Anywhere.

SOLUTIONS
A SYBASE COMPANY

UltraLite” for MobilevB
User’'s Guide

Last modified: October 2002
Part Number: 36292-01-0802-01

Copyright © 1989-2002 Sybase, Inc. Portions copyright © 2001-2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, nreehanicalptical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary @f IBgbas

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Aataptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise iz éylaatiice

Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,

APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), CleayCtianect
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Dafaakapeline
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Worgbench, Di
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAAR ,EC
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterg8sevElien
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Archéegtises \¥ork
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Vaééether, E
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnyvibiese Solut
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, Instizielgx,!
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeContetankiain
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASSl09&)Si
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business InterchangenOpen Clie
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnetipr@pen Solu
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Entegsfselipsgce
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, RepbdiatioReport
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Foresat Libra
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script

SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,

SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage Il Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase ClientfaepsgrSpbmse
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQlaBesktop, Sy
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server ArchitectusreSybaseW
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data StreanpriSke Ent
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model$envElient
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning ImiaginBeatity,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeiber|Writer,

VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Cp9igB0@0
Certicom Corp. Portions are Copyright © 1997-1998, Consensus Development Corporation, a wholly owned subsidiary of Certiadmgbes
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patéhtd,345B36%,
5,761,305. Patents pending.

All other trademarks are property of their respective owners.
Last modified October 2002. Part number 36292-01-0802-01.

Contents

ADBOUL ThiS ManUaAl......ccveniiiieeee e

The UltraLite sample database...........ccccoeeiiiiiiiiiiieeniieen,
Finding out more and providing feedback..............cccccviiienns

Introduction to UltraLite for MobileVBccccoveevvenennn..

UltraLite for MobileVB features...........ccccccceeeieiiiiiiii
System requirements and supported platforms......................
UltraLite for MobileVB architecturecccccceeeeeeeeiieeeneennnn.

[0 0T [0 1o 1o o 1R
Lesson 1: Create a database schema.........ccccccceevvviviiennnnnn,
Lesson 2: Create a project architecture..........cccceevvvvvvvveennnnn.
Lesson 3: Create a form interface..........ccccccvvvveeeeeiincciinennnnn,
Lesson 4: Write connection, synchronization, and

tADIE COUB... e
Lesson 5: Deploy the application to a devicecccceeeeee..
SUMMAIY ¢ttt e

Tutorial: An UltraLite for MobileVB Application for

POCKELPC ...
INEFOAUCHION ..o
Lesson 1: Create a database schema............ccoccceeiniiiiennne,
Lesson 2: Create a project architecture...........cccccevvvvevevnnnenn.
Lesson 3: Create a form interface..........ccooeevviiieiiiiiieeininnnn,
Lesson 4: Write connection, synchronization, and
tabIE COAB.. i
Lesson 5: Deploying the application to a device....................
SUMIMATY .ttt e e et e e e e e e rnnan s

Understanding UltraLite for MobileVB Development
Connecting to the UltraLite database............ccccoeccvvvveeeeeiiinns
Accessing and manipulating datacccceeeviiieiiiiiieeieen,

Accessing schema informationccccceeveeeeiiiciineeee e 55

Error handling.........ccvvveiieee i 56
SYNCAIONIZALIONeeiiiiiiiiciie e 57
AP REfEIENCE ... 59
ULAuUthStatusCode CONStANTS..........oevivveeiiiiieeeeiee e 60
ULCOIUMN ClaSS ... ciieiiieiee et 61
ULColumnSchema ClassS.........ccoovvvvveeeeiiiiiiiieeiee e 66
ULCONNECHION ClasSuvueiiiiiiiiiiiiee e 67
ULDatabaseManager Class........cccccceeeeiiiiciiieieee s ciiiiieeeeeee 74
ULDatabaseSchema Class...........ccuvvveiiiiiiiiieiiiieeeeeee e, 77
ULINAeXSCchema ClassScooooevvivevieiieiieceieeeeee e 80
ULPublicationSchema Classcooooveveeiiiiiiieiiiieeeeieee e 82
ULSQLCOUE BNUM.....uiiiiiiieieiiiiiiiie et ee e e 83
ULSQLTYPE ENUM ...ttt 86
ULStreamErrorCode ENUMcoevveieieeeieeeieeeeeee e e 87
ULStreamErrorContexXt €NUMccceviiiviiiiiiiiieeiiiee e 90
ULStreamEIrorID €NUM c....civeiiiiiicceeeee e 91
ULStreamTyPe ENUMcuvviiieiiiiieiiiiin ettt 92
ULSYNCPAIMS ClaSS.....cccveeiiiiiiiiiiiee e ccciiiieee e e e sivreeee e e e s 93
ULSYNCRESUIL ClaSSuvvviieeiiiiiiiieiee e 95
ULSYNCSTALE ..ovvviiieicceeeeiii et 96
(O] I 1= o] ST o1 =] 97
ULTableSchema ClassSccooooeeiiiiveiiiiiieceeeeeeee e 106

About This Manual

Subject

Audience

This manual describes UltraLite for MobileVB, which is part of the

Ultral ite Component Suite. With UltraLite for MobileVB you can develop
and deploy database applications to handheld, mobile, or embedded devices,
including devices running the Palm Computing Platform and Windows CE.

This manual isintended for MobileVB application developers who wish to
take advantage of the performance, resource efficiency, robustness, and
security of an UltraLite relational database for data storage and
synchronization.

The UltraLite sample database

Some of the examplesin the MobiLink and Ultralite documentation use the
Ultralite sample database.

The Ultralite sample database schemais held in afile named custdb.xml,
and is located in the Samples\UltraLiteForMobile VB\CustDB subdirectory of
your SQL Anywhere directory. A complete application built on this database
isaso supplied as Samples\UltraLiteFor MobileVVB\CustDB|custdb.vbg.

The sample database is a sal es-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they

are related to each other.
ULCustomer ULEmpCust
cust_id integer emp_id integer
cust_nam.e. \{archar(30) — cust_id = cust_id cust_id integer
last_modified timestamp action char(1)
last_modified timestamp ULIdentifyEmployee
emp_id integer

cust_id = cust_id

ULOrder

order_id integer
cust_id integer
prod_id integer
emp_id integer

disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

emp_id = emp_id

prod_id = prod_id

ULProduct
prod_id integer
price integer
prod_name varchar(30)

emp_id = emp_id

ULEmployee
emp_id integer
emp_name varchar(30)

last_download timestamp

emp_id = pool_emp_id

emp_id = pool_emp_id

ULCustomerIDPool

pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool

pool_order_id integer
pool_emp_id integer
last_modified timestamp

Finding out more and providing feedback

We would like to receive your opinions, suggestions, and feedback on this
documentation.

Y ou can provide feedback on this documentation and on the software
through a newsgroup. The newsgroup can be found on the
forums.sybase.com News server as
news://forums.sybase.com/sybase.public.sglanywhere.ultralite.

Newsgroup disclaimer

iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor isiAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on aregular basisto
provide solutions and information. Their ability to help is based on their
workload.

vii

viii

CHAPTER 1

Introduction to UltraLite for MobileVB

About this chapter This chapter introduces you to UltraLite for MobileVB features, platforms,
architecture, and functionality. It assumes that you are familiar with the
Ultralite Component Suite, as described in "Introduction to the UltraL ite
Component Suite" on page 1 of the book UltraLite Foundations.

Contents

Topic Page
UltraLite for MobileV B features 2
System requirements and supported platforms 3

UltraLite for MobileVB architecture 5

UltraL ite for MobileVB features

UltraLite for MobhileVB features

UltraLite for MobileVB is a member of the Ultralite Component Suite. It
provides the following benefits for devel opers targeting small devices:

¢

¢

¢

¢

arobust relational database store
synchronization

application development using the AppForge MobileV B development
tools

deployment on the Palm OS and Windows CE platforms.

&~ For more information on the features and benefits of the UltraLite
Component Suite, see "Introduction to the UltraLite Component Suite" on
page 2 of the book UltraLite Foundations.

Chapter 1 Introduction to UltraLite for MobileVB

System requirements and supported platforms

Platform support for UltraLiteis of the following kinds:

¢ Target platforms Thetarget platform isthe device and operating
system on which you deploy your finished UltraL ite application.

¢ Development platforms For each target platform, you develop your
applications using a particular development tool and operating system.
Thetool and operating system comprise the development platfor m.

AppForge Booster

To develop applications using the UltraLite for AppForge MobileVB
component, you will need the AppForge Booster. If you are missing
Booster, you can get it from http://www.appforge.com/booster.html.

Development To develop applications using UltraLite for MobileVB, you reguire
platforms ¢+ Microsoft Windows NT/2000/XP
¢ Microsoft Visual Basic 6

¢ AppForge 2.11 or AppForge MobileVB Version 3.0.

Compatibility

If you are using versions of MobileVB earlier than 3.0 and are
developing for Windows CE on an ARM device, you must copy
ultralite\UltraLiteForMobileVB\celarm\ulmvb8.dll under your

SQL Anywhere directory to the \Program Files\AppForge directory
on your device.

Target platforms UltraLite for MobileVB supports the following target platforms:
¢ Windows CE 3.0 and higher, with Pocket PC onthe ARM and MIPS
processors

¢ Pam OSversion 3.0 and higher

System requirements and supported platforms

SQL Anywhere Studio

Y ou can use SQL Anywhere Studio to add the following capabilities to your
applications:

¢

Synchronization SQL Anywhere users can synchronize the datain
Ultral ite applications with a central database.

Reference database SQL Anywhere users who wish to model an
Ultral ite database after an Adaptive Server Anywhere database, can use
the ulinit command-line tool to generate an UltraLite schemafile from an
Adaptive Server Anywhere database.

Chapter 1 Introduction to UltraLite for MobileVB

UltraLite for MobhileVB architecture

UltraLite for MobileVB provides a database engine for the Palm Computing
Platform and Windows CE. It provides a MobileVB ingot that exposes a set
of objects for data manipulation using the UltralL ite database.

ULDatabaseManager

q ULConnection

ULDatabaseSchema

H ULPublicationSchema

4 ULSyncParms

L‘ ULSyncResult

4 ULTable |
4‘ ULTableSchema

\—4 ULIndexSchema

4‘ ULColumn
\—‘ ULColumnSchema I

Notably, there is a set of high-level objects you should know about:

¢

ULDatabaseManager allows you to open connections and set an active
listener. The ULDatabaseManager is the starting point for your
MobileVB application because it is through this class that you first open
a connection to database.

& For moreinformation on the UL DatabaseM anager class, see
"ULDatabaseManager class' on page 74.

ULConnection represents a database connection, and governs
transactions.

&> For more information on UL Connection, see "UL Connection
class' on page 67.

ULTable, ULColumn, and ULIndexSchema objects allow
programmatic control over database tables, columns and indexes.

UltraLite for MobileVB architecture

& For moreinformation on the UL Table, ULColumn, and
UL IndexSchema objects, see "UL Table class' on page 97, "UL Column"
on page 61, and "ULIndexSchema" on page 80.

¢ Synchronization objects allow you to control synchronization through
the MobiLink synchronization server, providing you have the SQL
Anywhere Studio suite.

& For more information on synchronization with MobiLink, see the
MobiLink Synchronization Users Guide in the SQL Anywhere Studio.

CHAPTER 2

Tutorial: An UltraLite for MobileVB
Application for Palm OS

About this chapter This chapter walks you through al the steps of building your first UltraLite
for MobileVB application. The application synchronizes data with a database
on your desktop computer.

Contents Topic Page
Introduction 8
Lesson 1: Creste a database schema 9
Lesson 2: Create a project architecture 11
Lesson 3: Create aform interface 13
Lesson 4: Write connection, synchronization, and table code 15
Lesson 5: Deploy the application to adevice 24
Summary 25

Introduction

Introduction

This tutorial walks you through building an UltraLite for MobilevVB
application. At the end of the tutorial you will have an application and small
database on the Palm emulator that synchronizes with alarger database
running on your desktop machine. If you have a device set up to use TCP/IP,
you can also run the application on the device.

Timing The tutorial takes about 50 minutes.
Requirements, . '

competencies and This tutorial assumes:

experience

¢ you have MobileVB and Microsoft Visual Basic 6 installed on your
system.

¢ you arefamiliar with MobileVB and Microsoft Visual Basic 6
¢ you can write, test, and troubleshoot a Visual Basic 6 application
¢ you can add references and components as needed

¢ you can usethe Visual Basic Object Browser and navigate the
Visual Basic 6 environment

Note
Y ou can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

To develop applications using the UltraLite for AppForge MobileVB
component, you will need the AppForge Booster. If you are missing
Booster, you can get it from http://www.appforge.com/booster.html.

To complete the synchronization section of the tutorial requires that:
4 you can create an ODBC data source
¢ you can use command line options and parameters

¢ you have knowledge of both the Sybase Central Adaptive Server
Anywhere plug-in and the MobiLink synchronization plug-in

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraL ite for MobileVB application.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

Lesson 1: Create a database schema

A schema is a database definition without the data. Y ou create an UltralLite
schemafile as a necessary first step to making an Ultral ite database.

& For more information on Ultralite schemas, see "UltralLite for
MobileVB architecture" on page 5.

When creating Ultralite schemas for a Palm device, the following
information is necessary:

¢+ A way to identify the database so an application can connect to it. This
is done with the Palm creator ID.

¢+ A way to identify the schema on the development machine so it can be
copied to the device.

¢+ A way toidentify the schemaon the device.

Create your schema file using the UltraLite Schema Painter

To complete this tutorial you need a directory to hold the files you create.
Thisdirectory is assumed to be C:ltutoriallmvb. If you create your tutorial
directory elsewhere, supply the path to your location instead of
c:\tutorial\mvb throughout.

+ To create the schema file using the UltraLite Schema Painter:
1 Start the UltraLite Schema Painter:

Click Start(] Programs[] Sybase SQL Anywhere 80J UltraL ite
O UltraLite Schema Painter.

2 Create anew schemafile called tutCustomer.
¢ Open the Tools folder and double-click Create UltralLite schema.

¢ Inthefiledialog box, type c:\tutorial\mvb\tutCustomer.usm or
Browse to the folder and enter tutCustomer.

¢ Click OK to create the schema.
3 Create atable called customer.

¢ Expand the tutCustomer itemin the left pane of the UltraLite
Schema Painter and select the Tables folder.

¢ Open the Tables folder and double-click Add Table. The New Table
dialog appears.

Lesson 1: Create a database schema

¢+ Enter the name customer.

¢+ Inthe New Table dialog, add columns with the following

properties.
Column Data type Column Allows | Default value
name (Size) NULL values?
Id integer No autoincrement
Fname char (15) No None
Lname char (20) No None
City char (20) Yes None
Phone char (12) Yes 555-1234

¢ Set /d asthe primary key: Click Primary Key and add /d to the
index, marking it as ascending.

¢ Check your work and click OK to complete the table definition and
dismissthe New Table dialog.

4 Click File 0 Save to save the tutcustomer.usm file.
5 Export aPalm schemafile.

¢ Right click on the database icon and select Export Schema for Palm
from the popup menu.

¢ Enter aPam Creator ID of Syb3.

A note on Palm Creator ID’s

A Palm creator ID is assigned to you by Palm. Y ou can use Syb3 as
your creator |D when you make sample applications for your own
learning. However, when you create your commercia application,
you should use your own creator ID.

¢ Leavethefilename at its default setting to save the PDB filein your
tutorial directory. Click OK.

¢+ Exit the UltraLite Schema Painter

Y ou have now defined the schema of your Ultralite database. Although this
database contains only a single table, you can use many tablesin Ultralite
databases.

10

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

Lesson 2: Create a project architecture

Thetutorial assumes the folder c:ltutoriallmvb, the same one holding your
schemafile, is where you will store your application files.

Thefirst step isto create an UltralLite for MobileV B project for your
application. Y ou can use aMobileVB project to get MobileVB controls that
are suitable for small devices. On the Visual Basic toolbar on the left of the
Visual Basic environment, MobileVB tools appear in addition to the standard
Visual Basic tools.

To create an UltraLite for MobileVB reference:

1

Start MobilevB
¢ Click Startd Programs] AppForge MobileV B[Start MobileVB
Create anew project.

Choose adesign target for your application. When asked for the Design
Target, choose Palm OS.

Create a Visual Basic reference to the UltralLite for MobilevVB
component:

¢ Click Project [0 References

¢ Check the box beside the item i Anywhere Solutions, UltraLite for
MobileVB 8.0.

