
UltraLite
™
 for Java

User’s Guide

Last modified: October 2002
Part Number: 36294-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 36294-01-0802-01.

iii

Contents

About This Manual... v
The UltraLite sample database .. vi
Finding out more and providing feedback................................vii

1 Introduction to Native UltraLite for Java 1
Native UltraLite for Java features..2
Native UltraLite for Java architecture..3

2 Tutorial: A Native UltraLite for Java Application 5
Introduction ...6
Lesson 1: Create a database schema7
Lesson 2: Connect to the database ..9
Lesson 3: Insert data into the database..................................12
Lesson 4: Select the rows from the table................................14
Lesson 5: Deploy your application to a
Windows CE device ..16
Lesson 6: Add synchronization to your application.................20

3 Tutorial: The CustDB Sample Application 23
Introduction ...24
Lesson 1: Build the CustDB application..................................25
Lesson 2: Run the CustDB application27
Lesson 3: Deploy CustDB to a Windows CE
device..28
Summary...31

4 Understanding UltraLite Development........................... 33
Connecting to a database ...34
Accessing and manipulating data ...38
Accessing schema information ...44
Error handling..45

iv

User authentication ... 46
Adding ActiveSync synchronization to your
application ... 47
Developing applications with Borland JBuilder 51

Index... 55

v

About This Manual

This manual describes Native UltraLite for Java, which is part of the
UltraLite Component Suite. With Native UltraLite for Java you can develop
and deploy database applications to handheld, mobile, or embedded devices
running a Java VM. In particular, you can deploy applications to
Windows CE devices running the Jeode VM.

This manual is intended for Java application developers who wish to take
advantage of the performance, resource efficiency, robustness, and security
of an UltraLite relational database for data storage and synchronization.

Subject

Audience

vi

The UltraLite sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database is held in a file named custdb.db, and is
located in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere directory. A complete application built on this database is
also supplied as Samples\NativeUltraLiteForJava\CustDB.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

vii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
beta program.

You can provide feedback on this documentation and on the software
through a newsgroup and via e-mail. The newsgroup can be found on the
forums.sybase.com news server as
news://forums.sybase.com/ianywhere.private.ultralitetools.beta. The e-mail
address is ulbeta@ianywhere.com.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

viii

1

C H A P T E R 1

Introduction to Native UltraLite for Java

This chapter introduces you to Native UltraLite for Java. It assumes that you
are familiar with the UltraLite Component Suite, as described in
"Introduction to the UltraLite Component Suite" on page 1 of the book
UltraLite Foundations.

Topic Page

Native UltraLite for Java features 2

Native UltraLite for Java architecture 3

About this chapter

Contents

Native UltraLite for Java features

2

Native UltraLite for Java features
Native UltraLite for Java is a member of the UltraLite Component Suite. It
provides the following benefits for developers targeting small devices:

♦ a robust relational database store.

♦ Java programming ease-of-use with native performance

♦ deployment on the Windows CE platform

$ For more information on the features and benefits of the UltraLite
Component Suite, see "Introduction to the UltraLite Component Suite" on
page 2 of the book UltraLite Foundations.

Java developers wishing to take advantage of UltraLite database features
have two options. UltraLite for Java is an existing UltraLite technology
described in the UltraLite User’s Guide. Native UltraLite for Java
(documented in the current book) provides a Native UltraLite for Java
package, together with a native (C++) UltraLite runtime library. This
combination provides the benefits of Java development together with the
performance of native applications and access to operating-system specific
features such as ActiveSync synchronization.

Native UltraLite for Java differs from UltraLite for Java in the following
ways:

♦ Native components The UltraLite runtime for Native UltraLite for
Java uses native methods. That is, it is not written in Java but in C++,
and compiled into binary form specific to the underying CPU and
operating system. In contrast, the UltraLite runtime for UltraLite Java
described in the UltraLite User’s Guide is a pure Java implementation.

♦ Component API Native UltraLite for Java shares API features and
structure with the other members of the UltraLite Component Suite.
UltraLite Java described in the UltraLite User’s Guide uses JDBC as the
programming interface.

♦ Windows CE deployment Native UltraLite for Java has been
developed with Windows CE as a deployment target. It supports the
Jeode VM provided with many Windows CE devices. It also supports
ActiveSync synchronization.

UltraLite and Java

Chapter 1 Introduction to Native UltraLite for Java

3

Native UltraLite for Java architecture
The Native UltraLite for Java package is named ianywhere.native_ultralite.
It includes a set of classes for data access and synchronization: Some of the
more commonly-used high level classes are:

♦ DatabaseManager You create one DatabaseManager object for each
Native UltraLite for Java application.

$ For more information, see
ianywhere.native_ultralite.DatabaseManager in the API Reference.

♦ Connection Each Connection object represents a connection to the
UltraLite database. You can create a number of Connection objects.

$ For more information, see
ianywhere.native_ultralite.Connection in the API Reference.

♦ Table The Table object provides access to the data in the database.

$ For more information, see ianywhere.native_ultralite.Table in
the API Reference.

♦ SyncParms You use the SyncParms object to add synchronization to
your application.

$ For more information, see
ianywhere.native_ultralite.SyncParms in the API Reference.

The API Reference is supplied in Javadoc format in the
UltraLite\NativeUltraLiteForJava\doc subdirectory of your SQL Anywhere
installation and is accessible from the front page of the UltraLite Component
Suite online books.

Native UltraLite for Java supports the Jeode VM on Windows CE/ARM
devices including the Compaq iPaq and NEC MobilePro P300, which come
supplied with the Jeode VM. Windows operating systems other than
Windows CE are supported for testing and development purposes only.

During development, it is recommended that you use JDK 1.1.8 or
PersonalJava 1.2, as these are compatible with the Jeode VM.

In addition to your application code and the Jeode VM, you must deploy the
following files to your Windows CE device:

♦ jul8.jar This JAR file contains the Native UltraLite for Java package
and a utility package.

♦ jul8.dll The UltraLite runtime library.

Deployment and
supported
platforms

Native UltraLite for Java architecture

4

♦ UltraLite schema file The UltraLite runtime library uses the
information in the schema file to set the database schema. Once a
database file is created, the schema file is no longer required.

$ For more information, see "Lesson 5: Deploy your application to a
Windows CE device" on page 16.

5

C H A P T E R 2

Tutorial: A Native UltraLite for Java
Application

This chapter walks you through all the steps of building a simple Native
UltraLite for Java application.

Topic Page

Introduction 6

Lesson 1: Create a database schema 7

Lesson 2: Connect to the database 9

Lesson 3: Insert data into the database 12

Lesson 4: Select the rows from the table 14

Lesson 5: Deploy your application to a Windows CE device 16

Lesson 6: Add synchronization to your application 20

About this chapter

Contents

Introduction

6

Introduction
This tutorial walks you through building a Native UltraLite for Java
application.

The tutorial takes about 45 minutes.

This tutorial assumes:

♦ you are familiar with the Java programming language

♦ you have JDK 1.1.8 installed on your machine

The goals for the tutorial are to gain competence and familiarity with the
process of developing an Native UltraLite for Java application.

This tutorial uses a text editor to edit the Java files. You can also use Native
UltraLite for Java in the Borland JBuilder development environment. For
more information, see "Developing applications with Borland JBuilder" on
page 51.

Timing

Competencies and
experience

Goals

Chapter 2 Tutorial: A Native UltraLite for Java Application

7

Lesson 1: Create a database schema
A schema is a database definitions without the data. You create an UltraLite
schema file as a necessary first step to making an UltraLite database.

When creating UltraLite schemas, the following information is necessary:

Two utilities allow you to create schemas: ulinit allows you to generate an
UltraLite database schema from an Adaptive Server Anywhere database,
while the UltraLite Schema Painter allows you to design an UltraLite
database schema from scratch. In this tutorial you use the UltraLite schema
painter.

Create your schema file using the UltraLite Schema Painter

v To create the schema file using the UltraLite Schema Painter:

1 Create a directory to hold the files you create in this tutorial.

This tutorial assumes the directory is c:\tutorial. If you create a directory
with a different name, use that directory instead of c:\tutorial throughout
the tutorial.

