
UltraLite
™
 for MobileVB

User’s Guide

Last modified: October 2002
Part Number: 36292-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 36292-01-0802-01.

iii

Contents

About This Manual... v
The UltraLite sample database .. vi
Finding out more and providing feedback................................vii

1 Introduction to UltraLite for MobileVB 1
UltraLite for MobileVB features ...2
System requirements and supported platforms3
UltraLite for MobileVB architecture ...5

2 Tutorial: An UltraLite for MobileVB Application for Palm OS
.. 7

Introduction ...8
Lesson 1: Create a database schema9
Lesson 2: Create a project architecture..................................11
Lesson 3: Create a form interface...13
Lesson 4: Write connection, synchronization, and
table code..15
Lesson 5: Deploy the application to a device24
Summary...25

3 Tutorial: An UltraLite for MobileVB Application for
PocketPC.. 27

Introduction ...28
Lesson 1: Create a database schema29
Lesson 2: Create a project architecture..................................31
Lesson 3: Create a form interface...33
Lesson 4: Write connection, synchronization, and
table code..34
Lesson 5: Deploying the application to a device.....................43
Summary...44

4 Understanding UltraLite for MobileVB Development 45
Connecting to the UltraLite database......................................46
Accessing and manipulating data ...49

iv

Accessing schema information ... 55
Error handling.. 56
Synchronization .. 57

5 API Reference .. 59
ULAuthStatusCode constants... 60
ULColumn class.. 61
ULColumnSchema class... 66
ULConnection class .. 67
ULDatabaseManager class... 74
ULDatabaseSchema class.. 77
ULIndexSchema class .. 80
ULPublicationSchema class ... 82
ULSQLCode enum.. 83
ULSQLType enum .. 86
ULStreamErrorCode enum ... 87
ULStreamErrorContext enum ... 90
ULStreamErrorID enum .. 91
ULStreamType enum.. 92
ULSyncParms class.. 93
ULSyncResult class .. 95
ULSyncState ... 96
ULTable class ... 97
ULTableSchema class .. 106

Index... 109

v

About This Manual

This manual describes UltraLite for MobileVB, which is part of the
UltraLite Component Suite. With UltraLite for MobileVB you can develop
and deploy database applications to handheld, mobile, or embedded devices,
including devices running the Palm Computing Platform and Windows CE.

This manual is intended for MobileVB application developers who wish to
take advantage of the performance, resource efficiency, robustness, and
security of an UltraLite relational database for data storage and
synchronization.

Subject

Audience

vi

The UltraLite sample database
Some of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database schema is held in a file named custdb.xml,
and is located in the Samples\UltraLiteForMobileVB\CustDB subdirectory of
your SQL Anywhere directory. A complete application built on this database
is also supplied as Samples\UltraLiteFor MobileVB\CustDB\custdb.vbg.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

vii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through a newsgroup. The newsgroup can be found on the
forums.sybase.com news server as
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

viii

1

C H A P T E R 1

Introduction to UltraLite for MobileVB

This chapter introduces you to UltraLite for MobileVB features, platforms,
architecture, and functionality. It assumes that you are familiar with the
UltraLite Component Suite, as described in "Introduction to the UltraLite
Component Suite" on page 1 of the book UltraLite Foundations.

Topic Page

UltraLite for MobileVB features 2

System requirements and supported platforms 3

UltraLite for MobileVB architecture 5

About this chapter

Contents

UltraLite for MobileVB features

2

UltraLite for MobileVB features
UltraLite for MobileVB is a member of the UltraLite Component Suite. It
provides the following benefits for developers targeting small devices:

♦ a robust relational database store

♦ synchronization

♦ application development using the AppForge MobileVB development
tools

♦ deployment on the Palm OS and Windows CE platforms.

$ For more information on the features and benefits of the UltraLite
Component Suite, see "Introduction to the UltraLite Component Suite" on
page 2 of the book UltraLite Foundations.

Chapter 1 Introduction to UltraLite for MobileVB

3

System requirements and supported platforms

Platform support for UltraLite is of the following kinds:

♦ Target platforms The target platform is the device and operating
system on which you deploy your finished UltraLite application.

♦ Development platforms For each target platform, you develop your
applications using a particular development tool and operating system.
The tool and operating system comprise the development platform.

AppForge Booster
To develop applications using the UltraLite for AppForge MobileVB
component, you will need the AppForge Booster. If you are missing
Booster, you can get it from http://www.appforge.com/booster.html.

To develop applications using UltraLite for MobileVB, you require

♦ Microsoft Windows NT/2000/XP

♦ Microsoft Visual Basic 6

♦ AppForge 2.11 or AppForge MobileVB Version 3.0.

Compatibility
If you are using versions of MobileVB earlier than 3.0 and are
developing for Windows CE on an ARM device, you must copy
ultralite\UltraLiteForMobileVB\ce\arm\ulmvb8.dll under your
SQL Anywhere directory to the \Program Files\AppForge directory
on your device.

UltraLite for MobileVB supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM and MIPS
processors

♦ Palm OS version 3.0 and higher

Development
platforms

Target platforms

System requirements and supported platforms

4

SQL Anywhere Studio

You can use SQL Anywhere Studio to add the following capabilities to your
applications:

♦ Synchronization SQL Anywhere users can synchronize the data in
UltraLite applications with a central database.

♦ Reference database SQL Anywhere users who wish to model an
UltraLite database after an Adaptive Server Anywhere database, can use
the ulinit command-line tool to generate an UltraLite schema file from an
Adaptive Server Anywhere database.

Chapter 1 Introduction to UltraLite for MobileVB

5

UltraLite for MobileVB architecture
UltraLite for MobileVB provides a database engine for the Palm Computing
Platform and Windows CE. It provides a MobileVB ingot that exposes a set
of objects for data manipulation using the UltraLite database.

ULDatabaseManagerULDatabaseManager

ULConnectionULConnection

ULTableULTable

ULColumnULColumn

ULPublicationSchemaULPublicationSchema

ULDatabaseSchemaULDatabaseSchema

ULSyncParmsULSyncParms

ULTableSchemaULTableSchema

ULIndexSchemaULIndexSchema

ULColumnSchemaULColumnSchema

ULSyncResultULSyncResult

Notably, there is a set of high-level objects you should know about:

♦ ULDatabaseManager allows you to open connections and set an active
listener. The ULDatabaseManager is the starting point for your
MobileVB application because it is through this class that you first open
a connection to database.

$ For more information on the ULDatabaseManager class, see
"ULDatabaseManager class" on page 74.

♦ ULConnection represents a database connection, and governs
transactions.

$ For more information on ULConnection, see "ULConnection
class" on page 67.

♦ ULTable, ULColumn, and ULIndexSchema objects allow
programmatic control over database tables, columns and indexes.

UltraLite for MobileVB architecture

6

$ For more information on the ULTable, ULColumn, and
ULIndexSchema objects, see "ULTable class" on page 97, "ULColumn"
on page 61, and "ULIndexSchema" on page 80.

♦ Synchronization objects allow you to control synchronization through
the MobiLink synchronization server, providing you have the SQL
Anywhere Studio suite.

$ For more information on synchronization with MobiLink, see the
MobiLink Synchronization Users Guide in the SQL Anywhere Studio.

7

C H A P T E R 2

Tutorial: An UltraLite for MobileVB
Application for Palm OS

This chapter walks you through all the steps of building your first UltraLite
for MobileVB application. The application synchronizes data with a database
on your desktop computer.

Topic Page

Introduction 8

Lesson 1: Create a database schema 9

Lesson 2: Create a project architecture 11

Lesson 3: Create a form interface 13

Lesson 4: Write connection, synchronization, and table code 15

Lesson 5: Deploy the application to a device 24

Summary 25

About this chapter

Contents

Introduction

8

Introduction
This tutorial walks you through building an UltraLite for MobileVB
application. At the end of the tutorial you will have an application and small
database on the Palm emulator that synchronizes with a larger database
running on your desktop machine. If you have a device set up to use TCP/IP,
you can also run the application on the device.

The tutorial takes about 50 minutes.

This tutorial assumes:

♦ you have MobileVB and Microsoft Visual Basic 6 installed on your
system.

♦ you are familiar with MobileVB and Microsoft Visual Basic 6

♦ you can write, test, and troubleshoot a Visual Basic 6 application

♦ you can add references and components as needed

♦ you can use the Visual Basic Object Browser and navigate the
Visual Basic 6 environment

Note
You can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

To develop applications using the UltraLite for AppForge MobileVB
component, you will need the AppForge Booster. If you are missing
Booster, you can get it from http://www.appforge.com/booster.html.

To complete the synchronization section of the tutorial requires that:

♦ you can create an ODBC data source

♦ you can use command line options and parameters

♦ you have knowledge of both the Sybase Central Adaptive Server
Anywhere plug-in and the MobiLink synchronization plug-in

The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite for MobileVB application.

Timing

Requirements,
competencies and
experience

Goals

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

9

Lesson 1: Create a database schema
A schema is a database definition without the data. You create an UltraLite
schema file as a necessary first step to making an UltraLite database.

$ For more information on UltraLite schemas, see "UltraLite for
MobileVB architecture" on page 5.

When creating UltraLite schemas for a Palm device, the following
information is necessary:

♦ A way to identify the database so an application can connect to it. This
is done with the Palm creator ID.

♦ A way to identify the schema on the development machine so it can be
copied to the device.

♦ A way to identify the schema on the device.

Create your schema file using the UltraLite Schema Painter

To complete this tutorial you need a directory to hold the files you create.
This directory is assumed to be C:\tutorial\mvb. If you create your tutorial
directory elsewhere, supply the path to your location instead of
c:\tutorial\mvb throughout.

v To create the schema file using the UltraLite Schema Painter:

1 Start the UltraLite Schema Painter:

Click Start➤Programs➤Sybase SQL Anywhere 8➤UltraLite
➤UltraLite Schema Painter.

2 Create a new schema file called tutCustomer.

♦ Open the Tools folder and double-click Create UltraLite schema.

♦ In the file dialog box, type c:\tutorial\mvb\tutCustomer.usm or
Browse to the folder and enter tutCustomer.

♦ Click OK to create the schema.

3 Create a table called customer.

♦ Expand the tutCustomer item in the left pane of the UltraLite
Schema Painter and select the Tables folder.

♦ Open the Tables folder and double-click Add Table. The New Table
dialog appears.

Lesson 1: Create a database schema

10

♦ Enter the name customer.

♦ In the New Table dialog, add columns with the following
properties.

Column
name

Data type
(Size)

Column Allows
NULL values?

Default value

Id integer No autoincrement

Fname char (15) No None

Lname char (20) No None

City char (20) Yes None

Phone char (12) Yes 555-1234

♦ Set Id as the primary key: Click Primary Key and add Id to the
index, marking it as ascending.

♦ Check your work and click OK to complete the table definition and
dismiss the New Table dialog.

4 Click File ➤Save to save the tutcustomer.usm file.

5 Export a Palm schema file.

♦ Right click on the database icon and select Export Schema for Palm
from the popup menu.

♦ Enter a Palm Creator ID of Syb3.

A note on Palm Creator ID’s
A Palm creator ID is assigned to you by Palm. You can use Syb3 as
your creator ID when you make sample applications for your own
learning. However, when you create your commercial application,
you should use your own creator ID.

♦ Leave the filename at its default setting to save the PDB file in your
tutorial directory. Click OK.

♦ Exit the UltraLite Schema Painter

You have now defined the schema of your UltraLite database. Although this
database contains only a single table, you can use many tables in UltraLite
databases.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

11

Lesson 2: Create a project architecture
The tutorial assumes the folder c:\tutorial\mvb, the same one holding your
schema file, is where you will store your application files.

The first step is to create an UltraLite for MobileVB project for your
application. You can use a MobileVB project to get MobileVB controls that
are suitable for small devices. On the Visual Basic toolbar on the left of the
Visual Basic environment, MobileVB tools appear in addition to the standard
Visual Basic tools.

v To create an UltraLite for MobileVB reference:

1 Start MobileVB

♦ Click Start➤Programs➤AppForge MobileVB➤Start MobileVB

2 Create a new project.

3 Choose a design target for your application. When asked for the Design
Target, choose Palm OS.

4 Create a Visual Basic reference to the UltraLite for MobileVB
component:

♦ Click Project ➤ References

♦ Check the box beside the item iAnywhere Solutions, UltraLite for
MobileVB 8.0.

♦ If the item does not appear, click Browse and go to the win32
subdirectory of your SQL Anywhere installation:
UltraLite\UltraLiteforMobileVB\win32

♦ Select the file ulmvb8.dll and click Open.

♦ Click OK

5 Give the Project a name.

♦ Click Project➤MobileVBProject1 Properties

♦ Under Project Name, type UltraLiteTutorial typed all as one word.
This is the name of the application as it will appear on your device.

♦ Click OK

6 Save the Project:

♦ Choose File ➤ Save Project

♦ For the Form filename, type c:\tutorial\mvb\MainForm.frm.

♦ Click Save.

Lesson 2: Create a project architecture

12

♦ For the Project filename, type
c:\tutorial\mvb\UltraLiteTutorial.vbp.

♦ Click Save.

You are now ready to proceed to the next step in the tutorial.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

13

Lesson 3: Create a form interface
You are now ready to design your application form. The project should have
a single form named Form1 displayed.

v To add controls to your project:

1 Add the AppForge MobileVB controls and properties given in the table
below to Form1:

Type Name Caption or text

AFTextBox txtfname

AFTextBox txtlname

AFTextBox txtcity

AFTextBox txtphone

AFLabel lblID

AFButton btnInsert Insert

AFButton btnUpdate Update

AFButton btnDelete Delete

AFButton btnNext Next

AFButton btnPrevious Previous

AFButton btnSync Synchronize

AFButton btnDone End

Your form should look like the figure below:

Lesson 3: Create a form interface

14

2 Compile and validate the application.

♦ Choose MobileVB ➤Compile and Validate.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

15

Lesson 4: Write connection, synchronization,
and table code

The first step in developing your application is to write UltraLite code to
connect to the database.

Write code for connecting to your database

In this application, you connect to the database in the Form Load event.

v Write code to connect to the UltraLite database:

1 Declare the UltraLite objects you need.

♦ Double click the form to open the Code window.

♦ Enter the following code at the top of the form in the declarations
area. This code declares the UltraLite objects you will need in this
sample:

Public DatabaseMgr As New ULDatabaseManager
Public Connection As ULConnection
Public CustomerTable As ULTable

These variables will be used through the application. Note that the
DatabaseMgr variable is also allocated as a new object. This is the only
object that can be instantiated.

2 Add the code to connect to the database in the Form Load event.

The code below opens the connection to the database and if the database
is new, it assigns a schema to it.

