
UltraLite
™
 for eMbedded Visual Basic

User’s Guide

Last modified: October 2002
Part Number: 36293-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 36293-01-0802-01.

iii

Contents

About This Manual... v
The UltraLite sample database .. vi
Finding out more and providing feedback................................vii

1 Introduction to UltraLite for eMbedded Visual Basic 1
UltraLite for eMbedded Visual Basic features...........................2
System requirements and supported platforms3
UltraLite for eMbedded Visual Basic architecture.....................4

2 Tutorial: An UltraLite for eMbedded Visual Basic
Application ... 7

Introduction ...8
Lesson 1: Create a database schema9
Lesson 2: Create a project architecture..................................11
Lesson 3: Design the application form....................................13
Lesson 4: Configure the emulator to support
UltraLite applications...14
Lesson 5: Write the Visual Basic sample code.......................16
Lesson 6: Deploy to a device..25
Summary...26

3 Understanding UltraLite for eMbedded Visual Basic
Development .. 27

Preparing to work with eMbedded Visual Basic......................28
Working with UltraLite databases ...30
Connecting to the UltraLite database......................................32
Accessing and manipulating data ...35
Accessing schema information ...41
Error handling..42
User authentication ...43
Synchronizing UltraLite applications.......................................44

iv

4 API Reference .. 47
IULColumns collection .. 49
IULIndexSchemas collection... 50
IULPublicationSchemas collection.. 51
ULAuthStatusCode constants... 52
ULColumn class.. 53
ULColumnSchema class... 58
ULConnection class .. 59
ULDatabaseManager class... 64
ULDatabaseSchema class.. 69
ULIndexSchema class .. 71
ULPublicationSchema class ... 72
ULSQLCode constants ... 73
ULSQLType constants.. 76
ULStreamErrorCode constants... 77
ULStreamErrorContext constants... 80
ULStreamErrorID constants.. 81
ULStreamType.. 82
ULSyncMasks Type .. 83
ULSyncParms class.. 84
ULSyncResult class .. 85
ULSyncState constants... 86
ULTable class ... 87
ULTableSchema class .. 96

Index... 97

v

About This Manual

This manual describes UltraLite for eMbedded Visual Basic, which is part of
the UltraLite Component Suite. With UltraLite for eMbedded Visual Basic
you can develop and deploy database applications to handheld, mobile, or
embedded devices running Windows CE.

This manual is intended for eMbedded Visual Basic application developers
who wish to take advantage of the performance, resource efficiency,
robustness, and security of an UltraLite relational database for data storage
and synchronization. Familiarity with eMbedded Visual Basic is assumed.

Subject

Audience

vi

The UltraLite sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database is held in a file named custdb.db, and is
located in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere directory. A complete application built on this database is
also supplied as Samples\UltraLiteActiveX\CustDB\evb2002.ebp and
evbPocketPC.ebp.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

vii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through a newsgroup and via e-mail. The newsgroup can be found on the
forums.sybase.com news server as
news://forums.sybase.com/ianywhere.private.ultralitetools.beta. The e-mail
address is ulbeta@ianywhere.com.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

viii

1

C H A P T E R 1

Introduction to UltraLite for eMbedded
Visual Basic

This chapter introduces you to UltraLite for eMbedded Visual Basic features,
supported platforms, architecture, and functionality.

Topic Page

UltraLite for eMbedded Visual Basic features 2

System requirements and supported platforms 3

UltraLite for eMbedded Visual Basic architecture 4

About this chapter

Contents

UltraLite for eMbedded Visual Basic features

2

UltraLite for eMbedded Visual Basic features
UltraLite for eMbedded Visual Basic is a member of the UltraLite
Component Suite. It provides the following benefits for developers targeting
small devices:

♦ a robust relational database store

♦ synchronization

♦ application development using the Microsoft eMbedded Visual Basic
development tool

♦ deployment on Windows CE platforms.

$ For more information on the features and benefits of the UltraLite
Component Suite, see "Introduction to the UltraLite Component Suite" on
page 2 of the book UltraLite Foundations.

Chapter 1 Introduction to UltraLite for eMbedded Visual Basic

3

System requirements and supported platforms
Platform support for UltraLite is of the following kinds:

♦ Target platforms The target platform is the device and operating
system on which you deploy your finished UltraLite application.

♦ Development platforms For each target platform, you develop your
applications using a particular development tool and operating system.
The tool and operating system comprise the Development platform.

Supported platforms

To develop applications using UltraLite, you require Visual Basic 6 or
eMbedded Visual Basic Version 3.0.

UltraLite for eMbedded Visual Basic targets Windows CE 3.0 and higher,
PocketPC emulator, MIPS and ARM devices and PocketPC 2002 on ARM.

SQL Anywhere Studio

You can use SQL Anywhere Studio to add the following capabilities to your
applications:

♦ Synchronization SQL Anywhere users can synchronize the data in
UltraLite applications with a central database.

♦ Reference database SQL Anywhere users who wish to model an
UltraLite database after an Adaptive Server Anywhere database, can use
the ulinit command-line tool to generate an UltraLite schema file from an
Adaptive Server Anywhere database.

Development
platforms

Target platforms

UltraLite for eMbedded Visual Basic architecture

4

UltraLite for eMbedded Visual Basic architecture

UltraLite for eMbedded Visual Basic provides a database engine for
Windows CE. It provides a eMbedded Visual Basic ActiveX that exposes a
set of objects for data manipulation using the UltraLite database.

ULDatabaseManagerULDatabaseManager

ULConnectionULConnection

ULTableULTable

IULColumnsIULColumns

ULPublicationSchemasULPublicationSchemas

ULDatabaseSchemaULDatabaseSchema

ULSyncParmsULSyncParms

ULTableSchemaULTableSchema

IULIndexSchemasIULIndexSchemas

ULColumnULColumn

ULPublicationSchemaULPublicationSchema

ULSyncResultULSyncResult

ULColumnSchemaULColumnSchema

ULIndexSchemaULIndexSchema

Some of the more commonly-used high level objects are:

♦ ULDatabaseManager allows you to open connections and set an
active listener. The ULDatabaseManager is the starting point for your
eMbedded Visual Basic application because it is through this class that
you first open a connection to database.

$ For more information on the ULDatabaseManager class, see
"ULDatabaseManager class" on page 64.

♦ ULConnection represents a database connection, and governs
transactions.

$ For more information on ULConnection, see "ULConnection
class" on page 59.

Chapter 1 Introduction to UltraLite for eMbedded Visual Basic

5

♦ ULTable, ULColumn, and ULIndexSchema allow programmatic
control over database tables, columns and indexes.

$ For more information on the ULTable, ULColumn, and
ULIndexSchema objects, see "ULTable class" on page 87 and
"ULColumn class" on page 53.

♦ Synchronization objects allow you to control synchronization through
the MobiLink synchronization server, providing you have the SQL
Anywhere Studio suite.

$ For more information on synchronization with MobiLink, see the
MobiLink Synchronization User’s Guide in the SQL Anywhere Studio.

UltraLite for eMbedded Visual Basic architecture

6

7

C H A P T E R 2

Tutorial: An UltraLite for eMbedded Visual
Basic Application

This chapter walks you through all the steps of building your first UltraLite
for eMbedded Visual Basic application. The application synchronizes data
with a database on your desktop computer.

Topic Page

Introduction 8

Lesson 1: Create a database schema 9

Lesson 2: Create a project architecture 11

Lesson 3: Design the application form 13

Lesson 4: Configure the emulator to support UltraLite applications 14

Lesson 5: Write the Visual Basic sample code 16

Lesson 6: Deploy to a device 25

Summary 26

About this chapter

Contents

Introduction

8

Introduction
This tutorial walks you through building an UltraLite for eMbedded Visual
Basic application. At the end of the tutorial you will have an application and
small database on device that synchronizes with a larger database running on
your desktop machine.

The tutorial takes about 50 minutes.

This tutorial assumes numerous competencies:

♦ you can program Microsoft eMbedded Visual Basic 3

♦ you can test and troubleshoot a eMbedded Visual Basic 3
application

♦ you can add references and components as needed

♦ you ran register a control on Windows CE using Control Manager

♦ you can use the Visual Basic Object Browser and navigate the
eMbedded Visual Basic 3 environment

♦ you can use command line options and parameters

The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite for eMbedded Visual Basic application.

Timing

Competencies and
experience

Goals

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

9

Lesson 1: Create a database schema
A schema is a database definition without the data. You create an UltraLite
schema file as a necessary first step to making an UltraLite database.

When creating UltraLite schemas for a CE device, the following information
is necessary:

♦ A way to identify the schema on the development machine so it can be
copied to the device.

Create your schema file using the UltraLite Schema Painter

To complete this tutorial you need a directory to hold the files you create.
This directory is assumed to be C:\tutorial\evb. If you create your tutorial
directory elsewhere, supply the path to your location instead of c:\tutorial\evb
throughout.

v To create the schema file using the UltraLite Schema Painter:

1 Start the UltraLite Schema Painter:

Click Start➤Programs➤Sybase SQL Anywhere 8➤UltraLite Schema
Painter.

2 Create a new schema file called tutCustomer.

♦ Open the Tools folder and double-click Create UltraLite schema
file.

♦ In the file dialog box, type c:\tutorial\evb\tutcustomer.usm or
Browse to the folder and enter tutcustomer.

♦ Click Open to create the schema.

3 Create a table called customer.

♦ Expand the tutCustomer item in the left pane of the UltraLite
Schema Painter and select the Tables folder.

♦ Open the Tables folder and double-click Add Table. The New Table
dialog appears.

♦ Enter the name customer.

♦ In the New Table dialog, add columns with the following
properties.

Lesson 1: Create a database schema

10

Column
name

Data type
(Size)

Column Allows
NULL values?

Default value

id integer No autoincrement

fname char (15) No None

lname char (20) No None

city char (20) Yes None

phone char (12) Yes 555-1234

♦ Set id as the primary key: Click Primary Key and add id to the
index, marking it as ascending.

♦ Check your work and click OK to complete the table definition and
dismiss the New Table dialog.

4 Click File ➤Save to save the tutcustomer.usm file.

5 Exit the UltraLite Schema Painter

You have now defined the schema of your UltraLite database. Although this
database contains only a single table, you can use many tables in UltraLite
databases.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

11

Lesson 2: Create a project architecture
The tutorial assumes the folder c:\tutorial\evb, the same one holding your
schema file, is where you will store your application files.

The first step is to create an eMbedded Visual Basic project for your
application.

The UltraLite component for eMbedded Visual Basic development is named
iAnywhere Solutions ActiveX for UltraLite. eMbedded Visual Basic used
a desktop version of the UltraLite component in order to use UltraLite
objects in your code.

v To create an UltraLite component reference:

1 Start eMbedded Visual Basic.

♦ Click Start ➤Programs ➤Microsoft eMbedded Visual Tools
➤ eMbedded Visual Basic 3.0. The New Project window appears.

♦ Choose a target of your choice and click OK.

2 Create a reference to the UltraLite component for eMbedded Visual
Basic:

♦ Click Project➤5HIHUHQFHV�

♦ If this is the first time you have run eMbedded Visual Basic with
UltraLite, add the control to the list of available references:

♦ Click Browse.

♦ Browse to the UltraLite\UltraLiteActiveX\win32\ directory.

♦ Select uldo8.dll and click OK.

♦ iAnywhere Solutions ActiveX for UltraLite is added to the list
of references.

Your eMbedded Visual Basic environment is now capable of
supporting UltraLite.

♦ Select iAnywhere Solutions ActiveX for UltraLite and click OK to
add the control to your project.

3 Save the Project:

♦ Choose File ➤Save Project.

♦ Save the form as c:\tutorial\evb\Form1.frm.

♦ Save the project as c:\tutorial\evb\Form1.frm.

Lesson 2: Create a project architecture

12

You are now ready to design your application.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

13

Lesson 3: Design the application form
You are now ready to design your application form.

v To design the form:

1 Add the controls and the properties given in the table below to Form1:

Type Name Caption

TextBox txtfname

TextBox txtlname

TextBox txtcity

TextBox txtphone

Label lblID

Button btnInsert Insert

Button btnUpdate Update

Button btnDelete Delete

Button btnNext Next

Button btnPrevious Previous

Button btnSync Synchronize

2 Run your application to confirm that your setup is configured correctly.

♦ Click Run ➤Execute. The application appears in the Windows CE
emulator.

At this stage there is no UltraLite dependence in your application. If
you have problems at this stage, check your Windows CE
embedded tools setup.

♦ Click the OK button at the top right of the form to end the
application.

You are now ready to add code to the application.

Lesson 4: Configure the emulator to support UltraLite applications

14

Lesson 4: Configure the emulator to support
UltraLite applications

Once you add UltraLite code to your application, you must add the UltraLite
control to the emulator in order to debug and test your application. This
lesson describes how to add the UltraLite control to the emulator.

v To configure the emulator for UltraLite applications:

1 Start the Control Manager.

♦ Select Tools➤Remote Tools ➤Control Manager.

2 Select the target device:

♦ In the left pane, open Pocket PC and double-click Pocket PC
Emulation.

3 Add the UltraLite control

♦ Click Control➤Add New Control.

♦ Browse to the device-specific version of the UltraLite control.
Controls are stored in the subdirectories for each CE device
processor. The control for the emulator is the file uldo8.dll held in
the ultralite\UltraLiteActiveX\ce\emulator30 subdirectory of your
SQL Anywhere installation.

♦ Click OK

In addition to the UltraLite control, you must deploy the database schema. In
the next lesson you will write code so that when your application first
connects to a database, it uses the schema to create the database file.

v To deploy the database schema file to the emulator:

1 Start the Windows CE File Viewer:

♦ From eMbedded Visual Basic, click Tools ➤Remote Tools ➤File
Viewer. The File viewer starts.

