Anywhere.

SOLUTIONS
A SYBASE COMPANY

UltraLite” for eMbedded Visua Basic
User’'s Guide

Last modified: October 2002
Part Number: 36293-01-0802-01

Copyright © 1989-2002 Sybase, Inc. Portions copyright © 2001-2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, nreehanicalptical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary @f IBgbas

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Aataptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise iz éylaatiice

Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,

APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), CleayCtianect
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Dafaakapeline
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Worgbench, Di
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAAR ,EC
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterg8sevElien
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Archéegtises \¥ork
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Vaééether, E
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnyvibiese Solut
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, Instizielgx,!
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeContetankiain
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASSl09&)Si
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business InterchangenOpen Clie
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnetipr@pen Solu
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Entegsfselipsgce
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, RepbdiatioReport
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Foresat Libra
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script

SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,

SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage Il Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase ClientfaepsgrSpbmse
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQlaBesktop, Sy
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server ArchitectusreSybaseW
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data StreanpriSke Ent
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model$envElient
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning ImiaginBeatity,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeiber|Writer,

VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Cp9igB0@0
Certicom Corp. Portions are Copyright © 1997-1998, Consensus Development Corporation, a wholly owned subsidiary of Certiadmgbes
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patéhtd,345B36%,
5,761,305. Patents pending.

All other trademarks are property of their respective owners.
Last modified October 2002. Part number 36293-01-0802-01.

Contents

About This Manual ... \%
The UltraLite sample database..........ccccocoeeiiiiiiiiiiiicciiieeeee Vi
Finding out more and providing feedback..............cccccovierennn vii

Introduction to UltraLite for eMbedded Visual Basic 1
UltraLite for eMbedded Visual Basic features...............cccovvunee. 2
System requirements and supported platforms........................ 3
UltraLite for eMbedded Visual Basic architecture..................... 4

Tutorial: An UltraLite for eMbedded Visual Basic

APPHCAtION .. 7
INEFOAUCHION ..o 8
Lesson 1: Create a database schema..........cccccccevviiinennnnn, 9
Lesson 2: Create a project architecture..........cccceevvvvvvvveennnnn. 11
Lesson 3: Design the application form..........cccccccovvcieeeeennns 13
Lesson 4: Configure the emulator to support
UltraLite applicationsS..........c.eeveiiiiiieiiiiiee e 14
Lesson 5: Write the Visual Basic sample code............cccc.ee... 16
Lesson 6: Deploy to @ deviCe.........ccovveveiiiieeiiiiee e 25
SUMMAIY ¢ttt 26

Understanding UltraLite for eMbedded Visual Basic

DeVelOPMENT ... 27
Preparing to work with eMbedded Visual Basic..................... 28
Working with UltraLite databasescccccvviiiiniiiiiennnen, 30
Connecting to the UltraLite database............ccccccovvivieiniieeenns 32
Accessing and manipulating datacccceeviieiinniiieenneeen, 35
Accessing schema informationcccooceveeiiieie e, 41
Error handling.........ooceeeiiiiiieei e 42
User authentiCationc.ccuverveeriere e 43
Synchronizing UltraLite applications............ccccvveeeeviiciieennnn. 44

AP REIEIBNCE ... 47

IULCOoluMNS COECHION ..o 49
IULINndexSchemas ColleCtion..........ccoooevueiieiiieieieeeeeeeee e 50
IULPublicationSchemas collection..........ccoooveveeieiiiieeieiiiienees 51
ULAuUthStatusCode CONStANTS..........oevivveeiiiiieeeeiee e 52
ULCOIUMN ClaSS ... ciieiiiieee ettt 53
ULColumnSchema ClassS.........ccoovevvveeiiiiiiiiiiiee e 58
ULCONNECHION ClasSuuueiiiiiiiiiiiiee e 59
ULDatabaseManager Class........cccccceeeiiiicivieeeee e ciiiineeeeeee 64
ULDatabaseSchema Class...........ccuvvveiiiiiiiiieiiiiee e, 69
ULINAeXSchema Classcooooevviveiieiieiiceeeeeeee e 71
ULPublicationSchema Classcooovveveeiiiiiiieieieeeeeeeeee e 72
ULSQLCOdE CONSLANTS ...coeeeiiiiiiiiiieiee et 73
ULSQLTYPE CONSIANES ...cvveeiiiiiiiiiieiieee e 76
ULStreamErrorCode CONSLANTS........cvieveeiiiiiieeeieeee e eeeeeenns 77
ULStreamErrorContext constantS........cocceevevviviiiiiiinciiieeeines 80
ULStreamErroriD CONStANtS.........vviviiiiiiiiiicieeieee e 81
ULSHraM T YR ettt 82
ULSYNCMASKS TYPE .uvvviieieeeiiiiiiiiieee e e e s ettt ee e e e e e s einaeee e e e 83
ULSYNCPAIMS ClasS.....cccveeiiiiiiiiiiiee et e e e siirnee e e e a e 84
ULSYNCRESUIL ClaSSvvviiieeiiiiiiiiiiie e 85
ULSYyNCState CONStANTS......cooviiiiiiiiiiiin e 86
(0] I 1= o] STl =] 87
ULTableSchema Class..........cueeiviiiiiieieeeeeeee e 96

About This Manual

Subject

Audience

This manual describes UltraLite for eMbedded Visual Basic, which is part of
the UltraLite Component Suite. With UltraLite for eMbedded Visual Basic
you can develop and deploy database applications to handheld, mobile, or
embedded devices running Windows CE.

This manual isintended for eMbedded Visual Basic application developers
who wish to take advantage of the performance, resource efficiency,
robustness, and security of an UltraLite relational database for data storage
and synchronization. Familiarity with eMbedded Visual Basic is assumed.

The UltraLite sample database

Many of the examplesin the MobiLink and Ultralite documentation use the
Ultralite sample database.

The Ultralite sample database is held in afile named custdb.db, and is
located in the Samplesl\UltraLite\CustDB subdirectory of your

SQL Anywhere directory. A complete application built on this database is
also supplied as Samples\UltraLiteActiveX\CustDBlevb2002.ebp and
evbPocketPC.ebp.

The sample database is a sal es-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they

are related to each other.
ULCustomer ULEmpCust
cust_id integer emp_id integer
cust_name \{archar(30) I cust_id = cust_jd | custid integer
last_modified timestamp action char(1)
last_modified timestamp ULIdentifyEmployee

emp_id integer
cust_id = cust_id

emp_id = emp_id

ULOrder
order_id integer
cust_id integer
prod_id integer ULEmployee
emp_id integer emp_id integer emp_id = pool_emp_id
disc integer emp_id = emp_id emp_name varchar(30)
quant integer last_download timestamp
notes varchar(50)
status varchar(20)
last_modified timestamp ULCustomerIDPool
pool_cust_id integer
prod_id = prod_id emp_id = pool_emp_id pool_emp_id integer
- - last_modified timestamp
ULProduct ULOrderIDPool
prod_id integer pool_order_id integer
price integer pool_emp_id integer
prod_name varchar(30) last_modified timestamp

Vi

Finding out more and providing feedback

We would like to receive your opinions, suggestions, and feedback on this
documentation.

Y ou can provide feedback on this documentation and on the software
through a newsgroup and via e-mail. The newsgroup can be found on the
forums.sybase.com News server as
news:.//forums.sybase.com/ianywhere.private.ultralitetools.beta. The e-mail
address is ulbeta@ianywhere.com.

Newsgroup disclaimer

iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor isiAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors aswell as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on aregular basisto
provide solutions and information. Their ability to help is based on their
workload.

vii

viii

CHAPTER 1

Introduction to UltraLite for eMbedded
Visual Basic

About this chapter This chapter introduces you to Ultralite for eMbedded Visua Basic features,
supported platforms, architecture, and functionality.
Contents)
Topic Page
UltraLite for eMbedded Visua Basic features 2
System requirements and supported platforms 3
UltraLite for eMbedded Visual Basic architecture 4

UltraLite for eMbedded Visual Basic features

UltraLite for eMbedded Visual Basic features

UltraLite for eMbedded Visual Basic isa member of the UltralLite
Component Suite. It provides the following benefits for developers targeting
small devices:

¢ arobust relational database store
¢ synchronization

¢ application development using the Microsoft eMbedded Visual Basic
development tool

¢ deployment on Windows CE platforms.

&~ For more information on the features and benefits of the UltraLite
Component Suite, see "Introduction to the UltraLite Component Suite" on
page 2 of the book UltraLite Foundations.

Chapter 1 Introduction to UltraLite for eMbedded Visual Basic

System requirements and supported platforms

Platform support for UltraLiteis of the following kinds:

¢

Target platforms Thetarget platfor m is the device and operating
system on which you deploy your finished UltraL ite application.

Development platforms For each target platform, you develop your
applications using a particular development tool and operating system.
Thetool and operating system comprise the Development platform.

Supported platforms

Development To develop applications using UltraL ite, you require Visual Basic 6 or
platforms eMbedded Visual Basic Version 3.0.
Target platforms UltraLite for eMbedded Visual Basic targets Windows CE 3.0 and higher,

PocketPC emulator, MIPS and ARM devices and PocketPC 2002 on ARM.

SQL Anywhere Studio

You can use SQL Anywhere Studio to add the following capabilities to your
applications:

¢

Synchronization SQL Anywhere users can synchronize the datain
Ultral ite applications with a central database.

Reference database SQL Anywhere users who wish to model an
Ultral ite database after an Adaptive Server Anywhere database, can use
the ulinit command-line tool to generate an UltraLite schema file from an
Adaptive Server Anywhere database.

UltraLite for eMbedded Visual Basic architecture

UltraLite for eMbedded Visual Basic architecture

UltraLite for eMbedded Visual Basic provides a database engine for
Windows CE. It provides aeMbedded Visual Basic ActiveX that exposes a
set of objects for data manipulation using the Ultral ite database.

‘ ULDatabaseManager I

L{ ULConnection

4 ULDatabaseSchema

L‘ ULPuincaIionSchenBsI

ULSyncParms | | ULPublicationSchema
ULSyncResult I

UL TableSchema

IULIndexSchemas

IULColumns ULIndexSchema

H ULCqumnI
ULColumnSchema I

Some of the more commonly-used high level objects are:

¢

ULDatabaseManager allows you to open connections and set an
active listener. The ULDatabaseManager is the starting point for your
eMbedded Visual Basic application because it is through this class that
you first open a connection to database.

& For moreinformation on the UL DatabaseM anager class, see
"ULDatabaseManager class' on page 64.

ULConnection represents a database connection, and governs
transactions.

&> For more information on UL Connection, see "UL Connection
class' on page 59.

Chapter 1 Introduction to UltraLite for eMbedded Visual Basic

ULTable, ULColumn, and ULIndexSchema allow programmatic
control over database tables, columns and indexes.

& For moreinformation on the UL Table, ULColumn, and
UL IndexSchema objects, see "ULTable class" on page 87 and
"ULColumn class' on page 53.

Synchronization objects allow you to control synchronization through
the MobiLink synchronization server, providing you have the SQL
Anywhere Studio suite.

& For more information on synchronization with MobiLink, see the
MobiLink Synchronization User’s Guide in the SQL Anywhere Studio.

UltraLite for eMbedded Visual Basic architecture

CHAPTER 2

Tutorial: An UltraLite for eMbedded Visual
Basic Application

About this chapter This chapter walks you through al the steps of building your first UltraLite
for eMbedded Visual Basic application. The application synchronizes data
with a database on your desktop computer.

Contents Topic Page
Introduction 8
Lesson 1: Creste a database schema 9
Lesson 2: Create a project architecture 11
Lesson 3: Design the application form 13
Lesson 4: Configure the emulator to support UltralLite applications 14
Lesson 5: Write the Visua Basic sample code 16
Lesson 6: Deploy to adevice 25

Summary 26

Introduction

Introduction

Thistutorial walks you through building an UltraLite for eMbedded Visual
Basic application. At the end of the tutorial you will have an application and
small database on device that synchronizes with alarger database running on
your desktop machine.

Timing The tutorial takes about 50 minutes.
Competencies and This tutorial assumes numerous competencies:
experience

¢ you can program Microsoft eMbedded Visual Basic 3

¢ you can test and troubleshoot a eMbedded Visual Basic 3
application

¢ you can add references and components as needed
¢ you ran register acontrol on Windows CE using Control Manager

¢ you can usethe Visual Basic Object Browser and navigate the
eMbedded Visua Basic 3 environment

4 you can use command line options and parameters

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite for eMbedded Visual Basic application.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

Lesson 1: Create a database schema

A schema is a database definition without the data. Y ou create an UltralLite
schemafile as a necessary first step to making an Ultral ite database.

When creating Ultralite schemas for a CE device, the following information
IS necessary:

¢

A way to identify the schema on the development machine so it can be
copied to the device.

Create your schema file using the UltraLite Schema Painter

To complete this tutorial you need a directory to hold the files you create.
This directory isassumed to be C:ltutoriallevb. If you create your tutorial
directory elsewhere, supply the path to your location instead of c:ltutoriallevb
throughout.

+ To create the schema file using the UltraLite Schema Painter:
Start the UltraLite Schema Painter:

Click Start(] Programsl] Sybase SQL Anywhere 801 UltralLite Schema
Painter.

1

Create a new schemafile caled tutCustomer.

¢

¢

Open the Tools folder and double-click Create Ultral ite schema
file

In the file dialog box, type c:\tutorial\evb\tutcustomer.usm or
Browse to the folder and enter tutcustomer.

Click Open to create the schema.

Create atable called customer.

¢

Expand the tutCustomer item in the left pane of the UltraLite
Schema Painter and select the Tables folder.

Open the Tables folder and double-click Add Table. The New Table
dialog appears.

Enter the name customer.

In the New Table dialog, add columns with the following
properties.

Lesson 1: Create a database schema

10

Column Data type Column Allows | Default value
name (Size) NULL values?

id integer No autoincrement
fname char (15) No None

Iname char (20) No None

city char (20) Yes None

phone char (12) Yes 555-1234

¢ Setidastheprimary key: Click Primary Key and add id to the
index, marking it as ascending.

¢ Check your work and click OK to complete the table definition and
dismissthe New Table dialog.

4 Click File O Save to save the tutcustomer.usm file.

5 Exit the UltraLite Schema Painter

Y ou have now defined the schema of your Ultralite database. Although this
database contains only a single table, you can use many tablesin UltraLite

databases.

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

Lesson 2: Create a project architecture

Thetutorial assumes the folder c:\tutoriallevb, the same one holding your
schemafile, is where you will store your application files.

Thefirst step isto create an eMbedded Visual Basic project for your

application.

The UltraLite component for eMbedded Visual Basic development is named
iAnywher e Solutions ActiveX for UltralLite. eMbedded Visual Basic used
a desktop version of the UltraLite component in order to use UltralLite
objectsin your code.

%+ To create an UltraLite component reference:
1 Start eMbedded Visual Basic.

¢ Click Start O Programs [J Microsoft eMbedded Visual Tools
0 eMbedded Visual Basic 3.0. The New Project window appears.

¢ Choose atarget of your choice and click OK.

2 Create areference to the Ultralite component for eMbedded Visual

Basic:

¢ Click Project[] References.