Lesson 4: Write connection, synchronization, and table code

16

Sub Form_Load()
 Dim conn_parms As String
 Dim open_parms As String
 Dim schema_parms As String

 conn_parms = "uid=DBA;pwd=SQL"
 open_parms = conn_parms & ";" & _
 "PALM_DB=Syb3;" & _
 "FILE_NAME=c:\tutorial\mvb\tutCustomer.udb"
 schema_parms = open_parms & ";" & _
 "PALM_SCHEMA=tutCustomer;" & _
 "SCHEMA_FILE=c:\tutorial\mvb\tutCustomer.usm"

 On Error Resume Next

 Set Connection = _
 DatabaseMgr.OpenConnection(open_parms)
 If Err.Number = ULSQLCode.ulSQLE_NOERROR Then
 MsgBox "Connected to an existing database"
 ElseIf Err.Number = _
 ULSQLCode.ulSQLE_DATABASE_NOT_FOUND Then
 Err.Clear
 Set Connection = _
 DatabaseMgr.CreateDatabase(schema_parms)
 If Err.Number = ULSQLCode.ulSQLE_NOERROR _
 Then
 MsgBox "Connected to a new database"
 Else
 MsgBox Err.Description
 End If
 End If
End Sub

This code attempts to connect to an existing database. If the database
does not exist, it creates a new database from the schema file and
establishes a connection.

3 Write the code that ends the application and closes the connection when
the End button is clicked:

Sub btnDone_Click()
 Connection.Close
 End
End Sub

4 Run the application in the development environment.

♦ Choose Run ➤Start.

♦ The first time you run the application, a message box is displayed
with the message Connected to a new database. On subsequent
runs the message is Connected to an existing database. The Form
then loads.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

17

♦ Click End to terminate the application.

You have now written a routine to establish a connection to a database. The
next lesson describes how to access data.

$ For more information, see "ULConnection class" on page 67.

Write code for data manipulation

The next step is to write code for data manipulation and navigation.

v To open the table:

1 Write code that initializes the table and moves to the first row.

Add the following code to the Form_Load routine, just before the End
Sub instruction:

Set CustomerTable = Connection.GetTable("customer")
CustomerTable.Open
CustomerTable.MoveBeforeFirst
If Err.Number <> ULSQLCode.ulSQLE_NOERROR Then
 MsgBox Err.Description
End If

This code assigns the CustomerTable variable and opens the table so
data can be read or manipulated. The call to MoveBeforeFirst positions
the application before the first row of data in the table - but note that it is
not strictly speaking, required, because after you call open, you are
already positioned before the first row. There are no rows in the table at
the moment.

2 Create a new function called DisplayCurrentRow and implement it as
shown below.

Lesson 4: Write connection, synchronization, and table code

18

Private Sub DisplayCurrentRow()
 If CustomerTable.RowCount = 0 Then
 txtFname.Text = ""
 txtLname.Text = ""
 txtCity.Text = ""
 txtPhone.Text = ""
 lblID.Caption = ""
 Else
 lblID.Caption = _
 CustomerTable.Column("Id").StringValue
 txtFname.Text = _
 CustomerTable.Column("Fname").StringValue
 txtLname.Text = _
 CustomerTable.Column("Lname").StringValue
 If CustomerTable.Column("City").IsNull Then
 txtCity.text=""
 Else
 txtCity.Text = _
 CustomerTable.Column("City").StringValue
 End If
 txtPhone.Text = _
 CustomerTable.Column("Phone").StringValue
 End If
End Sub

If the table has no rows, the application displays empty controls.
Otherwise, it displays the values stored in each of the columns of the
current row of the database.

3 Call this function from the Form’s Activate function.

Private Sub Form_Activate()
 DisplayCurrentRow
End Sub

This call ensures the fields get updated when the application starts.

At this stage you may wish to run the application to check that you have
entered the code correctly. As there are no rows in the table, the controls
are all empty.

v To insert rows into the table:

1 Implement the code for the Insert button.

Add the following routine to the form:

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

19

Private Sub btnInsert_Click()
 Dim fname As String
 Dim lname As String
 Dim city As String
 Dim phone As String

 fname = txtFname.Text
 lname = txtLname.Text
 city = txtCity.Text
 phone = txtPhone.Text

 On Error GoTo InsertError
 CustomerTable.InsertBegin
 CustomerTable.Column("Fname").StringValue = _
 fname
 CustomerTable.Column("Lname").StringValue = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Column("City").StringValue = _
 city
 End If
 If Len(phone) > 0 Then
 CustomerTable.Column("Phone").StringValue = _
 phone
 End If
 CustomerTable.Insert
 CustomerTable.MoveLast
 DisplayCurrentRow
 Exit Sub

InsertError:
 MsgBox "Error: " & CStr(Err.Description)
End Sub

The call to InsertBegin puts the application into insert mode and sets all
the values in the row to their defaults (for example, the ID column
receives the next autoincrement value). The column values are set and
then the new row is inserted. Note that if an error occurs during the
insert, a message box will display the error number.

2 Run the application.

After the initial message box, the form is displayed.

♦ Enter a first name of Jane in the top text box and a last name of Doe
in the second.

♦ Click the Insert button. A row is added to the table with these
values. The application moves to the last row of the table and
displays the row. The label displays the autoincremented value of
the ID column that UltraLite assigned to the row.

Lesson 4: Write connection, synchronization, and table code

20

♦ Enter a first name of John in the top text box and a last name of
Smith in the second.

♦ Click Insert to add this row to the table.

♦ Click End to end the program.

With two rows in the table, it is now time to implement the code to scroll
through the rows and display each.

v To move through the rows of the table:

1 Implement the code for the Next and Previous buttons:

Add the following routines to the form:

Private Sub btnNext_Click()
 If Not CustomerTable.MoveNext Then
 CustomerTable.MoveLast
 End If
 DisplayCurrentRow
End Sub

Private Sub btnPrevious_Click()
 If Not CustomerTable.MovePrevious Then
 CustomerTable.MoveFirst
 End If
 DisplayCurrentRow
End Sub

2 Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

The next step is to modify the data in a row by updating or deleting it.

v To update and delete rows in the table:

1 Implement the code for the Update button.

Add the following routine to the form:

Private Sub btnUpdate_Click()
 Dim fname As String
 Dim lname As String
 Dim city As String
 Dim phone As String

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

21

 fname = txtFname.Text
 lname = txtLname.Text
 city = txtCity.Text
 phone = txtPhone.Text
 On Error GoTo UpdateError
 CustomerTable.UpdateBegin
 CustomerTable.Column("Fname").StringValue = _
 fname
 CustomerTable.Column("Lname").StringValue = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Column("City").StringValue = _
 city
 Else
 CustomerTable.Column("City").SetNull
 End If
 If Len(phone) > 0 Then
 CustomerTable.Column("Phone").StringValue = _
 phone
 End If
 CustomerTable.Update
 DisplayCurrentRow
 Exit Sub

UpdateError:
 MsgBox "Error: " & CStr(Err.Description)
End Sub

The call to UpdateBegin puts the application into update mode. The
column values are updated and then the row itself is updated with a call
to Update.

2 Implement the code for the Delete button.

Add the following routine to the form:

Private Sub btnDelete_Click()
 If CustomerTable.RowCount = 0 Then
 Exit Sub
 End If
 CustomerTable.Delete
 CustomerTable.MoveRelative 0
 DisplayCurrentRow
End Sub

The call to Delete deletes the current row on which the application is
positioned.

3 Run the application.

Lesson 4: Write connection, synchronization, and table code

22

The data manipulation and display part of the application is now
complete. Try inserting, updating, and deleting rows. Also, use the Next
and Previous buttons to move through the rows. Check the label to see
which row you are on.

Note
You can now run this application as a stand-alone application without
SQL Anywhere Studio. If you wish to synchronize your UltraLite
database with an Adaptive Server Anywhere database, please complete
the next lesson in the tutorial.

Write code to synchronize

The final step is to write synchronization code. This step requires
SQL Anywhere.

v To write code for the synchronize button:

1 Implement the code for the Synchronize button.

Add the following routine to the form:

Private Sub btnSync_Click()
 With Connection.SyncParms
 .UserName = "afsample"
 .Stream = ULStreamType.ulTCPIP
 .Version = "ul_default"
 .SendColumnNames = True
 End With
 Connection.Synchronize
 DisplayCurrentRow
End Sub

The SyncParms object contains the synchronization parameters. For this
simple example, we start MobiLink so that it will add new users. Also,
we send the column names to MobiLink so it can generate proper upload
and download scripts.

The code uses TCP/IP synchronization, and not HotSync
synchronization. It works on a Palm OS device only as long as it is set
up for TCP/IP synchronization.

2 From a command prompt, start the MobiLink synchronization server
with the following command line:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -v+ -zu+ -za

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

23

The ASA 8.0 Sample database has a Customer table that matches the
columns in the UltraLite database you have created. You can
synchronize your UltraLite application with the ASA 8 Sample database.

The -zu+ and -za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’s Guide.

3 Start the UltraLite application.

4 Delete all the rows in your table.

Any rows in the table would be uploaded to the ASA 8.0 Sample
database.

5 Synchronize your application.

♦ Click the Synchronize button.

The MobiLink synchronization server window should scroll
messages displaying the synchronization progress.

♦ When the synchronization is complete, click Next and Previous to
move through the rows of the table.

Lesson 5: Deploy the application to a device

24

Lesson 5: Deploy the application to a device
Now that you are convinced the application runs properly, you can deploy it
to the device.

v To deploy to the Palm device:

1 Configure the application settings.

♦ From the MobileVB menu, choose MobileVB Settings

♦ In the dialog that appears, choose Dependencies in the left pane and
click on the User Dependencies tab.

♦ Click the Add button and select the c:\tutorial\mvb\tutCustomer.pdb
file. This indicates to MobileVB that the file should be included in
the deployment.

♦ Choose the Palm OS Settings item in the left pane and enter Syb3
for the Creator ID. Select a valid HotSync name.

♦ Click OK to close the dialog.

2 From the MobileVB menu, choose Deploy to Device, and make sure you
select the Palm OS device. If a dialog appears asking if you want to save
the project, choose Yes.

3 HotSync your device and make sure the application gets sent to the
device. After the HotSync process is complete, your application files
will be extracted on the device.

4 Click Home on the device and choose UltraLiteTutorial. You are now
running your application.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

25

Summary
During this tutorial, you:

♦ created a database schema

♦ created an UltraLite for MobileVB application

♦ synchronized a remote database with an Adaptive Server Anywhere
consolidated database using UltraLite

♦ increased your familiarity with MobileVB for UltraLite as an integrated
system

♦ gained competence with the process of developing an UltraLite for
MobileVB application

For more code samples, see the following projects. Paths are relative to your
SQL Anywhere installation:

♦ Samples\UltraLiteForMobileVB\custdb\custdb.vbg

♦ Samples\UltraLiteForMobileVB\grid\gridsample.vbg

Learning
accomplishments

Samples

Summary

26

27

C H A P T E R 3

Tutorial: An UltraLite for MobileVB
Application for PocketPC

This chapter walks you through all the steps of building your first UltraLite
for MobileVB application. The application synchronizes data with a database
on your desktop computer.

Topic Page

Introduction 28

Lesson 1: Create a database schema 29

Lesson 2: Create a project architecture 31

Lesson 3: Create a form interface 33

Lesson 4: Write connection, synchronization, and table code 34

Lesson 5: Deploying the application to a device 43

Summary 44

About this chapter

Contents

Introduction

28

Introduction
This tutorial walks you through building an UltraLite for MobileVB
application. At the end of the tutorial you will have an application and small
database on your CE device that synchronizes with a larger database running
on your desktop machine.

The tutorial takes about 50 minutes.

This tutorial assumes:

♦ you have MobileVB and Microsoft Visual Basic 6 installed on your
system.

♦ you are familiar with MobileVB and Microsoft Visual Basic 6

♦ you can write, test, and troubleshoot a Visual Basic 6 application

♦ you can add references and components as needed

♦ you can use the Visual Basic Object Browser and navigate the
Visual Basic 6 environment

Note
You can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

To develop applications using the UltraLite for AppForge MobileVB
component, you will need the AppForge Booster. If you are missing
Booster, you can get it from http://www.appforge.com/booster.html.

To complete the synchronization section of the tutorial requires that:

♦ you can create an ODBC data source

♦ you can use command line options and parameters

♦ you have knowledge of both the Sybase Central Adaptive Server
Anywhere plug-in and the MobiLink synchronization plug-in

The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite for MobileVB application.

Timing

Competencies and
experience

Goals

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

29

Lesson 1: Create a database schema
A schema is a database definition without the data. You create an UltraLite
schema file as a necessary first step to making an UltraLite database.

$ For more information on UltraLite schemas, see "UltraLite for
MobileVB architecture" on page 5.

When creating UltraLite schemas, the following information is necessary:

♦ A way to identify the schema on the development machine so it can be
copied to the device.

♦ A way to identify the schema on the device.

Create your schema file using the UltraLite Schema Painter

To complete this tutorial you need a directory to hold the files you create.
This directory is assumed to be C:\tutorial\mvb. If you create your tutorial
directory elsewhere, supply the path to your location instead of
c:\tutorial\mvb throughout.

v To create the schema file using the UltraLite Schema Painter:

1 Start the UltraLite Schema Painter:

Click Start➤Programs➤Sybase SQL Anywhere 8➤UltraLite
➤UltraLite Schema Painter.

2 Create a new schema file called tutCustomer.

♦ Open the Tools folder and double-click Create UltraLite schema.

♦ In the file dialog box, type c:\tutorial\mvb\tutCustomer.usm or
Browse to the folder and enter tutCustomer.

♦ Click OK to create the schema.

3 Create a table called customer.

♦ Expand the tutCustomer item in the left pane of the UltraLite
Schema Painter and select the Tables folder.

♦ Open the Tables folder and double-click Add Table. The New Table
dialog appears.

♦ Enter the name customer.

♦ In the New Table dialog, add columns with the following
properties.

Lesson 1: Create a database schema

30

Column
name

Data type
(Size)

Column Allows
NULL values?

Default value

Id integer No autoincrement

Fname char (15) No None

Lname char (20) No None

City char (20) Yes None

Phone char (12) Yes 555-1234

♦ Set Id as the primary key: Click Primary Key and add Id to the
index, marking it as ascending.

♦ Check your work and click OK to complete the table definition and
dismiss the New Table dialog.

4 Click File ➤Save to save the tutcustomer.usm file.

♦ Exit the UltraLite Schema Painter

You have now defined the schema of your UltraLite database. Although this
database contains only a single table, you can use many tables in UltraLite
databases.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

31

Lesson 2: Create a project architecture
The tutorial assumes the folder c:\tutorial\mvb, the same one holding your
schema file, is where you will store your application files.

The first step is to create an UltraLite for MobileVB project for your
application. You can use a MobileVB project to get MobileVB controls that
are suitable for small devices. On the Visual Basic toolbar on the left of the
Visual Basic environment, MobileVB tools appear in addition to the standard
Visual Basic tools.

v To create an UltraLite for MobileVB reference:

1 Start MobileVB

♦ Click Start➤Programs➤AppForge MobileVB➤Start MobileVB

2 Create a new project.

3 Choose a design target for your application. When asked for the Design
Target, choose PocketPC.

4 Create a Visual Basic reference to the UltraLite for MobileVB
component:

♦ Click Project ➤ References

♦ Check the box beside the item iAnywhere Solutions, UltraLite for
MobileVB 8.0.

♦ If the item does not appear, click Browse and go to the win32
subdirectory of your SQL Anywhere installation:
UltraLite\UltraLiteforMobileVB\win32

♦ Select the file ulmvb8.dll and click Open.

♦ Click OK

5 Give the Project a name.

♦ Click Project➤MobileVBProject1 Properties

♦ Under Project Name, type UltraLiteTutorial typed all as one word.
This is the name of the application as it will appear on your device.

