a
number of independent means of restoring your database. For example, it
provides you with alog file which you may store on a separate drive so that
should the system failure damage one drive, you still have a means of
restoring your data. In addition, when you use a log file, Adaptive Server
Anywhere does not have to update your database as frequently, which
improves your database’s performance.

Transaction processing allows the database server to identify states in which
your data is in a consistent state. Transaction processing ensures that if, for
any reason, a transaction is not successfully completed, then the entire
transaction is undone, or rolled back. The database is left entirely unaffected
by failed transactions.

Adaptive Server Anywhere’s transaction processing ensures that the contents
of a transaction are processed securely, even in the event of a system failure
in the middle of a transaction.

☞ For a detailed description of data recovery mechanisms, see “Backup
and Data Recovery”[ASA Database Administration Guide,page 337].

140



Chapter 12. Updating the Database

Integrity checking
Adaptive Server Anywhere automatically checks for some common errors in
your data.

Inserting duplicate data

For example, suppose you attempt to create a department, but supply a
dept_id value that is already in use:

To do this, enter the command:

INSERT
INTO department ( dept_id, dept_name, dept_head_id )
VALUES ( 200, ’Eastern Sales’, 902 )

The INSERT is rejected as it would make the primary key for the table not
unique. Since dept_id field is a primary key, duplicate values are not
permitted.

Inserting values that violate relationships

The following statement inserts a new row in the sales_order table, but
incorrectly supplies a sales_rep ID that does not exist in the employee table.

INSERT
INTO sales_order ( id, cust_id, order_date,

sales_rep)
VALUES ( 2700, 186, ’1995-10-19’, 284 )

There is a one-to-many relationship between the employee table and the
sales_order table, with a join between the sales_rep field of the sales_order
table and the emp_id field of the employee table. Only after a record in the
table containing the primary key for the join (the employee table) has been
entered can a corresponding record on table containing the foreign key (the
sales_order table) be inserted.

Foreign keys The primary key for the employee table is the employee ID number. The
sales rep ID number in the sales_rep table is aforeign key for the employee
table, meaning that each sales rep number in the sales_order table must
match the employee ID number for some employee in the employee table.

When you try to add an order for sales rep 284 you get an error message:

No primary key value for foreign key ’ky_so_employee_id’

in table ’sales_order’

There isn’t an employee in the employee table with that ID number. This
prevents you from inserting orders without a valid sales rep ID. This kind of

141



validity checking is calledreferential integrity checking as it maintains the
integrity of references among the tables in the database.

☞ For more information on primary and foreign keys, see“Relations
between tables” on page 11.

Errors on DELETE or UPDATE

Foreign key errors can also arise when doing update or delete operations.
For example, suppose you try to remove the R&D department from the
department table. The dept_id field, being the primary key of the department
table, constitutes the ONE side of a one-to-many relationship (the dept_id
field of the employee table is the corresponding foreign key, and hence
forms the MANY side). A record on theoneside of a relationship may not
be deleted until all corresponding records on the MANY side are deleted.

DELETE
FROM department
WHERE dept_id = 100

Example: DELETE
errors

An error is reported indicating that there are other records in the database
that reference the R&D department, and the delete operation is not carried
out.

primary key for row in table ’department’ is referenced

in another table

In order to remove the R&D department, you need to first get rid of all
employees in that department:

DELETE
FROM employee
WHERE dept_id = 100

You can now perform the deletion of the R&D department.

You should cancel these changes to the database (for future use) by entering
a ROLLBACK statement:

ROLLBACK WORK

All changes made since the last successful COMMIT WORK will be
undone. If you have not done a COMMIT, then all changes since you started
Interactive SQL will be undone.

Example: UPDATE
errors

The same error message is generated if you perform an update operation that
makes the database inconsistent.

142



Chapter 12. Updating the Database

For example, the following UPDATE statement causes an integrity error:

UPDATE department
SET dept_id = 600
WHERE dept_id = 100

In all of the above examples, the integrity of the database was checked as
each command was executed. Any operation that would result in an
inconsistent database is not performed.

Example: checking the
integrity after the
COMMIT WORK is
complete

It is possible to configure the database so that the integrity is not checked
until the COMMIT WORK is done. This is important if you want to change
the value of a referenced primary key; for example, changing the R&D
department’s ID from 100 to 600 in the department and employee tables. In
order to make these changes, the database has to be inconsistent in between
the changes. In this case, you must configure the database to check only on
commits.

☞ For more information, see “WAIT_FOR_COMMIT option [database]”
[ASA Database Administration Guide,page 634].

You can also define foreign keys in such a way that they are automatically
fixed. In the above example, if the foreign key from employee to department
were defined with ON UPDATE CASCADE, then updating the department
ID would automatically update the employee table.

In the above cases, there is no way to have an inconsistent database
committed as permanent. Adaptive Server Anywhere also supports
alternative actions if changes would render the database inconsistent.

☞ For more information, see the chapter “Ensuring Data Integrity”[ASA
SQL User’s Guide,page 75].

143





CHAPTER 13

System Tables

About this chapter This chapter describes the system tables, several special tables found in
every Adaptive Server Anywhere database. These system tables describe all
the tables and columns in the database. The database server automatically
updates the system table as the database structure is changed.

Contents Topic: page

The system tables 146

The SYSCATALOG view 147

The SYSCOLUMNS view 148

Other system tables 149

145



The system tables
Adaptive Server Anywhere stores important information about your
database insystem tables. The data from tables can be viewed in the same
way that the data from other tables can be viewed, but you can not update
data from the system tables.

About this chapter

If you want to know. . . Then see. . .

Where to find a listing of all the tables
in the database

“The SYSCATALOG view” on
page 147

Where to find information about the
columns in a table

“The SYSCOLUMNS view” on
page 148

How to find other information about
the tables in your database

“Other system tables” on page 149

146



Chapter 13. System Tables

The SYSCATALOG view
SYSCATALOG is a view that holds a more readable form of the system
table SYSTABLE. It lists all the tables in the database. You can view the
data from the SYSCATALOG view in the same way that you view the data
from any other table in your database.

☞ For more information on viewing data, see“Selecting a complete table”
on page 90.

The owner of the system
tables

The owner of the system tables and views is the special user IDSYS,and the
owner of the company tables isDBA. In addition, there is a set of views
owned by the special user IDdbo, which provide an emulation of the Sybase
Adaptive Server Enterprise system catalog; these tables are not discussed in
this section.

Recall that DBA is the user ID you used when connecting to the database
from Interactive SQL. So far, you have simply typed the table names
employee and department; SQL looked in SYSCATALOG for tables with
those names created by DBA. In this example, by typing
SYS.SYSCATALOG, you specified that SYSCATALOG was created by the
user ID SYS. Note the similarity to the way column names are qualified,
such as employee.emp_id.

Other columns in the
system table

The other columns in this table contain other important information. For
example, the column namedNcols is the number of columns in each table,
and the column namedtabletype identifies the table as a base table or a view.

147



The SYSCOLUMNS view
Another important system table is a view called SYSCOLUMNS. This is a
readable form of the system table SYSCOLUMN. It describes all the
columns in all the tables in the database. To see the contents of a table, type
the following command, in whichtablenamerepresents the name of the
table whose columns you wish to list:

SELECT *
FROM sys.syscolumns
WHERE tname = tablename

For example,

SELECT *
FROM sys.syscolumns
WHERE tname = ’employee’
ORDER BY colno

This statement lists all the columns in the employee table. If you look at the
columns to the right, you can see from theColtype column that some
columns in the employee table contain character information while others
contain integer and date information.