♦ Ensure that you are in the root directory of the emulator by double
clicking Pocket PC Emulation in the left pane.

2 Create a folder to hold your application:

♦ In File Viewer, click File ➤New Folder.

♦ Create a folder named tutorial. This folder is used to hold your
application files.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

15

♦ Double click tutorial to navigate to that folder.

3 Deploy the schema file to the emulator:

♦ Click File ➤Export File.

♦ Navigate to your c:\tutorial\evb directory and double-click
tutcustomer.usm. The schema file is deployed to the emulator.

You are now ready to write UltraLite code and test it in the emulator.

Lesson 5: Write the Visual Basic sample code

16

Lesson 5: Write the Visual Basic sample code
A connection to an UltraLite database requires a ULDatabaseManager
object. You must create this object, and then use it to open an UltraLite
database.

Write code for connection to your database

In this application, you connect to the database in the Form Load event, but
you can also use a general module.

v Write code to connect to the UltraLite database::

1 Declare the UltraLite objects you need.

♦ Double click the form to open the Code window.

♦ Enter the following code in the General area of your form. This
code declares ULDatabaseManager, a connection, a table and three
database columns:

Dim DatabaseMgr As ULDatabaseManager
Dim Connection As ULConnection
Dim CustomerTable As ULTable
Dim colID, colFirstName, colLastName As ULColumn

2 Add code to connect to the database in the Form Load event.

The code below opens the connection to the database and if the database
is new, it assigns a schema to it.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

17

Sub Form_Load()
 Dim conn_parms As String
 Dim open_parms As String
 Dim schema_parms As String
 On Error Resume Next
 conn_parms = "uid=DBA;pwd=SQL"
 open_parms = conn_parms & _
 ";ce_file=\tutorial\tutCustomer.udb"
 schema_parms = open_parms & _
 ";ce_schema=\tutorial\tutCustomer.usm"

 Set DatabaseMgr = _
 CreateObject("UltraLite.ULDatabaseManager")
 Set Connection = _
 DatabaseMgr.OpenConnection(open_parms)
 If Err.Number = _
 UlSQLCode.ulSQLE_NOERROR Then
 MsgBox "Connected to an existing database."
 ElseIf Err.Number = _
 UlSQLCode.ulSQLE_DATABASE_NOT_FOUND _
 Then
 Err.Clear
 Set Connection = _
 DatabaseMgr.CreateDatabase(schema_parms)
 If Err.Number <> 0 Then
 MsgBox Err.Description
 Err.Clear
 End If
 MsgBox "Connected to a new database"
 End If
End Sub

♦ CreateObject is used to create the initial database manager
object. Note that lblStatus shows you the status of your connection.

♦ The error handling code checks if the connection is established. If a
database file exists, the initial connection attempt fails.

3 Run the application in the development environment.

♦ Choose Run ➤Execute.

♦ The first time you run the application, a message box is displayed
with the message Connected to a new database. On subsequent
runs the message is Connected to an existing database. The Form
then loads.

♦ Click the OK button in the top right corner to terminate the
application.

♦ If you wish, you can use File Viewer to check that a database file
(tutcustomer.udb) has been created on the emulator.

Lesson 5: Write the Visual Basic sample code

18

You have now written a routine to establish a connection to a database. The
next lesson describes how to access data.

Write code for data manipulation

The next step is to write code for data manipulation and navigation.

v To open the table:

1 Write code that initializes the table and moves to the first row.

Add the following code to the Form_Load routine, just before the End
Sub instruction:

Set CustomerTable = Connection.GetTable("customer")
CustomerTable.Open
CustomerTable.MoveBeforeFirst

This code assigns the CustomerTable variable and opens the table so
data can be read or manipulated. The call to MoveBeforeFirst positions
the application before the first row of data in the table - but note that it is
not strictly speaking, required, because after you call open, you are
already positioned before the first row. There are no rows in the table at
the moment.

2 Create a new function called DisplayCurrentRow and implement it as
shown below.

Private Sub DisplayCurrentRow()
 If CustomerTable.RowCount = 0 Then
 txtFname.Text = ""
 txtLname.Text = ""
 txtCity.Text = ""
 txtPhone.Text = ""
 lblID.Caption = ""
 Else
 lblID.Caption = _
 CustomerTable.Columns("ID").Value
 txtFname.Text = _
 CustomerTable.Columns("Fname").Value
 txtLname.Text = _
 CustomerTable.Columns("Lname").Value
 txtCity.Text = _
 CustomerTable.Columns("City").SValue
 txtPhone.Text = _
 CustomerTable.Columns("Phone").Value
 End If
End Sub

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

19

If the table has no rows, the application displays empty controls.
Otherwise, it displays the values stored in each of the columns of the
current row of the database.

3 Call this function from the Form’s Activate function.

Private Sub Form_Activate()
 DisplayCurrentRow
End Sub

This call ensures the fields get updated when the application starts.

At this stage you may wish to run the application to check that you have
entered the code correctly. As there are no rows in the table, the controls
are all empty.

v Insert rows into the table:

1 Implement the code for the Insert button.

Add the following routine to the form:

Private Sub btnInsert_Click()
 Dim fname As String
 Dim lname As String
 Dim city As String
 Dim phone As String

 fname = txtFname.Text
 lname = txtLname.Text
 city = txtCity.Text
 phone = txtPhone.Text

 CustomerTable.InsertBegin
 CustomerTable.Columns("Fname").Value = _
 fname
 CustomerTable.Columns("Lname").Value = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Columns("City").Value = _
 city
 End If
 If Len(phone) > 0 Then
 CustomerTable.Columns("Phone").Value = _
 phone
 End If
 CustomerTable.Insert
 CustomerTable.MoveLast
 DisplayCurrentRow
End Sub

Lesson 5: Write the Visual Basic sample code

20

The call to InsertBegin puts the application into insert mode and sets all
the values in the row to their defaults (for example, the ID column
receives the next autoincrement value). The column values are set and
then the new row is inserted. Note that if an error occurs during the
insert, a message box will display the error number.

2 Run the application.

After the initial message box, the form is displayed.

♦ Enter a first name of Jane in the top text box and a last name of Doe
in the second.

♦ Click the Insert button. A row is added to the table with these
values. The application moves to the last row of the table and
displays the row. The label displays the autoincremented value of
the ID column that UltraLite assigned to the row.

♦ Enter a first name of John in the top text box and a last name of
Smith in the second.

♦ Click Insert to add this row to the table.

♦ Click OK to end the program.

With two rows in the table, it is now time to implement the code to scroll
through the rows and display each.

v To move through the rows of the table:

1 Implement the code for the Next and Previous buttons:

Add the following routines to the form:

Private Sub btnNext_Click()
 If Not CustomerTable.MoveNext Then
 CustomerTable.MoveLast
 End If
 DisplayCurrentRow
End Sub

Private Sub btnPrevious_Click()
 If Not CustomerTable.MovePrevious Then
 CustomerTable.MoveFirst
 End If
 DisplayCurrentRow
End Sub

2 Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

21

After the form is displayed, click Next and Previous to move through the
rows of the table.

The next step is to modify the data in a row by updating or deleting it.

v To update and delete rows in the table:

1 Implement the code for the Update button.

Add the following routine to the form:

Private Sub btnUpdate_Click()
 Dim fname As String
 Dim lname As String
 Dim city As String
 Dim phone As String

 fname = txtFname.Text
 lname = txtLname.Text
 city = txtCity.Text
 phone = txtPhone.Text
 CustomerTable.UpdateBegin
 CustomerTable.Columns("Fname").Value = _
 fname
 CustomerTable.Columns("Lname").Value = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Columns("City").Value = _
 city
 End If
 If Len(phone) > 0 Then
 CustomerTable.Columns("Phone").Value = _
 phone
 End If
 CustomerTable.Update
 DisplayCurrentRow
 Exit Sub
End Sub

The call to UpdateBegin puts the application into update mode. The
column values are updated and then the row itself is updated with a call
to Update.

2 Implement the code for the Delete button.

Add the following routine to the form:

Lesson 5: Write the Visual Basic sample code

22

Private Sub btnDelete_Click()
 If CustomerTable.RowCount = 0 Then
 Exit Sub
 End If
 CustomerTable.Delete
 CustomerTable.MoveRelative 0
 DisplayCurrentRow
End Sub

The call to Delete deletes the current row on which the application is
positioned.

3 Run the application.

The data manipulation and display part of the application is now
complete. Try inserting, updating, and deleting rows. Also, use the Next
and Previous buttons to move through the rows. Check the label to see
which row you are on.

Note
You can now run this application as a standalone application without SQL
Anywhere Studio. If you wish to synchronize your UltraLite database
with an Adaptive Server Anywhere database, please complete the next
lesson in the tutorial.

You have now successfully coded your application.

Write code to synchronize

The final step is to write synchronization code. This step requires
SQL Anywhere Studio.

Synchronization can be done using, for example, using a button control
called Synchronize, which may have the following structure:

Call MyConnection.Synchronize

v To write code for the synchronize button:

1 Implement the code for the Synchronize button.

Add the following routine to the form:

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

23

Private Sub btnSync_Click()
 Dim parms As ULSyncParms
 Dim result As ULSyncResult
 On Error Resume Next

 Set parms = Connection.SyncParms
 Set result = Connection.SyncResult
 parms.UserName = "ULevbUser"
 parms.Stream = ULStreamType.ulTCPIP
 parms.Version = "ul_default"
 parms.SendColumnNames = True
 Connection.Synchronize (False)
 If Err.Number <> _
 UlSQLCode.ulSQLE_NOERROR Then
 MsgBox result.StreamErrorCode
 End If
End Sub

The SyncParms object contains the synchronization parameters. For this
simple example, we start MobiLink so that it will add new users. Also,
we send the column names to MobiLink so it can generate proper upload
and download scripts.

Synchronize your application

The next step is to synchronize the data in your database.

v To synchronize data:

1 From a command prompt, start the MobiLink synchronization server
with the following command line:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -v+ -zu+ -za

The ASA 8.0 Sample database has a Customer table that matches the
columns in the UltraLite database you have created. You can
synchronize your UltraLite application with the ASA 8.0 Sample
database.

The -zu+ and -za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’s Guide.

2 Start the UltraLite application.

3 Delete all the rows in your table.

Any rows in the table would be uploaded to the customer table in the
ASA 8.0- Sample database.

4 Synchronize your application.

Lesson 5: Write the Visual Basic sample code

24

♦ Click the Synchronize button.

The MobiLink synchronization server window should scroll
messages displaying the synchronization progress.

♦ When the synchronization is complete, click Next and Previous to move
through the rows of the table.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

25

Lesson 6: Deploy to a device
The final step is to deploy your application to a device.

v To deploy to a device:

1 Ensure that the iAnywhere Solutions, ActiveX for UltraLite is available
on the target CE device.

♦ Select Tools➤Remote Tools

♦ Select Control Manager.

This starts the Windows CE Control Manager.

2 Select your target device from the list presented and the hardware you
are using. The right hand display shows the controls available on that
device. The control is ULDatabaseManager class.

You can also copy the dll to \Windows directory on the device and
register it with regsvrce, or you can use Tools➤Remote Tools➤Control
Manager to select the target device. But know that if you use this
method, you are using an ActiveX, not a control, thus you will not see
the control in the list, even if it is present.

Be sure to use the device-specific version of the DLL. Controls are stored in
subdirectories of your SQL Anywhere installation for each CE device
processor, as follows:

♦ ARM ultralite\UltraLiteActiveX\ce\arm\uldo8.dll

♦ Emulator ultralite\UltraLiteActiveX\ce\emulator30\uldo8.dll

♦ MIPS ultralite\UltraLiteActiveX\ce\mips\uldo8.dll

Summary

26

Summary
During this tutorial, you:

♦ Created a sample database using the UltraLite Schema Painter.

♦ Created an UltraLite for eMbedded Visual Basic application

♦ Synchronized a remote database with an Adaptive Server Anywhere
consolidated database using UltraLite.

♦ Gained competence with the process of developing an UltraLite for
eMbedded Visual Basic application

For more code samples, see the following projects. Paths are relative to your
SQL Anywhere installation:

♦ Samples\UltraLiteActiveX\custdb\evbPocketPC.evb

♦ Samples\UltraLiteActiveX\custdb\evb2002.evb

♦ Samples\UltraLiteActiveX\dbview.evb\evb2002.evb

♦ Samples\UltraLiteActiveX\dbview.evb\pocketpc.evb

Samples

27

C H A P T E R 3

Understanding UltraLite for eMbedded
Visual Basic Development

This chapter describes how to develop applications with the UltraLite for
eMbedded Visual Basic.

Topic Page

Preparing to work with eMbedded Visual Basic 28

Working with UltraLite databases 30

Connecting to the UltraLite database 32

Accessing and manipulating data 35

Accessing schema information 41

Error handling 42

User authentication 43

Synchronizing UltraLite applications 44

About this chapter

Contents

Preparing to work with eMbedded Visual Basic

28

Preparing to work with eMbedded Visual Basic
There are several steps you must take before you can build UltraLite
applications with eMbedded Visual Basic.

Adding the UltraLite component to the design environment

To have access to UltraLite objects at development time, you must add the
UltraLite component to the interface.

v To add the UltraLite component to the eMbedded Visual Basic
design environment:

1 From the eMbedded Visual Basic menu, choose Project ➤References.

2 If iAnywhere Solutions ActiveX for UltraLite 8.0 is not included in the
list of references, click Browse.

3 Set the dialog to display All Files. Locate the file uldo8.dll in the
UltraLite\UltraLiteActiveX\win32 subdirectory of your SQL Anywhere
directory. The iAnywhere Solutions ActiveX for UltraLite 8.0 control is
added to the list of references.

