Anywhere.

SOLUTIONS
A SYBASE COMPANY

UltraLite
User’'s Guide

Last modified: October 2002
Part Number: 38134-01-0802-01

Copyright © 1989-2002 Sybase, Inc. Portions copyright © 2001-2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, nreehanicalptical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary @f IBgbas

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Aataptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise iz éylaatiice

Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,

APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), CleayCtianect
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Dafaakapeline
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Worgbench, Di
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAAR ,EC
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterg8sevElien
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Archéegtises \¥ork
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Vaééether, E
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnyvibiese Solut
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, Instizielgx,!
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeContetankiain
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASSl09&)Si
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business InterchangenOpen Clie
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnetipr@pen Solu
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Entegsfselipsgce
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, RepbdiatioReport
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Foresat Libra
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script

SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,

SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage Il Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase ClientfaepsgrSpbmse
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQlaBesktop, Sy
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server ArchitectusreSybaseW
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data StreanpriSke Ent
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model$envElient
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning ImiaginBeatity,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeiber|Writer,

VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Cp9igB0@0
Certicom Corp. Portions are Copyright © 1997-1998, Consensus Development Corporation, a wholly owned subsidiary of Certiadmgbes
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patéhtd,345B36%,
5,761,305. Patents pending.

All other trademarks are property of their respective owners.
Last modified October 2002. Part number 38134-01-0802-01.

Contents

PART ONE

About This Manual........ccccccceeiiiiiiiie e iX
SQL Anywhere Studio documentationccccoeceeeeriiieeenne X
Documentation CONVENLIONS...........ueeiiiiiiiiiiiiiieeee e Xiii
The UltraLite sample database...........ccccoveiviieiiiiiiieniieen, XVi
Finding out more and providing feedback..............cccocveeens Xvil

Introduction to Ultraliteccooevvveiiiiiiiiiie e 1

Introduction to UltraLiteccoovveeiiiiiiiieee 3
UltraLite featUreS......vvevi i 4
Supported platforms........cocciiieee e 6
UltraLite architeCturecoevivieee i 9
MobiLink synchronization...........cccccccvee i vcciiieec e, 11
Enterprise productivity.........cceeiviiciiieeiie e 13

Tutorial: A Sample UltraLite Application..............ccc...... 15
INEFOAUCTION ... 16
Lesson 1: Start the MobiLink synchronization
SEIVEL ettt et e et e e e e e e e nnna s 20
Lesson 2: Install the sample application to your
target platform ... 21
Lesson 3: Start the sample application and
SYNCAIONIZE ... 24
Lesson 4: Add an OFder..........oocveieeiiiieeeiiieie e 28
Lesson 5: Act on some existing orders........ccccceveevvevvvveeeeeenn. 31
Lesson 6: Synchronize your changes..........cccocvvveeviieeeeniinen. 32
Lesson 7: Confirm the synchronization at the
consolidated databasec.ueeevieiiiiiiiiiie e 34
Lesson 8: Browse the consolidated database 35
SUMMAIY ¢ttt e e 39

3 Designing UltraLite Applicationscccccceviiiiiiinnnnnnn. 41

Backup, recovery, and transaction processing...............c....... 42
UltraLite database internalscccccoeeviiiiiiiniie e, 43
Configuring and managing database storage..............cccuuee.... 45
Choosing an UltraLite development model.............cccevevneee. 54
Designing synchronization for UltralLite
APPICALIONS ... 55
Global autoincrement default column values.............ccccc...... 58
Character sets in URraLitecccceeviiiiiiiiiiie e 64
4 Developing UltraLite Applications...........ccccceeiiiiiiinnnnnn. 67
INEFOAUCTION .eeeiieiiieee e 68
Preparing a reference databaseccocccveviiieiiiniiiee e, 72
Designing your UltraLite database...........c.ccccoviiiiiiiiieiinnen, 76
Defining SQL statements for your application 80
Adding user authentication to your application....................... 85
Generating the UltraLite data access code..........cccccoeevvveeen... 91
Developing multi-threaded applications...........cccccccveeviieeennee 93
Adding synchronization to your applicationcccoccveeeenee 94
Configuring development tools for UltraLite
dEVEIOPMENT ..ot 102
Deploying UltraLite applicationsccocccvvveeeieeiiiiiiiieeeennn, 104
PART TWO
Developing UltraLite Applications in C/C++................ 105
5 Tutorial: Build an Application Using the C++ API 107
Introduction to the UltraLite C++ APlcccccovieeiiiiieeiiieeee 108
Lesson 1: Getting Started............oooviieeiiiiieieiee e 110
Lesson 2: Create an UltraLite database template 111
Lesson 3: Run the UltraLite generator.............ccovveeviveeennnnne. 113
Lesson 4: Write the application source code...........ccccc....... 114
Lesson 5: Build and run your application............c.ccceeeveineeenne 116
Lesson 6: Add synchronization to your application 118
Restore the sample database..........ccoccvvvveeeeeeiiicciiieeeee e, 120
6 Developing C++ APl Applicationsccovvvvvviiennennn. 121
INEFOAUCHION ... 122
Defining features for your applicationcccccoeviiieennnn. 123
Working with the C++ API ClasSes.........ccccevvieiveiiiiiieiiien, 125
Building your UltraLite C++ application............cccovveeerrineeens 127

10

11

CH+ APl REfRIBNCE. e 129

C++ API class hierarChy..........ccccoveeeiiiiiiii e 130
C++ APl language elementscccvveeiiiiieiniieee e, 131
ULCONNECHION ClaSSvceiiieiiiiiiiiiiieeeee et 132
ULDALA ClaSS...uuiiiieiiieiiiiieiee et 144
ULCUISOL ClaSS.....cciiieeeiiiie et 151
ULReSUISEt Class........ccoeevviiiii, 163
ULTabIE ClasScooovveeeieieeee 165
Generated result SEt ClasSuuuvvviviiiiiiiiiiiiieiiiereirirrererereae. 171
Generated statement ClasSvvvvvvvvviviieiiriieiereireeerreeeree, 174
Generated table ClasSuvvvvvvivrririiiiiiiririrrireerrrreeererere———. 175

Tutorial: Build an Application Using Embedded SQL . 181

INEFOAUCTION ... 182
Writing source files in embedded SQL..........cc.cccoeiiiiiinne. 183
Building the sample embedded SQL UltraLite
F=To] o] [T 1 o] o 1SRRI 187
Developing Embedded SQL Applications.................... 193
Building embedded SQL applications...........ccccceveeeeeiicvnnnen, 194
Preprocessing your embedded SQL filesccoocvveeeeenns 201
The Embedded SQL Interface........ccccovvvevviiiiciiniineeennn, 205
INEFOAUCTION ... 206
Using host variables...........ccccccoiiiiiiiiiic e, 209
Indicator variables..........ccccviiiiiiii i 220
Fetching datacooeciiiiiieee e 222
The SQL Communication Ar€a...........cceceeeeeeeeeeeeeeeeeeeeeeeeeeen, 228
Library function referenceccccocceeeee e, 231

Developing Applications for the Palm Computing Platform

.. 253
INEFOAUCHION .o e 254
Developing UltraLite applications with
Metrowerks COdeWaArTIOrcuuvieiiiieeeiiiiee e 255
Developing UltraLite applications with GCC PRC-

LI 1] PP 259
Launching and closing UltraLite applications........................ 261
Building multi-segment applications............ccccocvveerieeennnnen. 263
Palm synchronization OVEervieW...........ccccocveeeiiiieeeniiee e, 268
Adding HotSync or ScoutSync synchronization to

Palm applicationS..........ccooiiiiiiiiiiiee e 272

Configuring HotSync synchronization..............ccccocvveeeninnenn. 274

Configuring ScoutSync synchronizationcccccceeeevneeee. 279
Adding TCP/IP, HTTP, or HTTPS synchronization

to Palm applicationS..........ccooiiiiiiiiiiiei e 283
Configuring TCP/IP, HTTP, or HTTPS
SYNCNIONIZALIONeeiiiiiiiei e 285
Deploying Palm applications...........cccceeviiiiiiiiiiieeiiee e 291
12 Developing Applications for Windows CE................... 293
INEFOAUCHION ... 294
Building the CustDB sample application.............ccccceeeerenneee. 296
Storing persistent data........ccccceeevevciiiieieee e 298
Deploying Windows CE applicationsc.cccoccvveveeeeininnnen, 299
Synchronization on Windows CE...........cccovcveeeiiiiieeiiieeeens 305
13 Developing Applications for VXWorkscccceeeneee 309
INEFOAUCTION L.eeiiiiiiiie e 310
Building the CustDB sample application............ccccccceeeeenneee. 312
Downloading the sample application to the device............... 313
Running the sample application..........c.ccoccoceviiiie e, 314
Building UltraLite VxXWorks applicationscccocceeeeviiveeenne 316
Storing persistent data........cccceovvieee i 318
Synchronization on the VxWorks platform..........cccccovvieeeens 319
PART THREE
Developing UltraLite Java Applications....................... 321
14 Tutorial: Build an Application Using Java................... 323
INEFOAUCHION .. 324
Lesson 1: Add SQL statements to your reference
database ... 326
Lesson 2: Run the UltraLite generator.............ccoveeviveeeennnne. 328
Lesson 3: Write the application code.............cccceeviiieeiiinnene 329
Lesson 4: Build and run the application............ccccccoeiveennnn 333
Lesson 5: Add synchronization to your application 334
Lesson 6: Undo the changes you have made 336
15 Developing UltraLite Java Applications....................... 337
INEFOAUCHION ... 338
The UltraLite Java sample application..............cccccvveeeeeenneee. 339
Connecting to and configuring your UltraLite
database ... 344

Vi

Including SQL statements in UltraLite Java

F=To] o] [1F=1 1 o] o 1= R 351
Adding synchronization to your applicationccccueene 352
Monitoring and canceling synchronization................ccccco.... 356
UltraLite Java development NOteS...........cccvevniieeeniiieeeniiinenn, 361
Building UltraLite Java applicationscccocvveeriieeeninnen. 362
UltraLite APl reference........ccoooviiieiieeiiiiiiieee e 365
PART FOUR
REfEreNCe ..o 377
16 UltraLite Reference......ccccceeiiiiieiiiiieiiciee e 379
Synchronization parametersccceeoiieeeeiiieee e 380
Synchronization stream parameterscccceeeviveeeeiiieeenns 399
Reference database stored proceduresccccccoevcvvvvneennnnn. 411
The HotSync conduit installation utilityccccceeeeeeineee. 414
The SQL PreprOCESSON. ..cccceiiiiiiiieeeeeeeseeintrreeeeeeessnrnareeeeaeaen 415
The UltraLite generator.........ccccvveveeeeiicciiiieeee e e ccineee e e e e 419
The UltraLite segment utility.........ccccceeeveiiiiiieeee e, 425
The UltraLite Utilitycoeveeeiiiiiiiiecee e, 426
Macros and compiler directives for UltraLite
C/C++ apPliCAtIONSccoiiiiieiiiiiee e 427
A UltraLite Features and Limitationsccccvvvvvieennnnn. 435
UltraLite data typesScccvvveieie et 436
SQL features and limitations of UltraLite
F=To] o] 17 1 o] o 1= SRR 437
Size and number limitations for UltraLite
atADASES. ... 440
UltraLite tables must have primary keys........ccccccceeevvviinnneen. 441
User authentication for UltraLite databases.............ccccceee.... 442

viii

About This Manual

Subject

Audience

This manual describes the UltralL ite deployment technology for Adaptive
Server Anywhere. With UltralLite, you can develop and deploy database
applications to handheld, mobile, or embedded devices, such as devices
running the Palm Computing Platform, Windows CE, VxWorks, or Java.

This manual isintended for all application developers writing programs that
use UltraL ite deployment. Familiarity with relational databases and Adaptive
Server Anywhere is assumed.

SQL Anywhere Studio documentation

Thisbook is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

¢

Introducing SQL Anywhere Studio Thisbook provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

What’'s New in SQL Anywhere Studio Thisbook isfor users of
previous versions of the software. It lists new featuresin this and
previous rel eases of the product and describes upgrade procedures.

Adaptive Server Anywhere Getting Started Thisbook isfor people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

Adaptive Server Anywhere SQL User’'s Guide Thisbook describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

Adaptive Server Anywhere SQL Reference Manual Thisbook
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

Adaptive Server Anywhere Programming Guide Thisbook
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

¢ Adaptive Server Anywhere Error Messages Thisbook provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

¢ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner eguivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

¢ MobiLink Synchronization User’'s Guide Thisbook describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or Ultral ite databases.

¢ SQL Remote User's Guide Thisbook describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

¢ UltraLite User’s Guide Thisbook describes how to build database
applications for small devices such as handheld organizers using the
UltraL ite deployment technology for Adaptive Server Anywhere
databases.

4 UltraLite User’s Guide for PenRight! MobileBuilder Thisbook isfor
users of the PenRight! MobileBuilder development tool. It describes
how to use UltralL ite technology in the MobileBuilder programming
environment.

¢ SQL Anywhere Studio Help Thisbook is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

Xi

Xii

Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Startd Programs] Sybase SQL Anywhere 800 Online Books. Y ou can
navigate the online books using the HTML Help table of contents,
index, and search facility in the |eft pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf docs directory.
Y ou can choose to install them when running the setup program.

Printed books The following books are included in the
SQL Anywhere Studio box:

¢ Introducing SQL Anywhere Sudio.
¢ Adaptive Server Anywhere Getting Started.

¢ SQL Anywhere Studio Quick Reference. Thisbook is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

Documentation conventions

This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

¢

Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

Placeholders Itemsthat must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

Repeating items Lists of repeating items are shown with an element
of thelist followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, ...]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

Optional portions Optional portions of a statement are enclosed by
sguare brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-nameis optional. The
sguare brackets should not be typed.

Options When none or only one of alist of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

Xiii

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

¢ Oneor more options |If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

Xiv

Icon

Meaning

9

¢ O

API

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
Ultral ite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that managesit.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

A programming interface.

XV

The UltraLite sample database

Many of the examplesin the MobiLink and Ultralite documentation use the
Ultralite sample database.

The Ultralite sample database is held in afile named custdb.db, and is
located in the Samplesl\UltraLite\CustDB subdirectory of your
SQL Anywhere directory. A complete application built on this database is

also supplied.

The sample database is a sal es-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they

are related to each other.
ULCustomer ULEmpCust
cust_id integer emp_id integer
cust_nam.e. \{archar(30) — cust_id = cust_id cust_id integer
last_modified timestamp action char(1)
last_modified timestamp ULIdentifyEmployee
emp_id integer

cust_id = cust_id

ULOrder

order_id integer
cust_id integer
prod_id integer
emp_id integer

disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

emp_id = emp_id

prod_id = prod_id

ULProduct
prod_id integer
price integer
prod_name varchar(30)

emp_id = emp_id

ULEmployee
emp_id integer
emp_name varchar(30)

last_download timestamp

emp_id = pool_emp_id

emp_id = pool_emp_id

ULCustomerIDPool

pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool

pool_order_id integer
pool_emp_id integer
last_modified timestamp

Finding out more and providing feedback

We would like to receive your opinions, suggestions, and feedback on this
documentation.

Y ou can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

¢ sybase.public.sglanywhere.general.

¢ sybase.public.sglanywhere.linux.

¢ sybase.public.sglanywhere.mobilink.

¢ sybase.public.sglanywhere.product_futures_discussion.
¢ sybase.public.sglanywhere.replication.

.

sybase.public.sglanywhere.ultralite.

Newsgroup disclaimer

iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor isiAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on aregular basisto
provide solutions and information. Their ability to help is based on their
workload.

XVii

XViii

PART ONE
Introduction to UltraLite

This part introduces UltraLite, presents a sample UltraLite application, and
provides general information on how to build your own UltraLite application.

CHAPTER 1
Introduction to UltraLite

About this chapter This chapter introduces the Ultral ite database deployment technology,
describing the purpose and defining characteristics of UltralL.ite.

Contents i
Topic Page
UltraLite features 4
Supported platforms 6
UltraL ite architecture 9
MobiLink synchronization 11

Enterprise productivity 13

UltralL ite features

UltraLite features

Full-featured SQL

Synchronization to
industry-standard
RDBMS

Small footprint
custom database

Supported
development
models

4

UltraLite is a deployment technology for Adaptive Server Anywhere
databases, aimed at small, mobile, and embedded devices. Supported target
platforms include Windows CE, Palm OS, Java, and VxWorks devices.

UltraL ite provides the following benefits for users of small devices:

¢ Thefunctionality and reliability of atransaction-processing SQL
database.

¢ Theability to synchronize data with your central database-management
system.

¢ Anextremely small memory footprint.
¢ C/C++ or Java development.

UltralL ite allows applications on small devices to use full-featured SQL to
accomplish data storage, retrieval, and manipulation. Ultral ite supports
referential integrity, transaction processing, and multi-table joins of all
varieties. In fact, UltraLite supports most of the same data types, runtime
functions, and SQL data manipulation features as Sybase Adaptive Server
Anywhere.