You can also view columns in the Interactive SQL Lookup Table Name
dialog, or in Sybase Central.

❖ To view the columns in a table or view ( Interactive SQL )

1. Invoke the list of tables by pressingF7.

2. Select the table whose columns you wish to view.

3. Click Show Columns.

❖ To view the columns in a table or view ( Sybase Central )

1. In the left pane of Sybase Central, select a database and open its Tables
folder.

2. In the left pane, select a table.

3. In the right pane, click the Columns tab.

You can now view and modify the columns.

148



Chapter 13. System Tables

Other system tables
There are several other system tables in the database that are not be
described in the tutorial. You can find out their names by examining
SYS.SYSCATALOG and looking at them if you want.

☞ For a full description of each of the system tables, see “System Tables”
[ASA SQL Reference,page 611].

149





CHAPTER 14

Microsoft Visual Basic Quick Start

About this chapter This chapter describes how to develop a simple database application using
Adaptive Server Anywhere and Microsoft Visual Basic.

Contents Topic: page

Tutorial: Developing a Visual Basic application 152

151



Tutorial: Developing a Visual Basic application
This brief tutorial is based on Visual Basic 6.0. The complete application
can be found in the Visual Basic project
Samples\ASA\VBStarter\ASAStarter.vbp.

Visual Basic provides several data access technologies. In this tutorial, we
use the Microsoft ADO Data Control with the Adaptive Server Anywhere
OLE DB provider to access the Adaptive Server Anywhere sample database
from Visual Basic.

❖ To develop a database application with Visual Basic

1. Start Visual Basic, choosing a Standard Executable project.

2. Add the Microsoft ADO Data Control 6.0 to your tool palette:

♦ From the Project menu, choose Components.

♦ Select the Microsoft ADO Data Control 6.0 component from the list.

♦ Click OK to add the control to the palette.

3. Add the ADO Data Control to the form, as follows:

152



Chapter 14. Microsoft Visual Basic Quick Start

4. Configure the ADO Data Control:

Property Value

ConnectionString Provider=ASAPROV;DSN=ASA
9.0 Sample

CursorLocation 2 - asUseServer

CursorType 1 - adOpenKeyset

RecordSource SELECT * FROM EMPLOYEE

The ConnectionString uses the Adaptive Server Anywhere OLE DB
Provider (ASAProv) to connect to the ASA 9.0 Sample data source. The
cursor settings take advantage of Adaptive Server Anywhere cursors
rather than using the client-side cursors.

5. Add two text boxes to the form, as follows:

6. Bind the text boxes to the ADO Data Control:

♦ Set the DataSource property for each to beAdodc1.

♦ Set the DataField property for the left-hand text box toemp_fname,
which is the column holding the employee’s first name.

♦ Set the DataField property for the right-hand text box toemp_lname,
which is the column holding the employee’s last name.

7. Save the project.

8. Run the sample:

153



♦ Choose Run➤ Start to run the application.

The application connects to the Adaptive Server Anywhere sample
database and puts the name of the first employee in the text boxes, as
follows:

♦ You can use the buttons on the ADO Data Control to scroll through the
rows of the result set.

You have now created a simple Visual Basic application that works with
Adaptive Server Anywhere.

154



CHAPTER 15

Glossary

Adaptive Server
Anywhere (ASA)

The relational database server component of SQL Anywhere Studio,
intended for use in mobile and embedded environments or as a server for
small and medium-sized businesses.

article In SQL Remote or MobiLink, an article is a database object that represents a
whole table, or a subset of the columns and rows in a table. Articles are
grouped together in a publication.

☞ See also:“replication” on page 166, “publication” on page 165.

base table A permanent table for data. Tables are sometimes calledbase tablesto
distinguish them from temporary tables and views.

☞ See also:“temporary table” on page 169, “view” on page 170.

business rule A guideline based on real-world requirements. Business rules are typically
implemented through check constraints, user-defined data types, and the
appropriate use of transactions.

☞ See also:“constraint” on page 157, “user-defined data type” on
page 170.

check constraint A restriction that enforces specified conditions on a column or set of
columns.

☞ See also:“constraint” on page 157, “foreign key constraint” on
page 159, “primary key constraint” on page 164, “unique constraint” on
page 170.

checkpoint The point at which all changes to the database are saved to the database file.
At other times, committed changes are saved only to the transaction log.

client/server A software architecture where one application (the client) obtains
information from and sends information to another application (the server).
The two applications often reside on different computers connected by a
network.

collation A combination of a character set and a sort order that defines the properties
of text in the database. For Adaptive Server Anywhere databases, the default
collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows

155



systems is 1252LATIN1. A collation, also called a collating sequence, is
used for comparing and sorting strings.

command file A text file containing SQL statements. Command files can be built manually,
or they can be built automatically by database utilities. The dbunload utility,
for example, creates a command file consisting of the SQL statements
necessary to recreate a given database.

communication stream In MobiLink, the network protocol used for communication between the
MobiLink client and the MobiLink synchronization server.

compressed database
file

A database file that has been compressed to a smaller physical size using the
dbshrink utility. Compressed databases are read-only. To make changes to a
compressed database file, you must use an associated write file. You can
expand compressed database files into normal database files using the
dbexpand utility.

concurrency The simultaneous execution of two or more independent, and possibly
competing, processes. Adaptive Server Anywhere automatically uses
locking to isolate transactions and ensure that each concurrent application
sees a consistent set of data.

☞ See also:“transaction” on page 169, “lock” on page 162, “isolation
level” on page 161.

conflict trigger In SQL Remote replication, a trigger that fires when an update conflict is
detected, before the update is applied. Conflict triggers are fired when the
values in the VERIFY clause of an UPDATE statement fail to match the
current values in the database.

☞ See also:“replication” on page 166, “trigger” on page 170.

connection ID A unique number that identifies a given connection between a client
application and the database. You can determine the current connection ID
using the following SQL statement:

SELECT connection_property( ’Number’ )

connection profile A set of parameters that are required to connect to a database, such as user
name, password, and server name, that is stored and used as a convenience.

consolidated database In database replication, a database that stores the master copy of the data.
The consolidated database contains all of the data, while remote databases
usually contain only subsets of the data. In case of conflict or discrepancy,
the consolidated database is considered to have the primary copy of all data.

In MobiLink, the consolidated database can be Oracle, IBM DB2, Microsoft
SQL Server, Adaptive Server Anywhere, or Adaptive Server Enterprise.

☞ See also:“replication” on page 166.

156



Chapter 15. Glossary

constraint A restriction on the values contained in a particular database object, such as
a table or column. For example, a column may have a uniqueness constraint,
which requires that all values in the column be different. A table may have a
foreign key constraint, which specifies how the information in the table
relates to data in some other table.

☞ See also:“check constraint” on page 155, “foreign key constraint” on
page 159, “primary key constraint” on page 164, “unique constraint” on
page 170.

contention The act of competing for resources. For example, in database terms, two or
more users trying to edit the same row of a database contend for the rights to
edit that row.

correlation name The name of a table or view that is used in the FROM clause of a
query—either its original name, or an alias that is defined in the FROM
clause.

cursor A named linkage to a result set, used to access and update rows from a
programming interface. In Adaptive Server Anywhere, cursors support
forward and backward movement through the query results. Cursors consist
of two parts: the cursor result set, typically defined by a SELECT statement;
and the cursor position.