4 Check iAnywhere Solutions ActiveX for UltraLite 8.0 and click OK to
add the component to your project.

Adding the UltraLite component to the device

To debug applications in the emulator, you must add the UltraLite
component to the emulator. To deploy applications to your device, you must
add the UltraLite component to the device. Both of these tasks can be carried
out using the Windows CE Control Manager.

v To add the UltraLite component to the device or emulator:

1 From the eMbedded Visual Basic menu, choose Tools ➤Remote Tools
➤Control Manager.

2 In the left pane, open the device you are developing for, such as Pocket
PC.

3 Open the device to which you are deploying, such as Pocket PC
Emulation.

4 On the right pane, right click and choose Add New Control from the
popup menu.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

29

5 For the Emulator, navigate to the
UltraLite\UltraLiteActiveX\ce\emulator30 subdirectory of your
SQL Anywhere directory. For a real device, navigate to the proper
subdirectory of the UltraLite\UltraLiteActive\ce subdirectory of your
SQL Anywhere directory for the chip used by your device.

6 Choose uldo8.dll from the directory. The ULDatabaseManager class is
added to the device.

Copying an UltraLite database to the device

In addition, you must add the UltraLite database file or schema file to the
device.

v To add a schema file or database file to the device or emulator:

1 From the eMbedded Visual Basic menu, choose Tools ➤Remote Tools
➤File Viewer.

2 If your device is not shown in the left pane, connect to the device:

♦ From the File Viewer menu, choose Connection ➤Add Connection.

♦ Select your device from the list and click OK to establish a
connection.

3 Copy the schema file or database file to the device

♦ Select a destination directory on the device.

It is often convenient to copy the file into the root directory of the
device.

♦ Choose File ➤Export File.

♦ Locate the schema file (.usm) or database file (.udb) on your
desktop machine file system.

♦ Click OK to export the file to the device.

Working with UltraLite databases

30

Working with UltraLite databases
UltraLite databases are files with a .udb extension. UltraLite databases are
relational databases, and contain the following types of object:

♦ Tables A single UltraLite database can hold many tables. Relational
database tables have a fixed number of columns, but can have any
number of rows (up to a limit determined by the operating system on
which you run). Each row has a single entry for each column. The
special NULL entry is used when there is no value for the entry. When
designing your database, each table should represent a separate type of
item, such as Customers, Employees, and so on.

♦ Indexes The rows in a relational database table are not ordered. You
can create indexes to access the rows in order. Indexes are commonly
associated with a single column, but may also be associated with
multiple columns.

♦ Keys Each table has a special index called the primary key. Entries in
the primary key column or columns must be unique.

Foreign keys relate the data in one table to that in another. Each entry in
the foreign key column must correspond to an entry in the primary key
of another table.

Between them, primary keys and foreign keys ensure that the database
has referential integrity. Referential integrity is enforced in UltraLite
databases, so that you cannot (for example) enter an order for a customer
unless that customer exists in the database.

By enforcing referential integrity, UltraLite ensures that the data in your
UltraLite database is correct, in the same manner that data elsewhere in
the enterprise is correct.

♦ Publications If you wish to synchronize the data in your UltraLite
database with other databases you must have a valid SQL Anywhere
Studio license. SQL Anywhere Studio includes MobiLink
synchronization technology to synchronize UltraLite databases with
desktop, workgroup or enterprise databases.

Publications define sets of data to be synchronized. It is often desirable
to synchronize all the data in an UltraLite database, but publications
provide extra flexibility and control.

The database schema is the database without the data. It is the collection of
tables, indexes, and so on within the database, and all the relationships
between them.

The schema and
schema file

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

31

You do not alter the schema of an UltraLite database directly. Instead, you
create a schema file (which typically has the extension .usm) and upgrade the
database schema from that file using a built-in UltraLite function in your
application.

This process of creating a schema file and upgrading the database from the
file applies both to the initial creation of the database and any subsequent
schema changes.

Creating UltraLite database schema files

You can create an UltraLite schema file in the following ways:

♦ Schema painter The UltraLite schema painter is a graphical utility for
creating and editing UltraLite schema files.

To start the Schema painter, choose Start➤Programs➤Sybase
SQL Anywhere 8➤UltraLite Schema Painter, or double-click a schema
file (with extension usm) in WIndows Explorer.

♦ Generate the schema from an Adaptive Server Anywhere database
If you have the Adaptive Server Anywhere database management
system, you can generate an UltraLite schema file using the ulinit
command line utility.

You apply the schema file to the database from the UltraLite application. For
more information, see "Connecting to the UltraLite database" on page 32.

Connecting to the UltraLite database

32

Connecting to the UltraLite database
Any UltraLite application must connect to its database before it can carry out
any operation on the data, including applying a schema to the database.

v To connect to an UltraLite database:

1 Create a DatabaseManager object.

You should create only one DatabaseManager object per application.
This object is at the root of the object hierarchy. For this reason, it is
often best to declare the DatabaseManager object global to the
application.

The following code creates a DatabaseManager object named dbMgr,
and makes a connection to a database.

Dim conn_parms As String
 Dim open_parms As String
 Dim schema_parms As String
 On Error Resume Next
 conn_parms = "uid=DBA;pwd=SQL"
 open_parms = conn_parms & ";" &_
 "ce_file=\tutCustomer.udb"
 schema_parms = open_parms & ";" &_
 "ce_schema=\tutCustomer.usm"

 Set DatabaseMgr =_
 CreateObject("UltraLite.ULDatabaseManager")
 Set Connection =_
 DatabaseMgr.openConnection(open_parms)
 If Err.Number =_
 ULSQLCodeConstants.ulSQLE_DATABASE_NOT_FOUND Then
 Err.Clear
 Set Connection =_
 DatabaseMgr.CreateDatabase(schema_parms)
 If Err.Number <> 0 Then
 MsgBox Err.Description
 Err.Clear
 End If
 End If

$ For more details, see the code in
Samples\UltraLiteForEVB\dbview.evb\evb2002.evp under your
SQL Anywhere directory.

2 Open a connection to the database.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

33

The ULDatabaseManager.OpenConnection method returns an open
connection as a Connection object. This method takes a single string as
its argument. The string is composed of a set of keyword=value pairs.

$ For more information on connection parameters, see "Connection
Parameters" on page 25 of the book UltraLite Foundations.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the ULConnection object global to the application.

The following code opens a connection to an UltraLite database named
tutcustomer.udb in the root directory of the device.

conn_parms = "uid=DBA;pwd=SQL"

open_parms = conn_parms & ";" &_
"ce_file=\tutCustomer.udb"

Set Connection =_
 DatabaseMgr.openConnection(open_parms)

3 Applying a new file to your schema

If you want to modify your existing database structure, you can do so with
the ApplyFile method. In most cases there will be no data loss, but data loss
can occur if columns are deleted, for example, or if the data type for a
column is changed to an incompatible type. The example below shows how
you can use the ApplyFile method to send in new specifications for your
database via a schema you design.

ULDatabaseSchema.ApplyFile(
"schema_file=MySchemaFile.usm;CE_SCHEMA =MySchema")

$ For more information on CreateDatabase, OpenConnection and the
ApplyFile method, see "CreateDatabase method" on page 64,
"OpenConnection method" on page 68 and "ApplyFile method" on page 70.

Properties of the ULConnection object govern global application behavior,
including the following:

♦ Commit behavior By default, UltraLite applications are in
AutoCommit mode. Each insert, update, or delete statement is
committed to the database immediately. You can also set
ULConnection.AutoCommit to false to build transactions into your
application. Performance is better when AutoCommit is off and commits
are performed directly.

$ For more information, see "Transaction processing in UltraLite" on
page 39.

Using the
ULConnection
object

Connecting to the UltraLite database

34

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using the
GrantConnectTo and RevokeConnectFrom methods.

$ For more information, see "User authentication" on page 43

♦ Synchronization A set of objects governing synchronization are
accessed from the ULConnection object.

$ For more information, see "Synchronizing UltraLite applications"
on page 44.

♦ Tables UltraLite tables are accessed using the
ULConnection.GetTable method.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

35

Accessing and manipulating data
UltraLite applications access data in tables in a row-by-row fashion. This
section covers the following topics:

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

The section also provides a lower-level description of the way that UltraLite
operates on the underlying data to help you understand how it handles
transactions, and how changes are made to the data in your database.

Scrolling through the rows of a table

The following code opens the customer table and scrolls through its rows,
displaying a message box with the value of the third column (which holds the
last name of the customer) for each row.

Dim tCustomer as ULTable
Set tCustomer = conn.GetTable("customer")
tCustomer.Open
Set tCustomer = conn.GetTable("customer")
Set colLastName = tCustomer.Columns.(3)
tCustomer.MoveBeforeFirst
While tCustomer.MoveNext
 MsgBox colLastName.Value
Wend

The code above shows how the columns of the table are contained in a
Columns collection. You can address columns by index number (the order in
which they were created in the .usm file) or by name. To get the name of a
column, you can use its Schema property:

colname = colLastName.Schema.name

You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order. The
following code moves to the first row of the customer table as ordered by the
ix_name index.

Set tCustomer= Connection.GetTable("customer")
tCustomer.Open "ix_name"
tCustomer.MoveFirst
...

Accessing and manipulating data

36

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following
positions:

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use the
ULColumn.Value property to get the value of that column for the current
row. For example, the following code retrieves the value of three columns
from the tcustomer ULTable object, and displays them in text boxes:

Dim colID, colFirstName, colLastName As ULColumn
Set colID = tCustomer.Columns.Item(1)
Set colFirstName = tCustomer.Columns.Item(2)
Set colLastName = tCustomer.Columns.Item(3)

txtID.Text = colID.Value
txtFirstName.Text = colFirstName.Value
txtLastName.Text = colLastName.Value

You can also use the Value property to set values. For example:

colLastName.Value = "Kaminski"

By assigning values to these properties you do not alter the value of the data
in the database. You can assign values to the properties even if you are
before the first row or after the last row of the table, but it is an error to try to
access data when the current row is in one of these positions, for example:

’ This code is incorrect
tCustomer.MoveBeforeFirst
id = colID.Value

As the Value method returns a variant, you can use it to access columns of
any data type.

Searching for rows with find and lookup

UltraLite has several modes of operation when working with data. Two of
these modes are used for searching: the find and lookup modes. The
ULTable object has two sets of methods for locating particular rows in a
table:

♦ Find methods These move to the first row that exactly matches a
specified search value, under the sort order specified when the ULTable
object was opened.

Casting values

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

37

♦ Lookup methods These move to the first row that matches or is
greater than a specified search value, under the sort order specified when
the ULTable object was opened.

Both sets are used in a similar manner:

1 Enter find or lookup mode.

The mode is entered by calling the FindBegin or LookupBegin method,
respectively. For example.

tCustomer.FindBegin

2 Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example:

ColLastName.Value = "Kaminski"

Only values in the columns of the index are relevant to the search.

3 Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index:

tCustomer.FindFirst

For multi-column indexes, a value for the first column is always used,
but you can omit the other columns and use one of the other find or
lookup methods to search using only a limited number of columns.

Inserting updating, and deleting rows

To update a row in a table, use the following sequence of instructions:

1 Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching,
using Find and Lookup methods.

2 Enter Update mode.

For example, the following instruction enters Update mode on the table
tCustomer:

tCustomer.UpdateBegin

3 Set the new values for the row to be updated. For example:

ColFirstName.Value = "Elizabeth"

Accessing and manipulating data

38

4 Execute the Update.

tCustomer.Update

After the update operation the current row is the row that was just updated. If
you changed the value of a column in the index specified when the ULTable
object was opened, there are some subtleties to the positioning.

By default, UltraLite operates in AutoCommit mode, so that the update is
immediately applied to the row in permanent storage. If you have disabled
AutoCommit mode, the update is not applied until you execute a commit
operation. For more information, see "Transaction processing in UltraLite"
on page 39.

Caution
Do not update the primary key of a row: delete the row and add a new
row instead.

The steps to insert a row are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the insert operation. Rows are automatically sorted in the index used to
open the table.

For example, the following sequence of instructions inserts a new row:

CustomerTable.InsertBegin
CustomerTable.Columns("Fname").Value = fname
CustomerTable.Columns("Lname").Value = lname
CustomerTable.Insert

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, NULL is
used. If the column does not allow NULL, the following defaults are used:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL explicitly, use the setNull method.

The Insert is permanently save to the database when a Commit is carried out.
In AutoCommit mode, a Commit is carried out as part of the Insert method.

The steps to delete a row are simpler than to insert or update rows. There is
no Delete mode corresponding to the insert or update modes. The steps are as
follows:

1 Move to the row you wish to delete.

2 Execute the ULTable.Delete method.

Inserting rows

Deleting rows

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

39

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the correctness of the
data in your database. A transaction is a logical unit of work: it is either all
executed or none of it is executed.

By default, UltraLite operates in AutoCommit mode, so that each insert,
update, or delete is executed as a separate transaction. Once the operation is
completed, the change is made to the database. If you set the
ULConnection.AutoCommit property to false, you can use multi-statement
transactions. For example, if your application transfers money between two
accounts, either both the deduction from the source account and the addition
to the destination account must be completed, or neither must be completed.

If AutoCommit is set to false, you must execute a ULConnection.Commit
statement to complete a transaction and make changes to your database
permanent, or you must execute a ULConnection. Rollback statement to
cancel all the operations of a transaction. Note that performance can be faster
when AutoCommit is off.

Data manipulation internals

UltraLite exposes the rows in a table to your application one at a time. The
Table object has a current position, which may be on a row, before the first
row, or after the last row of the table.