¢ If thisisthefirst time you have run eMbedded Visua Basic with
UltralLite, add the control to the list of available references:

¢

¢
¢
¢

Click Browse.
Browse to the UltraLite\UltraLiteActiveX\win32\ directory.
Select uldo8.dll and click OK.

iAnywhere Solutions ActiveX for UltraLite is added to the list
of references.

Y our eMbedded Visual Basic environment is now capable of
supporting UltralL ite.

¢ Sdect iAnywhere Solutions ActiveX for UltraLite and click OK to
add the control to your project.

3 Savethe Project:
¢ Choose File O Save Project.

¢ Savetheform asc:\tutorial\evb\Form1.frm.

¢ Savetheproject asc:\tutorial\evb\Form1.frm.

11

Lesson 2: Create a project architecture

Y ou are now ready to design your application.

12

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

Lesson 3: Design the application form

Y ou are now ready to design your application form.

+ To design the form:

1 Add the controls and the properties given in the table below to Form1:

Type Name Caption
TextBox txtfname

TextBox txtiname

TextBox txtcity

TextBox txtphone

Label IblID

Button btninsert Insert
Button btnUpdate Update
Button btnDelete Delete
Button btnNext Next
Button btnPrevious Previous
Button btnSync Synchronize

2 Run your application to confirm that your setup is configured correctly.

¢ Click Run [0 Execute. The application appears in the Windows CE

emulator.

At this stage there is no UltraLite dependence in your application. If
you have problems at this stage, check your Windows CE
embedded tools setup.

¢ Click the OK button at the top right of the form to end the
application.

Y ou are now ready to add code to the application.

13

Lesson 4: Configure the emulator to support UltraLite applications

Lesson 4: Configure the emulator to support
UltraLite applications

Once you add UltraL ite code to your application, you must add the UltraL ite
control to the emulator in order to debug and test your application. This
lesson describes how to add the UltraL ite control to the emulator.

« To configure the emulator for UltraLite applications:
1 Start the Control Manager.
¢ Select Tools] Remaote Tools O Control Manager.
2 Select the target device:

¢ Intheleft pane, open Pocket PC and double-click Pocket PC
Emulation.

3 Addthe UltraLite control
¢ Click Control0 Add New Control.

¢ Browse to the device-specific version of the UltraLite control.
Controls are stored in the subdirectories for each CE device
processor. The control for the emulator isthe file uldo8.dllheld in
the ultralite\UltraLiteActiveX\celemulator30 subdirectory of your
SQL Anywhere installation.

¢ Click OK

In addition to the UltraL ite control, you must deploy the database schema. In
the next lesson you will write code so that when your application first
connects to a database, it uses the schema to create the database file.

% To deploy the database schema file to the emulator:
1 Start the Windows CE File Viewer:

¢ FromeMbedded Visua Basic, click Tools 0 Remote Tools O File
Viewer. The File viewer starts.

¢+ Ensurethat you arein the root directory of the emulator by double
clicking Pocket PC Emulation in the |eft pane.

2 Create afolder to hold your application:
¢ InFileViewer, click File 0 New Folder.

¢ Create afolder named tutorial. Thisfolder is used to hold your
application files.

14

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

¢ Double click tutorial to navigate to that folder.
3 Deploy the schemafile to the emulator:
¢ Click File O Export File.

¢ Navigate to your c:ltutoriallevb directory and double-click
tutcustomer.usm. The schemafile is deployed to the emulator.

Y ou are now ready to write Ultral ite code and test it in the emulator.

15

Lesson 5: Write the Visual Basic sample code

Lesson 5: Write the Visual Basic sample code

A connection to an UltraL ite database requires a ULDatabaseManager
object. You must create this object, and then use it to open an UltraLite
database.

Write code for connection to your database

In this application, you connect to the database in the Form Load event, but
you can also use a general module.

% Write code to connect to the UltralLite database::
1 Declarethe UltraL ite objects you need.
¢ Double click the form to open the Code window.

¢ Enter the following code in the General area of your form. This
code declares ULDatabaseManager, a connection, atable and three
database columns;
Di m Dat abaseMgr As ULDat abaseManager
Di m Connection As U.Connection

D m Cust oner Tabl e As ULTabl e
Dimcol I D, col FirstNanme, col Last Name As ULCol umm

2 Add code to connect to the database in the Form Load event.

The code bel ow opens the connection to the database and if the database
isnew, it assigns aschemato it.

16

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

Sub Form Load()

D m conn_parns As String

Di m open_parns As String

Di m schema_parns As String

On Error Resune Next

conn_par s = "ui d=DBA; pwd=SQ."

open_parms = conn_parnms & _
";ce_file=\tutorial\tutCustoner. udb"

schena_parns = open_parns & _
".ce_schema=\tutorial\tutCustoner.usnt

Set Dat abaseMyr = _

Create(hj ect ("U tralLite. U.Dat abaseManager™)
Set Connection = _

Dat abaseMyr . QpenConnect i on(open_par 1rs)
If Err.Nunber = _

U SQ.Code. ul SQLE_NCERRCR Then

MsgBox "Connected to an existing database."
El sel f Err.Nunber = _

U SQ.Code. ul SQLE_DATABASE NOT_FOUND _
Then

Err.d ear

Set Connection = _

Dat abaseMyr . Cr eat eDat abase(schena_par ns)

If Err.Nunber <> 0 Then

MsgBox Err. Description

Err.d ear
End If
MsgBox "Connected to a new dat abase”
End If
End Sub

O eat eQbj ect isused to create theinitial database manager
object. Note that /b/Status shows you the status of your connection.

The error handling code checks if the connection is established. If a
database file exists, theinitial connection attempt fails.

3 Runthe application in the development environment.

¢

¢

Choose Run [0 Execute.

Thefirst time you run the application, a message box is displayed
with the message Connected to a new database. On subsequent
runs the message is Connected to an existing database. The Form
then loads.

Click the OK button in the top right corner to terminate the
application.

If you wish, you can use File Viewer to check that a database file
(tutcustomer.udb) has been created on the emulator.

17

Lesson 5: Write the Visual Basic sample code

Y ou have now written aroutine to establish a connection to a database. The
next lesson describes how to access data.

Write code for data manipulation

The next step isto write code for data manipulation and navigation.

% To open the table:
1 Write code that initializes the table and moves to the first row.

Add the following code to the Form_L oad routine, just before the End
Sub instruction:

Set Customer Tabl e = Connecti on. Get Tabl e(" cust oner™)
Cust orrer Tabl e. Open
Cust oner Tabl e. MoveBef or eFi r st

This code assigns the CustomerT able variable and opens the table so
data can be read or manipulated. The call to MoveBeforeFirst positions
the application before the first row of datain the table - but note that it is
not strictly speaking, required, because after you call open, you are
already positioned before the first row. There are no rows in the table at
the moment.

2 Create anew function called DisplayCurrentRow and implement it as
shown below.

Private Sub Displ ayCQurrent Row()

I f CustonerTabl e. RowCount = 0 Then
t xt Fnane. Text
t xt Lnane. Text
txtGty. Text = ""
t xt Phone. Text
I bl I D. Caption

El se
I bl 1D Caption = _
Cust oner Tabl e. Col ums("1D"). Val ue
t xt Fname. Text = _
Cust oner Tabl e. Col ums(" Fnane"). Val ue
txt Lname. Text = _
Cust oner Tabl e. Col ums("Lnane"). Val ue
txtaty. Text = _
Cust oner Tabl e. Col ums("Q ty"). Sval ue
t xt Phone. Text = _
Cust oner Tabl e. Col ums(" Phone"). Val ue

End If

End Sub

18

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

If the table has no rows, the application displays empty controls.
Otherwise, it displays the values stored in each of the columns of the
current row of the database.

3 Cadl this function from the Form’s Activate function.

Private Sub Form Acti vate()
Di spl ayQur r ent Row
End Sub

This call ensures the fields get updated when the application starts.

At this stage you may wish to run the application to check that you have
entered the code correctly. Asthere are no rows in the table, the controls
areall empty.

% Insert rows into the table:
1 Implement the code for the Insert button.

Add the following routine to the form:

Private Sub btnlnsert_dick()
Dmfnane As String
D m| name As String
Dmcity As String
D m phone As String

fname = txt Fnare. Text
| name = txt Lnane. Text
city = txtGty. Text

phone = txt Phone. Text

Cust oner Tabl e. | nsert Begi n
Cust orer Tabl e. Col ums(" Fnane") . Val ue
f nane
Cust orer Tabl e. Col ums("Lnane"). Val ue =
| name
If Len(city) > 0 Then
Cust orrer Tabl e. Col ums("Gty").Value = _
city
End If
If Len(phone) > 0 Then
Cust oner Tabl e. Col ums(" Phone"). Val ue = _
phone
End I f
Cust oner Tabl e. | nsert
Cust orer Tabl e. Movelast
Di spl ayCurr ent Row
End Sub

19

Lesson 5: Write the Visual Basic sample code

The call to InsertBegin puts the application into insert mode and sets all
the valuesin the row to their defaults (for example, the ID column
receives the next autoincrement value). The column values are set and
then the new row isinserted. Note that if an error occurs during the
insert, a message box will display the error number.

2 Runthe application.

After the initial message box, the form is displayed.

¢

¢

¢

Enter afirst name of Jane in the top text box and a last name of Doe
in the second.

Click the Insert button. A row is added to the table with these
values. The application moves to the last row of the table and
displays the row. The label displays the autoincremented value of
the ID column that Ultralite assigned to the row.

Enter afirst name of John in the top text box and alast name of
Smith in the second.

Click Insert to add this row to the table.
Click OK to end the program.

With two rows in the table, it is now time to implement the code to scroll
through the rows and display each.

+ To move through the rows of the table:

1 Implement the code for the Next and Previous buttons:

Add the following routines to the form:;

Private Sub btnNext _dick()
If Not Custoner Tabl e. MoveNext Then
Cust orrer Tabl e. Movelast
End |f
Di spl ayQur r ent Row
End Sub

Private Sub btnPrevious_dick()
If Not CustonerTabl e. MovePrevi ous Then
Cust orrer Tabl e. MoveFi r st
End | f
Di spl ayQur r ent Row
End Sub

2 Runthe application.

When the form isfirst displayed, the controls are empty as the current
position is before the first row.

20

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

After the form is displayed, click Next and Previous to move through the
rows of the table.

The next step isto modify the datain arow by updating or deleting it.

% To update and delete rows in the table:
1 Implement the code for the Update button.

Add the following routine to the form:

Private Sub btnUpdate_dick()
D mfname As String
Dmlname As String
Dmcity As String
D m phone As String

f nane = txt Fname. Text

| nane = txt Lnane. Text

city = txtGty. Text

phone = txt Phone. Text

Cust oner Tabl e. Updat eBegi n

Cust orrer Tabl e. Col ums(" Fnane") . Val ue
f nane

Cust orrer Tabl e. Col ums(" Lnane") . Val ue
| nane

If Len(city) > 0 Then
Cust oner Tabl e. Col ums(" QA ty"). Val ue
city

End If

If Len(phone) > 0 Then

Cust oner Tabl e. Col ums(" Phone"). Val ue

phone

End If

Cust orrer Tabl e. Updat e

Di spl ayQur r ent Row

Exit Sub

End Sub

The call to UpdateBegin puts the application into update mode. The
column values are updated and then the row itself is updated with a call
to Update.

2 Implement the code for the Delete button.

Add the following routine to the form:

21

Lesson 5: Write the Visual Basic sample code

Private Sub btnDelete_dick()
| f CQustomrer Tabl e. RowCount = 0 Then
Exit Sub
End | f
Cust oner Tabl e. Del et e
Cust oner Tabl e. MoveRel ative 0
Di spl ayQur r ent Row
End Sub

The call to Delete deletes the current row on which the application is
positioned.

3 Runthe application.

The data manipulation and display part of the application is now
complete. Try inserting, updating, and deleting rows. Also, use the Next
and Previous buttons to move through the rows. Check the label to see
which row you are on.

Note

Y ou can now run this application as a standal one application without SQL
Anywhere Studio. If you wish to synchronize your UltraL ite database
with an Adaptive Server Anywhere database, please complete the next
lesson in thetutorial.

Y ou have now successfully coded your application.

Write code to synchronize

Thefinal step isto write synchronization code. This step requires
SQL Anywhere Studio.

Synchronization can be done using, for example, using a button control
called Synchronize, which may have the following structure:

Cal | MyConnection. Synchroni ze

+ To write code for the synchronize button:
1 Implement the code for the Synchronize button.

Add the following routine to the form:

22

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

Private Sub btnSync_dick()
D m parns As ULSyncPar ns
Dmresult As ULSyncResult
On Error Resune Next

Set parms = Connecti on. SyncPar s
Set result = Connection. SyncResul t
par ms. User Nane = "ULevbUser"
par ns. Stream = ULStreanType. ul TCPI P
parns. Version = "ul _defaul t"
par ns. SendCol ummNanes = True
Connecti on. Synchroni ze (Fal se)
I'f Err.Nunber <> _
U SQ.Code. ul SQLE_NCERRCR Then

MsgBox resul t. Streantrror Code

End If
End Sub

The SyncParms object contains the synchronization parameters. For this
simple example, we start MobiLink so that it will add new users. Also,
we send the column names to MobiLink so it can generate proper upload
and download scripts.

Synchronize your application

The next step is to synchronize the data in your database.

% To synchronize data:

1 Fromacommand prompt, start the MobiLink synchronization server
with the following command line;

dbm srv8 -c "dsn=ASA 8.0 Sanple" -v+ -zu+ -za

The ASA 8.0 Sample database has a Customer table that matches the
columns in the UltraL ite database you have created. Y ou can
synchronize your UltraLite application with the ASA 8.0 Sample
database.

The - zu+ and - za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’'s Guide.

2 Start the UltraLite application.
3 Deleteall therowsin your table.

Any rowsin the table would be uploaded to the customer table in the
ASA 8.0- Sample database.

4 Synchronize your application.
23

Lesson 5: Write the Visual Basic sample code

¢ Click the Synchronize button.

The MobiLink synchronization server window should scroll
messages displaying the synchronization progress.

¢ When the synchronization is complete, click Next and Previous to move
through the rows of the table.

24

Chapter 2 Tutorial: An UltraLite for eMbedded Visual Basic Application

Lesson 6: Deploy to a device

Thefina step isto deploy your application to a device.

+ To deploy to a device:

1

Ensure that the iAnywhere Solutions, ActiveX for UltraLite is available
on the target CE device.

¢ Select Tools[J Remote Tools
¢ Select Control Manager.
This starts the Windows CE Control Manager.

Select your target device from the list presented and the hardware you
are using. The right hand display shows the controls available on that
device. The control is ULDatabaseManager class.

Y ou can also copy the dll to \Windows directory on the device and
register it with regsvrce, or you can use Tools(d Remote Tools[d Control
Manager to select the target device. But know that if you use this
method, you are using an ActiveX, not a control, thus you will not see
the control inthelist, evenif it is present.

Be sure to use the device-specific version of the DLL. Controls are stored in

subdirectories of your SQL Anywhere installation for each CE device
processor, as follows:

¢ ARM ultralite\UltraLiteActiveX\celarmluldo8.dll
¢ Emulator ultralite\UltraLiteActive X\celemulator30\uldo8.dll
¢ MIPS ultralite\UltraLiteActiveX\celmipsluldo8.dll

25

Summary

Summary

Samples

26

During this tutorial, you:

¢

¢

¢

Created a sample database using the Ultralite Schema Painter.
Created an UltraLite for eMbedded Visual Basic application

Synchronized a remote database with an Adaptive Server Anywhere
consolidated database using UltraL ite.