UltraLite uses MobiLink synchronization technology to synchronize with
industry-standard database-management systems. MobiLink synchronization
works with ODBC-compliant data sources such as Sybase Adaptive Server
Anywhere, Sybase Adaptive Server Enterprise, IBM DB2, Microsoft

SQL Server, and Oracle.

UltraL ite provides an ultra-small footprint by generating a custom database
engine for your application. This custom engine includes only the features
required by your application.

Each UltraLite application has its own database, modeled after a reference
Adaptive Server Anywhere database.

C/C++ UltraL ite custom database engines for your application can be as
small as 50 kb, depending on your deployment platform and the number of
SQL statementsin the application and the SQL features used.

In-memory database Ultralite target devices may have no hard disk and
tend to have relatively slow processors. The UltraLite runtime employs
algorithms and data structures that provide high performance and low
memory use.

Y ou can develop UltraL ite applications in the following ways:

Chapter 1 Introduction to UltraLite

CI/C++ using the UltraLite C++ APl The C++ interface exposes tables
and SQL statements as objects, with methods to move through the rows
of the table or aresult set and to execute statements.

C/C++ using embedded SQL Embedded SQL is an easy way of
including SQL statements directly in C or C++ source code.

Java using JDBC UltraLite Java applications support standard JDBC
data access methods.

Supported platforms

Supported platforms

Platform support for UltraLiteis of the following kinds:

¢

Target platforms Thetarget platfor m is the device and operating
system on which you deploy your finished UltraL ite application.

Host platforms For each target platform, you develop your
applications using a particular development tool and operating system.
The tool and operating system comprise the host platform. Target
platform manufacturers may supply emulator sto ease development
tasks. Emulators simulate the target platform, while running on the host
platform.

Y ou may be able to use other tools to develop your Ultralite
applications, but supporting documentation and technical assistance are
provided only for the supported development platforms.

The supported target platforms for UltraLite applications fall into two
categories: those supporting C/C++ UltraL ite applications and those
supporting Java UltraL ite applications.

Supported platforms for C/C++ applications

Thisversion of UltraLite supports the following platforms for C/C++
applications using Embedded SQL or the UltraLite C++ API:

¢

Palm Computing Platform UltralLite applications can be built for
Palm Computing Platform devices running the Palm OS versions 3.x or
version 4.x. For example, the Pam 111, Palm V, and Palm V1 organizers
are suitable target platforms, as are the Handspring Visor, TR6Pro,
m505, and so on. PalmPilot Personal and PalmPilot Professional devices
running Palm OS version 2.x or earlier are not supported target
platforms.

UltraL ite applications can be run for testing and demonstration purposes
on the Palm emulator.

The supported development platform for the Palm Computing Platform
isthe Metrowerks CodeWarrior version 6, 7, or 8 on
Windows NT/2000/X P, and the GCC PRC Tools version 2.0.

CE Windows CE 3.0 and later are supported.

Windows CE 3.0 support includes support for Pocket PC, including
Pocket PC 2002, as well as Handheld PC 2000.

Chapter 1 Introduction to UltraLite

The Windows CE 3.0 operating system is supported on any of the
following processors:

¢ MIPS processor
¢ ARM processor

¢ x86 processor. UltraLite supports the x86 processor for emulation
purposes only.

UltraL ite applications can be run for testing and demonstration purposes
in the Pocket PC and Pocket PC 2002 emulators.

The supported devel opment platforms for Windows CE are:
¢ Microsoft eMbedded Visual C++ 3.0 and later.

¢ WindRiver VxWorks UltraLite applications can be built for devices
running the VxWorks operating system in any of the following
configurations:

¢ A 386, 486 or Pentium PC running VxWorks 5.3 or 5.4 with the
Intel x86 Board Support Package (BSP) version 1.1 or above.

¢ A PowerPC running VxWorks 5.4. The UltraL.ite library has been
compiled for the PowerPC860 chip and tested on an MBX860 board
using TCP/IP synchronization.

VxWorks 5.5 is not supported.

The VxWorks version of UltraLite also runs under the VxSim emulator.
The full simulator isrequired to carry out synchronization. VxSim-Lite
can be used for testing, but does not support synchronization.

Development for VxWorks is supported on WindRiver Tornado
development environment for Windows, version 1.0.1 or above.

UltraLite requires a dosFs (MS-DOS-compatible file system) device or a
functionally equivalent device to store the database in a persistent
manner in afile.

¢ Windows Windows operating systems other than Windows CE are
supported for testing and demonstration purposes only.

& For more information on supported platforms, see "Ultral ite supported
operating systems" on page 144 of the book Introducing SQL Anywhere
Sudio.

Supported platforms

Supported platforms for Java applications

Deployment using the Sun Java 2 (JDK 1.2.x or later) environment is
supported. Also, deployment using the Sun JDK 1.1.4 or later is supported.
To use UltraLite in applets, you must use the Java Plug-in 1.2.x to run the
applets. Thereis no guarantee that applets will work with the built-in Java
VMsfor the Internet Explorer or Netscape browsers.

Development using Sybase PowerJ or the Sun JDK is supported.

Chapter 1 Introduction to UltraLite

UltraLite architecture

C/C++ deployment

Java deployment

SQL database products typically use a client/server architecture. The
database is normally stored in one or more filesin the file system, or directly
on a storage device. The database server receives and processes SQL
reguests from client applications, maintaining the database according to the
reguests. The server protects you from failures by guaranteeing that complete
transactions are recovered in case of afailure and incomplete transactions are
rolled back.

UltraLite has the same client/server architecture as other SQL database
systems. However, the Ultral ite database engine is not a separate process,
but isinstead alibrary of functionsthat is called by an application. If you
build your application using C/C++, this engine can be accessed either asa
DLL or from astatically linked library. If you build your application in Java,
the engine is accessed from Java byte code stored in a JAR file.

If you build your application using C/C++, the UltraLite development tools
generate C/C++ source code that is compiled along with your application
source code. When you link your application, you link all of the compiled
C/C++ together with the UltraLite runtime library or imports library. The
result is a single executable file containing application logic and database
logic required by the application.

9

When first executed on a new device, this executable automatically creates
the UltraL ite database for your application. This database isinitially empty,
but you can add data, either explicitly or through synchronization with a
central database.

If you build a Java Ultral ite application, the Ultral ite development process
generates Java source code that represents the database schema. The
generated source fileis to be compiled into classes that you deploy as part of
your application with the Ultral ite runtime JAR file. Y ou may wish to
package all files together into asingle JAR file for ease of deployment.

When first executed on a new device, the Ultral ite runtime automatically
creates the database for your application. This database is initially empty, but
you can add data, either explicitly or through synchronization with a central
database.

UltralLite architecture

Persistent memory

Fixed schema

Ultral ite provides protection against system failures. Some Ultral ite target
devices have no disk drive, but instead feature memory that retains content
when the device is not running. The storage mechanism for the UltraLite
database is platform-dependent, but is managed by the Ultral ite runtime
library, and does not need explicit treatment from the application devel oper.

UltraL ite does not alow the schema of an UltraLite database to be modified
once the application is deployed. When a newer version of the application
requires more tables or more columns, the newer version of the application is
deployed and the UltraL ite database is repopul ated through synchronization.

UltraLite development tools

Parameterized
SQL statements

10

The UltraL ite development tools supplement a supported C/C++ or Java
development tool. They manage the generation of the data access code for
your application.

During UltralLite application development you create an Adaptive Server
Anywhere reference database, which isamodel of your Ultralite database.
You use the UltraL ite gener ator, which uses the reference database to
create the data access and data management code for your application.

The SQL statements used in the application must be determined at compile
time. In other words, you cannot dynamically construct a SQL statement
within an UltraL ite application and execute it. However, SQL statementsin
Ultral ite applications can use placeholders or host variables to adjust their
behavior.

Chapter 1 Introduction to UltraLite

MobiLink synchronization

Subset of the
central database

Flexibility

Conflict resolution

The MobiLink
synchronization
server

Many mobile and embedded computing applications are integrated into an
information infrastructure. They require data to be uploaded to acentral
database, which consolidates all the data throughout the MobiLink
installation, and downloaded from a consolidated database. This bi-
directional sharing of information is called synchronization.

MobiLink synchronization technology, included in SQL Anywhere Studio
along with UltralL.ite, is designed to work with industry standard SQL
database-management systems from Sybase and other vendors. The Ultral ite
runtime automatically keeps track of changes made to the Ultral ite database
between each synchronization with the consolidated database. When the
Ultral ite database is synchronized, all changes since the previous
synchronization are uploaded for synchronization.

Mobile and embedded databases may not contain all the data that existsin
the consolidated database.

The tables in each Ultral ite database can have a subset of the rows and
columnsin the central database. For example, a customer table might contain
over 100 columns and 100 000 rows in the consolidated database, but the
UltraL ite database may only require 4 columns and 1000 rows. MobiLink
allows you to define the exact subset to be downloaded to each remote
database.

MobiLink synchronization isflexible. Y ou define the subset of data using the
native SQL dialect of the consolidated database-management system. Tables
in the Ultral ite database can correspond to tables in the consolidated
database, but you can also populate an Ultral ite table from a consolidated
table with a different name, or from ajoin of one or more tables.

Mobile and embedded databases frequently share common data. They also
must allow updates to the same data. When two or more remote databases
simultaneously update the same row, the conflict cannot be prevented. It
must be detected and resolved when the changes are upl oaded to the central
database. MobiLink synchronization automatically detects these conflicts.
The conflict resolution logic is defined in the native SQL dialect of the
central DBMS.

An UltraL ite application synchronizes with a central, consolidated database
through the M obiL ink synchronization server. This server provides an
interface between the UltraL ite application and the database server.

11

MobiLink synchronization

Synchronization
streams

12

MobiLink Consolidated
synchronization database
server server

Consolidated
database

UltraLite
application and
database

Y ou control the synchronization process using synchronization scripts.
These scripts may be SQL statements or procedures written in the native
language of the consolidated DBMS, or they may be Java classes. For
example, you can use a SELECT statement to identify the columns and
tables in the consolidated database that correspond to each column of arow
to be downloaded to atable in your UltralLite application. Each script
controls a particular event during the synchronization process.

Synchronization occurs through a synchronization stream. Supported
streamsinclude TCP/IP, HTTP, HTTPS, HotSync, Scout Sync, and
ActiveSync. Regardless of the stream, you control the synchronization
process using the same SQL scripts defined in your consolidated database.

& For adetailed introduction to MobiLink synchronization, see
"Synchronization Basics' on page 9 of the book MobiLink Synchronization
User’s Guide.

& For information on adding synchronization to your Ultralite
application, see "Designing synchronization for UltraLite applications’ on

page 55.

Chapter 1 Introduction to UltraLite

Enterprise productivity

High-level
programming and
portability

High-level
development
environments

Industrial strength

Ultral ite was designed for development using existing tools, skills, and
components. Y ou can thus leverage the current capabilities of your
organization.

UltraL ite encourages high productivity by providing robust, high-level
programming solutions on an increasing variety of devices. Y ou can develop
applications for small devices using the proven and powerful methodology of
full-featured SQL. Y ou need not become familiar with device-specific
aspects (such as flash memory) and the disparate operating system interfaces
that provide access to them. Similarly, synchronization can be achieved
without becoming an expert in the various transmission protocols. Moreover,
the database and synchronization components in your application are
portable.

UltraL ite allows you to continue to use whatever tools you already use for
productive development. It adds functionality to your development process.
For example, you can devel op applications using Microsoft Visual C++ and
test them in the various Windows environments before deploying them, for
final testing, on a specific device.

MobiLink synchronization allows UltralL ite applications to synchronize with
many widely-used databases, not just those from Sybase. Built with the
established technology of Sybase Adaptive Server Anywhere, it uses mature
and proven database technology.

13

Enterprise productivity

14

CHAPTER 2

Tutorial: A Sample UltraLite Application

About this chapter This chapter illustrates some key features of Ultralite by walking through a
sample application. The sample application is a simple sales-status
application built around a database named CustDB (Customer Database).

The chapter includes information on how to run the sample application, and a
brief description of how the application works.

Contents Topic Page
Introduction 16
Lesson 1: Start the MobiLink synchronization server 20
Lesson 2: Install the sample application to your target platform 21
Lesson 3: Start the sample application and synchronize 24
Lesson 4: Add an order 28
Lesson 5: Act on some existing orders 31
Lesson 6: Synchronize your changes 32
Lesson 7: Confirm the synchronization at the consolidated database 34
Lesson 8: Browse the consolidated database 35
Summary 39

Before you begin To get the most from this chapter, you should be able to run the sample

application as you read.

This chapter assumes that you have read the chapter "Introduction to
UltraLite" on page 3. Much of the material in this chapter is explained in a
more general manner elsewhere in the book. Cross references to these places
are provided.

15

Introduction

Introduction

CustDB is a sample application included with UltraLite. It isasimple sales-
status application that you can run against any of the supported databases,
and on any of the supported target operating systems.

By working with the CustDB sampl e application, this chapter demonstrates
the following core features of UltraLite.

¢ UltraLite database applications run on small devices using very limited
resources.

¢ UltraLite applicationsinclude arelational database engine.

+ UltraLite applications share data with a central, consolidated database in
atwo-way synchronization scheme. The UltraL ite databases are also
called remote databases.

+ Each remote database contains a subset of the datain the consolidated
database.

¢ TheMobiLink synchronization server carries out data synchronization
between the consolidated database and each UltralLite installation.

¢ SQL scripts stored in the consolidated database implement the
synchronization logic.

¢ You can use Sybase Central to browse and edit the synchronization
scripts.

The CustDB sample application

16

Versions of the CustDB application are supplied for each supported
operating system. Also, source code for the application is provided in
embedded SQL, the C++ API, and Java. This tutorial uses the compiled
version of the application for Windows, the Palm Computing Platform, and
Windows CE.

& For information about the Java version of the sample application, see
"The UltraLite Java sample application" on page 339.

When running the sample application, you are acting as an order taker or
sales manager. The application allows you to view outstanding orders,
approve or deny orders, and add new orders.

Y ou can carry out the following tasks with the sample application.
¢ View lists of customers and products.

¢ Add new customers.

Chapter 2 Tutorial: A Sample UltraLite Application

¢ Add or delete orders.

¢ Scroll through the list of outstanding orders.

¢ Accept or deny orders.

¢ Synchronize changes with the consolidated database.

When you run the CustDB UltraL ite application, you are working on asingle
remote database, and synchronizing your changes with a consolidated
database.

Inatypical UltraLite installation, there will be many remote databases, each
running on a handheld device, and each containing a small subset of the data
from the consolidated database.

File locations for the sample application

Runtime file location

Your UltraL ite installation includes the files needed to run the sample
application, and the source code used to develop it. Studying the sample
application source code is a good way to learn more about Ultral ite.

When you install SQL Anywhere Studio, the UltraLite sasmple files are
installed into a directory named Samples\Ultralite under your installation
directory.

To run the CustDB sample application, you need the following components:

¢ The consolidated database An Adaptive Server Anywhere version
of the customer database isinstalled as the file custdb.db in the
Samples\UltraLite\Custdb subdirectory of your SQL Anywhere
directory.

This database serves as a consolidated database. It contains the
following information;

¢ MobiLink system tables that hold the synchronization metadata.
¢ TheCustDB data, stored in rows in base tables.
¢ The synchronization scripts.

During the installation process, an ODBC data source named
UltraLite 8.0 Sampleis created for this database.

¢ The MobilLink synchronization server The MaobiLink
synchronization server isin the win32 subdirectory of your
SQL Anywhere directory.

17

Introduction

Source file locations

18

¢ The UltraLite application executable A different executableis
supplied for each operating system. These executables are held in
subdirectories of your ultralite directory named for the operating system.
Each operating system directory has a separate subdirectory for each
supported CPU, and the executable files are located in these
subdirectories.

¢ ce Windows CE applications.

¢ palm Palm Computing Platform applications.
¢ vxw VxWorks applications.

¢ win32 A Windows application.

¢ java A Javaapplication.

This chapter uses the win32, ce, and palm versions of the application.

Source code is provided for both the consolidated database and the UltraLite
application in the Samples\UitraLite\CustDB and Samples\MobiLink\CustDB
subdirectories of your SQL Anywhere directory.

¢ Consolidated database source In thischapter we use the Adaptive
Server Anywhere CustDB database as the consolidated database.

Y ou can also build Sybase Adaptive Server Enterprise, Microsoft
SQL Server, or Oracle consolidated databases and run the application
against those database-management systems.

Y ou can use one of the SQL scripts in the Samples\MobiLink|CustDB
directory to build a consolidated database for a DBMS other than
Adaptive Server Anywhere.

¢ custase.sql Sybase Adaptive Server Enterprise.
¢ custdb.sql Sybase Adaptive Server Anywhere.
¢ custdb2.sql 1BM DB2.

¢ custmss.sql Microsoft SQL Server.

¢ custora.sgl Oracle8.

The Adaptive Server Anywhere consolidated database is already built
and installed. Y ou only need the scripts to make a consolidated database
using another relational database product. Y ou do not need the scripts
for thistutorial.

¢ Application source The source code for the sample applicationisin
two parts.