2 Start the UltraLite Schema Painter:

Click Start➤Programs➤Sybase SQL Anywhere 8➤UltraLite ➤
UltraLite Schema Painter.

3 Create a schema file.

♦ Open the Tools folder and double-click Create UltraLite schema.

♦ In the file dialog box, type c:\tutorial\tutcustomer.usm or Browse
to the folder and enter the name tutcustomer.

♦ Choose the collation sequence for your database. A collation
sequence is a character set and sorting order. For languages based
on the Roman alphabet, such as most European languages, choose
1252LATIN1 - Code Page 122, Windows Latin 1, Western.

♦ Leave the checkbox unchecked, so that the database is case
insensitive.

♦ Click OK to create the schema.

4 Create a table called customer.

♦ Expand the tutorial item in the left pane of the UltraLite Schema
Painter and select the Tables folder.

Lesson 1: Create a database schema

8

♦ Open the Tables folder and double-click Add Table. The New Table
dialog appears.

♦ Enter the name customer.

♦ In the New Table dialog, add columns with the following
properties.

Column
name

Data
type
(Size)

Column Allows
NULL values?

Default value

id integer No autoincrement

fnamee char (15) No None

lnamee char (20) No None

city char (20) Yes None

phone char (12) Yes 555-1234

♦ Set id as the primary key: Click Primary Key and add id to the
index, marking it as ascending.

♦ Check your work and click OK to complete the table definition and
dismiss the New Table dialog.

5 Click File ➤Save to save the tutcustomer.usm file.

You have now defined the schema of your UltraLite database. Although this
database contains only a single table, you can use many tables in UltraLite
databases.

Chapter 2 Tutorial: A Native UltraLite for Java Application

9

Lesson 2: Connect to the database
In this lesson you write, compile, and run a Java application that connects to
a database using the schema you just created.

UltraLite database files have an extension of .udb. If an application attempts
to connect to a database and the specified database file does not exist,
UltraLite uses the schema file to create the database.

v To connect to an UltraLite database:

1 In your tutorial directory, create a file named Customer.java that has the
following content:

import ianywhere.native_ultralite.*;
import java.sql.SQLException;

public class Customer
{
 static Connection conn;

 public static void main(String args[])
 {
 try{
 Customer cust = new Customer();

 // Clean up
 conn.close();
 } catch(SQLException e){
 System.out.println(
 "Exception: " + e.getMessage() +
 " sqlcode=" + e.getErrorCode()
);
 e.printStackTrace();
 }
 }
}

This code carries out the following tasks:

♦ Imports the UltraLite library and the JDBC SQLException class

♦ Declares a class named Customer

♦ Declares a static variable to hold the database connection object.
This object will be shared among several methods later in the
tutorial.

♦ Invokes the class constructor, which is described in the following
step.

Lesson 2: Connect to the database

10

♦ If an error occurs, prints the error code and a stack trace. For more
information on the error code, you can look it up in the Adaptive
Server Anywhere Error Messages book that is part of this
documentation set.

2 Add a constructor to the class.

The class constructor establishes a connection to the database.

public Customer() throws SQLException
{
 // Connect
 DatabaseManager dbMgr = new DatabaseManager();
 String parms = "uid=DBA"
 + ";pwd=SQL"
 + ";file_name=c:\\tutorial\\tutcustomer.udb"
 + ";schema_file=c:\\tutorial\\tutcustomer.usm";
 try {
 conn = dbMgr.openConnection(parms);
 System.out.println(
 "Connected to an existing database.");
 } catch(SQLException econn) {
 if(econn.getErrorCode() ==
 SQLCode.SQLE_DATABASE_NOT_FOUND){
 conn = dbMgr.createDatabase(parms);
 System.out.println(
 "Connected to a new database.");
 } else {
 throw econn;
 }
 }
}

This code carries out the following tasks:

♦ Instantiates a new DatabaseManager object. All UltraLite objects
are created from the DatabaseManager object.

♦ Defines connection parameters to connect to the database. Here, the
parameters are a user ID and password (which have the default
values for UltraLite databases), the location of the database file, and
the location of a schema file to use if the database does not exist.

Here, the locations are hardwired for convenience. In a real
application, they would not be. In addition, these connection
parameters are sufficient only for connections in the development
environment; additional parameters are needed for the application to
run on a Windows CE device. These additional parameters are
described later in the tutorial.

Chapter 2 Tutorial: A Native UltraLite for Java Application

11

♦ If the database file does not exist, a SQLException is thrown. The
code that catches this exception uses the schema file to create a new
database and establish a connection to it.

♦ If the database file does exist, a connection is established.

3 Compile the Customer class.

It is recommended that you use Sun JDK 1.1.8 to compile the class. In
addition, you must add the UltraLite library jul8.jar to your classpath.
This library is in the ultralite\NativeUltraLiteForJava subdirectory of your
SQL Anywhere or UltraLite Component Suite installation.

The following command compiles the application. It should be entered
on a single line at a command prompt:

javac -classpath
"%ASANY8%\ultralite\NativeUltraLiteForJava\jul8.jar"
Customer.java

4 Run the application.

The classpath must include the UltraLite library jul8.jar, as in the
previous step.

The application must also be able to load the DLL that holds UltraLite
native methods. The DLL is jul8.dll in the
ultralite\NativeUltraLiteForJava\win32 subdirectory of your
SQL Anywhere or UltraLite Component Suite installation. This DLL
can be in your system path or you can specify it on the java command
line, as follows:

java -classpath
".;%ASANY8%\ultralite\NativeUltraLiteForJava\jul8.jar"
-Djul.library.dir=
"%ASANY8%\ultralite\NativeUltraLiteForJava\win32"
Customer

This command must be all on one line, with no spaces inside the
individual arguments.

The first time you run the application, it should write the following text to
the command line:

Connected to a new database.

Subsequent times, it writes the following text to the command line:

Connected to an existing database.

Lesson 3: Insert data into the database

12

Lesson 3: Insert data into the database
This lesson shows you how to add data to the database.

v To add rows to your database:

1 Add the following method to the Customer.java file:

private void insert() throws SQLException
{
 // Open the Customer table
 Table t = conn.getTable("customer");
 t.open();

 short id = t.schema.getColumnID("id");
 short fname = t.schema.getColumnID("fname");
 short lname = t.schema.getColumnID("lname");

 // Insert two rows if the table is empty
 if(t.getRowCount() == 0) {

 t.insertBegin();
 t.setString(fname, "Gene");
 t.setString(lname, "Poole");
 t.insert();

 t.insertBegin();
 t.setString(fname, "Penny");
 t.setString(lname, "Stamp");
 t.insert();

 conn.commit();
 System.out.println("Two rows inserted.");
 } else {
 System.out.println("The table has " +
 t.getRowCount() + " rows.");
 }
 t.close();
}

This code carries out the following tasks:

♦ Opens the table. You must open a Table object to carry out any
operations on the table. To obtain a Table object, use the
Connection.GetTable() method.

♦ Obtains identifiers for some of the columns of the table. The other
columns in the table can accept NULL values or have a default
value; in this tutorial only required values are specified.

Chapter 2 Tutorial: A Native UltraLite for Java Application

13

♦ If the table is empty, adds two rows. To insert each row, the code
sets the mode to insert mode using insertBegin, sets values for each
required column, and executes an insert to add the rows to the
database.

The commit method is not strictly needed here, as the default mode
for applications is to commit operations after each insert. It has been
added to the code to emphasize that if you turn off autocommit
behavior (for better performance, or for multi-operation
transactions) you must commit a change for it to be permanent.

♦ If the table is not empty, reports the number of rows in the table.

♦ Closes the Table object.

2 Add the following line to the main() method, immediately after the call
to the Customer constructor:

cust.insert();

3 Compile and run your application, as in "Lesson 2: Connect to the
database" on page 9.

The first time you run the application, it prints the following messages:

Connected to an existing database.
Two rows inserted.