When your application changes its row (by a ULTable.MoveNext method or
other method on the ULTable object) UltraLite makes a copy of the row in a
buffer. Any operations to get or set values affect only the copy of data in this
buffer. They do not affect the data in the database. For example, the
following statement changes the value of the ID column in the buffer to 3.

colID.Value = 3

UltraLite uses the values in the buffer for a variety of purposes, depending
on the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to a default mode, and in each mode the
buffer is used for a different purpose.

♦ Insert mode The data in the buffer is added to the table as a new row
when the ULTable.Insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
ULTable.Update method is called.

♦ Find mode The data in the buffer is used to locate rows when one of
the ULTable.Find methods is called.

Using UltraLite
modes

Accessing and manipulating data

40

♦ Lookup mode The data in the buffer is used to locate rows when one
of the ULTable.Lookup methods is called.

Whichever mode you are using, there is a similar sequence of operations:

1 Enter the mode.

The ULTable InsertBegin, UpdateBegin, FindBegin, and LookupBegin
methods set UltraLite into the mode.

2 Set the values in the buffer.

Use the Value property to set values in the buffer.

3 Carry out the operation.

Use a ULTable method such as Insert, Update, Find, or Lookup to carry
out the operation, using the values in the buffer. The UltraLite mode is
set back to the default method and you must enter a new mode before
performing another data manipulation or searching operation.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

41

Accessing schema information
Objects in the API represent tables, columns, indexes, and synchronization
publications. Each object has a Schema property that provides access to
information about the structure of that object.

Here is a summary of the information you can access through the Schema
objects.

♦ ULDatabaseSchema The number and names of the tables in the
database, as well as global properties such as the format of dates and
times.

To obtain a ULDatabaseSchema object, access the
ULConnection.Schema property.

♦ ULTableSchema The number and names of columns in the table, as
well as the Indexes collections for this table.

To obtain a ULTableSchema object, access the ULTable.Schema
property.

♦ ULColumnSchema Information about an individual column.

To obtain a ULColumnSchema object, access the ULColumn.Schema
property.

♦ ULIndexSchema Information about the column in the index. As an
index has no data directly associated with it (only that which is in the
columns of the index) there is no separate ULIndex object, just a
ULIndexSchema object.

The ULIndexSchema objects are available as part of the
ULTableSchema.Indexes collection.

♦ ULPublicationSchema Tables and columns contained in a
publication. Publications are also comprised of schema only, and so
there is a ULPublicationSchema object rather than a ULPublication
object.

The ULPublicationSchema objects are available as part of the
ULDatabaseSchema.Publications collection.

You cannot modify the schema through the API. You can only retrieve
information about the schema.

Error handling

42

Error handling
You can use the standard eMbedded Visual Basic error-handling features to
handle errors. The Err object holds the SQLCODE value for an error.
SQLCODE values are negative numbers indicating the particular kind of
error. You can also get the last error with Connection.LastErrorCode.

Note
For users of SQL Anywhere Studio, the Adaptive Server Anywhere Error
Messages manual is part of the SQL Anywhere Studio online books. If
you do not have SQL Anywhere Studio, you can open this book by
double-clicking dberen8.chm in the docs subdirectory of your
SQL Anywhere directory.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

43

User authentication
There is a common sequence of events to managing user IDs and passwords.

1 New users have to be added from an existing connection. As all
UltraLite databases are created with a default user ID and password of
DBA and SQL, respectively, you must first connect as this initial user
and implement user management only upon successful connection.

2 You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltraLite database.

3 To change the password for an existing user ID, use the
ULConnection.GrantConnectTo method.

Synchronizing UltraLite applications

44

Synchronizing UltraLite applications
Users of SQL Anywhere Studio 8.0.1 can synchronize UltraLite applications
with a central database. This database may be a desktop database for
personal applications, or a multi-user database for shared data, including
enterprise data. Synchronization requires the MobiLink synchronization
software included with SQL Anywhere Studio.

Synchronization details can be found in the MobiLink User’s Guide and the
UltraLite User’s Guide included with SQL Anywhere Studio documentation.
This section provides a brief introduction to synchronization and describes
some features of particular interest to users of the UltraLite Component
Suite.

You can also find a working example of synchronization in the CustDB
sample application. For Native UltraLite for Java, the CustDB sample is in
the Samples\UltraLiteActiveX\CustDB directory.

UltraLite for eMbedded Visual Basic supports TCP/IP, and HTTP
synchronization. TCP/IP and HTTP synchronization are initiated by the
UltraLite application. In all cases, you use methods and properties of the
ULConnection object to control synchronization.

v To control synchronization over TCP/IP or HTTP, your application
must carry out the following sequence of operations:

1 Prepare the synchronization information.

Assign values to properties of the ULConnection.SyncInfo object.

$ For information about the properties and the values that you should
set, look up synchronization parameters: about in the SQL Anywhere
Studio online books index.

2 Synchronize.

Call the ULConnection.Synchronize method.

Monitoring Synchronization progress

You can monitor the progress of your synchronizations by simply writing
code into your UltraLite for eMbedded Visual Basic project. The code
sample below shows how you can set your databasemanager object to work
with the Synchronization Progress Dialog:

Set DBMgr = _
CreateObjectWithEvents(_
"UltraLite.ULDatabaseManager", "UL_")

Controlling TCP/IP
and HTTP
synchronization

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

45

Now, write code into your form that captures event notifications by the
Synchroniztion Progress Dialog. The first method shows users insert, update
and delete data when data is sent to the consolidated database.

Private Sub UL_OnSend(ByVal nBytes As Long, ByVal _
nInserts As Long, ByVal _
 nUpdates As Long, ByVal nDeletes As Long)_
 prLine "OnSend " & nBytes & " bytes, " & nInserts &_
 " inserts, " & nUpdates & " updates, " &
nDeletes & " deletes"_
End Sub

The second method shows users insert, update and delete data when data is
received at the consolidated database.

Private Sub UL_OnReceive(ByVal nBytes As Long, ByVal _
nInserts As Long,_
 ByVal nUpdates As Long, ByVal nDeletes As Long)_
 prLine "OnReceive " & nBytes & " bytes, " & _
nInserts & " inserts, " & nUpdates & _
" updates, " & nDeletes & " deletes"
End Sub

The third method shows users insert, update and delete data when data states
are changing.

Private Sub UL_OnStateChange(ByVal newState As Long, _
 ByVal oldState As Long)
 prLine "OnStateChange new:" & newState & ", old: "_
 & oldState
End Sub

The fourth method shows users insert, update and delete data when table data
are changing.

Private Sub UL_OnTableChange(ByVal newTableIndex As _
 Long, ByVal numTables As Long)
 prLine "OnTableChange index:" & newTableIndex & ",
#tables=" & numTables
End Sub

Synchronizing UltraLite applications

46

47

C H A P T E R 4

API Reference

This chapter describes the UltraLite for eMbedded Visual Basic API.

Topic Page

IULColumns collection 49

IULIndexSchemas collection 50

IULPublicationSchemas collection 51

ULAuthStatusCode constants 52

ULColumn class 53

ULColumnSchema class 58

ULConnection class 59

ULDatabaseManager class 64

ULDatabaseSchema class 69

ULIndexSchema class 71

ULPublicationSchema class 72

ULSQLCode constants 73

ULSQLType constants 76

ULStreamErrorCode constants 77

ULStreamErrorContext constants 80

ULStreamErrorID constants 81

ULStreamType 82

ULSyncMasks Type 83

ULSyncParms class 84

ULSyncResult class 85

ULSyncState constants 86

ULTable class 87

ULTableSchema class 96

About this chapter

Contents

IULColumns collection

48

Chapter 4 API Reference

49

IULColumns collection
A collection of ULColumn objects.

Properties

Prototype Description

Count as long (read-only) Returns the number of columns in the
collection.

Item (Index) as ULColumn (read-only) Returns a value from the collection.
Index can be a number from 1 to
count, or the name of a column.

You can enumerate all columns in eMbedded Visual Basic using the For
Each statement:

Dim col As ULColumn
For Each col In table.Columns
 If col.IsNull Then
 MsgBox col.Schema.Name
 & "is null"
 End If
Next

Example

IULIndexSchemas collection

50

IULIndexSchemas collection
A collection of IULIndexSchema objects.

Properties

Prototype Description

Count as long (read-only) Returns the number of indexes in the
collection.

Item (Index) as ULIndexSchema (read-
only)

Returns an index from the collection.
Items are indexed using 1-origin
indexing. Index can be a number
from 1 to count.

You can enumerate all the indexes on a table using the For Each statement:

Dim ix As ULIndexSchema
For Each ix In TableSchema.Indexes
 ’use ix
Next

Example

Chapter 4 API Reference

51

IULPublicationSchemas collection
A collection of IULPublicationSchema objects.

Properties

Prototype Description

Count as long (read-only) Returns the number of indexes in the
collection.

Item (Index) as ULIndexSchema (read-
only)

Returns an index from the collection.
Index can be a number from 1 to
count.

You can enumerate all the publications using the For Each statement:

Dim ps As ULPublicationSchema
For Each ps In connection.schema.publications
 ’use ps
Next

Example

ULAuthStatusCode constants

52

ULAuthStatusCode constants

Constant Value

ulAuthUnknown 0

ulAuthValid 1000

ulAuthValidButExpiresSoon 2000

ulAuthExpired 3000

ulAuthInvalid 4000

ulAuthInUse 5000

Chapter 4 API Reference

53

ULColumn class
ULColumn allows you to get values from a table in a database. Each
ULColumn object represents a particular column in a table.

$ For information about the ULTable object, see "ULTable class" on
page 87.

Properties

Prototype Description

IsNull as Boolean (read-only) Indicates whether the column value is NULL.
True if the column is NULL.

Schema as ULColumnSchema
(read-only)

Returns the object representing the schema of
the column.

Value as Variant The data value of this column in the current
row.

AppendByteChunk method

AppendByteChunk(byteArray, [chunkSize]) as Boolean
Member of Ultralite.ULColumn

Appends the buffer of bytes to the column if the type is ulTypeLongBinary.

chunkSize The size of the data chunk expressed as a Long.

byteArray A variant. The data length, or the number of bytes to copy. If
not provided, uses the size of the array.

True if successful.

False if unsuccessful.

The errors returned appear below.

Error Description

ulSQLE_INVALID_PARAMETER A parameter is invalid, for example,
if the data length is less than 0.

ulSQLE_CONVERSION_ERROR If the column data type is not LONG
BINARY or BINARY.

Prototype

Description

Parameters

Returns

ULColumn class

54

Dim data (512) as Byte
…
table.Columns("edata").AppendByteChunk(data)

In the example, edata is a column name and 512 bytes of data are appended
to the column.

AppendStringChunk method

AppendStringChunk(chunk)
Member of Ultralite.ULColumn

Appends the string to the column if the type is ulTypeLongString.

chunk A string.

The errors returned appear below.

Error Description

ulSQLE_CONVERSION_ERROR If the column data type is not LONG
STRING or STRING.

GetByteChunk method

GetByteChunk(offset As Long, pByteArray, [chunkSize]) As Long
Member of Ultralite.ULColumn

Fills the array with the binary data in the column. Suitable for BLOBs.

offset The offset into the underlying array of bytes.

chunkSize An array of bytes expressed as Long type.

pByteArray A variant. Optional. Array data is passed by reference as
array.

The number of bytes read.

Example

Prototype

Description

Parameters

Prototype

Description

Parameters

Returns

Chapter 4 API Reference

55

Error Description

ulSQLE_CONVERSION_ERROR If the column data type isn’t BINARY or
LONG BINARY

ulSQLE_INVALID_PARAMETER If the column data type is BINARY and any of
the following are true:

♦ offset is not 0 or 1

♦ data length is greater than 64Kb

♦ data length is less than 0

ulSQLE_INVALID_PARAMETER If the column data type is LONG BINARY and
any of the following is true:

♦ offset is less than 1

♦ data length is less than 0

Dim data (512) as Byte
…
table.GetColumn("edata").GetByteChunk(0,data)

In this example, edata is a column name.

GetStringChunk method

GetStringChunk(offset As Long, pStringObj, [chunkSize]) As Long
Member of Ultralite.ULColumn

Fills the string passed in (which should have space preallocated) with the
binary data in the column. Suitable for long strings.

offset The character offset into the underlying data from which we start
getting the string.

pStringObj The string you want returned. This variant is passed by
reference.

chunkSize The number of characters to retrieve.

The number of characters copied. Room is left for a null termination
character and the length does not include that character.

Example

Prototype

Description

Parameters

Returns

ULColumn class

56

Dim cd as ULColumn
Dim S as Strong
Dim l, off as Long
S=String(512, vbNulChar)
Off=0
Do
 L=col.GetStringChunk(offset, S, 512)
 If l=0 then Exit Do
 ’use string ins
Loop

The errors returned appear below.

Error Description

ulSQLE_CONVERSION_ERROR If the column data type isn’t ULTypeString or
ULTypeLongString.

ulSQLE_INVALID_PARAMETER If the column data type is CHAR and the
src_offset is greater than 64K

ulSQLE_INVALID_PARAMETER If src_offset is less than 1 or string length is less
than 0

SetByteChunk method

SetByteChunk(ByteArray, [length]) As Boolean
Member of Ultralite.ULColumn

Sets the value of the column in the database to the array of bytes in the data
field.

ByteArray An array of bytes of type variant.

length The length of the array.

True if successful.

False if unsuccessful.

The errors returned appear below.

Error Description

ulSQLE_INVALID_PARAMETER If the data length is less than 0.

ulSQLE_CONVERSION_ERROR If the column data type is not
BINARY or LONG BINARY

ulSQLE_INVALID_PARAMETER If the data length is greater than 64K

Example

Prototype

Description

Parameters

Returns

Chapter 4 API Reference

57

Dim data (1 to 512) as Byte
…
table.GetColumn("edata").SetByteChunk(data,232)

In the example code, edata is a column name and 232 bytes of data in the
array contain values to be set in the database.