¢ If theitem does not appear, click Browse and go to the win32
subdirectory of your SQL Anywhere installation:
UltraLite\UltraLiteforMobile VB\win32

¢ Sdlect the file ulmvb8.dll and click Open.
¢ Click OK
Give the Project a name.
¢ Click Projectl] MobileVBProjectl Properties

¢ Under Project Name, type UltraLiteTutorial typed all as one word.
Thisisthe name of the application as it will appear on your device.

¢ Click OK
Save the Project:
¢ ChooseFile O Save Project
¢ For the Form filename, type c:\tutorial\mvb\MainForm.frm.
¢ Click Save.
11

Lesson 2: Create a project architecture

¢ For the Project filename, type
c:\tutorial\mvb\UltraLiteTutorial.vbp.

¢ Click Save.

Y ou are now ready to proceed to the next step in the tutorial.

12

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

Lesson 3: Create a form interface

Y ou are now ready to design your application form. The project should have
asingle form named Form1 displayed.

+ To add controls to your project:

1 Add the AppForge MobileVB controls and properties given in the table

below to Form1:

Type Name Caption or text
AFTextBox txtfname

AFTextBox txtiname

AFTextBox txtcity

AFTextBox txtphone

AFLabel IblID

AFButton btninsert Insert
AFButton btnUpdate Update
AFButton btnDelete Delete
AFButton btnNext Next
AFButton btnPrevious Previous
AFButton btnSync Synchronize
AFButton btnDone End

Y our form should look like the figure below:

13

Lesson 3: Create a form interface

2 Compile and validate the application.
¢ Choose MobileVB [0 Compile and Validate.

14

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

Lesson 4: Write connection, synchronization,

and table code

Thefirst step in developing your application isto write UltraL ite code to
connect to the database.

Write code for connecting to your database

In this application, you connect to the database in the Form Load event.

< Write code to connect to the UltralLite database:

1

Declare the UltralLite objects you need.
¢ Double click the form to open the Code window.

¢ Enter the following code at the top of the form in the declarations
area. This code declares the UltraLite objects you will need in this
sample:
Publ i ¢ Dat abaseMgr As New ULDat abaseManager

Publ i ¢ Connection As ULConnection
Publ i c CustonerTable As ULTabl e

These variables will be used through the application. Note that the
DatabaseMgr variableis also allocated as a new object. Thisisthe only
object that can be instantiated.

Add the code to connect to the database in the Form Load event.

The code bel ow opens the connection to the database and if the database
isnew, it assigns aschemato it.

15

Lesson 4: Write connection, synchronization, and table code

16

Sub Form Load()
D m conn_parns As String
D mopen_parns As String
D m schema_parns As String

conn_parns = "ui d=DBA; pwd=SQ."
open_parms = conn_parms & ";" & _

"PALM DB=Syb3;" & _

"FI LE_NAME=c: \tutorial\nvb\tutCustoner. udb"
schema_parns = open_parnms & ";" & _

" PALM SCHEMA=t ut Cust orer; " & _

"SCHEVA FI LE=c:\tutorial \nvb\tut CQustomer. usni

On Error Resune Next

Set Connection = _
Dat abaseMyr . QpenConnect i on(open_par ns)
If Err.Nunber = ULSQLCode. ul SQLE_NCERRCOR Then
MsgBox "Connected to an existing database"
El self Err.Nunber = _
ULSQ. Code. ul SQLE_DATABASE_NOT_FOUND Then
Err.d ear
Set Connection = _
Dat abaseMyr . Cr eat eDat abase(schenma_par ns)
If Err.Nunmber = ULSQ.Code. ul SQLE_NCERRCR _

Then
MsgBox "Connected to a new dat abase”
El se
MsgBox Err.Description
End If
End |f
End Sub

This code attempts to connect to an existing database. If the database
does not exist, it creates a new database from the schema file and
establishes a connection.

3 Write the code that ends the application and closes the connection when
the End button is clicked:

Sub bt nDone_d i ck()
Connection. d ose
End

End Sub

4 Run the application in the development environment.
¢ Choose Run [J Start.

¢ Thefirst time you run the application, a message box is displayed
with the message Connected to a new database. On subsequent
runs the message is Connected to an existing database. The Form
then loads.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

¢ Click End to terminate the application.

Y ou have now written a routine to establish a connection to a database. The
next lesson describes how to access data.

& For moreinformation, see "ULConnection class" on page 67.

Write code for data manipulation

The next step is to write code for data manipulation and navigation.

% To open the table:
1 Write code that initializes the table and moves to the first row.

Add the following code to the Form_L oad routine, just before the End
Sub instruction:

Set Custoner Tabl e = Connecti on. Get Tabl e("cust oner")

Cust oner Tabl e. Open

Cust oner Tabl e. MoveBef or eFi r st

If Err.Nunmber <> ULSQLCode. ul SQLE_NCERRCOR Then
MsgBox Err. Description

End |f

This code assigns the Customer T able variable and opens the table so
data can be read or manipulated. The call to MoveBeforeFirst positions
the application before the first row of datain the table - but note that it is
not strictly speaking, required, because after you call open, you are
aready positioned before the first row. There are no rows in the table at
the moment.

2 Create anew function called DisplayCurrentRow and implement it as
shown below.

17

Lesson 4: Write connection, synchronization, and table code

Private Sub D splayQurrent Row)
I f CQustoner Tabl e. RowCount = 0 Then
t xt Fnanme. Text "
t xt Lnane. Text
txtGty. Text = ""
t xt Phone. Text
| bl I D. Capti on
El se
I bl I D Caption = _
Cust orer Tabl e. Col um("1d"). Stri ngVal ue
t xt Fnane. Text = _
Cust oner Tabl e. Col um(" Fnane"). Stri ngVal ue
t xt Lnane. Text = _
Cust oner Tabl e. Col um("Lnane"). Stri ngVal ue
If CustonerTable. Colum("CGty").IsNull Then
txtGty. text=""
El se
txtGty. Text = _
Cust oner Tabl e. Col um(" G ty"). StringVal ue
End If
t xt Phone. Text = _
Cust oner Tabl e. Col um(" Phone"). Stri ngVal ue
End |f
End Sub

If the table has no rows, the application displays empty controls.
Otherwise, it displays the values stored in each of the columns of the
current row of the database.

3 Cdl thisfunction from the Form'’s Activate function.

Private Sub Form Acti vat e()
D spl ayQur r ent Row
End Sub

This call ensures the fields get updated when the application starts.
At this stage you may wish to run the application to check that you have
entered the code correctly. Asthere are no rowsin the table, the controls
areal empty.
« To insert rows into the table:
1 Implement the code for the Insert button.

Add the following routine to the form:

18

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

Private Sub btnlnsert_dick()
D mfname As String
Dmlname As String
Dmcity As String
D m phone As String

fname = t xt Fnane. Text
| nane t xt Lname. Text
city = txtGty. Text

phone = txt Phone. Text

On Error GoTo InsertError
Cust orrer Tabl e. I nsert Begi n
Cust oner Tabl e. Col um(" Fnane"). StringVal ue =
f nane
Cust oner Tabl e. Col um("Lnane"). Stri ngVval ue
| nare
If Len(city) > 0 Then
Cust orer Tabl e. Col um(" G ty"). StringVal ue
city
End |f
If Len(phone) > 0 Then
Cust orrer Tabl e. Col um(" Phone") . Stri ngVal ue
phone
End |f
Cust orrer Tabl e. | nsert
Cust orrer Tabl e. MovelLast
Di spl ayQur r ent Row
Exit Sub

InsertError:
MsgBox "Error: " & CStr(Err. Description)
End Sub

The call to InsertBegin puts the application into insert mode and sets all
the valuesin the row to their defaults (for example, the ID column
receives the next autoincrement value). The column values are set and
then the new row isinserted. Note that if an error occurs during the
insert, a message box will display the error number.

2 Runthe application.
After the initial message box, the form is displayed.

¢ Enter afirst name of Janein the top text box and a last name of Doe
in the second.

¢ Click the Insert button. A row is added to the table with these
values. The application moves to the last row of the table and
displays the row. The label displays the autoincremented value of
the ID column that Ultralite assigned to the row.

19

Lesson 4: Write connection, synchronization, and table code

¢ Enter afirst name of John in the top text box and alast name of
Smith in the second.

¢ Click Insert to add this row to the table.
¢ Click End to end the program.

With two rows in the table, it is now time to implement the code to scroll
through the rows and display each.

% To move through the rows of the table:
1 Implement the code for the Next and Previous buttons:

Add the following routines to the form:;

Private Sub btnNext _dick()
If Not Custoner Tabl e. MoveNext Then
Cust orrer Tabl e. Movelast
End |f
Di spl ayQur r ent Row
End Sub

Private Sub btnPrevious_dick()
If Not CustonerTabl e. MovePrevi ous Then
Cust orrer Tabl e. MoveFi r st
End | f
Di spl ayQur r ent Row
End Sub

2 Runthe application.

When the form isfirst displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

The next step isto modify the datain arow by updating or deleting it.

+ To update and delete rows in the table:
1 Implement the code for the Update button.

Add the following routine to the form:

Private Sub btnUpdate dick()
D mfname As String
Dmlnanme As String
Dmcity As String
D m phone As String

20

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

fname = txt Fname. Text

| name = t xt Lnane. Text

city = txtGty. Text

phone = t xt Phone. Text

On Error GoTo Updat eError

Cust orrer Tabl e. Updat eBegi n

Cust oner Tabl e. Col um(" Fnane"). Stri ngVval ue
f name

Cust oner Tabl e. Col um("Lnane"). StringVal ue =
| nane

If Len(city) > 0 Then
Cust oner Tabl e. Col um(" G ty"). StringVal
city

El se
Cust oner Tabl e. Col um(" G ty"). Set Nul |

End If

If Len(phone) > 0 Then

Cust oner Tabl e. Col um(" Phone"). Stri ngVal ue

phone

End If

Cust orrer Tabl e. Updat e

Di spl ayQur r ent Row

Exit Sub

c
@
1

Updat eError:
MsgBox "Error: " & CStr(Err.Description)
End Sub

The call to UpdateBegin puts the application into update mode. The
column values are updated and then the row itself is updated with a call
to Update.

2 Implement the code for the Delete button.

Add the following routine to the form:

Private Sub btnDel ete_dick()
I f CQustoner Tabl e. RowCount = 0 Then
Exit Sub
End If
Cust oner Tabl e. Del et e
Cust oner Tabl e. MoveRel ative 0
D spl ayQurr ent Row
End Sub

The call to Delete deletes the current row on which the application is
positioned.

3 Runthe application.

21

Lesson 4: Write connection, synchronization, and table code

The data manipulation and display part of the application is now
complete. Try inserting, updating, and deleting rows. Also, use the Next
and Previous buttons to move through the rows. Check the label to see
which row you are on.

Note

Y ou can now run this application as a stand-al one application without
SQL Anywhere Studio. If you wish to synchronize your Ultralite
database with an Adaptive Server Anywhere database, please complete
the next lesson in the tutorial.

Write code to synchronize

22

Thefinal step isto write synchronization code. This step requires
SQL Anywhere.

+ To write code for the synchronize button:
1 Implement the code for the Synchronize button.
Add the following routine to the form:

Private Sub btnSync_Q i ck()
Wth Connecti on. SyncPar ns
. User Name = "af sanpl e"
. Stream = ULStreanfype. ul TCPI P

.Version = "ul _defaul t"
. SendCol utmNanes = True
End Wth

Connecti on. Synchroni ze
D spl ayQurr ent Row
End Sub

The SyncParms object contains the synchronization parameters. For this
simple example, we start MobiLink so that it will add new users. Also,
we send the column names to MobiLink so it can generate proper upload
and download scripts.

The code uses TCP/IP synchronization, and not HotSync
synchronization. It works on a Palm OS device only aslong asit is set
up for TCP/IP synchronization.

2 From acommand prompt, start the MobiLink synchronization server
with the following command line;

dbm srv8 -c "dsn=ASA 8.0 Sanple" -v+ -zu+ -za

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

The ASA 8.0 Sample database has a Customer table that matches the
columns in the UltraL ite database you have created. Y ou can
synchronize your UltraLite application with the ASA 8 Sample database.

The -zu+ and -za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’'s Guide.

Start the UltraL ite application.
4 Deleteadl therowsin your table.

Any rowsin the table would be uploaded to the ASA 8.0 Sample
database.

5 Synchronize your application.
¢ Click the Synchronize button.

The MobiLink synchronization server window should scroll
messages displaying the synchronization progress.

¢ When the synchronization is complete, click Next and Previous to
move through the rows of the table.

23

Lesson 5: Deploy the application to a device

Lesson 5: Deploy the application to a device

24

Now that you are convinced the application runs properly, you can deploy it
to the device.

+ To deploy to the Palm device:

1

Configure the application settings.
¢ From the MobileVB menu, choose MobileVB Settings

¢ Inthedialog that appears, choose Dependenciesin the left pane and
click on the User Dependencies tab.

¢ Click the Add button and select the c:\tutorial\mvb\tutCustomer.pdb
file. Thisindicatesto MobileVB that the file should be included in
the deployment.

¢ Choose the Palm OS Settings item in the left pane and enter Syb3
for the Creator ID. Select avalid HotSync name.

¢ Click OK to closethe dialog.

From the MaobileVB menu, choose Deploy to Device, and make sure you
select the Palm OSdevice. If adialog appears asking if you want to save
the project, choose Yes.

HotSync your device and make sure the application gets sent to the
device. After the HotSync process is complete, your application files
will be extracted on the device.

Click Home on the device and choose UltraLiteTutorial. You are now
running your application.

Chapter 2 Tutorial: An UltraLite for MobileVB Application for Palm OS

Summary
Learning During this tutorial, you:
accomplishments ¢ created adatabase schema
¢ created an UltraLite for MobileVB application
¢ synchronized a remote database with an Adaptive Server Anywhere
consolidated database using Ultral ite
¢ increased your familiarity with MobileVB for UltraLite as an integrated
system
¢ gained competence with the process of developing an UltraLite for
MobileVB application
Samples For more code samples, see the following projects. Paths are relative to your

SQL Anywhere installation:

¢
¢

Samples\UltraLiteForMobileVBI\custdb\custdb.vbg
Samples\UltraLiteForMobileVB\grid\gridsample.vbg

25

Summary

26

CHAPTER 3

Tutorial: An UltraLite for MobileVB

Application

About this chapter

Contents

for PocketPC

This chapter walks you through al the steps of building your first UltraLite
for MobileVB application. The application synchronizes data with a database

on your desktop computer.

Topic Page
Introduction 28
Lesson 1: Create a database schema 29
Lesson 2: Create a project architecture 31
Lesson 3: Create aform interface 33
Lesson 4: Write connection, synchronization, and table code 34
Lesson 5: Deploying the application to a device 43
Summary 44

27

Introduction

Introduction

This tutorial walks you through building an UltraLite for MobilevVB
application. At the end of the tutorial you will have an application and small
database on your CE device that synchronizes with alarger database running
on your desktop machine.

Timing The tutorial takes about 50 minutes.
Competencies and Thistutorial assumes:
experience

¢ you have MobileVB and Microsoft Visual Basic 6 installed on your
system.

¢ you are familiar with MobileVB and Microsoft Visual Basic 6
¢ you can write, test, and troubleshoot a Visual Basic 6 application
¢ you can add references and components as needed

¢ you can usethe Visual Basic Object Browser and navigate the
Visual Basic 6 environment

Note
Y ou can perform most of this tutorial without SQL Anywhere Studio. The
synchronization sections of the tutorial require SQL Anywhere Studio.

To develop applications using the UltraL ite for AppForge MobileVB
component, you will need the AppForge Booster. If you are missing
Booster, you can get it from http://www.appforge.com/booster.html.

To complete the synchronization section of the tutorial requires that:
¢ you can create an ODBC data source
¢ you can use command line options and parameters

¢ you have knowledge of both the Sybase Central Adaptive Server
Anywhere plug-in and the MobiLink synchronization plug-in

Goals The goals for the tutorial are to gain competence and familiarity with the
process of developing an UltraLite for MobileVB application.

28

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

Lesson 1: Create a database schema

A schema is a database definition without the data. Y ou create an UltralLite
schemafile as a necessary first step to making an Ultral ite database.

& For more information on Ultralite schemas, see "UltralLite for
MobileVB architecture" on page 5.

When creating UltraLite schemas, the following information is necessary:

¢

¢

A way to identify the schema on the development machine so it can be
copied to the device.

A way to identify the schema on the device.

Create your schema file using the UltraLite Schema Painter

To complete this tutorial you need a directory to hold the files you create.
This directory is assumed to be C:ltutoriallmvb. If you create your tutorial
directory elsewhere, supply the path to your location instead of
c:\tutoriallmvb throughout.