♦ Click OK

6 Save the Project:

♦ Choose File ➤ Save Project

♦ For the Form filename, type c:\tutorial\mvb\MainForm.frm.

♦ Click Save.

Lesson 2: Create a project architecture

32

♦ For the Project filename, type
c:\tutorial\mvb\UltraLiteTutorial.vbp.

♦ Click Save.

You are now ready to proceed to the next step in the tutorial.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

33

Lesson 3: Create a form interface
You are now ready to design your application form. The project should have
a single form named Form1 displayed.

v To add a controls to your project:

1 Add the AppForge MobileVB controls and properties given in the table
below to Form1:

Type Name Caption or text

AFTextBox txtfname

AFTextBox txtlname

AFTextBox txtcity

AFTextBox txtphone

AFLabel lblID

AFButton btnInsert Insert

AFButton btnUpdate Update

AFButton btnDelete Delete

AFButton btnNext Next

AFButton btnPrevious Previous

AFButton btnSync Synchronize

AFButton btnDone End

2 Compile and validate the application.

♦ Choose MobileVB ➤Compile and Validate.

Lesson 4: Write connection, synchronization, and table code

34

Lesson 4: Write connection, synchronization,
and table code

The first step in developing your application is to write UltraLite code to
connect to the database.

Write code for connecting to your database

In this application, you connect to the database in the Form Load event.

v Write code to connect to the UltraLite database:

1 Declare the UltraLite objects you need.

♦ Double click the form to open the Code window.

♦ Enter the following code at the top of the form in the declarations
area. This code declares the UltraLite objects you will need in this
sample:

Public DatabaseMgr As New ULDatabaseManager
Public Connection As ULConnection
Public CustomerTable As ULTable

These variables will be used through the application. Note that the
DatabaseMgr variable is also allocated as a new object. This is the only
object that can be instantiated.

2 Add the code to connect to the database in the Form Load event.

The code below opens the connection to the database and if the database
is new, it assigns a schema to it.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

35

Sub Form_Load()
 Dim conn_parms As String
 Dim open_parms As String
 Dim schema_parms As String
 conn_parms = "uid=DBA;pwd=SQL"
 open_parms = conn_parms
 "FILE_NAME=c:\tutorial\mvb\tutCustomer.udb"
 schema_parms = open_parms & ";" & _
 "SCHEMA_FILE=c:\tutorial\mvb\tutCustomer.usm"

 On Error Resume Next

 Set Connection = _
 DatabaseMgr.OpenConnection(open_parms)
 If Err.Number = ULSQLCode.ulSQLE_NOERROR Then
 MsgBox "Connected to an existing database"
 ElseIf Err.Number = _
 ULSQLCode.ulSQLE_DATABASE_NOT_FOUND Then
 Err.Clear
 Set Connection = _
 DatabaseMgr.CreateDatabase(schema_parms)
 If Err.Number = ULSQLCode.ulSQLE_NOERROR _
 Then
 MsgBox "Connected to a new database"
 Else
 MsgBox Err.Description
 End If
 End If
End Sub

This code attempts to connect to an existing database. If the database
does not exist, it creates a new database from the schema file and
establishes a connection.

3 Write the code that ends the application and closes the connection when
the End button is clicked:

Sub btnDone_Click()
 Connection.Close
 End
End Sub

4 Run the application in the development environment.

♦ Choose Run ➤Start.

♦ The first time you run the application, a message box is displayed
with the message Connected to a new database. On subsequent
runs the message is Connected to an existing database. The Form
then loads.

♦ Click End to terminate the application.

Lesson 4: Write connection, synchronization, and table code

36

You have now written a routine to establish a connection to a database. The
next lesson describes how to access data.

$ For more information, see "ULConnection class" on page 67.

Write code for data manipulation

The next step is to write code for data manipulation and navigation.

v To open the table:

1 Write code that initializes the table and moves to the first row.

Add the following code to the Form_Load routine, just before the End
Sub instruction:

Set CustomerTable = Connection.GetTable("customer")
CustomerTable.Open
CustomerTable.MoveBeforeFirst
If Err.Number <> ULSQLCode.ulSQLE_NOERROR Then
 MsgBox Err.Description
End If

This code assigns the CustomerTable variable and opens the table so
data can be read or manipulated. The call to MoveBeforeFirst positions
the application before the first row of data in the table - but note that it is
not strictly speaking, required, because after you call open, you are
already positioned before the first row. There are no rows in the table at
the moment.

2 Create a new function called DisplayCurrentRow and implement it as
shown below.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

37

Private Sub DisplayCurrentRow()
 If CustomerTable.RowCount = 0 Then
 txtFname.Text = ""
 txtLname.Text = ""
 txtCity.Text = ""
 txtPhone.Text = ""
 lblID.Caption = ""
 Else
 lblID.Caption = _
 CustomerTable.Column("Id").StringValue
 txtFname.Text = _
 CustomerTable.Column("Fname").StringValue
 txtLname.Text = _
 CustomerTable.Column("Lname").StringValue
 If CustomerTable.Column ("City").IsNull Then
 txtCity.text=""
 Else
 txtCity.Text = _
 CustomerTable.Column("City").StringValue
 End If
 txtPhone.Text = _
 CustomerTable.Column("Phone").StringValue
 End If
End Sub

If the table has no rows, the application displays empty controls.
Otherwise, it displays the values stored in each of the columns of the
current row of the database.

3 Call this function from the Form’s Activate function.

Private Sub Form_Activate()
 DisplayCurrentRow
End Sub

This call ensures the fields get updated when the application starts.

At this stage you may wish to run the application to check that you have
entered the code correctly. As there are no rows in the table, the controls
are all empty.

v To insert rows into the table:

1 Implement the code for the Insert button.

Add the following routine to the form:

Lesson 4: Write connection, synchronization, and table code

38

Private Sub btnInsert_Click()
 Dim fname As String
 Dim lname As String
 Dim city As String
 Dim phone As String

 fname = txtFname.Text
 lname = txtLname.Text
 city = txtCity.Text
 phone = txtPhone.Text

 On Error GoTo InsertError
 CustomerTable.InsertBegin
 CustomerTable.Column("Fname").StringValue = _
 fname
 CustomerTable.Column("Lname").StringValue = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Column("City").StringValue = _
 city

 End If
 If Len(phone) > 0 Then
 CustomerTable.Column("Phone").StringValue = _
 phone
 End If
 CustomerTable.Insert
 CustomerTable.MoveLast
 DisplayCurrentRow
 Exit Sub

InsertError:
 MsgBox "Error: " & CStr(Err.Description)
End Sub

The call to InsertBegin puts the application into insert mode and sets all
the values in the row to their defaults (for example, the ID column
receives the next autoincrement value). The column values are set and
then the new row is inserted. Note that if an error occurs during the
insert, a message box will display the error number.

2 Run the application.

After the initial message box, the form is displayed.

♦ Enter a first name of Jane in the top text box and a last name of Doe
in the second.

♦ Click the Insert button. A row is added to the table with these
values. The application moves to the last row of the table and
displays the row. The label displays the autoincremented value of
the ID column that UltraLite assigned to the row.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

39

♦ Enter a first name of John in the top text box and a last name of
Smith in the second.

♦ Click Insert to add this row to the table.

♦ Click End to end the program.

With two rows in the table, it is now time to implement the code to scroll
through the rows and display each.

v To move through the rows of the table:

1 Implement the code for the Next and Previous buttons:

Add the following routines to the form:

Private Sub btnNext_Click()
 If Not CustomerTable.MoveNext Then
 CustomerTable.MoveLast
 End If
 DisplayCurrentRow
End Sub

Private Sub btnPrevious_Click()
 If Not CustomerTable.MovePrevious Then
 CustomerTable.MoveFirst
 End If
 DisplayCurrentRow
End Sub

2 Run the application.

When the form is first displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

The next step is to modify the data in a row by updating or deleting it.

v To update and delete rows in the table:

1 Implement the code for the Update button.

Add the following routine to the form:

Private Sub btnUpdate_Click()
 Dim fname As String
 Dim lname As String
 Dim city As String
 Dim phone As String

Lesson 4: Write connection, synchronization, and table code

40

 fname = txtFname.Text
 lname = txtLname.Text
 city = txtCity.Text
 phone = txtPhone.Text
 On Error GoTo UpdateError
 CustomerTable.UpdateBegin
 CustomerTable.Column("Fname").StringValue = _
 fname
 CustomerTable.Column("Lname").StringValue = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Column("City").StringValue = _
 city
 Else
 CustomerTable.Column("City").SetNull
 End If
 If Len(phone) > 0 Then
 CustomerTable.Column("Phone").StringValue = _
 phone
 End If
 CustomerTable.Update
 DisplayCurrentRow
 Exit Sub

UpdateError:
 MsgBox "Error: " & CStr(Err.Description)
End Sub

The call to UpdateBegin puts the application into update mode. The
column values are updated and then the row itself is updated with a call
to Update.

2 Implement the code for the Delete button.

Add the following routine to the form:

Private Sub btnDelete_Click()
 If CustomerTable.RowCount = 0 Then
 Exit Sub
 End If
 CustomerTable.Delete
 CustomerTable.MoveRelative 0
 DisplayCurrentRow
End Sub

The call to Delete deletes the current row on which the application is
positioned.

3 Run the application.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

41

The data manipulation and display part of the application is now
complete. Try inserting, updating, and deleting rows. Also, use the Next
and Previous buttons to move through the rows. Check the label to see
which row you are on.

Note
You can now run this application as a stand-alone application without
SQL Anywhere Studio. If you wish to synchronize your UltraLite
database with an Adaptive Server Anywhere database, please complete
the next lesson in the tutorial.

Write code to synchronize

The final step is to write synchronization code. This step requires
SQL Anywhere.

v To write code for the synchronize button:

1 Implement the code for the Synchronize button.

Add the following routine to the form:

Private Sub btnSync_Click()
 With Connection.SyncParms
 .UserName = "afsample"
 .Stream = ULStreamType.ulTCPIP
 .Version = "ul_default"
 .SendColumnNames = True
 End With
 Connection.Synchronize
 DisplayCurrentRow
End Sub

The SyncParms object contains the synchronization parameters. For this
simple example, we start MobiLink so that it will add new users. Also,
we send the column names to MobiLink so it can generate proper upload
and download scripts.

2 From a command prompt, start the MobiLink synchronization server
with the following command line:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -v+ -zu+ -za

The ASA 8.0 Sample database has a Customer table that matches the
columns in the UltraLite database you have created. You can
synchronize your UltraLite application with the ASA 8 Sample database.

Lesson 4: Write connection, synchronization, and table code

42

The -zu+ and -za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’s Guide.

3 Start the UltraLite application.

4 Delete all the rows in your table.

Any rows in the table would be uploaded to the ASA 8.0 Sample
database.

5 Synchronize your application.

♦ Click the Synchronize button.

The MobiLink synchronization server window should scroll
messages displaying the synchronization progress.

♦ When the synchronization is complete, click Next and Previous to
move through the rows of the table.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

43

Lesson 5: Deploying the application to a device
Now that you are convinced the application runs properly, you can deploy it
to the device.

v To deploy to the PocketPC device:

1 Configure the application settings.

♦ From the MobileVB menu, choose MobileVB Settings

♦ In the dialog that appears, choose Dependencies in the left pane and
click on the User Dependencies tab.

♦ Click the Add button and select the c:\tutorial\mvb\tutCustomer.usm.
This indicates to MobileVB that the file should be included in the
deployment.

♦ Choose the PocketPC Settings item in the left pane

♦ Enter \Tutorial\mvb for the Device Installation Path.

♦ Click OK to close the dialog.

2 From the MobileVB menu, choose Deploy to Device, and make sure you
select the PocketPC device. If a dialog appears asking if you want to
save the project, choose Yes.

3 If you are running a version of MobileVB that is older than 3.0, you will
also need to copy the UltraLite control to the device. Copy from your
desktop, the file
SQL Anywhere\Ultralite\UltraLite\UltraLiteForMobileVB\ce\arm\ulmvb8.dll
to your device \Program Files\AppForge. This step only needs to be
performed once per device.

4 On your device, go to your Programs.

5 Choose UltraLiteTutorialCE. You are now running your application.

Summary

44

Summary
During this tutorial, you:

♦ created a database schema

♦ created an UltraLite for MobileVB application

♦ synchronized a remote database with an Adaptive Server Anywhere
consolidated database using UltraLite

♦ increased your familiarity with MobileVB for UltraLite as an integrated
system

♦ gained competence with the process of developing an UltraLite for
MobileVB application

For more code samples, see the following project group. Paths are relative to
your SQL Anywhere installation:

♦ Samples\UltraLiteForMobileVB\custdb\custdb.vbg

♦ Samples\UltraLiteForMobileVB\grid\gridsample.vbg

Learning
accomplishments

Samples

45

C H A P T E R 4

Understanding UltraLite for MobileVB
Development

This chapter describes how to develop applications with the UltraLite for
MobileVB component.

Topic Page

Connecting to the UltraLite database 46

Accessing and manipulating data 49

Accessing schema information 55

Error handling 56

Synchronization 57

About this chapter

Contents

Connecting to the UltraLite database

46

Connecting to the UltraLite database
Any UltraLite application must connect to its database before it can carry out
any operation on the data, including applying a schema to the database.

v To connect to an UltraLite database:

1 Create a ULDatabaseManager object.

You should create only one ULDatabaseManager object per application.
This object is at the root of the object hierarchy. For this reason, it is
often best to declare the ULDatabaseManager object global to the
application.

The following code creates a ULDatabaseManager object named dbMgr

Public dbMgr As ULDatabaseManager
...
Set dbMgr = New ULDatabaseManager

2 Create and open a connection to the database.

The ULDatabaseManager CreateDatabase and OpenConnection
methods are used to Create a database and Open a connection. Each
takes a single string as its argument. The string is composed of a set of
keyword-value pairs. A schema file must be specified for
CreateDatabase and a database file must be specified for
OpenConnection.

The following are mandatory connection parameters for CreateDatabase:

Chapter 4 Understanding UltraLite for MobileVB Development

47

Keyword Description

schema_file The path and filename of the UltraLite schema.
The default extension for UltraLite schema files
is .usm. SCHEMA_FILE is a required
parameter when using CreateDatabase on
Windows desktop operating systems.
CE_SCHEMA has precedence over
SCHEMA_FILE. Required for
CreateDatabase.

ce_schema The path and filename of the UltraLite schema
on Windows CE. The default extension for
UltraLite schema files is .usm. CE_SCHEMA
is a required parameter when using
CreateDatabase for CE.

palm_schema If using Palm, the name of the UltraLite schema
for Palm. PALM_SCHEMA is a required
parameter when using CreateDatabase on
Palm devices. The Palm file extension is .pdb.

$ For more information on connection parameters, see "Connection
Parameters" on page 25 of the book UltraLite Foundations.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the ULConnection object global to the application.

The following code opens a connection to an UltraLite database named
mydata.udb (assuming the file exists).