☞ See also:“cursor result set” on page 157, “cursor position” on page 157.

cursor position A pointer to one row within the cursor result set.

☞ See also:“cursor” on page 157, “cursor result set” on page 157.

cursor result set The set of rows resulting from a query that is associated with a cursor.

☞ See also:“cursor” on page 157, “cursor position” on page 157.

data definition language
(DDL)

The subset of SQL statements for modeling the structure of a database. DDL
statements create, modify, and remove database objects, including users.

data type The format of data, such as CHAR or NUMERIC. In the ANSI SQL
standard, data types can also include a restriction on size, character set, and
collation.

☞ See also:“user-defined data type” on page 170.

data manipulation
language (DML)

The subset of SQL statements for retrieving and updating the contents of a
database.

database A collection of tables that are related by primary and foreign keys. The
tables hold the information in the database. The tables and keys together
define the structure of the database. A database-management system
accesses this information.

157



☞ See also:“foreign key” on page 159, “primary key” on page 164,
“database-management system (DBMS)” on page 158, “relational
database-management system (RDBMS)” on page 166.

database administrator
(DBA)

The user with the permissions required to maintain the database. The DBA
is generally responsible for all changes to a database schema, and for
managing users and user groups. The role of database administrator is
automatically built into databases as user ID DBA with password SQL.

database connection A communication channel between a client application and the database. A
valid user ID and password are required to establish a connection. The
privileges granted to the user ID determine the actions that can be carried out
during the connection.

database file A database is held in one or more database files. There is an initial file, and
subsequent files are called dbspaces. Each table, including its indexes, must
be contained within a single database file.

☞ See also:“dbspace” on page 158.

database-management
system (DBMS)

A collection of programs that allow you to create and use databases.

☞ See also:“relational database-management system (RDBMS)” on
page 166.

database name The name given to a database when it is loaded by a server. The default
database name is the root of the initial database file.

☞ See also:“database file” on page 158.

database object A component of a database that contains or receives information. Tables,
indexes, views, procedures, and triggers are database objects.

database owner (dbo) A special user that owns the system objects not owned by SYS.

☞ See also:“database administrator (DBA)” on page 158, “SYS” on
page 169.

database server A computer program that regulates all access to information in a database.
Adaptive Server Anywhere provides two types of servers: network servers
and personal servers.

DBA authority The level of permission that enables a user to carry out administrative
activity in the database. The DBA user has DBA authority by default.

☞ See also:“database administrator (DBA)” on page 158.

dbspace An additional database file that creates more space for data. A database can
be held in up to 13 separate files (an initial file and 12 dbspaces). Each table,
together with its indexes, must be contained in a single database file. The
SQL command CREATE DBSPACE adds a new file to the database.

158



Chapter 15. Glossary

☞ See also:“database file” on page 158.

download The stage in synchronization where data is transferred from the consolidated
database to a remote database.

embedded SQL A programming interface for C programs. Adaptive Server Anywhere
embedded SQL is an implementation of the ANSI and IBM standard.

external login An alternate login name and password used when communicating with a
remote server. By default, Adaptive Server Anywhere uses the names and
passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external
logins. External logins are alternate login names and passwords used when
communicating with a remote server.

extraction In SQL Remote replication, the act of unloading the appropriate structure
and data from the consolidated database. This information is used to
initialize the remote database.

In MobiLink synchronization, the act of unloading the appropriate structure
and data from a reference database.

☞ See also:“replication” on page 166.

failover Switching to a redundant or standby server, system, or network on failure or
unplanned termination of the active server, system, or network. Failover
happens automatically, and is often built-in to continuously available
systems.

FILE In SQL Remote replication, a message system that uses shared files for
exchanging replication messages. This is useful for testing and for
installations without an explicit message-transport system (such as MAPI).

☞ See also:“replication” on page 166, “MAPI” on page 162.

file-based download In MobiLink, a way to synchronize data in which downloads are distributed
as files, allowing offline distribution of synchronization changes.

foreign key One or more columns in a table that duplicate the primary key values in
another table. Foreign keys establish relationships between tables.

☞ See also:“primary key” on page 164, “foreign table” on page 159.

foreign key constraint A restriction on a column or set of columns that specifies how the data in the
table relates to the data in some other table. Imposing a foreign key
constraint on a set of columns makes those columns the foreign key.

☞ See also:“constraint” on page 157, “check constraint” on page 155,
“primary key constraint” on page 164, “unique constraint” on page 170.

foreign table The table containing the foreign key.

159



☞ See also:“foreign key” on page 159.

full backup A backup of the entire database, and optionally, the transaction log. A full
backup contains all the information in the database and thus provides
protection in the event of a system or media failure.

☞ See also:“incremental backup” on page 160.

generated join condition A restriction on join results based on the keyword KEY or NATURAL. For a
natural join, the generated join condition is based on common column names
in the two tables. For a key join, the condition is based on a foreign key
relationship between the two tables.

☞ See also:“join” on page 161, “join condition” on page 161.

global temporary table A type of temporary table for which data definitions are visible to all users
until explicitly dropped. Global temporary tables let each user open their
own identical instance of a table. By default, rows are deleted on commit,
and rows are always deleted when the connection is ended.

☞ See also:“temporary table” on page 169, “local temporary table” on
page 161.

grant option The level of permission that allows a user to grant permissions to other users.

identifier A string of characters used to reference a database object, such as a table or
column. An identifier may contain any character from A through Z, a
through z, 0 through 9, underscore (_), at sign (@), number sign (#), or
dollar sign ($).

incremental backup A backup of the transaction log only, typically used between full backups.

☞ See also:“transaction log” on page 169.

index A sorted set of keys and pointers associated with one or more columns in a
base table. An index on one or more columns of a table can improve
performance.

InfoMaker A reporting and data maintenance tool that lets you create sophisticated
forms, reports, graphs, cross-tabs, and tables, as well as applications that use
these reports as building blocks.

inner join A join in which rows appear in the result set only if both tables satisfy the
join condition. Inner joins are the default.

☞ See also:“join” on page 161, “outer join” on page 163.

integrated login A login feature that allows the same single user ID and password to be used
for operating system logins, network logins, and database connections.

integrity Adherence to rules that ensure that data is correct and accurate, and that the

160



Chapter 15. Glossary

relational structure of the database is intact.

☞ See also:“referential integrity” on page 165.

Interactive SQL An Adaptive Server Anywhere application that allows you to query and alter
data in your database, and modify the structure of your database.
Interactive SQL provides a pane for you to enter SQL statements, as well as
panes that display information about how the query was processed and the
result set.

isolation level The degree to which operations in one transaction are visible to operations in
other concurrent transactions. There are four isolation levels, numbered 0
through 3. Level 3 provides the highest level of isolation. Level 0 is the
default setting.

JAR file Java archive file. A compressed file format consisting of a collection of one
or more packages used for Java applications. It includes all the resources
necessary to install and run a Java program in a single compressed file.

Java class The main structural unit of code in Java. It is a collection of procedures and
variables grouped together because they all relate to a specific, identifiable
category.

jConnect A Java implementation of the JavaSoft JDBC standard. It provides Java
developers with native database access in multi-tier and heterogeneous
environments.

☞ See also:“JDBC” on page 161.

JDBC Java Database Connectivity. A SQL-language programming interface that
allows Java applications to access relational data.

join A basic operation in a relational system that links the rows in two or more
tables by comparing the values in specified columns.

join condition A restriction that affects join results. You specify a join condition by
inserting an ON clause or WHERE clause immediately after the join. In the
case of natural and key joins, Adaptive Server Anywhere generates a join
condition.