Gained competence with the process of developing an UltraLite for
eMbedded Visual Basic application

For more code samples, see the following projects. Paths are relative to your
SQL Anywhere installation:

* & o o

Samples\UltraLiteActiveX\custdblevbPocketPC.evb
Samples\UltraLiteActiveX\custdblevb2002.evb

Samples\UltraLiteActiveX\dbview.evblevb2002.evb
Samples\UltraLiteActiveX\dbview.evbl\pocketpc.evb

CHAPTER 3

Understanding UltraLite for eMbedded
Visual Basic Development

About this chapter This chapter describes how to develop applications with the UltralLite for
eMbedded Visual Basic.

Contents Topic Page
Preparing to work with eMbedded Visual Basic 28
Working with UltraL ite databases 30
Connecting to the UltraL ite database 32
Accessing and manipulating data 35
Accessing schemainformation 41
Error handling 42
User authentication 43

Synchronizing UltraL ite applications 44

Preparing to work with eMbedded Visual Basic

Preparing to work with eMbedded Visual Basic

There are several steps you must take before you can build UltraLite
applications with eMbedded Visual Basic.

Adding the UltraLite component to the design environment

To have access to UltraL ite objects at devel opment time, you must add the
Ultralite component to the interface.

+ To add the UltraLite component to the eMbedded Visual Basic
design environment:

1
2

From the eMbedded Visual Basic menu, choose Project [J References.

If iAnywhere Solutions ActiveX for UltraLite 8.0 is not included in the
list of references, click Browse.

Set the diadog to display All Files. Locate the file uldo8.dll in the
UltraLite\UltraLiteActiveX\win32 subdirectory of your SQL Anywhere
directory. TheiAnywhere Solutions ActiveX for UltraLite 8.0 control is
added to the list of references.

Check iAnywhere Solutions ActiveX for UltraLite 8.0 and click OK to
add the component to your project.

Adding the UltraLite component to the device

28

To debug applications in the emulator, you must add the Ultralite
component to the emulator. To deploy applications to your device, you must
add the UltraLite component to the device. Both of these tasks can be carried
out using the Windows CE Control Manager.

To add the UltraLite component to the device or emulator:

1

From the eMbedded Visua Basic menu, choose Tools [0 Remote Tools
0 Control Manager.

In the left pane, open the device you are developing for, such as Pocket
PC.

Open the device to which you are deploying, such as Pocket PC
Emulation.

On theright pane, right click and choose Add New Control from the
popup menu.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

5

For the Emulator, navigate to the
UltraLite\UltraLiteActiveX\celemulator30 subdirectory of your

SQL Anywhere directory. For area device, navigate to the proper
subdirectory of the UltraLitelUltraLiteActivelce subdirectory of your
SQL Anywhere directory for the chip used by your device.

Choose uldo8.dll from the directory. The UL DatabaseM anager classis
added to the device.

Copying an UltraLite database to the device

In addition, you must add the UltralL ite database file or schemafile to the
device.

< To add a schema file or database file to the device or emulator:

1

From the eMbedded Visua Basic menu, choose Tools [0 Remote Tools
OFileViewer.

If your device is not shown in the |eft pane, connect to the device:
¢ FromtheFile Viewer menu, choose Connection [J Add Connection.

¢ Sdlect your device from thelist and click OK to establish a
connection.

Copy the schemafile or database file to the device
¢ Sdlect adestination directory on the device.

It is often convenient to copy the file into the root directory of the
device.

¢ Choose File O Export File.

¢ Locate the schemafile (.usm) or database file (.udb) on your
desktop machine file system.

¢ Click OK to export thefile to the device.

29

Working with UltraLite databases

Working with UltraLite databases

The schema and
schema file

30

Ultral ite databases are files with a.udb extension. Ultralite databases are
relational databases, and contain the following types of object:

¢

Tables A single UltralLite database can hold many tables. Relational
database tables have a fixed number of columns, but can have any
number of rows (up to alimit determined by the operating system on
which you run). Each row has a single entry for each column. The
special NULL entry isused when thereis no value for the entry. When
designing your database, each table should represent a separate type of
item, such as Customers, Employees, and so on.

Indexes Therowsin arelationa database table are not ordered. Y ou
can create indexes to access the rows in order. Indexes are commonly
associated with a single column, but may also be associated with
multiple columns.

Keys Each table has a specia index called the primary key. Entriesin
the primary key column or columns must be unique.

Foreign keysrelate the datain one table to that in another. Each entry in
the foreign key column must correspond to an entry in the primary key
of another table.

Between them, primary keys and foreign keys ensure that the database
has referential integrity. Referential integrity isenforced in UltraLite
databases, so that you cannot (for example) enter an order for a customer
unless that customer exists in the database.

By enforcing referential integrity, Ultral ite ensures that the datain your
UltraLite database is correct, in the same manner that data elsewhere in
the enterpriseis correct.

Publications If you wish to synchronize the datain your UltralLite
database with other databases you must have avalid SQL Anywhere
Studio license. SQL Anywhere Studio includes MobiLink
synchronization technology to synchronize Ultral ite databases with
desktop, workgroup or enterprise databases.

Publications define sets of datato be synchronized. It is often desirable
to synchronize all the datain an Ultralite database, but publications
provide extra flexibility and control.

The database schema is the database without the data. It is the collection of
tables, indexes, and so on within the database, and all the relationships
between them.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

Y ou do not alter the schema of an UltraL ite database directly. Instead, you
create a schemafile (which typically has the extension .usm) and upgrade the
database schema from that file using a built-in UltraLite function in your
application.

This process of creating a schema file and upgrading the database from the
file applies both to the initial creation of the database and any subsequent
schema changes.

Creating UltraLite database schema files

Y ou can create an UltraLite schemafile in the following ways:

¢ Schema painter The UltraLite schema painter isagraphical utility for
creating and editing UltraLite schemafiles.

To start the Schema painter, choose Start[] Programsd Sybase
SQL Anywhere 80 UltraLite Schema Painter, or double-click a schema
file (with extension usm) in Windows Explorer.

¢ Generate the schema from an Adaptive Server Anywhere database
If you have the Adaptive Server Anywhere database management
system, you can generate an Ultral ite schema file using the ulinit
command line utility.

Y ou apply the schemafile to the database from the UltraL ite application. For
more information, see " Connecting to the Ultral ite database" on page 32.

31

Connecting to the UltraLite database

Connecting to the UltraLite database

32

Any UltraLite application must connect to its database before it can carry out
any operation on the data, including applying a schema to the database.

< To connect to an UltralLite database:
1 Create a DatabaseManager object.

Y ou should create only one DatabaseM anager object per application.
This object is at the root of the object hierarchy. For thisreason, it is
often best to declare the DatabaseM anager object global to the
application.

The following code creates a DatabaseM anager object named dbMgr,
and makes a connection to a database.

D m conn_parns As String
D mopen_parns As String
D m schema_parns As String
On Error Resune Next
conn_parns = "ui d=DBA; pwd=SQ"
open_parns = conn_parms & ";" &
"ce_file=\tutCustoner.udb"
schema_parns = open_parnms & ";" &
"ce_schenma=\t ut Cust onrer . usnt

Set Dat abaseMyr =_
Create(hj ect ("U traLite. U.Dat abaseManager ™)
Set Connection =_
Dat abaseMyr . openConnect i on(open_par 1rs)
If Err.Nunber =_
ULSQL.CodeConst ant s. ul SQLE_DATABASE_NOT_FOUND Then
Err.d ear
Set Connection =_
Dat abaseMyr . O eat eDat abase(schena_par ns)
If Err.Nunber <> 0 Then
MsgBox Err. Description
Err.d ear
End If
End |f

& For more details, see the code in
Samples\UltraLiteForEVB\dbview.evblevb2002.evp under your
SQL Anywhere directory.

2 Open aconnection to the database.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

Using the
ULConnection
object

The UL DatabaseM anager.OpenConnection method returns an open
connection as a Connection object. This method takes a single string as
its argument. The string is composed of a set of keyword=value pairs.

& For more information on connection parameters, see " Connection
Parameters" on page 25 of the book UltraLite Foundations.

Most applications use a single connection to an UltraL ite database, and
keep the connection open all the time. For thisreason, it is often best to
declare the UL Connection object global to the application.

The following code opens a connection to an UltraL ite database named
tutcustomer.udb in the root directory of the device.

conn_parns = "ui d=DBA; pwd=SQ."

open_parns = conn_parns & ";" &
"ce_fil e=\tutCustomer. udb"

Set Connection =

Dat abaseMyr . openConnect i on(open_par 1rs)
3 Applying anew fileto your schema

If you want to modify your existing database structure, you can do so with
the ApplyFile method. In most cases there will be no data loss, but data loss
can occur if columns are deleted, for example, or if the data type for a
column is changed to an incompatible type. The example below shows how
you can use the ApplyFile method to send in new specifications for your
database via a schema you design.

ULDat abaseSchena. Appl yFi | e(
"schema_fil e=M/SchemaFi | e. usm CE_SCHEMA =MySchera")

& For more information on CreateDatabase, OpenConnection and the
ApplyFile method, see " CreateDatabase method" on page 64,
"OpenConnection method" on page 68 and " ApplyFile method" on page 70.

Properties of the UL Connection object govern global application behavior,
including the following:

¢ Commit behavior By default, UltraLite applicationsarein
AutoCommit mode. Each insert, update, or delete statement is
committed to the database immediately. Y ou can also set
UL Connection.AutoCommit to false to build transactions into your
application. Performance is better when AutoCommit is off and commits
are performed directly.

& For moreinformation, see " Transaction processing in UltralLite" on
page 39.

33

Connecting to the UltraLite database

34

User authentication Y ou can change the user ID and password for the
application from the default values of DBA and SQL by using the
GrantConnectTo and RevokeConnectFrom methods.

& For moreinformation, see "User authentication™ on page 43

Synchronization A set of objects governing synchronization are
accessed from the UL Connection object.

& For moreinformation, see " Synchronizing UltraL ite applications'
on page 44.

Tables UltraLitetables are accessed using the
UL Connection.GetTable method.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

Accessing and manipulating data

UltraL ite applications access datain tables in arow-by-row fashion. This
section covers the following topics:

Scrolling through the rows of atable.
Accessing the values of the current row.

.
.
¢ Using find and lookup methods to locate rowsin atable.
.

Inserting, deleting, and updating rows.

The section also provides alower-level description of the way that UltraLite
operates on the underlying data to help you understand how it handles
transactions, and how changes are made to the datain your database.

Scrolling through the rows of atable

The following code opens the customer table and scrolls through its rows,
displaying a message box with the value of the third column (which holds the
last name of the customer) for each row.

DimtCQustormer as ULTabl e
Set tCQustoner = conn. Get Tabl e("custoner")
t Qust oner. Qpen
Set tCustoner = conn. Get Tabl e("custoner")
Set col Last Nane = t Custoner. Col ums. (3)
t Qust oner . MoveBef or eFi r st
Wi | e t Qust onmer . MoveNext
MsgBox col Last Nane. Val ue
Vénd

The code above shows how the columns of the table are contained in a
Columns collection. Y ou can address columns by index number (the order in
which they were created in the .usm file) or by name. To get the name of a
column, you can use its Schema property:

col nane = col Last Nane. Schena. nanme

Y ou expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rowsin a particular order. The
following code moves to the first row of the customer table as ordered by the
ix_name index.

Set t Custoner= Connection. Get Tabl e(" cust onmer")
t Qust oner. pen "i x_nane"
t Qust oner . MoveFi r st

35

Accessing and manipulating data

Accessing the values of the current row

Casting values

At any time, a UL Table object is positioned at one of the following
positions:

+ Beforethefirst row of the table.
¢ Onarow of thetable.
¢+ After thelast row of the table.

If the ULTable object is positioned on arow, you can use the

UL Column.Value property to get the value of that column for the current
row. For example, the following code retrieves the value of three columns
from the tcustomer UL Table object, and displays them in text boxes:

Dimcol I D, col FirstNane, col Last Namre As ULCol um
Set col ID = tCQustoner. Col ums. I ten(1)

Set col FirstNane = t Custoner. Col ums. I ten(2)

Set col Last Nane = t Custoner. Col ums. I ten(3)

txt|I D Text = colID. Val ue
t xt Fi rst Name. Text = col Fi r st Nane. Val ue
t xt Last Nanme. Text = col Last Nane. Val ue

Y ou can also use the Value property to set values. For example:

col Last Nane. Val ue = "Kam nski "

By assigning values to these properties you do not alter the value of the data
in the database. Y ou can assign values to the properties even if you are
before the first row or after the last row of the table, but it isan error to try to
access data when the current row isin one of these positions, for example:

This code is incorrect
t Cust oner . MoveBef or eFi r st
id = col ID.Val ue

As the Value method returns a variant, you can use it to access columns of
any data type.

Searching for rows with find and lookup

36

UltralL ite has several modes of operation when working with data. Two of
these modes are used for searching: the find and lookup modes. The

UL Table object has two sets of methods for locating particular rowsin a
table:

¢ Find methods These move to the first row that exactly matches a
specified search value, under the sort order specified when the ULTable
object was opened.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

¢

Lookup methods These moveto the first row that matchesor is
greater than a specified search value, under the sort order specified when
the UL Table object was opened.

Both sets are used in a similar manner:

1

Enter find or lookup mode.

The mode is entered by calling the FindBegin or LookupBegin method,
respectively. For example.

t Cust oner . Fi ndBegi n
Set the search values.

Y ou do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example:

Col Last Nane. Val ue = "Kami nski "
Only values in the columns of the index are relevant to the search.
Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index:

t Cust oner . Fi ndFi r st

For multi-column indexes, avalue for the first column is always used,
but you can omit the other columns and use one of the other find or
lookup methods to search using only alimited number of columns.

Inserting updating, and deleting rows

To update arow in atable, use the following sequence of instructions:

1

Move to the row you wish to update.

Y ou can move to arow by scrolling through the table or by searching,
using Find and Lookup methods.

Enter Update mode.

For example, the following instruction enters Update mode on the table
tCustomer:

t Cust oner . Updat eBegi n
Set the new values for the row to be updated. For example:
Col Fi rst Narre. Val ue = "El i zabet h"

37

Accessing and manipulating data

Inserting rows

Deleting rows

38

4 Execute the Update.
t Qust oner . Updat e

After the update operation the current row is the row that was just updated. If
you changed the value of a column in the index specified when the UL Table
object was opened, there are some subtleties to the positioning.

By default, UltraLite operatesin AutoCommit mode, so that the update is
immediately applied to the row in permanent storage. If you have disabled
AutoCommit mode, the update is not applied until you execute a commit
operation. For more information, see " Transaction processing in UltraLite"
on page 39.

Caution
Do not update the primary key of a row: delete the row and add a new
row instead.

The stepsto insert arow are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the insert operation. Rows are automatically sorted in the index used to
open the table.