Subsequent times, it prints the following messages:

Connected to an existing database.
The table has 2 rows.

Lesson 4: Select the rows from the table

14

Lesson 4: Select the rows from the table
This lesson retrieves rows from the table, and prints them on the command
line. It shows how to loop over the rows of a table.

v To list the rows in the table:

1 Add the following method to the Customer.java file:

private void select() throws SQLException
{
 // Fetch rows
 // Open the Customer table
 Table t = conn.getTable("customer");
 t.open();

 short id = t.schema.getColumnID("id");
 short fname = t.schema.getColumnID("fname");
 short lname = t.schema.getColumnID("lname");

 t.moveBeforeFirst();
 while(t.moveNext()) {
 System.out.println(
 "id= " + t.getInt(id)
 + ", name= " + t.getString(fname)
 + " " + t.getString(lname)
);
 }
 t.close();
}

This code carries out the following tasks:

♦ Opens the Table object, as in the previous lesson.

♦ Retrieves the column identifiers, as in the previous lesson.

♦ Sets the current position before the first row of the table.

Any operations on a table are carried out at the current position. The
position may be before the first row, on one of the rows of the table,
or after the last row. By default, as in this case, the rows are ordered
by their primary key value (id). To order rows in a different way
(alphabetically by name, for example), you can add an index to an
UltraLite database and open a table using that index.

♦ For each row, the id and name are written out. The loop carries on
until moveNext returns false, which happens after the final row.

♦ Closes the Table object.

Chapter 2 Tutorial: A Native UltraLite for Java Application

15

2 Add the following line to the main() method, immediately after the call
to the insert method:

cust.select();

3 Compile and run your application, as in "Lesson 2: Connect to the
database" on page 9.

The application prints the following message:

Connected to an existing database.
The table has 2 rows.
id= 1, name= Gene Poole
id= 2, name= Penny Stamp

Lesson 5: Deploy your application to a Windows CE device

16

Lesson 5: Deploy your application to a
Windows CE device

Running the application on Windows CE requires that the Jeode Runtime
Java VM be installed on your device. The Jeode Runtime is available for
ARM-based devices such as the Compaq iPaq, and can be found on the CD
that comes with the device.

v To confirm that the Jeode VM is installed on your Windows CE
device:

♦ Choose Start ➤Programs.

A Jeode folder is listed in the Programs folder.

v To prepare your application to run on a Windows CE device:

1 Specify the location of your database file and schema file.

In the Customer constructor, alter the connection parameters to read as
follows:

String parms = "uid=DBA"
+ ";pwd=SQL"
+ ";file_name=c:\\tutorial\\tutcustomer.udb"
+ ";schema_file=c:\\tutorial\\tutcustomer.usm"
+ ";ce_file=\\UltraLite\\tutorial\\tutcustomer.udb"
+ ";ce_schema=\\UltraLite\\tutorial\\tutcustomer.usm";

The new parameters are ce_file and ce_schema. They indicate where
on the device the schema and database are to be deployed.

2 Compile your application again.

3 Run your application to check that no errors were introduced. The
ce_file and ce_schema parameters have no effect when running in a
desktop environment.

4 Prepare a shortcut to run the application.

A shortcut is a text file with .lnk extension, which contains a command
line to run the application. In the next procedure, you copy this shortcut
file to a location on the device.

Using a text editor, create a file named tutorial.lnk in your tutorial
directory with the following content, which should all be on a single
line.

Chapter 2 Tutorial: A Native UltraLite for Java Application

17

18#"\Windows\evm.exe"
-Djeode.evm.console.local.keep=TRUE
-Djeode.evm.console.local.paging=TRUE
-Djul.library.dir=\UltraLite\lib
-cp \UltraLite\tutorial;\UltraLite\lib\jul8.jar
Customer

The content is displayed on multiple lines for legibility. The meaning of
the elements in this command are as follows:

♦ The first line starts the Jeode VM executable.

♦ The -Djeode options control the display of the text console that is
used for output from the application.

♦ The -Djul.library.dir option directs the VM to the UltraLite
native interface runtime library (jul8.dll)

♦ The -cp option provides the classpath for the VM. It indicates the
location of the application and the UltraLite runtime library.

♦ The final argument is the class, which in this case is Customer.

You are now ready to copy the files to your device. You must copy both
UltraLite runtime files and application-specific files.

vTo deploy the UltraLite runtime to the Windows CE device:

1 Start Windows Explorer on your Windows CE device.

♦ Ensure that your device is connected to your desktop computer.

♦ In the ActiveSync window, click Explore. An Explorer window
opens.

2 Create directories to hold the UltraLite runtime and application.

♦ In the Explorer window, click My Pocket PC. This is the root
directory, and has a path of \.

♦ Create a directory named UltraLite.

♦ Open the UltraLite directory and create subdirectories named lib and
tutorial. \UltraLite\lib is the location for the UltraLite runtime files,
and \UltraLite\tutorial is the location for the application. These
directories match the options in the shortcut file described above.

3 Copy the UltraLite runtime files to the Windows CE device:

♦ Start a separate Explorer window and navigate to the
SQL Anywhere installation directory on our desktop machine.

♦ Drag the following files from the desktop to the device

Lesson 5: Deploy your application to a Windows CE device

18

Desktop location relative to your
SQL Anywhere directory

Windows CE location

UltraLite\NativeUltraLiteForJava\jul8.jar \UltraLite\lib\jul8.jar

UltraLite\NativeUltraLiteForJava\ce\arm\jul
8.dll

\UltraLite\lib\jul8.dll

4 Copy the application files to the Windows CE device:

♦ In your Explorer window, navigate to the tutorial directory.

♦ Drag the following files from the desktop to the device

Desktop location Windows CE location

Customer.class \UltraLite\tutorial

tutcustomer.usm \UltraLite\tutorial

In this tutorial, do not copy the database file to the Windows CE device.

5 Copy the shortcut file to the Windows CE device:

♦ Drag the following file from the desktop to the device

Desktop location Windows CE location

tutorial.lnk \Windows\Start Menu

You are now ready to run the application on your Windows CE device.

v To run the application:

1 On the Windows CE device, choose Start ➤tutorial.

This shortcut is the tutorial.lnk file that you copied onto the device.

♦ The Jeode VM loads and the console is displayed.

♦ The following messages are printed onto the console:

Connected to a new database.
Two rows inserted.
id= 1, name= Gene Poole
id= 2, name= Penny Stamp
Application finished. Please close console

♦ Close the console.

2 On the Windows CE device, choose Start ➤tutorial again.

This time the first two messages are as follows:

Chapter 2 Tutorial: A Native UltraLite for Java Application

19

Connected to an existing database.
The table has 2 rows.

♦ Close the console.

You have now written an application, tested it on a desktop computer, and
deployed it to a Windows CE device.

Lesson 6: Add synchronization to your application

20

Lesson 6: Add synchronization to your
application

This lesson uses MobiLink synchronization, which is part of SQL Anywhere
Studio. You must have the SQL Anywhere Studio installed to carry out this
lesson.

The steps involved in this lesson are to add synchronization code to your
application, to start the MobiLink synchronization server, and to run your
application to synchronize.

The synchronization is carried out with the UltraLite 8.0 Sample database.
This is an Adaptive Server Anywhere database that holds several tables. The
ULCustomer table has a cust_id column and a cust_name column. During
synchronization the data in that table is downloaded to your UltraLite
application, and the two rows in your application’s ULCustomer table are
uploaded to the UltraLite 8.0 Sample database.

This lesson assumes some familiarity with MobiLink synchronization.

v To add synchronization to your application:

1 Add the following method to the Customer.java file:

private void sync() throws SQLException
{
 conn.syncParms.setStream(StreamType.TCPIP);
 conn.syncParms.setVersion("ul_default");
 conn.syncParms.setUserName("sample");
 conn.syncParms.setSendColumnNames(true);
 conn.syncParms.setDownloadOnly(true);
 conn.synchronize();
}

This code carries out the following tasks:

♦ Sets the synchronization stream to TCP/IP. Synchronization can
also be carried out over HTTP, ActiveSync, or HTTPS. HTTPS
synchronization requires that you obtain the separately licensable
SQL Anywhere Studio security option.