Chapter 2 Tutorial: A Sample UltraLite Application

¢ Theuser interface code for each platformis held in a separate
subdirectory of Samples\UltraLite\CustDB, named for each
supported development tool.

¢ Thedataaccess codeis help in the Samples\UitraLite\CustDB
subdirectory of your Ultral ite directory.

¢ The embedded SQL data access codeis held in custdb.sqc.
¢ The C++ API data access codeis held in custdbapi.cpp.

& For information on the Ultral ite development process, see
"Designing UltraLite Applications' on page 41.

& For alist of supported development tools, see " Supported
platforms® on page 6. For information on building the application for
each supported platform, see the following locations:

¢ Palm Computing Platform (CodeWarrior) "Building the CustDB
sample application from CodeWarrior" on page 258.

¢ Palm Computing Platform (PRC Tools) "Building the CustDB
sample application with PRC Tools" on page 259.

¢ Windows CE "Building the CustDB sample application” on
page 296.

¢ VxWorks "Building the CustDB sample application" on page 312.

Synchronization techniques in the sample application

For more
information

The sample application demonstrates several useful synchronization
techniques. This chapter provides a glimpse at synchronization, but in order
to understand how to use these techniques in applications, you need to
understand in more detail how the synchronization process works.

Synchronization is carried out using the MobiLink synchronization server,
running on your desktop machine, against the CustDB sample database.

For an overview of the synchronization process, see " The synchronization
process' on page 24 of the book MabiLink Synchronization User’s Guide.

For adescription of how to write the synchronization scripts that control
synchronization, see "Writing Synchronization Scripts' on page 47 of the
book MabiLink Synchronization User’s Guide.

For information on the techniques used in the CustDB sample application,
see "The CustDB sample" on page 361 of the book MobiLink
Synchronization User’s Guide.

19

Lesson 1: Start the MobiLink synchronization server

Lesson 1: Start the MobiLink synchronization

server

20

When you start the sample UltraLite application for the first time, it contains
no data. The application carries out an initial synchronization to download an
initial copy of the data from the consolidated database. Y ou must have the
database server running in order to carry out thisinitial download, and you
must also have the MobiLink synchronization server running against the
Ultralite sample database.

The SQL Anywhere Studio installation adds some items to the Start menu to
make this step easier.

To start the MobiLink synchronization server against the
consolidated database:

1 Start the consolidated database server, running the CustDB sample
database.

The Adaptive Server Anywhere consolidated database server runs on
your desktop machine. From the Start menu, choose Programs] Sybase
SQL Anywhere 801 UltralLitel] Personal Server Sample for UltralLite.

2 Start the MobiLink synchronization server against the CustDB database.

The MobiLink synchronization server connects to the consolidated
database server through ODBC. It could run from a separate machine
from the database server, but in this example we will run it on the same
machine.

From the Start menu, select Programs] Sybase
SQL Anywhere 800 MobiLink[d Synchronization Server Sample.

The command executed by this icon connects the MobiLink
synchronization server to the consolidated database server.

& For the next step, see the section for your platform under "Lesson 2;
Install the sample application to your target platform” on page 21.

Chapter 2 Tutorial: A Sample UltraLite Application

Lesson 2: Install the sample application to your
target platform

The UltraLite application must be installed onto a target machine in order for
you to proceed. This section describes how to install the sample application
to your target machine.

No installation needed for Windows
If you want to run the Windows version of the CustDB application from
your desktop, you do not need to read this section.

& For the next step, see "Lesson 3: Start the sample application and
synchronize" on page 24.

Install the sample application (Palm Computing Platform)

Y ou need to carry out the steps in this section only if you wish to run the
tutorial on a Palm Computing device. If you wish to run the tutorial on a
desktop Windows machine, proceed to "L esson 3: Start the sample
application and synchronize" on page 24.

Use the Palm Install Tool to deploy the application to your device. Y ou must
tell Install Tool the location of the application, and then use HotSync to
transfer the executable file to the device.

The Adaptive Server Anywhere installation automatically sets registry
entries to enable CustDB synchronization via HotSync. These entries
associate the UltraLite conduit on Windows with the CustDB application on
the Palm Computing device. Y ou must have HotSync Manager 3 installed
for HotSync synchronization to work properly.

+ To install the sample application to a Palm Computing device:

1 Prepareyour PC for running Adaptive Server Anywhere and the Palm
Desktop software.

Install Adaptive Server Anywhere onto a machine that has Palm
Desktop already installed. The Adaptive Server Anywhere installation
then adds the registry entries required for HotSync.

On your PC, start Palm Desktop.

3 Add the sample application to the list of filesto install onto your
handheld.

21

Lesson 2: Install the sample application to your target platform

Click Install on the Palm Desktop toolbar.

Click Add. Locate the Palm Computing executable file for the sample
application. This executable isthe file custdb.prc, and it isin the
UltraLite\palm\68k subdirectory of your SQL Anywhere directory.

Click Done.
4 HotSync your Palm Computing device.

The CustDB application is copied into the Applications view on your
Palm device.

% To copy the sample application to a Palm Computing Platform

emulator:

1 Start the Palm emulator.

2 Right click and select Install Application/Database from the popup menu.
3 Locatethe application and click OK to install.

Y ou may have to refresh the Applications view to see the installed
application on the emulator interface.

& For the next step, see "Lesson 3: Start the sample application and
synchronize" on page 24.

Install the sample application (Windows CE)

22

Y ou need to carry out the steps in this section only if you wish to run the
tutorial on a Windows CE device. If you wish to run the tutorial on a desktop
Windows machine, proceed to "Lesson 3: Start the sample application and
synchronize" on page 24.

% To copy the sample application to a CE device:

1 Ensurethat Windows CE Servicesis properly installed. You can do this
by checking whether Windows Explorer can view and modify the file
system on the CE device.

2 Open the Windows Explorer. Right click on My Computer and select
Explore.

3 Find your SQL Anywhere installation directory. The default location is
asfollows:

c:\Program Fi | es\ Sybase\ SQ. Anywhere 8

Chapter 2 Tutorial: A Sample UltraLite Application

Open the ultralite\ce folder so that the contents of the folder are visible.
Open processor-specific folder depending on the CPU used in the CE
device. The executable file CustDB.exe should be visible at this point.

4 Right click on CustDB.exe and select Copy.

Find the CE device in the Explorer hierarchy. It should be under the
Mobile Devices folder. Create afolder on the CE device called Sybase.
Open the Sybase folder on the device and paste the executable to copy
the CustDB.exe file to the CE device. Y ou may be asked whether you
want the file to always be synchronized or converted before copying,
both of these actions can be refused.

6 Inthe Sybase folder on the device, there should be one executable file,
namely, CustDB.exe. Right click on CustDB.exe to create a shortcut and
rename the shortcut to CustDB.

7 Onthe CE Device, open the root folder Windows followed by Start
Menu and Programs. In the Programs folder, add a Sybase folder.

8 Movethe shortcut for CustDB from \Sybase to the \Windows|Start
Menu\Programs\Sybase folder by cutting and pasting the shortcut.

9 The samples are now accessible from the CE device Start button. Select
Startd Programs] Sybase[] CustDB.

& For the next step, see " Start the application (Windows CE)" on page 26.

23

Lesson 3: Start the sample application and synchronize

Lesson 3: Start the sample application and

synchronize

When started for the first time, the sample UltraL ite application contains no
data. In this step, you start the sample application, and carry out an initial
synchronization with the consolidated database to obtain an initial set of
data. The particular data you download depends on the user ID you enter
when you start the application.

Start the application (Windows)

% To start and synchronize the sample application:

1

Launch the sample application.

From the Start menu, choose Programs[] Sybase
SQL Anywhere 801 UltraLite[] Windows Sample Application.

Enter an employee ID.

When running through this section as a tutorial, enter a value of 50 and
press ENTER. The application also allows values of 51, 52, or 53, but
behaves dightly differently in these cases.

The application synchronizes after you enter the employee ID, and a set
of customers, products, and orders are downloaded to the application.

Confirm that the data has been synchronized into the application.

Confirm that a company name and a sample order appear on the
application window.

Y ou have now synchronized your data.

& For the next step, see "Lesson 4; Add an order" on page 28.

Start the sample application (Palm Computing Platform)

The sample application for the Palm Computing Platform uses HotSync as
the synchronization mechanism.

% To start and synchronize the sample application:

1

24

Place your Palm deviceinto its cradle.

Chapter 2 Tutorial: A Sample UltraLite Application

Installing the
HotSync conduit

When you start the sample application for the first time it must be able
to synchronize, to download an initial copy of the data. Thisstep is
required only the first time you start the application. After that, the
downloaded datais stored in the Ultral ite database.

2 Launch the sample application.

From the Applications view, tap CustDB. Aninitial dialog displays,
prompting you for an employee ID.

3 Enter an employee ID.

When running through this section as atutorial, enter avalue of 50. The
application also allows values of 51, 52, or 53, but behaves slightly
differently in these cases.

A message box tells you that you must synchronize before proceeding.
4 Synchronize your application.

Use HotSync to obtain an initial copy of the data.
5 Confirm that the data has been synchronized into the application.

From the Applications view, tap the CustDB application. The display
shows an entry sheet for a customer, with entries.

Y ou have now synchronized your data.
& For the next step, see "Lesson 4: Add an order" on page 28.

HotSync synchronization requires a MobiLink HotSync conduit to be
installed on the desktop computer. The SQL Anywhere setup program
automatically installs a conduit for the CustDB sample application. For other
applications, you would have to install the conduit yourself using the
dbcond8 command-line utility. The command line used to install the conduit
for the CustDB sample application is as follows:

dbcond8 -n CQust DB Syb2

where CustDB is the name which HotSync Manager displays, and Syb2 is
the Palm creator ID for the application.

% To start and synchronize the sample application (Palm Emulator):

1 Start the emulator.
2 Ensurethe emulator is set up for TCP/IP synchronization:

¢+ Right-click the emulator and choose Settingsl] Properties from the
popup menu.

¢ Inthe Properties dialog, check Redirect NetLib Callsto Host
TCP/IP.

25

Lesson 3: Start the sample application and synchronize

3 Launch the sample application.

From the Applications view, tap CustDB. Aninitial dialog displays,
prompting you for an employee ID.

4 Enter an employeeID.

When running through this section as a tutorial, enter avalue of 50. The
application also allows values of 51, 52, or 53, but behaves dightly
differently in these cases.

A message box tells you that you must synchronize before proceeding.
5 Set the application to synchronize using TCP/IP:
Tap the Options menu.
Set the Conduit to Disabled.
Set the Synch Method to TCP/IP.
Leave the Synch Parameters as host=localhost.
Tap OK.
6 Synchronize your application:

* & & oo o

¢ Tapthe Synchronize menu. A set of datais uploaded and
downl oaded.

7 Confirm that the data has been synchronized into the application.

From the Applications view, tap the CustDB application. The display
shows an entry sheet for a customer, with entries.

Start the application (Windows CE)

For synchronization to succeed, you must have the consolidated database
server and a MobiLink synchronization server running when you start the
sampl e application.

« To start and synchronize the sample application:

1 Connect your Windows CE device to your PC.

When you start the sample application for the first time, it must be able
to connect to the MobiLink synchronization server and download an
initial copy of the data. This step isrequired only the first time you start
the application. Once you have downloaded the data, it is stored in the
Ultral ite database.

2 Launch the sample application.

26

Chapter 2 Tutorial: A Sample UltraLite Application

On the CE device, choose Start[] Programsd Sybasel] CustDB.
3 Enter an employee ID.

When running through this section as a tutorial, enter avalue of 50 and
press ENTER. The application does aso allow values of 51, 52, or 53, but
behaves dightly differently in these cases.

The application synchronizes after you enter the employee ID, and a set
of customers, products, and orders are downloaded to your machine.

4 Confirm that the data has been synchronized into the application.

Confirm that a company name and a sample order appear on the
application window.

Y ou have now synchronized your data.

& For the next step, see "Lesson 4: Add an order" on page 28.

27

Lesson 4: Add an order

Lesson 4: Add an order

In this section, you display the initial datain the sample application and add
anew order. These step are carried out in asimilar way in each version of the
application.

The application holds information about a set of orders. For each order, this
data includes the customer, the product, the quantity, the price, and any
applicable discount. Also included are a status field and a notes field, which
you can modify from the application.

Only unapproved orders are downloaded to the application. The sample
application does not receive all the orderslisted in the ULOrder table in the
consolidated database. Y ou control which information is sent to your
application using synchronization scripts.

Add an order (Windows or Windows CE)

The procedure is the same for Windows CE as for other Windows operating
systems.

% To add an order:
1 Scroll through the outstanding orders.
Click Next to display the next customer.
2 Open the window to enter anew order.
From the Order menu, choose New.
The Add New Order screen is displayed.
3 Choose a customer.

The UltraL ite application holds the complete list of customers from the
consolidated database. To see thislist, open the Customer drop-down
list.

Choose Basements R Us from the list. The current list of orders does
not have any from this customer.

4 Choose a product.

The UltraL ite application holds the complete list of products from the
consolidated database. To see thislist, open the Product drop-down list
box.

28

Chapter 2 Tutorial: A Sample UltraLite Application

6
7

Choose Screwmaster Drill fromthe list. The price of thisitemis
automatically entered in the Price field.

Enter the quantity and discount.
Enter avalue of 20 for the quantity, and a value of 5 for the discount.
Press Enter to add the new order.

Click X to close the New Order screen.

Y ou have now modified the datain your loca Ultral ite database. This data
is not shared with the consolidated database until you synchronize.

& For the next step, see "Lesson 5: Act on some existing orders' on
page 31.

Add an order (Palm Computing Platform)

< To add an order:

1

Scroll through the outstanding orders.

Tap the Down arrow in the bottom right corner to display the next
customer.

Open the window to enter a new order.
Tap New. The Add New Order screen is displayed.
Choose a customer.

The UltraLite application holds the complete list of customers from the
consolidated database. To seethislist, open the Customer drop-down
list.

Choose Basements R Us from the list. The current list of orders does
not have any from this customer.

Choose a product.

The UltraLite application holds the complete list of products from the
consolidated database. To see thislist, open the Product drop-down list
box.

Choose Screwmaster Drill from thelist. The price of thisitemis
automatically entered in the Price field.

Enter the quantity and discount.
Enter avalue of 20 for the quantity, and a value of 5 for the discount.

Add the new order.

29

Lesson 4: Add an order

30

Tap Add to add the order.

Y ou have now modified the datain your local Ultralite database. This data
is not shared with the consolidated database until you synchronize.

& For the next step, see "Lesson 5: Act on some existing orders' on
page 31.

Chapter 2 Tutorial: A Sample UltraLite Application

Lesson 5: Act on some existing orders

In this step, you approve one order and deny another. Approving or denying
orders updates two columnsin the local database. No data in the consolidated
database is changed until you synchronize.

Theinstructions for this step are very similar for al platforms.

To approve, deny, and delete orders:
1 Approve the order from Apple Street Builders.
¢ Gotothefirst order in thelist, which isfrom Apple Street Builders.
¢ Tapor Click Approve to approve the order.
¢ Add anoteto your approval, saying Good Work!.
¢ Theorder appears with a status of Approved.
2 Deny the order from Art’s Renovations.
¢ Goto the next order in thelist, which is from Art’s Renovations.
¢ Tapor click Deny to deny this order.
¢ Add anote stating Discount too high.
3 Delete the order from Awnings R Us.
¢ Gotothe next order inthelist, which isfrom Awnings R Us.

¢+ Deletethisorder by choosing the menu item Options[] Delete. It
disappears from your local copy of the data.

Having changed these orders, you now need to communicate your changes to
the consolidated database.

& For the next step, see "Lesson 6: Synchronize your changes' on
page 32.

31

Lesson 6: Synchronize your changes

Lesson 6: Synchronize your changes

In this step, you synchronize changes you made on your handheld device to
the consolidated database.

For synchronization to take place, your MobiLink synchronization server
must be running. If you have shut down your MobiLink synchronization
server since the beginning of the tutorial, restart it.

& For ingtructions, see "Lesson 1:; Start the MobiLink synchronization
server" on page 20.

Synchronize your changes (Windows, Windows CE)

% To synchronize your changes:

1 If you arerunning on a Windows CE handheld device, place the device
initscradle, so that it can connect to the machine running the MobiLink
synchronization server.

2 Choose Filed Synchronize to synchronize your data.
3 Confirm that the synchronization took place.

¢ Confirm that the approved order for Apple Street Buildersisno
longer in your application.

¢ The synchronization process for this sample application removes
approved orders from your application.

& For the next step, see "Lesson 7: Confirm the synchronization at the
consolidated database" on page 34.

Synchronize your changes (Palm Computing Platform)

% To synchronize your changes:
1 Pacethe Pamdeviceinitscradle.
2 Pressthe HotSync button to synchronize.
3 Confirm that the synchronization took place.

¢ Confirm that the approved order for Apple Street Buildersis no
longer in your application.

32

Chapter 2 Tutorial: A Sample UltraLite Application

¢ The synchronization process for this sample application removes
approved orders from your application.