Public conn As ULConnection
Dim conParms as String
Dim filePath as String
filepath="c:\tutorial"
conParms = "uid=dba;pwd=sql;dbf=" + filepath +

"\mydata.udb"
Set conn = dbMgr.OpenConnection(conParms)

Properties of the ULConnection object govern global application behavior,
including the following:

♦ Commit behavior By default, UltraLite applications are in
AutoCommit mode. Each Insert, Update, or Delete statement is
committed to the database immediately. You can also set
ULConnection.AutoCommit to False to build transactions into your
application.

Using the
ULConnection
object

Connecting to the UltraLite database

48

$ For more information, see "Transaction processing in UltraLite" on
page 54.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using the
GrantConnectTo and RevokeConnectFrom methods.

♦ Synchronization A set of objects governing synchronization are
accessed from the ULConnection object.

♦ Tables UltraLite tables are accessed using the
ULConnection.GetTable method.

Chapter 4 Understanding UltraLite for MobileVB Development

49

Accessing and manipulating data
UltraLite applications access data in tables in a row-by-row fashion. This
section covers the following topics:

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using Find and Lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

The section also provides a lower-level description of the way that UltraLite
operates on the underlying data to help you understand how it handles
transactions, and how changes are made to the data in your database.

Data manipulation internals

UltraLite exposes the rows in a table to your application one at a time. The
ULTable object has a current position, which may be on a row, before the
first row, or after the last row of the table.

When your application changes its row (by a ULTable.MoveNext method or
other method on the ULTable object) UltraLite makes a copy of the row in a
buffer. Any operations using ULColumn properties to get or set values affect
only the copy of data in this buffer. They do not affect the data in the
database. For example, the following statement changes the value of the ID
column in the buffer to 3.

TCustomer.GetColumn("ID").IntegerValue = 3

UltraLite uses the values in the buffer for a variety of purposes, depending
on the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to a default mode, and in each mode the
buffer is used for a different purpose.

♦ Insert mode The data in the buffer is added to the table as a new row
when the ULTable.Insert method is called.

♦ Update mode The data in the buffer replaces the current row when the
ULTable.Update method is called.

♦ Find mode The data in the buffer is used to locate rows when one of
the ULTable.Find methods is called.

♦ Lookup mode The data in the buffer is used to locate rows when one
of the ULTable.Lookup methods is called.

Using UltraLite
modes

Accessing and manipulating data

50

Whichever mode you are using, there is a similar sequence of operations:

1 Enter the mode.

The ULTable InsertBegin, UpdateBegin, FindBegin, and LookupBegin
methods set UltraLite into the mode.

2 Set the values in the buffer.

Use the ULColumn object to set values in the buffer.

3 Carry out the operation.

Use a ULTable method such as Insert, Update, FindFirst, or
LookupForward to carry out the operation, using the values in the
buffer. In most cases the UltraLite mode is set back to the default
method and you must enter a new mode before performing another data
manipulation or searching operation. An exception is that Delete does
not affect the Find mode.

Scrolling through the rows of a table

The following code opens the customer table and scrolls through its rows,
displaying a message box with the value of the lname column for each row.

Dim TCustomer as ULTable
Set TCustomer = Conn.GetTable("customer")
TCustomer.Open
TCustomer.MoveBeforeFirst
While TCustomer.MoveNext

MsgBox TCustomer.GetColumn("lname").StringValue
Wend

You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order. The
following code moves to the first row of the customer table as ordered by the
ix_name index.

Set TCustomer = Conn.GetTable("customer")
TCustomer.Open "ix_name"
TCustomer.MoveFirst

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following
positions:

♦ Before the first row of the table.

Chapter 4 Understanding UltraLite for MobileVB Development

51

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use the Column
method together with a method appropriate for the data type of that column
to access the value of that row. For example, the following expression
represents the value of the lname column, as a character string:

TCustomer.Column("lname").StringValue

The following expression represents the value of the ID column, an integer:

TCustomer.Column("ID").IntegerValue

You can assign values to the properties even if you are before the first row or
after the last row of the table.

’ This code is incorrect
TCustomer.MoveBeforeFirst
id = TCustomer.Column("ID").IntegerValue

To work with binary data, use the GetBytes method instead of a property.

The method you choose on the ULColumn object must batch the Visual
Basic data type you wish to assign. UltraLite automatically casts data types
where they are compatible, so that you could use the StringValue method to
fetch an integer value into a string variable, and so on.

$ For more information on accessing values of the current row, see the
methods and properties of "ULColumn" on page 61.

Searching for rows with Find and Lookup

UltraLite has several modes of operation when working with data. The
ULTable object has two sets of methods for locating particular rows in a
table:

♦ Find methods These move to the first row that exactly matches a
specified search value, under the sort order specified when the ULTable
object was opened. If the search method cannot be found you are
positioned before the first or after the last row.

♦ Lookup methods These move to the first row that matches or is
greater than a specified search value, under the sort order specified when
the ULTable object was opened.

Both sets are used in a similar manner:

1 Enter Find or Lookup mode.

Casting values

Accessing and manipulating data

52

The mode is entered by calling the FindBegin or LookupBegin method,
respectively. For example.

TCustomer.FindBegin

2 Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example:

TCustomer.Column("lname").StringValue = "Kaminski"

Only values in the columns of the index are relevant to the search.

3 Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index:

TCustomer.FindFirst

For multi-column indexes, a value for the first column is always used,
but you can omit the other columns and you can specify the number of
columns as a parameter to FindFirst.

$ For a list of methods, see "ULTable class" on page 97.

Inserting updating, and deleting rows

To update a row in a table, use the following sequence of instructions:

1 Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching,
using Find and Lookup methods.

2 Enter update mode.

For example, the following instruction enters update mode on
TCustomer:

TCustomer.UpdateBegin

3 Set the new values for the row to be updated. For example:

TCustomer.Column("LName").StringValue = "Smith"

4 Execute the Update.

TCustomer.Update

The update is not carried out until the Update method is called.

Chapter 4 Understanding UltraLite for MobileVB Development

53

After the update operation the current row is the row that was just updated. If
you changed the value of a column in the index specified when the ULTable
object was opened, the current row is undefined. For more information, see
"Update method" on page 105

By default, UltraLite operates in AutoCommit mode, so that the Update is
immediately applied to the row in permanent storage. If you have disabled
AutoCommit mode, the Update is not applied until you execute a Commit
operation. For more information, see "Transaction processing in UltraLite"
on page 54.

Caution
Updating primary key values can interfere with synchronization. Do not
update the primary key of a row: delete the row and add a new row
instead.

The steps to insert a row are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the Insert operation. The order of rows in the table has no significance.

Note: The location of the cursor’s current row is not defined after an insert.
So you should not rely on the current row position after an insert.

The following sequence of instructions inserts a new row:

TCustomer.InsertBegin
TCustomer.Column("Id").IntegerValue = 3
TCustomer.Column("LName").SringValue = "Carlo"
TCustomer.Insert

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, the following
entries are added:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL, use the ULColumn.SetNull method.

As for Update operations, after calling Insert it is possible to see the newly
inserted row, but an Insert is applied to the database in permanent storage
itself only when a Commit is carried out. In AutoCommit mode, a Commit is
carried out as part of the Insert method.

The steps to delete a row are simpler than to insert or update rows. There is
no Delete mode corresponding to the Insert or Update modes. The steps are
as follows:

1 Move to the row you wish to delete.

Inserting rows

Deleting rows

Accessing and manipulating data

54

2 Execute the ULTable.Delete method.

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the correctness of the
data in your database. A transaction is a logical unit of work: it is either all
executed or none of it is executed.

By default, UltraLite operates in AutoCommit mode, so that each Insert,
Update, or Delete is executed as a separate transaction. Once the operation is
completed, the change is made to the database. If you set the
ULConnection.AutoCommit property to False, you can use multi-statement
transactions. For example, if your application transfers money between two
accounts, either both the deduction from the source account and the addition
to the destination account must be completed, or neither must be completed.

If AutoCommit is set to False, you must execute a ULConnection.Commit
statement to complete a transaction and make changes to your database
permanent, or you must execute a ULConnection.Rollback statement to
cancel all the operations of a transaction.

Chapter 4 Understanding UltraLite for MobileVB Development

55

Accessing schema information
Objects in the API represent tables, columns, indexes, and synchronization
publications. Each object has a Schema property that provides access to
information about the structure of that object.

Here is a summary of the information you can access through the Schema
objects.

♦ ULDatabaseSchema The number and names of the tables in the
database, as well as global properties such as the format of dates and
times.

To obtain a ULDatabaseSchema object, call the ULConnection.Schema
property.

♦ ULTableSchema The number and names of the columns and indexes
for this table.

To obtain a ULTableSchema object, call the ULTable.Schema property.

♦ ULColumnSchema The SQL data type, default value, and other
characteristics of the column, such as whether it accepts NULL.

To obtain a ULTableSchema object, call the ULColumn.Schema
property.

♦ ULIndexSchema Information about the type of index and the columns
in it. As an index has no data directly associated with it (only that which
is in the columns of the index) there is no separate ULIndex object, just
a ULIndexSchema object.

To obtain a ULIndexSchema object, call the ULTableSchema.GetIndex
method.

♦ ULPublicationSchema Tables contained in a publication. Publications
are also comprised of schema only, and so there is a
ULPublicationSchema object rather than a ULPublication object.

To obtain a ULPublicationSchema object, call the
ULDatabaseSchema.GetPublicationSchema method.

You cannot modify the schema through the API. You can only retrieve
information about the schema.

Error handling

56

Error handling
You can use the standard MobileVB error-handling features to handle errors.
When an UltraLite object is the source of an error, the Err object is assigned
a ULSQLCode number. ULSQLCode errors are negative numbers
indicating the particular kind of error. The ULSQLCode enum provides a
set of descriptive constants associated with these values.

$ For more information, see "ULSQLCode enum" on page 83.

To make use of type completion in the Visual Basic environment, you may
want to create an error handling function such as the following:

Public Function GetError() As ULSqlCode
 GetError = Err.Number
End Function

You can then access UltraLite errors using the GetError function.

Chapter 4 Understanding UltraLite for MobileVB Development

57

Synchronization
You can synchronize your data if you have SQL Anywhere Studio.

Adding the synchronization template

UltraLite for MobileVB includes a template form that can be used to monitor
the status of a synchronization session. A version of this form is included for
both Palm OS and Pocket PC. You can use these templates in your
application, you can customize them, or you can simply examine them to
learn how UltraLite synchronization events work.

v To add one of these templates to your application:

1 From the project menu, select Add Form

2 Select either UltraLite for MobileVB Sync Form (CE) or UltraLite for
MobileVB Sync Form (Palm)

3 Click Open

A copy of the form will then be added to your application.

Synchronization

58

Writing code to use the synchronization form

Call the the InitSyncForm function, passing it your ULConnection object.
This must be done before each synchronization. For example, if your
synchronization status form is named Form_Sync and your ULConnection
object is named Connection:

Form_Sync.InitSyncForm Connection
Connection.Synchronize

Now, every time your application synchronizes, the synchronization status
form appears. As synchronization progresses, your user can observe the
progress bar and byte count. When synchronization completes, the form is
dismissed. The Cancel button instructs UltraLite to abort the current
synchronization.

For more details, see the CustDB sample.

59

C H A P T E R 5

API Reference

This chapter describes the UltraLite for MobileVB API.

Topic Page

ULAuthStatusCode constants 60

ULColumn class 61

ULColumnSchema class 66

ULConnection class 67

ULDatabaseManager class 74

ULDatabaseSchema class 77

ULIndexSchema class 80

ULPublicationSchema class 82

ULSQLCode enum 83

ULSQLType enum 86

ULStreamErrorCode enum 87

ULStreamErrorContext enum 90

ULStreamErrorID enum 91

ULStreamType enum 92

ULSyncParms class 93

ULSyncResult class 95

ULSyncState 96

ULTable class 97

ULTableSchema class 106

About this chapter

Contents

ULAuthStatusCode constants

60

ULAuthStatusCode constants

Constant Value

ulAuthStatusUnknown 0

ulAuthStatusValid 1000

ulAuthStatusValidButExpiresSoon 2000

ulAuthStatusExpired 3000

ulAuthStatusInvalid 4000

ulAuthStatusInUse 5000

Chapter 5 API Reference

61

ULColumn class
The ULColumn object allows you to get and set values from a table in a
database. Each ULColumn object represents a particular value in a table; the
row is determined by the ULTable object.

$ For information about the ULTable object, see "ULTable class" on
page 97.

Properties

Prototype Description

BooleanValue as Boolean Returns the current value.

ByteValue as Byte Returns the current value

DatetimeValue as Date Returns the current value

DoubleValue as Double Returns the current value

IntegerValue as Integer Returns the current value

IsNull as Boolean (read only) Indicates whether the column value is
NULL

LongValue as Long Returns the current value

RealValue as Single Returns the current value

Schema as ULColumnSchema (read
only)

Returns the object representing the
schema of the column

StringValue as String Returns the current value

UUIDValue As String The column value as a UUID. For
reading, gets the column value as a
UUID. If the value is not a valid UUID,
a SQLE_CONVERSION_ERROR is
raised. For writing, stores the value as a
UUID in the database.

UUID is a BINARY16 data type.

AppendByteChunk method

AppendByteChunk(data As long, data_len As long)
Member of UltraLiteAFLib.ULColumn

Prototype

ULColumn class

62

Appends the buffer of bytes to the column if the type is
ulTypeLongBinary.

data An array of bytes.

data_len The number of bytes from the array to append.

Error Description

ulSQLE_INVALID_PARAMETER If data length is less than 0

ulSQLE_CONVERSION_ERROR If the column data type is not LONG
BINARY.

Dim data (1 to 512) as Byte
…
table.Column("edata").AppendByteChunk(_
 VarPtr(data(1)), 512)

In the example code, edata is a column name and 512 bytes of data are
appended to the column.

AppendStringChunk method

AppendStringChunk(data As String)
Member of UltraLiteAFLib.ULColumn

Appends the string to the column if the type is ulTypeLongString.

data A string to append to the existing string in a table.

Error Description

ulSQLE_CONVERSION_ERROR If the column data type is not LONG
VARCHAR.

GetByteChunk method

GetByteChunk(src_offset As Long, data As Long, data_len As Long,
filled_len As Long) As Boolean
Member of UltraLiteAFLib.ULColumn

Fills the buffer passed in (which should be an array) with the binary data in
the column. Suitable for BLOBS.

Description

Parameters

Errors set

Example

Prototype

Description

Parameters

Errors set

Prototype

Description

Chapter 5 API Reference

63

data A pointer to an array of bytes. To get the pointer to the array of bytes,
use the Visual Basic VarPtr() function.

data_len The length of the buffer, or array.

offset The offset into the underlying array of bytes.

True if this column value contains more data

False if there is no more data for this column in the database.

Error Description

ulSQLE_CONVERSION_ERROR If the column data type isn’t BINARY or
LONG BINARY

ulSQLE_INVALID_PARAMETER If the column data type is BINARY and
any of the following is true:

♦ offset is not 0 or 1

♦ data length is greater than 64K

♦ data length is less than 0

ulSQLE_INVALID_PARAMETER If the column data type is LONG
BINARY and any of the following is true:

♦ offset is less than 1

♦ data length is less than 0

Dim filled as long
Dim more_data as boolean
Dim data (1 to 512) as Byte
more_data =table.column("edata").GetByteChunk(0, _
VarPtr(data(1)), 512, filled)

In the example code, edata is a column name. Note, if the data_len
parameter passed in is not long enough, the entire application will terminate.