$ For more information, see
ianywhere.native_ultralite.StreamType and
ianywhere.native_ultralite.Connection in the API Reference.

The syncParms field of the Connection object provides convenient
access to a SyncParms object. For more information, see
ianywhere.native_ultralite.SyncParms in the API Reference.

Chapter 2 Tutorial: A Native UltraLite for Java Application

21

♦ MobiLink synchronization is controlled by scripts at the MobiLink
synchronization server. The script version identifies which set of
scripts to use. The setSendColumnNames method together with an
option on the MobiLink synchronization server generates those
scripts automatically.

$ For more information, see the MobiLink Synchronization
User’s Guide.

♦ Sets the MobiLink user ID. This is used for authentication at the
MobiLink synchronization server, and is different from the
UltraLite database user ID, although in some applications you may
wish to make them the same.

♦ Sets the synchronization to only download data. By default,
MobiLink synchronization is two-way. Here, we use download-only
synchronization so that the rows in your table do not get uploaded
to the sample database.

2 Add the following line to the main() method, immediately after the call
to the insert method and before the call to the select method:

cust.synchronize();

3 Compile your application, as in "Lesson 2: Connect to the database" on
page 9. Do not run the application yet.

v To synchronize your data:

1 Start the MobiLink synchronization server.

From a command prompt, start the MobiLink synchronization server
with the following command line:

dbmlsrv8 -c "dsn=ASA 8.0 Sample" -v+ -zu+ -za

The ASA 8.0 Sample database has a Customer table that matches the
columns in the UltraLite database you have created. You can
synchronize your UltraLite application with the ASA 8.0 Sample
database.

The -zu+ and -za command line options provide automatic addition of
users and generation of synchronization scripts. For more information on
these options, see the MobiLink Synchronization User’s Guide.

2 Run your application, as in "Lesson 2: Connect to the database" on
page 9.

The MobiLink synchronization server window displays status messages
indicating the synchronization progress. The final message displays
Synchronization complete:

Lesson 6: Add synchronization to your application

22

The data downloaded from the sample database are listed at the
command prompt window, confirming that the synchronization
succeeded:

Connected to an existing database.
The table has 128 rows.
id= 1, name= Gene Poole
id= 2, name= Penny Stamp
id= 101, name= Michaels Devlin
id= 102, name= Beth Reiser
id= 103, name= Erin Niedringhaus
id= 104, name= Meghan Mason
...

This completes the tutorial.

For more code samples, seeSamples\Native UltraLite for
Java\simple\Simple.java

Samples

23

C H A P T E R 3

Tutorial: The CustDB Sample Application

This chapter walks you through all the steps of building and deploying a
multi-table application that demonstrates UltraLite’s ability to synchronize
with a consolidated database. Some steps of this tutorial require
SQL Anywhere Studio.

Topic Page

Introduction 24

Lesson 1: Build the CustDB application 25

Lesson 2: Run the CustDB application 27

Lesson 3: Deploy CustDB to a Windows CE device 28

Summary 31

About this chapter

Contents

Introduction

24

Introduction
The previous tutorial, "Tutorial: A Native UltraLite for Java Application" on
page 5, describes a very simple application.

This tutorial walks you through compiling, running and deploying CustDB,
which is a more complex Native UltraLite for Java application.

Source code for CustDB is supplied in the
Samples\NativeUltraLiteForJava\CustDB subdirectory of your
SQL Anywhere installation. The source code contains examples of how to
implement several tasks using Native UltraLite for Java.

The tutorial takes about 30 minutes.

This tutorial assumes that you have completed the tutorial "Tutorial: A
Native UltraLite for Java Application" on page 5.

The tutorial uses synchronization, and so requires SQL Anywhere.

For the final lesson in the tutorial you must have access to a Windows CE
device with the Jeode VM running on it.

Timing

Competencies and
experience

Chapter 3 Tutorial: The CustDB Sample Application

25

Lesson 1: Build the CustDB application
The sample comes with a build.bat script to build the CustDB sample from
the source java files. A clean.bat script is provide for removing all results of
the build.

v To build the sample:

1 Locate the sample.

At a command prompt, change directory to the
Samples\NativeUltraLiteForJava\CustDB subdirectory of your
SQL Anywhere installation. You should leave this command prompt
open for the entire tutorial.

2 Set environment variables.

Ensure the environment variables ASANY8 and JAVA_HOME are
properly defined.

♦ ASANY8 is set by the Setup program to your SQL Anywhere
installation directory.

♦ Set the JAVA_HOME environment variable to a JDK on your
machine. JDK 1.1.8 is recommended, as it is compatible with the
Jeode VM used for deployment.

For example, if the JDK is version 1.3 in c:\jdk1.1.8 type the
following command:

set JAVA_HOME=c:\jdk1.1.8

3 Build the application:

♦ At the command prompt type build.bat.

The batch file carries out the following operations:

♦ Compiles the CustDB sample code.

The compiled classes are stored under the builddir subdirectory.

♦ Puts the compiled classes into a JAR file.

The JAR file is stored in the sample directory, where the build.bat
file is located.

♦ Creats a database schema file.

The schema file is created from the Adaptive Server Anywhere
UltraLite 8.0 Sample database, which holds the CustDB database.
The batch file runs the ulinit command-line tool to generate a
schema from that database.

Lesson 1: Build the CustDB application

26

$ For more information on the ulinit tool, see "UltraLite
initialization utility" on page 17 of the book UltraLite Foundations.

The sample code

The sample code files are given below together with a brief description.

File Description

Application.java The main user interface frame, event processing,
and ActiveSync support.

CustDB.java The main interface to the database - most of the
database processing is here.

DialogDelOrder.java The delete confirmation dialog

DialogNewOrder.java The new order entry form which shows populating
a list box with data from the database.

Dialogs.java The common base class for dialogs.

DialogSyncHost.java This prompts for synchronization host name.

DialogUserID.java This prompts for the Employee ID.

GetOrder.java This is a class representing order data. It shows
how to do a key join.

GetOrderData.java This computes min and max order ID. Equivalent
to SELECT max(order_id), min(order_id)
FROM ULOrder.

You can review these .java files for specific details and investigate within
these files to see how the application works.

Chapter 3 Tutorial: The CustDB Sample Application

27

Lesson 2: Run the CustDB application
The following procedure shows you how to run the CustDB sample on
Windows. Deployment to a Windows CE device is described in a later
lesson. This lesson uses MobiLink synchronization, and so requires that you
have SQL Anywhere installed.

v To run the sample on Windows:

1 From the same command prompt as in the previous lesson, type
win32\run.bat.

This command carries out the following operations:

♦ Starts the MobiLink synchronization server.

The server connects to the UltraLite 8.0 Sample database, which is
used in this stage as a consolidated database for the CustDB
applcation.

♦ Starts the CustDB sample.

The first time you run it, the application starts with no UltraLite
database (.udb file) and so it creates this file from the UltraLite
schema.

♦ Displays a logon window.

The window appears in the middle of the screen, but may be behind
other windows. You may have to move other windows to locate the
logon window.

2 Logon to the application.

Click OK to logon as a user with MobiLink user ID 50. The application
synchronizes and synchronization progress information is displayed.
After a pause, a window with a single order is displayed.

3 Explore the application.

You can move through the rows in the database, aprove and deny orders,
and synchronize. When you quit the application, the batch file shuts
down the MobiLink synchronization server.

Lesson 3: Deploy CustDB to a Windows CE device

28

Lesson 3: Deploy CustDB to a Windows CE
device

Deployment of the CustDB sample onto a CE/ARM device requires the
Jeode Runtime (Java VM).

v To deploy the application to a Windows CE device:

1 Start Windows Explorer on your Windows CE device.

♦ Ensure that your device is connected to your desktop computer.

♦ In the ActiveSync window, click Explore. An Explorer window
opens.

2 Create directories to hold the UltraLite runtime and application.

If you have carried out the previous tutorial, some of these directories
may already exist.