+ To create the schema file using the UltraLite Schema Painter:
Start the UltraLite Schema Painter:

Click Start(] Programs[] Sybase SQL Anywhere 801 UltraLite
O UltraLite Schema Painter.

1

Create a new schemafile called tutCustomer.

¢

¢

¢

Open the Tools folder and double-click Create Ultral ite schema.

In the file dialog box, type c:\tutorial\mvb\tutCustomer.usm or
Browse to the folder and enter tutCustomer.

Click OK to create the schema

Create atable called customer.

¢

Expand the tutCustomer item in the left pane of the UltralLite
Schema Painter and select the Tables folder.

Open the Tables folder and double-click Add Table. The New Table
dialog appears.

Enter the name customer.

In the New Table dialog, add columns with the following
properties.

29

Lesson 1: Create a database schema

30

Column Data type Column Allows | Default value
name (Size) NULL values?

Id integer No autoincrement
Fname char (15) No None

Lname char (20) No None

City char (20) Yes None

Phone char (12) Yes 555-1234

¢ Set /d asthe primary key: Click Primary Key and add /d to the
index, marking it as ascending.

¢ Check your work and click OK to complete the table definition and
dismissthe New Table dialog.

4 Click File O Save to save the tutcustomer.usm file.

¢ Exit the UltraLite Schema Painter

Y ou have now defined the schema of your Ultralite database. Although this
database contains only a single table, you can use many tablesin UltralLite

databases.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

Lesson 2: Create a project architecture

Thetutorial assumes the folder c:ltutoriallmvb, the same one holding your
schemafile, is where you will store your application files.

Thefirst step isto create an UltralLite for MobileV B project for your
application. Y ou can use aMobileVB project to get MobileVB controls that
are suitable for small devices. On the Visual Basic toolbar on the left of the
Visual Basic environment, MobileVB tools appear in addition to the standard
Visual Basic tools.

To create an UltraLite for MobileVB reference:

1

Start MobilevB
¢ Click Startd Programs] AppForge MobileV B[Start MobileVB
Create anew project.

Choose adesign target for your application. When asked for the Design
Target, choose PocketPC.

Create a Visual Basic reference to the UltralLite for MobilevVB
component:

¢ Click Project [0 References

¢ Check the box beside the item i Anywhere Solutions, UltraLite for
MobileVB 8.0.

¢ If theitem does not appear, click Browse and go to the win32
subdirectory of your SQL Anywhere installation:
UltraLite\UltraLiteforMobile VB\win32

¢ Sdlect the file ulmvb8.dll and click Open.
¢ Click OK
Give the Project a name.
¢ Click Projectl] MobileVBProjectl Properties

¢ Under Project Name, type UltraLiteTutorial typed all as one word.
Thisisthe name of the application as it will appear on your device.

¢ Click OK
Save the Project:
¢ ChooseFile O Save Project
¢ For the Form filename, type c:\tutorial\mvb\MainForm.frm.
¢ Click Save.
31

Lesson 2: Create a project architecture

¢ For the Project filename, type
c:\tutorial\mvb\UltraLiteTutorial.vbp.

¢ Click Save.

Y ou are now ready to proceed to the next step in the tutorial.

32

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

Lesson 3: Create a form interface

Y ou are now ready to design your application form. The project should have
asingle form named Form1 displayed.

+ To add a controls to your project:

1 Add the AppForge MobileVB controls and properties given in the table

below to Form1:

Type Name Caption or text
AFTextBox txtfname

AFTextBox txtiname

AFTextBox txtcity

AFTextBox txtphone

AFLabel IblID

AFButton btninsert Insert
AFButton btnUpdate Update
AFButton btnDelete Delete
AFButton btnNext Next
AFButton btnPrevious Previous
AFButton btnSync Synchronize
AFButton btnDone End

2 Compile and validate the application.

¢ Choose MobileVB [0 Compile and Validate.

33

Lesson 4: Write connection, synchronization, and table code

Lesson 4: Write connection, synchronization,
and table code

Thefirst step in developing your application isto write UltraL ite code to
connect to the database.

Write code for connecting to your database

In this application, you connect to the database in the Form Load event.

+ Write code to connect to the UltraLite database:
1 Declarethe UltralLite objects you need.
¢ Double click the form to open the Code window.

¢ Enter the following code at the top of the form in the declarations
area. This code declares the UltraLite objects you will need in this
sample:
Publ i ¢ Dat abaseMygr As New ULDat abaseManager

Publ i ¢ Connection As ULConnection
Publ i c CustonerTable As ULTabl e

These variables will be used through the application. Note that the
DatabaseMgr variableis also allocated as a new object. Thisisthe only
object that can be instantiated.

2 Add the code to connect to the database in the Form Load event.

The code below opens the connection to the database and if the database
isnew, it assigns aschemato it.

34

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

Sub Form Load()

D m conn_parns As String
D mopen_parns As String
D m schema_parns As String
conn_parns = "ui d=DBA; pwd=SQ"
open_parnms = conn_par s
"FI LE_NAME=c:\tutorial \ nvb\tut Cust oner. udb"
schema_parns = open_parnms & ";" & _
"SCHEVA FI LE=c:\tutorial\nvb\tutQustoner. usn

On Error Resune Next

Set Connection = _
Dat abaseMyr . QpenConnect i on(open_par ns)
If Err.Nunber = ULSQLCode. ul SQLE_NCERRCOR Then
MsgBox "Connected to an existing database”
El self Err.Nunmber = _
ULSQLCode. ul SQLE_DATABASE _NOT_FOUND Then
Err.d ear
Set Connection = _
Dat abaseMyr . Cr eat eDat abase(schema_par ns)
If Err.Nunmber = ULSQ.Code. ul SQLE_NCERRCR _

Then
MsgBox "Connected to a new dat abase”
El se
MsgBox Err. Description
End If
End If

End Sub

This code attempts to connect to an existing database. If the database
does not exist, it creates a new database from the schema file and
establishes a connection.

3 Write the code that ends the application and closes the connection when
the End button is clicked:

Sub bt nDone_d i ck()

Connecti on. d ose
End

End Sub

4 Run the application in the development environment.

¢

¢

Choose Run 0O Start.

The first time you run the application, a message box is displayed
with the message Connected to a new database. On subsequent
runs the message is Connected to an existing database. The Form
then loads.

Click End to terminate the application.

35

Lesson 4: Write connection, synchronization, and table code

Y ou have now written aroutine to establish a connection to a database. The
next lesson describes how to access data.

& For moreinformation, see "ULConnection class' on page 67.

Write code for data manipulation

36

The next step isto write code for data manipulation and navigation.

% To open the table:
1 Write code that initializes the table and moves to the first row.

Add the following code to the Form_L oad routine, just before the End
Sub instruction:

Set Custoner Tabl e = Connecti on. Get Tabl e("cust orer")

Cust orrer Tabl e. Open

Cust orrer Tabl e. MoveBef or eFi r st

If Err.Nunber <> ULSQLCode. ul SQLE_NCERRCR Then
MsgBox Err. Description

End |f

This code assigns the Customer T able variable and opens the table so
data can be read or manipulated. The call to MoveBeforeFirst positions
the application before the first row of datain the table - but note that it is
not strictly speaking, required, because after you call open, you are
already positioned before the first row. There are no rows in the table at
the moment.

2 Create anew function called DisplayCurrentRow and implement it as
shown below.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

Private Sub D splayQurrent Row)
I f CQustoner Tabl e. RowCount = 0 Then
t xt Fnane. Text "
t xt Lnanme. Text
txtGty. Text = ""
t xt Phone. Text
| bl I D. Caption
El se
I bl I D Caption = _
Cust orer Tabl e. Col um("1d"). Stri ngVal ue
t xt Fnane. Text = _
Cust oner Tabl e. Col um(" Fnane"). Stri ngVal ue
t xt Lnane. Text = _
Cust oner Tabl e. Col um("Lnane"). Stri ngVal ue
If CustonerTable.Colum ("City").IsNull Then
txtGty. text=""
El se
txtGty. Text = _
Cust oner Tabl e. Col um(" G ty"). StringVal ue
End If
t xt Phone. Text = _
Cust oner Tabl e. Col um(" Phone"). Stri ngVal ue
End |f
End Sub

If the table has no rows, the application displays empty controls.
Otherwise, it displays the values stored in each of the columns of the
current row of the database.

3 Cdl thisfunction from the Form'’s Activate function.

Private Sub Form Acti vate()
D spl ayQur r ent Row
End Sub

This call ensures the fields get updated when the application starts.
At this stage you may wish to run the application to check that you have
entered the code correctly. Asthere are no rowsin the table, the controls
areall empty.
« To insert rows into the table:
1 Implement the code for the Insert button.

Add the following routine to the form:

37

Lesson 4: Write connection, synchronization, and table code

38

Private Sub btnlnsert_dick()
D mfname As String
Dmlname As String
Dmcity As String
D m phone As String

fname = t xt Fnane. Text
| nane t xt Lname. Text
city = txtGty. Text

phone = t xt Phone. Text

On Error GoTo InsertError

Cust orrer Tabl e. I nsert Begi n

Cust oner Tabl e. Col um(" Fnane"). StringVal ue =
f nane

Cust oner Tabl e. Col um("Lnane"). Stri ngVval ue
| narme

If Len(city) > 0 Then

Cust orer Tabl e. Col um(" G ty"). StringVal ue

city

End If

If Len(phone) > 0 Then
Cust oner Tabl e. Col um(" Phone"). Stri ngVal ue
phone

End If

Cust orrer Tabl e. I nsert

Cust orrer Tabl e. MovelLast

D spl ayQurr ent Row

Exit Sub

InsertError:
MsgBox "Error: " & CStr(Err.Description)
End Sub

The call to InsertBegin puts the application into insert mode and sets all
the valuesin the row to their defaults (for example, the ID column

receives the next autoincrement value). The column values are set and
then the new row isinserted. Note that if an error occurs during the

insert, a message box will display the error number.

Run the application.

After the initial message box, the form is displayed.

¢

Enter afirst name of Jane in the top text box and alast name of Doe

in the second.

Click the Insert button. A row is added to the table with these
values. The application moves to the last row of the table and

displaysthe row. The label displays the autoincremented value of

the ID column that Ultralite assigned to the row.

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

¢ Enter afirst name of John in the top text box and alast name of
Smith in the second.

¢ Click Insert to add this row to the table.
¢ Click End to end the program.

With two rows in the table, it is now time to implement the code to scroll
through the rows and display each.

% To move through the rows of the table:
1 Implement the code for the Next and Previous buttons:

Add the following routines to the form:;

Private Sub btnNext _dick()
If Not Custoner Tabl e. MoveNext Then
Cust orrer Tabl e. Movelast
End |f
Di spl ayQur r ent Row
End Sub

Private Sub btnPrevious_dick()
If Not CustonerTabl e. MovePrevi ous Then
Cust orrer Tabl e. MoveFi r st
End | f
Di spl ayQur r ent Row
End Sub

2 Runthe application.

When the form isfirst displayed, the controls are empty as the current
position is before the first row.

After the form is displayed, click Next and Previous to move through the
rows of the table.

The next step isto modify the datain arow by updating or deleting it.

+ To update and delete rows in the table:
1 Implement the code for the Update button.

Add the following routine to the form:

Private Sub btnUpdate dick()
D mfname As String
Dmlname As String
Dmcity As String
D m phone As String

39

Lesson 4: Write connection, synchronization, and table code

fname = txt Fname. Text

| name = t xt Lnane. Text

city = txtGty. Text

phone = t xt Phone. Text

On Error GoTo Updat eError

Cust orrer Tabl e. Updat eBegi n

Cust oner Tabl e. Col um(" Fnane"). Stri ngVal ue

f nane

Cust oner Tabl e. Col um("Lnane"). StringValue = _
| name

If Len(city) > 0 Then
Cust orer Tabl e. Col um(" G ty"). StringVal ue =
city

El se
CQust oner Tabl e. Colum(" G ty"). Set Nul |

End If

If Len(phone) > 0 Then
Cust oner Tabl e. Col um(" Phone") . Stri ngVal ue
phone
End If
Cust orrer Tabl e. Updat e
Di spl ayQur r ent Row
Exit Sub

Updat eError:
MsgBox "Error: " & CStr(Err. Description)
End Sub

The call to UpdateBegin puts the application into update mode. The
column values are updated and then the row itself is updated with a call
to Update.

2 Implement the code for the Delete button.

Add the following routine to the form:

Private Sub btnDel ete_dick()
I f CQustoner Tabl e. RowCount = 0 Then
Exit Sub
End |f
Cust oner Tabl e. Del et e
Cust oner Tabl e. MoveRel ative 0
D spl ayQurr ent Row
End Sub

The call to Delete deletes the current row on which the application is
positioned.

3 Runthe application.

40

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

The data manipulation and display part of the application is now
complete. Try inserting, updating, and deleting rows. Also, use the Next
and Previous buttons to move through the rows. Check the label to see
which row you are on.

Note

Y ou can now run this application as a stand-al one application without
SQL Anywhere Studio. If you wish to synchronize your Ultralite
database with an Adaptive Server Anywhere database, please complete
the next lesson in the tutorial.

Write code to synchronize

Thefinal step isto write synchronization code. This step requires
SQL Anywhere.

+ To write code for the synchronize button:
1 Implement the code for the Synchronize button.
Add the following routine to the form:

Private Sub btnSync_Q i ck()
Wth Connecti on. SyncPar ns
. User Name = "af sanpl e"
. Stream = ULStreanfype. ul TCPI P

.Version = "ul _defaul t"
. SendCol utmNanes = True
End Wth

Connecti on. Synchroni ze
D spl ayQurr ent Row
End Sub

The SyncParms object contains the synchronization parameters. For this
simple example, we start MobiLink so that it will add new users. Also,
we send the column names to MobiLink so it can generate proper upload
and download scripts.

2 Fromacommand prompt, start the MobiLink synchronization server
with the following command line:

dbm srv8 -c "dsn=ASA 8.0 Sanple" -v+ -zu+ -za

The ASA 8.0 Sample database has a Customer table that matches the
columnsin the Ultral ite database you have created. Y ou can
synchronize your UltraLite application with the ASA 8 Sample database.

41

Lesson 4: Write connection, synchronization, and table code

The -zu+ and -za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’'s Guide.

Start the UltraL ite application.
Delete al therowsin your table.

Any rowsin the table would be uploaded to the ASA 8.0 Sample
database.

5 Synchronize your application.
¢ Click the Synchronize button.

The MobiLink synchronization server window should scroll
messages displaying the synchronization progress.

¢ When the synchronization is complete, click Next and Previous to
move through the rows of the table.

42

Chapter 3 Tutorial: An UltraLite for MobileVB Application for PocketPC

Lesson 5: Deploying the application to a device

Now that you are convinced the application runs properly, you can deploy it
to the device.

+ To deploy to the PocketPC device:

1

Configure the application settings.
¢ From the MobileVB menu, choose MobileVB Settings

¢ Inthedialog that appears, choose Dependenciesin the left pane and
click on the User Dependencies tab.

¢ Click the Add button and select the c:\tutorial\mvb\tutCustomer.usm.
Thisindicatesto MobileVB that the file should be included in the
deployment.

¢ Choose the PocketPC Settings item in the left pane
¢ Enter |Tutoriallmvb for the Device Installation Path.
¢ Click OK to closethe dialog.

From the MobileVB menu, choose Deploy to Device, and make sure you
select the PocketPC device. If adialog appears asking if you want to
save the project, choose Yes.

If you are running a version of MobileVB that is older than 3.0, you will
also need to copy the UltralL ite control to the device. Copy from your
desktop, thefile

SQL AnywherelUltralite\UltraLite\UltraLiteForMobileVB\celarm\ulmvb8.dll
to your device |Program Files\AppForge. This step only needs to be
performed once per device.

On your device, go to your Programs.

Choose UltralLiteTutorial CE. Y ou are now running your application.

43

Summary

Summary

Learning
accomplishments

Samples

44

During this tutorial, you:

¢

¢

¢

created a database schema
created an UltraLite for MobileVB application

synchronized a remote database with an Adaptive Server Anywhere
consolidated database using Ultral ite

increased your familiarity with MobileVB for UltraLite as an integrated
system

gained competence with the process of developing an UltraL ite for
MobileVB application

For more code samples, see the following project group. Paths are relative to
your SQL Anywhere installation:

¢
¢

Samples\UltraLiteForMobileVBI\custdb\custdb.vbg
Samples\UltraLiteForMobileVB\grid\gridsample.vbg

CHAPTER 4

Understanding UltraLite for MobileVB

Development

About this chapter

Contents

This chapter describes how to develop applications with the UltraLite for

MobileVB component.