GetStringChunk method

GetStringChunk (src_offset As Long,
data as string, string_len As Long,
filled_len as long) As Boolean
Member of UltraLiteAFLib.ULColumn

Fills the string passed in with the binary data in the column. Suitable for
Long Varchars.

string_length The length of the string you want returned.

Parameters

Returns

Errors set

Example

Prototype

Description

Parameters

ULColumn class

64

src_offset This is the character offset into the underlying data from which
we start getting the string.

True if there is more data for this value.

False if there is no more data for this value.

Error Description

ulSQLE_CONVERSION_ERROR If the column data type isn’t CHAR or
LONG VARCHAR

ulSQLE_INVALID_PARAMETER If the column data type is CHAR and the
src_offset is greater than 64K

ulSQLE_INVALID_PARAMETER If src_offset is less than 0 or string length
is less than 0.

SetByteChunk method

SetByteChunk(data As long, data_len as long)
Member of UltraLiteAFLib.ULColumn

Sets the value of the column in the database to the array of bytes in the data
field. Suitable for binary or long binary columns.

data An array of bytes.

data_len The length of the array.

Error Description

ulSQLE_INVALID_PARAMETER If the data length is less than 0.

ulSQLE_CONVERSION_ERROR If the column data type is not
BINARY or LONG BINARY

ulSQLE_INVALID_PARAMETER If the data length is greater than 64K

Dim data (1 to 512) as Byte
…
table.Column("edata").SetByteChunk(_
VarPtr(data(1)), 232)

In the example code, edata is a column name and 232 bytes of data in the
array contain values to be set in the database.

Returns

Errors set

Prototype

Description

Parameters

Errors set

Example

Chapter 5 API Reference

65

SetNull method

SetNull()
Member of UltraLiteAFLib.ULColumn

Sets this column’s value to null.

SetToDefault method

SetToDefault()
Member of UltraLiteAFLib.ULColumn

Sets the current column to its default value as defined by the database
schema.

Prototype

Description

Prototype

Description

ULColumnSchema class

66

ULColumnSchema class
The ULColumnSchema object allows you to obtain the attributes of a
column in a table. The attributes are independent of the data in the table.

Properties

Prototype Description

AutoIncrement as Boolean (read
only)

Determines whether this column defaults
to an autoincrement value

DefaultValue as String (read only) Indicates the value that is used if one was
not provided when a row was inserted.

GlobalAutoIncrement as Boolean
(read only)

Determines whether this column defaults
to a global autoincrement value

ID as integer (read only) The ID of the column

Name as String (read only) The column name

Nullable as Boolean (read-only) True if the column allows NULLs

OptimalIndex as ULIndexSchema
(read only)

The index with this column as its first
column.

Precision as Integer (read only) The precision value for the column if it is
of type ulTypeNumeric

Scale as Integer (read only) The scale value for the column if it is of
type ulTypeNumeric

Size as Long (read only) The size the column was created with if its
type takes a size

SQLType as ULSQLType (read
only)

The SQL type assigned to the column
when it was created

Chapter 5 API Reference

67

ULConnection class
A ULConnection object represents an UltraLite database connection. It
provides methods to get database objects like tables, and to synchronize.
When synchronizing, the ULConnection object can also receive progress
information. If you wish to receive this information, you must declare your
connection WithEvents. You can perform synchronization without declaring
your connection WithEvents; however, your connection object will not
receive notification of synchronization progress.

To declare a connection ’WithEvents’, in a MobileVB form, use the
following syntax:

Public WithEvents Connection As ULConnection

Properties

The following are properties of ULConnection:

Prototype Description

AutoCommit as Boolean If true, all data changes are
committed immediately after they are
made. Otherwise, changes are not
committed to the database until
Commit is called. By default, this
property is True.

DatabaseID as Long Sets the database ID value to be used
for global autoincrement columns

GlobalAutoIncrementUsage as Integer
(read only)

Returns the percentage of available
global autoincrement values that have
been used

LastIdentity as Long (read only) Returns the most recent value
inserted into a column with a default
of autoincrement or global
autoincrement.

OpenParms as String (read only) The string used to open the
connection to the database.

Schema as ULDatabaseSchema (read
only)

Returns the ULDatabaseSchema
object

Example

ULConnection class

68

CancelSynchronize method

CancelSynchronize()
Member of UltraLiteAFLib.ULConnection

When called during synchronization, the method cancels the
synchronization. To allow this the ULConnection object must be declared
WithEvents. The user can only call this method during one of the
synchronization events.

Close method

Close()
Member of UltraLiteAFLib.ULConnection

Closes the connection to the database. No methods on the ULConnection
object should be called after this method is called. If a connection is not
explicitly closed, it will be implicitly closed when the application terminates.

Commit method

Commit()
Member of UltraLiteAFLib.ULConnection

Commits outstanding changes to the database. This is only useful if
AutoCommit is false.

CountUploadRows method

CountUploadRows([mask as Long = 0], [threshold as Long = -1])
As Long
Member of UltraLiteAFLib.ULConnection

Returns the number of rows that need to be uploaded when synchronization
next takes place.

mask A unique identifier that refers to the publications to check. Use 0 for
all publications. If this parameter is omitted, 0 is used.

threshold The maximum number of rows to count. Use -1 to indicate no
maximum. If not specified, this value is –1.

Prototype

Description

Prototype

Description

Prototype

Description

Prototype

Description

Parameters

Chapter 5 API Reference

69

GetNewUUID method

GetNewUUID() As String
Member of UltraLiteAFLib.ULConnection

Returns a new universally unique identifier in a string format. This string is
of the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

GetTable method

GetTable(name As String) As ULTable
Member of UltraLiteAFLib.ULConnection

Returns the ULTable object for the specified table. You must then open the
table before data can be read from it.

name The name of the table sought.

Returns the ULTable object.

In this example, the Customer table is accessed.

Set CustomerTable = Connection.GetTable("Customer")

GrantConnectTo method

GrantConnectTo(userid as String, password as String)
Member of UltraLiteAFLib.ULConnection

Grants the specified user permission to connect to the database with the
given password.

userid The user ID for the current user.

password The password for this user ID.

LastDownloadTime method

LastDownloadTime([mask as Long = 0]) As Date
Member of UltraLiteAFLib.ULConnection

Returns the time of last download for the publication(s).

mask A unique identifier that refers to the publications to check. Use 0 for
all publications. If this parameter is omitted, 0 is used.

Prototype

Description

Prototype

Description

Parameters

Returns

Examples

Prototype

Description

Parameters

Prototype

Description

Parameters

ULConnection class

70

OnReceive event

OnReceive (nBytes As Long, nInserts As Long, nUpdates As Long, nDeletes
as Long)
Member of UltraLiteAFLib.ULConnection

Reports download information to the application from the consolidated
database via MobiLink. This event may be called several times.

nBytes Cumulative count of bytes received at the remote application from
the consolidated database.

nInserts Cumulative count of inserts received at the remote application
from the consolidated database.

nUpdates Cumulative count of updates received at the remote application
from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application
from the consolidated database.

See the custdb application for an example of this method.

OnSend event

OnSend(nBytes As Long, nInserts As Long, nUpdates as Long, nDeletes as
Long)
Member of UltraLiteAFLib.ULConnection

Reports upload information from the remote database via MobiLink to the
consolidated database. This event may be called several times.

nBytes Cumulative count of bytes sent by the remote application to the
consolidated database via MobiLink.

nInserts Cumulative count of inserts sent by the remote application to the
consolidated database via MobiLink.

nUpdates Cumulative count of updates sent by the remote application to
the consolidated database via MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the
consolidated database via MobiLink.

See the custdb application for an example of this method.

Prototype

Description

Parameters

Example

Prototype

Description

Parameters

Example

Chapter 5 API Reference

71

OnStateChange event

OnStateChange(newState As ULSyncState, oldState As ULSyncState)
Member of UltraLiteAFLib.ULConnection

This event is called whenever the state of the synchronization changes.

new_state The state that the synchronization process is about to enter.

old_state The state that the synchronization process just completed.

See the custdb application for an example of this method.

OnTableChange event

OnTableChange(newTableIndex As Long, numTables As Long)
Member of UltraLiteAFLib.ULConnection

This event is called whenever the synchronization process begins
synchronizing another table.

newTableIndex The index number of the table currently being
synchronized. This number is not the same as the table ID, therefore, it
cannot be used with the DatabaseSchema.GetTableName method.

numTables The number of tables eligible to be synchronized.

See the custdb application for an example of this method.

RevokeConnectFrom method

RevokeConnectFrom(userid as String)
Member of UltraLiteAFLib.ULConnection

Revokes the specified user’s ability to connect to the database.

userid The user ID for the user to be revoked.

Rollback method

Rollback()
Member of UltraLiteAFLib.ULConnection

Rolls back outstanding changes to the database. This is only useful if
AutoCommit is false.

Prototype

Description

Parameters

Example

Prototype

Description

Parameters

Example

Prototype

Description

Parameters

Prototype

Description

ULConnection class

72

StartSynchronizationDelete method

StartSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Once this function is called, all subsequent delete operations are uploaded at
the next synchronization.

StopSynchronizationDelete method

StopSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

StringToUUID method

StringToUUID(s_uuid As String, buffer_16_bytes As Long)
Member of UltraLiteAFLib.ULConnection

Converts a string in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
to an array of 16 bytes. The pointer to the buffer must be declared as 16
bytes. Since Visual Basic does not provide bounds checking, memory could
be overwritten if the buffer is too small. Use the VarPtr() function to get the
pointer to the buffer.

Synchronize method

Synchronize()
Member of UltraLiteAFLib.ULConnection

Synchronizes a consolidated database using MobiLink. This function does
not return until synchronization is complete, but you can be notified of
events if the connection was declared WithEvents.

UUIDToString method

UUIDToString(buffer_16_bytes As Long) As String
Member of UltraLiteAFLib.ULConnection

Prototype

Description

Prototype

Description

Prototype

Description

Prototype

Description

Prototype

Chapter 5 API Reference

73

Expects a VarPtr to a buffer of 16 bytes. Converts this buffer to a string in
the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. The buffer must be
declared (1 to 16) As Byte (that is, an array of 16 bytes). Visual Basic is
unable to check the bounds for this buffer so if it is not big enough, the
application could overwrite memory.

Description

ULDatabaseManager class

74

ULDatabaseManager class
The ULDatabaseManager class is used to manage connections and databases.
Your application should only have one instance of this object.

Properties

The following is a property of DatabaseManager:

Prototype Description

Version as String Identifies the version of the UltraLite for MobileVB
component

CreateDatabase method

CreateDatabase creates a new database and returns a connection to it.

CreateDatabase(parms As String) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Creates a new database and returns a connection to it. It fails if the specified
database already exists. To alter the schema of an existing database, use the
ULDatabaseSchema ApplyFile method.

$ For more information on ApplyFile, see "ULDatabaseSchema class" on
page 77 and "ApplyFile method" on page 78.

parms A semicolon-separated list of database creation parameters.

Note for VFS card for Palm users
The Palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection methods if you want to have the database reside on
the virtual file system.

$ For information on connection parameters, see "Connection
Parameters" on page 25 of the book UltraLite Foundations.

$ For more information on the Palm_fs parameter, see "palm_fs
parameter " on page 31 of the book UltraLite Foundations.

Prototype

Description

Parameters

Chapter 5 API Reference

75

The following code creates a DatabaseManager object. This is the first object
you create when writing for UltraLite for MobileVB. Note that
CreateDatabase requires that no .udb file exists, and OpenConnection is used
when a .udb file already exists.

Dim conn_parms As String
Dim open_parms As String
Dim schema_parms As String

conn_parms = "uid=DBA;pwd=SQL"
open_parms = conn_parms & ";" & _
 "PALM_DB=Syb3;file_name=c:\tutorial\tutCustomer.udb"
schema_parms = open_parms & ";" &
 "PALM_SCHEMA=tutCustomer;" & _
 "schema_file=c:\tutorial\tutCustomer.usm"

On Error Resume Next

Set Connection = DatabaseMgr.
OpenConnection(open_parms)
If Err.Number = _
 ULSQLCode.ulSQLE_DATABASE_NOT_FOUND _
Then
 Err.Clear
 Set Connection = _
 DatabaseMgr.CreateDatabase(schema_parms)
 If Err.Number <> 0 Then
 MsgBox Err.Description
 End If
End If

DropDatabase method

Deletes a database file.

DropDatabase(parms As String)
Member of UltraLiteAFLib.ULDatabaseManager

Deletes the database file. All information in the database file is lost.

parms The filename for the database.

The following example drops a database:

Dim parms As String
parms = "PALM_DB=Syb1;NT_FILE=c:\temp\ul_custdb.udb"
DropDatabase(parms)

Examples

Prototype

Description

Parameters

Example

ULDatabaseManager class

76

OpenConnection method

OpenConnection(connparms As string) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

If a database exists, use this method to receive a connection. If a database
does not exist, or the connection parameters are invalid, the call will fail. Use
the error object to determine why the call failed.

The function returns a ULConnection object which provides an open
connection to a specified UltraLite database. The database filename is
specified using the connparms string. It should contain a value of the form

file_name=UDBFILE

DBF=UDBFILE

palm_db=CreatorID.

connparms The parameters that determine the target database. Parameters
are specified using a sequence of "name=value" pairs. If no user ID or
password is given, the default is used.

Note for VFS card for Palm users
The Palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection methods.

$ For more information on the Palm_fs parameter, see "palm_fs
parameter " on page 31 of the book UltraLite Foundations.

The ULConnection object is returned if the connection was successful.

The following example creates a new database connection from the CustDB
sample application:

Set Connection = DatabaseMgr.OpenConnection(
"file_name=d:\Dbfile.udb;palm_db=Syb3;CE_file=_
\myapp\MyDB.udb")

Prototype

Description

Parameters

Returns

Example

Chapter 5 API Reference

77

ULDatabaseSchema class
The ULDatabaseSchema object allows you to obtain the attributes of the
database to which you are connected.

Properties

The following are properties of ULDatabaseSchema:

Prototype Description

DateFormat as String (read only) Gets the format for dates retrieved from
the database; ’YYYY-MM-DD’ is the
default. The format of the date retrieved
depends on the format used when you
created the schema file.

DateOrder as String (read only) Controls the interpretation of date formats;
valid values are ’MDY’, ’YMD’, or ’DMY’.

NearestCentury as String (read
only)

Controls the interpretation of two-digit
years in string-to-date conversions. This is
a numeric value that acts as a rollover
point. Two digit years less than the value
are converted to 20yy, while years greater
than or equal to the value are converted to
19yy. The default is 50.

Precision as String (read only) Specifies the maximum number of digits
in the result of any decimal arithmetic.

PublicationCount as Integer (read
only)

The number of publications in the
connected database.

Signature as String (read only) An internal identifier representing the
database schema.

TableCount as Integer (read only) The number of tables in the connected
database.

TimeFormat as String (read only) Gets the format for times retrieved from
the database.

TimestampFormat as String (read
only)

The format for timestamps retrieved from
the database.

ULDatabaseSchema class

78

ApplyFile method

ApplyFile (parms As String)
Member of UltraLiteAFLib.ULDatabaseSchema

Changes the schema of this database. Parms points to the schema file(s) you
are applying to the database. This method is only useful on those occasions
where you want to modify your existing database structure.