For example, the following sequence of instructions inserts a new row:

Cust oner Tabl e. | nsert Begi n

Cust orrer Tabl e. Col utms(" Fnane") . Val ue
Cust orrer Tabl e. Col utms(" Lname") . Val ue
Cust oner Tabl e. | nsert

f nane
| nane

If you do not set avalue for one of the columns, and that column has a
default, the default value is used. If the column has no default, NULL is
used. If the column does not allow NULL, the following defaults are used:

¢ For numeric columns, zero.
¢ For character columns, an empty string.
To set avalue to NULL explicitly, use the setNull method.

The Insert is permanently save to the database when a Commit is carried out.
In AutoCommit mode, a Commit is carried out as part of the Insert method.

The stepsto delete arow are simpler than to insert or update rows. Thereis
no Delete mode corresponding to the insert or update modes. The steps are as
follows:

1 Moveto the row you wish to delete.
2 Execute the ULTable.Delete method.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

Transaction processing in UltralLite

Ultral ite provides transaction processing to ensure the correctness of the
datain your database. A transaction isalogical unit of work: it is either all
executed or none of it is executed.

By default, UltraLite operatesin AutoCommit mode, so that each insert,
update, or delete is executed as a separate transaction. Once the operation is
completed, the change is made to the database. If you set the

UL Connection.AutoCommit property to false, you can use multi-statement
transactions. For example, if your application transfers money between two
accounts, either both the deduction from the source account and the addition
to the destination account must be completed, or neither must be compl eted.

If AutoCommit is set to false, you must execute a UL Connection.Commit
statement to complete a transaction and make changes to your database
permanent, or you must execute a ULConnection. Rollback statement to
cancel all the operations of a transaction. Note that performance can be faster
when AutoCommit is off.

Data manipulation internals

Using UltraLite
modes

UltraLite exposes the rows in atable to your application one at atime. The
Table object has a current position, which may be on arow, before the first
row, or after the last row of the table.

When your application changesits row (by a ULTable.MoveNext method or
other method on the UL Table object) Ultralite makes a copy of therow ina
buffer. Any operations to get or set values affect only the copy of datain this
buffer. They do not affect the data in the database. For example, the
following statement changes the value of the ID column in the buffer to 3.

collI D Value = 3

UltraLite uses the values in the buffer for a variety of purposes, depending
on the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to a default mode, and in each mode the
buffer is used for a different purpose.

¢ Insert mode Thedatain the buffer isadded to the table as a new row
when the UL Table.Insert method is called.

¢ Update mode Thedatain the buffer replaces the current row when the
UL Table.Update method is called.

¢ Find mode Thedatain the buffer is used to locate rows when one of
the ULTable.Find methodsis called.

39

Accessing and manipulating data

40

¢

Lookup mode Thedatain the buffer is used to locate rows when one
of the ULTable.Lookup methodsis called.

Whichever mode you are using, thereis a similar sequence of operations:

1

Enter the mode.

The ULTable InsertBegin, UpdateBegin, FindBegin, and LookupBegin
methods set Ultral ite into the mode.

Set the values in the buffer.
Use the Value property to set valuesin the buffer.
Carry out the operation.

Use a UL Table method such as Insert, Update, Find, or Lookup to carry
out the operation, using the values in the buffer. The UltraLite modeis
set back to the default method and you must enter a new mode before
performing another data manipulation or searching operation.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

Accessing schema information

Objectsin the API represent tables, columns, indexes, and synchronization
publications. Each object has a Schema property that provides access to
information about the structure of that object.

Here is asummary of the information you can access through the Schema
objects.

¢

ULDatabaseSchema The number and names of the tablesin the
database, as well as global properties such as the format of dates and
times.

To obtain a UL DatabaseSchema object, access the
UL Connection.Schema property.

ULTableSchema The number and names of columnsin the table, as
well as the Indexes collections for this table.

To obtain a UL TableSchema object, access the UL Table.Schema
property.
ULColumnSchema Information about an individual column.

To obtain a UL ColumnSchema object, access the UL Column.Schema
property.

ULIndexSchema Information about the column in the index. Asan
index has no data directly associated with it (only that whichisin the
columns of the index) there is no separate UL Index object, just a

UL IndexSchema object.

The UL IndexSchema objects are available as part of the
UL TableSchema.lndexes collection.

ULPublicationSchema Tablesand columns contained in a
publication. Publications are also comprised of schemaonly, and so
there is a UL PublicationSchema object rather than a UL Publication
object.

The UL PublicationSchema objects are available as part of the
UL DatabaseSchema.Publications collection.

Y ou cannot modify the schema through the API. Y ou can only retrieve
information about the schema.

41

Error handling

Error handling

42

Y ou can use the standard eMbedded Visual Basic error-handling features to
handle errors. The Err object holds the SQLCODE value for an error.

SQL CODE values are negative numbers indicating the particular kind of
error. You can also get the last error with Connection.LastErrorCode.

Note

For users of SQL Anywhere Studio, the Adaptive Server Anywhere Error
Messages manual is part of the SQL Anywhere Studio online books. If
you do not have SQL Anywhere Studio, you can open this book by
double-clicking dberen8.chm in the docs subdirectory of your

SQL Anywhere directory.

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

User authentication

There is acommon sequence of events to managing user 1Ds and passwords.

1 New users have to be added from an existing connection. Asall
Ultral ite databases are created with a default user ID and password of
DBA and SQL, respectively, you must first connect asthisinitial user
and implement user management only upon successful connection.

2 You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltralLite database.

3 To change the password for an existing user ID, use the
UL Connection.GrantConnectTo method.

43

Synchronizing UltraLite applications

Synchronizing UltraLite applications

Controlling TCP/IP
and HTTP
synchronization

°oe

o’

Users of SQL Anywhere Studio 8.0.1 can synchronize UltraL ite applications
with a central database. This database may be a desktop database for
personal applications, or a multi-user database for shared data, including
enterprise data. Synchronization requires the MobiLink synchronization
software included with SQL Anywhere Studio.

Synchronization details can be found in the MobiLink User’s Guide and the
UltralLite User’s Guide included with SQL Anywhere Studio documentation.
This section provides a brief introduction to synchronization and describes
some features of particular interest to users of the Ultralite Component
Suite.

Y ou can also find a working example of synchronization in the CustDB
sample application. For Native UltralLite for Java, the CustDB sampleisin
the Samples\UltraLiteActiveX\CustDB directory.

UltraLite for eMbedded Visual Basic supports TCP/IP, and HTTP
synchronization. TCP/IP and HT TP synchronization are initiated by the
UltraLite application. In al cases, you use methods and properties of the
UL Connection object to control synchronization.

To control synchronization over TCP/IP or HTTP, your application
must carry out the following sequence of operations:

1 Prepare the synchronization information.
Assign values to properties of the UL Connection.Synclnfo object.

& For information about the properties and the values that you should
set, look up synchronization parameters: about in the SQL Anywhere
Studio online books index.

2 Synchronize.
Call the UL Connection.Synchronize method.

Monitoring Synchronization progress

44

Y ou can monitor the progress of your synchronizations by simply writing
code into your UltraLite for eMbedded Visual Basic project. The code
sample below shows how you can set your databasemanager object to work
with the Synchronization Progress Dialog:

Set DBMyr = _

Create(hj ect Wt hEvents(_

"Utralite. U.Dat abaseManager", "UL_")

Chapter 3 Understanding UltraLite for eMbedded Visual Basic Development

Now, write code into your form that captures event notifications by the
Synchroniztion Progress Dialog. The first method shows users insert, update
and delete data when datais sent to the consolidated database.

Private Sub UL_OnSend(ByVal nBytes As Long, ByVal
nlnserts As Long, ByVval _
nUpdat es As Long, ByVal nDel etes As Long)_
prLine "OnSend " & nBytes & " bytes, " & nlnserts &
"inserts, " & nUpdates & " updates, " &
nDel etes & " deletes"
End Sub

The second method shows users insert, update and del ete data when datais
received at the consolidated database.

Private Sub UL_OnRecei ve(ByVal nBytes As Long, ByVal
ninserts As Long, _
ByVal nUpdates As Long, ByVal nDeletes As Long) _
prLine "OnReceive " & nBytes & " bytes, " & _

ninserts & " inserts, " & nUpdates & _
' updates, " & nDeletes & " del etes"
End Sub

The third method shows usersinsert, update and delete data when data states
are changing.

Private Sub UL_OnSt at eChange(ByVal newState As Long,
ByVal oldState As Long)

prLine "OnStateChange new " & newState & ", ol d:
& oldsState
End Sub

The fourth method shows users insert, update and delete data when table data
are changing.
Private Sub UL_OnTabl eChange(ByVal newTabl el ndex As _
Long, ByVal nunirabl es As Long)
prLi ne "OnTabl eChange i ndex:" & newTabl el ndex & ",
#t abl es=" & nunirabl es
End Sub

45

Synchronizing UltraLite applications

46

CHAPTER 4

API Reference

About this chapter

Contents

This chapter describes the UltraLite for eMbedded Visua Basic API.

Topic Page
IULColumns collection 49
UL IndexSchemas collection 50
UL PublicationSchemas collection 51
ULAuthStatusCode constants 52
UL Column class 53
UL ColumnSchema class 58
UL Connection class 59
UL DatabaseM anager class 64
UL DatabaseSchema class 69
ULIndexSchema class 71
UL PublicationSchema class 72
UL SQL Code constants 73
UL SQL Type constants 76
UL StreamErrorCode constants 77
UL StreamErrorContext constants 80
UL StreamErrorl D constants 81
UL StreamType 82
ULSyncMasks Type 83
UL SyncParms class 84
UL SyncResult class 85
UL SyncState constants 86
ULTable class 87
UL TableSchemaclass 96

47

IULColumns collection

48

Chapter 4 API Reference

IULColumns collection

A collection of ULColumn objects.

Properties
Prototype Description
Count as long (read-only) Returns the number of columnsin the
collection.
Item (Index) as UL Column (read-only) Returns a value from the collection.
Index can be anumber from 1 to
count, or the name of a column.
Example Y ou can enumerate all columnsin eMbedded Visual Basic using the For

Each statement:

Dimcol As ULCol umm
For Each col In table. Col umms
If col.lsNull Then
MsgBox col . Schema. Nane
& "is null"
End | f
Next

49

IULIndexSchemas collection

IlULIndexSchemas collection

A collection of IULIndexSchema objects.

Properties
Prototype Description
Count as long (read-only) Returns the number of indexesin the
collection.
Item (Index) as ULIndexSchema (read- Returns an index from the collection.
only) Items are indexed using 1-origin
indexing. Index can be anumber
from 1 to count.
Example Y ou can enumerate all the indexes on atable using the For Each statement:

Dmix As ULl ndexSchema

For Each i x I n Tabl eSchenma. | ndexes
‘use ix

Next

50

Chapter 4 API Reference

IULPublicationSchemas collection

A collection of UL PublicationSchema objects.

Properties
Prototype Description
Count as long (read-only) Returns the number of indexesin the
collection.
Item (Index) as ULIndexSchema (read- Returns an index from the collection.
only) Index can be anumber from 1 to
count.
Example Y ou can enumerate all the publications using the For Each statement:

Dim ps As ULPubli cati onSchena

For Each ps In connection.schema. publications
use ps

Next

51

ULAuthStatusCode constants

ULAuthStatusCode constants

Constant Value
ulAuthUnknown 0
ulAuthvalid 1000
ulAuthValidButExpiresSoon 2000
ulAuthExpired 3000
ulAuthinvalid 4000
ulAuthlnUse 5000

52

Chapter 4 API Reference

ULColumn class

UL Column alows you to get values from atable in a database. Each
UL Column object represents a particular column in atable.

& For information about the UL Table object, see"ULTable class' on

page 87.

Properties

Prototype

Description

IsNull as Boolean (read-only)
Schema as UL ColumnSchema

(read-only)

VaueasVariant

AppendByteChunk method

Indicates whether the column valueis NULL.
Trueif the columnis NULL.

Returns the object representing the schema of
the column.

The data value of this column in the current
row.

Prototype AppendByteChunk(byteArray, [chunkSize]) as Boolean

Member of Ultralite.ULColumn
Description Appends the buffer of bytes to the column if the type is ul TypeLongBinary.
Parameters chunkSize The size of the data chunk expressed as a Long.

byteArray A variant. The datalength, or the number of bytesto copy. If
not provided, uses the size of the array.

Returns Trueif successful.

Falseif unsuccessful.

The errors returned appear below.

Error Description

UlSQLE_INVALID_PARAMETER A parameter isinvaid, for example,
if the datalength islessthan 0.

ulSQLE_CONVERSION_ERROR If the column data type is not LONG

BINARY or BINARY.

53

ULColumn class

Example Dimdata (512) as Byte

iz.a.ble.Columns("edata").AppendByteChunk(data)

In the example, edata is a column name and 512 bytes of data are appended
to the column.

AppendStringChunk method

Prototype AppendStringChunk(chunk)

Member of Ultralite.ULColumn
Description Appends the string to the column if the type is ulTypeLongString.
Parameters chunk A string.

The errors returned appear below.

Error | Description

ulSQLE_CONVERSION_ERROR If the column data type is not LONG
STRING or STRING.

GetByteChunk method

Prototype GetByteChunk(offset As Long, pByteArray, [chunkSize]) As Long
Member of Ultralite.ULColumn

Description Fillsthe array with the binary data in the column. Suitable for BLOBs.

Parameters

offset The offset into the underlying array of bytes.
chunkSize Anarray of bytes expressed as Long type.

pByteArray A variant. Optional. Array datais passed by reference as
array.

Returns The number of bytes read.

54

Chapter 4 API Reference

Example

Error Description
ulSQLE_CONVERSION_ERROR If the column datatype isn't BINARY or
LONG BINARY

UlSQLE_INVALID_PARAMETER If the column data typeis BINARY and any of
the following are true:

¢ offsetisnotOor 1
¢ datalength is greater than 64Kb
¢ datalengthislessthan O

UulSQLE_INVALID_PARAMETER If the column datatypeis LONG BINARY and
any of the following is true:

4 offsetislessthan 1
4 datalengthislessthan 0

Dimdata (512) as Byte

iz.a.ble.GetCqumn("edata").GetByteChunk(O,data)

In this example, edata isacolumn name.

GetStringChunk method

Prototype

Description

Parameters

Returns

GetStringChunk(offset As Long, pStringObj, [chunkSize]) As Long
Member of Ultralite.ULColumn

Fills the string passed in (which should have space preall ocated) with the
binary datain the column. Suitable for long strings.

offset The character offset into the underlying data from which we start
getting the string.

pStringObj The string you want returned. This variant is passed by
reference.

chunkSize The number of charactersto retrieve.

The number of characters copied. Room is |eft for anull termination
character and the length does not include that character.

55

ULColumn class

Example

Dimcd as ULCol um
DmS as Strong
Dml, off as Long

S=String(512, vbNul Char)

af=0
Do

L=col . Get Stri ngChunk(of fset, S, 512)

If =0 then Exit Do

"use string ins
Loop

The errors returned appear below.

Error

Description

ulSQLE_CONVERSION_ERROR

ulSQLE_INVALID_PARAMETER

ulSQLE_INVALID_PARAMETER

SetByteChunk method

Prototype

Description

Parameters

Returns

56

If the column data type isn't UL TypeString or
UL TypelLongString.

If the column data type is CHAR and the
src_offset is greater than 64K

If src_offset islessthan 1 or string length isless
than 0

SetByteChunk(ByteArray, [length]) As Boolean

Member of Ultralite.ULColumn

Sets the value of the column in the database to the array of bytesin the data

field.