♦ In the Explorer window, click My Pocket PC. This is the root
directory, and has a path of \.

♦ Create a directory named UltraLite.

♦ Open the UltraLite directory and create subdirectories named lib and
CustDB. \UltraLite\lib is the location for the UltraLite runtime files,
and \UltraLite\CustDB is the location for the application. These
directories match the options in the shortcut file described above.

3 Copy the UltraLite runtime files to the Windows CE device:

If you have carried out the previous tutorial, you may have already
carried out this operation. You do not need to repeat the step.

♦ Start a separate Explorer window and navigate to the
SQL Anywhere installation directory on our desktop machine.

♦ Drag the following files from the desktop to the device

Desktop location relative to your
SQL Anywhere directory

Windows CE
location

UltraLite\NativeUltraLiteForJava\jul8.jar \UltraLite\lib

UltraLite\NativeUltraLiteForJava\ce\arm\jul8.dll \UltraLite\lib

4 Copy the application files to the Windows CE device:

♦ In your Explorer window, navigate to the
Samples\NativeUltraLiteForJava\CustDB directory.

Chapter 3 Tutorial: The CustDB Sample Application

29

♦ Drag the following files from the desktop to the device

Desktop location Windows CE location

custdb.jar \UltraLite\CustDB

ul_custapi.usm \UltraLite\Cust

In this tutorial, do not copy the database file to the Windows CE device.

5 Copy the shortcut file to the Windows CE device:

♦ Drag the following file from the desktop to the device

Desktop location relative to
your SQL Anywhere directory

Windows CE location

ce\CustDB.lnk \Windows\Start Menu

6 Install the ActiveSync provider.

The ActiveSync provider is required for synchronization.

$ For instructions, open the SQL Anywhere Studio Online Books and
lookup the index entry ActiveSync: installing the MobiLink provider.

7 Register the application for use with ActiveSync.

When registering CustDB, use the following properties:

Property Value

Name JULCustDB

Class Name JULCustDB

File Location \Windows\evm.exe

Arguments -Djeode.evm.console.local.keep=TRUE -
Djul.library.dir=\UltraLite\lib -cp
\UltraLite\CustDB\custdb.jar;\UltraLite\lib\jul8.jar
custdb.Application ACTIVE_SYNC_LAUNCH

You can run the batch file
Samples\NativeUltraLiteForJava\CustDB\ce\as_register.bat to carry out
this operation.

Lesson 3: Deploy CustDB to a Windows CE device

30

SQL Anywhere Studio users
The setup steps for ActiveSync synchronization are given in the SQL
Anywhere Online books under the index entry ActiveSync:
deploying UltraLite applications.

v To run the application:

1 Start the MobiLink synchronization server.

If you have SQL Anywhere Studio, use the batch file
Samples\NativeUltraLiteForJava\CustDB\ce\startdb.bat.

2 On the CE device, run the CustDB application from the Start menu.

You should now explore the application.

Chapter 3 Tutorial: The CustDB Sample Application

31

Summary
During this tutorial, you:

♦ Built and ran the CustDB sample on your desktop machine.

♦ Deployed a Native UltraLite for Java application to a Windows CE
device.

Summary

32

33

C H A P T E R 4

Understanding UltraLite Development

This chapter describes how to develop applications with the Native UltraLite
for Java.

Topic Page

Connecting to a database 34

Accessing and manipulating data 38

Accessing schema information 44

Error handling 45

User authentication 46

Adding ActiveSync synchronization to your application 47

Developing applications with Borland JBuilder 51

About this chapter

Contents

Connecting to a database

34

Connecting to a database
Any UltraLite application must connect to a database before it can carry out
any operation on the data. This section describes how to write code to
connect to an UltraLite database.

v To connect to an UltraLite database:

1 Create a DatabaseManager object.

You can create only one DatabaseManager object per application. This
object is at the root of the object hierarchy. For this reason, it is often
best to declare the DatabaseManager object global to the application.

The following code creates a DatabaseManager object named dbMgr

DatabaseManager dbMgr = new DatabaseManager();

$ For more details, see the code in
Samples\NativeUltraLiteForJava\Simple\Simple.java under your
SQL Anywhere directory, and
ianywhere.native_ultralite.DatabaseManager in the API Reference.

2 Declare a Connection object.

Most applications use a single connection to an UltraLite database, and
keep the connection open all the time. For this reason, it is often best to
declare the Connection object global to the application.

static Connection conn;

3 Attempt to open a connection to an existing database.

♦ The following code establishes a connection to an existing database
held in the mydata.udb file on Windows.

String parms = "file_name=mydata.udb";
try {
 conn = dbMgr.openConnection(parms);
 // more actions here

♦ The DatabaseManager.openConnection method establishes a
connection to an existing UltraLite database file. It returns an open
connection as a Connection object. This method takes a single string
as its argument. The string is composed of a set of the following
keyword-value pairs.

Chapter 4 Understanding UltraLite Development

35

Keyword Alternative Description

userid uid An authenticated user for the database.
Databases are created with a single
authenticated user named DBA.

password pwd The password for the user. When a database
is created, the password for the DBA user
ID is set to SQL.

con con A name for the connection. This is needed
only if you create more than one connection
to the database.

ce_file ce_file The path and filename of the UltraLite
database on Windows CE. The default
extension for UltraLite database files
is.udb.

file_name dbf The path and filename of the UltraLite
database on Windows. The default
extension for UltraLite database files
is.udb.

ce_schema ce_schema The path and filename of the UltraLite
schema on Windows CE. The default
extension for UltraLite schema files is
.usm.

schema_file schema_file The path and filename of the UltraLite
database on Windows.

♦ If no database file exists, a SQLException is thrown. It is common
to deploy a schema file rather than a database file, and to let
UltraLite create the database file. Opening a connection to an
existing database file uses a different method to creating a new
database file and connecting to it.

The following code illustrates how to catch the error when the
database file does not exist:

catch(SQLException en) {
 if(econn.getErrorCode() ==
 SQLCode.SQLE_DATABASE_NOT_FOUND){
 // action here

4 If no database exists, create a database and establish a connection to it.

♦ The following code carries out this task on Windows, using a
schema file of mydata.usm.

Connecting to a database

36

String parms = "file_name=mydata.udb;"
 + "schema_file=mydata.usm";
conn = dbMgr.createDatabase(parms);

The following code opens a connection to an UltraLite database named
mydata.udb.

String parms = "file_name=mydata.udb";
try {
 conn = dbMgr.openConnection(parms);
 System.out.println(
 "Connected to an existing database.");
}
catch(SQLException econn) {
 if(econn.getErrorCode() ==
 SQLCode.SQLE_DATABASE_NOT_FOUND){
 conn = dbMgr.createDatabase(parms);
 System.out.println(
 "Connected to a new database.");
 } else {
 throw econn;
 }
}

In general, you will want to specify a more complete path to the file.

$ For more details, see the code in
Samples\NativeUltraLiteForJava\Simple\Simple.java under your
SQL Anywhere directory, and
ianywhere.native_ultralite.DatabaseManager in the API Reference.

Properties of the Connection object govern global application behavior,
including the following:

♦ Commit behavior By default, UltraLite applications are in
autoCommit mode. Each insert, update, or delete statement is committed
to the database immediately. You can also set Connection.autoCommit
to false to build transactions into your application.

$ For more information, see "Transaction processing in UltraLite" on
page 42.

♦ User authentication You can change the user ID and password for the
application from the default values of DBA and SQL by using the
grantConnectTo and revokeConnectFrom methods. Each application can
have a maximum of four user IDs.

$ For more information, see "User authentication" on page 46

♦ Synchronization A set of objects governing synchronization are
accessed from the Connection object.

Example

Using the
Connection object

Chapter 4 Understanding UltraLite Development

37

$ For more information, see
ianywhere.native_ultralite.SyncParms in the API Reference.

♦ Tables UltraLite tables are accessed using the Connection.getTable
method.

$ For more information, see ianywhere.native_ultralite.Connection in
the API Reference.