Topic Page
Connecting to the UltraL ite database 46
Accessing and manipulating data 49
Accessing schemainformation 55
Error handling 56
Synchronization 57

45

Connecting to the UltraLite database

Connecting to the UltraLite database

46

Any UltraLite application must connect to its database before it can carry out
any operation on the data, including applying a schema to the database.

< To connect to an UltralLite database:
1 Create aULDatabaseManager object.

Y ou should create only one UL DatabaseM anager object per application.
This object is at the root of the object hierarchy. For thisreason, it is
often best to declare the UL DatabaseM anager object global to the
application.

The following code creates a UL DatabaseM anager object named doMgr
Publ i c dbMyr As ULDat abaseManager

Set dbMgr = New ULDat abaseManager
Create and open a connection to the database.

The ULDatabaseManager CreateDatabase and OpenConnection
methods are used to Create a database and Open a connection. Each
takes asingle string as its argument. The string is composed of a set of
keyword-value pairs. A schemafile must be specified for
CreateDatabase and a database file must be specified for
OpenConnection.

The following are mandatory connection parameters for CreateDatabase:

Chapter 4 Understanding UltraLite for MobileVB Development

Using the
ULConnection

object

Keyword Description

schema_file The path and filename of the UltralLite schema.
The default extension for UltraLite schemafiles
is.usm. SCHEMA_FILE isarequired
parameter when using CreateDatabase on
Windows desktop operating systems.
CE_SCHEMA has precedence over
SCHEMA_FILE. Required for
CreateDatabase.

ce_schema The path and filename of the UltraLite schema
on Windows CE. The default extension for
UltraLite schemafilesis.usm. CE_SCHEMA
isarequired parameter when using
CreateDatabase for CE.

palm_schema | If using Palm, the name of the UltraLite schema
for PAm. PALM_SCHEMA isarequired
parameter when using CreateDatabase on
Palm devices. The Pam file extension is .pdb.

& For more information on connection parameters, see " Connection
Parameters' on page 25 of the book Ultral ite Foundations.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the UL Connection object global to the application.

The following code opens a connection to an Ultralite database named

mydata.udb (assuming the file exists).

Publ i ¢ conn As ULConnecti on

DimconParns as String

DmfilePath as String

filepath="c:\tutorial"

conPar s = "ui d=dba; pwd=sql ; dbf=" + filepath +
"\ nydat a. udb"

Set conn = dbMyr. QpenConnecti on(conPar Irs)

Properties of the UL Connection object govern global application behavior,
including the following:

¢

Commit behavior By default, UltraLite applicationsarein

AutoCommit mode. Each Insert, Update, or Delete statement is

committed to the database immediately. Y ou can also set
UL Connection.AutoCommit to False to build transactions into your
application.

47

Connecting to the UltraLite database

48

& For more information, see " Transaction processing in UltraLite" on
page 54.
User authentication Y ou can change the user ID and password for the

application from the default values of DBA and SQL by using the
GrantConnectTo and RevokeConnectFrom methods.

Synchronization A set of objects governing synchronization are
accessed from the UL Connection object.

Tables UltraLitetables are accessed using the
UL Connection.GetTable method.

Chapter 4 Understanding UltraLite for MobileVB Development

Accessing and manipulating data

UltraL ite applications access datain tables in arow-by-row fashion. This
section covers the following topics:

¢ Scrolling through the rows of atable.

¢ Accessing the values of the current row.

¢ Using Find and Lookup methods to locate rows in atable.
¢ Inserting, deleting, and updating rows.

The section also provides alower-level description of the way that UltraLite
operates on the underlying data to help you understand how it handles
transactions, and how changes are made to the datain your database.

Data manipulation internals

Using UltraLite
modes

Ultral ite exposes the rows in atable to your application one at atime. The
UL Table object has a current position, which may be on arow, before the
first row, or after the last row of the table.

When your application changesits row (by a ULTable.MoveNext method or
other method on the UL Table object) Ultralite makes a copy of therow ina
buffer. Any operations using UL Column properties to get or set values affect
only the copy of datain this buffer. They do not affect the datain the
database. For example, the following statement changes the value of the ID
column in the buffer to 3.

TCQustoner. Get Colum("I D").IntegerValue = 3

UltraL ite uses the valuesin the buffer for avariety of purposes, depending
on the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to a default mode, and in each mode the
buffer is used for a different purpose.

¢ Insert mode Thedatain the buffer isadded to the table as a new row
when the UL Table.Insert method is called.

¢ Update mode Thedatain the buffer replaces the current row when the
UL Table.Update method is called.

¢ Find mode Thedatain the buffer is used to locate rows when one of
the ULTable.Find methodsis called.

¢ Lookup mode Thedatain the buffer is used to locate rows when one
of the UL Table.Lookup methodsis called.

49

Accessing and manipulating data

Whichever mode you are using, thereis a similar sequence of operations:
1 Enter the mode.

The ULTable InsertBegin, UpdateBegin, FindBegin, and LookupBegin
methods set UltraL ite into the mode.

2 Setthevaluesin the buffer.
Use the UL Column object to set valuesin the buffer.
3 Carry out the operation.

Use a UL Table method such as Insert, Update, FindFirst, or
LookupForward to carry out the operation, using the valuesin the
buffer. In most cases the Ultralite mode is set back to the default
method and you must enter a new mode before performing another data
manipulation or searching operation. An exception is that Delete does
not affect the Find mode.

Scrolling through the rows of atable

The following code opens the customer table and scrolls through its rows,
displaying a message box with the value of the Iname column for each row.

Di m TQust orer as ULTabl e
Set TCustoner = Conn. Get Tabl e(" custoner™)
TCust oner . Open
TCQust oner . MoveBef or eFi r st
Whi | e TCust oner . MoveNext
MsgBox TCust oner. Get Col um("I nanme"). StringVal ue
\end

Y ou expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rowsin a particular order. The
following code moves to the first row of the customer table as ordered by the
ix_name index.

Set TCustoner = Conn. Get Tabl e(" cust oner")

TCQust oner . pen "i x_nane"
TCust oner . MoveFi r st

Accessing the values of the current row

50

At any time, a UL Table object is positioned at one of the following
positions:

+ Beforethefirst row of the table.

Chapter 4 Understanding UltraLite for MobileVB Development

Casting values

¢ Onarow of thetable.
+ After thelast row of the table.

If the ULTable object is positioned on arow, you can use the Column
method together with a method appropriate for the data type of that column
to access the value of that row. For example, the following expression
represents the value of the Iname column, as a character string:

TCQust oner. Col um("l name"). StringVal ue

The following expression represents the value of the ID column, an integer:
TCQustoner. Col um("I D"). IntegerVal ue

Y ou can assign values to the properties even if you are before the first row or
after the last row of the table.

This code is incorrect
TCust oner . MoveBef or eFi r st
id = TCustoner.Colum("ID").IntegerVal ue

To work with binary data, use the GetBytes method instead of a property.

The method you choose on the UL Column object must batch the Visual
Basic data type you wish to assign. Ultralite automatically casts data types
where they are compatible, so that you could use the StringV alue method to
fetch an integer value into a string variable, and so on.

&> For more information on accessing values of the current row, see the
methods and properties of "ULColumn™ on page 61.

Searching for rows with Find and Lookup

Ultral ite has several modes of operation when working with data. The
UL Table object has two sets of methods for locating particular rowsin a
table:

¢ Find methods These moveto the first row that exactly matches a
specified search value, under the sort order specified when the ULTable
object was opened. If the search method cannot be found you are
positioned before the first or after the last row.

¢ Lookup methods These moveto thefirst row that matchesor is
greater than a specified search value, under the sort order specified when
the UL Table object was opened.

Both sets are used in a similar manner:

1 Enter Find or Lookup mode.

51

Accessing and manipulating data

2

The mode is entered by calling the FindBegin or LookupBegin method,
respectively. For example.

TCust oner . Fi ndBegi n
Set the search values.

Y ou do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example:

TCQust oner. Col um("l name"). StringVal ue = "Kam nski "
Only valuesin the columns of the index are relevant to the search.
Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index:

TCust oner . Fi ndFi r st

For multi-column indexes, a value for the first column is always used,
but you can omit the other columns and you can specify the number of
columns as a parameter to FindFirst.

& For alist of methods, see"ULTable class' on page 97.

Inserting updating, and deleting rows

52

To update arow in atable, use the following sequence of instructions:

1

Move to the row you wish to update.

Y ou can move to arow by scrolling through the table or by searching,
using Find and Lookup methods.

Enter update mode.

For example, the following instruction enters update mode on
TCustomer:

TCust oner . Updat eBegi n
Set the new values for the row to be updated. For example:

TCQust oner. Col um("LNanme"). StringValue = "Snith"
Execute the Update.

TCust oner . Updat e
The update is not carried out until the Update method is called.

Chapter 4 Understanding UltraLite for MobileVB Development

Inserting rows

Deleting rows

After the update operation the current row is the row that was just updated. If
you changed the value of a column in the index specified when the ULTable
object was opened, the current row is undefined. For more information, see
"Update method" on page 105

By default, UltraLite operatesin AutoCommit mode, so that the Updateis
immediately applied to the row in permanent storage. If you have disabled
AutoCommit mode, the Update is not applied until you execute a Commit
operation. For more information, see " Transaction processing in UltraL ite"
on page 54.

Caution

Updating primary key values can interfere with synchronization. Do not
update the primary key of a row: delete the row and add a new row
instead.

The stepsto insert arow are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the Insert operation. The order of rowsin the table has no significance.

Note: The location of the cursor’s current row is not defined after an insert.
So you should not rely on the current row position after an insert.

The following sequence of instructions inserts a new row:

TCust oner. I nsert Begi n

TCQustoner. Col um("Id").IntegerValue = 3

TCQust oner. Col um("LNare"). SringValue = "Carl 0"
TCust oner. I nsert

If you do not set avalue for one of the columns, and that column has a
default, the default valueis used. If the column has no default, the following
entries are added:

¢+ For numeric columns, zero.
¢ For character columns, an empty string.
To set avalueto NULL, use the UL Column.SetNull method.

Asfor Update operations, after calling Insert it is possible to see the newly
inserted row, but an Insert is applied to the database in permanent storage
itself only when a Commit is carried out. In AutoCommit mode, a Commit is
carried out as part of the Insert method.

The stepsto delete arow are simpler than to insert or update rows. Thereis
no Delete mode corresponding to the Insert or Update modes. The steps are
asfollows:

1 Moveto the row you wish to delete.

53

Accessing and manipulating data

2 Execute the ULTable.Delete method.

Transaction processing in UltraLite

54

UltraL ite provides transaction processing to ensure the correctness of the
datain your database. A transaction isalogical unit of work: it iseither all
executed or none of it is executed.

By default, UltraLite operatesin AutoCommit mode, so that each Insert,
Update, or Delete is executed as a separate transaction. Once the operation is
completed, the change is made to the database. If you set the

UL Connection.AutoCommit property to False, you can use multi-statement
transactions. For example, if your application transfers money between two
accounts, either both the deduction from the source account and the addition
to the destination account must be completed, or neither must be compl eted.

If AutoCommit is set to False, you must execute a UL Connection.Commit
statement to complete a transaction and make changes to your database
permanent, or you must execute a UL Connection.Rollback statement to
cancel all the operations of atransaction.

Chapter 4 Understanding UltraLite for MobileVB Development

Accessing schema information

Objectsin the API represent tables, columns, indexes, and synchronization
publications. Each object has a Schema property that provides access to
information about the structure of that object.

Here is asummary of the information you can access through the Schema
objects.

¢

ULDatabaseSchema The number and names of the tablesin the
database, as well as global properties such as the format of dates and
times.

To obtain a UL DatabaseSchema object, call the UL Connection.Schema
property.

ULTableSchema The number and names of the columns and indexes
for thistable.

To obtain a UL TableSchema object, call the UL Table.Schema property.

ULColumnSchema The SQL datatype, default value, and other
characteristics of the column, such as whether it accepts NULL.

To obtain a UL TableSchema object, call the UL Column.Schema
property.

ULIndexSchema Information about the type of index and the columns
init. Asan index has no data directly associated with it (only that which
isin the columns of the index) there is no separate UL Index object, just
a ULIndexSchema object.

To obtain a ULIndexSchema object, call the UL T ableSchema.Getlndex
method.

ULPublicationSchema Tables contained in a publication. Publications
are also comprised of schema only, and so thereisa
UL PublicationSchema object rather than a UL Publication object.

To obtain a UL PublicationSchema object, call the
UL DatabaseSchema.GetPublicationSchema method.

Y ou cannot modify the schema through the API. Y ou can only retrieve
information about the schema.

55

Error handling

Error handling

56

Y ou can use the standard MobileVB error-handling features to handle errors.
When an UltralLite object is the source of an error, the Err object is assigned
a UL SQL Code number. UL SQL Code errors are negative numbers
indicating the particular kind of error. The UL SQL Code enum provides a
set of descriptive constants associated with these val ues.

& For more information, see "UL SQL Code enum™ on page 83.

To make use of type completion in the Visual Basic environment, you may
want to create an error handling function such as the following:

Public Function GetError() As ULSqgl Code
GetError = Err.Nunber
End Functi on

Y ou can then access UltraL ite errors using the GetError function.

Chapter 4 Understanding UltraLite for MobileVB Development

Synchronization

Y ou can synchronize your dataif you have SQL Anywhere Studio.

Adding the synchronization template

UltraLite for MobileVB includes a template form that can be used to monitor
the status of a synchronization session. A version of thisform isincluded for
both Palm OS and Pocket PC. Y ou can use these templates in your
application, you can customize them, or you can simply examine them to
learn how Ultral ite synchronization events work.

m. Synchronizing

Bytes sent:

Eytes received:

+ To add one of these templates to your application:
1 Fromthe project menu, select Add Form

2 Select either UltraLite for MobileVB Sync Form (CE) or UltralLite for
MobileVB Sync Form (Palm)

3 Click Open

A copy of the form will then be added to your application.

57

Synchronization

Writing code to use the synchronization form

Call the the InitSyncForm function, passing it your UL Connection object.
This must be done before each synchronization. For example, if your
synchronization status form is named Form_Sync and your UL Connection
object is named Connection:

For m Sync. | ni t SyncFor m Connecti on
Connecti on. Synchroni ze

Now, every time your application synchronizes, the synchronization status
form appears. As synchronization progresses, your user can observe the
progress bar and byte count. When synchronization completes, the formis
dismissed. The Cancel button instructs Ultral ite to abort the current
synchronization.

For more details, see the CustDB sample.

58

CHAPTER 5

API Reference

About this chapter

Contents

This chapter describes the UltraLite for MobileVB API.

Topic Page
UL AuthStatusCode constants 60
UL Column class 61
UL ColumnSchema class 66
UL Connection class 67
UL DatabaseM anager class 74
UL DatabaseSchema class 77
UL IndexSchema class 80
UL PublicationSchema class 82
UL SQL Code enum 83
ULSQLType enum 86
UL StreamErrorCode enum 87
UL StreamErrorContext enum 90
UL StreamErrorlD enum 91
UL StreamType enum 92
UL SyncParms class 93
UL SyncResult class 95
UL SyncState 96
ULTable class 97
UL TableSchema class 106

59

ULAuthStatusCode constants

ULAuthStatusCode constants

60

Constant Value
ulAuthStatusUnknown 0
ulAuthStatusvalid 1000
ulAuthStatusV alidButExpiresSoon 2000
ulAuthStatusExpired 3000
ulAuthStatuslinvalid 4000
ulAuthStatusinUse 5000

Chapter 5 API Reference

ULColumn class

Properties

The ULColumn object allows you to get and set values from atableina
database. Each UL Column object represents a particular value in atable; the
row is determined by the ULTable object.

& For information about the ULTable object, see"ULTable class' on

page 97.
Prototype Description
BooleanVaue as Boolean Returns the current value.

ByteValue as Byte
DatetimeValue as Date
DoubleVaue as Double
IntegerValue as Integer

IsNull asBoolean (read only)

LongVaueasLong
ReaVaueas Single

Schema as ULColumnSchema (read
only)

StringVaue as String
UUIDValue As String

Returns the current value
Returns the current value
Returns the current value
Returns the current value

Indicates whether the column valueis
NULL

Returns the current value
Returns the current value

Returns the object representing the
schema of the column

Returns the current value

The column value asa UUID. For
reading, getsthe column valueasa
UUID. If thevalueisnot avalid UUID,
aSQLE_CONVERSION_ERROR is
raised. For writing, storesthe value as a
UUID in the database.

UUID isaBINARY 16 data type.

AppendByteChunk method

Prototype AppendByteChunk(data As long, data len As long)

Member of UltraLiteAFLib.ULColumn

61

ULColumn class

Description Appends the buffer of bytesto the column if thetypeis
ul TypeLongBi nary.