SetToDefault method

SetToDefault()
Member of UltraLite.IULColumn

Sets the column to its default value as defined in the database schema. For
example, an autoincrement column will be assigned the next available value,
and incremented.

Example

Prototype

Description

ULColumnSchema class

58

ULColumnSchema class
The ULColumnSchema object allows you to obtain the attributes of a
column in a table. The attributes are independent of the data in the table.

Properties

Prototype Description

AutoIncrement as Boolean (read-
only)

Determines whether this column defaults
to an autoincrement value. True if the
column is autoincrement.

DefaultValue as String (read-only) Indicates the value that is used if one was
not provided when a row was inserted.

GlobalAutoIncrement as Boolean
(read-only)

Determines whether this column defaults
to a global autoincrement value. True if
the column is global autoincrement.

ID as long (read-only) Indicates the index number of the column
in the range 1 to
ULTableSchema.ColumnCount.

Name as String (read-only) Returns the column name.

Nullable as Boolean (read-only) Returns true if the column allows NULLs.

OptimalIndex as ULIndexSchema
(read-only)

The best index to search this column. Or
throws an error if no such index exists.

Precision as Long (read-only) Returns the precision value for the
column.

Scale as Long (read-only) Returns the scale value for the column.

Size as Long (read-only) Returns the column size for binary,
numeric, and char data types.

SQLType as ULSQLType (read-
only)

The SQL type assigned to the column
when it was created.

Chapter 4 API Reference

59

ULConnection class
A ULConnection object represents an UltraLite database connection. It
provides methods to get database objects, and to synchronize.

Declare a connection in an eMbedded Visual Basic form with:

 Private Connection As ULConnection

Properties

The following are properties of ULConnection:

Prototype Description

AutoCommit as Boolean If true, all data changes are
committed immediately after they are
made. Otherwise, changes are not
committed to the database until
Commit is called. By default, this
property is True.

DatabaseID as Long - write-only Sets the database ID value to be used
for global autoincrement columns.

DatabaseManager as
ULDatabaseManager (read-only)

Returns the owning database manager
object.

DatabaseNew as Boolean (read-only) Returns true if there is no database
schema loaded. In this case, your
application must load a new schema.

ErrorResume as Boolean Sets the error handling property.

GlobalAutoIncrementUsage as Long
(read-only)

Returns the percentage of available
global autoincrement values that have
been used.

LastErrorCode as ULSQLCodeConstants
(read-only)

Returns the last error number.

LastErrorDescription As String (read-
only)

Returns the last error description.

Example

ULConnection class

60

Prototype Description

LastIdentity as Long (read-only) Returns the most recent value
inserted into a column with a default
of autoincrement or global
autoincrement.

OpenParms as String (read-only) The string used to open the database.

Schema as ULDatabaseSchema (read-
only)

Returns the ULDatabaseSchema
object.

SyncParms As ULSyncParms (read-only) Returns the synchronization
parameters object.

SyncResult as ULSyncResult (read-only) Returns the results of the most recent
synchronization.

CancelSynchronize method

CancelSynchronize()
Member of UltraLite.ULConnection

When called during synchronization, the method cancels the
synchronization. The user can only call this method during one of the
synchronization events.

Close method

Close()
Member of UltraLite.ULConnection

Closes the connection to the database. No methods on the ULConnection
object should be called after this method is called.

Commit method

Commit()
Member of UltraLite.ULConnection

Commits outstanding changes to the database. This is only useful if
AutoCommit is false.

Prototype

Description

Prototype

Description

Prototype

Description

Chapter 4 API Reference

61

CountUploadRows method

CountUploadRows([mask as Long = 0], [threshold as Long = -1]) As
Long
Member of UltraLite.ULConnection

Returns the number of rows that need to be uploaded when synchronization
takes place.

mask A unique identifier that refers to the publications to check. Use 0 for
all publications. The default is 0.

threshold The maximum number of rows to count. Use -1 to indicate the
maximum. The default is –1.

GetNewUUID method

GetNewUUID() As String
Member of UltraLite.ULConnection

Returns a new universally unique identifier in a string format. This string is
of the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. Each call
returns a new UUID.

GetTable method

GetTable(name As String) As ULTable
Member of UltraLite.ULConnection

Returns the ULTable object for the specified table. The table must be
opened before data can be read from it.

name The name of the table sought.

Returns the ULTable object.

GrantConnectTo method

GrantConnectTo(userid as String, password as String)
Member of UltraLite.ULConnection

Grants the specified user permission to connect to the database with the
given password.

userid The user ID for the current user.

Prototype

Description

Parameters

Prototype

Description

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

ULConnection class

62

password The password for this user ID.

LastDownloadTime method

LastDownloadTime([mask as Long = 0]) As Date
Member of UltraLite.ULConnection

Returns the time of last download for the publication(s).

mask A unique identifier that refers to the publications to check. Use 0 for
all publications. If this parameter is omitted, 0 is used.

RevokeConnectFrom method

RevokeConnectFrom(userid as String)
Member of UltraLite.ULConnection

Revokes the specified user’s ability to connect to the database.

userid The user ID to be made unable to connect.

Rollback method

Rollback()
Member of UltraLite.ULConnection

Rolls back outstanding changes to the database. This is only useful if
AutoCommit is false.

StartSynchronizationDelete method

StartSynchronizationDelete()
Member of UltraLite.ULConnection

Once this function is called, all delete operations are again synchronized.

StopSynchronizationDelete method

StopSynchronizationDelete()
Member of UltraLite.ULConnection

Prototype

Description

Parameters

Prototype

Description

Parameters

Prototype

Description

Prototype

Description

Prototype

Chapter 4 API Reference

63

Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting the information on the consolidated database.

StringToUUID method

StringToUUID(val) as Variant
Member of UltraLite.ULConnection

Converts a string in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
to a variant array of 16 bytes.

val A string type holding a representation of a UUID value. You can obtain
a new string UUID using GetNewUUID.

"GetNewUUID method" on page 61

Synchronize method

Synchronize([show-progress as Boolean])
Member of UltraLite.ULConnection

Synchronizes a consolidated database. This function does not return until
synchronization is complete.

show-progress True or false. Set this to true to show the progress of
synchronization as it happens. Default is false.

UUIDToString method

UUIDToString(val) As String
Member of UltraLite.ULConnection

Converts a UUID from a byte array to a string of the form xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx.

val An array of 16 bytes. A variant type.

"GetNewUUID method" on page 61

Description

Prototype

Description

Parameters

See also

Prototype

Description

Parameters

Prototype

Description

Parameters

See also

ULDatabaseManager class

64

ULDatabaseManager class
The ULDatabaseManager class is used to manage connections and databases.
Your application should only have one instance of this object.

Properties

The following are properties of ULDatabaseManager:

Prototype Description

ErrorResume as Boolean Set error handling property. Default
is false. If set to true, a VB error will
not be raised when DatabaseManager
methods fail.

Version as String (read-only) Returns the version string, in the form

CreateDatabase method

The CreateDatabase method creates a new database and returns a connection
to access its tables.

CreateDatabase(parms As String) As ULConnection
Member of UltraLite.ULDatabaseManager

The CreateDatabase function creates a new database and returns a
connection to it. It fails if the specified database already exists. To alter the
schema of an existing database, use the ULDatabaseSchema Applyfile
method.

$ For more information about ApplyFile, see "ApplyFile method" on
page 70.

parms A semicolon-separated list of database creation parameters.

$ For information on connection parameters, see "Connection
Parameters" on page 25 of the book UltraLite Foundations.

The example below uses CreateObject to create and open a new database.

conn_parms = "uid=DBA;pwd=SQL"

Prototype

Description

Parameters

Examples

Chapter 4 API Reference

65

’UID and PWD are set as default
open_parms = conn_parms & ";" & _
 "file_name=\tutCustomer.udb"
schema_parms = open_parms & ";" & _
 "schema_name=\tutCustomer.usm"

 Set DatabaseMgr = _
 CreateObject("UltraLite.ULDatabaseManager")
 Set Connection = _
 DatabaseMgr.CreateDatabase(schema_parms)

The example below shows how you can create a DatabaseManager with
events. This tactic is used for showing synchronization progress.

Set DBMgr = CreateObjectWithEvents_
("UltraLite.ULDatabaseManager", "UL_")

$ For information on OpenConnection, see "OpenConnection method" on
page 68.

DropDatabase method

The DropDatabase method deletes a database file.

DropDatabase(parms As String)
Member of UltraLite.ULDatabaseManager

The DropDatabase method deletes the database file. All information in the
database file is lost. The data is not recoverable using UltraLite Components.

parms The filename for the database and schema files.

Note in the example below that you must use the same connection
parameters when you drop the database that you use when you created the
database.

conn_parms = "uid=DBA;pwd=SQL"

 open_parms = conn_parms & ";" & _
"ce_file=\tutCustomer.udb"
DropDatabase(open_parms)

OnReceive event

OnReceive (nBytes As Long, nInserts As Long, nUpdates as Long, nDeletes
as Long)
Member of UltraLite.ULDatabaseManager

Reports download information to the application from the consolidated
database via MobiLink. This event may be called several times.

Prototype

Description

Parameters

Example

Prototype

Description

ULDatabaseManager class

66

nBytes Cumulative count of bytes received.

nInserts Cumulative count of inserts received at the remote application
from the consolidated database.

nUpdates Cumulative count of updates received at the remote application
from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application
from the consolidated database.

Private Sub UL_OnReceive(ByVal nBytes As Long, _
ByVal nInserts As Long, ByVal nUpdates As Long, _
ByVal nDeletes As Long)

 prLine "OnReceive " & nBytes & " bytes, " & _
 nInserts & _

 " inserts, " & nUpdates & " updates, " & _
 nDeletes & " deletes"

End Sub

OnSend event

OnSend(nBytes As Long, nInserts As Long, nUpdates as Long, nDeletes as
Long)
Member of UltraLite.ULDatabaseManager

Reports upload information from the remote database via MobiLink to the
consolidated database. This event may be called several times.

nBytes Cumulative count of bytes sent by the remote application to the
consolidated database via MobiLink.

nInserts Cumulative count of inserts sent by the remote application to the
consolidated database via MobiLink.

nUpdates Cumulative count of updates sent by the remote application to
the consolidated database via MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the
consolidated database via MobiLink.

Parameters

Example

Prototype

Description

Parameters

Chapter 4 API Reference

67

Private Sub Connection_OnSend(ByVal nBytes As Long, _
 ByVal nInserts As Long, _
 ByVal nUpdates As Long, _
 ByVal nDeletes As Long)
 send_count = send_count + nBytes
 DisplaySyncStatus
End Sub

OnStateChange event

OnStateChange(newState As ULSyncState, oldState As ULSyncState)
Member of UltraLite.ULDatabaseManager

This event is called whenever the state of the synchronization changes.

newState The state that the synchronization process is about to enter.

oldState The state that the synchronization process just completed.

Private Sub UL_OnStateChange(ByVal newState As _
Long, ByVal oldState As Long)

 prLine "OnStateChange new:" & newState & _
", old: " & oldState

End Sub

OnTableChange event

OnTableChange(newTableIndex As Long, numTables As Long)
Member of UltraLite.ULDatabaseManager

This event is called whenever the synchronization process begins
synchronizing another table.

newTableIndex The index number of the table currently being
synchronized. This number is not the same as the table ID, and so it cannot
be used with the DatabaseSchema.GetTableName method.

numTables The number of tables eligible to be synchronized.

Private Sub UL_OnTableChange(ByVal newTableIndex _
 As Long, ByVal numTables As Long)

 prLine "OnTableChange index:" & newTableIndex & ",
#tables=" & numTables

End Sub

Example

Prototype

Description

Parameters

Example

Prototype

Description

Parameters

Example

ULDatabaseManager class

68

OpenConnection method

OpenConnection(parms As string) As ULConnection
Member of UltraLite.ULDatabaseManager

If a database exists, use this method to receive a connection. If a database
does not exist, the call will fail.

The function returns a ULConnection object which provides an open
connection to a specified UltraLite database.

Parameters are specified using a sequence of "name=value" pairs. If no
user ID or password is given, the default is used.

parms The parameters that determine which database to connect to. The
database filename is specified using the parms string. It should contain a
value of the form file_name=UDBFILE or DBF=UDBFILE. See the UltraLite
Component Suite Foundations book for more information on connecting to
UltraLite databases.

$ For information on connection parameters, see "Connection
Parameters" on page 25 of the book UltraLite Foundations.

The ULConnection object is returned if the connection was successful.

The example below shows how to use connection parameters in the
OpenConnection method.

conn_parms = "uid=DBA;pwd=SQL" _
open_parms = conn_parms & ";" & "ce_file _
=\tutCustomer.udb"
 Set DatabaseMgr = CreateObject_
("UltraLite.ULDatabaseManager")
 Set Connection = DatabaseMgr. _
OpenConnection(open_parms)

Shutdown method

Shutdown()
Member of UltraLite.ULDatabaseManager

Shut down all open connections.

Prototype

Description

Parameters

Returns

Example

Prototype

Description

Chapter 4 API Reference

69

ULDatabaseSchema class
The ULDatabaseSchema object allows you to obtain the attributes of the
database to which you are connected.

Properties

The following are properties of ULDatabaseSchema:

Prototype Description

DateFormat as String (read-only) Gets the format for dates retrieved
from the database; YYYY-MM-DD
is the default. The format of the date
retrieved depends on the format used
when you created the USM file.

DateOrder as String (read-only) Controls the interpretation of date
formats; valid values are MDY,
YMD, or DMY.

NearestCentury as String (read-only) Gets the nearest century database
option. Controls the interpretation of
two-digit years in string-to-date
conversions. This is a numeric value
that acts as a rollover point. Two digit
years less than the value are
converted to 20yy, while years
greater than or equal to the value are
converted to 19yy.