In most circumstances there is no data loss, but data loss can occur if
columns are deleted, for example, or if the data type for a column is changed
to an incompatible type.

parms The files containing the changes you wish to make to your database
schema.

ULDatabaseSchema.ApplyFile(
"schema_file=MySchemaFile.usm;palm_schema=MySchema")

GetPublicationName method

GetPublicationName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Returns the name of the specified publication. The publication ID can range
from 1 to PublicationCount.

id The id is the identifier of the publication whose name will be returned.

Returns the name of a publication in the connected database.

$ For information about the ULPublicationSchema object, see
"ULPublicationSchema" on page 82.

$ For more information, see ULDatabaseSchema "Properties" on page 77

GetPublicationSchema method

GetPublicationSchema(Name As String) As ULPublicationSchema
Member of UltraLiteAFLib.ULDatabaseSchema

Use the publication name to retrieve the ULPublicationSchema object.

name The name of the publication.

Returns the ULPublicationSchema object.

Prototype

Description

Parameters

Example

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

Returns

Chapter 5 API Reference

79

GetTableName method

GetTableName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Returns the name of the table in the connected database that corresponds to
the id value you supply. The TableCount property returns the number of
tables in the connected database. Each table has a unique number from 1 to
the TableCount value, where 1 is the first table in the database, 2 is the
second table in the database, and so on. The id for a table my change after a
database has had its schema changed.

id The id of the table.

Returns the name of the table for the specified id.

Prototype

Description

Parameters

Returns

ULIndexSchema class

80

ULIndexSchema class
The ULIndexSchema object allows you to obtain the attributes of an index.
An index is an ordered set of columns by which data in a table will be sorted.
The primary use of an index is to order the data in a table by one or more
columns.

An index can be a foreign key, which is used to maintain referential integrity
in a database.

Properties

Prototype Description

ColumnCount as Integer (read only) Returns the number of columns in the
index

ForeignKey as Boolean (read only) Returns whether this is a foreign key.

Name as String (read only) Returns the name of the index

PrimaryKey as Boolean (read only) Returns whether this is the primary
key for this table.

ReferencedIndexName as String (read
only)

The name of the index referenced by
this index if it is a foreign key

ReferencedTableName as String (read
only)

The name of the table referenced by
this index if it is a foreign key

UniqueIndex as Boolean (read only) Indicates whether values in the index
must be unique.

UniqueKey as Boolean (read only) Indicates whether the index is a
unique constraint on a table. If True,
the columns in the index are unique
and do not permit NULL values

GetColumnName method

GetColumnName(col_pos_in_index As Integer) As String
Member of UltraLiteAFLib.ULIndexSchema

Used to return the names of the columns in the index. The parameter
col_pos_in_index must be at least 1 and at most ColumnCount.

col_pos_in_index The column position in the index.

Prototype

Description

Parameters

Chapter 5 API Reference

81

Returns the name of a column in the index.

IsColumnDescending method

IsColumnDescending(col_name As String) As Boolean
Member of UltraLiteAFLib.ULIndexSchema

Indicates whether the specified column in the index is in descending order.

col_name The index column name.

True if the column is descending.

False if the column is ascending.

Returns

Prototype

Description

Parameters

Returns

ULPublicationSchema class

82

ULPublicationSchema class
The ULPublicationSchema object allows you to obtain the attributes of a
publication.

Properties

Prototype Description

Mask as Long (read only) Returns the mask (a unique identifier) for the
publication

Name as String (read only) Returns the name of the publication

ContainsTable method

ContainsTable(name As String) As Boolean
Member of UltraLiteAFLib.ULPublicationSchema

Indicates whether the specified table is part of this publication.

name The target table name.

True if the table is in the publication.

False if the table is not in the publication.

Prototype

Description

Parameters

Returns

Chapter 5 API Reference

83

ULSQLCode enum
The ULSQLCode constants identify SQL codes.

For a description of the errors, see the Adaptive Server Anywhere Error
Messages book.

Constant Value

ulSQLE_BAD_ENCRYPTION_KEY -840

ulSQLE_CANNOT_ACCESS_FILE -602

ulSQLE_CANNOT_CHANGE_USER_NAME -867

ulSQLE_COLUMN_CANNOT_BE_NULL -195

ulSQLE_COLUMN_IN_INDEX -127

ulSQLE_COLUMN_NOT_FOUND -143

ulSQLE_COMMUNICATIONS_ERROR -85

ulSQLE_CONNECTION_NOT_FOUND -108

ulSQLE_CONVERSION_ERROR -157

ulSQLE_CURSOROP_NOT_ALLOWED -187

ulSQLE_CURSOR_ALREADY_OPEN -172

ulSQLE_CURSOR_NOT_OPEN -180

ulSQLE_DATABASE_ERROR -301

ulSQLE_DATABASE_NEW 123

ulSQLE_DATABASE_NOT_CREATED -645

ulSQLE_DATABASE_NOT_FOUND -83

ulSQLE_DATABASE_UPGRADE_FAILED -672

ulSQLE_DATABASE_UPGRADE_NOT_POSSIBLE -673

ulSQLE_DATATYPE_NOT_ALLOWED -624

ulSQLE_DBSPACE_FULL -604

ulSQLE_DIV_ZERO_ERROR -628

ulSQLE_DOWNLOAD_CONFLICT -839

ulSQLE_DROP_DATABASE_FAILED -651

ulSQLE_DYNAMIC_MEMORY_EXHAUSTED -78

ulSQLE_ENGINE_ALREADY_RUNNING -96

ulSQLE_ENGINE_NOT_MULTIUSER -89

ULSQLCode enum

84

Constant Value

ulSQLE_ERROR -300

ulSQLE_IDENTIFIER_TOO_LONG -250

ulSQLE_INDEX_NOT_FOUND -183

ulSQLE_INDEX_NOT_UNIQUE -196

ulSQLE_INTERRUPTED -299

ulSQLE_INVALID_FOREIGN_KEY -194

ulSQLE_INVALID_FOREIGN_KEY_DEF -113

ulSQLE_INVALID_LOGON -103

ulSQLE_INVALID_OPTION_SETTING -201

ulSQLE_INVALID_PARAMETER -735

ulSQLE_INVALID_SQL_IDENTIFIER -760

ulSQLE_LOCKED -210,

ulSQLE_MEMORY_ERROR -309

ulSQLE_METHOD_CANNOT_BE_CALLED -669

ulSQLE_NAME_NOT_UNIQUE -110

ulSQLE_NOERR 0

ulSQLE_NOTFOUND 100

ulSQLE_NO_CURRENT_ROW -197

ulSQLE_NO_INDICATOR -181

ulSQLE_OVERFLOW_ERROR -158

ulSQLE_PERMISSION_DENIED -121

ulSQLE_PRIMARY_KEY_NOT_UNIQUE -193

ulSQLE_PRIMARY_KEY_VALUE_REF -198

ulSQLE_PUBLICATION_NOT_FOUND -280

ulSQLE_RESOURCE_GOVERNOR_EXCEEDED -685

ulSQLE_ROW_DROPPED_DURING_SCHEMA_UPG
RADE

130

ulSQLE_SERVER_SYNCHRONIZATION_ERROR -857

ulSQLE_START_STOP_DATABASE_DENIED -75

ulSQLE_STRING_RIGHT_TRUNCATION -638

ulSQLE_TABLE_HAS_PUBLICATIONS -281

ulSQLE_TABLE_IN_USE -214

Chapter 5 API Reference

85

Constant Value

ulSQLE_TABLE_NOT_FOUND -141

ulSQLE_TOO_MANY_CONNECTIONS -102

ulSQLE_UNABLE_TO_START_DATABASE -82

ulSQLE_UNCOMMITTED_TRANSACTIONS -755

ulSQLE_UNKNOWN_USERID -140

ulSQLE_UNSUPPORTED_CHARACTER_SET_ERR
OR

-869

ulSQLE_UPLOAD_FAILED_AT_SERVER -794

ULSQLType enum

86

ULSQLType enum
The ULSQLType constants identify valid database column types.

Constant Value

ULTypeLong 0

ULTypeShort 1

ULTypeUnsignedLong 2

ULTypeUnsignedShort 3

ULTypeBig 4

ULTypeUnsignedBig 5

ULTypeByte 6

ULTypeBit 7

ULTypeDateTime 8

ULTypeDate 9

ULTypeTime 10

ULTypeDouble 11

ULTypeReal 12

ULTypeBinary 13

ULTypeLongBinary 14

ULTypeString 15

ULTypeLongString 16

ULTypeNumeric 17

Chapter 5 API Reference

87

ULStreamErrorCode enum
The ULStreamErrorCode constants identify constants you can use to specify
the ULStreamErrorCode.

Constant Value

ulStreamErrorCodeNone 0

ulStreamErrorCodeParameter 1

ulStreamErrorCodeParameterNotUint32 2

ulStreamErrorCodeParameterNotUint32Range 3

ulStreamErrorCodeParameterNotBoolean 4

ulStreamErrorCodeParameterNotHex 5

ulStreamErrorCodeMemoryAllocation 6

ulStreamErrorCodeParse 7

ulStreamErrorCodeRead 8

ulStreamErrorCodeWrite 9

ulStreamErrorCodeEndWrite 10

ulStreamErrorCodeEndRead 11

ulStreamErrorCodeNotImplemented 12

ulStreamErrorCodeWouldBlock 13

ulStreamErrorCodeGenerateRandom 14

ulStreamErrorCodeInitRandom 15

ulStreamErrorCodeSeedRandom 16

ulStreamErrorCodeCreateRandomObject 17

ulStreamErrorCodeShuttingDown 18

ulStreamErrorCodeDequeuingConnection 19

ulStreamErrorCodeSecureCertificateRoot 20

ulStreamErrorCodeSecureCertificateCompanyName 21

ulStreamErrorCodeSecureCertificateChainLength 22

ulStreamErrorCodeSecureCertificateRef 23

ulStreamErrorCodeSecureCertificateNotTrusted 24

ulStreamErrorCodeSecureDuplicateContext 25

ulStreamErrorCodeSecureSetIo 26

ULStreamErrorCode enum

88

Constant Value

ulStreamErrorCodeSecureSetIoSemantics 27

ulStreamErrorCodeSecureCertificateChainFunc 28

ulStreamErrorCodeSecureCertificateChainRef 29

ulStreamErrorCodeSecureEnableNonBlocking 30

ulStreamErrorCodeSecureSetCipherSuites 31

ulStreamErrorCodeSecureSetChainNumber 32

ulStreamErrorCodeSecureCertificateFileNotFound 33

ulStreamErrorCodeSecureReadCertificate 34

ulStreamErrorCodeSecureReadPrivateKey 35

ulStreamErrorCodeSecureSetPrivateKey 36

ulStreamErrorCodeSecureCertificateExpiryDate 37

ulStreamErrorCodeSecureExportCertificate 38

ulStreamErrorCodeSecureAddCertificate 39

ulStreamErrorCodeSecureTrustedCertificateFileNotFound 40

ulStreamErrorCodeSecureTrustedCertificateRead 41

ulStreamErrorCodeSecureCertificateCount 42

ulStreamErrorCodeSecureCreateCertificate 43

ulStreamErrorCodeSecureImportCertificate 44

ulStreamErrorCodeSecureSetRandomRef 45

ulStreamErrorCodeSecureSetRandomFunc 46

ulStreamErrorCodeSecureSetProtocolSide 47

ulStreamErrorCodeSecureAddTrustedCertificate 48

ulStreamErrorCodeSecureCreatePrivateKeyObject 49

ulStreamErrorCodeSecureCertificateExpired 50

ulStreamErrorCodeSecureCertificateCompanyUnit 51

ulStreamErrorCodeSecureCertificateCommonName 52

ulStreamErrorCodeSecureHandshake 53

ulStreamErrorCodeHttpVersion 54

ulStreamErrorCodeSecureSetReadFunc 55

ulStreamErrorCodeSecureSetWriteFunc 56

ulStreamErrorCodeSocketHostNameNotFound 57

Chapter 5 API Reference

89

Constant Value

ulStreamErrorCodeSocketGetHostByAddr 58

ulStreamErrorCodeSocketLocalhostNameNotFound 59

ulStreamErrorCodeSocketCreateTcpip 60

ulStreamErrorCodeSocketCreateUdp 61

ulStreamErrorCodeSocketBind 62

ulStreamErrorCodeSocketCleanup 63

ulStreamErrorCodeSocketClose 64

ulStreamErrorCodeSocketConnect 65

ulStreamErrorCodeSocketGetName 66

ulStreamErrorCodeSocketGetOption 67

ulStreamErrorCodeSocketSetOption 68

ulStreamErrorCodeSocketListen 69

ulStreamErrorCodeSocketShutdown 70

ulStreamErrorCodeSocketSelect 71

ulStreamErrorCodeSocketStartup 72

ulStreamErrorCodeSocketPortOutOfRange 73

ulStreamErrorCodeLoadNetworkLibrary 74

ulStreamErrorCodeActsyncNoPort 75

ULStreamErrorContext enum

90

ULStreamErrorContext enum
The ULStreamErrorContext constants identify constants you can use to
specify ULStreamErrorContext.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

Chapter 5 API Reference

91

ULStreamErrorID enum
The ULStreamErrorID constants identify constants you can use to specify
ULStreamErrorContext.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

ULStreamType enum

92

ULStreamType enum
The ULStreamType constants identify constants you can use to specify
stream type.

Constant Value Description

ulUnknown 0 No stream type has been set. You must
set a stream type before synchronization.

ulTCPIP 1 TCPIP stream

ulHTTP 2 HTTP stream

ulHTTPS 3 HTTPS synchronization

ulPalmConduit 4 For HotSync synchronization

Chapter 5 API Reference

93

ULSyncParms class
The attributes set for the ULSyncParms object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read only reflect the status of the last synchronization.

Properties

The following are properties of ULSyncParms:

Prototype Description

CheckpointStore as Boolean Adds checkpoints of the database during
synchronization to limit database growth
during the synchronization process. This is
most useful for large downloads with
many updates

DownloadOnly as Boolean If true, synchronization only downloads
data

NewPassword as String The user’s password will be changed to
this string on the next synchronization, if
set

Password as String Password corresponding to the given user
name

PingOnly as Boolean Only check the server for liveness. Do not
synchronize data.

PublicationMask as Long The publications to synchronize - the
default is all

SendColumnNames as Boolean If true, column names are sent to the
MobiLink synchronization server

SendDownloadAck as Boolean If true, a download acknowledgement is
sent during synchronization

Stream as ULStreamType constants The type of stream to use during
synchronization

StreamParms as String Extra parameters for the given stream type

UploadOnly as Boolean If true, synchronization only uploads data

UserName as String User name to connect for synchronization

Version as String The synchronization script version to run

ULSyncParms class

94

The following example sets synchronization parameters for an UltraLite for
MobileVB application.

Private Sub btnSync_Click()
 With Connection.SyncParms
 .UserName = "afsample"
 .Stream = ULStreamType.ulTCPIP
 .Version = "ul_default"
 .SendColumnNames = True
 End With
 Connection.Synchronize
End Sub

Examples

Chapter 5 API Reference

95

ULSyncResult class
The attributes of the ULSyncResult object indicate how the last
synchronization went. Note that data for this object is not saved if the
application is terminated.