Parameters data Anarray of bytes.
data_len The number of bytes from the array to append.

Errors set Error | Description
UlSQLE_INVALID_PARAMETER ‘ If datalength islessthan O
ulSQLE_CONVERSION_ERROR If the column data type is not LONG

BINARY.

Example Dmdata (1 to 512) as Byte

iz;ble.Cqumn("edata").AppendByteChunk(_
VarPtr(data(1)), 512)

In the example code, edata is a column name and 512 bytes of data are
appended to the column.

AppendStringChunk method

Prototype AppendStringChunk(data As String)
Member of UltraLiteAFLib.ULColumn
Description Appends the string to the column if the type is ulTypeLongString.
Parameters data A string to append to the existing string in atable.
Errors set Error | Description
ulSQLE_CONVERSION_ERROR If the column data typeis not LONG
VARCHAR.

GetByteChunk method

Prototype GetByteChunk(src_offset As Long, data As Long, data len As Long,
filled_len As Long) As Boolean
Member of UltraLiteAFLib.ULColumn

Description Fills the buffer passed in (which should be an array) with the binary datain
the column. Suitable for BLOBS.

62

Chapter 5 API Reference

Parameters

Returns

Errors set

Example

data A pointer to an array of bytes. To get the pointer to the array of bytes,
use the Visual Basic Var Pt r () function.

data_len Thelength of the buffer, or array.
offset The offset into the underlying array of bytes.
Trueif this column value contains more data

Falseif there is no more data for this column in the database.

Error Description
UulSQLE_CONVERSION_ERROR If the column data type isn't BINARY or
LONG BINARY

UlSQLE_INVALID_PARAMETER If the column data type is BINARY and
any of the following is true:

¢ offsetisnotOor 1
¢ datalength is greater than 64K
¢ datalengthislessthan O

UISQLE_INVALID_PARAMETER If the column data typeis LONG
BINARY and any of the following is true:

4 offsetislessthan 1
4 datalengthislessthan 0

Dmfilled as | ong

Di m nore_data as bool ean

Dimdata (1 to 512) as Byte

nore_data =tabl e. col um("edata"). Get Byt eChunk(O0,
VarPtr(data(l)), 512, filled)

In the example code, edata is a column name. Note, if the data_len
parameter passed in is not long enough, the entire application will terminate.

GetStringChunk method

Prototype

Description

Parameters

GetStringChunk (src_offset As Long,
data as string, string_len As Long,
filled_len as long) As Boolean
Member of UltraLiteAFLib.ULColumn

Fills the string passed in with the binary datain the column. Suitable for
Long Varchars.

string_length Thelength of the string you want returned.

63

ULColumn class

Returns

Errors set

src_offset Thisisthe character offset into the underlying data from which
we start getting the string.

Trueif thereis more data for this value.

Falseif thereis no more data for this value.

Error Description
ulSQLE_CONVERSION_ERROR If the column datatypeisn't CHAR or
LONG VARCHAR

UISQLE_INVALID_PARAMETER If the column data type is CHAR and the
src_offset is greater than 64K

UlSQLE_INVALID_PARAMETER If src_offset islessthan O or string length
islessthan O.

SetByteChunk method

Prototype

Description

Parameters

Errors set

Example

64

SetByteChunk(data As long, data len as long)
Member of UltraLiteAFLib.ULColumn

Sets the value of the column in the database to the array of bytesin the data
field. Suitable for binary or long binary columns.

data Anarray of bytes.

data_len Thelength of the array.

Error Description
ulSQLE_INVALID_PARAMETER If the data length is less than 0.
ulSQLE_CONVERSION_ERROR If the column data typeis not
BINARY or LONG BINARY
UlSQLE_INVALID_PARAMETER If the datalength is greater than 64K

Dimdata (1 to 512) as Byte

iz;ble.Cqumn("edata").SetByteChunk(_
VarPtr(data(1)), 232)

In the example code, edata is a column name and 232 bytes of datain the
array contain values to be set in the database.

Chapter 5 API Reference

SetNull method

Prototype SetNull()
Member of UltraLiteAFLib.ULColumn

Description Sets this column’s value to null.

SetToDefault method

Prototype SetToDefault()
Member of UltraLiteAFLib.ULColumn
Description Sets the current column to its default value as defined by the database
schema.

65

ULColumnSchema class

ULColumnSchema class

Properties

66

The UL ColumnSchema object allows you to obtain the attributes of a
columnin atable. The attributes are independent of the data in the table.

Prototype

Description

Autolncrement as Boolean (read
only)

DefaultValue as String (read only)

Global Autolncrement as Boolean
(read only)

ID asinteger (read only)

Name as String (read only)
Nullable as Boolean (read-only)
OptimalIndex as ULIndexSchema

(read only)
Precision as Integer (read only)
Scaleas Integer (read only)

SizeasLong (read only)

SQLType as ULSQL Type (read
only)

Determines whether this column defaults
to an autoincrement value

Indicates the value that is used if one was
not provided when arow was inserted.

Determines whether this column defaults
to aglobal autoincrement value

The ID of the column
The column name
Trueif the column allows NULLs

The index with this column asitsfirst
column.

The precision value for the column if itis
of type ulTypeNumeric

The scale value for the column if it is of
type ul TypeNumeric

The size the column was created with if its
typetakesasize

The SQL type assigned to the column
when it was created

Chapter 5 API Reference

ULConnection class

Example

Properties

A UL Connection object represents an Ultralite database connection. It
provides methods to get database objects like tables, and to synchronize.
When synchronizing, the UL Connection object can also receive progress
information. If you wish to receive this information, you must declare your
connection WithEvents. Y ou can perform synchronization without declaring
your connection WithEvents; however, your connection object will not
receive notification of synchronization progress.

To declare a connection 'WithEvents', in a MobileVB form, use the

following syntax:

Public WthEvents Connection As ULConnecti on

The following are properties of UL Connection:

Prototype

Description

AutoCommit as Boolean

Databasel D as Long

Global Autol ncrementUsage as I nteger
(read only)

Lastldentity as Long (read only)

OpenParms as String (read only)

Schema as UL DatabaseSchema (read
only)

If true, dl datachanges are
committed immediately after they are
made. Otherwise, changes are not
committed to the database until
Commit is called. By defaullt, this
property is True.

Sets the database 1D value to be used
for global autoincrement columns

Returns the percentage of available
global autoincrement values that have
been used

Returns the most recent value
inserted into a column with a default
of autoincrement or global
autoincrement.

The string used to open the
connection to the database.

Returns the UL DatabaseSchema
object

67

UL Connection class

CancelSynchronize method

Prototype

Description

Close method

Prototype

Description

Commit method

Prototype

Description

CancelSynchronize()
Member of UltraLiteAFLib.ULConnection

When called during synchronization, the method cancels the
synchronization. To allow this the UL Connection object must be declared
WithEvents. The user can only call this method during one of the
synchronization events.

Close()
Member of UltraLiteAFLib.ULConnection

Closes the connection to the database. No methods on the UL Connection
object should be called after this method is called. If a connection is not
explicitly closed, it will be implicitly closed when the application terminates.

Commit()
Member of UltraLiteAFLib.ULConnection

Commits outstanding changes to the database. Thisisonly useful if
AutoCommit is false.

CountUploadRows method

Prototype

Description

Parameters

68

CountUploadRows([mask as Long =0], [threshold as Long =-11])
As Long
Member of UltraLiteAFLib.ULConnection

Returns the number of rows that need to be uploaded when synchronization
next takes place.

mask A unique identifier that refers to the publications to check. Use O for
all publications. If this parameter is omitted, O is used.

threshold The maximum number of rows to count. Use -1 to indicate no
maximum. If not specified, this value is —1.

Chapter 5 API Reference

GetNewUUID method

Prototype GetNewUUID() As String
Member of UltraLiteAFLib.ULConnection

Description Returns a new universally unique identifier in a string format. Thisstring is
of the form xxxxxxXxx- XXXX- XXXX- XXXX- XXXXXXXXXXXX.

GetTable method

Prototype GetTable(name As String) As ULTable
Member of UltraLiteAFLib.ULConnection

Description Returns the UL Table object for the specified table. Y ou must then open the
table before data can be read fromit.

Parameters name The name of the table sought.

Returns Returns the UL Table object.

Examples In this example, the Customer table is accessed.

Set Custoner Tabl e = Connecti on. Get Tabl e(" Cust oner")

GrantConnectTo method

Prototype GrantConnectTo(userid as String, password as String)
Member of UltraLiteAFLib.ULConnection

Description Grants the specified user permission to connect to the database with the
given password.

Parameters userid Theuser ID for the current user.

password The password for this user ID.

LastDownloadTime method

Prototype LastDownloadTime([mask as Long =0]) As Date

Member of UltraLiteAFLib.ULConnection
Description Returns the time of last download for the publication(s).
Parameters

mask A uniqueidentifier that refersto the publications to check. Use O for
all publications. If this parameter is omitted, O is used.

69

UL Connection class

OnReceive event

Prototype

Description

Parameters

Example

OnSend event

Prototype

Description

Parameters

Example

70

OnReceive (nBytes As Long, ninserts As Long, nUpdates As Long, nDeletes
as Long)
Member of UltraLiteAFLib.ULConnection

Reports download information to the application from the consolidated
database viaMobiLink. This event may be called several times.

nBytes Cumulative count of bytes received at the remote application from
the consolidated database.

ninserts Cumulative count of inserts received at the remote application
from the consolidated database.

nUpdates Cumulative count of updates received at the remote application
from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application
from the consolidated database.

See the custdb application for an example of this method.

OnSend(nBytes As Long, ninserts As Long, nUpdates as Long, nDeletes as
Long)
Member of UltraLiteAFLib.ULConnection

Reports upload information from the remote database via MobiLink to the
consolidated database. This event may be called several times.

nBytes Cumulative count of bytes sent by the remote application to the
consolidated database via MobiLink.

ninserts Cumulative count of inserts sent by the remote application to the
consolidated database via MobiLink.

nUpdates Cumulative count of updates sent by the remote application to
the consolidated database via MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the
consolidated database via MobiLink.

See the custdb application for an example of this method.

Chapter 5 API Reference

OnStateChange event

Prototype OnStateChange(newState As ULSyncState, oldState As ULSyncState)
Member of UltraLiteAFLib.ULConnection

Description Thisevent is called whenever the state of the synchronization changes.

Parameters

new_state The state that the synchronization process is about to enter.

old_state The state that the synchronization process just compl eted.
Example See the custdb application for an example of this method.

OnTableChange event

Prototype OnTableChange(newTableindex As Long, numTables As Long)
Member of UltraLiteAFLib.ULConnection

Description This event is called whenever the synchronization process begins
synchronizing another table.

Parameters newTableindex Theindex number of the table currently being

synchronized. This number is not the same as the table ID, therefore, it
cannot be used with the DatabaseSchema.Get TableName method.

numTables The number of tables eligible to be synchronized.
Example See the custdb application for an example of this method.

RevokeConnectFrom method

Prototype RevokeConnectFrom(userid as String)

Member of UltraLiteAFLib.ULConnection
Description Revokes the specified user’s ability to connect to the database.
Parameters

userid Theuser ID for the user to be revoked.

Rollback method

Prototype Rollback()
Member of UltraLiteAFLib.ULConnection

Description Rolls back outstanding changes to the database. Thisisonly useful if
AutoCommit is false.

71

UL Connection class

StartSynchronizationDelete method

Prototype StartSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Description Once this function is called, all subsequent delete operations are uploaded at
the next synchronization.

StopSynchronizationDelete method

Prototype StopSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Description Prevents del ete operations from being synchronized. Thisis useful for
deleting old information from an UltralLite database to save space, while not
deleting this information on the consolidated database.

StringToUUID method

Prototype StringToUUID(s_uuid As String, buffer_16_bytes As Long)
Member of UltraLiteAFLib.ULConnection

Description Converts a string in the form xxxxxxxx- XXXX= XXXX= XXXX = XXXXXXXXXXXX
to an array of 16 bytes. The pointer to the buffer must be declared as 16
bytes. Since Visual Basic does not provide bounds checking, memory could
be overwritten if the buffer istoo small. Use the VarPtr() function to get the
pointer to the buffer.

Synchronize method

Prototype Synchronize()
Member of UltraLiteAFLib.ULConnection

Description Synchronizes a consolidated database using MobiLink. This function does
not return until synchronization is complete, but you can be notified of
eventsif the connection was declared WithEvents.

UUIDToString method

Prototype UUIDToString(buffer_16_bytes As Long) As String
Member of UltraLiteAFLib.ULConnection

72

Chapter 5 API Reference

Description

Expects a VarPtr to a buffer of 16 bytes. Convertsthis buffer to astringin
the form xxxxxXxxx- XXXX- XXXX- XXXX- XXXXXXxxxxxx. The buffer must be
declared (1 to 16) AsByte (that is, an array of 16 bytes). Visual Basicis
unable to check the bounds for this buffer so if it is not big enough, the
application could overwrite memory.

73

ULDatabaseManager class

ULDatabaseManager class

Properties

The ULDatabaseM anager class is used to manage connections and databases.
Y our application should only have one instance of this object.

The following is a property of DatabaseM anager:

Prototype | Description

Versionas String | ldentifies the version of the UltraLite for MobileV B
component

CreateDatabase method

Prototype

Description

Parameters

74

CreateDatabase creates a new database and returns a connection to it.

CreateDatabase(parms As String) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Creates a new database and returns a connection to it. It failsif the specified
database already exists. To alter the schema of an existing database, use the
UL DatabaseSchema ApplyFile method.

& For more information on ApplyFile, see "UL DatabaseSchema class' on
page 77 and "ApplyFile method" on page 78.

parms A semicolon-separated list of database creation parameters.

Note for VFS card for Palm users

The Pam_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection methodsif you want to have the database reside on
the virtua file system.

& For information on connection parameters, see " Connection
Parameters' on page 25 of the book Ultral ite Foundations.

& For moreinformation on the Palm_fs parameter, see "pam _fs
parameter " on page 31 of the book UltraLite Foundations.

Chapter 5 API Reference

Examples

The following code creates a DatabaseM anager object. Thisisthe first object
you create when writing for UltraLite for MobileVB. Note that
CreateDatabase requires that no .udb file exists, and OpenConnection is used
when a.udb file already exists.

Dimconn_parnms As String
D m open_parns As String
Di m schena_parns As String

conn_parns = "ui d=DBA; pwd=SQ."

open_parns = conn_parns & ";" & _
" PALM DB=Syb3; fil e_name=c:\tutorial\tutCustorer. udb"
scherma_parnms = open_parns & ;" &

" PALM_SCHEMA=t ut Cust orrer ;" & _
"schema_file=c:\tutorial\tutCustoner.usnt

On Error Resune Next

Set Connection = Dat abaseMyr.
OpenConnect i on(open_par ns)
If Err.Nunber = _

ULSQLCode. ul SQLE_DATABASE_NOT_FOUND _
Then

Err.d ear

Set Connection = _
Dat abaseMyr . Cr eat eDat abase(schena_par ms)
If Err.Nunber <> 0 Then
MsgBox Err.Description

End If

End If

DropDatabase method

Prototype

Description

Parameters

Example

Deletes a databasefile.

DropDatabase(parms As String)
Member of UltraLiteAFLib.ULDatabaseManager

Deletes the database file. All information in the database file is |ost.

parms The filename for the database.

The following example drops a database:

Dimparms As String
parns = "PALM DB=Sybl; NT_FI LE=c: \tenp\ul _custdb. udb"
Dr opDat abase(par ns)

75

ULDatabaseManager class

OpenConnection method

Prototype

Description

Parameters

Returns

Example

76

OpenConnection(connparms As string) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

If a database exists, use this method to receive a connection. If a database
does not exist, or the connection parameters are invalid, the call will fail. Use
the error object to determine why the call failed.

The function returns a UL Connection object which provides an open
connection to a specified Ultral ite database. The database filenameis
specified using the connparms string. It should contain a value of the form

fil e_nane=UDBFI LE
DBF=UDBFI LE
pal m db=Creat or I D.
connparms The parameters that determine the target database. Parameters

are specified using a sequence of " name=val ue" pairs. If no user ID or
password is given, the default is used.

Note for VFS card for Palm users
The Palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection methods.

& For moreinformation on the Palm_fs parameter, see "pam_fs
parameter " on page 31 of the book UltraLite Foundations.

The UL Connection object is returned if the connection was successful.
The following example creates a new database connection from the CustDB
sample application:

Set Connection = Dat abaseMyr. QpenConnecti on(
"file_name=d:\Dbfile.udb; pal m db=Syb3; CE fil e=_
\ nyapp\ M/DB. udb")

Chapter 5 API Reference

ULDatabaseSchema class

The UL DatabaseSchema object allows you to obtain the attributes of the
database to which you are connected.