Precision as String (read-only) Gets the database precision. Specifies
the maximum number of digits in the
result of any decimal arithmetic.

Publications as
IULPublicationSchemas(read-only)

A collection of publication schema
objects.

Signature as Variant (read-only) Gets the database signature, an
internal identifier representing the
database schema.

TableCount as Long (read-only) Returns the number of tables in the
database.

TimeFormat as String (read-only) Gets the format for times retrieved
from the database.

TimestampFormat as String (read-only) The format for timestamps retrieved
from the database.

ULDatabaseSchema class

70

ApplyFile method

ApplyFile (parms As String) As Boolean
Member of UltraLite.ULDatabaseSchema

Applies a database schema update. Changes the schema of this database.
This method is only useful on those occasions where you want to modify
your existing database structure using DDL with, in most circumstances, no
data loss. Data loss can occur if columns are deleted, for example, or if the
data type for a column is changed to an incompatible type.

parms The schema file(s) containing the changes you wish to make.

True if successful.

False if unsuccessful.

Prototype

Description

Parameters

Returns

Chapter 4 API Reference

71

ULIndexSchema class
The ULIndexSchema object allows you to obtain the attributes of an index.
An index is an ordered set of columns by which data in a table will be sorted.
The primary use of an index is to order the data in a table by one or more
columns.

An index can be a foreign key, which is used to maintain referential integrity
in a database.

Properties

Prototype Description

ColumnCount as Long (read-only) Returns the number of columns in the
index.

ColumnName(position As Long) As
String (read-only)

Column name in position of index.

ForeignKey as Boolean Returns whether this is a foreign key.
True if it is a foreign key.

IsColumnDescending(position As Long)
As Boolean (read-only)

True if column in position of the
index is sorted descending. False if
ascending.

Name as String (read-only) Returns the name of the index.

PrimaryKey as Boolean True if the index is a primary key.

ReferencedIndexName as String – read-
only

The name of the index referenced by
this index if it is a foreign key.

ReferencedTableName as String – read-
only

The name of the table referenced by
this index if it is a foreign key.

UniqueIndex as Boolean (read-only) Indicates whether values in the index
must be unique. True if the index is
unique.

UniqueKey as Boolean (read-only) Indicates whether the index is a
unique constraint on a table. True if
the index is a primary key or has a
unique constraint.

ULPublicationSchema class

72

ULPublicationSchema class
The ULPublicationSchema object allows you to obtain the attributes of a
publication.

Properties

Prototype Description

Mask as Long (read-only) Returns the mask (a unique identifier) for the
publication.

Name as String (read-only) Returns the name of the publication.

Chapter 4 API Reference

73

ULSQLCode constants
The ULSQLCodeConstants identify SQL error codes.

Constant Value

ulSQLE_BAD_ENCRYPTION_KEY -840

ulSQLE_CANNOT_ACCESS_FILE -602

ulSQLE_CANNOT_CHANGE_USER_NAME -867

ulSQLE_COLUMN_CANNOT_BE_NULL -195

ulSQLE_COLUMN_IN_INDEX -127

ulSQLE_COLUMN_NOT_FOUND -143

ulSQLE_COMMUNICATIONS_ERROR -85

ulSQLE_CONNECTION_NOT_FOUND -108

ulSQLE_CONVERSION_ERROR -157

ulSQLE_CURSOROP_NOT_ALLOWED -187

ulSQLE_CURSOR_ALREADY_OPEN -172

ulSQLE_CURSOR_NOT_OPEN -180

ulSQLE_DATABASE_ERROR -301

ulSQLE_DATABASE_NEW 123

ulSQLE_DATABASE_NOT_CREATED -645

ulSQLE_DATABASE_NOT_FOUND -83

ulSQLE_DATABASE_UPGRADE_FAILED -672

ulSQLE_DATABASE_UPGRADE_NOT_POSSIBLE -673

ulSQLE_DATATYPE_NOT_ALLOWED -624

ulSQLE_DBSPACE_FULL -604

ulSQLE_DIV_ZERO_ERROR -628

ulSQLE_DOWNLOAD_CONFLICT -839

ulSQLE_DROP_DATABASE_FAILED -651

ulSQLE_DYNAMIC_MEMORY_EXHAUSTED -78

ulSQLE_ENGINE_ALREADY_RUNNING -96

ulSQLE_ENGINE_NOT_MULTIUSER -89

ulSQLE_ERROR -300

ulSQLE_IDENTIFIER_TOO_LONG -250

ULSQLCode constants

74

ulSQLE_INDEX_NOT_FOUND -183

ulSQLE_INDEX_NOT_UNIQUE -196

ulSQLE_INTERRUPTED -299

ulSQLE_INVALID_FOREIGN_KEY -194

ulSQLE_INVALID_FOREIGN_KEY_DEF -113

ulSQLE_INVALID_LOGON -103

ulSQLE_INVALID_OPTION_SETTING -201

ulSQLE_INVALID_PARAMETER -735

ulSQLE_INVALID_SQL_IDENTIFIER -760

ulSQLE_LOCKED -210

ulSQLE_MEMORY_ERROR -309

ulSQLE_METHOD_CANNOT_BE_CALLED -669

ulSQLE_NAME_NOT_UNIQUE -110

ulSQLE_NOERROR 0

ulSQLE_NOTFOUND 100

ulSQLE_NO_CURRENT_ROW -197

ulSQLE_NO_INDICATOR -181

ulSQLE_OVERFLOW_ERROR -158

ulSQLE_PERMISSION_DENIED -121

ulSQLE_PRIMARY_KEY_NOT_UNIQUE -193

ulSQLE_PRIMARY_KEY_VALUE_REF -198

ulSQLE_PUBLICATION_NOT_FOUND -280

ulSQLE_RESOURCE_GOVERNOR_EXCEEDED -685

ulSQLE_ROW_DROPPED_DURING_SCHEMA_UPGRA
DE

130

ulSQLE_SERVER_SYNCHRONIZATION_ERROR -857

ulSQLE_START_STOP_DATABASE_DENIED -75

ulSQLE_STRING_RIGHT_TRUNCATION -638

ulSQLE_TABLE_HAS_PUBLICATIONS -281

ulSQLE_TABLE_IN_USE -214

ulSQLE_TABLE_NOT_FOUND -141

ulSQLE_TOO_MANY_CONNECTIONS -102

Chapter 4 API Reference

75

ulSQLE_UNABLE_TO_START_DATABASE -82

ulSQLE_UNCOMMITTED_TRANSACTIONS -755

ulSQLE_UNKNOWN_USERID -140

ulSQLE_UNSUPPORTED_CHARACTER_SET_ERROR -869

ulSQLE_UPLOAD_FAILED_AT_SERVER -794

ULSQLType constants

76

ULSQLType constants
The ULSQLTypeConstants identify valid database column types.

Constant Value

ulTypeBig 4

ulTypeBinary 13

ulTypeBit 7

ulTypeByte 6

ulTypeDate 9

ulTypeDateTime 8

ulTypeDouble 11

ulTypeLong 0

ulTypeLongBinary 14

ulTypeLongString 16

ulTypeNumeric 17

ulTypeReal 12

ulTypeShort 1

ulTypeString 15

ulTypeTime 10

ulTypeUnsignedBig 5

ulTypeUnsignedLong 2

ulTypeUnsignedShort 3

Chapter 4 API Reference

77

ULStreamErrorCode constants
The ULStreamErrorCodeConstants identify constants you can use to specify
the ULStreamErrorCode.

Constant Value

UlStreamErrorCodeNone 0

UlStreamErrorCodeParameter 1

UlStreamErrorCodeParameterNotUint32 2

UlStreamErrorCodeParameterNotUint32Range 3

UlStreamErrorCodeParameterNotBoolean 4

UlStreamErrorCodeParameterNotHex 5

UlStreamErrorCodeMemoryAllocation 6

UlStreamErrorCodeParse 7

UlStreamErrorCodeRead 8

UlStreamErrorCodeWrite 9

UlStreamErrorCodeEndWrite 10

UlStreamErrorCodeEndRead 11

UlStreamErrorCodeNotImplemented 12

UlStreamErrorCodeWouldBlock 13

UlStreamErrorCodeGenerateRandom 14

UlStreamErrorCodeInitRandom 15

UlStreamErrorCodeSeedRandom 16

UlStreamErrorCodeCreateRandomObject 17

UlStreamErrorCodeShuttingDown 18

UlStreamErrorCodeDequeuingConnection 19

UlStreamErrorCodeSecureCertificateRoot 20

UlStreamErrorCodeSecureCertificateCompanyName 21

UlStreamErrorCodeSecureCertificateChainLength 22

UlStreamErrorCodeSecureCertificateRef 23

UlStreamErrorCodeSecureCertificateNotTrusted 24

UlStreamErrorCodeSecureDuplicateContext 25

UlStreamErrorCodeSecureSetIo 26

ULStreamErrorCode constants

78

Constant Value

UlStreamErrorCodeSecureSetIoSemantics 27

UlStreamErrorCodeSecureCertificateChainFunc 28

UlStreamErrorCodeSecureCertificateChainRef 29

UlStreamErrorCodeSecureEnableNonBlocking 30

UlStreamErrorCodeSecureSetCipherSuites 31

UlStreamErrorCodeSecureSetChainNumber 32

UlStreamErrorCodeSecureCertificateFileNotFound 33

UlStreamErrorCodeSecureReadCertificate 34

UlStreamErrorCodeSecureReadPrivateKey 35

UlStreamErrorCodeSecureSetPrivateKey 36

UlStreamErrorCodeSecureCertificateExpiryDate 37

UlStreamErrorCodeSecureExportCertificate 38

UlStreamErrorCodeSecureAddCertificate 39

UlStreamErrorCodeSecureTrustedCertificateFileNotFound 40

UlStreamErrorCodeSecureTrustedCertificateRead 41

ulStreamErrorCodeSecureCertificateCount 42

ulStreamErrorCodeSecureCreateCertificate 43

ulStreamErrorCodeSecureImportCertificate 44

ulStreamErrorCodeSecureSetRandomRef 45

ulStreamErrorCodeSecureSetRandomFunc 46

ulStreamErrorCodeSecureSetProtocolSide 47

ulStreamErrorCodeSecureAddTrustedCertificate 48

ulStreamErrorCodeSecureCreatePrivateKeyObject 49

ulStreamErrorCodeSecureCertificateExpired 50

ulStreamErrorCodeSecureCertificateCompanyUnit 51

ulStreamErrorCodeSecureCertificateCommonName 52

ulStreamErrorCodeSecureHandshake 53

ulStreamErrorCodeHttpVersion 54

ulStreamErrorCodeSecureSetReadFunc 55

ulStreamErrorCodeSecureSetWriteFunc 56

ulStreamErrorCodeSocketHostNameNotFound 57

Chapter 4 API Reference

79

Constant Value

ulStreamErrorCodeSocketGetHostByAddr 58

ulStreamErrorCodeSocketLocalhostNameNotFound 59

ulStreamErrorCodeSocketCreateTcpip 60

ulStreamErrorCodeSocketCreateUdp 61

ulStreamErrorCodeSocketBind 62

ulStreamErrorCodeSocketCleanup 63

ulStreamErrorCodeSocketClose 64

ulStreamErrorCodeSocketConnect 65

ulStreamErrorCodeSocketGetName 66

ulStreamErrorCodeSocketGetOption 67

ulStreamErrorCodeSocketSetOption 68

ulStreamErrorCodeSocketListen 69

ulStreamErrorCodeSocketShutdown 70

ulStreamErrorCodeSocketSelect 71

ulStreamErrorCodeSocketStartup 72

ulStreamErrorCodeSocketPortOutOfRange 73

ulStreamErrorCodeLoadNetworkLibrary 74

ulStreamErrorCodeActsyncNoPort 75

ULStreamErrorContext constants

80

ULStreamErrorContext constants
The ULStreamErrorContext constants identify constants you can use to
specify ULStreamErrorContext.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

Chapter 4 API Reference

81

ULStreamErrorID constants
The ULStreamErrorID constants identify constants you can use to specify
ULStreamErrorContext.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

ULStreamType

82

ULStreamType
The ULStreamType constants identify constants you can use to specify
stream type.

Constant Value Description

ulHTTP 1 HTTP stream

ulHTTPS 3 TCPIP stream

ulTCPIP 2 TCP/IP stream

Chapter 4 API Reference

83

ULSyncMasks Type
The ULStreamType constants identify constants you can use to specify
stream type.

Constant Value Description

ulSyncAllPublications 1 A mask to include all publications

ulSyncAllTables 0 A mask to include all tables in the database

ULSyncParms class

84

ULSyncParms class
The attributes set for the ULSyncParms object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read only reflect the status of the last synchronization.

Properties

The following are properties of ULSyncParms:

Prototype Description

CheckpointStore as Boolean Adds checkpoints of the database during
synchronization to limit database growth
during the synchronization process. This is
most useful for large downloads with
many updates.

DownloadOnly as Boolean If true, synchronization only downloads
data.

NewPassword as String The user’s password will be changed to
this string on the next synchronization, if
set.

Password as String Password corresponding to the given user
name.

PublicationMask as Long The publications to synchronize - the
default is all publications.

SendColumnNames as Boolean If true, column names are sent to the
MobiLink synchronization server.

SendDownloadAck as Boolean If true, a download acknowledgement is
sent during synchronization.

Stream as ULStreamTypeConstants The type of stream to use during
synchronization.

StreamParms as String Extra parameters for the given stream type.

UploadOnly as Boolean If true, synchronization only uploads data.

UserName as String User name to submit during
synchronization.

Version as String The synchronization script version to run.