Each Connection and all objects created from it should be used on a single
thread. If you need to have multiple threads accessing the UltraLite database,
then each thread should have its own connection.

Multi-threaded
applications

Accessing and manipulating data

38

Accessing and manipulating data
UltraLite applications access data in tables in a row-by-row fashion. This
section covers the following topics:

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

The section also provides a lower-level description of the way that UltraLite
operates on the underlying data to help you understand how it handles
transactions, and how changes are made to the data in your database.

Scrolling through the rows of a table

The following code opens the ULCustomer table and scrolls through its rows,
displaying the value of the lname column for each row.

Table t = conn.getTable("ULCustomer");
short lname = t.schema.getColumnID("lname");
t.open();
t.moveBeforeFirst();
while (t.moveNext()){

System.out.println(t.getString(lname));
}

The schema field is a convenience field to access a TableSchema object.

You expose the rows of the table to the application when you open the table
object. By default, the rows are exposed in order by primary key value, but
you can specify an index to access the rows in a particular order. The
following code moves to the first row of the customer table as ordered by the
ix_name index.

Table t= conn.getTable("customer");
t.open("ix_name");
t.moveFirst();

$ For more information, see ianywhere.native_ultralite.Table,
ianywhere.native_ultralite.TableSchema, and
ianywhere.native_ultralite.Connection in the API Reference.

Chapter 4 Understanding UltraLite Development

39

Accessing the values of the current row

At any time, a Table object is positioned at one of the following positions:

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the Table object is positioned on a row, you can use one of a set of
methods appropriate for the data type to access the value of each column.
These methods take the column ID as argument. For example, the following
code retrieves the value of the lname column, which is a character string:

short lname = t.schema.getColumnID("lname");
String lastname = t.getString(lname);

The following code retrieves the value of the ID column, which is an integer:

short cust_id = t.schema.getColumnID("cust_id");
int id = t.getInt(cust_id);

There are methods for each supported data type.

In addition to the methods for retrieving values, there are methods for setting
values. These take the column ID and the value as arguments. For example:

t.setString(lname, "Kaminski");

By assigning values to these properties you do not alter the value of the data
in the database. You can assign values to the properties even if you are
before the first row or after the last row of the table, but it is an error to try to
access data when the current row is at one of these positions, for example by
assigning the property to a variable.

// This code is incorrect
t.moveBeforeFirst();
id = t.getInt(cust_id);

The method you choose must match the Java data type you wish to assign.
UltraLite automatically casts data types where they are compatible, so that
you could use the getString method to fetch an integer value into a string
variable, and so on.

$ For more information, see ianywhere.native_ultralite.Table in the API
Reference.

Casting values

Accessing and manipulating data

40

Searching for rows with find and lookup

UltraLite has several modes of operation when working with data. Two of
these modes are used for searching: the find and lookup modes. The Table
object has two sets of methods for locating particular rows in a table:

♦ find methods These move to the first row that exactly matches a
specified search value, under the sort order specified when the Table
object was opened.

♦ lookup methods These move to the first row that matches or is
greater than a specified search value, under the sort order specified when
the Table object was opened.

Both sets are used in a similar manner:

1 Enter find or lookup mode.

The mode is entered by calling the findBegin() or lookupBegin()
method, respectively. For example.

t.findBegin();

2 Set the search values.

You do this by setting values in the current row. Setting these values
affects the buffer holding the current row only, not the database. For
example:

t.setString(lname, "Kaminski");

Only values in the columns of the index are relevant to the search.

3 Search for the row.

Use the appropriate method to carry out the search. For example, the
following instruction looks for the first row that exactly matches the
specified value in the current index:

t.findFirst();

For multi-column indexes, a value for the first column is always used,
but you can omit the other columns and use one of the other find or
lookup methods to search using only a limited number of columns.

$ For more information, see the ianywhere.native_ultralite.Table class
in the API Reference.

Inserting updating, and deleting rows

To update a row in a table, use the following sequence of instructions:

Chapter 4 Understanding UltraLite Development

41

1 Move to the row you wish to update.

You can move to a row by scrolling through the table or by searching,
using find*() and lookup*() methods.

2 Enter update mode.

For example, the following instruction enters update mode on t:

t.beginUpdate();

3 Set the new values for the row to be updated. For example:

t.setInt(id , 3);

4 Execute the Update.

t.update();

After the update operation the current row is the row that was just updated. If
you changed the value of a column in the index specified when the ULTable
object was opened, the current row is undefined.

By default, UltraLite operates in autoCommit mode, so that the update is
immediately applied to the row in permanent storage. If you have disabled
autoCommit mode, the update is not applied until you execute a commit
operation. For more information, see "Transaction processing in UltraLite"
on page 42.

Caution
Do not update the primary key of a row: delete the row and add a new
row instead.

The steps to insert a row are very similar to those for updating rows, except
that there is no need to locate any particular row in the table before carrying
out the insert operation. The order of rows in the table has no significance.

For example, the following sequence of instructions inserts a new row:

t.insertBegin();
t.setInt(id, 3);
t.setString(name, "Carlo");
t.insert();

If you do not set a value for one of the columns, and that column has a
default, the default value is used. If the column has no default, the following
entries are added:

♦ For nullable columns, NULL.

♦ For numeric columns that disallow NULL, zero.

♦ For character columns that disallow NULL, an empty string.

Inserting rows

Accessing and manipulating data

42

To explicitly set a value to NULL, use the setNull method.

As for update operations, an insert is applied to the database in permanent
storage itself when a commit is carried out. In autoCommit mode, a commit
is carried out as part of the insert method.

The steps to delete a row are simpler than to insert or update rows. There is
no delete mode corresponding to the insert or update modes. The steps are as
follows:

1 Move to the row you wish to delete.

2 Execute the Table.delete() method.

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the correctness of the
data in your database. A transaction is a logical unit of work: it is either all
executed or none of it is executed.

By default, UltraLite operates in autoCommit mode, so that each insert,
update, or delete is executed as a separate transaction. Once the operation is
completed, the change is made to the database. If you set the
Connection.autoCommit property to false, you can use multi-statement
transactions. For example, if your application transfers money between two
accounts, either both the deduction from the source account and the addition
to the destination account must be completed, or neither must be completed.

If autoCommit is set to false, you must execute a Connection.commit()
statement to complete a transaction and make changes to your database
permanent, or you must execute a Connection.rollback() statement to cancel
all the operations of a transaction.

$ For more information, see the ianywhere.native_ultralite.Connection
class in the API Reference.

Data manipulation internals

UltraLite exposes the rows in a table to your application one at a time. The
Table object has a current position, which may be on a row, before the first
row, or after the last row of the table.

When your application changes its row (by a Table.moveNext method or
other method on the Table object) UltraLite makes a copy of the row in a
buffer. Any operations to get or set values affect only the copy of data in this
buffer. They do not affect the data in the database. For example, the
following statement changes the value of the ID column in the buffer to 3.

Deleting rows

Chapter 4 Understanding UltraLite Development

43

t.setInt(ID, 3);

UltraLite uses the values in the buffer for a variety of purposes, depending
on the kind of operation you are carrying out. UltraLite has four different
modes of operation, in addition to a default mode, and in each mode the
buffer is used for a different purpose.

♦ Insert mode The data in the buffer is added to the table as a new row
when the Table.insert() method is called.

♦ Update mode The data in the buffer replaces the current row when the
Table.update() method is called.

♦ Find mode The data in the buffer is used to locate rows when one of
the Table.find*() methods is called.

♦ Lookup mode The data in the buffer is used to locate rows when one
of the Table.lookup*() methods is called.

Whichever mode you are using, there is a similar sequence of operations:

1 Enter the mode.

The Table insertBegin, updateBegin, findBegin, and lookupBegin
methods set UltraLite into the mode.

2 Set the values in the buffer.

Use the set methods to set values in the buffer.

3 Carry out the operation.

Use a Table method such as insert, update, find, or lookup to carry out
the operation, using the values in the buffer. The UltraLite mode is set
back to the default method and you must enter a new mode before
performing another data manipulation or searching operation.