Properties

The following are properties of UL DatabaseSchema:

Prototype

Description

DateFormat as String (read only)

DateOrder as String (read only)

NearestCentury as String (read
only)

Precision as String (read only)
PublicationCount as Integer (read
only)

Signature as String (read only)
TableCount as Integer (read only)

TimeFormat as String (read only)

TimestampFormat as String (read
only)

Gets the format for dates retrieved from
the database; 'YYYY-MM-DD’ isthe
default. The format of the date retrieved
depends on the format used when you
created the schemafile.

Controls the interpretation of date formats;
valid valuesare’'MDY’, 'YMD’, or DMY".

Controls the interpretation of two-digit
years in string-to-date conversions. Thisis
anumeric value that acts as arollover
point. Two digit years less than the value
are converted to 20yy, while years greater
than or equal to the value are converted to
19yy. The default is 50.

Specifies the maximum number of digits
in the result of any decimal arithmetic.

The number of publicationsin the
connected database.

Aninternal identifier representing the
database schema.

The number of tablesin the connected
database.

Gets the format for times retrieved from
the database.

The format for timestamps retrieved from
the database.

e

ULDatabaseSchema cla

SS

ApplyFile method

Prototype

Description

Parameters

Example

ApplyFile (parms As String)
Member of UltraLiteAFLib.ULDatabaseSchema

Changes the schema of this database. Parms points to the schemafile(s) you
are applying to the database. This method is only useful on those occasions
where you want to modify your existing database structure.

In most circumstances there is no data loss, but data loss can occur if
columns are deleted, for example, or if the data type for a column is changed
to an incompatible type.

parms Thefiles containing the changes you wish to make to your database
schema.

ULDat abaseSchena. Appl yFi | e(
"schema_fil e=M/SchemaFi | e. usm pal m schema=M/Schema")

GetPublicationName method

Prototype

Description

Parameters

Returns

GetPublicationSc

Prototype

Description

Parameters

Returns

78

GetPublicationName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Returns the name of the specified publication. The publication ID can range
from 1 to PublicationCount.

id Theidistheidentifier of the publication whose name will be returned.
Returns the name of a publication in the connected database.

& For information about the UL PublicationSchema object, see
"ULPublicationSchema" on page 82.

& For more information, see UL DatabaseSchema " Properties' on page 77

hema method

GetPublicationSchema(Name As String) As ULPublicationSchema
Member of UltraLiteAFLib.ULDatabaseSchema

Use the publication name to retrieve the UL PublicationSchema object.

name The name of the publication.

Returns the UL PublicationSchema object.

Chapter 5 API Reference

GetTableName method

Prototype GetTableName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Description Returns the name of the table in the connected database that corresponds to
the id value you supply. The TableCount property returns the number of
tables in the connected database. Each table has a unique number from 1 to
the TableCount value, where 1 isthe first table in the database, 2 isthe
second table in the database, and so on. Theid for atable my change after a
database has had its schema changed.

Parameters id Theid of thetable.

Returns Returns the name of the table for the specified id.

79

ULIndexSchema class

ULIndexSchema class

Properties

The ULIndexSchema object allows you to obtain the attributes of an index.
Anindex is an ordered set of columns by which datain atable will be sorted.
The primary use of an index isto order the datain a table by one or more

columns.

Anindex can be aforeign key, which is used to maintain referential integrity

in a database.

Prototype

Description

ColumnCount as Integer (read only)

ForeignKey as Boolean (read only)
Name as String (read only)
PrimaryKey as Boolean (read only)

ReferencedindexName as String (read
only)

ReferencedTableName as String (read
only)

Uniquelndex as Boolean (read only)

UniqueKey as Boolean (read only)

GetColumnName method

Prototype

Description

Parameters

80

Returns the number of columnsin the
index

Returns whether thisis aforeign key.
Returns the name of the index

Returns whether thisis the primary
key for thistable.

The name of the index referenced by
thisindex if itisaforeign key

The name of the table referenced by
thisindex if itisaforeign key

Indicates whether values in the index
must be unique.

Indicates whether theindex isa
unique constraint on atable. If True,
the columns in the index are unique
and do not permit NULL values

GetColumnName(col_pos_in_index As Integer) As String
Member of UltraLiteAFLib.ULIndexSchema

Used to return the names of the columnsin the index. The parameter
col_pos _in_index must be at least 1 and at most ColumnCount.

col_pos_in_index Thecolumn position in the index.

Chapter 5 API Reference

Returns Returns the name of a column in the index.

IsColumnDescending method

Prototype IsColumnDescending(col_name As String) As Boolean
Member of UltraLiteAFLib.ULIndexSchema
Description Indicates whether the specified column in the index isin descending order.
Parameters col_name Theindex column name.
Returns Trueif the column is descending.

Falseif the column is ascending.

81

ULPublicationSchema class

ULPublicationSchema class

The UL PublicationSchema object allows you to obtain the attributes of a

publication.
Properties
Prototype | Description
Mask asLong (read only) Returns the mask (a unique identifier) for the

publication
Name as String (read only) | Returnsthe name of the publication

ContainsTable method

Prototype ContainsTable(name As String) As Boolean

Member of UltraLiteAFLib.ULPublicationSchema
Description Indicates whether the specified table is part of this publication.
Parameters name Thetarget table name.
Returns Trueif thetable isin the publication.

Falseif the tableis not in the publication.

82

Chapter 5 API Reference

ULSQLCode enum

The ULSQL Code constants identify SQL codes.

For a description of the errors, see the Adaptive Server Anywhere Error

Messages book.

Constant Value
ulSQLE_BAD_ENCRYPTION_KEY -840
ulSQLE_CANNOT_ACCESS FILE -602
UlSQLE_CANNOT_CHANGE_USER _NAME -867
UlSQLE_COLUMN_CANNOT_BE_NULL -195
UISQLE_COLUMN_IN_INDEX -127
UlSQLE_COLUMN_NOT_FOUND -143
ulSQLE_COMMUNICATIONS_ERROR -85
ulSQLE_CONNECTION_NOT_FOUND -108
ulSQLE_CONVERSION_ERROR -157
ulSQLE_CURSOROP_NOT_ALLOWED -187
ulSQLE_CURSOR_ALREADY_OPEN -172
ulSQLE_CURSOR_NOT_OPEN -180
ulSQLE_DATABASE ERROR -301
ulSQLE_DATABASE_NEW 123
ulSQLE_DATABASE_NOT_CREATED -645
ulSQLE_DATABASE_NOT_FOUND -83
ulSQLE_DATABASE_UPGRADE_FAILED -672
ulSQLE_DATABASE_UPGRADE_NOT_POSSIBLE -673
UlSQLE_DATATYPE_NOT_ALLOWED -624
ulSQLE_DBSPACE_FULL -604
ulSQLE_DIV_ZERO ERROR -628
ulSQLE_DOWNLOAD_CONFLICT -839
ulSQLE_DROP_DATABASE_FAILED -651
ulSQLE_DYNAMIC_MEMORY_EXHAUSTED -78
UlSQLE_ENGINE_ALREADY_RUNNING -96
ulSQLE_ENGINE_NOT_MULTIUSER -89

83

ULSQLCode enum

84

Constant Value
ulSQLE_ERROR -300
UlSQLE_IDENTIFIER_ TOO_LONG -250
UISQLE_INDEX_NOT_FOUND -183
UlSQLE_INDEX_NOT_UNIQUE -196
ulSQLE_INTERRUPTED -299
UlSQLE_INVALID_FOREIGN_KEY -194
UlSQLE_INVALID_FOREIGN_KEY_DEF -113
UlSQLE_INVALID_LOGON -103
UISQLE_INVALID_OPTION_SETTING -201
ulSQLE_INVALID_PARAMETER -735
UlSQLE_INVALID_SQL_IDENTIFIER -760
ulSQLE_LOCKED -210,
ulSQLE_MEMORY_ERROR -309
ulSQLE_METHOD_CANNOT BE_CALLED -669
ulSQLE_NAME_NOT_UNIQUE -110
ulSQLE_NOERR 0
ulSQLE_NOTFOUND 100
ulSQLE_NO_CURRENT_ROW -197
UlSQLE_NO_INDICATOR -181
ulSQLE_OVERFLOW_ERROR -158
ulSQLE_PERMISSION_DENIED -121
UlSQLE_PRIMARY_ KEY_NOT_UNIQUE -193
ulSQLE_PRIMARY _KEY_VALUE_REF -198
ulSQLE_PUBLICATION_NOT_FOUND -280
ulSQLE_RESOURCE_GOVERNOR_EXCEEDED -685
ulSQLE_ROW_DROPPED_DURING_SCHEMA_UPG | 130
RADE

UISQLE_SERVER_SYNCHRONIZATION_ERROR -857
UlSQLE_START_STOP DATABASE_DENIED -75
UISQLE_STRING_RIGHT _TRUNCATION -638
ulSQLE_TABLE_HAS PUBLICATIONS -281
ulSQLE_TABLE_IN_USE -214

Chapter 5 API Reference

Constant Value
UulSQLE_TABLE_NOT_FOUND -141
UISQLE_TOO _MANY_CONNECTIONS -102
UISQLE_UNABLE_TO START DATABASE -82
ulSQLE_UNCOMMITTED_TRANSACTIONS =755
UlSQLE_UNKNOWN_USERID -140
ulSQLE_UNSUPPORTED_CHARACTER_SET_ERR -869
OR

ulSQLE_UPLOAD_FAILED AT _SERVER -794

85

ULSQLType enum

ULSQLType enum

The ULSQL Type constants identify valid database column types.

Constant Value
ULTypelLong 0
UL TypeShort 1
UL TypeUnsignedLong 2
UL TypeUnsignedShort 3
UL TypeBig 4
UL TypeUnsignedBig 5
ULTypeByte 6
UL TypeBit 7
ULTypeDateTime 8
UL TypeDate 9
ULTypeTime 10
UL TypeDouble 11
UL TypeRea 12
UL TypeBinary 13
UL TypelL.ongBinary 14
UL TypeString 15
UL TypelongString 16
UL TypeNumeric 17

86

Chapter 5 API Reference

ULStreamErrorCode enum

The UL StreamErrorCode constants identify constants you can use to specify

the UL StreamErrorCode.

Constant Value
ul StreamErrorCodeNone 0
ul StreamErrorCodeParameter 1
ul StreamErrorCodeParameterNotUint32 2
ul StreamErrorCodeParameterNotUint32Range 3
ul StreamErrorCodeParameterNotBoolean 4
ul StreamErrorCodeParameterNotHex 5
ul StreamErrorCodeM emoryAllocation 6
ul StreamErrorCodeParse 7
ul StreamErrorCodeRead 8
ul StreamErrorCodeWrite 9
ul StreamErrorCodeEndWrite 10
ul StreamErrorCodeEndRead 11
ul StreamErrorCodeNotl mplemented 12
ul StreamErrorCodeWoul dBlock 13
ul StreamErrorCodeGenerateRandom 14
ul StreamErrorCodel nitRandom 15
ul StreamErrorCodeSeedRandom 16
ul StreamErrorCodeCreateRandomObject 17
ul StreamErrorCodeShuttingDown 18
ul StreamErrorCodeDegueuingConnection 19
ul StreamErrorCodeSecureCertificateRoot 20
ul StreamErrorCodeSecureCertificateCompanyName 21
ul StreamErrorCodeSecureCertificateChainLength 22
ul StresmErrorCodeSecureCertificateRef 23
ul StresmErrorCodeSecureCertificateNot Trusted 24
ul StreamErrorCodeSecureDuplicateContext 25
ul StreamErrorCodeSecureSetlo 26

87

ULStreamErrorCode enum

88

Constant Value
ul StreamErrorCodeSecureSetl 0Semantics 27
ul StreamErrorCodeSecureCertificateChainFunc 28
ul StreamErrorCodeSecureCertificateChainRef 29
ul StreamErrorCodeSecureEnableNonBlocking 30
ul StreamErrorCodeSecureSetCipher Suites 31
ul StreamErrorCodeSecureSetChainNumber 32
ul StreamErrorCodeSecureCertificateFileNotFound 33
ul StresmErrorCodeSecureReadCertificate 34
ul StreamErrorCodeSecureReadPrivateK ey 35
ul StreamErrorCodeSecureSetPrivateK ey 36
ul StreamErrorCodeSecureCertificateExpiryDate 37
ul StreamErrorCodeSecureExportCertificate 38
ul StreamErrorCodeSecureAddCertificate 39
ul StreamErrorCodeSecureT rustedCertificateFileNotFound 40
ul StreamErrorCodeSecureTrustedCertificateRead 41
ul StreamErrorCodeSecureCertificateCount 42
ul StreamErrorCodeSecureCreateCertificate 43
ul StreamErrorCodeSecurel mportCertificate 44
ul StreamErrorCodeSecureSetRandomRef 45
ul StreamErrorCodeSecureSetRandomFunc 46
ul StreamErrorCodeSecureSetProtocol Side 47
ul StreamErrorCodeSecureAddTrustedCertificate 48
ul StreamErrorCodeSecureCreatePrivateK eyObject 49
ul StreamErrorCodeSecureCertificateExpired 50
ul StreamErrorCodeSecureCertificateCompanyUnit 51
ul StresmErrorCodeSecureCertificateCommonName 52
ul StreamErrorCodeSecureHandshake 53
ul StreamErrorCodeHttpVersion 54
ul StreamErrorCodeSecureSetReadFunc 55
ul StreamErrorCodeSecureSetWriteFunc 56
ul StreamErrorCodeSocketHostNameNotFound 57

Chapter 5 API Reference

Constant Value
ul StreamErrorCodeSocketGetHostByAddr 58
ul StreamErrorCodeSocketL ocal hostNameNotFound 59
ul StreamErrorCodeSocketCreateT cpip 60
ul StreamErrorCodeSocketCreateUdp 61
ul StreamErrorCodeSocketBind 62
ul StreamErrorCodeSocketCleanup 63
ul StreamErrorCodeSocketClose 64
ul StresmErrorCodeSocketConnect 65
ul StreamErrorCodeSocketGetName 66
ul StreamErrorCodeSocketGetOption 67
ul StreamErrorCodeSocketSetOption 68
ul StreamErrorCodeSocketListen 69
ul StreamErrorCodeSocketShutdown 70
ul StreamErrorCodeSocketSel ect 71
ul StreamErrorCodeSocketStartup 72
ul StreamErrorCodeSocketPortOutOf Range 73
ul StreamErrorCodel oadNetworkLibrary 74
ul StreamErrorCodeA ctsyncNoPort 75

89

ULStreamErrorContext enum

ULStreamErrorContext enum

The UL StreamErrorContext constants identify constants you can use to
specify UL StreamErrorContext.

Constant Value

ul StreamErrorContextUnknown
ul StreamErrorContextRegister

ul StreamErrorContextUnregi ster
ul StreamErrorContextCreate

ul StreamErrorContextDestroy

ul StreamErrorContextOpen

ul StresmErrorContextClose

ul StreamErrorContextRead

ul StreamErrorContextWrite

© 00 N o o0 b~ W N P O

ul StreamErrorContextWriteFlush

ul StreamErrorContextEndWrite

=
o

ul StreamErrorContextEndRead
ulStreamErrorContextYield

B
N e

ul StreamErrorContextSoftshutdown

=
w

90

Chapter 5 API Reference

ULStreamErrorIiD enum

The UL StreamErrorlD constants identify constants you can use to specify
UL StreamErrorContext.

Constant Value

ul StreamErrorContextUnknown
ul StreamErrorContextRegister

ul StreamErrorContextUnregi ster
ul StreamErrorContextCreate

ul StreamErrorContextDestroy

ul StreamErrorContextOpen

ul StresmErrorContextClose

ul StreamErrorContextRead

ul StreamErrorContextWrite

© 00 N O U~ W N BB O

ul StreamErrorContextWriteFlush

=
o

ul StreamErrorContextEndWrite
ul StreamErrorContextEndRead

[
[N

ulStreamErrorContextYield

[Eny
N

=
w

ul StreamErrorContextSoftshutdown

91

ULStreamType enum

ULStreamType enum

The UL StreamType constants identify constants you can use to specify

stream type.

Constant Value Description

ulUnknown 0 No stream type has been set. Y ou must
set a stream type before synchronization.

ulTCPIP 1 TCPIP stream

ulHTTP 2 HTTP stream

ulHTTPS 3 HTTPS synchronization

ulPalmConduit 4 For HotSync synchronization

92

Chapter 5 API Reference

ULSyncParms class

Properties

The attributes set for the UL SyncParms object determine how the database
synchronizes with the consolidated or desktop database. Attributes that are
read only reflect the status of the last synchronization.