& For the next step, see "Lesson 7: Confirm the synchronization at the
consolidated database" on page 34.

33

Lesson 7: Confirm the synchronization at the consolidated database

Lesson 7: Confirm the synchronization at the
consolidated database

34

In this step, you use I nteractive SQL to connect to the consolidated database
and confirm that the changes made have been synchronized. Thisstep is
independent of the platform on which your UltraLite application is running

« To confirm that the changes are synchronized to the consolidated
database:

1 Connect to the consolidated database from Interactive SQL.

In the Interactive SQL Connect dialog, choose the UltraLite 8.0 Sample
ODBC data source.

Confirm the status change of the approved and denied orders.

To confirm that the approval and denial have been synchronized, issue
the following statement.

SELECT order _id, status
FROM ULOr der
VWHERE status IS NOT NULL

The results show that order 5100 is approved, and 5101 is denied.
Confirm that the deleted order has been removed.

The deleted order has an order_id of 5102. The following query returns
no rows, demonstrating that the order has been removed from the
system.

SELECT *

FROM ULOr der
WHERE order _id = 5102

Thetutoria is now complete.

Chapter 2 Tutorial: A Sample UltraLite Application

Lesson 8: Browse the consolidated database

You

can use Sybase Central to manage MobiLink synchronization. The

synchronization logic is held in the consolidated database.

This

section describes how to use Sybase Central to browse the scriptsin the

CustDB consolidated database.

The CustDB database

The following figure shows the tables in the CustDB consolidated database
and how they relate to each other.

ULCustomer ULEmpCust
cust_id integer emp_id integer
cust_name \{archar(30) T cust id = cust id | cust_id integer
last_modified timestamp - - action char(1)
last_modified timestamp ULIdentifyEmployee

emp_id integer
cust_id = cust_id

emp_id = emp_id

ULOrder
order_id integer
cust_id integer
prod_id integer ULEmployee
emp_id integer | emp_id integer emp_id = pool_emp_id
disc ?nteger emp_id = emp_id emp_name varchar(30)
quant integer last_download timestamp
notes varchar(50)
status varchar(20)
last_modified timestamp ULCustomerIDPool
pool_cust_id integer
prod_id = prod_id emp_id = pool_emp_id pool_emp_id integer
- - last_modified timestamp
ULProduct ULOrderIDPool
prod_id integer pool_order_id integer
price integer pool_emp_id integer
prod_name varchar(30) last_modified timestamp

The tables hold the following information.

¢

¢

¢

ULCustomer A list of customers.
ULProduct A list of products.

ULEmployee A list of sales employees. Thistableis not present in the
UltraL ite database.

ULEmpCust A many-to-many relationship between employees and
customers. Thistableis not present in the Ultralite database.

ULOrder A list of orders, including details of the customer who placed
the order, the employee who took the order, and the product being
ordered.

35

Lesson 8: Browse the consolidated database

¢ ULCustomeriDPool A table to maintain unused unique primary key
values on the customer table throughout a deployed UltraLite system.

¢ ULOrderIDPool A tableto maintain unused unique primary key values
on the order table throughout a deployed Ultral ite system.

¢ ULldentifyEmployee Thistable holdsalist of employee ID numbers.

Connect to the CustDB database from Sybase Central

1 Start the CustDB database:

¢ Select Programsd Sybase SQL Anywhere 80 UltraLite[] Personal
Server Sample for UltralL.ite.

An Adaptive Server Anywhere database server starts, running the
CustDB UltraL ite Sample Database.

2 Start Sybase Central:

¢ From the Start menu, select Programs] Sybase SQL Anywhere 80
Sybase Central.

3 Connect Sybase Central to the sample database:

¢ In Sybase Central, select Tools Connect. If thereis a choice of
connection types, select MobiLink. The MobiLink Connect dialog

appears.

36

Chapter 2 Tutorial: A Sample UltraLite Application

Identification | Database | Advanced

it
% The Following values are used to identify wourselr to the database

Lser: I

Password: I

‘ou can use default connection values skored in a praofile.

r' Mong

{* DDEC Data Source name

ILIItraLite 8.0 Sample ;I Browse.., |

" ODBC Data Source File

| ;l Browse. . |

(04 I Cancel | Help |

Select ODBC, enter UltraLite 8.0 Sample in the Data Source box.
Click OK to connect.

Y ou are now connected to the CustDB sample database.

Browse the synchronization scripts

From Sybase Central, you can browse through the tables, users, synchronized
tables, and synchronization scripts that are stored in the consolidated
database. Sybase Central is the primary tool for adding these scripts to the
database.

37

Lesson 8: Browse the consolidated database

38

4% Sybase Central =l =|
File Edit Wiew Tools Help

‘I[i'ultraLitEB.DSample = 2|2 & = » &l x

Fé Sybase Central | Detais |

= ; Adaptive Server Anywhere 8

: [:l Services GlEE

(3 Utities |_] Tables (Owner)

=8 MobiLink Synchronization 1 Connection Scripts
i [# Services "7 synchronized Tables
(SR - ol ite 5.0 Sample] Users

[[0 Tables {Qwner)] versions
~ [Connection Seripts
- £ Synchronized Tables
(27 users

e [£3 versions

KT I— 2

Open the Connection Scripts folder. The right hand pane lists a set of
synchronization scripts and a set of events that these scripts are associated
with. Asthe MobiLink synchronization server carries out the
synchronization process, it triggers a sequence of events. Any
synchronization script associated with an event isrun at that time. By writing
synchronization scripts and assigning them to the synchronization events,
you can control the actions that are carried out during synchronization.

Open the Synchronized Tables folder, and open the ULCustomer table folder.
Theright hand pane lists a pair of scripts that are specific to thistable, and
their corresponding events. These scripts control the way that datain the

UL Customer table is synchronized with the remote databases.

This section does not discuss the content of the synchronization scripts.
These are discussed in detail in the chapter "Writing Synchronization
Scripts' on page 47 of the book MabiLink Synchronization User’s Guide.

Chapter 2 Tutorial: A Sample UltraLite Application

Summary

In thistutorial you learned how to:
¢ Copy an UltraLite application to a Palm or Windows CE device.

¢ Start and work with the sample application on a Palm or Windows CE
device, or on Windows.

¢ Synchronize changes with a consolidated database, viathe MobiLink
synchronization server.

¢ Use Sybase Central to view the scripts controlling the synchronization
process.

The CustDB sample application is used throughout the current book and in
the MobiLink Synchronization Guide to illustrate programming methods and
synchronization techniques.

39

Summary

40

CHAPTER 3

Designing UltraLite Applications

About this chapter

Contents

This chapter describes the features you can include in Ultralite applications,

as well as some general design features that apply to all UltraLite
applications.

The chapter also provides a description of Ultralite internals as background

information for application design.

Topic Page
Backup, recovery, and transaction processing 42
Ultralite database internals 43
Configuring and managing database storage 45
Choosing an Ultralite devel opment model 54
Designing synchronization for UltraLite applications 55
Global autoincrement default column values 58
Character setsin UltraLite 64

41

Backup, recovery, and transaction processing

Backup, recovery, and transaction processing

42

The best way of making a backup of an UltralLite application isto
synchronize with a consolidated database. To restore an Ultral ite database,
start with an empty database and populate it from the consolidated database
through synchronization.

Ultral ite provides protection against system failures, but not against media
failures. If the UltralL ite data store itself is corrupted, the only way to protect
is through synchronization.

UltraL ite provides transaction processing. If an application using an

Ultral ite database stops running unexpectedly, the Ultral ite database
automatically recovers to a consistent state when the application is restarted.
All transactions committed prior to the unexpected failure are present in the
Ultral ite database. All transactions not committed at the time of the failure
arerolled back.

Ultral ite does not use atransaction log to perform recovery. Instead,

Ultral ite uses the state byte for every row to determine the fate of arow
when recovering. When arow isinserted, updated, or deleted in an UltraLite
database, the state of the row is modified to reflect the operation and the
connection that performed the operations. When a transaction is committed,
the states of all rows affected by the transaction are modified to reflect the
commit. If an unexpected failure occurs during a commit, the entire
transaction is rolled back on recovery.

& For moreinformation on state bytes, see "How UltraL ite tracks row
states' on page 44.

Chapter 3 Designing UltraLite Applications

UltraLite database internals

This section gives an outline of how dataiis stored in an UltralLite database,
and how UltraLite maintains data in a database.

Database storage mechanism

Each UltraLite application has its own database. The UltralLite runtime
creates the database when you first start your application. The physical
storage of the UltraL ite database depends on the target platform. In al cases,
except for Java, the database is persistent by default: it continues to exist
when the application is not running.

¢ On the Palm Computing Platform, the UltraLite database is stored in the
Palm persistent (static) memory using the Data Manager API. For
devices operating Palm OS version 4.0, you can store UltralLite
databases in the file-based storage of expansion cards.

¢ On Windows, the UltraL ite database is stored in the file system. On
Windows CE the default file is \UltraLiteDB\ul.udb. On other versions of
Windows the default fileis ul_<project>.udb in the working directory of
the application, where <project> is the UltralL ite project name used
during the development process.

¢ OnVxWorks, UltraLite requires a dosFs (MS-DOS-compatiblefile
system) device or afunctionally equivalent device to store the persistent
datafile. UltraLite defaults to using a device named ULDEV:, and a
filename ul_<project>.udb, where <project> is the UltralLite project
name, and the filename is truncated to an 8.3 format. Y ou can configure
a storage device with this name and it will be used to store persistent
data for the application, or you can override the default filename and
specify adifferent device.

¢ InJavaapplications, the database is either transient, or is stored as afile
in the file system. By default, it is transient.

& For information on configuring Ultral ite databases, see "Configuring
and managing database storage" on page 45. For information on configuring
Ultralite Java databases, see "Ultralite JDBC URLS' on page 346.

The information in an UltraLite database

UltraL ite stores the rows of datain each table. It also stores state information
about each row, and stores indexes to efficiently access the rows.

43

UltraL ite database internals

Ultralite compresses variable length strings, integers, numerical values, and
date/time data in the database. It does not compress columns containing
character or binary data, except on Windows CE where Unicode strings are
compressed by storing in a UTF-8 representation.

How UltraLite tracks row states

Each row in an Ultral ite database has a one-byte marker to keep track of the
state of the row. The row states are used to control transaction processing,
recovery, and synchronization.

When adelete isissued, the state of each affected row is changed to reflect
the fact that it was deleted. Rolling back a delete is as simple as restoring the
original state of the row.

When a delete is committed, the affected rows are not always removed from
memory. If the row has never been synchronized, then it is removed. If the
row has been synchronized, then it is not removed until the next
synchronization confirms the delete with the consolidated database. After the
next synchronization, the row isremoved from memory.

Similarly, when arow is updated in an UltraL ite database, a new version of
the row is created. The states of the old and new rows are set so the old row
isno longer visible and the new row isvisible. When an update is
synchronized, both the old and new versions of the row are needed to allow
conflict detection and resolution.

The old version of the row is deleted after synchronization. If arow is
updated many times between synchronizations, only the oldest version of the
row and the most recent version of the row are kept.

Indexes in UltraLite databases

44

Ultral ite indexes are B+ trees with very small index entries.

In C/C++ UltralLite databases, each index entry is exactly two bytes, and
each index page contains 256 entries. Since index pages are rarely 100% full
and each index has some fixed overhead, the memory used by an UltraLite
index is more than two bytes per row in the table. The overhead for each
index isjust over 1 kb per index. Typically, UltraLite index pages on larger
tables will be least 85% full.

No similar consistent rule can be given for the memory requirements of
Ultral ite Java databases.

Chapter 3 Designing UltraLite Applications

Configuring and managing database storage

Y ou can control several aspects of UltralLite persistent storage for C/C++
applications. The following aspects can be configured:

¢ Theamount of memory used as a cache by the UltraL ite database
engine.

An encryption key.
Preallocation of file-system space.

.
*
¢ Thefile name for the database.
¢

The database page size.

This configuration is controlled by the UL_STORE_PARMS macro, which
is placed in the header of your application source code so that it is visible to
al db_init() or UL PalmL aunch calls. The encryption key and page size can
be used on any supported C/C++ platform, while the other keys cannot be
used on the Palm Computing Platform.

& For moreinformation, see"UL_STORE_PARMS macro" on page 428.

Encrypting UltraLite databases

By default, Ultral ite databases are unencrypted on disk and in permanent
memory. Text and binary columns are plainly readable within the database
store when using a viewing tool such as a hex editor. Two options are
provided for greater security:

¢ Obfuscation Obfuscating databases provides security against
straightforward attempts to view data in the database directly using a
viewing tool. It is not proof against skilled and determined attempts to
gain accessto the data. Obfuscation has little or no performance impact.

& For more information, see "Obfuscating an Ultralite database” on
page 46.

¢ Strong encryption UltraLite database files can be strongly encrypted
using the AES 128-bit algorithm, which is the same algorithm used to
encrypt Adaptive Server Anywhere databases. Use of strong encryption
does provide security against skilled and determined attempts to gain
access to the data, but has a significant performance impact.

45

Configuring and managing database storage

Caution
If the encryption key for a strongly encrypted database islost or
forgotten, there is no way to access the database. Under these
circumstances, technical support cannot gain accessto the
database for you. It must be discarded and you must create a new
database.

& For more information, see "Encrypting an UltralLite database" on
page 46, and " Changing the encryption key for a database" on page 49.

Obfuscating an UltraLite database

% To obfuscate an UltraLite database (C/C++):

¢ DefinetheUL_ENABLE_OBFUSCATION compiler directive when
compiling the generated database.

& For moreinformation, see"UL_ENABLE_OBFUSCATION
macro” on page 427.

% To obfuscate an UltraLite database (Java):

¢ Add thefollowing line to your code before creating the database (that is,
before connecting to the database for the first time):

U Dat abase. set Def aul t Cbf uscation(true);

Encrypting an UltraLite database

Ultral ite databases are created on the first connection attempt. To encrypt an
Ultral ite database, you supply an encryption key before that connection
attempt. On the first attempt, the supplied key is used to encrypt the
database. On subsequent attempts, the supplied key is checked against the
encryption key, and connection fails unless the key matches.

Encryption for . . .

C/C++ programs % To strongly encrypt an UltraLite database (C/C++):
1 Load the encryption module.

Call UL EnableStrongEncryption before opening the database.

Y ou open a database by calling db_init (embedded SQL) or
UL Data::Open (C++ API).

On the Palm Computing Platform, you open a database by calling
UL PalmL aunch or UL Data:: PalmL aunch.

46

Chapter 3 Designing UltraLite Applications

2 Specify the encryption key.
Definethe UL_STORE_PARMS macro with the parameter name key.
#define UL_STORE PARMB "key=a secret key"

As with most passwords, it is best to choose a key value that cannot be
easily guessed. The key can be of arbitrary length, but generally the
longer the key, the better because a shorter key is easier to guess than a
longer one. As well, including a combination of numbers, letters, and
special characters decreases the chances of someone guessing the key.

Do not include semicolonsin your key. Do not put the key itself in
quotes, or the quotes will be considered part of the key.

Y ou must supply this key each time you want to start the database. Lost
or forgotten keysresult in completely inaccessible databases.

& For moreinformation on UL_STORE_PARMS, see
"UL_STORE_PARMS macro" on page 428.

3 Handle attempts to open an encrypted database with the wrong key.

If an attempt is made to open an encrypted database and the wrong key
ispassed in, db_init returns ul_false and SQL CODE -840 is set.

Y ou can find a sample embedded SQL application demonstrating encryption
in the directory Samples\UltraLite\ESQLSecurity. The encryption code is held
in Samples\UltralLite\ESQL Security\sample.sqc.

Here is a code snippet from the sample:

47

Configuring and managing database storage

static void initStoreParns(){

}

char enteredKey[15];

strcpy(storeParms, "key=");

/1 The key is used to encrypt the database on the first attenpt.
/1 On subsequent connections, the correct key is needed to

/1 access the database.

printf("Enter encryption key: ");

scanf("%", encryptionKey);

strcat(storeParns, encryptionKey);

#undef UL_STCORE_PARMS
#define UL_STCRE_PARMS (initStoreParnms(), storeParns)

int main(int argc, char * argv[])

{

Encryption for Java
programs

48

/* Declare fields */

EXEC SQ BEG N DECLARE SECTI O\
| ong pid=1;
| ong cost;
char pnane[31] ;

EXEC SQ END DECLARE SECTI QN

/* Encryption nust be enabled before working wth data*/
ULEnabl eSt rongEncryption(&sqglca);
db_init(&sqlca);
if(SQLCODE == -840){ // bad encryption key
printf("Error: encryption key incorrect.");
return(1);

}
EXEC SQL CONNECT "dba" | DENTI FI ED BY "sql “;

% To strongly encrypt an UltraLite database (Java):

1 Set aproperty named key before creating a database object for the first

time.

Here is a code fragment that reads the encryption key from the command

line.