Chapter 4 API Reference

85

ULSyncResult class
The attributes set for the ULSyncResult object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read only reflect the status of the last synchronization.

Properties

The following are properties of ULSyncResult:

Prototype Description

AuthStatus as ULAuthStatusCode
(read-only)

The authorization status code for the last
synchronization.

IgnoredRows as Boolean (read-
only)

If true, rows were ignored during the last
synchronization.

StreamErrorCode as
ULStreamErrorCode (read-only)

The error code reported by the stream
itself.

StreamErrorContext as
ULStreamErrorContext (read-only)

The basic network operation being
performed.

StreamErrorID as ULStreamErrorID
(read-only)

The network layer reporting the error.

StreamErrorSystem as Long (read-
only)

The stream error system-specific code.

UploadOK as Boolean (read-only) If true, data was uploaded successfully in
the last synchronization.

ULSyncState constants

86

ULSyncState constants

Constant Value

ulSyncStateStarting 0

ulSyncStateConnecting 1

ulSyncStateSendingHeader 2

ulSyncStateSendingTable 3

ulSyncStateSendingData 4

ulSyncStateFinishingUpload 5

ulSyncStateReceivingUploadAck 6

ulSyncStateReceivingTable 7

ulSyncStateReceivingData 8

ulSyncStateCommittingDownload 9

ulSyncStateSendingDownloadAck 10

ulSyncStateDisconnecting 11

ulSyncStateDone 12

ulSyncStateError 13

ulSyncStateCancelled 99

Chapter 4 API Reference

87

ULTable class
The ULTable class is used to store, remove, update, and read data from a
table.

Before you can work with table data, you must call the Open method.
ULTable uses table modes for table operations:

Mode Description

FindBegin Begins find mode

InsertBegin Begins insert mode

LookupBegin Begins lookup mode

UpdateBegin Begins update mode

Properties

Prototype Description

BOF as Boolean (read-only) Returns whether you are currently positioned
before the first row.

Columns as IULColumns (read-
only)

Returns a collection of column objects

EOF as Boolean (read-only) Returns whether you are currently positioned
after the last row.

IsOpen as Boolean (read-only) Returns whether or not this table is currently
open.

RowCount as Long (read-only) Returns the number of rows in this table.

Schema as ULTableSchema
(read-only)

Returns information about the schema of this
table.

Close method

Close()
Member of UltraLite.ULTable

Close the table cursor. Once closed, table data can no longer be read.

Prototype

Description

ULTable class

88

Columns method

Columns(name As String) As ULColumn
Member of UltraLite.ULTable

Returns the IULColumns object for the specified column.

$ For information about the IULColumns object, see "ULColumn class"
on page 53.

name The name of the column to return.

Delete method

Delete()
Member of UltraLite.ULTable

Deletes the current row from the table.

DeleteAllRows method

DeleteAllRows()
Member of UltraLite.ULTable

Deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using the ULConnection.StartSynchronizationDelete method or calling
Truncate instead of DeleteAllRows.

FindBegin method

FindBegin()
Member of UltraLite.ULTable

Prepares a table for a find.

FindFirst method

FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Description

Parameters

Prototype

Description

Prototype

Description

Prototype

Description

Prototype

Chapter 4 API Reference

89

Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is AfterLast().

Note: FindBegin must be called before using this method.

num_columns An optional parameter referring to the number of columns
in the index that should be checked.

True if successful.

False if unsuccessful.

FindLast method

FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

The current index is used to specify the sort order of the table. It is specified
when your application calls the Open method. The default index is the
primary key.

$ For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index for which you want to find the value. The cursor is left on the last
row found that exactly matches the index value. On failure the cursor
position is BeforeFirst().

Note: FindBegin must be called before using this method.

num_columns An optional parameter referring to the number of columns
in the index that should be checked.

True if successful.

False if unsuccessful.

Description

Parameters

Returns

Prototype

Description

Parameters

Returns

ULTable class

90

FindNext method

FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move forwards through the table from the current position, looking for the
next row that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the Open method. The default index is
the primary key.

$ For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure, the cursor position is AfterLast().

Note: Must be preceded by FindFirst or FindLast.

num_columns An optional parameter referring to the number of columns
to be used in the comparison.

True if successful.

False if unsuccessful and record is then EOF.

FindPrevious method

FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move backwards through the table from the current position, looking for the
previous row that exactly matches a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the OpenByIndex method. The default
index is the primary key.

$ For more information, see "Open method" on page 94.

On failure the cursor position is BeforeFirst().

num_columns An optional parameter referring to the number of columns
to be used in the comparison.

False if unsuccessful and record is then BOF.

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

Returns

True if successful.

Chapter 4 API Reference

91

Insert method

Insert() As Boolean
Member of UltraLite.ULTable

Inserts a row in the table with values specified in previous Set methods.
Must be preceded by InsertBegin.

InsertBegin method

InsertBegin()
Member of UltraLite.ULTable

Prepares a table for inserting a new row, setting column values to their
defaults.

CustomerTable.InsertBegin
 CustomerTable.Columns("Fname").Value = fname
 CustomerTable.Columns("Lname").Value = lname
 If Len(city) > 0 Then
 CustomerTable.Columns("City").Value = city
 End If

 If Len(phone) > 0 Then
 CustomerTable.Columns("phone").Value = phone
 End If
CustomerTable.Insert

LookupBackward method

LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move backwards through the table starting from the end, looking for the first
row that matches or is less than a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the OpenByIndex method. The default
index is the primary key.

$ For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the last row that matches or is less than the
index value. On failure (that is, if no row is less than the value being looked
for), the cursor position is BeforeFirst().

Prototype

Description

Prototype

Description

Example

Prototype

Description

ULTable class

92

num_columns An optional parameter referring to the number of columns
to be used in the comparison.

True if successful.

False if unsuccessful.

LookupBegin method

LookupBegin()
Member of UltraLite.ULTable

Prepares a table for a lookup.

LookupForward method

LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the OpenByIndex method. The default
index is the primary key.

$ For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is AfterLast().

num_columns An optional parameter referring to the number of columns
to be used in the comparison.

True if successful.

False if unsuccessful.

MoveAfterLast method

MoveAfterLast () As Boolean
Member of UltraLite.ULTable

Parameters

Returns

Prototype

Description

Prototype

Description

Parameters

Returns

Prototype

Chapter 4 API Reference

93

Moves to a position after the last row.

True if successful.

False if there is no data in the table.

MoveBeforeFirst method

MoveBeforeFirst ()
Member of UltraLite.ULTable

Moves to a position before the first row.

MoveFirst method

MoveFirst () As Boolean
Member of UltraLite.ULTable

Moves to the first row.

True if successful.

False if there is no data in the table.

MoveLast method

MoveLast () As Boolean
Member of UltraLite.ULTable

Moves to the last row.

True if successful.

False if there is no data in the table.

MoveNext method

MoveNext () As Boolean
Member of UltraLite.ULTable

Moves to the next row.

True if successful.

False if there is no more data in the table.

Description

Returns

Prototype

Description

Prototype

Description

Returns

Prototype

Description

Returns

Prototype

Description

Returns

ULTable class

94

MovePrevious method

MovePrevious () As Boolean
Member of UltraLite.ULTable

Moves to the previous row.

True if successful.

False if there is no more data in the table.

MoveRelative method

MoveRelative (index As Long) As Boolean
Member of UltraLite.ULTable

Moves a certain number of rows relative to the current row.

index The number of rows to move.

True if successful.

False if the move failed.

Open method

Open([index_name As String])
Member of UltraLite.ULTable

Opens the table so it can be read or manipulated. When you use the Open
method, the rows are ordered by the named index. If no index is provided,
rows are ordered by the primary key. The cursor is positioned before the first
row in the table.

index_name The name of the index.

Truncate method

Truncate ()
Member of UltraLite.ULTable

Removes all data from this table but does not affect the data in the
consolidated database. Deletions are not sent up in the next synchronization,
so truncate will not affect the data in the consolidated database.

$ For more information, see "StopSynchronizationDelete method" on
page 62.

Prototype

Description

Returns

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

Prototype

Description

Chapter 4 API Reference

95

Update method

Update()
Member of UltraLite.ULTable

Updates a row in the table with the new values specified.

Note: Must be preceded by a call to UpdateBegin.

UpdateBegin method

UpdateBegin()
Member of UltraLite.ULTable

Prepares a table for modifying the contents of the current row.

Table.UpdateBegin
Table.Columns ("ColName").Value="New Value"
Table.Update

Prototype

Description

Prototype

Description

Example

ULTableSchema class

96

ULTableSchema class
The ULTableSchema object allows you to obtain the attributes of a table.

Properties

The following are properties of the ULTableSchema class:

Prototype Description

ColumnCount as Integer (read-only) The number of columns in this table.

Indexes As IULIndexSchemas The collection of indexes on this table.

Name as String (read-only) This table’s name.

NeverSynchronized As Boolean
(read-only)

True if this table is to be excluded from all
synchronizations.

PrimaryKey as ULIndexSchema
(read-only)

The primary key for this table.

UploadUnchangedRows as Boolean
(read-only)

True if all rows in the table should be
uploaded on synchronization, rather than
just the rows changed since the last
synchronization.

InPublication method

InPublication(pub_name As String) As Boolean
Member of UltraLite.ULTableSchema

Indicates whether this table is part of the specified publication.

True if the table is part of the publication.

False if the table is not part of the publication.

Prototype

Description

Returns

97

Index

A
Accessing and manipulating data

about, 35
UltraLite for eMbedded Visual Basic, 35

Accessing schema information
about, 41
UltraLite for eMbedded Visual Basic, 41

AppendByteChunk method (ULColumn class)
UltraLite for eMbedded Visual Basic API, 53

AppendStringChunk method (ULColumn class)
UltraLite for eMbedded Visual Basic API, 54

ApplyFile (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 70

Architecture
UltraLite for eMbedded Visual Basic, 4

AuthStatus property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

AutoCommit mode
about, 39

AutoCommit property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

AutoIncrement property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

B
BOF property (ULTable class)

UltraLite for eMbedded Visual Basic API, 87

C
CancelSynchronize method (ULConnection class)

UltraLite for eMbedded Visual Basic API, 60

casting
data types, 36

CheckpointStore property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

Close method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 60

Close method (ULTable class)
UltraLite for eMbedded Visual Basic API, 87

ColumnCount property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

ColumnCount property (ULTableSchema class)
UltraLite for eMbedded Visual Basic API, 96

ColumnName property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

columns
accessing schema information, 41

Columns collection
introduction, 35

Columns method (ULTable class)
UltraLite for eMbedded Visual Basic API, 88

Commit method
about, 39

Commit method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 60

commits
about, 39

D–E

98

connecting
UltraLite databases, 32

Connecting to the UltraLite database
about, 32
UltraLite for eMbedded Visual Basic, 32

connection parameters
databases, 32

Count property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 49

Count property (IULIndexSchemas collection)
UltraLite for eMbedded Visual Basic API, 50

Count property (IULPublicationSchemas collection)
UltraLite for eMbedded Visual Basic API, 51

CountUploadRows method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 61

CreateDatabase method (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 64

CustDB sample
UltraLite for eMbedded Visual Basic, 26

D
data manipulation

about, 35, 39

data types
accessing, 36
casting, 36

database schema
accessing, 41

DatabaseID property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

DatabaseManager property (IULColumns
collection)

UltraLite for eMbedded Visual Basic API, 59

DatabaseNew property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

databases
accessing schema information, 41
connecting to, 32
schema, 30
working with, 30

DateFormat property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

DateOrder property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

default values
setting, 57

DefaultValue property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

Delete method (ULTable class)
UltraLite for eMbedded Visual Basic API, 88

DeleteAllRows method (ULTable class)
UltraLite for eMbedded Visual Basic API, 88

deleting rows
about, 37

Development platforms
supported, 3
UltraLite for eMbedded Visual Basic, 3

DownloadOnly property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

DropDatabase method (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 65

E
eMbedded Visual Basic

Development platforms, 3
supported versions, 3

EOF property (ULTable class)
UltraLite for eMbedded Visual Basic API, 87

error handling
about, 42

Error handling
about, 42
UltraLite for eMbedded Visual Basic, 42

ErrorResume property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

ErrorResume property (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 64

errors
handling, 42

F–I

99

F
features

UltraLite for eMbedded Visual Basic, 2

feedback
documentation, vii
providing, vii

find methods
about, 36

find mode
about, 39

FindBegin method (ULTable class)
UltraLite for eMbedded Visual Basic API, 88

FindFirst method (ULTable class)
UltraLite for eMbedded Visual Basic API, 88

FindLast method (ULTable class)
UltraLite for eMbedded Visual Basic API, 89

FindNext method (ULTable class)
UltraLite for eMbedded Visual Basic API, 90

FindPrevious method (ULTable class)
UltraLite for eMbedded Visual Basic API, 90

ForeignKey property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

G
GetByteChunk method (ULColumn class)

UltraLite for eMbedded Visual Basic API, 54

GetStringChunk method (ULColumn class)
UltraLite for eMbedded Visual Basic API, 55

GetTable function (ULConnection class)
UltraLite for eMbedded Visual Basic API, 61

GlobalAutoIncrement property (ULColumnSchema
class)

UltraLite for eMbedded Visual Basic API, 58

GlobalAutoIncrementUsage property (IULColumns
collection)

UltraLite for eMbedded Visual Basic API, 59

grantConnectTo method
introduction, 43

GrantConnectTo method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 61

I
ID property (ULColumnSchema class)

UltraLite for eMbedded Visual Basic API, 58

IgnoredRows property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

indexes
accessing schema information, 41

Indexes property (ULTableSchema class)
UltraLite for eMbedded Visual Basic API, 96

InPublication method (ULTableSchema class)
UltraLite for eMbedded Visual Basic API, 96