The following are properties of UL SyncParms:

Prototype

Description

CheckpointStore as Boolean

DownloadOnly as Boolean

NewPassword as String

Password as String

PingOnly as Boolean

PublicationMask as Long

SendColumnNames as Boolean

SendDownloadAck as Boolean

Stream as UL StreamType constants

StreamParms as String
UploadOnly as Boolean
UserName as String

Version as String

Adds checkpoints of the database during
synchronization to limit database growth
during the synchronization process. Thisis
most useful for large downloads with
many updates

If true, synchronization only downloads
data

The user’s password will be changed to
this string on the next synchronization, if
set

Password corresponding to the given user
name

Only check the server for liveness. Do not
synchronize data.

The publications to synchronize - the
defaultisall

If true, column names are sent to the
MobiLink synchronization server

If true, a download acknowledgement is
sent during synchronization

The type of stream to use during
synchronization

Extra parameters for the given stream type
If true, synchronization only uploads data
User name to connect for synchronization

The synchronization script version to run

93

ULSyncParms class

Examples The following example sets synchronization parameters for an UltraL ite for
MobileVB application.

Private Sub btnSync_dick()
Wth Connecti on. SyncPar ns
. User Nanme = "af sanpl e"
. Stream = ULStreanType. ul TCPI P
.Version = "ul _defaul t"
. SendCol unmmNames = True
End Wth
Connecti on. Synchroni ze
End Sub

94

Chapter 5 API Reference

ULSyncResult class

Properties

The attributes of the UL SyncResult object indicate how the last
synchronization went. Note that data for this object is not saved if the

application is terminated.

The following are properties of UL SyncResult:

Prototype

Description

AuthStatus as UL AuthStatusCode
(read only)

IgnoredRows as Boolean (read
only)

StreamErrorCode as
UL StreamErrorCode (read only)

StreamErrorContext as
UL StreamErrorContext (read only)

StreamErrorID as UL StreamErrorID
(read only)

StreamErrorSystem as Long (read
only)

UploadOK as Boolean (read only)

The authorization status code for the last
synchronization.

If true, rows were ignored during the last
synchronization

The error code reported by the stream
itself

The basic network operation being
performed
The network layer reporting the error

The stream error system-specific code

If true, data was uploaded successfully in
the last synchronization

95

ULSyncState

ULSyncState

96

Constant

Value

ulSyncStateStarting

ul SyncStateConnecting

ul SyncStateSendingHeader
ulSyncStateSendingTable

ul SyncStateSendingData

ul SyncStateFinishingUpl oad

ul SyncStateRecei vingUploadAck
ulSyncStateReceivingTable
ulSyncStateReceivingData

ul SyncStateCommittingDownload
ul SyncStateSendingDownloadAck
ul SyncStateDisconnecting

ul SyncStateDone
ulSyncStateError

ul SyncStateCancelled

© 0O N oo o b~ W N B, O

© R R R
© w N B O

Chapter 5 API Reference

ULTable class

Properties

Close method

Prototype

Description

Column method

Description

The UL Tableclassis used to store, remove, update, and read datafrom a
table.

Before you can work with table data, you must call the Open method.

Prototype Description

BOF as Boolean (read only) Returns whether you are currently
positioned before the first row

EOF as Boolean (read only) Returns whether you are currently
positioned after the last row

IsOpen as Boolean (read only) Returns whether or not thistableis
currently open

RowCount as Long (read only) Returns the number of rowsin this
table

Schemaas UL TableSchema (read only) Returns information about the
schema of thistable.

Close()
Member of UltraLiteAFLib.ULTable

Frees resources associated with the table. This method should be called after
all processing involving the table is complete. For Palm, if atableis not
closed it can be reopened to its current position.

Column(name As String) As ULColumn
Member of UltraLiteAFLib.ULTable

Returns the UL Column object for the specified column name.

& For information about the UL Column object, see "ULColumn" on
page 61.

97

ULTable class

Parameters name The name of the column to return.

Returns Returns the UL Column object.

Delete method

Prototype Delete()
Member of UltraLiteAFLib.ULTable

Description Deletes the current row from the table.

DeleteAllRows method

Prototype DeleteAllIRows()
Member of UltraLiteAFLib.ULTable

Description Deletes all rowsin thetable.

In some applications, it can be useful to delete al rows from tables before
downloading a new set of datainto the table. Rows can be deleted from the
Ultral ite database without being deleted from the consolidated database
using the UL Connection.Star tSynchr onizationDelete method or calling
Truncate instead of DeleteAllRows.

FindBegin method

Prototype FindBegin()
Member of UltraLiteAFLib.ULTable

Description Prepares atable for afind.

FindFirst method

Prototype FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description Move forwards through the table from the beginning, looking for arow that
exactly matches avalue or set of valuesin the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

98

Chapter 5 API Reference

Parameters

Returns

FindLast method

Prototype

Description

Parameters

Returns

FindNext method

Prototype

To specify the value to search for, set the column value for each column in
the index. The cursor isleft on the first row that exactly matches the index
value. On failure the cursor position is after the last row (EOF).

Note: Requires that FindBegin be called prior to using this method.
num_columns An optional parameter referring to the number of columns
to be used in the FindFirst. For example, if 2 is passed, the first two columns

are used for the FindFirst. If num_columns exceeds the number of columns
indexed, all columns are used in FindFirst.

Trueif successful.

False if unsuccessful.

FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move backwards through the table from the end, looking for arow that
matches avalue or set of valuesin the current index.

The current index is used to specify the sort order of the table. It is specified
when your application calls the Open method. The default index isthe

primary key.
& For more information, see "Open method" on page 104.

To specify the value to search for, set the column value for each column in
the index for which you want to find the value. The cursor is left on the last
row found that exactly matches the index value. On failure the cursor
position is before the first row (BOF).

Note: Requires that FindBegin be called prior to using this method.

num_columns Anoptiona parameter referring to the number of columns
to be used in the FindLast. For example, if 2 is passed, the first two columns
are used for the FindLast. If num_columns exceeds the number of columns
indexed, al columns are used in FindLast.

Trueif successful.

False if unsuccessful.

FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

99

ULTable class

Description

Parameters

Returns

Move forwards through the table from the current position, looking for the
next row that exactly matches a value or set of valuesin the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the Open method. The default index is
the primary key.

& For more information, see "Open method" on page 104.

The cursor isleft on the first row found that exactly matches the index value.
On failure, the cursor position is after the last row (EOF).

Note: Must be preceded by FindFirst or FindLast.
num_columns Anoptiona parameter referring to the number of columns
to be used in the FindNext. For example, if 2 is passed, the first two columns

are used for the FindNext. If num_columns exceeds the number of columns
indexed, all columns are used in FindNext.

Trueif successful.
Falseif unsuccessful (EOF).

FindPrevious method

Prototype

Description

Parameters

Returns

100

FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move backwards through the table from the current position, looking for the
previous row that exactly matches a value or set of values in the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

& For more information, see "Open method" on page 104.

On failure it is positioned before the first row (BOF).
num_columns Anoptiona parameter referring to the number of columns
to be used in the FindPrevious. For example, if 2 is passed, the first two

columns are used for the FindPrevious. If num_columns exceeds the number
of columnsindexed, all columns are used in FindPrevious.

Trueif successful.
Falseif unsuccessful (BOF).

Chapter 5 API Reference

Insert method

Prototype

Description

Insert() As Boolean
Member of UltraLiteAFLib.ULTable

Inserts arow in the table with values specified in previous Set methods.
Must be preceded by I nsertBegin. Set for each ULColumn object.

InsertBegin method

Prototype

Description

Examples

See also

InsertBegin()
Member of UltraLiteAFLib.ULTable

Prepares atable for inserting a new row, setting column values to their
defaults.

In this example, InsertBegin setsinsert mode to allow you to begin assigning
data values to CustomerTable columns.

On Error GoTo InsertError

Cust orrer Tabl e. | nsert Begi n

Cust orrer Tabl e. Col uim(" Fnane") . Stri ngVal ue
Cust orrer Tabl e. Col um(" Lnane"). Stri ngVal ue
Cust orrer Tabl e. | nsert

f nane
| nanme

"UpdateBegin method" on page 105

LookupBackward method

Prototype

Description

Parameters

Returns

LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Move backwards through the table starting from the end, looking for the first
row that matches or is less than avalue or set of valuesin the current index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

& For more information, see "Open method" on page 104.

To specify the value to search for, set the column value for each column in
theindex. The cursor isleft on the last row that matches or is less than the
index value. On failure (that is, if no row isless than the value being looked
for), the cursor position is before the first row (BOF).

num_columns An optional parameter referring to the number of columns.
Trueif successful.

101

ULTable class

False if unsuccessful.

LookupBegin method

Prototype LookupBegin()
Member of UltraLiteAFLib.ULTable

Description Prepares a table for alookup.

LookupForward method

Prototype LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable
Description Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than avalue or set of valuesin the current
index.

The current index is that used to specify the sort order of the table. It is
specified when your application calls the Open method. The default index is
the primary key.

& For more information, see " Open method" on page 104.

To specify the value to search for, set the column value for each column in
the index. The cursor isleft on the first row that matches or is greater than
theindex value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is after the last row (EOF).

Parameters num_columns An optional parameter referring to the number of columns.
Returns Trueif successful.

Falseif unsuccessful.

MoveAfterLast method

Prototype MoveAfterLast () As Boolean

Member of UltraLiteAFLib.ULTable
Description Moves to a position after the last row.
Returns Trueif successful.

Falseif the operation fails.

102

Chapter 5 API Reference

MoveBeforeFirst method

Prototype MoveBeforeFirst () As Boolean

Member of UltraLiteAFLib.ULTable
Description Moves to a position before the first row.
Returns Trueif successful.

Falseif the operation fails.

MoveFirst method

Prototype MoveFirst () As Boolean

Member of UltraLiteAFLib.ULTable
Description Movesto the first row.
Returns Trueif successful.

Falseif thereis no datain the table.

Example In this example, MoveFirst takes the cursor to the first record.
Cust onrer Tabl e. MoveFi r st

MovelLast method

Prototype Movelast () As Boolean

Member of UltraLiteAFLib.ULTable
Description Movesto the last row.
Returns Trueif successful.

Falseif thereis no datain the table.

MoveNext method

Prototype MoveNext () As Boolean

Member of UltraLiteAFLib.ULTable
Description Moves to the next row.
Returns Trueif successful.

Falseif thereis no more datain the table.

103

ULTable class

MovePrevious method

Prototype MovePrevious () As Boolean

Member of UltraLiteAFLib.ULTable
Description Moves to the previous row.
Returns Trueif successful.

Falseif thereis no more datain the table.

MoveRelative method

Prototype MoveRelative (index As Long) As Boolean
Member of UltraLiteAFLib.ULTable
Description Moves a certain number of rows relative to the current row.
Parameters index The number of rows to move. The value can be positive, negative,

or zero. Zero isuseful if you want to repopulate a row buffer.
Returns Trueif successful.
Falseif the move failed.

Open method

Prototype Open([index_name As String], [persistent_name as string])
Member of UltraLiteAFLib.ULTable

Description Opens the table so it can be read or manipulated. By default, the rows are
ordered by primary key. By supplying an index name, the rows can be
ordered in other ways.

The cursor is positioned before the first row in the table.
Parameters index_name The name of the index.

persistent_name For Palm Computing Platform applications, the stored
name of the table.

Truncate method

Prototype Truncate ()
Member of UltraLiteAFLib.ULTable

104

Chapter 5 API Reference

Description Removes all data from this table. The changes are not synchronized, so that
on synchronization, it does not affect the data in the consolidated database.

& For more information, see " StopSynchronizationDel ete method" on
page 72.

Update method

Prototype Update()
Member of UltraLiteAFLib.ULTable

Description Updates arow in the table with val ues specified in UL Column methods.
Note: Must be preceded by a call to UpdateBegin.

UpdateBegin method

Prototype UpdateBegin()

Member of UltraLiteAFLib.ULTable
Description Prepares a table for modifying the contents of the current row.
Examples On Error GoTo Updat eError

Cust oner Tabl e. Updat eBegi n
Cust orrer Tabl e. Col uim(" Fnane"). StringVal ue = fnane

N CustomerTable.Update

105

ULTableSchema class

ULTableSchema class

The UL TableSchema object allows you to obtain the attributes of atable.

Properties
The following are properties of the UL TableSchema class:

Prototype Description

ColumnCount as Integer (read only) | The number of columnsin thistable

IndexCount as Integer (read only) The number of indexes on thistable
Name as String (read only) Thistable’'s name

NeverSynchronized as Boolean (read | Trueif the tableis aways excluded from
only) synchronization. Otherwise, false.
PrimaryKey as ULIndexSchema The primary key for thistable.

(read only)

UploadUnchangedRows Trueif al of thistables rows are sent to

the consolidated database during
synchronization even if they haven't
changed.

GetColumnName method

Prototype GetColumnName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Description Returns the name of the column that corresponds to theid value you supply.
The ColumnCount property returns the number of columnsin the table. Each
column has a unique number from 1 to the ColumnCount value, where 1 is
the first column in the table, 2 is the second column in the table, and so on.

Parameters id Theid of the column.

Returns The name of a column.

GetIndex method

Prototype Getindex(name As String) As ULIndexSchema
Member of UltraLiteAFLib.ULTableSchema

106

Chapter 5 API Reference

Description Returns the ULIndexSchema object for the specified index.

& For information about the ULIndexSchema object, see
"ULIndexSchema" on page 80.

GetiIndexName method

Prototype GetIndexName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Description Returns the name of the index in the table that corresponds to the id value
you supply. The IndexCount property returns the number of indexesin the
database. Each index has a unique number from 1 to the IndexCount value,
where 1isthefirst index in the table, 2 is the second index in the table, and
so on.

InPublication method

Prototype InPublication(pub_name As String) As Boolean

Member of UltraLiteAFLib.ULTableSchema
Description Indicates whether this tableis part of the specified publication.
Returns Trueif thetable is part of the publication.

Falseif the tableis not part of the publication.

107

ULTableSchema class

108

Index

A

AppendByteChunk method (UL Column class)
UltraLite for MobileVB API, 61

AppendStringChunk method (UL Column class)
UltraLite for MobileVB API, 62

AppForge Booster
MobileVB, 3, 8

ApplyFile method (UL DatabaseSchema class)
UltraLite for MobilevB API, 78

Architecture
UltraLite for MobileVB, 5

AuthStatus property (UL SyncResult class)
UltraLite for MobilevVB API, 95

AutoCommit mode
about, 54

AutoCommit property (UL Connection class)
UltraLite for MobilevB API, 67

Autolncrement property (UL ColumnSchema class)
UltraLite for MobileVB API, 66

B

BOF property (UL Table class)
UltraLite for MobilevB API, 97

BooleanV alue property (UL Column class)
UltraLite for MobilevB API, 61

ByteVa ue property (ULColumn class)
UltraLite for MobilevB API, 61

C

Cancel Synchronize method (UL Connection class)
UltraLite for MobileVB API, 68

casting
datatypes, 51

CheckpointStore property (UL SyncParms class)
UltraLite for MobileVB API, 93

Close method (UL Connection class)
UltraLite for MobileVB API, 68

Close method (UL Table class)
UltraLite for MobileVB API, 97

Column method (UL Table class)
UltraLite for MobilevB API, 97

ColumnCount property (UL IndexSchema class)
UltraLite for MobileVB API, 80

ColumnCount property (UL TableSchema class)
UltraLite for MobilevVB API, 106

columns
accessing schema information, 55

Commit method
about, 54

Commit method (UL Connection class)
UltraLite for MobileVB API, 68

commits
about, 54

connecting
Ultral ite databases, 46

connection parameters
databases, 46

109

D-F

ContainsTable method (UL PublicationSchema
class)
UltraLite for MobilevB API, 82

CountUploadRows method (UL Connection class)
UltraLite for MobilevB API, 68

CreateDatabase method (UL DatabaseM anager class)