☞ See also:“join” on page 161, “generated join condition” on page 160.

join type Adaptive Server Anywhere provides four types of joins: cross join, key join,
natural join, and joins using an ON clause.

☞ See also:“join” on page 161.

local temporary table A type of temporary table that exists only for the duration of a compound
statement or until the end of the connection. Local temporary tables are
useful when you need to load a set of data only once. By default, rows are

161



deleted on commit.

☞ See also:“temporary table” on page 169, “global temporary table” on
page 160.

lock A concurrency control mechanism that protects the integrity of data during
the simultaneous execution of multiple transactions. Adaptive Server
Anywhere automatically applies locks to prevent two connections from
changing the same data at the same time, and to prevent other connections
from reading data that is in the process of being changed.

You control locking by setting the isolation level.

☞ See also:“isolation level” on page 161, “concurrency” on page 156,
“integrity” on page 160.

log file A log of transactions maintained by Adaptive Server Anywhere. The log file
is used to ensure that the database is recoverable in the event of a system or
media failure, to improve database performance, and to allow data
replication using SQL Remote.

☞ See also:“transaction log” on page 169, “transaction log mirror” on
page 169, “full backup” on page 160.

LTM Log Transfer Manager. See“Replication Agent” on page 166.

MAPI Microsoft’s Messaging Application Programming Interface. A message
system used in several popular e-mail systems such as Microsoft Mail.

message system In SQL Remote replication, a protocol for exchanging messages between the
consolidated database and a remote database. Adaptive Server Anywhere
includes support for the following message systems: FILE, MAPI, FTP,
SMTP, and VIM.

☞ See also:“replication” on page 166, “FILE” on page 159, “MAPI” on
page 162.

message type In SQL Remote replication, a database object that specifies how remote users
communicate with the publisher of a consolidated database. A consolidated
database may have several message types defined for it; this allows different
remote users to communicate with it using different message systems.

☞ See also:“replication” on page 166, “consolidated database” on
page 156, “MAPI” on page 162.

metadata Data about data. Metadata describes the nature and content of other data.

☞ See also:“schema” on page 167.

MobiLink A session-based synchronization technology designed to synchronize
UltraLite and Adaptive Server Anywhere databases with many

162



Chapter 15. Glossary

industry-standard SQL database-management systems from Sybase and
other vendors.

☞ See also:“UltraLite” on page 170.

MobiLink client There are two kinds of MobiLink clients. For Adaptive Server Anywhere
remote databases, the MobiLink client is the dbmlsync command line utility.
For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink user A MobiLink user is a name that uniquely identifies a MobiLink remote
database in the synchronization system. The client supplies this name and,
optionally, an associated password when it connects to the MobiLink
synchronization server. MobiLink user names are entirely independent of
database user names.

NetWare A widely-used network operating system defined by Novell. NetWare
generally employs the IPX/SPX protocol, although the TCP/IP protocol may
also be used.

network server A database server that accepts connections from computers sharing a
common network.

☞ See also:“personal server” on page 164.

normalization The refinement of a database structure to eliminate redundancy and improve
organization according to rules based on relational database theory.

object tree In Sybase Central, the hierarchy of database objects. The top level of the
object tree shows all products that your version of Sybase Central supports.
Each product expands to reveal its own sub-tree of objects.

☞ See also:“Sybase Central” on page 168.

ODBC Open Database Connectivity. A standard Windows interface to
database-management systems. ODBC is one of several interfaces supported
by Adaptive Server Anywhere.

ODBC Administrator A Microsoft program included with Windows operating systems for setting
up ODBC data sources.

ODBC data source A specification of the data a user wants to access via ODBC, and the
information needed to get to that data.

outer join A join that preserves all the rows in a table. Adaptive Server Anywhere
supports left, right, and full outer joins. A left outer join preserves the rows
in the table to the left of the join operator, and returns a null when a row in
the right table does not satisfy the join condition. A full outer join preserves
all the rows from both tables.

163



☞ See also:“join” on page 161, “inner join” on page 160.

package In Java, a collection of sets of related classes.

passthrough In SQL Remote replication, a mode by which the publisher of the
consolidated database can directly change remote databases with SQL
statements. Passthrough is set up for specific remotes. In normal
passthrough mode, all database changes made at the consolidated database
are passed through to the selected remote databases. In passthrough only
mode, the changes are made at the remote databases, but not at the
consolidated database.

performance statistic A value reflecting the performance of the database system. The
CURRREAD statistic, for example, represents the number of file reads
issued by the engine that have not yet completed.

personal server A database server that runs on the same computer as the client application.
A personal database server is typically used by a single user on a single
computer, but it can support several concurrent connections from that user.

plug-in module In Sybase Central, a way to access and administer a product. Plug-ins are
usually installed and registered automatically with Sybase Central when you
install the respective product. Typically, a plug-in appears as a top-level
container, in the Sybase Central main window, using the name of the product
itself; for example, Adaptive Server Anywhere.

☞ See also:“Sybase Central” on page 168.

PowerDesigner A database modeling application. PowerDesigner provides a structured
approach to designing a database or data warehouse.

PowerDynamo A Sybase product for building and managing a Web application linked to a
database.

PowerJ A Sybase product for developing Java applications.

predicate A conditional expression that is optionally combined with the logical
operators AND and OR to make up the set of conditions in a WHERE or
HAVING clause. In SQL, a predicate that evaluates to UNKNOWN is
interpreted as FALSE.

primary key A column or list of columns whose values uniquely identify every row in the
table.

☞ See also“foreign key” on page 159.

primary key constraint A uniqueness constraint on the primary key columns. A table can have only
one primary key constraint.

☞ See also:“constraint” on page 157, “check constraint” on page 155,

164



Chapter 15. Glossary

“foreign key constraint” on page 159, “unique constraint” on page 170,
“integrity” on page 160.

primary table The table containing the primary key in a foreign key relationship.

proxy table A local table containing metadata used to access a table on a remote
database server as if it were a local table.

☞ See also:“metadata” on page 162.

publication In SQL Remote or MobiLink, a database object that identifies replicated
data. In MobiLink, publications exist only on the clients. A publication
consists of articles. Periodically, the changes made to each publication are
replicated to all subscribers to that publication. SQL Remote users can
receive a publication by subscribing to it. MobiLink users can synchronize a
publication by creating a synchronization subscription to it.

☞ See also:“replication” on page 166, “article” on page 155, “publication
update” on page 165.

publication update In SQL Remote replication, a list of changes made to one or more
publications in one database. A publication update is sent periodically as
part of a replication message to the remote database(s).

☞ See also:“replication” on page 166, “publication” on page 165.

publisher In SQL Remote replication, the single user in a database who can exchange
replication messages with other replicating databases.

☞ See also:“replication” on page 166.

query A SQL statement or group of SQL statements that access and/or manipulate
data in a database.

☞ See also:“SQL” on page 168.

Redirector A web server plug-in that routes requests and responses between a client and
the MobiLink synchronization server. This plug-in also implements
load-balancing and failover mechanisms.

reference database In MobiLink, an Adaptive Server Anywhere database used in the
development of UltraLite clients. You can use a single Adaptive Server
Anywhere database as both reference and consolidated database during
development. Databases made with other products cannot be used as
reference databases.

referential integrity Adherence to rules governing data consistency, specifically the relationships
between the primary and foreign key values in different tables. To have
referential integrity, the values in each foreign key must correspond to the
primary key values of a row in the referenced table.