I nput St reanReader isr = new | nput St reanReader (
Systemin);

Buf f eredReader br = new BufferedReader(isr);
String key = null ;

Systemout.print("Enter encryption key:");
key = br.readLine() ;

Systemout.println("The key is: " + key);

/1 (3) Connect to the database

java.util.Properties p = new java.util.Properties();

p.setProperty("persist", "file");
p. setProperty("key", key);
Sanpl eDB db = new Sanpl eDB(p);

Chapter 3 Designing UltraLite Applications

Here, SampleDB is the database filename as supplied in the UltraLite
generator - f command-line option.

& For more information, see "The UltraLite generator" on page 419,
and "Using a Properties object to store connection information” on
page 347.

2 Create the database object using the properties.

For example:

Connection conn = db. connect();

After the first connection attempt, subsequent attempts to access the
database produce an Incorrect or missing encryption key SQL Exception
if the wrong key is supplied.

Y ou can find a sample Java application demonstrating encryption in the
directory 1Samples\UltraLite\JavaSecurity. The encryption code isheld in
\Samples\UltraLite\JavaSecurity\Sample.java.

Here is a code snippet from the sample:

/1 Qotain the encryption key

I nput St reanReader isr = new | nput StreanReader (Systemin);
Buf f eredReader br = new Buff er edReader (isr);

String key = null

Systemout.print("Enter encryption key:");

key = br.readLine() ;

Systemout.printin("The key is: " + key);

java.util.Properties p = new java.util.Properties();
p.setProperty("persist", "file");

p. set Property("key", key);

Sanpl eDB db = new Sanpl eDB(p);

Connection conn = db. connect ();

Changing the encryption key for a database

Y ou can change the encryption key for a database. The application must
already be connected to the database using the existing key before the change
can be made.

Caution

When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is
unrecoverable. If the application isinterrupted part-way through, the
databaseisinvalid and cannot be accessed. A new one must be created.

49

Configuring and managing database storage

% To change the encryption key on an UltraLite database (C/C++):

¢ Cdl the UL ChangeEncryptionK ey function, supplying the new key as
an argument.

The application must already be connected to the database using the old
key before this function is called.

& For more information, see "UL ChangeEncryptionKey function” on
page 233.

% To change the encryption key on an UltraLite database (Java):

¢ Cdl changeEncryptionK ey on the database object, supplying the new
key as an argument.

db. changeEncrypti onKey("new key");

& For moreinformation, see " changeEncryptionKey method" on
page 369.

Using the encryption key on the Palm Computing Platform

50

If you encrypt an UltraL ite database on the Palm Computing Platform, you
are prompted to re-enter the key each time you launch the application. This
section describes how to add code that circumvents the re-entering of the
key. The feature is currently available only for embedded SQL applications.

Y ou can save the encryption key in dynamic memory as a Palm featur e, and
retrieve the key when you launch the application rather than prompting the
user. Features are indexed by creator and a feature number. Users can passin
their creator 1D or NULL, along with the feature number or NULL, to save
and retrieve the encryption key.

The encryption key is not backed up and is cleared on any reset of the
device. Theretrieval of the key then fails, and the user is prompted to re-
enter the key.

The following sample code illustrates how to save and retrieve the
encryption key:

Chapter 3 Designing UltraLite Applications

#defi ne UL_STORE PARMB St or ePar ns
static ul _char StoreParns[STORE_PARMS MAX] ;

st értupRouti ne() {
ul _char buffer[MAX_PWJ] ;

if('ULRetrieveEncryptionKey(
buf fer, MAX_PWD, NULL, NULL)){
/1 pronpt user for key
user Pronpt (buffer, MAX PWD);
i f(!'ULSaveEncryptionKey(buffer, NULL, NULL)) {
/1 informuser save failed
}
}

// build store parmns

StrCopy(StoreParns, "key=");

StrCat(StoreParns, buffer);

ULPal mLaunch(&sql ca, UL_NULL);
}

The following sample code illustrates how to use a menu item to secure the
device by clearing the encryption key:

case Menultend ear
ULd ear Encrypti onKey(NULL, NULL);
br eak;

& For more information, see "UL ClearEncryptionKey function" on
page 233, "UL RetrieveEncryptionKey function" on page 247, and
"UL SaveEncryptionK ey function” on page 248.

Defragmenting UltraLite databases

The UltraLite store is designed to efficiently reuse free space, so explicit
defragmentation is not required under normal circumstances. This section
describes atechnique to explicitly defragment Ultralite databases, for use by
applications with extremely strict space requirements.

Ultral ite provides a defragmentation step function, which defragments a
small part of the database. To defragment the entire database at once, call the
defragmentation step function in aloop until it returns ul_true. This can be
an expensive operation, and SQLCODE must also be checked to detect
errors (an error here usualy indicates afile 1/O error).

Explicit defragmentation occurs incrementally under application control
during idle time. Each step is a small operation.

51

Configuring and managing database storage

Example

52

& For embedded SQL reference information, see "UL StoreDefragFini
function" on page 249, "UL StoreDefragl nit function" on page 249, and
"UL StoreDefragStep function™" on page 250. The embedded SQL functions
can also be called from the C++ API.

& For the Javainterface to this feature, see " Class JdbcDefraglterator” on
page 373.

To defragment UltraLite databases (C/C++):
1 Obtainap ul_store defrag info information block. For example,

p_ul _store defrag_info Defraglnfo;
...

db_init(&sqglca);

Defraglnfo = ULStoreDefraglnit(&sglca);

2 Duringidletime, cal UlStoreDefragStep to defragment a piece of the
database. For example,

ULStoreDefragStep(&sqlca, Defraginfo);
3 When complete, dispose of the defragmentation block. For example,
ULStoreDefragFini(&sglca, Defraginfo);

To defragment UltraLite databases (Java):

1 Cast aConnection to aJdbcConnection object. For example,

Connection conn = dh.connect();
JdbcConnection jconn = (JdbcConnection)conn ;

2 Cdl getDefraglterator() to obtain aJdbcDefraglter ator object. Foe
example:
JdbcDefraglterator defrag =
jconn.getDefraglterator();

3 Duringidletime, call ulStoreDefragStep() to defragment a piece of the
database.

defrag.ulStoreDefragStep();
In this embedded SQL sample, defragmentation occurs incrementally under

application control during idle time. Each defragmentation step is a small
operation.

Chapter 3 Designing UltraLite Applications

p_ul _store defrag_info Defraglnfo;

ide()
{
for(i = 0; i < DEFRAG |DLE STEPS; i++){
ULSt oreDefragStep(&sqlca, Defraglnfo);
if(SQLOODE != SQLE_NOCERRCR) break;
}
mai n()
{
db_init(&sqglca);
Defraglnfo = ULStoreDefraglnit(&sqglca);
11
/1 main application code,
/1l calls idl e() when appropriate...
/1
ULSt oreDef ragFi ni (&ql ca, Defraglnfo);
db_fini(&sqglca);
}

To defragment the entire store at once, you can call UL StoreDefragStepin a
loop until it returns ul_true. This can be an expensive operation, and you
must check SQLCODE to detect errors such asfile I/O errors.

53

Choosing an UltraLite development model

Choosing an UltraLite development model

54

There are three methods of developing Ultralite applications:

¢

¢

C++ APl Development using C or C++ with data access features using
aresult-set based API.

Embedded SQL Development using C or C++ with data access
features using embedded SQL statements.

Java Development using the Java programming language.

The decision whether to use Java or C/C++ development will be determined
primarily by your target platform. Here are some considerations when
choosing between embedded SQL and the C++ API:

¢

Embedded SQL is an industry standard programming method, while the
C++ APl isaproprietary API.

Embedded SQL gives more control in designing your application. If you
are experienced with embedded SQL development, you can design a
more efficient application using this method.

Many programmers are more familiar with API-based programmming.
The C++ API requires less learning for these devel opers.

The C++ API generates classes and associated methods for manipulating
the database. It enforces standardized function names and so can be a
quicker approach in terms of development time.

Chapter 3 Designing UltraLite Applications

Designing synchronization for UltraLite

applications

See also

Adding
synchronization

UltralL ite applications use MobiLink synchronization technology to share
data with a consolidated database and integrate into an enterprise information
system.

In the simplest scenario, an UltraL ite application synchronizes al its data
with the consolidated database. However, additional options are possible:

¢ Synchronize subsets of your data You can identify portions of the
data named publicationsin your UltralLite application to be
synchronized separately. Publications allow you to separate high-priority
items from lower-priority data.

& For moreinformation, see "Designing sets of datato synchronize
separately" on page 76.

¢ Mark data for download only You can carry out download-only
synchronizations. By combining this with publications, UltraLite
applications can get updates from the consolidate database efficiently,
and upload changes at a convenient time.

¢ Exclude tables from synchronization Y ou can maintain dataon the
Ultral ite database that is excluded from synchronization.

& For more information, see "Including non-synchronizing tablesin
Ultral ite databases" on page 76.

This section describes how certain features of MobiLink affect the design
decisions you make for UltraLite applications. For afull description of
MobiLink synchronization, see the MobiLink Synchronization User’'s Guide.
In particular:

¢ For more information on synchronization, see "Introducing MobiLink
Synchronization" on page 3 of the book MobiLink Synchronization
User’s Guide.

¢ For anintroduction to synchronization concepts, see " Synchronization
Basics' on page 9 of the book MobiLink Synchronization User’s Guide.

¢ For information about synchronization techniques, see " Synchronization
Techniques' on page 83 of the book MobiLink Synchronization User’s
Guide.

Adding MobiLink synchronization to an UltralLite application is a matter of
supplying arguments to afunction call. The details of the call, and the
synchronization options available to your application, depend on your target
platform.

55

Designing synchronization for UltraLite applications

& For more information, see " Adding synchronization to your
application” on page 94.

Supported synchronization streams

The following synchronization streams are supported:

Synchronization | Supported languages and platforms
stream

TCPI/IP C/C++ and Java. All platforms.

HTTP C/C++ and Java. All platforms.

HotSync Palm Computing Platform only.
ScoutSync Palm Computing Platform only.

& For alist of the supported target platforms under C/C++ and Java, see
"Supported platforms" on page 6.

The HotSync synchronization stream is the method used by many Palm OS
applications. ScoutSync is a synchronization technology licensed by Palm
Computing for incorporation into their HotSync Server.

Foreign key cycles

56

This section describes a specific limitation in Ultralite synchronization that
results from a series of tables linked together by foreign keys so that a cycle
isformed.

MobiLink synchronization from an UltraLite remote database requires that
all changes be committed to the consolidated database in one transaction. To
facilitate this single transaction for multiple tables, the inserts, updates, and
deletes for each table must be ordered so that operations for a primary table
come before the associated foreign table. This ensures that the insert in the
foreign table will have its foreign key referential integrity constraint satisfied
(likewise for other operations like delete).

The UltraLite analyzer automatically orders all the tablesin the remote
database so those primary tables are uploaded before foreign tables based on
the schema in the reference database. The ordering is always possible as long
asthere are no foreign key cyclesin the schema.

The figureillustrates a simple foreign key cycle between two tables.

Chapter 3 Designing UltraLite Applications

Example

employee
emp_id integer <pk>
manager_id integer
emp_fname char(20)
emp_lname char(20)
dept_id integer <fk>
street char(40)
emp_id = dept_head_id city char(20)
state char(4)
department Zip_code char(9)
dept_id integer <pk> —_ phone char(10)
dept_name char(40) -———— status char(1)
dept_head_id integer <fk> char(11)
numeric(20,3)

ss_number
salary

dept_id + dept_id start_date
termination_date
birth_date

bene_health_ins
bene_life_ins
bene_day_care
sex

date
date
date
char(1)
char(1)
char(1)
char(1)

If aforeign key cycle is detected by the UltraLite analyzer, the cycle must be
broken for the analyzer to successfully complete without any errors. The
foreign key cycle must be broken on both the reference database and the
consolidated database in order for synchronization transactions to be

successfully applied.

For an Adaptive Server Anywhere consolidated and reference database, one
of the foreign keys can be made to check on commit so that foreign key
referential integrity is checked during the commit phase rather than when the
operation isinitiated. Other database vendors may have similar methods but
if not, the schema must be redesigned to eliminate the foreign key cycle.

create table c (
idinteger not null primry key,
c_pk integer not null

)

create table p (
pk integer not null prinmary key,
c_id integer not null,

foreign key p_to c (c_id) references c(id)

)

alter table c

add foreign key c_to p (c_pk)
references p(pk)

check on commit;

57

Global autoincrement default column values

Global autoincrement default column values

Y ou can declare the default value of acolumn in areference database to be
of type GLOBAL AUTOINCREMENT. Y ou can use this default for any
column in which you want to maintain unique values, but it is particularly
useful for primary keys. This feature simplifies the task of generating unique
values in setups where data is being replicated among multiple databases,
typically by MobiLink synchronization.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contai ns the same number of
values. For example, if you set the partition size for an integer columnin a
database to 1000, one partition extends from 1001 to 2000, the next from
2001 to 3000, and so on.

& For information on declaring columns as global autoincrement in your
reference database, see "Declaring default global autoincrement columns' on

page 58.

To use globa autoincrement columns in your Ultral ite database, you must

first assign each copy of the database a unique global database identification
number. Ultral ite then supplies default values for the column only from the
partition uniquely identified by that database’s number. For example, if you
assigned a database in the above example the identity number 1, the default
values in that database would be chosen in the range 1001-2000. Another
copy of the database, assigned the identification number 2, would supply
default value for the same column in the range 2001-3000.

& For information on assigning global database identification numbers,
see "Setting the global database identifier" on page 59.

& For information on using global autoincrement values in Adaptive
Server Anywhere remote databases, see "Maintaining unique primary keys
using global autoincrement" on page 96 of the HdokiLink

Synchronization User’s Guide.

Declaring default global autoincrement columns

58

You declare default column values in the Adaptive Server Anywhere
reference database. When you build your UltraLite application, your
UltraLite database inherits the default column value. You can set default
values in your reference database by selecting the column properties in
Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a TABLE or ALTER TABLE statement.

Chapter 3 Designing UltraLite Applications

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition sizeis generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition sizeis
2'® = 65536; for columns of other types the default partition sizeis 2% =
4294967296. Since these defaults may be inappropriate it is best to specify
the partition size explicitly.

For example, the following statement creates a simple reference table with
two columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

CREATE TABLE custoner (
id INT DEFAULT GLCBAL AUTO NCREMENT (5000)
nane VARCHAR(128) NOT NULL
PR MARY KEY (id)

)

In the above example, the chosen partition size is 5000.

Default partition sizes for some data types are different in UltraL ite
applications than in Adaptive Server Anywhere databases. Declare the
partition size explicitly if you wish the reference database to behave in the
same manner as your UltralLite application.

&> For more information on GLOBAL AUTOINCREMENT, see
"CREATE TABLE statement" on page 350 of the book ASA SQL Reference
Manual.

Setting the global database identifier

When deploying an application, you must assign a different identification
number to each database. Y ou can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

The method of setting this identification number varies according to the
programming interface you are using.
+ To set the global database identifier (embedded SQL):

¢ Cdl the UL SetDatabasel D function. This function takes an argument
that indicates the identification number.

int n=123;
ULSet Dat abasel D(&sqglca, n);

59

Global autoincrement default column values

& For more information, see "UL SetDatabasel D function™ on
page 248.

% To set the global database identifier (C++ API):

¢ Cadl the UL Connection:: SetDatabasel D method. This method takes a
single integer argument that indicates the identification number.

int n = 123;
conn. Set Dat abasel D(n);

& For more information, see " SetDatabasel D method" on page 142.

% To set the global database identifier (Java):

1 Cadl the JdbcConnection.setDatabasel D method. This method takes a
single argument, which is the integer global identification value.

int n = 123;
conn. set Dat abasel D(n);

& For more information, see "setDatabasel D method" on page 368.

How default values are chosen

60

The global database identifier in each deployed Ultral ite application must be
et to a unique, non-negative integer before default values can be assigned.
These identification numbers uniquely identify the databases.

& For information, see " Setting the global database identifier" on page 59.

The range of default values for a particular databaseispn + 1 to p(n + 1),
where p isthe partition size and n is the global database identification
number. For example, if the partition size is 1000 and the global database
identification number is set to 3, then the range is from 3001 to 4000.

Ultral ite applications choose default values by applying the following rules:

¢ |If the column contains no values in the current partition, the first default
valueispn+ 1.

¢ |If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

¢ Default column values are not affect by valuesin the column outside of
the current partition; that is, by numberslessthan pn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

Chapter 3 Designing UltraLite Applications

Caution

Column values downloaded via MobiLink synchronization do not update
the default value counter. Thus, an error can occur should one MobiLink
client insert a value into another client’s partition. To avoid this problem,
ensure that each copy of your UltraLite application inserts values only in
its own partition.

If the global database identification number is set to the default value of
2147483647, aNULL value isinserted into the column. Should NULL
values not be permitted, the attempt to insert the row causes an error. This
situation arises, for example, if the column is contained in the table's primary
key.

Because the global database identification number cannot be set to negative
values, the values chosen are always positive. The maximum identification
number isrestricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new global database
identification number should be assigned to the database to allow default
values to be chosen from another partition. Attempting to insert the NULL
value causes an error if the column does not permit nulls.