ByteArray An array of bytes of type variant.

length Thelength of the array.
Trueif successful.
False if unsuccessful.

The errors returned appear below.

Error

Description

ulSQLE_INVALID_PARAMETER
ulSQLE_CONVERSION_ERROR

UlSQLE_INVALID_PARAMETER

If the datalengthisless than 0.

If the column data typeis not
BINARY or LONG BINARY

If the data length is greater than 64K

Chapter 4 API Reference

Example Dmdata (1 to 512) as Byte

iz.a.ble.GetCqumn("edata").SetByteChunk(data,232)

In the example code, edata is a column name and 232 bytes of datain the
array contain values to be set in the database.

SetToDefault method

Prototype SetToDefault()
Member of UltraLite.lULColumn

Description Sets the column to its default val ue as defined in the database schema. For
example, an autoincrement column will be assigned the next available value,
and incremented.

57

ULColumnSchema class

ULColumnSchema class

Properties

58

The UL ColumnSchema object allows you to obtain the attributes of a
columnin atable. The attributes are independent of the data in the table.

Prototype

Description

Autolncrement as Boolean (read-
only)

DefaultValue as String (read-only)

Global Autolncrement as Boolean
(read-only)

ID aslong (read-only)

Name as String (read-only)
Nullable as Boolean (read-only)

OptimalIndex as ULIndexSchema
(read-only)

Precision as Long (read-only)

Scale as Long (read-only)
Size as Long (read-only)

SQLType as ULSQL Type (read-
only)

Determines whether this column defaults
to an autoincrement value. True if the
column is autoincrement.

Indicates the value that is used if one was
not provided when arow was inserted.

Determines whether this column defaults
to aglobal autoincrement value. True if
the column is global autoincrement.

Indicates the index number of the column
intherange 1to
UL TableSchema.ColumnCount.

Returns the column name.
Returns true if the column allows NULLSs.

The best index to search this column. Or
throws an error if no such index exists.

Returns the precision value for the
column.

Returns the scale value for the column.

Returns the column size for binary,
numeric, and char data types.

The SQL type assigned to the column
when it was created.

Chapter 4 API Reference

ULConnection class

Example

Properties

A UL Connection object represents an Ultralite database connection. It
provides methods to get database objects, and to synchronize.

Declare a connection in an eMbedded Visual Basic form with:

Private Connection As ULConnection

The following are properties of UL Connection:

Prototype

Description

AutoCommit as Boolean

Databasel D as Long - write-only

DatabaseM anager as
UL DatabaseManager (read-only)

DatabaseNew as Boolean (read-only)

ErrorResume as Boolean

Global AutolncrementUsage as Long
(read-only)

LastErrorCode as UL SQL CodeConstants
(read-only)

LastErrorDescription As String (read-
only)

If true, al datachanges are
committed immediately after they are
made. Otherwise, changes are not
committed to the database until
Commit is called. By default, this
property is True.

Sets the database I D value to be used
for global autoincrement columns.

Returns the owning database manager
object.

Returns trueif there is no database
schema loaded. In this case, your
application must load a new schema.

Setsthe error handling property.

Returns the percentage of available
global autoincrement values that have
been used.

Returns the last error number.

Returns the last error description.

59

UL Connection class

Prototype

Description

Lastldentity as Long (read-only)

OpenParms as String (read-only)

Schema as UL DatabaseSchema (read-
only)

SyncParms As UL SyncParms (read-only)

SyncResult as UL SyncResult (read-only)

CancelSynchronize method

Prototype

Description

Close method

Prototype

Description

Commit method

Prototype

Description

60

CancelSynchronize()

Returns the most recent value
inserted into a column with a default
of autoincrement or global
autoincrement.

The string used to open the database.

Returns the UL DatabaseSchema
object.

Returns the synchronization
parameters object.

Returns the results of the most recent
synchronization.

Member of UltraLite.ULConnection

When called during synchronization, the method cancels the
synchronization. The user can only call this method during one of the

synchronization events.

Close()

Member of UltraLite.ULConnection

Closes the connection to the database. No methods on the UL Connection
object should be called after this method is called.

Commit()

Member of UltraLite.ULConnection

Commits outstanding changes to the database. Thisisonly useful if

AutoCommit is false.

Chapter 4 API Reference

CountUploadRows method

Prototype CountUploadRows([mask as Long =0], [threshold as Long =-11]) As
Il;/l(zenrgber of UltraLite.ULConnection
Description Returns the number of rows that need to be uploaded when synchronization
takes place.
Parameters

mask A unique identifier that refers to the publications to check. Use O for
all publications. The default is 0.

threshold The maximum number of rows to count. Use -1 to indicate the
maximum. The default is —1.

GetNewUUID method

Prototype GetNewUUID() As String
Member of UltraLite.ULConnection

Description Returns a new universally unique identifier in a string format. This string is
of the formxxxxxxxx- Xxxx- XXXX- XXXX- XXXXXXXXxxxx. Each call
returns a new UUID.

GetTable method

Prototype GetTable(name As String) As ULTable
Member of UltraLite.ULConnection
Description Returns thaJL Table object for the specified table. The table must be
opened before data can be read from it.
Parameters name The name of the table sought.
Returns Returns the ULTable object.

GrantConnectTo method

Prototype GrantConnectTo(userid as String, password as String)
Member of UltraLite.ULConnection

Description Grants the specified user permission to connect to the database with the
given password.

Parameters userid The user ID for the current user.

61

UL Connection class

password The password for this user ID.

LastDownloadTime method

Prototype LastDownloadTime([mask as Long =0]) As Date
Member of UltraLite.ULConnection
Description Returns the time of last download for the publication(s).
Parameters mask A uniqueidentifier that refers to the publications to check. Use O for

all publications. If this parameter is omitted, O is used.

RevokeConnectFrom method

Prototype RevokeConnectFrom(userid as String)

Member of UltraLite.ULConnection
Description Revokes the specified user’s ability to connect to the database.
Parameters userid The user ID to be made unable to connect.

Rollback method

Prototype Rollback()
Member of UltraLite.ULConnection

Description Rolls back outstanding changes to the database. Thisisonly useful if
AutoCommit is false.

StartSynchronizationDelete method

Prototype StartSynchronizationDelete()
Member of UltraLite.ULConnection

Description Once thisfunction is called, all delete operations are again synchronized.

StopSynchronizationDelete method

Prototype StopSynchronizationDelete()
Member of UltraLite.ULConnection

62

Chapter 4 API Reference

Description Prevents del ete operations from being synchronized. Thisis useful for
deleting old information from an UltraL ite database to save space, while not
deleting the information on the consolidated database.

StringToUUID method

Prototype StringToUUID(val) as Variant
Member of UltraLite.ULConnection

Description Converts a string in the form xxxxxxxx- XXXX- XXXX= XXXX= XXXXXXXXXXXX
to avariant array of 16 bytes.

Parameters val A string type holding a representation of a UUID value. Y ou can obtain
anew string UUID using GetNewUUID.
See also "GetNewUUID method" on page 61

Synchronize method

Prototype Synchronize([show-progress as Boolean |)
Member of UltraLite.ULConnection

Description Synchronizes a consolidated database. This function does not return until
synchronization is complete.

Parameters show-progress Trueor false. Set thisto true to show the progress of

synchronization as it happens. Default isfalse.

UUIDToString method

Prototype UUIDToString(val) As String
Member of UltraLite.ULConnection

Description Converts aUUID from abyte array to astring of the form xxxxxxxx- xxxx-
XXXX= XXXX= XXXXXXXXXXXX.

Parameters val Anarray of 16 bytes. A variant type.

See also "GetNewUUID method" on page 61

63

ULDatabaseManager class

ULDatabaseManager class

Properties

The ULDatabaseM anager class is used to manage connections and databases.
Y our application should only have one instance of this object.

The following are properties of UL DatabaseM anager:

Prototype Description

ErrorResume as Boolean Set error handling property. Default
isfalse. If set to true, aVB error will
not be raised when DatabaseM anager
methods fail.

Version as String (read-only) Returns the version string, in the form

CreateDatabase method

Prototype

Description

Parameters

Examples

64

The CreateDatabase method creates a new database and returns a connection
to access its tables.

CreateDatabase(parms As String) As ULConnection
Member of UltraLite.ULDatabaseManager

The CreateDatabase function creates a new database and returns a
connection to it. It failsif the specified database aready exists. To alter the
schema of an existing database, use the UL DatabaseSchema Applyfile
method.

&~ For more information about ApplyFile, see " ApplyFile method" on
page 70.

parms A semicolon-separated list of database creation parameters.

& For information on connection parameters, see " Connection
Parameters' on page 25 of the book Ultral ite Foundations.

The example below uses CreateObject to create and open a new database.
conn_parns = "ui d=DBA; pwd=SQ."

Chapter 4 API Reference

"UD and PW are set as default

open_parns = conn_parms & ";" &
"file_nanme=\tut Custoner. udb"

schema_parns = open_parns & ";" &
"schema_nane=\t ut Cust onrer . usnt

Set DatabaseMyr = _

O eate(hject ("Utralite. U.Dat abaseManager ")
Set Connection = _

Dat abaseMyr . Or eat eDat abase(schena_par irs)

The example below shows how you can create a DatabaseM anager with
events. Thistactic is used for showing synchronization progress.

Set DBMgr = CreateChj ect Wt hEvents_
("UtraLite. ULDat abaseManager"”, "UL_")

& For information on OpenConnection, see " OpenConnection method" on
page 68.

DropDatabase method

The DropDatabase method deletes a database file.

Prototype DropDatabase(parms As String)
Member of UltraLite.ULDatabaseManager
Description The DropDatabase method deletes the database file. All information in the

database fileislost. The datais not recoverable using Ultralite Components.

Parameters parms Thefilename for the database and schema files.

Example Note in the example below that you must use the same connection
parameters when you drop the database that you use when you created the
database.

conn_parns = "ui d=DBA; pwd=SQ."

open_parnms = conn_parns & ";" &
"ce file=\tutCQustoner. udb"
Dr opDat abase(open_par ns)

OnReceive event

Prototype OnReceive (nBytes As Long, ninserts As Long, nUpdates as Long, nDeletes
as Long)
Member of UltraLite.ULDatabaseManager

Description Reports download information to the application from the consolidated
database viaMobiLink. This event may be called several times.

65

ULDatabaseManager class

Parameters

Example

OnSend event

Prototype

Description

Parameters

66

nBytes Cumulative count of bytes received.

ninserts Cumulative count of inserts received at the remote application
from the consolidated database.

nUpdates Cumulative count of updates received at the remote application
from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application
from the consolidated database.

Private Sub UL_OnRecei ve(ByVal nBytes As Long, _
ByVal nlnserts As Long, ByVal nUpdates As Long,
ByVal nDel etes As Long)

prLine "OnReceive " & nBytes & " bytes, " & _
nlnserts & _

'inserts, " & nUpdates & " updates, " & _
nDel etes & " del etes"

End Sub

OnSend(nBytes As Long, ninserts As Long, nUpdates as Long, nDeletes as
Long)
Member of UltraLite.ULDatabaseManager

Reports upload information from the remote database via MobiLink to the
consolidated database. This event may be called several times.

nBytes Cumulative count of bytes sent by the remote application to the
consolidated database via MobiLink.

ninserts Cumulative count of inserts sent by the remote application to the
consolidated database via MobiLink.

nUpdates Cumulative count of updates sent by the remote application to
the consolidated database via MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the
consolidated database via MobiLink.

Chapter 4 API Reference

Example Private Sub Connecti on_OnSend(ByVal nBytes As Long, _
ByVal nlnserts As Long,
ByVal nUpdates As Long,
ByVal nDel etes As Long)
send_count = send_count + nBytes
Di spl aySyncSt at us
End Sub

OnStateChange event

Prototype OnStateChange(newState As ULSyncState, oldState As ULSyncState)
Member of UltraLite.ULDatabaseManager

Description Thisevent is called whenever the state of the synchronization changes.

Parameters newState The state that the synchronization processis about to enter.

oldState The state that the synchronization process just completed.

Example Private Sub UL_OnSt at eChange(ByVal newState As _
Long, ByVal ol dState As Long)

prLine "OnStateChange new " & newState & _
old: " &oldState

End Sub

OnTableChange event

Prototype OnTableChange(newTableindex As Long, numTables As Long)
Member of UltraLite.ULDatabaseManager

Description Thisevent is called whenever the synchronization process begins
synchronizing another table.

Parameters newTablelndex Theindex number of the table currently being
synchronized. This number is not the same as the table ID, and so it cannot
be used with the DatabaseSchema.Get TableName method.
numTables The number of tables eligible to be synchronized.

Example Private Sub UL_OnTabl eChange(ByVal newTabl el ndex _

As Long, ByVal nunirabl es As Long)

prLine "OnTabl eChange i ndex:" & newTabl el ndex & ",
#t abl es=" & nunirabl es

End Sub

67

ULDatabaseManager class

OpenConnection method

Prototype

Description

Parameters

Returns

Example

OpenConnection(parms As string) As ULConnection
Member of UltraLite.ULDatabaseManager

If a database exists, use this method to receive a connection. |f a database
does not exist, the call will fail.

The function returns a UL Connection object which provides an open
connection to a specified Ultral ite database.

Parameters are specified using a sequence of " nanme=val ue" pairs. If no
user ID or password is given, the default is used.

parms The parameters that determine which database to connect to. The
database filename is specified using the parms string. It should contain a
value of theformfi | e_name=UDBFI LE or DBF=UDBFI LE. See the UltraLite
Component Suite Foundations book for more information on connecting to
Ultral ite databases.

& For information on connection parameters, see " Connection
Parameters" on page 25 of the book UltraLite Foundations.

The UL Connection object isreturned if the connection was successful.

The example below shows how to use connection parametersin the
OpenConnection method.

conn_parns = "ui d=DBA;, pwd=SQ." _
open_parns = conn_parns & ";" & "ce_file _
=\t ut Cust orrer . udb”

Set Dat abaseMgr = Createbj ect _
("U traLite. ULDat abaseManager")

Set Connection = Dat abaseMyr.
OpenConnect i on(open_par ns)

Shutdown method

Prototype

Description

68

Shutdown()
Member of UltraLite.ULDatabaseManager

Shut down all open connections.

Chapter 4 API Reference

ULDatabaseSchema class

Properties

The UL DatabaseSchema object allows you to obtain the attributes of the

database to which you are connected.

The following are properties of UL DatabaseSchema:

Prototype

Description

DateFormat as String (read-only)

DateOrder as String (read-only)

NearestCentury as String (read-only)

Precision as String (read-only)

Publications as
UL PublicationSchemas(read-only)

Signature as Variant (read-only)

TableCount as Long (read-only)

TimeFormat as String (read-only)

TimestampFormat as String (read-only)

Getsthe format for dates retrieved
from the database; YYYY-MM-DD
isthe default. The format of the date
retrieved depends on the format used
when you created the USM file.

Controls the interpretation of date
formats; valid values are MDY,
YMD, or DMY.

Gets the nearest century database
option. Controls the interpretation of
two-digit yearsin string-to-date
conversions. Thisisanumeric value
that acts as arollover point. Two digit
years less than the value are
converted to 20yy, while years
greater than or equal to the value are
converted to 19yy.

Gets the database precision. Specifies
the maximum number of digitsin the
result of any decimal arithmetic.