165



☞ See also:“primary key” on page 164, “foreign key” on page 159.

relational
database-management
system (RDBMS)

A type of database-management system that stores data in the form of
related tables.

☞ See also:“database-management system (DBMS)” on page 158.

remote database In SQL Remote replication or MobiLink synchronization, a database that
exchanges data with a consolidated database. Remote databases may share
all or some of the data in the consolidated database.

☞ See also:“replication” on page 166, “consolidated database” on
page 156.

remote DBA authority In SQL Remote, a level of permission required by the Message Agent. In
MobiLink, a level of permission required by the Adaptive Server Anywhere
synchronization client (dbmlsync). When the Message Agent or
synchronization client connects as a user who has this authority, it has full
DBA access. The user ID has no additional permissions when not connected
through the Message Agent or synchronization client.

☞ See also:“DBA authority” on page 158.

remote permission In SQL Remote replication, the permission to exchange replication
messages with the publishing database. Granting remote permissions to a
user makes that user a remote user. You must specify a message type, an
appropriate remote address, and a replication frequency. In general terms,
remote permissions can also refer to any user involved in SQL Remote
replication (for example, the consolidated publisher and remote publisher).

☞ See also:“replication” on page 166.

remote user In SQL Remote replication, a database user in the consolidated database that
has been granted remote permissions and is associated with one particular
remote database in the replication setup. To create a remote user, an ordinary
database user is granted remote permissions. Doing so not only identifies the
existence of a particular remote database, but also specifies the message type
and address with which to communicate with that particular remote site.

When remote databases are created by means of extraction from a
consolidated database, each remote user in the consolidated database
becomes the publisher of the data in one particular remote database.

☞ See also:“SQL Remote” on page 168, “consolidated database” on
page 156, “publisher” on page 165.

replication The sharing of data among physically distinct databases. Sybase has three
replication technologies: MobiLink, SQL Remote, and Replication Server.

Replication Agent In Replication Server, the program, also called Log Transfer Manager

166



Chapter 15. Glossary

(LTM), that reads a database transaction log and sends committed changes to
Replication Server.

replication frequency In SQL Remote replication, a setting for each remote user that determines
how often the publisher’s message agent should send replication messages to
that remote user.

☞ See also:“replication” on page 166, “remote user” on page 166.

replication message In SQL Remote or Replication Server, a communication sent between a
publishing database and a subscribing database. Messages contain data,
passthrough statements, and information required by the replication system.

☞ See also:“passthrough” on page 164, “replication” on page 166,
“publication update” on page 165.

Replication Server A Sybase connection-based replication technology that works with Adaptive
Server Anywhere and Adaptive Server Enterprise. It is intended for near-real
time replication between a small number of databases.

role In conceptual database modeling, a verb or phrase that describes a
relationship from one point of view. You can describe each relationship with
two roles. Examples of roles are “contains” and “is a member of.”

role name The name of a foreign key. This is called a role name because it names the
relationship between the foreign table and primary table. By default, the role
name is the table name, unless another foreign key is already using that
name, in which case the default role name is the table name followed by a
three-digit unique number. You can also create the name yourself.

☞ See also:“foreign key” on page 159.

rollback log A record of the changes made during each uncommitted transaction. In the
event of a ROLLBACK request or a system failure, uncommitted
transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted
when the transaction is complete.

☞ See also:“transaction” on page 169.

row-level trigger A trigger that executes once for each row that is changed.

☞ See also:“trigger” on page 170, “statement-level trigger” on page 168.

schema The structure of a database, including tables, columns, and indexes, and the
relationships between them.

scripts In MobiLink, code written to handle MobiLink events. Scripts
programmatically control data exchange to meet business needs.

server-initiated
synchronization

A way to initiate MobiLink synchronization programmatically from the

167



consolidated database.

service In Windows operating systems, a way of running applications when the user
ID running the application is not logged on.

session-based
synchronization

A type of synchronization where synchronization results in consistent data
representation across both the consolidated and remote databases. MobiLink
is session-based.

SQL The language used to communicate with relational databases. ANSI has
defined standards for SQL, the latest of which is SQL-99 (also called SQL3).
SQL stands, unofficially, for Structured Query Language.

SQL Remote A message-based replication technology for two-way replication between
consolidated and remote databases. The consolidated database must be
Adaptive Server Anywhere or Adaptive Server Enterprise. The remote
databases must be Adaptive Server Anywhere.

SQL statement A string containing SQL keywords designed for passing instructions to a
DBMS.

☞ See also:“schema” on page 167, “SQL” on page 168,
“database-management system (DBMS)” on page 158.

statement-level trigger A trigger that executes after the entire triggering statement is completed.

☞ See also:“trigger” on page 170, “row-level trigger” on page 167.

stored procedure A program comprised of a sequence of SQL instructions, stored in the
database and used to perform a particular task.

subquery A SELECT statement that is nested inside another SELECT, INSERT,
UPDATE, or DELETE statement, or another subquery.

There are two types of subquery: correlated and nested.

subscription In SQL Remote replication, a link between a publication and a remote user,
allowing the user to exchange updates on that publication with the
consolidated database.

In MobiLink synchronization, a synchronization subscription is a link in a
client database between a publication and a MobiLink user allowing the data
described by the publication to be synchronized.

☞ See also:“publication” on page 165, “remote user” on page 166,
“MobiLink user” on page 163.

Sybase Central A database management tool that provides Adaptive Server Anywhere
database settings, properties, and utilities in a graphical user interface.
Sybase Central can also be used for managing other Sybase products,
including MobiLink.

168



Chapter 15. Glossary

synchronization The process of replicating data between databases using MobiLink
technology.

In SQL Remote, synchronization is used exclusively to denote the process of
initializing a remote database with an initial set of data.

☞ See also:“MobiLink” on page 162, “SQL Remote” on page 168.

SYS A special user that owns most of the system objects. You cannot log in as
SYS.

system object Database objects owned by SYS or dbo.

system table A table, owned by SYS or dbo, that holds metadata. System tables, also
known as data dictionary tables, are created and maintained by the database
server.

system view A type of view, included in every database, that presents the information
held in the system tables in an easily understood format.

temporary table A table that is created for the temporary storage of data. There are two types:
global and local.

☞ See also:“local temporary table” on page 161, “global temporary table”
on page 160.

transaction A sequence of SQL statements that comprise a logical unit of work. A
transaction is processed in its entirety or not at all. Adaptive Server
Anywhere supports transaction processing, with locking features built in to
allow concurrent transactions to access the database without corrupting the
data. Transactions end either with a COMMIT statement, which makes the
changes to the data permanent, or a ROLLBACK statement, which undoes
all the changes made during the transaction.

transaction log A file storing all changes made to a database, in the order in which they are
made. It improves performance and allows data recovery in the event the
database file is damaged. For best results, the transaction log should be kept
on a different device from the database files.

transaction log mirror An optional identical copy of the transaction log file, maintained
simultaneously. Every time a database change is written to the transaction
log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so
that if either device fails, the other copy of the log keeps the data safe for
recovery.

☞ See also:“transaction log” on page 169.

transactional integrity In MobiLink, the guaranteed maintenance of transactions across the

169



synchronization system. Either a complete transaction is synchronized, or no
part of the transaction is synchronized.

trigger A special form of stored procedure executed automatically when a user
executes a query that modifies the data.

☞ See also:“row-level trigger” on page 167, “statement-level trigger” on
page 168, “conflict trigger” on page 156, “integrity” on page 160.