Insert method (ULTable class)
UltraLite for eMbedded Visual Basic API, 91

insert mode
about, 39

InsertBegin method (ULTable class)
UltraLite for eMbedded Visual Basic API, 91

inserting rows
about, 37

internals
data manipulation, 39

IsNull property (ULColumn class)
UltraLite for eMbedded Visual Basic API, 53

IsOpen property (ULTable class)
UltraLite for eMbedded Visual Basic API, 87

Item property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 49

Item property (IULIndexSchemas collection)
UltraLite for eMbedded Visual Basic API, 50

Item property (IULPublicationSchemas collection)
UltraLite for eMbedded Visual Basic API, 51

IULColumns collection
about, 49
properties, 49
UltraLite for eMbedded Visual Basic API, 49

L–N

100

IULIndexSchemas collection
about, 50
properties, 50
UltraLite for eMbedded Visual Basic API, 50

IULPublicationSchemas class
properties, 51

IULPublicationSchemas collection
about, 51
UltraLite for eMbedded Visual Basic PI, 51

L
LastDownloadTime method (ULConnection class)

UltraLite for eMbedded Visual Basic API, 62

LastErrorCode property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

LastErrorDescription property (IULColumns
collection)

UltraLite for eMbedded Visual Basic API, 59

LastIdentity property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

lookup methods
about, 36

lookup mode
about, 39

LookupBackward method (ULTable class)
UltraLite for eMbedded Visual Basic API, 91

LookupBegin method (ULTable class)
UltraLite for eMbedded Visual Basic API, 92

LookupForward method (ULTable class)
UltraLite for eMbedded Visual Basic API, 92

M
masks

publications, 83

Microsoft Visual Basic
supported versions, 3

modes
about, 39

MoveAfterLast method (ULTable class)
UltraLite for eMbedded Visual Basic API, 92

MoveBeforeFirst method (ULTable class)
UltraLite for eMbedded Visual Basic API, 93

MoveFirst method
introduction, 35

MoveFirst method (ULTable class)
UltraLite for eMbedded Visual Basic API, 93

MoveLast method (ULTable class)
UltraLite for eMbedded Visual Basic API, 93

MoveNext method
introduction, 35

MoveNext method (ULTable class)
UltraLite for eMbedded Visual Basic API, 93

MovePrevious method (ULTable class)
UltraLite for eMbedded Visual Basic API, 94

MoveRelative method (ULTable class)
UltraLite for eMbedded Visual Basic API, 94

N
Name property (ULColumnSchema class)

UltraLite for eMbedded Visual Basic API, 58

Name property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

Name property (ULTableSchema class)
UltraLite for eMbedded Visual Basic API, 96

NearestCentury property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

NeverSynchronized property (ULTableSchema
class)

UltraLite for eMbedded Visual Basic API, 96

NewPassword property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

newsgroups
technical support, vii

Nullable property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

O–R

101

O
object hierarchy

UltraLite for eMbedded Visual Basic, 4

OnReceive event (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 65

OnSend event (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 66

OnStateChange event (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 67

OnTableChange event (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 67

Open method
ULTable object, 35

Open method (ULTable class)
UltraLite for eMbedded Visual Basic API, 94

OpenConnection method (ULDatabaseManager
class)

UltraLite for eMbedded Visual Basic API, 68

OpenParms property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

OptimalIndex property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

P
Password property (IULColumns collection)

UltraLite for eMbedded Visual Basic API, 84

passwords
authentication, 43

platforms
supported, 3

Precision property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

Precision property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

Preparing to work with eMbedded Visual Basic
about, 28
UltraLite for eMbedded Visual Basic, 28

PrimaryKey property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

PrimaryKey property (ULTableSchema class)
UltraLite for eMbedded Visual Basic API, 96

projects
creating UltraLite for eMbedded Visual Basic

projects, 11

publication masks
about, 83
all, 83

PublicationMask property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

publications
accessing schema information, 41

Publications property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

R
ReferencedIndexName property (ULIndexSchema

class)
UltraLite for eMbedded Visual Basic API, 71

ReferencedTableName property (ULIndexSchema
class)

UltraLite for eMbedded Visual Basic API, 71

RevokeConnectFrom method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 62

revokeConnectionFrom method
introduction, 43

Rollback method
about, 39

Rollback method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 62

rollbacks
about, 39

RowCount property (ULTable class)
UltraLite for eMbedded Visual Basic API, 87

rows
accessing current row, 36

S–S

102

S
samples

UltraLite for eMbedded Visual Basic, 26

Scale property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

schema
accessing, 41

schema files
about, 30
creating, 31

Schema painter
starting, 31

Schema property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

Schema property (ULColumn class)
UltraLite for eMbedded Visual Basic API, 53

Schema property (ULTable class)
UltraLite for eMbedded Visual Basic API, 87

sColumnDescendinproperty (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

scrolling
through rows, 35

searching
rows, 36

SendColumnNames property (IULColumns
collection)

UltraLite for eMbedded Visual Basic API, 84

SendDownloadAck property (IULColumns
collection)

UltraLite for eMbedded Visual Basic API, 84

SetByteChunk method (ULColumn class)
UltraLite for eMbedded Visual Basic API, 56

SetToDefault method (ULColumn class)
UltraLite for eMbedded Visual Basic API, 57

Shutdown method (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 68

Signature property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

Size property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

SQL Anywhere Studio
additional features, 3

SQLType property (ULColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

StartSynchronizationDelete method (ULConnection
class)

UltraLite for eMbedded Visual Basic API, 62

StopSynchronizationDelete method (ULConnection
class)

UltraLite for eMbedded Visual Basic API, 62

Stream property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

StreamErrorCode property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamErrorContext property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamErrorID property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamErrorSystem property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamParms property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

StringToUUID method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 63

support
newsgroups, vii

supported platforms, 3

synchronization
HTTP, 44
introduction, 44
SQL Anywhere Studio required, 3
TCP/IP, 44

Synchronize method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 63

Synchronizing UltraLite applications
about, 44
UltraLite for eMbedded Visual Basic, 44

SyncParms property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

SyncResult property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

T–U

103

T
TableCount property (ULDatabaseSchema class)

UltraLite for eMbedded Visual Basic API, 69

tables
accessing schema information, 41

target platforms
supported, 3
UltraLite for eMbedded Visual Basic, 3

technical support
newsgroups, vii

TimeFormat property (ULDatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

TimestampFormat property (ULDatabaseSchema
class)

UltraLite for eMbedded Visual Basic API, 69

transaction processing
about, 39

transactions
about, 39

Truncate method (ULTable class)
UltraLite for eMbedded Visual Basic API, 94

tutorial
UltraLite for eMbedded Visual Basic, 7

U
udb files

UltraLite databases, 30

ULAuthStatusCode constants
about, 52
UltraLite for eMbedded Visual Basic API, 52

ULColumn class
about, 53
properties, 53
UltraLite for eMbedded Visual Basic API, 53

ULColumnSchema class
about, 58
properties, 58
UltraLite for eMbedded Visual Basic API, 58

ULColumnSchema object
introduction, 41

ULConnection class
about, 59
properties, 59
UltraLite for eMbedded Visual Basic API, 59

ULConnection object
introduction, 32

ULDatabaseManager class
about, 64
UltraLite for eMbedded Visual Basic API, 64

ULDatabaseManager object
introduction, 32

ULDatabaseSchema class
about, 69
properties, 64, 69
UltraLite for eMbedded Visual Basic API, 69

ULDatabaseSchema object
introduction, 41

ULIndexSchema class
about, 71
properties, 71
UltraLite for eMbedded Visual Basic API, 71

ULIndexSchema object
introduction, 41

ULPublicationSchema class
about, 72
properties, 72
UltraLite for eMbedded Visual Basic API, 72

ULPublicationSchema object
introduction, 41

ULSQLCode constants
about, 73
UltraLite for eMbedded Visual Basic API, 73

ULSQLType constants
about, 76
UltraLite for eMbedded Visual Basic API, 76

ULStreamErrorCode constants
about, 77
UltraLite for eMbedded Visual Basic API, 77

ULStreamErrorContext constants
about, 80
UltraLite for eMbedded Visual Basic PI, 80

U–U

104

ULStreamErrorID constants
about, 81
UltraLite for eMbedded Visual Basic API, 81

ULStreamType
about, 82
UltraLite for eMbedded Visual Basic API, 82

ULSyncParms class
about, 84
properties, 84
UltraLite for eMbedded Visual Basic API, 84

ULSyncResult class
about, 85
properties, 85
UltraLite for eMbedded Visual Basic API, 85

ULSyncState constants
about, 86
UltraLite for eMbedded Visual Basic API, 86

ULTable class
about, 87
properties, 87
UltraLite for eMbedded Visual Basic API, 87

ULTable object
introduction, 35

ULTableSchema class
about, 96
properties, 96
UltraLite for eMbedded Visual Basic API, 96

ULTableSchema object
introduction, 41

UltraLite
about, 1

UltraLite databases
about, 30
features, 30
schema, 30

UltraLite for eMbedded Visual Basic
Accessing and manipulating data, 35
Accessing schema information, 41
architecture, 4
Connecting to the UltraLite database, 32
Error handling, 42
features, 2
object hierarchy, 4
Preparing to work with eMbedded Visual Basic,

28

Synchronizing UltraLite applications, 44
UltraLite for eMbedded Visual Basic

architecture, 4
UltraLite for eMbedded Visual Basic features, 2
User authentication, 43

UltraLite for eMbedded Visual Basic API
IULColumns class, 53
IULColumns collection, 49
IULIndexSchemas collection, 50
IULPublicationSchemas collection, 51
ULAuthStatusCode constants, 52
ULColumnSchema class, 58
ULConnection class, 59
ULDatabaseManager class, 64
ULDatabaseSchema class, 69
ULIndexSchema class, 71
ULPublicationSchema class, 72
ULSQLCode constants, 73
ULSQLType constants, 76
ULStreamErroCodeConstants, 77
ULStreamErrorContext constants, 80
ULStreamErrorID constants, 81
ULStreamType, 82
ULSyncParms class, 84
ULSyncResult class, 85
ULSyncState constants, 86
ULTable class, 87
ULTableSchema class, 96

UltraLite for eMbedded Visual Basic architecture
about, 4
UltraLite for eMbeddd Visual Basic, 4

UltraLite for eMbedded Visual Basic features
about, 2
UltraLite for eMbedded Visual Basic, 2

UltraLite for eMbedded Visual Basic projects
creating, 11

UniqueIndex property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

UniqueKey property (ULIndexSchema class)
UltraLite for eMbedded Visual Basic API, 71

Update method (ULTable class)
UltraLite for eMbedded Visual Basic API, 95

update mode
about, 39

UpdateBegin method (ULTable class)
UltraLite for eMbedded Visual Basic API, 95

V–W

105

updating rows
about, 37

UploadOK property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

UploadOnly property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

UploadUnchangedRows property (ULTableSchema
class)

UltraLite for eMbedded Visual Basic API, 96

user authentication
about, 43

User authentication
about, 43
UltraLite for eMbedded Visual Basic, 43

UserName property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

users
authentication, 43

usm files
about, 30
creating, 31

UUIDToString method (ULConnection class)
UltraLite for eMbedded Visual Basic API, 63

V
Value property (ULColumn class)

UltraLite for eMbedded Visual Basic API, 53

values
accessing, 36

Version property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

Version property (ULDatabaseManager class)
UltraLite for eMbedded Visual Basic API, 64

Visual Basic
supported versions, 3

W
Windows CE

supported versions, 3

W–W

106

	UltraLite for eMbedded Visual Basic User's Guide
	About This Manual
	The UltraLite sample database

	1. Introduction to UltraLite for eMbedded Visual Basic
	UltraLite for eMbedded Visual Basic features
	System requirements and supported platforms
	Supported platforms
	SQL Anywhere Studio

	UltraLite for eMbedded Visual Basic architecture

	2. Tutorial: An UltraLite for eMbedded Visual Basic Application
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Create a project architecture
	Lesson 3: Design the application form
	Lesson 4: Configure the emulator to support UltraLite applications
	Lesson 5: Write the Visual Basic sample code
	Write code for connection to your database
	Write code for data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 6: Deploy to a device
	Summary

	3. Understanding UltraLite for eMbedded Visual Basic Development
	Preparing to work with eMbedded Visual Basic
	Adding the UltraLite component to the design environment
	Adding the UltraLite component to the device
	Copying an UltraLite database to the device

	Working with UltraLite databases
	Creating UltraLite database schema files

	Connecting to the UltraLite database
	Accessing and manipulating data
	Scrolling through the rows of a table
	Accessing the values of the current row
	Searching for rows with find and lookup
	Inserting updating, and deleting rows
	Transaction processing in UltraLite
	Data manipulation internals

	Accessing schema information
	Error handling
	User authentication
	Synchronizing UltraLite applications
	Monitoring Synchronization progress

	4. API Reference
	IULColumns collection
	Properties

	IULIndexSchemas collection
	Properties

	IULPublicationSchemas collection
	Properties

	ULAuthStatusCode constants
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULDatabaseManager class
	Properties
	CreateDatabase method
	DropDatabase method
	OnReceive event
	OnSend event
	OnStateChange event
	OnTableChange event
	OpenConnection method
	Shutdown method

	ULDatabaseSchema class
	Properties
	ApplyFile method

	ULIndexSchema class
	Properties

	ULPublicationSchema class
	Properties

	ULSQLCode constants
	ULSQLType constants
	ULStreamErrorCode constants
	ULStreamErrorContext constants
	ULStreamErrorID constants
	ULStreamType
	ULSyncMasks Type
	ULSyncParms class
	Properties

	ULSyncResult class
	Properties

	ULSyncState constants
	ULTable class
	Properties
	Close method
	Columns method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Truncate method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	InPublication method

	Index