Should the valuesin a particular partition become exhausted, you can assign
anew database identification number to that database. Y ou can assign new
database id numbersin any convenient manner. However, one possible
technique isto maintain a pool of unused database id values. Thispoal is
maintained in the same manner as a pool of primary keys.

& For information on determining whether the range of default valuesis
becoming exhausted, see " Detecting the number of available default values®
on page 62.

& For information on maintaining primary key uniqueness using explicit

primary key pools, see "Maintaining unique primary keys' on page 95 of the
book MobiLink Synchronization User’s Guide.

Determining the most recently assigned value

Y ou can retrieve the value that was chosen during the most recently insert
operation. Since these values are often used for primary keys, knowing the
generated value may let you more easily insert rows that reference the
primary key of the first row.

From embedded SQL., you can obtain the most recently assigned global
autoincrement default value using the following statement.

61

Global autoincrement default column values

select @@dentity

From the C++ API, the value is available using the GetL astl dentity()
method on the UL Connection object

Thereturned value is an unsigned 64-bit integer, database data type
UNSIGNED BIGINT. Since this statement only allows you to determine the
most recently assigned default value, you should retrieve this value soon
after executing the insert statement to avoid spurious results.

Occasionally, asingle insert statement may include more than one column of
type global autoincrement. In this case, the return valueis one of the
generated default values, but there is no reliable means to determine which
one. For this reason, you should design your database and write your insert
statements so as to avoid this situation.

Detecting the number of available default values

62

Default values are chosen from the partition identified by the global database
identification number until the maximum value is reached. When this state
has been reached or isimminent, you must assign the database a new
identification number.

The programming interfaces provide means of obtaining the proportion of

numbers that have been used. The return value is a short in the range 0-100
that represents the percent of values used thus far. For example, a value of 99
indicates that very few unused values remain and the database should be
assigned a new identification number.

« To find out the percent of values used (embedded SQL):

¢ Retrieve the proportion of used default values by calling the
UL GlobalAutincUsage function. This procedure takes no arguments. It
returns the maximum percent of used default values as a short in the
range 0-100.

short p;
p = ULd obal Auti ncUsage();

& For more information, see "ULGIlobalAutoincUsage function” on
page 241.

Chapter 3 Designing UltraLite Applications

< To find out the percent of values used (C++ API):

¢ Retrieve the proportion of used default values by calling the
UL Connection:: Global AutincUsage method. This method takes no
arguments. It returns the maximum percent of used default valuesasa
short in the range 0-100.

short p;
p = conn. d obal Auti ncUsage();

& For more information, see "GlobalAutoincUsage method" on
page 136.

+ To find out the percent of values used (Java):

¢ Retrieve the proportion of used default values by calling the
JdbcConnection.globalAutincUsage method. This method takes no
arguments. It returns the maximum percent of used default values as a
short in the range 0-100.

&~ For more information, see "globalAutoincUsage method" on
page 367.

63

Character sets in UltraLite

Character sets in UltraLite

Multi-byte
platforms

Sort orders

Synchronization

64

An UltralLite application uses the collating sequence of the reference
database if either of the following conditionsis met.

¢ Thereference database uses a single-byte character set.

¢ The native character encoding of the target device is multi-byte, the
reference database uses the same multi-byte character encoding, and the
UltraLite analyzer can find a compact representation for the collation
sequence used by the reference database.

An UltraLite application uses the native multi-byte character encoding of the
target platform for reasons of efficiency. When the reference database uses a
different character encoding, the UltraL ite application uses the default
collation of the target device.

For example, if you use a 932JPN reference database to build an UltraL ite
application for the Windows CE platform, the application will use Unicode
and the default Unicode collation information. If, instead, you use a 932JPN
reference database to build an application for the Japanese Palm Computing
Platform, then the UltraL ite application can inherit the collation information
because the native character encoding is the same as that of the reference
database.

If the character set is single byte, or the native character set of the target
device is the same as the character set of the reference database, columns that
are CHAR(n) or VARCHAR(n) compare and sort according to the collation
sequence of the reference database.

When you synchronize, the MobiLink synchronization server aways

trangl ates characters uploaded from your application database to Unicode and
passes them to your consolidated database server using the Unicode ODBC
API. The consolidated database server, or its ODBC driver, then performs
any trandation that may be required to convert them to the character
encoding of your consolidated database. This second translation will always
occur unless your consolidated database uses Unicode.

When information is downloaded, the consolidated database server converts
the characters to Unicode. The MobiLink Synchronization server then
automatically translates the characters, if necessary, to suit the requirements
of your UltraL ite application.

Chapter 3 Designing UltraLite Applications

Palm Computing
Platform

Windows CE

Java

When both UltraL ite application and consolidated database use the same
character encoding, no translation is necessary. If translation is necessary,
problems can arise when multiple character codesin your Ultral ite
application map to asingle Unicode value, or vice versa. In this event, the
MobiLink synchronization server translates in a consistent manner, but
behavior isinfluenced by the trand ation mechanism within the consolidated
database server.

At the time of printing, all single-byte Palm Computing Platform devices
uses a character set based on code page 1252 (the Windows US code page).
The default Adaptive Server Anywhere collation sequence (1252L atinl) is
appropriate for devel oping applications for the Palm Computing Platform.
Japanese Palm Computing Platform devices use 932JPN.

The Windows CE operating system uses Unicode. UltraL ite running on
Windows CE also uses Unicode to store CHAR(n) and VARCHAR(N)
columns. Adaptive Server Anywhere collating sequences define behavior for
8-bit ASCII character sets.

UltraLite for Windows CE uses the Adaptive Server Anywhere collating
sequence when comparing Unicode characters that have a corresponding
8-hit ASCII character in the collating sequence being used, allowing
accented characters to compare equal and sort with unaccented characters.
Unicode characters that have no corresponding 8-bit ASCII character use a
comparison of two Unicode values.

The error-handling objects SQL Exception and SQL War ning provide the
capability for Java applications to obtain error or warning messages. By
default, these messages are supplied in English.

Localized error and warning messages may be obtained in a non-English
language by setting the Java Locale to the appropriate language.

For example, to obtain French messages, the following code fragment might
be used:

java.util.Locale | ocale = new java.util.Locale("fr", "");
java.util.Local e.setDefault(locale);

The default Locale should be set at the start of the program. Once a message
is placed in an error-handling object, the language to be used for the message
is established for that execution of the program.

65

Character sets in UltraLite

66

CHAPTER 4
Developing

About this chapter

Contents

UltraLite Applications

This chapter presents an overview of the Ultralite devel opment process.

UltraL ite applications can be devel oped using either C/C++ or using Java.
Later chaptersin the book describe the specifics of each approach. This
chapter describes aspects common to all UltraLite application devel opment.

Topic Page
Introduction 68
Preparing a reference database 72
Designing your Ultralite database 76
Defining SQL statements for your application 80
Adding user authentication to your application 85
Generating the Ultral ite data access code 91
Developing multi-threaded applications 93
Adding synchronization to your application 94
Configuring devel opment tools for UltraLite development 102
Deploying UltraLite applications 104

67

Introduction

Introduction

UltraLite
development
models

Host and target
platforms

Multi-threaded
applications

68

UltralL ite supports the following development models:
¢ C++ agpplications using the UltraLite C++ API.

¢ C/C++ applications using embedded SQL.

¢ Javaapplications.

The overall development process for each model is similar, but the details are
different. This chapter describes those aspects of development that are
similar among the development models. It should be used together with the
chapter on the particular devel opment model you are using;:

¢ "Developing C++ API Applications' on page 121
¢+ "Developing Embedded SQL Applications' on page 193
¢+ "Developing UltraLite Java Applications' on page 337

UltraL ite applications are developed on a host platform, and deployed on a
target platform. The host platform is PC-based, and the target platformis
generally a handheld or embedded device.

To create an UltraLite application, you need to use a devel opment tool or
compiler that supports your target platform, together with the UltraLite
development tools. For example, you may want to use Metrowerks
CodeWarrior for Palm OS development, or Microsoft Visual C++ for
Windows CE devel opment.

& For information on supported host platforms, target platforms, and
development tools, see " Supported platforms' on page 6.

& For information specific to each target platform, see the following
chapters:

¢+ "Developing Applications for the Palm Computing Platform™ on
page 253.

¢ "Developing Applications for Windows CE" on page 293.
¢ "Developing Applications for VxWorks" on page 309.
¢ "Developing UltraLite Java Applications' on page 337.

Y ou can develop multi-threaded Ultral ite applications on those C/C++
platforms that support it (Windows, Windows CE, and VxWorks). You
cannot develop multi-threaded Ultral ite Java applications.

& For more information, see " Developing multi-threaded applications' on
page 93.

Chapter 4 Developing UltraLite Applications

The UltraLite development environment

When developing Ultral ite applications, you will be working with the
following tools.

¢

A reference database A reference database is an Adaptive Server
Anywhere database that serves asa model of the UltralLite database you
want to create. Y ou create this database yourself, using tools such as
Sybase Central.

Your UltraLite database is a subset of the columns, tables, and indexes,
in your reference database. The arrangement of tables and of the foreign
key relationships between them is called the database schema.

In addition to modeling the UltralLite database, you need to add the SQL
statements that are to be included in your UltraLite application to the
reference database.

& For more information, see "Preparing a reference database" on
page 72.

A supported development tool Y ou use a standard development tool
to develop UltraL ite applications. For the non-UltraL ite specific portions
of your application, such as the user interface, use your development

tool in the usual way. For the Ultral ite-specific data-access portions,
you also need to use the UltraL ite development tools.

It can be convenient to separate the data access code from the user
interface and internal logic of your application.

& For information on supported application development tools, see
"Supported platforms" on page 6.

UltraLite development tools Ultralite includes several tools for
development.

¢ The UltraLite generator Thisapplication uses Java classesin the
reference database to generate source code that implements the
underlying query execution, data storage, and synchronization
features of your application. The generator isrequired for al kinds
of UltraLite development. The Java classes in the database are
called the UltraLite Analyzer.

¢ The SQL preprocessor Thisapplicationisneeded only if you are
developing an UltraL ite application using embedded SQL. It reads
your embedded SQL source files and generates standard C/C++
files. Asit scans the embedded SQL sourcefiles, it also stores
information in the reference database that is used by the generator.

69

Introduction

UltraLite runtime libraries UltraLite includes aruntime library for
each target platform. On some platforms, thisis a static library that
becomes part of your application executable; on other platformsitisa
dynamic link library. For Java, theruntime library isajar file. UltraLite
includes all the header files and import files needed to use the runtime
libraries.

The UltraLite development process

70

The basic features of the development process are common to all
development models. The following diagram summarizes the key features.

Application

¢

v
Z . ////

!l\

Application
Source files

sSQL
statements

N A

Reference
Database

.

UltralLite
Generator

Generated
Source files

Compiler

Create areference database, which contains a superset of the tablesto be
included in your application. It may also contain representative data for
your application. This reference database is needed only as part of the
development process, and is not required by your final application.

Add the SQL statementsinto a special table in the reference database.
The way thisis accomplished is dependent on the devel opment model
you choose:

¢ If you are using the C++ API or Java, these statements are added to
your database using Sybase Central or a stored procedure.

Chapter 4 Developing UltraLite Applications

¢ If you are using embedded SQL, the SQL preprocessor adds the
statements to the reference database for you.

¢ Runthe UltraLite generator, which produces source files that include
code needed to execute your SQL statements, and code needed to define
the database schema for your Ultral ite application. This generated code
includes function callsinto the UltraL ite runtime library.

¢+ Create application source files. If you are using embedded SQL, the
SQL preprocessor reads your .sqc files and inserts the SQL statements
into the reference database for you.

+ Compile your application source files together with the generated source
files to produce your UltraL ite application.

Adding synchronization

Most Ultralite applications include synchronization to integrate their data
with data on a consolidated database. Adding synchronization to your
application is a straightforward task.

& For information on how to add synchronization to your application, and
the kinds of synchronization available, see " Adding synchronization to your
application” on page 94.

71

Preparing a reference database

Preparing a reference database

72

To implement the Ultral ite database engine for your application, the
UltraLite generator must have access to an Adaptive Server Anywhere
reference database. This database must contain the following information:

¢ Database schema The database objects used in your UltralLite
application, including tables and any indexes on those tables you wish to
use in your application.

& For moreinformation, see "Using an existing database as a
reference database" on page 74.

¢ Data (Optional) You can fill your reference database with datathat is
similar in quantity and distribution to the data you expect your UltraL ite
database to hold. The UltraLite analyzer automatically uses this
information to optimize the performance of your application.

& For moreinformation, see "Using an existing database as a
reference database” on page 74.

¢ Queries TheUltralLite system tables must contain any SQL statements
you wish to use in your application.

& For more information, see "Defining SQL statements for your
application” on page 80.

¢ Publications If you wish to add multiple synchronization options to
your application, you can do so using publications. Y ou also add
publications to your database if you wish to develop a C++ API
application without defining queries.

& For information on multiple synchronization options, see
"Designing sets of datato synchronize separately” on page 76. For
information on using publications for C++ API applications, see
"Defining UltraLite tables' on page 123.

¢ Database options Database options such as date formats and govern
some aspects of database behavior that can make applications behave
differently. The UltralLite database is generated with the same option
settings as those in the reference database.

For many purposes, you can leave all database options at their default
settings.

& For moreinformation, see " Setting database optionsin the
reference database" on page 73.

Chapter 4 Developing UltraLite Applications

Creating a reference database

Example

The analyzer uses the reference database as a template when constructing
your UltraL ite application.

<+ To create areference database:

1

Start with an existing Adaptive Server Anywhere database or create a
new database using the dbinit command.

& For more information on upgrading a database, see "Using an
existing database as a reference database" on page 74.

Add the tables and foreign key relationships that you need within your
application. Y ou can use any convenient tool, such as Sybase Central or
Sybase PowerDesigner Physical Architect (included with

SQL Anywhere Studio), or a more powerful database design tool such as
the complete Sybase PowerDesigner package.

Performance tip

Y ou do not need to include any datain your reference database. However,
if you populate your database tables with data representative of the data
you expect to be stored by atypical user of your application, the UltraLite
analyzer automatically uses this data to optimize the performance of your
application.

& For information about designing a database and creating a schema, see
"Designing Y our Database" on page 3 of the book ASA SQL User’s Guide.

1

Create a database.
From a command prompt, execute the following statement:
dbi nit pat h\ dbnane. db

Use Sybase Central to add tables for your UltraLite application, based
on your own needs.

Add your sample data. Interactive SQL includes an Import menu item
that allows several common file formats to be imported.

& For more information, see "Importing data" on page 429 of the
book ASA SQL User’s Guide.

Setting database options in the reference database

UltraLite does not support the getting or setting of option values.

73

Preparing a reference database

When the UltraLite application is generated, certain option values in the
reference database affect the behavior of the generated code. The following
options have an effect:

+ Date format

¢+ Date order

¢ Nearest_century

¢ Precision

¢ Scde

¢ Time format

¢ Timestamp_format

By setting these options in the reference database, you can control the
behavior of your Ultral ite database. The option setting in your reference
database is used when generating your UltralL ite application.

Using an existing database as a reference database

74

Many UltralL ite applications synchronize data via MobiLink with a central,
master store of data called the consolidated database. Do not confuse a
reference database with a consolidated database. The reference database for
the UltralLite application is generally a different database from the
consolidated database.

Only an Adaptive Server Anywhere consolidated database can also be used
as areference database. If your consolidated database is of another type, you
must create an Adaptive Server Anywhere reference database. Even if your
consolidated database is Adaptive Server Anywhere, you must creste a
separate reference database if you wish to have a different schema or use
different settings in your UltralL ite application.

Y ou can choose any of the supported ODBC-compliant database
management products to create and manage the consolidated database,
including Adaptive Server Enterprise, Adaptive Server Anywhere, Oracle,
Microsoft SQL Server, and IBM DB2.

If you have an existing Adaptive Server Anywhere database that you will be
using as a consolidated database, you could make a copy of it for your
reference database.

To create a reference database from a non-Adaptive Server
Anywhere database:

1 Create anew Adaptive Server Anywhere database.

Chapter 4 Developing UltraLite Applications

Y ou can use the dbinit command or use Sybase Central. The database
must be Java-enabled, which is the default setting.

2 Add the tables and foreign-key relationships that you need within your
application using your consolidated database as a guide.

Y ou can use atool such as Sybase Physical Data Architect to re-
engineer the consolidated database.

3 Populate your database tables with representative data from your
consolidated database.

Y ou need not transfer al the information in your consolidated database,
only arepresentative sample. In the early stages of development, you do
not need sample data at all. For production applications, you may want
to use representative data because access plans of Ultralite queries are
based on the distribution of datain the reference database.

& For moreinformation on creating reference databases from non-
Adaptive Server Anywhere databases, see "Migrating databases to Adaptive
Server Anywhere" on page 449 of the book ASA SQL User’s Guide.

75

Designing your UltraLite database

Designing your UltralLite database

Thetables to be included in your UltraLite database are defined by the SQL
statements you add to your reference database or, if you use publications and
the C++ API development model, by the publications you add to your
reference database.