UltraLite A deployment technology for Adaptive Server Anywhere databases, aimed
at small, mobile, and embedded devices. Intended platforms include cell
phones, pagers, and personal organizers.

unique constraint A restriction on a column or set of columns requiring that all non-null values
are different. A table can have multiple unique constraints.

☞ See also:“foreign key constraint” on page 159, “primary key constraint”
on page 164, “constraint” on page 157.

unload Unloading a database exports the structure and/or data of the database to text
files (SQL command files for the structure, and ASCII comma-separated
files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the
UNLOAD statement.

upload The stage in synchronization where data is transferred from a remote
database to a consolidated database.

user-defined data type A data type that users create to specify a base data type, and optionally a
default value, check condition, and nullability. User-defined data types, also
called user-defined domains, can be applied to columns to enforce
consistency throughout the database.

☞ See also:“data type” on page 157.

validate To test for particular types of file corruption of a database, table, or index.

view A SELECT statement that is stored in the database as an object. It allows
users to see a subset of rows or columns from one or more tables. Each time
a user uses a view of a particular table, or combination of tables, it is
recomputed from the information stored in those tables. Views are useful for
security purposes, and to tailor the appearance of database information to
make data access straightforward.

Windows The Microsoft Windows family of operating systems, including Windows
95, Windows 98, Windows Me, Windows CE, Windows NT, Windows 2000,
and Windows XP.

Windows CE A family of operating systems produced by Microsoft for mobile devices.

170



Chapter 15. Glossary

work table An internal storage area for interim results during query optimization.

write file A file used to record changes to a read-only database. Often used with
compressed databases.

☞ See also:“compressed database file” on page 156.

171



172



Index

A
Adaptive Server Anywhere

applications 29
glossary definition 155
hallmarks 26
intended uses 25
internals 39
introduction 24
programming interfaces 34
quick start 1
system requirements 27

adding
new rows in Interactive SQL 77
rows 135

ADO
data control 152
development tools 38

aggregate functions
applying to grouped data 120
introduction 119

aliases
for columns 92

alphabetical order
ORDER BY clause 95

ALTER statement
automatic commit 138

APIs
Adaptive Server Anywhere 34
ADO 38
embedded SQL 36
JDBC 38
ODBC 36
OLE DB 38
Open Client 37

architecture of database applications 33
articles

glossary definition 155
ASA

glossary definition 155
asademo.db file

about xiii, 46
attributes

tables 11
AUTO_COMMIT option

grouping changes in Interactive SQL
138

automatic commit
ALTER statement 138
COMMENT statement 138
data definition statements 138
DROP statement 138

availability
Adaptive Server Anywhere

components 30

B
base tables 13

glossary definition 155
BETWEEN conditions

WHERE clause 102
binary large objects

about 56
bitmaps

storing as blobs 56
BLOBs

about 56
business rules

glossary definition 155

C
canceling Interactive SQL commands 80
cardinality

relationships and 58
case sensitivity

SQL 90
table names 90

check constraints
glossary definition 155

checking
data integrity 141

checkpoints
glossary definition 155

clearing
SQL Statements pane 80

173



Index

client/server
glossary definition 155

collations
glossary definition 155

columns
about 10
aliases 92
allowing NULL 57
calculated 92
data types 56
looking up in Interactive SQL 82
ordering 92
selecting from a table 92

combining
multiple statements in Interactive SQL

81
command files

building 81
glossary definition 156
overview 81
SQL Statements pane 81

command history dialog
recalling commands in Interactive

SQL 84
using in Interactive SQL 84

command line utilities
introduction 30

command sequence communication
protocol

about 35
diagram 34

commands
canceling in Interactive SQL 80
editing in Interactive SQL 84
executing in Interactive SQL 80, 90
getting in Interactive SQL 90
interrupting in Interactive SQL 80
loading in Interactive SQL 90
logging in Interactive SQL 86
recalling in Interactive SQL 84
saving in Interactive SQL 90
stopping in Interactive SQL 80

COMMENT statement
automatic commit 138

COMMIT statement
about 139
transactions 138

communication protocols
Adaptive Server Anywhere 35

communication stream
glossary definition 156

comparisons
about 98
introduction 99
using subqueries 129

completing transactions 138
components

availability 30
compound search conditions

using 102
compressed database files

glossary definition 156
computed columns

adding to new rows in Interactive SQL
78

recalculated in Interactive SQL 77
updating in Interactive SQL 77

conceptual database models
definition of 51

concurrency
glossary definition 156

conditions
GROUP BY clause 122
pattern matching 100
search 98, 102

conflict triggers
glossary definition 156

connecting your application to its
database 61

connection IDs
glossary definition 156

connection profiles
glossary definition 156

connections
introduction 62

consolidated databases
glossary definition 156

constraints
glossary definition 157

contention
glossary definition 157

conventions
documentation x

copying

174



Index

rows in Interactive SQL 78
correlated subqueries

defined 131
correlation names

glossary definition 157
COUNT function

applying to grouped data 120
create database wizard

using 51
creating

databases 51
simple ODBC data sources 63

cross products
introduction 108

cursor positions
glossary definition 157

cursor result sets
glossary definition 157

cursors
glossary definition 157

D
data definition statements

automatic commit 138
data recovery

transactions 140
data sources

introduction 63
data types

about 10
choosing 56
glossary definition 157

database administrator
glossary definition 158

database applications
architecture 33

database connections
glossary definition 158

database files
glossary definition 158
introduction 40

database name
glossary definition 158

database objects
about 13
glossary definition 158

database owner

glossary definition 158
database servers

connecting to 61
differences between personal and

network 28
glossary definition 158
internals 39
quick start 2
running 61

database sizes
multi-gigabyte databases 25

databases
client application 18
components 18
creating 51
design concepts 51
designing 43
files 40
glossary definition 157
language interface 18
objects 13
queries 15
relational 10
server 18
SQL 15
system tables 16

databases and applications 9
dates

combining 102
compound 102
search conditions 102
search conditions introduction 99

DBA authority
glossary definition 158

dbeng9
limitations 28

dbisql utility
about 67

DBMS
glossary definition 158

dbspaces
glossary definition 158

DDL
glossary definition 157

DELETE statement
about 137
errors 142

175



Index

examples 142
deleting

rows from tables 78
rows using Interactive SQL 78

designing
databases 43, 51

designing and building your database 43
developing

SQL statements 68
dialog boxes

command history 84
DML

glossary definition 157
documentation

conventions x
SQL Anywhere Studio viii

downloads
glossary definition 159

DROP statement
automatic commit 138

E
editing

table values in Interactive SQL 76
embedded databases

requirements 25
embedded SQL

development tools 36
glossary definition 159

ending transactions 138
entering

Interactive SQL commands 80
multiple statements in Interactive SQL

81
errors

Interactive SQL 80
executing

commands in Interactive SQL 80
queries more than once 96

external logins
glossary definition 159

extraction
glossary definition 159

F
failover

glossary definition 159

feedback
documentation xiv
providing xiv

FILE
glossary definition 159

FILE message type
glossary definition 159

file-based downloads
glossary definition 159

finishing transactions 138
foreign key constraints

glossary definition 159
foreign key creation wizard

using 60
foreign keys

about 12
defined 11
glossary definition 159
inserts 141

foreign tables
glossary definition 159

full backups
glossary definition 160

function keys
Interactive SQL 72

functions
SOUNDEX function 101

G
generated join conditions

glossary definition 160
global temporary tables

glossary definition 160
glossary 155
go

statement delimiter 82
grant options

glossary definition 160
GROUP BY clause

aggregate functions 120
errors 120

grouped data 119
grouping changes into transactions 138

H
hardware requirements

176



Index

Adaptive Server Anywhere hallmarks
26

HAVING clause
GROUP BY clause and 122
WHERE clause and 122

I
icons

used in manuals xii
identifiers

glossary definition 160
IN conditions 102
incremental backups

glossary definition 160
indexes

glossary definition 160
introduction 97

inequality
testing for 99

InfoMaker
glossary definition 160

inner joins
glossary definition 160

INSERT statement
examples 141
introduction 135

inserting
rows into tables in Interactive SQL 77

integrated logins
glossary definition 160

integrity
checking 141
glossary definition 160

Interactive SQL
about 67
canceling commands 80
combining multiple statements 81
command history dialog 84
commands overview 80
copying rows 78
deleting rows 78
displaying a list of procedures 82
displaying a list of tables 82, 106
displaying data 75
displaying the Query Editor 72
editing table values 76
effects of exiting 138