A collection of publication schema
objects.

Gets the database signature, an
internal identifier representing the
database schema.

Returns the number of tablesin the
database.

Gets the format for times retrieved
from the database.

The format for timestamps retrieved
from the database.

69

ULDatabaseSchema class

ApplyFile method

Prototype ApplyFile (parms As String) As Boolean
Member of UltraLite.ULDatabaseSchema

Description Applies a database schema update. Changes the schema of this database.

This method is only useful on those occasions where you want to modify
your existing database structure using DDL with, in most circumstances, no
data loss. Data loss can occur if columns are deleted, for example, or if the
data type for a column is changed to an incompatible type.

Parameters parms The schema file(s) containing the changes you wish to make.

Returns Trueif successful.

False if unsuccessful.

70

Chapter 4 API Reference

ULIndexSchema class

Properties

The ULIndexSchema object allows you to obtain the attributes of an index.
Anindex is an ordered set of columns by which datain atable will be sorted.

The primary use of an index isto order
columns.

the datain a table by one or more

Anindex can be aforeign key, which is used to maintain referential integrity

in a database.

Prototype

Description

ColumnCount as Long (read-only)

ColumnName(position As Long) As
String (read-only)

ForeignKey as Boolean

IsColumnDescending(position As Long)
As Boolean (read-only)

Name as String (read-only)

PrimaryKey as Boolean

Returns the number of columnsin the
index.

Column name in position of index.

Returns whether thisis aforeign key.
Trueif it isaforeign key.

Trueif column in position of the
index is sorted descending. False if
ascending.

Returns the name of the index.

Trueif theindex isaprimary key.

ReferencedIindexName as String — read-The name of the index referenced by

only

this index if it is a foreign key.

ReferencedTableName as String — read-The name of the table referenced by

only

Uniquelndex as Boolean (read-only)

UnigueKey as Boolean (read-only)

this index if it is a foreign key.

must be unique. True if the index is
unique.

Indicates whether the index is a
unique constraint on a table. True if
the index is a primary key or has a
unique constraint.

71

Indicates whether values in the index

ULPublicationSchema class

ULPublicationSchema class

The UL PublicationSchema object allows you to obtain the attributes of a
publication.

Properties

Prototype | Description

Mask as Long (read-only) Returns the mask (a unique identifier) for the
publication.

Name as String (read-only) Returns the name of the publication.

72

Chapter 4 API Reference

ULSQLCode constants

The ULSQL CodeConstants identify SQL error codes.

Constant Value
ulSQLE_BAD_ENCRYPTION_KEY -840
ulSQLE_CANNOT_ACCESS FILE -602
ulSQLE_CANNOT_CHANGE_USER _NAME -867
UISQLE_COLUMN_CANNOT_BE_NULL -195
UlSQLE_COLUMN_IN_INDEX -127
ulSQLE_COLUMN_NOT_FOUND -143
ulSQLE_COMMUNICATIONS_ERROR -85
ulSQLE_CONNECTION_NOT_FOUND -108
ulSQLE_CONVERSION_ERROR -157
UlSQLE_CURSOROP_NOT_ALLOWED -187
ulSQLE_CURSOR_ALREADY_OPEN -172
ulSQLE_CURSOR_NOT_OPEN -180
ulSQLE_DATABASE_ERROR -301
ulSQLE_DATABASE_NEW 123
ulSQLE_DATABASE_NOT_CREATED -645
ulSQLE_DATABASE_NOT_FOUND -83
ulSQLE_DATABASE UPGRADE_FAILED -672
ulSQLE_DATABASE UPGRADE _NOT POSSIBLE -673
UlSQLE_DATATYPE_NOT_ALLOWED -624
ulSQLE_DBSPACE_FULL -604
ulSQLE_DIV_ZERO_ERROR -628
ulSQLE_DOWNLOAD_CONFLICT -839
ulSQLE_DROP_DATABASE_FAILED -651
ulSQLE_DYNAMIC_MEMORY_EXHAUSTED -78
UlSQLE_ENGINE_ALREADY_RUNNING -96
UlSQLE_ENGINE_NOT_MULTIUSER -89
ulSQLE_ERROR -300
UlSQLE_IDENTIFIER_ TOO_LONG -250

73

ULSQLCode constants

74

ulSQLE_INDEX_NOT_FOUND
ulSQLE_INDEX_NOT_UNIQUE
ulSQLE_INTERRUPTED
ulSQLE_INVALID_FOREIGN_KEY
ulSQLE_INVALID_FOREIGN_KEY_DEF
ulSQLE_INVALID_LOGON
ulSQLE_INVALID_OPTION_SETTING
ulSQLE_INVALID_PARAMETER
ulSQLE_INVALID_SQL_IDENTIFIER
ulSQLE_LOCKED

ulSQLE_ MEMORY_ERROR
ulSQLE_METHOD_CANNOT BE_CALLED
ulSQLE_NAME_NOT_UNIQUE
ulSQLE_NOERROR
ulSQLE_NOTFOUND
ulSQLE_NO_CURRENT ROW
ulSQLE_NO_INDICATOR
ulSQLE_OVERFLOW_ERROR
ulSQLE_PERMISSION_DENIED
ulSQLE_PRIMARY_KEY_NOT_UNIQUE
ulSQLE_PRIMARY_KEY_VALUE_REF
ulSQLE_PUBLICATION_NOT_FOUND
ulSQLE_RESOURCE_GOVERNOR_EXCEEDED

ulSQLE_ROW_DROPPED_DURING_SCHEMA_UPGRA
DE

ulSQLE_SERVER_SYNCHRONIZATION_ERROR
ulSQLE_START_STOP DATABASE_DENIED
ulSQLE_STRING_RIGHT_TRUNCATION
ulSQLE_TABLE_HAS PUBLICATIONS
ulSQLE_TABLE_IN_USE
ulSQLE_TABLE_NOT_FOUND
ulSQLE_TOO_MANY_CONNECTIONS

-183
-196
-299
-194
-113
-103
-201
-735
-760
-210

-669
-110

100

-197
-181
-158
-121
-193
-198
-280
-685
130

-857

-638
-281
-214
-141
-102

Chapter 4 API Reference

ulSQLE_UNABLE_TO_START_DATABASE -82

ulSQLE_UNCOMMITTED_TRANSACTIONS -755
ulSQLE_UNKNOWN_USERID -140
ulSQLE_UNSUPPORTED_CHARACTER SET_ERROR | -869
ulSQLE_UPLOAD_FAILED_AT SERVER -794

75

ULSQLType constants

ULSQLType constants

The ULSQL TypeConstants identify valid database column types.

Constant Value
ulTypeBig 4
ulTypeBinary 13
ulTypeBit 7
ulTypeByte 6
ulTypeDate

ulTypeDateTime 8
ulTypeDouble 11
ulTypelLong 0
ulTypeL.ongBinary 14
ul Typel.ongString 16
ulTypeNumeric 17
ul TypeReal 12
ul TypeShort 1
ulTypeString 15
ulTypeTime 10
ulTypeUnsignedBig 5
ulTypeUnsignedLong 2
ul TypeUnsignedShort 3

76

Chapter 4 API Reference

ULStreamErrorCode constants

The UL StreamErrorCodeConstants identify constants you can use to specify

the UL StreamErrorCode.

Constant Value
Ul StreamErrorCodeNone 0
Ul StreamErrorCodeParameter 1
Ul StreamErrorCodeParameterNotUint32 2
Ul StreamErrorCodeParameterNotUint32Range 3
Ul StreamErrorCodeParameterNotBoolean 4
Ul StreamErrorCodeParameterNotHex 5
Ul StreamErrorCodeM emoryAllocation 6
Ul StreamErrorCodeParse 7
Ul StreamErrorCodeRead 8
Ul StreamErrorCodeWrite 9
Ul StreamErrorCodeEndWrite 10
Ul StreamErrorCodeEndRead 11
Ul StreamErrorCodeNotlmplemented 12
Ul StreamErrorCodeWoul dBlock 13
Ul StreamErrorCodeGenerateRandom 14
Ul StreamErrorCodel nitRandom 15
Ul StreamErrorCodeSeedRandom 16
Ul StreamErrorCodeCreateRandomObject 17
Ul StreamErrorCodeShuttingDown 18
Ul StreamErrorCodeDequeuingConnection 19
Ul StreamErrorCodeSecureCertificateRoot 20
Ul StreamErrorCodeSecureCertificateCompanyName 21
Ul StreamErrorCodeSecureCertificateChainLength 22
Ul StreamErrorCodeSecureCertificateRef 23
Ul StreamErrorCodeSecureCertificateNotTrusted 24
Ul StreamErrorCodeSecureDuplicateContext 25
Ul StreamErrorCodeSecureSetlo 26

e

ULStreamErrorCode constants

78

Constant Value
Ul StreamErrorCodeSecureSetl oSemantics 27
Ul StreamErrorCodeSecureCertificateChainFunc 28
Ul StreamErrorCodeSecureCertificateChainRef 29
Ul StreamErrorCodeSecureEnableNonBlocking 30
Ul StreamErrorCodeSecureSetCipherSuites 31
Ul StreamErrorCodeSecureSetChainNumber 32
Ul StreamErrorCodeSecureCertificaterileNotFound 33
Ul StreamErrorCodeSecureReadCertificate 34
Ul StreamErrorCodeSecureReadPrivateK ey 35
Ul StreamErrorCodeSecureSetPrivateK ey 36
Ul StreamErrorCodeSecureCertificateExpiryDate 37
Ul StreamErrorCodeSecureExportCertificate 38
Ul StreamErrorCodeSecureAddCertificate 39
Ul StreamErrorCodeSecureTrustedCertificateFileNotFound 40
Ul StreamErrorCodeSecureTrustedCertificateRead 41
ul StreamErrorCodeSecureCertificateCount 42
ul StreamErrorCodeSecureCreateCertificate 43
ul StreamErrorCodeSecurel mportCertificate 44
ul StreamErrorCodeSecureSetRandomRef 45
ul StreamErrorCodeSecureSetRandomFunc 46
ul StreamErrorCodeSecureSetProtocol Side 47
ul StreamErrorCodeSecureAddTrustedCertificate 48
ul StreamErrorCodeSecureCreatePrivateK eyObject 49
ul StreamErrorCodeSecureCertificateExpired 50
ul StreamErrorCodeSecureCertificateCompanyUnit 51
ul StresmErrorCodeSecureCertificateCommonName 52
ul StreamErrorCodeSecureHandshake 53
ul StreamErrorCodeHttpVersion 54
ul StreamErrorCodeSecureSetReadFunc 55
ul StreamErrorCodeSecureSetWriteFunc 56
ul StreamErrorCodeSocketHostNameNotFound 57

Chapter 4 API Reference

Constant Value
ul StreamErrorCodeSocketGetHostByAddr 58
ul StreamErrorCodeSocketL ocal hostNameNotFound 59
ul StreamErrorCodeSocketCreateT cpip 60
ul StreamErrorCodeSocketCreateUdp 61
ul StreamErrorCodeSocketBind 62
ul StreamErrorCodeSocketCleanup 63
ul StreamErrorCodeSocketClose 64
ul StresmErrorCodeSocketConnect 65
ul StreamErrorCodeSocketGetName 66
ul StreamErrorCodeSocketGetOption 67
ul StreamErrorCodeSocketSetOption 68
ul StreamErrorCodeSocketListen 69
ul StreamErrorCodeSocketShutdown 70
ul StreamErrorCodeSocketSel ect 71
ul StreamErrorCodeSocketStartup 72
ul StreamErrorCodeSocketPortOutOfRange 73
ul StreamErrorCodel oadNetworkL ibrary 74
ul StreamErrorCodeA ctsyncNoPort 75

79

ULStreamErrorContext constants

ULStreamErrorContext constants

80

The UL StreamErrorContext constants identify constants you can use to

specify UL StreamErrorContext.

Constant

Value

ul StreamErrorContextUnknown
ul StreamErrorContextRegister

ul StreamErrorContextUnregi ster
ul StreamErrorContextCreate

ul StreamErrorContextDestroy

ul StreamErrorContextOpen

ul StresmErrorContextClose

ul StreamErrorContextRead

ul StreamErrorContextWrite

ul StreamErrorContextWriteFlush
ul StreamErrorContextEndWrite
ul StreamErrorContextEndRead

ul StreamErrorContextYield

ul StreamErrorContextSoftshutdown

© 00 N o o0 b~ W N P O

e <
w N B O

Chapter 4 API Reference

ULStreamErrorID constants

The UL StreamErrorlD constants identify constants you can use to specify
UL StreamErrorContext.

Constant Value

ul StreamErrorContextUnknown
ul StreamErrorContextRegister

ul StreamErrorContextUnregi ster
ul StreamErrorContextCreate

ul StreamErrorContextDestroy

ul StreamErrorContextOpen

ul StresmErrorContextClose

ul StreamErrorContextRead

ul StreamErrorContextWrite

© 00 N o o0 b~ W N P O

ul StreamErrorContextWriteFlush

=
o

ul StreamErrorContextEndWrite
ul StreamErrorContextEndRead

B
N e

ulStreamErrorContextYield

=
w

ul StreamErrorContextSoftshutdown

81

ULStreamType

82

ULStreamType

The UL StreamType constants identify constants you can use to specify
stream type.

Constant | value | Description
UHTTP B | HTTP stream
ulHTTPS 3 TCPIP stream
ulTCPIP 2 TCP/IP stream

Chapter 4 API Reference

ULSyncMasks Type

The UL StreamType constants identify constants you can use to specify
stream type.

Constant | Value | Description

ulSyncAllPublications ‘ 1
ulSyncAll Tables \ 0

\ A mask to include all publications
\ A mask to include all tables in the database

83

ULSyncParms class

ULSyncParms class

The attributes set for the UL SyncParms object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read only reflect the status of the last synchronization.

Properties
The following are properties of UL SyncParms:

Prototype Description

CheckpointStore as Boolean Adds checkpoints of the database during
synchronization to limit database growth
during the synchronization process. Thisis
most useful for large downloads with

many updates.

DownloadOnly as Boolean If true, synchronization only downloads
data.

NewPassword as String The user’s password will be changed to
this string on the next synchronization, if
Set.

Password as String Password corresponding to the given user
name.

PublicationMask as Long The publications to synchronize - the

default isall publications.

SendColumnNames as Boolean If true, column names are sent to the
MobiLink synchronization server.

SendDownloadAck as Boolean If true, a download acknowledgement is
sent during synchronization.

Stream as UL StreamTypeConstants | The type of stream to use during
synchronization.

StreamParms as String Extra parameters for the given stream type.
UploadOnly as Boolean If true, synchronization only uploads data.
UserName as String User name to submit during

synchronization.

Version as String The synchronization script version to run.

84

Chapter 4 API Reference

ULSyncResult class

Properties

The attributes set for the UL SyncResult object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read only reflect the status of the last synchronization.

The following are properties of UL SyncResult:

Prototype

Description

AuthStatus as UL AuthStatusCode
(read-only)

IgnoredRows as Bool ean (read-
only)

StreamErrorCode as
UL StreamErrorCode (read-only)

StreamErrorContext as
UL StreamErrorContext (read-only)

StreamErrorID as UL StreamErrorID
(read-only)

StreamErrorSystem as Long (read-
only)

UploadOK as Boolean (read-only)

The authorization status code for the last
synchronization.