Theindexesto beincluded in your Ultralite database are also determined by
the indexes defined in the reference database.

This section describes other aspects of Ultral ite database design, including
non-synchronizing tables, separate data sets for synchronization such as
high-priority synchronization, and read-only tables.

Including non-synchronizing tables in UltraLite databases

By default, all tablesin an UltraLite database are synchronized to the
consolidated database. Y ou can include tables in your Ultral ite database that
are excluded from synchronization, but you must explicitly identify these
tables when you create your reference database.

Tables with names ending in nosync are excluded from synchronization. Y ou
can use these tables for persistent data that is not related to the consolidated
database. Other than being excluded from synchronization, you can use these
tables in exactly the same way as other tables in the UltraLite database.

Y ou can alternatively use publications to achieve the same effect. For more
information, see "Designing sets of data to synchronize separately” on
page 76.

Designing sets of data to synchronize separately

76

The schema of an UltraLite database is defined by the queriesincluded in the
application. Y ou can add publications to the reference database to define sets
of datathat can be synchronized separately. If you do not use publicationsto
define which changes are to be synchronized, all changes are synchronized.

Publications are used for several purposesin SQL Anywhere. A publication
consists of a set of articles. In general, each article can be awhole table, or
can define a subset of the datain atable.

Articles defined for Ultral ite applications can use row subsets by supplying
a WHERE clause, but cannot use column subsets or the SUBSCRIBE BY
clause. Articlesin UltraLite publications governing HotSync or ScoutSync
synchronization cannot use a WHERE clause.

Chapter 4 Developing UltraLite Applications

% To synchronize subsets of data from an UltraLite database:

1

Create publications representing the data you wish to synchronize.

& For more information, see " Creating publications for UltralLite
databases' on page 77.

Run the UltraL ite generator, specifying the publications on the -v
command-line option.

& For more information, see "The UltraLite generator" on page 419.
When calling the synchronization function, specify the publication.

If you specify no publication, all changes to the database are
synchronized. If you specify one or more publications, only changes that
fall within one or more of the listed publications are synchronized.

& For moreinformation, see "publication synchronization parameter"”
on page 386.

Creating publications for UltralLite databases

For UltraLite synchronization, each article in a publication may include
either a complete table or may include a WHERE clause.

< To publish data from an UltraLite reference database (Sybase

Central):

1 Connect to the database as a user with DBA authority.

2 Open the Publications folder and double-click Add Publication.

3 Typeaname for the new publication. Click Next.

4 Onthe Tablestab, select atable from the list of Matching Tables.
Click Add. Thetable appearsin the list of Selected Tables on the right.

5 Add additional tables as required. The order of the tablesis not
important.

6 If necessary, click the Where tab to specify the rowsto beincluded in
the publication. Y ou cannot specify column subsets. If you are using
HotSync or ScoutSync synchronization, do not specify a WHERE
clause.

7 Click Finish.

+ To publish data from an UltraLite reference database (SQL):

1

Connect to the database as a user with DBA authority.

e

Designing your UltraLite database

2 Execute a CREATE PUBLICATION statement that specifies the name
of the new publication and the table you want to publish.

&> For more information, see "CREATE PUBLICATION statement”
on page 314 of the book ASA SQL Reference Manual.

Synchronizing high-priority changes

Publications permit the synchronization of specific portions of your UltraLite
database. Y ou can combine publications with upload-only or download-only
synchronization to synchronize high-priority changes efficiently. Both
upload-only and download-only synchronization are less time-consuming
than two-way synchronization.

& For moreinformation, see " Creating publications for UltraLite
databases" on page 77, and "upload_only synchronization parameter” on
page 396.

Including read-only tables in an UltraLite database

78

Some applications include tablesin the Ultral ite database that are not
updated locally. Price lists and company policies are two examples. You can
synchronize these tables efficiently by including them in a publication, and
synchronizing the publication using download-only synchronization.
Download-only synchronization is |ess time-consuming than a two-way
synchronization, as no datais uploaded.

To use download-only synchronization, you must ensure that the data is not
changed locally. If any datais changed locally, synchronization fails with a
SQLE_DOWNLOAD_CONFLICT error.

Unlike for two-way synchronization, you do not have to commit all changes
to the UltraL ite database before download-only synchronization.
Uncommitted changes to tables not involved in synchronization are not
uploaded, and so there incomplete transactions do not cause problems.

& For information on download-only synchronization, see
"download_only synchronization parameter” on page 383.

Chapter 4 Developing UltraLite Applications

Using client-specific data to control synchronization

Some UltraL ite applications require client-specific data that control
synchronization, but which are not needed on the consolidated database. For
example, you may wish your UltralLite applications to indicate which of a
number of channels or topics they are interested in, and use this information
to download the appropriate rows.

If you create atable in your UltralLite database with a name ending in
allsync, al rows of that table are synchronized at each synchronization,
whether or not they have been changed since the last synchronization.

Y ou can store user-specific or client-specific datain allsync tables. If you
upload the datain the table to a temporary table in the consolidated database
on synchronization, you can use the data to control synchronization by your
other scripts without having to be maintained in the consolidated database.

79

Defining SQL statements for your application

Defining SQL statements for your application

All the data access instructions for your application are defined by adding
SQL statements to the reference database.

If you use the C++ API, you can also use SQL Remote publications to define
data access methods. For information on using publications, see " Defining
UltraLite tables' on page 123.

If you are using embedded SQL, the SQL preprocessor carries out the tasks
in this section for you.

Creating an UltraLite project

80

When you add SQL statements to a reference database, you assign them to
an UltraLite project. By grouping them this way, you can develop multiple
applications using the same reference database.

When the UltralL ite generator runs against a reference database to generate
the database source code files, it takes a project name as an argument and
generates the code for the SQL statementsin that project.

Y ou can define an UltraL ite project using Sybase Central or by directly
calling a system stored procedure.

If you are using embedded SQL , the SQL preprocessor defines the Ultral ite
project for you and you do not need to create it explicitly.

To create an UltraLite project (Sybase Central):

1 From Sybase Central, connect to your reference database.

& For ingtructions on using Sybase Central, see " Connect to the
sample database" on page 53 of the book ASA Getting Started.

In the left pane, open the database container.

In the left pane, open the UltraLite Projects folder.
In the right pane, double-click Add UltraLite Project.
The UltraLite Project Creation wizard appears.

5 Enter an UltraLite project name and click OK to create the project in the
database.

& For information on UltraLite project naming rules, see
"ul_add_project system procedure" on page 412.

Chapter 4 Developing UltraLite Applications

% To create an UltraLite project (SQL):

¢ From Interactive SQL or another application, enter the following
command:

call ul _add_project('project-nane)
where project-name is the name of the project.

& For moreinformation, see "ul_add_project system procedure” on
page 412.

+ To create an UltraLite project (embedded SQL):

¢ If you are using the embedded SQL development model, specify the
UltraL ite project name on the SQL Preprocessor command line, and the
preprocessor adds the project to the database for you.

& For more information, see " Preprocessing your embedded SQL
files' on page 201.

Notes Ultral ite project names must conform to the rules for database identifiers. If
you include spaces in the project name, do not enclose the name in double
guotes, as these are added for you by Sybase Central or the stored procedure.

& For more information, see "ldentifiers' on page 7 of the book ASA SQL
Reference Manual.

Adding SQL statements to an UltraLite project

Each UltraL ite application carries out a set of data access requests. These
reguests are implemented differently in each development model, but the
data access requests are defined in the same way for each model.

Y ou define the data access requests that an Ultralite application can carry
out by adding a set of SQL statements to the UltralL ite project for that
application in your reference database. The Ultral ite generator then crestes
the code for a database engine that can execute the set of SQL statements.

In the C++ API, you can also use SQL Remote publications to define data
access methods. For information on using publications, see "Defining
UltraLite tables' on page 123.

You can add SQL statements to an UltraL ite project using Sybase Central, or
by directly calling a system stored procedure. If you are using embedded
SQL, the SQL preprocessor adds the SQL statements in your embedded SQL
source files to the reference database for you.

81

Defining SQL statements for your application

82

% To add a SQL statement to an UltraLite project (Sybase Central):

1

ga b~ W N

(o]

From Sybase Central, connect to your reference database.

& For ingtructions on using Sybase Central, see " Connect to the
sample database" on page 53 of the book ASA Getting Started.

In the left pane, open the database container.

In the left pane, open the UltraLite Projects folder.

Open the project for your application.

Double-click Add UltraLite Statement.

The UltraLite Statement Creation wizard appears.

Enter a short, descriptive name for the statement, and click Next

Enter the statement itself, and click Finish to add the statement to the
project.

Y ou can test the SQL statements against the database by right-clicking
the statement and choosing Execute From Interactive SQL from the
popup menu.

& For information on what kinds of statement you can use, see
"Writing UltraLite SQL statements" on page 83.

+ To add a SQL statement to an UltraLite project (SQL):

¢

From Interactive SQL or another application, enter the following
command:

call ul _add_statenent(' project-nane,
' statenent - nane’ ,
' SQ-statenent’)

where project-name is the name of the project, statement-name is a short
descriptive name, and SQL-statement is the actual SQL statement.

& For moreinformation, see "ul_add_statement system procedure”
on page 411.

+ To add a SQL statement to an UltraLite project (embedded SQL):

¢

If you are using the embedded SQL development model, specify the
UltraL ite project name on the SQL Preprocessor command line.

No statement name is used in embedded SQL devel opment.

& For more information, see " Preprocessing your embedded SQL
files' on page 201.

Chapter 4 Developing UltraLite Applications

Notes

Statement names should be short and descriptive. They are used by the
Ultral ite generator to identify the statement for use in Java or in the
C++ API. For example, a statement named ProductQuery generates a
C++ API class named ProductQuery and a Java constant named
PRODUCT_QUERY. Names should be valid SQL identifiers.

The SQL statement syntax is checked when you add the statement to the
database, and syntax errors give an error message to help you identify
mistakes.

Y ou can use Sybase Central or ul_add_statement to update a statement in a
project, in just the same way as you add a statement. If a statement already
exists, it is overwritten with the new syntax. Y ou must regenerate the
UltraLite code whenever you modify a statement.

Writing UltraLite SQL statements

How to supply
double quotes

Using variables
with statements

This section describes what SQL statements you can add to an UltralLite
project, and describes how to use placeholdersin your SQL statements.

& For information on the range of SQL that you can use, see "SQL
features and limitations of Ultralite applications” on page 437.

The SQL statement that you enter, whether into Sybase Central or as an
argument to ul_add_statement, is added to the reference database as a
string. It must therefore conform to the rules for SQL strings.

Y ou must escape some charactersin your SQL statements using the
backslash character.

& For information on SQL strings, see "Strings' on page 9 of the book
ASA SQL Reference Manual.

For most insert or update statements, you do not know the new values ahead
of time. Y ou can use question marks as placeholders for variables, and
supply values at run time:

cal | ul _add_stat ement (
" Product App’ ,
" AddCap’ ,
"INSERT I NTO \"DBA\". product (id, nane, price)
VALUES(2, ?, 2)’
)

Placeholders can also be used in the WHERE clause of queries:

83

Defining SQL statements for your application

84

call ul _add_statenent (

" Product App’ ,

" Product Query’,

"SELECT id, name, price
FROM \ "DBA\ " . pr oduct
WHERE price > ?

)

The backslash characters are used to escape the double quotes.

In embedded SQL, you use host variables as placeholders. For more
information, see "Using host variables" on page 209.

For SQL statements containing placeholders, an extra parameter on the Open
or Execute method of the generated C++ class is defined for each parameter.
For Java applications, you use the JDBC set methods to assign values for the
parameters.

Chapter 4 Developing UltraLite Applications

Adding user authentication to your application

Ultral ite provides an optional built-in user authentication scheme. You can
take advantage of this scheme to authenticate users before allowing them to
connect to the Ultral ite database. By default, Ultral ite databases have no
user authentication mechanism.

The UltraLite user authentication scheme does not provide the permissions
features implemented in multi-user database systems and in MobiLink.

& For ageneral description of Ultralite user authentication, see "User
authentication for Ultralite databases' on page 442.

When you create an UltraL ite database with user authentication enabled, one
authenticated user is created, with user ID DBA and password SQL. UltraLite
permits up to four different usersto be defined at atime, with both user ID
and password being less than 16 characters long. Each user has full accessto
the database once successfully authenticated.

The case sensitivity of the UltraLite user ID and password is determined by
the reference database. If the reference database is case insensitive (the
default) then the Ultral ite database is also case insensitive, in cluding user
authentication.

Enabling user authentication

Enabling user authentication requires the application to supply avalid
UltraLite user ID and password when connecting to the UltraL ite database. If
you do not explicitly enable user authentication, UltralLite does not
authenticate users.

« To enable user authentication (embedded SQL):

¢ Cdl ULEnableUser Authentication before calling db_init. For
example:

app() {
tli.EnabIeUserAuthentication(&sqlca);
db_init(&sqglca);

Thecall to db_init precedes all other database activity in the
application.

85

Adding user authentication to your application

% To enable user authentication (C++ API):

1 Definethe compiler directive UL_ENABLE _USER_AUTH when
compiling ulapi.cpp.

2 Cdl ULEnableUser Authentication before opening the database. For
example:

ULDat a db;

ULEnableUserAuthentication(&sglca);
db.open();

+ To enable user authentication (Java):

¢ Cadl the JdbcSupport.enableUser Authentication method before
creating a new database object: For example:

JdbcSupport.enableUserAuthentication();
java.util.Properties p = new java.util.Properties();
p.put("persist", “file");

SampleDB db = new SampleDB(p);

&~ Once you have enabled user authentication, you must add user
management code to your application. For more information, see "Managing
user |Ds and passwords" on page 86.

Managing user IDs and passwords

There is acommon sequence of events to managing user 1Ds and passwords.

1 New users have to be added from an existing connection. As all
Ultral ite databases are created with a default user ID and password of
DBA and SQL, respectively, you must first attempt to connect asthis
initial user and implement user management only upon successful
connection.

2 You cannot change a user I1D: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltralLite database.

3 To change the password for an existing user ID, call the same function
asadding auser ID. Thisfunction is UL GrantConnectT o (embedded
SQL), UL Connection.GrantConnectTo (C++ API), or
JdbcDatabase.grant (Java).

Palm Computing Applications on the Palm Computing Platform do not terminate. If you wish

Platform to authenticate users whenever they return to an application from some other
application, you must include the prompt for user and password information
in your PilotM ain routine.

86

Chapter 4 Developing UltraLite Applications

Embedded SQL user authentication example

The following code fragment performs user management and authentication
for an embedded SQL UltralL ite application.

A complete sample can be found in the Samples\UltraLitelesqglauth
subdirectory of your SQL Anywhere directory. The code below is taken from
Samples\UltraLitelesqglauth\sample.sqc.

app() {

/* Declare fields */

EXEC SQL BEG N DECLARE SECTI O\

char uid[31];
char pwd[31];

EXEC SQ. END DECLARE SECTI O\
ULEnabl eUser Aut henti cati on(&sqglca);
db_init(&sqglca);

EXEC SQL CONNECT "DBA" | DENTI FI ED BY "SQ":
i f(SQLOODE == SQLE_NCERRCR) {

}
I

printf("Enter new user |ID and password\n");
scanf("% %", uid, pwd);
ULG ant Connect To(&sql ca,
UL_TEXT(uid), UL_TEXT(pwd));
i f(SQLOODE == SQE_NCERRCR) {
/] new user added: renove DBA
ULRevokeConnect Fron{ &sql ca, UL_TEXT("DBA"'));

}
EXEC SQL DI SCONNECT;

Prompt for password

printf("Enter user |ID and password\n");
scanf("% %", uid, pwd);
EXEC SQ CONNECT :uid | DENTI FI ED BY : pwd;

The code carries out the following tasks:

1

ga A W N

Enable user authentication by calling UL EnableUser Authentication.
Initiate database functionality by calling db_init.

Attempt to connect using the default user ID and password.

If the connection attempt is successful, add a new user.

If the new user is successfully added, delete the DBA user from the
Ultral ite database.

Disconnect. An updated user ID and password is now added to the
database.

Connect using the updated user ID and password.

87

Adding user authentication to your application

& For more information, see "UL GrantConnectTo function" on page 242,
and "UL RevokeConnectFrom function” on page 248.

C++ APl user authentication example

88

The following code fragment performs user management and authentication
for aC++ API UltralLite application.

A complete sample can be found in the Samples\UltraLite\apiauth
subdirectory of your SQL Anywhere directory. The code below is taken from
Samples\UltraLitelapiauth\sample.cpp.

ULEnabl eUser Aut henti cation(&sqglca);
db. Open()
i f(conn.Qpen(&db,
UL_TEXT("dba"),
UL_TEXT("sql™))){
/1 pronpt for new user |ID and password
printf("Enter new user |ID and password\n");
scanf("% %", uid, pwd);
i f(conn.GantConnect To(uid, pwd)){
// new user added, renove dba
conn. RevokeConnect Fron(UL_TEXT("dba"));

conn. d ose();
}
/1 regul ar connection
printf("Enter user ID and password\n");
scanf("% %", uid, pwd);
i f(conn.pen(&b, uid, pwd)){

The code carries out the following tasks:

1

A WON

6

Initiate database functionality by opening the database object.
Attempt to connect using the default user ID and password.
If the connection attempt is successful, add a new user.