executing all text in SQL Statements
pane 72

executing commands 80, 90
executing only selected text in SQL

Statements pane 82
function keys 72
getting commands 90
glossary definition 161
grouping changes into transactions 138
inserting rows 77
interrupting commands 80
introduction 30
keyboard shortcuts 72
loading commands 90
logging commands 86
looking up column names 82
looking up procedure names 82
looking up table names 82
main window description 70
opening multiple windows 71
overview 68
quick start 6
recalling commands 84
reported errors 80
saving commands 90
SQL Statements pane 90
starting 70
stopping commands 80
toolbar description 71
updating computed columns 77

internals
Adaptive Server Anywhere 39
database server 39

introduction to Adaptive Server
Anywhere 23

isolation levels
glossary definition 161

ISQL seeInteractive SQL

J
JAR files

glossary definition 161
Java classes

glossary definition 161
jConnect

glossary definition 161
JDBC

177



Index

development tools 38
glossary definition 161

join conditions
glossary definition 161

join types
glossary definition 161

joins
glossary definition 161
introduction 106
or subqueries 131

K
key joins

introduction 111
keyboard shortcuts

Interactive SQL 72
keys

about 11
foreign 11
primary 11

L
LIKE conditions

introduction 100
local temporary tables

glossary definition 161
locks

glossary definition 162
log files

glossary definition 162
logging

commands in Interactive SQL 86
looking up

columns in Interactive SQL 82
procedures in Interactive SQL 82
tables in Interactive SQL 82

lookup table name dialog
displaying a list of tables 106

LTM
glossary definition 166

M
many-to-many relationships

defined 59
MAPI

glossary definition 162

MAPI message type
glossary definition 162

message systems
glossary definition 162

message types
glossary definition 162

metadata
glossary definition 162
system tables 16

Microsoft Visual Basic quick start 151
mobile computing

requirements 25
MobiLink

glossary definition 162
MobiLink clients

glossary definition 163
MobiLink users

glossary definition 163

N
natural joins

errors 113
introduction 113

NetWare
glossary definition 163

network server
about 28
glossary definition 163
platform support 28

network software requirements 27
newsgroups

technical support xiv
normalization

glossary definition 163
NULL

allowing in columns 57, 135

O
object trees

glossary definition 163
ODBC

development tools 36
glossary definition 163
introduction to data sources 63

ODBC Administrator
glossary definition 163

ODBC data sources

178



Index

glossary definition 163
OLE DB

development tools 38
OLE DB and ADO programming

interfaces 151
ON phrase

introduction 109
one-to-many relationships

definition of 59
one-to-one relationships

definition of 58
Open Client

development tools 37
opening multiple Interactive SQL

windows 71
operating systems

supported 27
optimization of queries

Adaptive Server Anywhere hallmarks
26

ORDER BY clause
examples 95
required to ensure rows always appear

in same order 96
using indexes to improve performance

97
outer joins

glossary definition 163
introduction 115

outer references
defined 131

P
packages

glossary definition 164
parameters

to functions 119
passthrough mode

glossary definition 164
passwords

connecting to a new database 52
pattern matching

introduction 100
performance monitoring

Adaptive Server Anywhere hallmarks
26

performance statistics

glossary definition 164
personal server

about 28
glossary definition 164
limitations 28
platform support 28

platforms
supported 27

plug-in modules
glossary definition 164

PowerDesigner
glossary definition 164

PowerDynamo
glossary definition 164

PowerJ
glossary definition 164

predicates
glossary definition 164
introduction 102

primary key constraints
glossary definition 164

primary keys 11
glossary definition 164

primary tables
glossary definition 165

procedures
looking up in Interactive SQL 82

program group
Adaptive Server Anywhere 31

programming interfaces
Adaptive Server Anywhere 34
ADO 38
embedded SQL 36
JDBC 38
ODBC 36
OLE DB 38
Open Client 37
supported in Adaptive Server

Anywhere 34
projections

defined 16
proxy tables

glossary definition 165
publication updates

glossary definition 165
publications

glossary definition 165

179



Index

publisher
glossary definition 165

Q
queries

defined 15
glossary definition 165
Interactive SQL 80
SELECT statement 88

Query Editor
displaying in Interactive SQL 72

quick start
Adaptive Server Anywhere 1
database server 2
developing a Visual Basic application

152
Interactive SQL 6
Sybase Central 4

R
RDBMS

defined 10
glossary definition 166

recalling
commands in Interactive SQL 84

recovery
Adaptive Server Anywhere hallmarks

26
Redirector

glossary definition 165
reference databases

glossary definition 165
referential integrity

glossary definition 165
relational database-management system

defined 10
relational databases

about 11
concepts 10
terminology 11

relations
entities 11

relationships
about 58
cardinality of 58
many-to-many 59
one-to-many 59

one-to-one 58
remote databases

glossary definition 166
remote DBA authority

glossary definition 166
remote permissions

glossary definition 166
remote users

glossary definition 166
replication

glossary definition 166
replication frequency

glossary definition 167
replication messages

glossary definition 167
Replication Server

glossary definition 167
requirements

Adaptive Server Anywhere 27
restrictions

defined 16
result sets

copying rows 78
deleting rows 78
editing table values in Interactive SQL

76
executing a query more than once 96
inserting rows 77
troubleshooting 96

retrieving
commands in Interactive SQL 84

role names
glossary definition 167

roles
glossary definition 167

rollback logs
glossary definition 167

ROLLBACK statement
about 139
introduction 137
transactions 138

rolling back
transactions 138

row-level locking
Adaptive Server Anywhere hallmarks

26
row-level triggers

180



Index

glossary definition 167
rows

about 10
adding 135
adding using Interactive SQL 77
copying in Interactive SQL 78
deleting using Interactive SQL 78
editing values in Interactive SQL 76
inserting in Interactive SQL 77
selecting from a table 98

running
Interactive SQL commands 80

S
sample database

about xiii, 46
saving

transaction results 138
schemas

defined 51
glossary definition 167

scripts
glossary definition 167

search conditions
date comparisons 99
GROUP BY clause 122
introduction 98
pattern matching 100
shortcuts for 102
subqueries 127

select list
calculated columns 92
column names 92

SELECT statement
Interactive SQL 75
introduction 88
subqueries 127

selecting aggregate data 117
selecting data from database tables 87
selecting data from multiple tables 105
selecting data using subqueries 125
selecting rows from a table 98
selections