UltraLite for MobilevVB API, 74

CustDB sample
UltraLite for MobileVB, 25, 44

D

data manipulation
about, 49

data types
accessing, 50
casting, 51

database schema
accessing, 55

Databasel D property (UL Connection class)
UltraLite for MobilevB API, 67

databases
accessing schemainformation, 55
connecting to, 46

DateFormat property (UL DatabaseSchema class)
UltraLite for MobileVB API, 77

DateOrder property (UL DatabaseSchema class)
UltraLite for MobileVB API, 77

DatetimeV a ue property (ULColumn class)
UltraLite for MobilevB API, 61

DefaultVaue property (UL ColumnSchema class)
UltraLite for MobilevB API, 66

Delete method (UL Table class)
UltraLite for MobilevVB API, 98

DeleteAllRows method (UL Table class)
UltraLite for MobilevB API, 98

deleting rows
about, 52

development platforms
supported, 3
UltraLite for MobilevB, 3

110

DoubleVaue property (ULColumn class)
UltraLite for MobileVB API, 61

DownloadOnly property (ULSyncParms class)
UltraLite for MobileVB API, 93

DropDatabase method
(ULDatabaseM anager class) UltraLite for
MobilevB API, 75

E

EOF property (UL Table class)
UltraLite for MobileVB API, 97

error handling
about, 56

errors
handling, 56

F

features
UltraLite for MobileVB, 2

feedback
documentation, vii
providing, vii

Find methods
about, 51

find mode
about, 49

FindBegin method (UL Table class)
UltraLite for MobilevB API, 98

FindFirst method (UL Table class)
UltraLite for MobilevVB API, 98

FindLast method (UL Table class)
UltraLite for MobilevVB API, 99

FindNext method (UL Table class)
UltraLite for MobileVB API, 99

FindPrevious method (UL Table class)
UltraLite for MobilevB API, 100

ForeignKey property (ULIndexSchema class)
UltraLite for MobilevVB API, 80

G

GetByteChunk method (UL Column class)
UltraLite for MobileVB API, 62

GetColumnName method (UL IndexSchema class)
UltraLite for MobileVB API, 80

GetColumnName method (UL TableSchema class)
UltraLite for MobilevVB API, 106

Getlndex method (UL TableSchema class)
UltraLite for MobileVB API, 106

GetlndexName method (UL TableSchema class)
UltraLite for MobileVB API, 107

GetNewUUID method (UL Connection class)
UltraLite for MobilevB API, 69

GetPublicationName method (UL DatabaseSchema
class)
UltraLite for MobilevVB API, 78

GetPublicationSchema method (UL DatabaseSchema
class)
UltraLite for MobilevB API, 78

GetStringChunk method (UL Column class)
UltraLite for MobilevB API, 63

GetTable function (UL Connection class)
UltraLite for MobilevB API, 69

GetTableName method (UL DatabaseSchema class)
UltraLite for MobileVB API, 79

Global Autol ncrement property (UL ColumnSchema
class)
UltraLite for MobileVB API, 66

Global Autol ncrementUsage property
(UL Connection class)
UltraLite for MobilevB API, 67

GrantConnectTo method (UL Connection class)
UltraLite for MobileVB API, 69

ID property (UL ColumnSchema class)
UltraLite for MobilevB API, 66

idnexes
accessing schemainformation, 55

IgnoredRows property (UL SyncResult class)
UltraLite for MobileVB API, 95

IndexCount property (UL TableSchema class)
UltraLite for MobilevVB API, 106

InPublication method (UL TableSchema class)
UltraLite for MobilevVB API, 107

Insert method (UL Table class)
UltraLite for MobilevB API, 101

insert mode
about, 49

InsertBegin method (UL Table class)
UltraLite for MobilevVB API, 101

inserting rows
about, 52

IntegerValue property (ULColumn class)
UltraLite for MobileVB API, 61

internals
data manipulation, 49

IsColumnDescending method (UL IndexSchema
class)
UltraLite for MobilevVB API, 81

IsNull property (ULColumn class)
UltraLite for MobileVB API, 61

1sOpen property (UL Table class)
UltraLite for MobilevVB API, 97

L

LastDownloadTime method (UL Connection class)
UltraLite for MobileVB API, 69

Lastldentity property (UL Connection class)
UltraLite for MobileVB API, 67

LongVaue property (ULColumn class)
UltraLite for MobileVB API, 61

Lookup methods
about, 51

lookup mode
about, 49

LookupBackward method (UL Table class)
UltraLite for MobilevVB API, 101

111

M-O

LookupBegin method (UL Table class)
UltraLite for MobilevVB API, 102

LookupForward method (UL Table class)
UltraLite for MobilevVB API, 102

M

Mask property (UL PublicationSchema class)
UltraLite for MobileVB API, 82

Microsoft Visual Basic
supported versions, 3

MobilevB
AppForge Booster, 3, 8
Development platforms, 3
supported versions, 3

modes
about, 49

MoveAfterLast method (UL Table class)
UltraLite for MobileVB API, 102

MoveBeforeFirst method (UL Table class)
UltraLite for MobilevVB API, 103

MoveFirst method
introduction, 50

MoveFirst method (UL Table class)
UltraLite for MobilevVB API, 103

Movel ast method (UL Table class)
UltraLite for MobilevVB API, 103

MoveNext method
introduction, 50

MoveNext method (UL Table class)
UltraLite for MobilevB API, 103

MovePrevious method (UL Table class)
UltraLite for MobileVB API, 104

MoveRe ative method (UL Table class)
UltraLite for MobilevVB API, 104

N

Name property (UL ColumnSchema class)
UltraLite for MobileVB API, 66

112

Name property (ULIndexSchema class)
UltraLite for MobilevVB API, 80

Name property (UL PublicationSchema class)
UltraLite for MobileVB API, 82

Name property (UL TableSchema class)
UltraLite for MobileVB API, 106

NearestCentury property (UL DatabaseSchema class)

UltraLite for MobilevB API, 77

NeverSynchronized property (UL TableSchema
class)
UltraLite for MobilevVB API, 106

NewPassword property (UL SyncParms class)
UltraLite for MobilevVB API, 93

newsgroups
technical support, vii

Nullable property (ULColumnSchema class)
UltraLite for MobilevVB API, 66

O

OnReceive event (UL Connection class)
UltraLite for MobilevVB API, 70

OnSend event(UL Connection class)
UltraLite for MobilevVB API, 70

OnStateChange event(UL Connection class)
UltraLite for MobilevB API, 71

OnTableChange event (UL Connection class)
UltraLite for MobilevB API, 71

Open method
UL Table object, 50

Open method (UL Table class)
UltraLite for MobilevVB API, 104

OpenBylIndex method
UL Table object, 50

OpenConnection method (UL DatabaseM anager
class)
UltraLite for MobileVB API, 76

OpenParms property (UL Connection class)
UltraLite for MobileVB API, 67

P-S

OptimalIndex property (ULColumnSchema class)
UltraLite for MobilevVB API, 66

P

Palm Computing Platform
supported versions, 3

Palm OS
unsupported versions, 3

Password property (UL SyncParms class)
UltraLite for MobilevVB API, 93

PingOnly property (UL SyncParms class)
UltraLite for MobileVB API, 93

platforms
supported, 3

Precision property (UL ColumnSchema class)
UltraLite for MobilevVB API, 66

Precision property (UL DatabaseSchema class)
UltraLite for MobileVB API, 77

PrimaryKey property (ULIndexSchema class)
UltraLite for MobilevVB API, 80

PrimaryKey property (UL TableSchema class)
UltraLite for MobilevVB API, 106

projects
creating UltraLite for MobileVB projects, 11, 31

PublicationCount property (UL DatabaseSchema
class)
UltraLite for MobileVB API, 77

PublicationMask property (UL SyncParms class)
UltraLite for MobilevB API, 93

publications
accessing schemainformation, 55

R

RealVaue property (ULColumn class)
UltraLite for MobileVB API, 61

ReferencedindexName property (ULIndexSchema
class)
UltraLite for MobilevVB API, 80

ReferencedTableName property (ULIndexSchema
class)
UltraLite for MobilevVB API, 80

RevokeConnectFrom method (UL Connection class)
UltraLite for MobileVB API, 71

Rollback method
about, 54

Rollback method (UL Connection class)
UltraLite for MobilevB API, 71

rollbacks
about, 54

RowCount property (ULTable class)
UltraLite for MobilevVB API, 97

rows
accessing current row, 50

S

samples
UltraLite for MobileVB, 25, 44

Scale property (UL ColumnSchema class)
UltraLite for MobileVB API, 66

schema
accessing, 55

Schema property (UL Column class)
UltraLite for MobileVB API, 61

Schema property (UL Connection class)
UltraLite for MobilevVB API, 67

Schema property (UL Table class)
UltraLite for MobileVB API, 97

scrolling
through rows, 50

searching
rows, 51

SendColumnNames property (UL SyncParms class)
UltraLite for MobileVB API, 93

SendDownloadAck property (UL SyncParms class)
UltraLite for MobilevVB API, 93

SetByteChunk method (UL Column class)
UltraLite for MobileVB API, 64

113

T-U

SetNull method (UL Column class)
UltraLite for MobileVB API, 65

SetToDefault method (UL Column class)
UltraLite for MobilevVB API, 65

Signature property (UL DatabaseSchema class)
UltraLite for MobilevB API, 77

Size property (UL ColumnSchema class)
UltraLite for MobilevVB API, 66

SQL Anywhere Studio
additional features, 4

SQL Type property (UL ColumnSchema class)
UltraLite for MobilevB API, 66

StartSynchroni zationDel ete method (UL Connection
class)
UltraLite for MobileVB API, 72

StopSynchronizationDel ete method (UL Connection
class)
UltraLite for MobileVB API, 72

Stream property (UL SyncParms class)
UltraLite for MobilevB API, 93

StreamErrorCode property (UL SyncResult class)
UltraLite for MobilevVB API, 95

StreamErrorContext property (UL SyncResult class)
UltraLite for MobilevVB API, 95

StreamError|D property (UL SyncResult class)
UltraLite for MobilevVB API, 95

StreamErrorSystem property (UL SyncResult class)
UltraLite for MobileVB API, 95

StreamParms property (UL SyncParms class)
UltraLite for MobileVB API, 93

StringToUUID method (UL Connection class)
UltraLite for MobileVB API, 72

StringV aue method
introduction, 50

StringV alue property (ULColumn class)
UltraLite for MobileVB API, 61

support
newsgroups, Vii

supported platforms, 3

114

synchronization
about, 57
adding the synchronization template, 57
monitoring status, 57
UltraLite for MobileVB, 57
writing code, 58

Synchronize method (UL Connection class)
UltraLite for MobilevB API, 72

system requirements
UltraLite for MobileVB, 8

T

TableCount property (UL DatabaseSchema class)
UltraLite for MobilevVB API, 77

tables
accessing schema information, 55

target platforms
supported, 3
UltraLite for MobileVB, 3

technical support
newsgroups, vii

TimeFormat property (UL DatabaseSchema class)
UltraLite for MobilevVB API, 77

transaction processing
about, 54

transactions
about, 54

Truncate method (UL Table class)
UltraLite for MobilevVB API, 104

tutorial
UltraLite for MobileVB, 7, 27

U

UL AuthStatusCode constants
about, 60
UltraLite for MobilevB API, 60

UL Column class
about, 61
properties, 61
UltraLite for MobilevVB API, 61

UL Column object
introduction, 50

UL ColumnSchema class
about, 66
properties, 66
UltraLite for MobilevVB API, 66

UL ColumnSchema object
introduction, 55

UL Connection class
about, 67
properties, 67
UltraLite for MobilevVB API, 67

UL Connection object
introduction, 46

UL DatabaseM anager class
about, 74
properties, 74
UltraLite for MobileVB API, 74

UL DatabaseM anager object
introduction, 46

UL DatabaseSchema class
about, 77
properties, 77
UltraLite for MobileVB API, 77

UL DatabaseSchema object
introduction, 55

ULIndexSchema class
about, 80
properties, 80
UltraLite for MobileVB API, 80

UL IndexSchema object
introduction, 55

UL PublicationSchema class
about, 82
properties, 82
UltraLite for MobileVB API, 82

UL PublicationSchema object
introduction, 55

UL SQL Code constants
about, 83
UltraLite for MobileVB API, 83

UL SQL Type constants
about, 86
UltraLite for MobilevVB API, 86

UL StreamErrorCode constants
about, 87
UltraLite for MobilevVB API, 87

UL StreamErrorContext constants
about, 90
UltraLite for MobilevB API, 90

UL StreamErrorlD constants
about, 91
UltraLite for MobileVB API, 91

UL StreamType
about, 92
UltraLite for MobilevB API, 92

UL SyncParms class
about, 93
properties, 93
UltraLite for MobilevVB API, 93

UL SyncResullt class
about, 95
properties, 95
UltraLite for MobileVB API, 95

UL SyncState constants
about, 96
UltraLite for MobilevB API, 96

ULTable class
about, 97
properties, 97
UltraLite for MobilevVB API, 97

UL Table object
introduction, 50

UL TableSchema class
about, 106
properties, 106
UltraLite for MobilevVB API, 106

UL TableSchema object
introduction, 55

UltraLite for MobilevVB
about, 1
architecture, 5
features, 2

115

V-w

UltraLite for MobileVB API
UL AuthStatusCode constants, 60
UL Column class, 61
UL ColumnSchema class, 66
UL Connection class, 67
UL DatabaseManager class, 74
UL DatabaseSchema class, 77
ULIndexSchema class, 80
UL PublicationSchema class, 82
UL SQL Code constants, 83
UL SQL Type constants, 86
UL StreamErrorCode constants, 87
UL StreamErrorContext constants, 90
UL StreamErrorID constants, 91
UL StreamType, 92
UL SyncParms class, 93
UL SyncResult class, 95
UL SyncState constants, 96
UL Table class, 97
UL TableSchema class, 106

UltraLite for MobileVB projects
creating, 11, 31

Uniquelndex property (ULIndexSchema class)
UltraLite for MobilevB API, 80

UniqueKey property (ULIndexSchema class)
UltraLite for MobilevVB API, 80

Update method (UL Table class)
UltraLite for MobileVB API, 105

update mode
about, 49

UpdateBegin method (UL Table class)
UltraL ite for MobilevVB API, 105

updating rows
about, 52

116

UploadOK property (ULSyncResult class)
UltraLite for MobileVB API, 95

UploadOnly property (UL SyncParms class)
UltraLite for MobilevVB API, 93

UploadUnchangedRo, 106

UserName property (UL SyncParms class)
UltraLite for MobileVB API, 93

UUIDs
getting as string, 69
StringToUUID method, 72
UUIDToString method, 72

UUIDToString method (UL Connection class)
UltraLite for MobileVB API, 72

UUIDValue property (ULColumn class)
UltraLite for MobileVB API, 61

V

values
accessing, 50

Version property (ULDatabaseManager class)
UltraLite for MobileVB API, 74

Version property (UL SyncParms class)
UltraLite for MobileVB API, 93

Visual Basic
supported versions, 3

W

Windows CE
supported versions, 3

	UltraLite for MobileVB User's Guide
	About This Manual
	The UltraLite sample database

	1. Introduction to UltraLite for MobileVB
	UltraLite for MobileVB features
	System requirements and supported platforms
	SQL Anywhere Studio

	UltraLite for MobileVB architecture

	2. Tutorial: An UltraLite for MobileVB Application for Palm OS
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Create a project architecture
	Lesson 3: Create a form interface
	Lesson 4: Write connection, synchronization, and table code
	Write code for connecting to your database
	Write code for data manipulation
	Write code to synchronize

	Lesson 5: Deploy the application to a device
	Summary

	3. Tutorial: An UltraLite for MobileVB Application for PocketPC
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Create a project architecture
	Lesson 3: Create a form interface
	Lesson 4: Write connection, synchronization, and table code
	Write code for connecting to your database
	Write code for data manipulation
	Write code to synchronize

	Lesson 5: Deploying the application to a device
	Summary

	4. Understanding UltraLite for MobileVB Development
	Connecting to the UltraLite database
	Accessing and manipulating data
	Data manipulation internals
	Scrolling through the rows of a table
	Searching for rows with Find and Lookup
	Inserting updating, and deleting rows
	Transaction processing in UltraLite

	Accessing schema information
	Error handling
	Synchronization
	Adding the synchronization template
	Writing code to use the synchronization form

	5. API Reference
	ULAuthStatusCode constants
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetNull method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	OnSend event
	OnStateChange event
	OnTableChange event
	RevokeConnectFrom method
	Rollback method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULDatabaseManager class
	Properties
	CreateDatabase method
	DropDatabase method
	OpenConnection method

	ULDatabaseSchema class
	Properties
	ApplyFile method
	GetPublicationName method
	GetPublicationSchema method
	GetTableName method

	ULIndexSchema class
	Properties
	GetColumnName method
	IsColumnDescending method

	ULPublicationSchema class
	ContainsTable method

	ULSQLCode enum
	ULSQLType enum
	ULStreamErrorCode enum
	ULStreamErrorContext enum
	ULStreamErrorID enum
	ULStreamType enum
	ULSyncParms class
	Properties

	ULSyncResult class
	Properties

	ULSyncState
	ULTable class
	Properties
	Close method
	Column method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	GetColumnName method
	GetIndex method
	GetIndexName method
	InPublication method

	Index