If true, rows were ignored during the last
synchronization.

The error code reported by the stream
itself.

The basic network operation being
performed.
The network layer reporting the error.

The stream error system-specific code.

If true, data was uploaded successfully in
the last synchronization.

85

ULSyncState constants

ULSyncState constants

86

Constant

Value

ulSyncStateStarting

ul SyncStateConnecting

ul SyncStateSendingHeader
ulSyncStateSendingTable

ul SyncStateSendingData

ul SyncStateFinishingUpl oad

ul SyncStateRecei vingUploadAck
ulSyncStateReceivingTable
ulSyncStateReceivingData

ul SyncStateCommittingDownload
ul SyncStateSendingDownloadAck
ul SyncStateDisconnecting

ul SyncStateDone
ulSyncStateError

ul SyncStateCancelled

© 0O N O U b~ W N B O

© B R e e
© W N B O

Chapter 4 API Reference

ULTable class

The UL Tableclassis used to store, remove, update, and read datafrom a

Properties

Close method

Prototype

Description

table.

Before you can work with table data, you must call the Open method.
UL Table uses table modes for table operations:

Mode Description
FindBegin Begins find mode
InsertBegin Begins insert mode
LookupBegin Begins |ookup mode
UpdateBegin Begins update mode
Prototype Description

BOF as Boolean (read-only)
Columns as UL Columns (read-
only)

EOF as Boolean (read-only)
IsOpen as Boolean (read-only)
RowCount as Long (read-only)

Schema as UL TableSchema
(read-only)

Close()

Returns whether you are currently positioned
before the first row.

Returns a collection of column objects

Returns whether you are currently positioned
after the last row.

Returns whether or not thistableis currently
open.

Returns the number of rowsin this table.

Returns information about the schema of this
table.

Member of UltraLite.ULTable

Close the table cursor. Once closed, table data can no longer be read.

87

ULTable class

Columns method

Columns(name As String) As ULColumn
Member of UltraLite.ULTable

Description Returns the | UL Columns object for the specified column.
& For information about the | UL Columns object, see "ULColumn class"
on page 53.

Parameters name The name of the column to return.

Delete method

Prototype Delete()

Member of UltraLite.ULTable

Description Deletes the current row from the table.

DeleteAllRows method

Prototype DeleteAllRows()
Member of UltraLite.ULTable

Description Deletes all rowsin thetable.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
Ultral ite database without being deleted from the consolidated database
using the UL Connection.StartSynchr onizationDelete method or calling
Truncate instead of DeleteAllRows.

FindBegin method

Prototype FindBegin()
Member of UltraLite.ULTable

Description Prepares atable for afind.

FindFirst method

Prototype FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

88

Chapter 4 API Reference

Description Move forwards through the table from the beginning, looking for arow that
exactly matches avalue or set of valuesin the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

To specify the value to search for, set the column value for each column in
theindex. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is After Last().

Note: FindBegin must be called before using this method.

Parameters num_columns An optional parameter referring to the number of columns
in the index that should be checked.

Returns Trueif successful.

False if unsuccessful.

FindLast method

Prototype FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Description Move backwards through the table from the end, looking for arow that
matches avalue or set of valuesin the current index.

The current index is used to specify the sort order of the table. It is specified
when your application calls the Open method. The default index isthe

primary key.
& For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index for which you want to find the value. The cursor is left on the last
row found that exactly matches the index value. On failure the cursor
position is Befor eFirst().

Note: FindBegin must be called before using this method.

Parameters num_columns An optional parameter referring to the number of columns
in the index that should be checked.

Returns Trueif successful.

False if unsuccessful.

89

ULTable class

FindNext method

Prototype

Description

Parameters

Returns

FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move forwards through the table from the current position, looking for the
next row that exactly matches a value or set of valuesin the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the Open method. The default index is
the primary key.

& For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure, the cursor position is After L ast().

Note: Must be preceded by FindFirst or FindLast.

num_columns An optiona parameter referring to the number of columns
to be used in the comparison.

Trueif successful.
False if unsuccessful and record is then EOF.

FindPrevious method

Prototype

Description

Parameters

Returns

Trueif successful.

90

FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move backwards through the table from the current position, looking for the
previous row that exactly matches avalue or set of valuesin the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the OpenBylndex method. The default
index isthe primary key.

& For more information, see "Open method" on page 94.

On failure the cursor position is Befor eFir st().

num_columns An optional parameter referring to the number of columns
to be used in the comparison.

False if unsuccessful and record is then BOF.

Chapter 4 API Reference

Insert method

Prototype

Description

Insert() As Boolean
Member of UltraLite.ULTable

Inserts arow in the table with values specified in previous Set methods.
Must be preceded by | nsertBegin.

InsertBegin method

Prototype

Description

Example

InsertBegin()
Member of UltraLite.ULTable

Prepares a table for inserting a new row, setting column valuesto their
defaults.

Cust oner Tabl e. | nsert Begi n
Cust oner Tabl e. Col ums(" Fnane"). Val ue
Cust orrer Tabl e. Col uims(" Lnane") . Val ue
If Len(city) > 0 Then
Cust oner Tabl e. Col ums("Gty"). Value = city
End If

f nane
| nane

If Len(phone) > 0 Then
Cust oner Tabl e. Col ums(" phone") . Val ue = phone
End If
Cust oner Tabl e. | nsert

LookupBackward method

Prototype

Description

LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable

Move backwards through the table starting from the end, looking for the first
row that matches or is less than avalue or set of valuesin the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the OpenBylndex method. The default
index isthe primary key.

& For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
theindex. The cursor isleft on the last row that matches or is less than the
index value. On failure (that is, if no row isless than the value being looked
for), the cursor position is Befor eFir st().

91

ULTable class

Parameters num_columns An optional parameter referring to the number of columns
to be used in the comparison.

Returns Trueif successful.
Falseif unsuccessful.

LookupBegin method

Prototype LookupBegin()
Member of UltraLite.ULTable

Description Prepares a table for alookup.

LookupForward method

Prototype LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraLite.ULTable
Description Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of valuesin the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the OpenByl ndex method. The default
index isthe primary key.

& For more information, see "Open method" on page 94.

To specify the value to search for, set the column value for each column in
the index. The cursor isleft on the first row that matches or is greater than
theindex value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is After L ast().

Parameters num_columns An optional parameter referring to the number of columns
to be used in the comparison.

Returns Trueif successful.
False if unsuccessful.

MoveAfterLast method

Prototype MoveAfterLast () As Boolean
Member of UltraLite.ULTable

92

Chapter 4 API Reference

Description Moves to a position after the last row.
Returns Trueif successful.
Falseif thereis no datain the table.

MoveBeforeFirst method

Prototype MoveBeforeFirst ()
Member of UltraLite.ULTable

Description Moves to a position before the first row.

MoveFirst method

Prototype MoveFirst () As Boolean
Member of UltraLite.ULTable

Description Movesto the first row.

Returns Trueif successful.

Falseif thereis no datain the table.

MovelLast method

Prototype MovelLast () As Boolean

Member of UltraLite.ULTable
Description Movesto the last row.
Returns Trueif successful.

Falseif thereis no datain the table.

MoveNext method

Prototype MoveNext () As Boolean

Member of UltraLite.ULTable
Description Moves to the next row.
Returns Trueif successful.

Falseif there is no more data in the table.

93

ULTable class

MovePrevious method

Prototype

Description

Returns

MovePrevious () As Boolean
Member of UltraLite.ULTable

Moves to the previous row.
Trueif successful.

Falseif thereis no more datain the table.

MoveRelative method

Prototype

Description

Parameters

Returns

Open method

Prototype

Description

Parameters

Truncate method

Prototype

Description

94

MoveRelative (index As Long) As Boolean
Member of UltraLite.ULTable

Moves a certain number of rows relative to the current row.

index The number of rows to move.
Trueif successful.
False if the move failed.

Open([index_name As String])
Member of UltraLite.ULTable

Opens the table so it can be read or manipulated. When you use the Open
method, the rows are ordered by the named index. If no index is provided,
rows are ordered by the primary key. The cursor is positioned before the first
row in the table.

index_name The name of the index.

Truncate ()
Member of UltraLite.ULTable

Removes all data from this table but does not affect the datain the
consolidated database. Deletions are not sent up in the next synchronization,
so truncate will not affect the datain the consolidated database.

& For more information, see " StopSynchronizationDel ete method" on
page 62.

Chapter 4

API Reference

Update method

Prototype Update()
Member of UltraLite.ULTable

Description Updates a row in the table with the new val ues specified.
Note: Must be preceded by a call to UpdateBegin.

UpdateBegin method

Prototype UpdateBegin()
Member of UltraLite.ULTable
Description Prepares a table for modifying the contents of the current row.
Example Tabl e. Updat eBegi n
Tabl e. Col utms (" Col Nane") . Val ue="New Val ue"
Tabl e. Updat e

95

ULTableSchema class

ULTableSchema class

The UL TableSchema object allows you to obtain the attributes of atable.

Properties

The following are properties of the UL TableSchema class:

Prototype Description

ColumnCount as Integer (read-only) | The number of columnsin thistable.

Indexes As IULIndexSchemas The collection of indexes on thistable.

Name as String (read-only) This table's name.

NeverSynchronized As Boolean Trueif thistableis to be excluded from all

(read-only) synchronizations.

PrimaryKey as ULIndexSchema The primary key for this table.

(read-only)

UploadUnchangedRows as Boolean | Trueif all rowsin the table should be

(read-only) uploaded on synchronization, rather than
just the rows changed since the last
synchronization.

InPublication method

Prototype InPublication(pub_name As String) As Boolean

Member of UltraLite.ULTableSchema
Description Indicates whether this table is part of the specified publication.
Returns Trueif thetableis part of the publication.

Falseif the table is not part of the publication.

96

Index

A

Accessing and manipulating data
about, 35
UltraLite for eMbedded Visua Basic, 35

Accessing schemainformation
about, 41
UltraLite for eMbedded Visua Basic, 41

AppendByteChunk method (UL Column class)
UltraLite for eMbedded Visua Basic API, 53

AppendStringChunk method (UL Column class)
UltraLite for eMbedded Visual Basic API, 54

ApplyFile (ULDatabaseM anager class)
UltraLite for eMbedded Visual Basic API, 70

Architecture
UltraLite for eMbedded Visua Basic, 4

AuthStatus property (UL SyncResult class)
UltraLite for eMbedded Visua Basic API, 85

AutoCommit mode
about, 39

AutoCommit property (IULColumns collection)
Ultralite for eMbedded Visua Basic API, 59

Autolncrement property (UL ColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

B

BOF property (ULTable class)
UltraLite for eMbedded Visual Basic API, 87

C

Cancel Synchronize method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 60

casting
datatypes, 36

CheckpointStore property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 84

Close method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 60

Close method (UL Table class)
Ultralite for eMbedded Visua Basic API, 87

ColumnCount property (UL IndexSchema class)
Ultralite for eMbedded Visua Basic API, 71

ColumnCount property (UL TableSchema class)
UltraLite for eMbedded Visua Basic API, 96

ColumnName property (UL IndexSchema class)
UltraLite for eMbedded Visua Basic API, 71

columns
accessing schema information, 41

Columns collection
introduction, 35

Columns method (UL Table class)
UltraLite for eMbedded Visual Basic API, 88

Commit method
about, 39

Commit method (UL Connection class)
UltraLite for eMbedded Visual Basic API, 60

commits
about, 39

97

D-E

connecting
UltraLite databases, 32

Connecting to the UltralL ite database
about, 32
UltraLite for eMbedded Visua Basic, 32

connection parameters
databases, 32

Count property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 49

Count property (IULIndexSchemas collection)
UltraLite for eMbedded Visua Basic API, 50

Count property (IULPublicationSchemas collection)
UltraLite for eMbedded Visua Basic API, 51

CountUploadRows method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 61

CreateDatabase method (UL DatabaseM anager class)
UltraLite for eMbedded Visua Basic API, 64

CustDB sample
UltraLite for eMbedded Visua Basic, 26

D

data manipulation
about, 35, 39

data types
accessing, 36
casting, 36

database schema
accessing, 41

Databasel D property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

DatabaseM anager property (IULColumns
collection)
UltraLite for eMbedded Visua Basic API, 59

DatabaseNew property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

databases
accessing schemainformation, 41
connecting to, 32
schema, 30
working with, 30

98

DateFormat property (UL DatabaseSchema class)
UltraLite for eMbedded Visua Basic API, 69

DateOrder property (UL DatabaseSchema class)
UltraLite for eMbedded Visua Basic API, 69

default values
setting, 57

DefaultVa ue property (UL ColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

Delete method (UL Table class)
UltraLite for eMbedded Visua Basic API, 88

DeleteAllRows method (UL Table class)
UltraLite for eMbedded Visual Basic API, 88

deleting rows
about, 37

Development platforms
supported, 3
UltraLite for eMbedded Visual Basic, 3

DownloadOnly property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

DropDatabase method (UL DatabaseM anager class)
UltralLite for eMbedded Visual Basic API, 65

E

eMbedded Visual Basic
Development platforms, 3
supported versions, 3

EOF property (UL Table class)
UltraLite for eMbedded Visua Basic API, 87

error handling
about, 42

Error handling
about, 42
UltralLite for eMbedded Visua Basic, 42

ErrorResume property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 59

ErrorResume property (UL DatabaseM anager class)
UltraLite for eMbedded Visua Basic API, 64

errors
handling, 42

F

features
UltraLite for eMbedded Visua Basic, 2

feedback
documentation, vii
providing, vii

find methods
about, 36

find mode
about, 39

FindBegin method (UL Table class)
UltraLite for eMbedded Visual Basic API, 88

FindFirst method (UL Table class)
UltraLite for eMbedded Visual Basic API, 88

FindLast method (UL Table class)
UltraLite for eMbedded Visual Basic API, 89

FindNext method (UL Table class)
UltraLite for eMbedded Visual Basic API, 90

FindPrevious method (UL Table class)
UltraLite for eMbedded Visual Basic API, 90

ForeignKey property (UL IndexSchema class)
UltraLite for eMbedded Visua Basic API, 71

G

GetByteChunk method (UL Column class)
UltraLite for eMbedded Visua Basic API, 54

GetStringChunk method (UL Column class)
UltraLite for eMbedded Visua Basic API, 55

GetTable function (UL Connection class)
UltraLite for eMbedded Visua Basic API, 61

Global Autolncrement property (UL ColumnSchema
class)
UltraLite for eMbedded Visua Basic API, 58

Global Autol ncrementUsage property (IULColumns
collection)
UltraLite for eMbedded Visual Basic API, 59

grantConnectTo method
introduction, 43

GrantConnectTo method (UL Connection class)
UltraLite for eMbedded Visual Basic API, 61

ID property (UL ColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

IgnoredRows property (UL SyncResult class)
UltraLite for eMbedded Visua Basic API, 85

indexes
accessing schema information, 41

Indexes property (UL TableSchema class)
UltraLite for eMbedded Visua Basic API, 96

InPublication method (UL TableSchema class)
UltraLite for eMbedded Visua Basic API, 96