Properties

The following are properties of ULSyncResult:

Prototype Description

AuthStatus as ULAuthStatusCode
(read only)

The authorization status code for the last
synchronization.

IgnoredRows as Boolean (read
only)

If true, rows were ignored during the last
synchronization

StreamErrorCode as
ULStreamErrorCode (read only)

The error code reported by the stream
itself

StreamErrorContext as
ULStreamErrorContext (read only)

The basic network operation being
performed

StreamErrorID as ULStreamErrorID
(read only)

The network layer reporting the error

StreamErrorSystem as Long (read
only)

The stream error system-specific code

UploadOK as Boolean (read only) If true, data was uploaded successfully in
the last synchronization

ULSyncState

96

ULSyncState

Constant Value

ulSyncStateStarting 0

ulSyncStateConnecting 1

ulSyncStateSendingHeader 2

ulSyncStateSendingTable 3

ulSyncStateSendingData 4

ulSyncStateFinishingUpload 5

ulSyncStateReceivingUploadAck 6

ulSyncStateReceivingTable 7

ulSyncStateReceivingData 8

ulSyncStateCommittingDownload 9

ulSyncStateSendingDownloadAck 10

ulSyncStateDisconnecting 11

ulSyncStateDone 12

ulSyncStateError 13

ulSyncStateCancelled 99

Chapter 5 API Reference

97

ULTable class
The ULTable class is used to store, remove, update, and read data from a
table.

Before you can work with table data, you must call the Open method.

Properties

Prototype Description

BOF as Boolean (read only) Returns whether you are currently
positioned before the first row

EOF as Boolean (read only) Returns whether you are currently
positioned after the last row

IsOpen as Boolean (read only) Returns whether or not this table is
currently open

RowCount as Long (read only) Returns the number of rows in this
table

Schema as ULTableSchema (read only) Returns information about the
schema of this table.

Close method

Close()
Member of UltraLiteAFLib.ULTable

Frees resources associated with the table. This method should be called after
all processing involving the table is complete. For Palm, if a table is not
closed it can be reopened to its current position.

Column method

Column(name As String) As ULColumn
Member of UltraLiteAFLib.ULTable

Returns the ULColumn object for the specified column name.

$ For information about the ULColumn object, see "ULColumn" on
page 61.

Prototype

Description

Description

ULTable class

98

name The name of the column to return.

Returns the ULColumn object.

Delete method

Delete()
Member of UltraLiteAFLib.ULTable

Deletes the current row from the table.

DeleteAllRows method

DeleteAllRows()
Member of UltraLiteAFLib.ULTable

Deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using the ULConnection.StartSynchronizationDelete method or calling
Truncate instead of DeleteAllRows.

FindBegin method

FindBegin()
Member of UltraLiteAFLib.ULTable

Prepares a table for a find.

FindFirst method

FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

Parameters

Returns

Prototype

Description

Prototype

Description

Prototype

Description

Prototype

Description

Chapter 5 API Reference

99

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is after the last row (EOF).

Note: Requires that FindBegin be called prior to using this method.

num_columns An optional parameter referring to the number of columns
to be used in the FindFirst. For example, if 2 is passed, the first two columns
are used for the FindFirst. If num_columns exceeds the number of columns
indexed, all columns are used in FindFirst.

True if successful.

False if unsuccessful.

FindLast method

FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

The current index is used to specify the sort order of the table. It is specified
when your application calls the Open method. The default index is the
primary key.

$ For more information, see "Open method" on page 104.

To specify the value to search for, set the column value for each column in
the index for which you want to find the value. The cursor is left on the last
row found that exactly matches the index value. On failure the cursor
position is before the first row (BOF).

Note: Requires that FindBegin be called prior to using this method.

num_columns An optional parameter referring to the number of columns
to be used in the FindLast. For example, if 2 is passed, the first two columns
are used for the FindLast. If num_columns exceeds the number of columns
indexed, all columns are used in FindLast.

True if successful.

False if unsuccessful.

FindNext method

FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Parameters

Returns

Prototype

Description

Parameters

Returns

Prototype

ULTable class

100

Move forwards through the table from the current position, looking for the
next row that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the Open method. The default index is
the primary key.

$ For more information, see "Open method" on page 104.

The cursor is left on the first row found that exactly matches the index value.
On failure, the cursor position is after the last row (EOF).

Note: Must be preceded by FindFirst or FindLast.

num_columns An optional parameter referring to the number of columns
to be used in the FindNext. For example, if 2 is passed, the first two columns
are used for the FindNext. If num_columns exceeds the number of columns
indexed, all columns are used in FindNext.

True if successful.

False if unsuccessful (EOF).

FindPrevious method

FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move backwards through the table from the current position, looking for the
previous row that exactly matches a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

$ For more information, see "Open method" on page 104.

On failure it is positioned before the first row (BOF).

num_columns An optional parameter referring to the number of columns
to be used in the FindPrevious. For example, if 2 is passed, the first two
columns are used for the FindPrevious. If num_columns exceeds the number
of columns indexed, all columns are used in FindPrevious.

True if successful.

False if unsuccessful (BOF).

Description

Parameters

Returns

Prototype

Description

Parameters

Returns

Chapter 5 API Reference

101

Insert method

Insert() As Boolean
Member of UltraLiteAFLib.ULTable

Inserts a row in the table with values specified in previous Set methods.
Must be preceded by InsertBegin. Set for each ULColumn object.

InsertBegin method

InsertBegin()
Member of UltraLiteAFLib.ULTable

Prepares a table for inserting a new row, setting column values to their
defaults.

In this example, InsertBegin sets insert mode to allow you to begin assigning
data values to CustomerTable columns.

On Error GoTo InsertError
CustomerTable.InsertBegin
CustomerTable.Column("Fname").StringValue = fname
CustomerTable.Column("Lname").StringValue = lname
CustomerTable.Insert

"UpdateBegin method" on page 105

LookupBackward method

LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move backwards through the table starting from the end, looking for the first
row that matches or is less than a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

$ For more information, see "Open method" on page 104.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the last row that matches or is less than the
index value. On failure (that is, if no row is less than the value being looked
for), the cursor position is before the first row (BOF).

num_columns An optional parameter referring to the number of columns.

True if successful.

Prototype

Description

Prototype

Description

Examples

See also

Prototype

Description

Parameters

Returns

ULTable class

102

False if unsuccessful.

LookupBegin method

LookupBegin()
Member of UltraLiteAFLib.ULTable

Prepares a table for a lookup.

LookupForward method

LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

$ For more information, see "Open method" on page 104.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is after the last row (EOF).

num_columns An optional parameter referring to the number of columns.

True if successful.

False if unsuccessful.

MoveAfterLast method

MoveAfterLast () As Boolean
Member of UltraLiteAFLib.ULTable

Moves to a position after the last row.

True if successful.

False if the operation fails.

Prototype

Description

Prototype

Description

Parameters

Returns

Prototype

Description

Returns

Chapter 5 API Reference

103

MoveBeforeFirst method

MoveBeforeFirst () As Boolean
Member of UltraLiteAFLib.ULTable

Moves to a position before the first row.

True if successful.

False if the operation fails.

MoveFirst method

MoveFirst () As Boolean
Member of UltraLiteAFLib.ULTable

Moves to the first row.

True if successful.

False if there is no data in the table.

In this example, MoveFirst takes the cursor to the first record.

CustomerTable.MoveFirst

MoveLast method

MoveLast () As Boolean
Member of UltraLiteAFLib.ULTable

Moves to the last row.

True if successful.

False if there is no data in the table.

MoveNext method

MoveNext () As Boolean
Member of UltraLiteAFLib.ULTable

Moves to the next row.

True if successful.

False if there is no more data in the table.

Prototype

Description

Returns

Prototype

Description

Returns

Example

Prototype

Description

Returns

Prototype

Description

Returns

ULTable class

104

MovePrevious method

MovePrevious () As Boolean
Member of UltraLiteAFLib.ULTable

Moves to the previous row.

True if successful.

False if there is no more data in the table.

MoveRelative method

MoveRelative (index As Long) As Boolean
Member of UltraLiteAFLib.ULTable

Moves a certain number of rows relative to the current row.

index The number of rows to move. The value can be positive, negative,
or zero. Zero is useful if you want to repopulate a row buffer.

True if successful.

False if the move failed.

Open method

Open([index_name As String], [persistent_name as string])
Member of UltraLiteAFLib.ULTable

Opens the table so it can be read or manipulated. By default, the rows are
ordered by primary key. By supplying an index name, the rows can be
ordered in other ways.

The cursor is positioned before the first row in the table.

index_name The name of the index.

persistent_name For Palm Computing Platform applications, the stored
name of the table.

Truncate method

Truncate ()
Member of UltraLiteAFLib.ULTable

Prototype

Description

Returns

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

Prototype

Chapter 5 API Reference

105

Removes all data from this table. The changes are not synchronized, so that
on synchronization, it does not affect the data in the consolidated database.

$ For more information, see "StopSynchronizationDelete method" on
page 72.

Update method

Update()
Member of UltraLiteAFLib.ULTable

Updates a row in the table with values specified in ULColumn methods.

Note: Must be preceded by a call to UpdateBegin.

UpdateBegin method

UpdateBegin()
Member of UltraLiteAFLib.ULTable

Prepares a table for modifying the contents of the current row.

On Error GoTo UpdateError
 CustomerTable.UpdateBegin
 CustomerTable.Column("Fname").StringValue = fname
…
 CustomerTable.Update

Description

Prototype

Description

Prototype

Description

Examples

ULTableSchema class

106

ULTableSchema class
The ULTableSchema object allows you to obtain the attributes of a table.

Properties

The following are properties of the ULTableSchema class:

Prototype Description

ColumnCount as Integer (read only) The number of columns in this table

IndexCount as Integer (read only) The number of indexes on this table

Name as String (read only) This table’s name

NeverSynchronized as Boolean (read
only)

True if the table is always excluded from
synchronization. Otherwise, false.

PrimaryKey as ULIndexSchema
(read only)

The primary key for this table.

UploadUnchangedRows True if all of this tables rows are sent to
the consolidated database during
synchronization even if they haven’t
changed.

GetColumnName method

GetColumnName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Returns the name of the column that corresponds to the id value you supply.
The ColumnCount property returns the number of columns in the table. Each
column has a unique number from 1 to the ColumnCount value, where 1 is
the first column in the table, 2 is the second column in the table, and so on.

id The id of the column.

The name of a column.

GetIndex method

GetIndex(name As String) As ULIndexSchema
Member of UltraLiteAFLib.ULTableSchema

Prototype

Description

Parameters

Returns

Prototype

Chapter 5 API Reference

107

Returns the ULIndexSchema object for the specified index.

$ For information about the ULIndexSchema object, see
"ULIndexSchema" on page 80.

GetIndexName method

GetIndexName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Returns the name of the index in the table that corresponds to the id value
you supply. The IndexCount property returns the number of indexes in the
database. Each index has a unique number from 1 to the IndexCount value,
where 1 is the first index in the table, 2 is the second index in the table, and
so on.

InPublication method

InPublication(pub_name As String) As Boolean
Member of UltraLiteAFLib.ULTableSchema

Indicates whether this table is part of the specified publication.

True if the table is part of the publication.

False if the table is not part of the publication.

Description

Prototype

Description

Prototype

Description

Returns

ULTableSchema class

108

109

Index

A
AppendByteChunk method (ULColumn class)

UltraLite for MobileVB API, 61

AppendStringChunk method (ULColumn class)
UltraLite for MobileVB API, 62

AppForge Booster
MobileVB, 3, 8

ApplyFile method (ULDatabaseSchema class)
UltraLite for MobileVB API, 78

Architecture
UltraLite for MobileVB, 5

AuthStatus property (ULSyncResult class)
UltraLite for MobileVB API, 95

AutoCommit mode
about, 54

AutoCommit property (ULConnection class)
UltraLite for MobileVB API, 67

AutoIncrement property (ULColumnSchema class)
UltraLite for MobileVB API, 66

B
BOF property (ULTable class)

UltraLite for MobileVB API, 97

BooleanValue property (ULColumn class)
UltraLite for MobileVB API, 61

ByteValue property (ULColumn class)
UltraLite for MobileVB API, 61

C
CancelSynchronize method (ULConnection class)

UltraLite for MobileVB API, 68

casting
data types, 51

CheckpointStore property (ULSyncParms class)
UltraLite for MobileVB API, 93

Close method (ULConnection class)
UltraLite for MobileVB API, 68

Close method (ULTable class)
UltraLite for MobileVB API, 97

Column method (ULTable class)
UltraLite for MobileVB API, 97

ColumnCount property (ULIndexSchema class)
UltraLite for MobileVB API, 80

ColumnCount property (ULTableSchema class)
UltraLite for MobileVB API, 106

columns
accessing schema information, 55

Commit method
about, 54

Commit method (ULConnection class)
UltraLite for MobileVB API, 68

commits
about, 54

connecting
UltraLite databases, 46

connection parameters
databases, 46

D–F

110

ContainsTable method (ULPublicationSchema
class)

UltraLite for MobileVB API, 82

CountUploadRows method (ULConnection class)
UltraLite for MobileVB API, 68

CreateDatabase method (ULDatabaseManager class)
UltraLite for MobileVB API, 74

CustDB sample
UltraLite for MobileVB, 25, 44

D
data manipulation

about, 49

data types
accessing, 50
casting, 51

database schema
accessing, 55

DatabaseID property (ULConnection class)
UltraLite for MobileVB API, 67

databases
accessing schema information, 55
connecting to, 46

DateFormat property (ULDatabaseSchema class)
UltraLite for MobileVB API, 77

DateOrder property (ULDatabaseSchema class)
UltraLite for MobileVB API, 77

DatetimeValue property (ULColumn class)
UltraLite for MobileVB API, 61

DefaultValue property (ULColumnSchema class)
UltraLite for MobileVB API, 66

Delete method (ULTable class)
UltraLite for MobileVB API, 98

DeleteAllRows method (ULTable class)
UltraLite for MobileVB API, 98

deleting rows
about, 52

development platforms
supported, 3
UltraLite for MobileVB, 3

DoubleValue property (ULColumn class)
UltraLite for MobileVB API, 61

DownloadOnly property (ULSyncParms class)
UltraLite for MobileVB API, 93

DropDatabase method
(ULDatabaseManager class) UltraLite for

MobileVB API, 75

E
EOF property (ULTable class)

UltraLite for MobileVB API, 97

error handling
about, 56

errors
handling, 56

F
features

UltraLite for MobileVB, 2

feedback
documentation, vii
providing, vii

Find methods
about, 51

find mode
about, 49

FindBegin method (ULTable class)
UltraLite for MobileVB API, 98

FindFirst method (ULTable class)
UltraLite for MobileVB API, 98

FindLast method (ULTable class)
UltraLite for MobileVB API, 99

FindNext method (ULTable class)
UltraLite for MobileVB API, 99

FindPrevious method (ULTable class)
UltraLite for MobileVB API, 100

ForeignKey property (ULIndexSchema class)
UltraLite for MobileVB API, 80

G–L

111

G
GetByteChunk method (ULColumn class)