Using UltraLite
modes

Accessing schema information

44

Accessing schema information
Objects in the API represent tables, columns, indexes, and synchronization
publications. Each object has a Schema property that provides access to
information about the structure of that object.

Here is a summary of the information you can access through the Schema
objects.

♦ DatabaseSchema The number and names of the tables in the
database, as well as global properties such as the format of dates and
times.

To obtain a DatabaseSchema object, access the Connection.schema
property. See ianywhere.native_ultralite.Connection in the API
Reference.

♦ TableSchema The number and names of the columns and indexes for
this table.

To obtain a TableSchema object, access the Table.schema property. See
ianywhere.native_ultralite.Table in the API Reference.

♦ IndexSchema Information about the column in the index. As an index
has no data directly associated with it (only that which is in the columns
of the index) there is no separate Index object, just a IndexSchema
object.

To obtain a IndexSchema object, call the TableSchema.getIndex
method. See ianywhere.native_ultralite.IndexSchema in the API
Reference.

♦ PublicationSchema Tables and columns contained in a publication.
Publications are also comprised of schema only, and so there is a
PublicationSchema object rather than a Publication object.

To obtain a PublicationSchema object, call the
DatabaseSchema.getPublicationSchema method. See
ianywhere.native_ultralite.PublicationSchema in the API Reference.

You cannot modify the schema through the API. You can only retrieve
information about the schema.

Chapter 4 Understanding UltraLite Development

45

Error handling
You can use the standard Java error-handling features to handle errors. Most
methods throw java.sql.SQLException errors. You can use
SQLException.getErrorCode() to retrieve the SQLCODE value assigned to
this error. SQLCODE errors are negative numbers indicating the particular
kind of error.

$ For more information, see the following classes in the API Reference:

♦ ianywhere.native_ultralite.SQLCode

♦ ianywhere.native_ultralite.StreamErrorCode

♦ ianywhere.native_ultralite.StreamErrorID

♦ ianywhere.native_ultralite.StreamErrorContext

User authentication

46

User authentication
There is a common sequence of events to managing user IDs and passwords.

1 New users have to be added from an existing connection. As all
UltraLite databases are created with a default user ID and password of
DBA and SQL, respectively, you must first connect as this initial user
and implement user management only upon successful connection.

2 You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltraLite database.

3 To change the password for an existing user ID, use the
Connection.grantConnectTo method.

$ For more information, see ianywhere.native_ultralite.Connection in
the API Reference.

Chapter 4 Understanding UltraLite Development

47

Adding ActiveSync synchronization to your
application

This section describes special steps that you must take to add ActiveSync to
your application, and how to register your application for use with
ActiveSync on your end users’ machines. ActiveSync is available on
WIndows CE devices through the Jeode Java VM.

Synchronization requires SQL Anywhere Studio. For general information on
setting up ActiveSync synchronization, look up ActiveSync: deploying
UltraLite applictions in the SQL Anywhere online books index. For general
information on adding synchronization to an application, see "Synchronizing
UltraLite applications" on page 10 of the book UltraLite Foundations.

ActiveSync synchronization can be initiated only by ActiveSync itself.
ActiveSync automatically initiates a synchronization when the device is
placed in the cradle or when the Synchronization command is selected from
the ActiveSync window.

When ActiveSync initiates synchronization, the MobiLink ActiveSync
provider starts the UltraLite application, if it is not already running, and
sends a message to it. Your application must implement an
ActiveSyncListener to receive and process messages from the MobiLink
provider. Your application must specify the listener object using:

dbMgr.setActiveSyncListener(listener, "MyAppClassName"
);

where MyAppClassName is a unique Windows class name for the
application. For more information, see
ianywhere.native_ultralite.DatabaseManager.setActiveSyncListener in
the API Reference.

When UltraLite receives an ActiveSync message, it invokes the specified
listener’s activeSyncInvoked(boolean) method on a different thread. To avoid
multi-threading issues, your activeSyncInvoked(boolean) method should post
an event to the user interface.

If your application is multi-threaded, use a separate connection and use the
Java synchronized keyword to access any objects shared with the rest of the
application. The activeSyncInvoked() method should specify a
StreamType.ACTIVE_SYNC for its connection’s syncInfo stream and then
call Connection.synchronize.

When registering your application, set the following parameters:

♦ Class Name The same class name the application used with the
Connection.setActiveSyncListener method,

Adding ActiveSync synchronization to your application

48

♦ Path The path to the Jeode VM (\Windows\evm.exe)

♦ Arguments Includes the classpath (-cp) and other Jeode command
line arguments, the application name and applications arguments.

If you specify unique arguments to indicate ActiveSync activation, your
application can carry out a special startup sequence knowing that it is to
close upon the completion of ActiveSync synchronization.

CustDB and ActiveSync

The Native UltraLite for Java version of the CustDB sample allows
synchronization through an application menu using a socket and through
ActiveSync.

You can find source code for this sample in
Samples\NativUltraLiteForJava\CustDB\Application.java under your
SQL Anywhere directory. This section describes the code in that sample.

♦ CustDB parses its arguments to check for a special flag used to indicate
it was launched by the MobiLink provider for ActiveSync. This allows it
to streamline initialization (such as avoiding form population), since
applications launched for ActiveSync are expected to shut down once
they have synchronized.

// Normal versus Active sync launch
boolean isNormalLaunch = true;
int alen = args.length;
if(alen > 0) {
 String asflag = args[alen - 1].toUpperCase();
 if(asflag.compareTo("ACTIVE_SYNC_LAUNCH") == 0)
 {
 isNormalLaunch = false;
 --alen;
 }

♦ For normal launches (that is, non-ActiveSync launches), CustDB
performs the connection initialization and determies the employee ID. It
then initializes for ActiveSync by specifying a listener and loads its
main form. For ActiveSync launches, CustDB performs the ActiveSync
synchronization then shuts down.

if(isNormalLaunch) {
 db.initActiveSync("JULCustDB", main);
 db.getOrder(1);
} else {
 // ActiveSync launch
 db.activeSync(false);
 main.quit();
}

Chapter 4 Understanding UltraLite Development

49

public void initActiveSync(String appName,
ActiveSyncListener listener)
{
 DEBUG("initActiveSync");
 _conn.setActiveSyncListener(appName, listener);
}

public void activeSync(boolean useDialog)
{
 try {
 // Change stream
 _conn.syncInfo.setStream(
 StreamType.ACTIVE_SYNC);
 // since if "stream=" not in parms,
 //it defaults to tcpip, no
 // need to change stream parms
 _conn.synchronize(useDialog);
 freeLists();
 allocateLists();
 skipToValidOrder();
 } catch(SQLException e) {
 System.out.println(
 "Can’t synchronize, sql code=" +
 e.getErrorCode()
);
 }
}

♦ The class Application implements the ActiveSyncListener interface so
the running application can be notified to perform an ActiveSync
synchronization.

public class Application
extends Frame
implements ActionListener,
// ActiveSyncListener functional only on CE devices
ActiveSyncListener

♦ When activeSyncInvoked() is invoked, it posts a message to the UI
thread.

/** Define my own event class
*/
static final int ACTIVE_SYNC_EVENT_MASK =
AWTEvent.RESERVED_ID_MAX + 1;
static class ActiveSyncEvent extends AWTEvent
{
ActiveSyncEvent(Object source)
{
super(source, ACTIVE_SYNC_EVENT_MASK);
}
}

Adding ActiveSync synchronization to your application

50

/** Process ActiveSync message
*/
public void activeSyncInvoked(
 boolean launchedByProvider)
{
 // This method is invoked on a special thread.
 // Post an event so that active sync
 // takes places on the same thread
 // as the rest of the application.
 DEBUG("activeSyncInvoked()");
 getToolkit().getSystemEventQueue().postEvent(
 new ActiveSyncEvent(this)
);
 DEBUG("ActiveSync Event posted");
}

♦ The UI thread catches the message by overiding processEvent

/** Intercept my special action events
 * for activesync
 */
protected void processEvent(AWTEvent e)
{
 if(e instanceof ActiveSyncEvent) {
 _db.activeSync(true);
 refresh();
 } else {
 super.processEvent(e);
 }
}

However for the application to receive the event it must be enabled. This
is done in Application’s constructor.