Insert method (UL Table class)
Ultralite for eMbedded Visua Basic API, 91

insert mode
about, 39

InsertBegin method (UL Table class)
UltraLite for eMbedded Visual Basic API, 91

inserting rows
about, 37

internals
data manipulation, 39

IsNull property (ULColumn class)
UltraLite for eMbedded Visual Basic API, 53

1sOpen property (ULTable class)
Ultralite for eMbedded Visua Basic API, 87

Item property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 49

Item property (IULIndexSchemas collection)
UltraLite for eMbedded Visua Basic API, 50

Item property (IULPublicationSchemas collection)
UltraLite for eMbedded Visua Basic API, 51

IULColumns collection
about, 49
properties, 49
UltraLite for eMbedded Visual Basic API, 49

99

L-N

IULIndexSchemas collection
about, 50
properties, 50
UltraLite for eMbedded Visua Basic API, 50

IUL PublicationSchemas class
properties, 51

|UL PublicationSchemas collection
about, 51
UltraLite for eMbedded Visua Basic PI, 51

L

LastDownloadTime method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 62

LastErrorCode property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

LastErrorDescription property (IULColumns
collection)
UltraL ite for eMbedded Visual Basic API, 59

Lastldentity property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

lookup methods
about, 36

lookup mode
about, 39

LookupBackward method (UL Table class)
UltraLite for eMbedded Visual Basic API, 91

LookupBegin method (UL Table class)
UltraLite for eMbedded Visua Basic API, 92

LookupForward method (UL Table class)
UltraLite for eMbedded Visua Basic API, 92

M

masks
publications, 83

Microsoft Visual Basic
supported versions, 3

modes
about, 39

100

MoveAfterLast method (UL Table class)
UltraLite for eMbedded Visua Basic API, 92

MoveBeforeFirst method (UL Table class)
UltraLite for eMbedded Visual Basic API, 93

MoveFirst method
introduction, 35

MoveFirst method (UL Table class)
UltraLite for eMbedded Visua Basic API, 93

Movel ast method (UL Table class)
UltraLite for eMbedded Visua Basic API, 93

MoveNext method
introduction, 35

MoveNext method (UL Table class)
UltraLite for eMbedded Visua Basic API, 93

MovePrevious method (UL Table class)
UltraLite for eMbedded Visua Basic API, 94

MoveRelative method (UL Table class)
UltraLite for eMbedded Visua Basic API, 94

N

Name property (UL ColumnSchema class)
UltraLite for eMbedded Visual Basic API, 58

Name property (ULIndexSchema class)
UltraLite for eMbedded Visua Basic API, 71

Name property (UL TableSchema class)
UltraLite for eMbedded Visua Basic API, 96

NearestCentury property (ULDatabaseSchema class)

UltraLite for eMbedded Visual Basic API, 69

NeverSynchronized property (UL TableSchema
class)
UltraLite for eMbedded Visua Basic API, 96

NewPassword property (IULColumns collection)
Ultralite for eMbedded Visua Basic API, 84

newsgroups
technical support, vii

Nullable property (ULColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

O

object hierarchy
UltraLite for eMbedded Visua Basic, 4

OnReceive event (UL DatabaseM anager class)
UltraLite for eMbedded Visua Basic API, 65

OnSend event (ULDatabaseManager class)
UltraLite for eMbedded Visua Basic API, 66

OnStateChange event (UL DatabaseM anager class)
UltraLite for eMbedded Visual Basic API, 67

OnTableChange event (UL DatabaseM anager class)
UltraLite for eMbedded Visua Basic API, 67

Open method
ULTable object, 35

Open method (UL Table class)
UltraLite for eMbedded Visual Basic API, 94

OpenConnection method (UL DatabaseM anager
class)
UltraLite for eMbedded Visua Basic API, 68

OpenParms property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

OptimalIndex property (UL ColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

P

Password property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 84

passwords
authentication, 43

platforms
supported, 3

Precision property (UL ColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

Precision property (UL DatabaseSchema class)
UltraLite for eMbedded Visual Basic API, 69

Preparing to work with eMbedded Visual Basic
about, 28
UltraLite for eMbedded Visual Basic, 28

PrimaryKey property (UL IndexSchema class)
UltraLite for eMbedded Visua Basic API, 71

PrimaryKey property (UL TableSchema class)
UltraLite for eMbedded Visual Basic API, 96

projects
creating UltraLite for eMbedded Visual Basic
projects, 11

publication masks
about, 83
al, 83

PublicationMask property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 84

publications
accessing schema information, 41

Publications property (UL DatabaseSchema class)
UltraLite for eMbedded Visua Basic API, 69

R

ReferencedlndexName property (ULIndexSchema
class)
Ultralite for eMbedded Visua Basic API, 71

ReferencedTableName property (ULIndexSchema
class)
UltraLite for eMbedded Visua Basic API, 71

RevokeConnectFrom method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 62

revokeConnectionFrom method
introduction, 43

Rollback method
about, 39

Rollback method (UL Connection class)
UltraLite for eMbedded Visual Basic API, 62

rollbacks
about, 39

RowCount property (ULTable class)
Ultralite for eMbedded Visua Basic API, 87

rows
accessing current row, 36

101

S-S

S

samples
UltraLite for eMbedded Visua Basic, 26

Scale property (ULColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

schema
accessing, 41

schemafiles
about, 30
creating, 31

Schema painter
starting, 31

Schema property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

Schema property (UL Column class)
UltraLite for eMbedded Visua Basic API, 53

Schema property (UL Table class)
UltraLite for eMbedded Visual Basic API, 87

sColumnDescendinproperty (ULIndexSchema class)
UltraLite for eMbedded Visua Basic API, 71

scrolling
through rows, 35

searching
rows, 36

SendColumnNames property (UL Columns
collection)
UltraLite for eMbedded Visua Basic API, 84

SendDownloadAck property (IULColumns
collection)
UltraLite for eMbedded Visua Basic API, 84

SetByteChunk method (UL Column class)
UltraLite for eMbedded Visua Basic API, 56

SetToDefault method (UL Column class)
Ultralite for eMbedded Visual Basic API, 57

Shutdown method (UL DatabaseM anager class)
UltraLite for eMbedded Visua Basic API, 68

Signature property (UL DatabaseSchema class)
UltraLite for eMbedded Visua Basic API, 69

Size property (UL ColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

102

SQL Anywhere Studio
additional features, 3

SQL Type property (UL ColumnSchema class)
UltraLite for eMbedded Visua Basic API, 58

StartSynchronizationDelete method (UL Connection
class)
UltraLite for eMbedded Visua Basic API, 62

StopSynchronizationDelete method (UL Connection
class)
Ultralite for eMbedded Visua Basic API, 62

Stream property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

StreamErrorCode property (UL SyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamErrorContext property (UL SyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamErrorID property (ULSyncResult class)
UltraLite for eMbedded Visual Basic API, 85

StreamErrorSystem property (UL SyncResult class)
UltralLite for eMbedded Visual Basic API, 85

StreamParms property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

StringToUUID method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 63

support
newsgroups, vii

supported platforms, 3

synchronization
HTTP, 44
introduction, 44
SQL Anywhere Studio required, 3
TCP/IP, 44

Synchronize method (UL Connection class)
UltraLite for eMbedded Visual Basic API, 63

Synchronizing UltraLite applications
about, 44
UltraLite for eMbedded Visua Basic, 44

SyncParms property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 59

SyncResult property (IULColumns collection)
UltralLite for eMbedded Visual Basic API, 59

T

TableCount property (UL DatabaseSchema class)
UltraLite for eMbedded Visua Basic API, 69

tables
accessing schemainformation, 41

target platforms
supported, 3
UltraLite for eMbedded Visua Basic, 3

technical support
newsgroups, vii

TimeFormat property (UL DatabaseSchema class)
UltraLite for eMbedded Visua Basic API, 69

TimestampFormat property (UL DatabaseSchema
class)
UltraLite for eMbedded Visua Basic API, 69

transaction processing
about, 39

transactions
about, 39

Truncate method (UL Table class)
UltraLite for eMbedded Visua Basic API, 94

tutorial
UltraLite for eMbedded Visua Basic, 7

U

udb files
UltraLite databases, 30

UL AuthStatusCode constants
about, 52
UltraLite for eMbedded Visua Basic API, 52

UL Column class
about, 53
properties, 53
UltraLite for eMbedded Visual Basic API, 53

UL ColumnSchema class
about, 58
properties, 58
UltraLite for eMbedded Visua Basic API, 58

UL ColumnSchema object
introduction, 41

UL Connection class
about, 59
properties, 59
UltraLite for eMbedded Visual Basic API, 59

UL Connection object
introduction, 32

UL DatabaseManager class
about, 64
UltraLite for eMbedded Visual Basic API, 64

UL DatabaseM anager object
introduction, 32

UL DatabaseSchema class
about, 69
properties, 64, 69
UltraLite for eMbedded Visua Basic API, 69

UL DatabaseSchema object
introduction, 41

ULIndexSchema class
about, 71
properties, 71
UltraLite for eMbedded Visual Basic API, 71

UL IndexSchema object
introduction, 41

UL PublicationSchema class
about, 72
properties, 72
UltraLite for eMbedded Visual Basic API, 72

UL PublicationSchema object
introduction, 41

UL SQL Code constants
about, 73
UltraLite for eMbedded Visual Basic API, 73

UL SQL Type constants
about, 76
UltraLite for eMbedded Visua Basic API, 76

UL StreamErrorCode constants
about, 77
UltraLite for eMbedded Visua Basic API, 77

UL StreamErrorContext constants
about, 80
UltraLite for eMbedded Visual Basic PI, 80

103

u-u

UL StreamErrorID constants
about, 81

UltraLite for eMbedded Visua Basic API, 81

UL StreamType
about, 82

UltraLite for eMbedded Visua Basic API, 82

UL SyncParms class
about, 84
properties, 84

UltraLite for eMbedded Visua Basic API, 84

UL SyncResult class
about, 85
properties, 85

UltraLite for eMbedded Visua Basic API, 85

UL SyncState constants
about, 86

UltraL ite for eMbedded Visual Basic API, 86

ULTable class
about, 87
properties, 87

UltraLite for eMbedded Visua Basic API, 87

UL Table object
introduction, 35

UL TableSchema class
about, 96
properties, 96

UltraLite for eMbedded Visua Basic API, 96

UL TableSchema object
introduction, 41

UltraLite
about, 1

UltraLite databases
about, 30
features, 30
schema, 30

UltraLite for eMbedded Visua Basic
Accessing and manipulating data, 35
Accessing schemainformation, 41
architecture, 4
Connecting to the UltraL ite database, 32
Error handling, 42
features, 2
object hierarchy, 4

Preparing to work with eMbedded Visual Basic,

28
104

Synchronizing UltraLite applications, 44

UltraLite for eMbedded Visual Basic
architecture, 4

UltraLite for eMbedded Visual Basic features, 2

User authentication, 43

UltraLite for eMbedded Visual Basic API
IULColumns class, 53
|ULColumns collection, 49
IUL IndexSchemas collection, 50
IUL PublicationSchemas collection, 51
UL AuthStatusCode constants, 52
UL ColumnSchema class, 58
UL Connection class, 59
UL DatabaseManager class, 64
UL DatabaseSchema class, 69
ULIndexSchemaclass, 71
UL PublicationSchema class, 72
UL SQL Code constants, 73
UL SQL Type constants, 76
UL StreamErroCodeConstants, 77
UL StreamErrorContext constants, 80
UL StreamErrorl D constants, 81
UL StreamType, 82
UL SyncParms class, 84
UL SyncResult class, 85
UL SyncState constants, 86
ULTable class, 87
UL TableSchema class, 96

UltraLite for eMbedded Visual Basic architecture
about, 4
UltraLite for eMbeddd Visua Basic, 4

UltraLite for eMbedded Visua Basic features
about, 2
UltraLite for eMbedded Visual Basic, 2

Ultral ite for eMbedded Visual Basic projects
creating, 11

Uniquelndex property (ULIndexSchema class)
UltralLite for eMbedded Visual Basic API, 71

UniqueKey property (ULIndexSchema class)
UltraLite for eMbedded Visua Basic API, 71

Update method (UL Table class)
Ultralite for eMbedded Visua Basic API, 95

update mode
about, 39

UpdateBegin method (UL Table class)
UltralLite for eMbedded Visual Basic API, 95

V-w

updating rows
about, 37

UploadOK property (UL SyncResult class)
UltraLite for eMbedded Visua Basic API, 85

UploadOnly property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 84

UploadUnchangedRows property (UL TableSchema

class)
UltraLite for eMbedded Visua Basic API, 96

user authentication
about, 43

User authentication
about, 43
UltraLite for eMbedded Visua Basic, 43

UserName property (IULColumns collection)
UltraLite for eMbedded Visua Basic API, 84

users
authentication, 43

usm files
about, 30
creating, 31

UUIDToString method (UL Connection class)
UltraLite for eMbedded Visua Basic API, 63

Vv

Value property (ULColumn class)
UltraLite for eMbedded Visual Basic API, 53

values
accessing, 36

Version property (IULColumns collection)
UltraLite for eMbedded Visual Basic API, 84

Version property (ULDatabaseM anager class)
UltraLite for eMbedded Visua Basic API, 64

Visual Basic
supported versions, 3

w

Windows CE
supported versions, 3

105

106

	UltraLite for eMbedded Visual Basic User's Guide
	About This Manual
	The UltraLite sample database

	1. Introduction to UltraLite for eMbedded Visual Basic
	UltraLite for eMbedded Visual Basic features
	System requirements and supported platforms
	Supported platforms
	SQL Anywhere Studio

	UltraLite for eMbedded Visual Basic architecture

	2. Tutorial: An UltraLite for eMbedded Visual Basic Application
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Create a project architecture
	Lesson 3: Design the application form
	Lesson 4: Configure the emulator to support UltraLite applications
	Lesson 5: Write the Visual Basic sample code
	Write code for connection to your database
	Write code for data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 6: Deploy to a device
	Summary

	3. Understanding UltraLite for eMbedded Visual Basic Development
	Preparing to work with eMbedded Visual Basic
	Adding the UltraLite component to the design environment
	Adding the UltraLite component to the device
	Copying an UltraLite database to the device

	Working with UltraLite databases
	Creating UltraLite database schema files

	Connecting to the UltraLite database
	Accessing and manipulating data
	Scrolling through the rows of a table
	Accessing the values of the current row
	Searching for rows with find and lookup
	Inserting updating, and deleting rows
	Transaction processing in UltraLite
	Data manipulation internals

	Accessing schema information
	Error handling
	User authentication
	Synchronizing UltraLite applications
	Monitoring Synchronization progress

	4. API Reference
	IULColumns collection
	Properties

	IULIndexSchemas collection
	Properties

	IULPublicationSchemas collection
	Properties

	ULAuthStatusCode constants
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULDatabaseManager class
	Properties
	CreateDatabase method
	DropDatabase method
	OnReceive event
	OnSend event
	OnStateChange event
	OnTableChange event
	OpenConnection method
	Shutdown method

	ULDatabaseSchema class
	Properties
	ApplyFile method

	ULIndexSchema class
	Properties

	ULPublicationSchema class
	Properties

	ULSQLCode constants
	ULSQLType constants
	ULStreamErrorCode constants
	ULStreamErrorContext constants
	ULStreamErrorID constants
	ULStreamType
	ULSyncMasks Type
	ULSyncParms class
	Properties

	ULSyncResult class
	Properties

	ULSyncState constants
	ULTable class
	Properties
	Close method
	Columns method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Truncate method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	InPublication method

	Index