UltraLite for MobileVB API, 62

GetColumnName method (ULIndexSchema class)
UltraLite for MobileVB API, 80

GetColumnName method (ULTableSchema class)
UltraLite for MobileVB API, 106

GetIndex method (ULTableSchema class)
UltraLite for MobileVB API, 106

GetIndexName method (ULTableSchema class)
UltraLite for MobileVB API, 107

GetNewUUID method (ULConnection class)
UltraLite for MobileVB API, 69

GetPublicationName method (ULDatabaseSchema
class)

UltraLite for MobileVB API, 78

GetPublicationSchema method (ULDatabaseSchema
class)

UltraLite for MobileVB API, 78

GetStringChunk method (ULColumn class)
UltraLite for MobileVB API, 63

GetTable function (ULConnection class)
UltraLite for MobileVB API, 69

GetTableName method (ULDatabaseSchema class)
UltraLite for MobileVB API, 79

GlobalAutoIncrement property (ULColumnSchema
class)

UltraLite for MobileVB API, 66

GlobalAutoIncrementUsage property
(ULConnection class)

UltraLite for MobileVB API, 67

GrantConnectTo method (ULConnection class)
UltraLite for MobileVB API, 69

I
ID property (ULColumnSchema class)

UltraLite for MobileVB API, 66

idnexes
accessing schema information, 55

IgnoredRows property (ULSyncResult class)
UltraLite for MobileVB API, 95

IndexCount property (ULTableSchema class)
UltraLite for MobileVB API, 106

InPublication method (ULTableSchema class)
UltraLite for MobileVB API, 107

Insert method (ULTable class)
UltraLite for MobileVB API, 101

insert mode
about, 49

InsertBegin method (ULTable class)
UltraLite for MobileVB API, 101

inserting rows
about, 52

IntegerValue property (ULColumn class)
UltraLite for MobileVB API, 61

internals
data manipulation, 49

IsColumnDescending method (ULIndexSchema
class)

UltraLite for MobileVB API, 81

IsNull property (ULColumn class)
UltraLite for MobileVB API, 61

IsOpen property (ULTable class)
UltraLite for MobileVB API, 97

L
LastDownloadTime method (ULConnection class)

UltraLite for MobileVB API, 69

LastIdentity property (ULConnection class)
UltraLite for MobileVB API, 67

LongValue property (ULColumn class)
UltraLite for MobileVB API, 61

Lookup methods
about, 51

lookup mode
about, 49

LookupBackward method (ULTable class)
UltraLite for MobileVB API, 101

M–O

112

LookupBegin method (ULTable class)
UltraLite for MobileVB API, 102

LookupForward method (ULTable class)
UltraLite for MobileVB API, 102

M
Mask property (ULPublicationSchema class)

UltraLite for MobileVB API, 82

Microsoft Visual Basic
supported versions, 3

MobileVB
AppForge Booster, 3, 8
Development platforms, 3
supported versions, 3

modes
about, 49

MoveAfterLast method (ULTable class)
UltraLite for MobileVB API, 102

MoveBeforeFirst method (ULTable class)
UltraLite for MobileVB API, 103

MoveFirst method
introduction, 50

MoveFirst method (ULTable class)
UltraLite for MobileVB API, 103

MoveLast method (ULTable class)
UltraLite for MobileVB API, 103

MoveNext method
introduction, 50

MoveNext method (ULTable class)
UltraLite for MobileVB API, 103

MovePrevious method (ULTable class)
UltraLite for MobileVB API, 104

MoveRelative method (ULTable class)
UltraLite for MobileVB API, 104

N
Name property (ULColumnSchema class)

UltraLite for MobileVB API, 66

Name property (ULIndexSchema class)
UltraLite for MobileVB API, 80

Name property (ULPublicationSchema class)
UltraLite for MobileVB API, 82

Name property (ULTableSchema class)
UltraLite for MobileVB API, 106

NearestCentury property (ULDatabaseSchema class)
UltraLite for MobileVB API, 77

NeverSynchronized property (ULTableSchema
class)

UltraLite for MobileVB API, 106

NewPassword property (ULSyncParms class)
UltraLite for MobileVB API, 93

newsgroups
technical support, vii

Nullable property (ULColumnSchema class)
UltraLite for MobileVB API, 66

O
OnReceive event (ULConnection class)

UltraLite for MobileVB API, 70

OnSend event(ULConnection class)
UltraLite for MobileVB API, 70

OnStateChange event(ULConnection class)
UltraLite for MobileVB API, 71

OnTableChange event (ULConnection class)
UltraLite for MobileVB API, 71

Open method
ULTable object, 50

Open method (ULTable class)
UltraLite for MobileVB API, 104

OpenByIndex method
ULTable object, 50

OpenConnection method (ULDatabaseManager
class)

UltraLite for MobileVB API, 76

OpenParms property (ULConnection class)
UltraLite for MobileVB API, 67

P–S

113

OptimalIndex property (ULColumnSchema class)
UltraLite for MobileVB API, 66

P
Palm Computing Platform

supported versions, 3

Palm OS
unsupported versions, 3

Password property (ULSyncParms class)
UltraLite for MobileVB API, 93

PingOnly property (ULSyncParms class)
UltraLite for MobileVB API, 93

platforms
supported, 3

Precision property (ULColumnSchema class)
UltraLite for MobileVB API, 66

Precision property (ULDatabaseSchema class)
UltraLite for MobileVB API, 77

PrimaryKey property (ULIndexSchema class)
UltraLite for MobileVB API, 80

PrimaryKey property (ULTableSchema class)
UltraLite for MobileVB API, 106

projects
creating UltraLite for MobileVB projects, 11, 31

PublicationCount property (ULDatabaseSchema
class)

UltraLite for MobileVB API, 77

PublicationMask property (ULSyncParms class)
UltraLite for MobileVB API, 93

publications
accessing schema information, 55

R
RealValue property (ULColumn class)

UltraLite for MobileVB API, 61

ReferencedIndexName property (ULIndexSchema
class)

UltraLite for MobileVB API, 80

ReferencedTableName property (ULIndexSchema
class)

UltraLite for MobileVB API, 80

RevokeConnectFrom method (ULConnection class)
UltraLite for MobileVB API, 71

Rollback method
about, 54

Rollback method (ULConnection class)
UltraLite for MobileVB API, 71

rollbacks
about, 54

RowCount property (ULTable class)
UltraLite for MobileVB API, 97

rows
accessing current row, 50

S
samples

UltraLite for MobileVB, 25, 44

Scale property (ULColumnSchema class)
UltraLite for MobileVB API, 66

schema
accessing, 55

Schema property (ULColumn class)
UltraLite for MobileVB API, 61

Schema property (ULConnection class)
UltraLite for MobileVB API, 67

Schema property (ULTable class)
UltraLite for MobileVB API, 97

scrolling
through rows, 50

searching
rows, 51

SendColumnNames property (ULSyncParms class)
UltraLite for MobileVB API, 93

SendDownloadAck property (ULSyncParms class)
UltraLite for MobileVB API, 93

SetByteChunk method (ULColumn class)
UltraLite for MobileVB API, 64

T–U

114

SetNull method (ULColumn class)
UltraLite for MobileVB API, 65

SetToDefault method (ULColumn class)
UltraLite for MobileVB API, 65

Signature property (ULDatabaseSchema class)
UltraLite for MobileVB API, 77

Size property (ULColumnSchema class)
UltraLite for MobileVB API, 66

SQL Anywhere Studio
additional features, 4

SQLType property (ULColumnSchema class)
UltraLite for MobileVB API, 66

StartSynchronizationDelete method (ULConnection
class)

UltraLite for MobileVB API, 72

StopSynchronizationDelete method (ULConnection
class)

UltraLite for MobileVB API, 72

Stream property (ULSyncParms class)
UltraLite for MobileVB API, 93

StreamErrorCode property (ULSyncResult class)
UltraLite for MobileVB API, 95

StreamErrorContext property (ULSyncResult class)
UltraLite for MobileVB API, 95

StreamErrorID property (ULSyncResult class)
UltraLite for MobileVB API, 95

StreamErrorSystem property (ULSyncResult class)
UltraLite for MobileVB API, 95

StreamParms property (ULSyncParms class)
UltraLite for MobileVB API, 93

StringToUUID method (ULConnection class)
UltraLite for MobileVB API, 72

StringValue method
introduction, 50

StringValue property (ULColumn class)
UltraLite for MobileVB API, 61

support
newsgroups, vii

supported platforms, 3

synchronization
about, 57
adding the synchronization template, 57
monitoring status, 57
UltraLite for MobileVB, 57
writing code, 58

Synchronize method (ULConnection class)
UltraLite for MobileVB API, 72

system requirements
UltraLite for MobileVB, 8

T
TableCount property (ULDatabaseSchema class)

UltraLite for MobileVB API, 77

tables
accessing schema information, 55

target platforms
supported, 3
UltraLite for MobileVB, 3

technical support
newsgroups, vii

TimeFormat property (ULDatabaseSchema class)
UltraLite for MobileVB API, 77

transaction processing
about, 54

transactions
about, 54

Truncate method (ULTable class)
UltraLite for MobileVB API, 104

tutorial
UltraLite for MobileVB, 7, 27

U
ULAuthStatusCode constants

about, 60
UltraLite for MobileVB API, 60

ULColumn class
about, 61
properties, 61
UltraLite for MobileVB API, 61

U–U

115

ULColumn object
introduction, 50

ULColumnSchema class
about, 66
properties, 66
UltraLite for MobileVB API, 66

ULColumnSchema object
introduction, 55

ULConnection class
about, 67
properties, 67
UltraLite for MobileVB API, 67

ULConnection object
introduction, 46

ULDatabaseManager class
about, 74
properties, 74
UltraLite for MobileVB API, 74

ULDatabaseManager object
introduction, 46

ULDatabaseSchema class
about, 77
properties, 77
UltraLite for MobileVB API, 77

ULDatabaseSchema object
introduction, 55

ULIndexSchema class
about, 80
properties, 80
UltraLite for MobileVB API, 80

ULIndexSchema object
introduction, 55

ULPublicationSchema class
about, 82
properties, 82
UltraLite for MobileVB API, 82

ULPublicationSchema object
introduction, 55

ULSQLCode constants
about, 83
UltraLite for MobileVB API, 83

ULSQLType constants
about, 86
UltraLite for MobileVB API, 86

ULStreamErrorCode constants
about, 87
UltraLite for MobileVB API, 87

ULStreamErrorContext constants
about, 90
UltraLite for MobileVB API, 90

ULStreamErrorID constants
about, 91
UltraLite for MobileVB API, 91

ULStreamType
about, 92
UltraLite for MobileVB API, 92

ULSyncParms class
about, 93
properties, 93
UltraLite for MobileVB API, 93

ULSyncResult class
about, 95
properties, 95
UltraLite for MobileVB API, 95

ULSyncState constants
about, 96
UltraLite for MobileVB API, 96

ULTable class
about, 97
properties, 97
UltraLite for MobileVB API, 97

ULTable object
introduction, 50

ULTableSchema class
about, 106
properties, 106
UltraLite for MobileVB API, 106

ULTableSchema object
introduction, 55

UltraLite for MobileVB
about, 1
architecture, 5
features, 2

V–W

116

UltraLite for MobileVB API
ULAuthStatusCode constants, 60
ULColumn class, 61
ULColumnSchema class, 66
ULConnection class, 67
ULDatabaseManager class, 74
ULDatabaseSchema class, 77
ULIndexSchema class, 80
ULPublicationSchema class, 82
ULSQLCode constants, 83
ULSQLType constants, 86
ULStreamErrorCode constants, 87
ULStreamErrorContext constants, 90
ULStreamErrorID constants, 91
ULStreamType, 92
ULSyncParms class, 93
ULSyncResult class, 95
ULSyncState constants, 96
ULTable class, 97
ULTableSchema class, 106

UltraLite for MobileVB projects
creating, 11, 31

UniqueIndex property (ULIndexSchema class)
UltraLite for MobileVB API, 80

UniqueKey property (ULIndexSchema class)
UltraLite for MobileVB API, 80

Update method (ULTable class)
UltraLite for MobileVB API, 105

update mode
about, 49

UpdateBegin method (ULTable class)
UltraLite for MobileVB API, 105

updating rows
about, 52

UploadOK property (ULSyncResult class)
UltraLite for MobileVB API, 95

UploadOnly property (ULSyncParms class)
UltraLite for MobileVB API, 93

UploadUnchangedRo, 106

UserName property (ULSyncParms class)
UltraLite for MobileVB API, 93

UUIDs
getting as string, 69
StringToUUID method, 72
UUIDToString method, 72

UUIDToString method (ULConnection class)
UltraLite for MobileVB API, 72

UUIDValue property (ULColumn class)
UltraLite for MobileVB API, 61

V
values

accessing, 50

Version property (ULDatabaseManager class)
UltraLite for MobileVB API, 74

Version property (ULSyncParms class)
UltraLite for MobileVB API, 93

Visual Basic
supported versions, 3

W
Windows CE

supported versions, 3

	UltraLite for MobileVB User's Guide
	About This Manual
	The UltraLite sample database

	1. Introduction to UltraLite for MobileVB
	UltraLite for MobileVB features
	System requirements and supported platforms
	SQL Anywhere Studio

	UltraLite for MobileVB architecture

	2. Tutorial: An UltraLite for MobileVB Application for Palm OS
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Create a project architecture
	Lesson 3: Create a form interface
	Lesson 4: Write connection, synchronization, and table code
	Write code for connecting to your database
	Write code for data manipulation
	Write code to synchronize

	Lesson 5: Deploy the application to a device
	Summary

	3. Tutorial: An UltraLite for MobileVB Application for PocketPC
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Create a project architecture
	Lesson 3: Create a form interface
	Lesson 4: Write connection, synchronization, and table code
	Write code for connecting to your database
	Write code for data manipulation
	Write code to synchronize

	Lesson 5: Deploying the application to a device
	Summary

	4. Understanding UltraLite for MobileVB Development
	Connecting to the UltraLite database
	Accessing and manipulating data
	Data manipulation internals
	Scrolling through the rows of a table
	Searching for rows with Find and Lookup
	Inserting updating, and deleting rows
	Transaction processing in UltraLite

	Accessing schema information
	Error handling
	Synchronization
	Adding the synchronization template
	Writing code to use the synchronization form

	5. API Reference
	ULAuthStatusCode constants
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetNull method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	OnSend event
	OnStateChange event
	OnTableChange event
	RevokeConnectFrom method
	Rollback method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULDatabaseManager class
	Properties
	CreateDatabase method
	DropDatabase method
	OpenConnection method

	ULDatabaseSchema class
	Properties
	ApplyFile method
	GetPublicationName method
	GetPublicationSchema method
	GetTableName method

	ULIndexSchema class
	Properties
	GetColumnName method
	IsColumnDescending method

	ULPublicationSchema class
	ContainsTable method

	ULSQLCode enum
	ULSQLType enum
	ULStreamErrorCode enum
	ULStreamErrorContext enum
	ULStreamErrorID enum
	ULStreamType enum
	ULSyncParms class
	Properties

	ULSyncResult class
	Properties

	ULSyncState
	ULTable class
	Properties
	Close method
	Column method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	GetColumnName method
	GetIndex method
	GetIndexName method
	InPublication method

	Index