// ActiveSync support
enableEvents(ACTIVE_SYNC_EVENT_MASK);

Chapter 4 Understanding UltraLite Development

51

Developing applications with Borland JBuilder
Borland JBuilder is a development environment for Java applications. Native
UltraLite for Java includes integration with JBuilder 7.x. This section
describes how to use Native UltraLite for Java within the JBuilder
environment.

Preparing to use Native UltraLite for Java with JBuilder

If JBuilder is installed, the UltraLite Component Suite Setup program
enables JBuilder integration. If JBuilder is installed after the UltraLite
Component Suite, re-run the UltraLite Component Suite Setup program to
enable JBuilder integration.

You should use JDK 1.1.8 or PersonalJava 1.2 when developing Native
UltraLite for Java applications, for compatibility with the Jeode VM on
Windows CE devices.

JBuilder SE and Enterprise fully support JDK switching, while JBuilder
Personal allows you to edit a single JDK.

v To set the JDK version:

1 In JBuilder Personal, click Tools ➤Configure JDKs and edit the JDK.

2 In JBuilder SE and Enterprise, right-click the project file in the project
pane and choose Properties. On the Paths tab, click JDK and browse to
your desired JDK location.

Using the Native UltraLite for Java setup

The Native UltraLite for Java setup can be used with existing projects or
with new projects.

v To add UltraLite features to a JBuilder project:

1 Open a JBuilder project.

2 Add the Native UltraLite for Java setup.

♦ Choose File ➤New. The Object Gallery appears.

♦ On the General tab, select Native UltraLite Setup and click OK.

♦ Choose a database name and deployment directories on the
Windows CE device. Click Next.

Setting the JDK

Developing applications with Borland JBuilder

52

♦ Add names for the Windows CE shortcut (which will be displayed
on the Start menu), the JAR name, and the main class. Click Finish.

A link file is added to your project. This link file is used to run the
application on the Windows CE device.

The Native UltraLite for Java setup makes the following changes to your
JBuilder project:

♦ Adds Native UltraLite for Java in the list of available libraries.

♦ Adds project properties for code insight templates.

♦ Modifies the runtime configurations to locate jul8.dll when you run the
application from within the development environment.

Using Native UltraLite for Java templates

During development, you can use Native UltraLite for Java code templates
for some of the standard parts of your code. To use a template, type the
template name at the appropriate place in your .java file and type CTRL+J to
expand the template.

The following templates are provided:

♦ julimp Adds a line to import the Native UltraLite for Java package.
Use this template in the imports section of your files.

♦ juldb Adds code to declare a DatabaseManager object.

♦ julconn Adds code to connecto to a database.

♦ julskel Adds both the juldb and julconn code, as a main method.

Accessing Native UltraLite for Java utilities from JBuilder

You can access the following Native UltraLite for Java utilities from the
JBuilder interface:

♦ Schema Painter The UltraLite schema painter is a tool for creating
and editing database definitions.

To open the schema painter, choose Tools ➤UltraLite Schema Painter.

♦ Online help This documentation is available from the interface.

Chapter 4 Understanding UltraLite Development

53

To open the UltraLite Component Suite online help, choose Help
➤Native UltraLite Reference. The API reference is available as a link
on the front page of the documentation. The Native UltraLite for Java
documentation is one of the books in the UltraLite Component Suite
collection.

Developing applications with Borland JBuilder

54

55

Index

A
ActiveSync synchronization

about, 47

autoCommit mode
about, 42

C
casting

data types, 39

ce_file connection parameter
about, 35

ce_schema connection parameter
about, 35

commit method
about, 42

commits
about, 42

con connection parameter
about, 35

connecting
UltraLite databases, 34

Connection object
introduction, 34

connection parameters
databases, 34
list, 35

CustDB application
building, 25
deploying, 28

introduction, 24
running, 27
source code, 26
source code location, 24

CustDB sample
Native UltraLite for Java, 22

D
data manipulation

about, 38, 42

data types
accessing, 39
casting, 39

database schema
accessing, 44

DatabaseManager object
introduction, 34

databases
accessing schema information, 44
connecting to, 34

DatabaseSchema object
introduction, 44

deleting rows
about, 40

deploying
Native UltraLite for Java applications, 28

deployment
Native UltraLite for Java, 16

E–N

56

E
error handling

about, 45

errors
handling, 45

F
feedback

documentation, vii
providing, vii

file_name connection parameter
about, 35

find methods
about, 40

find mode
about, 43

G
grantConnectTo method

introduction, 46

I
indexes

accessing schema information, 44

IndexSchema object
introduction, 44

insert mode
about, 43

inserting rows
about, 40

internals
data manipulation, 42

J
JBuilder

installation, 51
Native UltraLite for Java setup, 51
Native UltraLite for Java templates, 52
opening the online documentation, 52
opening the schema painter, 52
UltraLite development with, 51

Jeode VM, 3

L
lookup methods

about, 40

lookup mode
about, 43

M
modes

about, 43

moveFirst method
introduction, 38

moveNext method
introduction, 38

multi-threaded applications
thread safety, 37

N
Native UltraLite for Java

architecture, 3
deployment on the CE/ARM device, 28
deployment on Windows CE, 16
features, 2

newsgroups
technical support, vii

O–U

57

O
open method

Table object, 38

P
password connection parameter

about, 35

passwords
authentication, 46

platforms
supported, 3

publications
accessing schema information, 44

PublicationSchema object
introduction, 44

pwd connection parameter
about, 35

R
revokeConnectionFrom method

introduction, 46

rollback method
about, 42

rollbacks
about, 42

rows
accessing current row, 39

S
samples

Native UltraLite for Java, 22

schema
accessing, 44

schema_file connection parameter
about, 35

scrolling
through rows, 38

searching
rows, 40

support
newsgroups, vii

supported platforms, 3

synchronization
ActiveSync, 47
tutorial, 20

T
Table object

introduction, 38

tables
accessing schema information, 44

TableSchema object
introduction, 44

technical support
newsgroups, vii

templates
JBuilder, 52

threads
multi-threaded applications, 37

transaction processing
about, 42

transactions
about, 42

tutorial
CustDB sample application, 23
Native UltraLite for Java, 5

U
uid connection parameter

about, 35

UltraLite
about, 1

V–W

58

update mode
about, 43

updating rows
about, 40

user authentication
about, 46

userid connection parameter
about, 35

users
authentication, 46

V
values

accessing, 39

W
Windows CE

supported versions, 3

	UltraLite for Java User's Guide
	About This Manual
	The UltraLite sample database

	1. Introduction to Native UltraLite for Java
	Native UltraLite for Java features
	Native UltraLite for Java architecture

	2. Tutorial: A Native UltraLite for Java Application
	Introduction
	Lesson 1: Create a database schema
	Create your schema file using the UltraLite Schema Painter

	Lesson 2: Connect to the database
	Lesson 3: Insert data into the database
	Lesson 4: Select the rows from the table
	Lesson 5: Deploy your application to a Windows CE device
	Lesson 6: Add synchronization to your application

	3. Tutorial: The CustDB Sample Application
	Introduction
	Lesson 1: Build the CustDB application
	The sample code

	Lesson 2: Run the CustDB application
	Lesson 3: Deploy CustDB to a Windows CE device
	Summary

	4. Understanding UltraLite Development
	Connecting to a database
	Accessing and manipulating data
	Scrolling through the rows of a table
	Accessing the values of the current row
	Searching for rows with find and lookup
	Inserting updating, and deleting rows
	Transaction processing in UltraLite
	Data manipulation internals

	Accessing schema information
	Error handling
	User authentication
	Adding ActiveSync synchronization to your application
	CustDB and ActiveSync

	Developing applications with Borland JBuilder
	Preparing to use Native UltraLite for Java with JBuilder
	Using the Native UltraLite for Java setup
	Using Native UltraLite for Java templates
	Accessing Native UltraLite for Java utilities from JBuilder

	Index