defined 16
server-initiated synchronization

glossary definition 167
services

glossary definition 168
session-based synchronization

glossary definition 168
sorting

query results 95
SOUNDEX function

about 101
SQL

about 15
developing queries 68
glossary definition 168

SQL and database computing 15
SQL Anywhere Studio

documentation viii
SQL Remote

glossary definition 168
SQL statements

glossary definition 168
Start menu

Adaptive Server Anywhere 31
starting

Interactive SQL 70
transactions 138

statement-level triggers
glossary definition 168

stored procedures
glossary definition 168

subqueries
comparisons 129
correlated subqueries 131
glossary definition 168
introduction 127
or joins 131
troubleshooting 130

subscriptions
glossary definition 168

summarizing data 118
support

newsgroups xiv
supported platforms

Adaptive Server Anywhere 27
Sybase Central

glossary definition 168
introduction 29
quick start 4

synchronization
glossary definition 169

181



Index

SYS
glossary definition 169

SYSCATALOG view
about 147

SYSCOLUMNS view
about 148

system failures
transactions 140

system objects
glossary definition 169

system requirements
Adaptive Server Anywhere 27

system tables
defined 16
glossary definition 169
introduction 146
SYSTABLE 149

system views
glossary definition 169
SYSCATALOG 147
SYSCOLUMNS 148

T
table values

editing in Interactive SQL 76
tables

about 10
characteristics 10
designing 53
foreign keys 12
looking up in Interactive SQL 82

TDS communication protocol
diagram 34

technical support
newsgroups xiv

temporary files
introduction 40

temporary tables
glossary definition 169

toolbars
Interactive SQL 71

transaction log
glossary definition 169
introduction 40

transaction log mirror
glossary definition 169

transaction processing

Adaptive Server Anywhere hallmarks
26

data recovery 140
transactional integrity

glossary definition 169
transactions

completing 138
data recovery 140
glossary definition 169
grouping changes 138
starting 138

triggers
glossary definition 170

troubleshooting
GROUP BY clause 120
natural joins 113
result set appears to change 96
subqueries 130

tuples 11
tutorials

designing a database 51
developing a Visual Basic application

152

U
UltraLite

glossary definition 170
unique constraints

glossary definition 170
unload

glossary definition 170
UPDATE statement

errors 143
examples 143
introduction 136

updating
data 133
values in Interactive SQL 76

updating the database 133
upload

glossary definition 170
user IDs

new databases 52
user-defined data types

glossary definition 170
using Interactive SQL 67
using Interactive SQL to display data 75

182



Index

utilities
introduction 30

V
validate

glossary definition 170
values

editing in Interactive SQL 76
views

glossary definition 170
SYSCATALOG 147
SYSCOLUMNS 148

Visual Basic
quick start 152

W
WHERE clause

BETWEEN conditions 102
date comparisons introduction 99
deleting rows 137
examples 98
HAVING clause and 122
modifying rows in a table 136
pattern matching 100

wildcards
pattern matching 100

Windows
glossary definition 170
supported operating systems 27

Windows CE
glossary definition 170

wizards
create database 51
foreign key creation 60

work tables
glossary definition 171

workgroup computing
requirements 25

working with SQL statements in
Interactive SQL 80

write files
glossary definition 171

183


	Adaptive Server Anywhere Getting Started
	Contents
	About This Manual
	SQL Anywhere Studio documentation
	Documentation conventions
	The Adaptive Server Anywhere sample database
	Finding out more and providing feedback

	 Adaptive Server Anywhere Quick Start
	Step 1: Start the Adaptive Server Anywhere database server
	Step 2: Start Sybase Central
	Step 3: Start Interactive SQL

	 Databases and Applications
	Relational database concepts
	Database tables
	Relations between tables
	Tables have a primary key
	Tables are related by foreign keys

	Other database objects

	SQL and database computing
	Queries
	Other SQL statements
	The system tables

	The pieces of a database system
	How the pieces fit together
	Personal applications and embedded databases
	Client/server applications and multi-user databases


	Introduction to Adaptive Server Anywhere
	Introduction to Adaptive Server Anywhere
	Adaptive Server Anywhere intended uses
	Adaptive Server Anywhere hallmarks
	Network software requirements

	The Adaptive Server Anywhere database server
	Adaptive Server Anywhere applications
	Sybase Central
	Interactive SQL
	Utilities
	Availability of components
	The SQL Anywhere program group


	The Architecture of Database Applications
	Application programming interfaces
	Supported interfaces and protocols
	Communications protocols
	ODBC applications
	Embedded SQL applications
	Open Client applications
	JDBC applications
	OLE DB applications

	Inside Adaptive Server Anywhere
	Inside the database server
	Inside the database


	Designing and Building Your Database
	Introduction
	About this chapter

	The sample database
	Viewing the structure of the sample database using Sybase Central
	Connect to the sample database
	View a list of tables in the sample database
	View the columns of a table


	Tutorial: Design and build a simple database
	Lesson 1: Create a database file
	Lesson 2: Connect to your database
	Lesson 3: Design and create a table
	Lesson 4: Identify and create primary keys
	Lesson 5: Design column properties
	Lesson 6: Design and create relationships between tables


	Connecting Your Application to its Database
	Introduction to connections
	Creating an ODBC data source

	Using Interactive SQL
	Introduction to Interactive SQL
	About this chapter

	Starting Interactive SQL
	Interactive SQL main window description
	Using the Interactive SQL toolbar
	Opening multiple windows
	Interactive SQL keyboard shortcuts

	Using Interactive SQL to display data
	Editing table values in Interactive SQL
	Editing table values from the Interactive SQL result set
	Inserting rows into the database from the Interactive SQL result set
	Deleting rows from the database using Interactive SQL

	Copying rows from the Interactive SQL result set

	Working with SQL statements in Interactive SQL
	Canceling an Interactive SQL command
	Executing multiple statements
	Looking up tables, columns, and procedures
	Printing SQL statements
	Recalling commands
	Logging commands


	Selecting Data from Database Tables
	Introduction
	About this chapter

	Selecting a complete table
	Selecting columns from a table
	Using calculated columns

	Ordering query results
	Using indexes to improve ORDER BY performance

	Selecting rows from a table
	Comparing dates in search conditions
	Pattern matching in search conditions
	Matching rows by sound
	Using compound search conditions
	Shortcuts for compound search conditions


	Selecting Data from Multiple Tables
	Introduction
	About this chapter
	Displaying a list of tables

	Joining tables using the cross product
	Using the ON phrase to restrict a join
	Joining tables using key joins
	Joining tables using natural joins
	Joining tables using outer joins

	Selecting Aggregate Data
	Summarizing data
	About this chapter

	A first look at aggregate functions
	Applying aggregate functions to grouped data
	Restricting groups
	Combining WHERE and HAVING clauses


	Selecting Data Using Subqueries
	Introducing subqueries
	About this chapter

	Introduction
	Single-row and multiple-row subqueries
	Using subqueries instead of joins

	Updating the Database
	Introduction
	About this chapter

	Adding rows to a table
	Modifying rows in a table
	Deleting rows
	Grouping changes into transactions
	Making changes permanent
	Canceling changes
	Transactions and data recovery

	Integrity checking
	Inserting duplicate data
	Inserting values that violate relationships
	Errors on DELETE or UPDATE


	System Tables
	The system tables
	About this chapter

	The SYSCATALOG view
	The SYSCOLUMNS view
	Other system tables

	 Microsoft Visual Basic Quick Start
	Tutorial: Developing a Visual Basic application

	Glossary

	Index