If the new user is successfully added, delete the DBA user from the
Ultral ite database.

Disconnect. An updated user ID and password is now added to the
database.

Connect using the updated user ID and password.

& For more information, see " GrantConnectTo method" on page 137, and
"RevokeConnectFrom method" on page 141.

Chapter 4 Developing UltraLite Applications

Java user authentication example

The following code fragment performs user management and authentication
for an UltraLite Java application.

A complete sample can be found in the Samples\UltraLiteljavaauth
subdirectory of your SQL Anywhere directory. The code below is based on
that in Samples\UltraL ite\javaauth\Sample.java.

JdbcSupport . enabl eUser Aut henti cati on();

/'l Create database environment

java.util.Properties p = new java.util.Properties();
p.put("persist", "file");

Sanpl eDB db = new Sanpl eDB(p);

// Get new user |D and password
try{
conn = db. connect ("dba", "sql");
/1 Set user |ID and password
/1 a real application would pronpt the user.
uid = "50";
pwd = "pwd50";

db.grant(uid, pwd);
db. revoke("dba");
conn. cl ose();
}
catch(SQLException e){
/1 dba connection failed - pronpt for user ID and

passwor d
uid = "50";
pwd = "pwd50";
/] Connect

conn = db.connect(uid, pwd);
The code carries out the following tasks:
1 Opening the database object.
Attempt to connect using the default user ID and password.
If the connection attempt is successful, add a new user.
Delete the default user from the UltralLite database.

Disconnect. An updated user ID and password is now added to the
database.

ga A W N

6 Connect using the updated user ID and password.

& For more information, see " GrantConnectTo method" on page 137, and
"RevokeConnectFrom method" on page 141.

89

Adding user authentication to your application

Sharing MobiLink and UltraLite user IDs

90

Although UltraLite user IDs and MobiLink user authentication mechanisms
are separate, you may wish to provide your end users with asingle user ID
and password that provides both MobiLink and Ultral ite user authentication.
To share user IDs and passwords, store them in variables and use the same
variable in the UltralL ite user authentication calls and the synchronization
call.

Y ou can design your application so that, if passwords are reset at a MobiLink
consolidated site, your application prompts for the new password.

To prompt for a new MobiLink/UltraLite password:

1 Savetheuser ID and password in variables.

2 Synchronize.

3 If synchronization fails because the user was not authenticated, prompt
the user for a new password.

4 Update the UltraLite user’s password using the appropriate function or
method:

¢ ULGrantConnectTo (embedded SQL)
¢ Connection.GrantConnectTo method (C++ API).
¢ JdbcDatabase.grant method (Java)

5 Update the synch_info structure and synchronize again.

& For information on MobiLink user authentication, see "Authenticating
MobiLink Users' on page 251 of the book MobiLink Synchronization User’s
Guide.

Chapter 4 Developing UltraLite Applications

Generating the UltralLite data access code

To generate the code for storing and accessing the Ultral ite database, the
UltraLite generator analyzes your reference database and the SQL
statements you use in your application. It does so using a set of Java classes
that run inside your reference database, called the UltralL ite analyzer.

The UltraLite analyzer generates code that implements data access and
storage for your application. It is asingle application that can generate either
C/C++ or Java code, depending on the command-line options you supply.

The data storage code includes only those tables and columns of the
reference database that you use in your application. Additionaly, the
analyzer includes indexes present in your reference database whenever they
improve the efficiency of your application.

The data access code includes only those SQL statements that you have
added to the project in the reference database.

Theresult is a custom database engine tailored to your application. The
engine is much smaller than a general -purpose database engine because the
analyzer includes only the features your application uses.

Using the UltraLite generator

The UltraL ite generator is a command-line application. It takes a set of
command-line options to customize the behavior for each project.

% To run the UltraLite generator:
¢ Enter the following command at a command-prompt:
ulgen—c" connection-string" options
where options depend on the specifics of your project.

The UltraLite generator command-line customizes its behavior. The
following command-line switches are used across development models:

¢ -c Youmust supply aconnection string, to connect to the reference
database.

& For information on Adaptive Server Anywhere connection strings,
see "Connection parameters' on page 70 of the book ASA Database
Administration Guide.

¢ -f Specify the output file name.

¢ - Specify the UltraLite project name.

91

Generating the UltraLite data access code

Which databases
contain the
UltraLite analyzer?

& For moreinformation on Ultral ite generator options, see"The
Ultral ite generator" on page 419.

If you are using embedded SQL, and if you need to run only a single source
file through the SQL preprocessor, you can instruct the preprocessor to also
run the Ultral ite generation process as a shortcut.

& For more information, see " Preprocessing your embedded SQL files'
on page 201.

The generator relies on a current version of the UltraLite analyzer classes
being installed into the reference database. If you have upgraded your
UltraL ite software, you must also upgrade the reference database so that it
contains the new analyzer classes.

Older databases, created with previous versions of Adaptive Server
Anywhere, may not contain any version of the analyzer. Y ou can upgrade
these older databases using the Upgrade utility.

& For more information about upgrading an older Java-enabled database,
see "Preparing a reference database" on page 72.

Error on starting the analyzer

92

Either sqglpp or ulgen can report the error message Unable to use Java in the
database when these utilities are unable to run the analyzer. The UltraLite
analyzer isaJava class that is added to your reference database when it is
initialized. For the analyzer to run, the database must have been initialized
with Java classes and the database engine must be able to start the Java
support in Adaptive Server Anywhere.

The following situations may cause this error to happen:
¢ Thedatabase was not initialized with Java classes.

¢ The Adaptive Server Anywhere database server was not started with a
cache of sufficient size. This should not generally be a problem as the
database server can dynamically increase its cache size.

¢ SQL Anywhere Studio was moved to a new directory without
uninstalling and reinstalling. In this case, there may be registry entries
pointing to the old location.

¢ Theremay be mismatched DLLs or mismatched Java jar files. This can
happen if you copy files from a maintenance release or emergency bug
fix, but miss copying all thefiles.

Chapter 4 Developing UltraLite Applications

Developing multi-threaded applications

Y ou can develop multi-threaded UltralLite C or C++ applications on the
Windows, Windows CE, and VxWorks platforms. Y ou cannot develop
multi-threaded UltralL ite applications on the Palm Computing Platform, as
the platform does not support such applications.

Y ou can also develop multi-threaded UltraL ite Java applications.

Multi-threaded Each thread of a multi-threaded application must make its own call to
embedded SQL db_init(). A SQLCA cannot be shared among different threads.
applications Consequently, each thread must have separate connections and separate

transactions from other threads.

& For more information, see "db_init function" on page 231.

Multi-threaded Each thread of a multi-threaded application must make its own objects,
C++ API including the UL Data, UL Connection, UL Table, UL Statement and
applications UL ResultSet objects.

& For more information, see "Open method" on page 146.

Multi-threaded The UltraLite Java runtime library is thread-safe. Users of the Sun JavaVM

UltraLite Java must use version 1.2 or later to run multi-threaded Ultral ite applications.

applications Users of the Jeode VM on Pocket PC and the IBM Java VM can run multi-
threaded UltraL ite applications even though these VM s are based on JDK
1.1.8.

The entire runtime is treated as a single critical section, only allowing one
thread to enter it at atime.

Connections cannot be shared among threads: each Java thread must obtain

its own JDBC connection to the database and statements used by a Java

thread for must be created with the thread’s own connection. Any one thread
can have multiple connections.

& For more information, see "Using the UltraLite JdbcDatabase.connect
method" on page 344.

93

Adding synchronization to your application

Adding synchronization to your application

Overview

Synchronization
parameters

Synchronization is a key feature of many UltraLite applications. This section
describes how to add synchronization to your application.

The specifics of each synchronization is controlled by a set of
synchronization parameters. These parameters are gathered into a structure
(C/C++) or object (Java), which is then supplied as an argument in a function
call to synchronize. The outline of the method is the same in each
development model.

To add synchronization to your application:

1 Initializethe structure (C/C++) or object (Java) that holds the
synchronization parameters.

& For information, see "Initializing the synchronization parameters’
on page 94.

2 Assign the parameter values for your application.

& For information, see " Synchronization stream parameters' on
page 399.

3 Cdl the synchronization function, supplying the structure or object as
argument.

& For information, see "Invoking synchronization" on page 96.

Y ou must ensure that there are no uncommitted changes when you
synchronize. For more information, see "Commit all changes before
synchronizing" on page 97.

Synchronization specifics are controlled through a set of synchronization
parameters. For information on these parameters, see " Synchronization
stream parameters’ on page 399.

Initializing the synchronization parameters

94

The synchronization parameters are stored in a C/C++ structure or Java
object.

In C/C++ the members of the structure may not be well-defined on
initialization. Y ou must set your parametersto their initial values with a call
to aspecia function. The synchronization parameters are defined in a
structure declared in the Ultral ite header file ulglobal.h.

Chapter 4 Developing UltraLite Applications

& For acomplete list of synchronization parameters, see " Synchronization
parameters’ on page 380.

% To initialize the synchronization parameters (embedded SQL):
¢ Cdl the ULInitSynchinfo function. For example:

auto ul _synch_info synch_info;
ULI ni t Synchl nfo(&synch_info);

« To initialize the synchronization parameters (C++ API):

¢ Cdl thenitSynchlnfo() method on the Connection object. For
example:

auto ul _synch_info synch_info;
conn. I ni t Synchl nfo(&synch_info);

+ To initialize the synchronization parameters (Java):
¢ Create aUISynchOptions object. For example:
U SynchOpti ons synch_options = new U SynchOptions();

Once the structure or object isinitialized, you must set the values to meet
your particular requirements.

& For information on the individual parameters, see " Synchronization
stream parameters’ on page 399.

Setting synchronization parameters: C/C++ examples

& For Java examples, see "Initiating synchronization" on page 353.

The following code fragment initiates TCP/IP synchronization in an
embedded SQL application. The MobiLink user nameisBetty Best, with
password Twent yFour , the script version isdef aul t , and the MobiLink
synchronization server isrunning on the host machinet est . i nternal , on
port 2439:

auto ul _synch_i nfo synch_i nf o;
ULI ni t Synchl nfo(&ynch_info);
synch_i nfo. user _name = UL_TEXT("Betty Best");
synch_i nfo. password = UL_TEXT(" Twent yFour");
synch_i nfo.version = UL_TEXT("default");
synch_i nfo. stream = ULSocket Strean();
synch_i nfo. stream parns =

UL_TEXT("host =t est.internal; port=2439");
ULSynchroni ze(&sqlca, &synch_info);

95

Adding synchronization to your application

The following code fragment initiates TCP/IP synchronization in a C++ API
application. The MobiLink user nameis 50, with an empty password, the
script version is cust db, and the MobiLink synchronization server is
running on the same machine as the application (I ocal host), on the default
port (2439):

auto ul _synch_i nfo synch_i nf o;
conn. I nit Synchl nfo(&synch_info);
synch_i nfo.user_name = UL_TEXT("50");
synch_i nfo.version = UL_TEXT("custdb");
synch_i nfo. stream = ULSocket Strean() ;
synch_i nfo. stream parns =

UL_TEXT("host =l ocal host");
conn. Synchroni ze(&synch_info);

The following code fragment for an embedded SQL application on the Palm
Computing Platform is called when the user exits the application. It allows
HotSync synchronization to take place, with a MobiLink user name of 50, an
empty password, a script version of cust db. The HotSync conduit
communicates over TCP/IP with a MobiLink synchronization server running
on the same machine as the conduit (I ocal host), on the default port (2439):

auto ul _synch_i nfo synch_i nf o;
ULI ni t Synchl nfo(&ynch_info);
synch_i nfo. nane = UL_TEXT("Betty Best");
synch_info.version = UL_TEXT("defaul t");
synch_i nfo. stream = ULCondui t Strean();
synch_i nfo.streamparns =

UL_TEXT(" st r ean¥t cpi p; host =l ocal host");
ULPal nExit (&sql ca, &synch_info);

Invoking synchronization

96

The details of how to invoke synchronization depends on your target
platform and programming language, and also on the particular
synchronization stream.

+ To invoke synchronization (TCP/IP, HTTP, or HTTPS streams):

¢ When using embedded SQL, call UL InitSynchinfo toinitialize the
synchronization parameters, and call UL Synchronize to synchronize.
or
When using the C++ API, use the Connection.l nitSynchinfo() method
to initialize the synchronization parameters, and
Connection.Synchronize() method to synchronize. See " Synchronize
method" on page 143.

Chapter 4 Developing UltraLite Applications

or
When using Java, construct anew UL Synchlnfo object to initialize the
synchronization parameters, and use the
JdbcConnection.synchronize() method to synchronize. See " Adding
synchronization to your application” on page 352.

+ To invoke synchronization (HotSync or ScoutSync streams):

¢ Inembedded SQL, use UL InitSynchinfo to initialize the
synchronization parameters, and call UL PalmExit and UL PalmLaunch
functions to manage synchronization.
or
In the C++ API, use the UL Connection.I nitSynchinfo to initialize the
synchronization parameters, and call UL Data.PalmExit and
UL Data.PalmL aunch functions to manage synchronization.

& For moreinformation on the embedded SQL functions, see
"ULPamExit function" on page 244, and "ULPamLaunch function" on
page 245. For more information on the C++ API methods, see "PalmExit
method" on page 147, and " PalmLaunch method" on page 148.

The synchronization call requires a structure that holds a set of parameters
describing the specifics of the synchronization. The particular parameters
used depend on the stream.

Commit all changes before synchronizing

An UltraL ite database cannot have uncommitted changes when it is
synchronized. If you attempt to synchronize an UltralLite database when any
connection has an uncommitted transaction, the synchronization fails, an
exception isthrown and the SQLE_UNCOMMITTED_TRANSACTIONS
error is set. This error code also appears in the MobiLink synchronization
server log.

& For more information on download-only synchronizations, see
"download_only synchronization parameter” on page 383.

Adding initial data to your application

Many UltraL ite application need datain order to start working. Y ou can
download data into your application by synchronizing. Y ou may want to add
logic to your application to ensure that, the first timeit isrun, it downloads
all necessary data before any other actions are carried out.

97

Adding synchronization to your application

Development tip

It iseasier to locate errorsif you develop an application in stages. When
developing a prototype, temporarily code INSERT statements in your
application to provide data for testing and demonstration purposes. Once
your prototype is working correctly, enable synchronization and discard
the temporary INSERT statements.

& For more synchronization development tips, see "Development tips' on
page 85 of the book MobiLink Synchronization User’s Guide.

Monitoring and canceling synchronization

Monitoring
synchronization

Example

98

This section describes how to monitor and cancel synchronization from
C/C++ applications. For information on carrying out these tasksin Java, see
"Monitoring and canceling synchronization" on page 356.

To monitor and cancel synchronization, you specify a synchronization
observer callback functioninthe ul_synch_info structure. This structure is
passed to the synchronization function (embedded SQL) or method

(C++ API). The observer function is then called at various points during the
synchronization, and supplied with information about the synchronization
state.

To monitor synchronization from an UltraLite C/C++ application, you
supply the name of a callback function in the observer member of your
synchronization structure.

The overall process for monitoring synchronization is as follows:

¢ Specify the name of your callback function in the synchronization
structure.

¢ Cadl the synchronization function or method to start synchronization.

¢ UltraLite calls your callback function called whenever the
synchronization state changes. The following section describes the
synchronization state.

The following code shows how this sequence of tasks can be implemented in
an embedded SQL application:

ULI ni t Synchinfo(& nfo);
i nfo.user_name = m Enpl DSt r;

/1 The info parameter of ULSynchronization() contains
/1 a pointer to the observer function

i nf 0. observer = (bser ver Func;

ULSynchroni ze(&sqlca, & nfo);

Chapter 4 Developing UltraLite Applications

Writing a synchronization callback function

The callback function that you use to monitor synchronization takes a
ul_synch_status structure as parameter. The ul_synch_status structure has
the following members:

¢+ state One of thefollowing states:

¢

UL_SYNCH_STATE_STARTING No synchronization actions
have yet been taken.

UL_SYNCH_STATE_CONNECTING The synchronization stream
has been built, but not yet opened.

UL_SYNCH_STATE_SENDING_HEADER The synchronization
stream has been opened, and the header is about to be sent.

UL_SYNCH_STATE_SENDING_TABLE A tableisbeing sent.

UL_SYNCH_STATE_SENDING_DATA Schema information or
datais being sent.

UL_SYNCH_STATE_FINISHING_UPLOAD The upload stageis
completed and a commit is being carried out.

UL_SYNCH_STATE_RECEIVING_UPLOAD_ACK An
acknowledgement that the upload is complete is being received.

UL_SYNCH_STATE_RECEIVING_TABLE A tableisbeing
received.

UL_SYNCH_STATE_SENDING_DATA Schemainformation or
datais being received.

UL_SYNCH_STATE_COMMITTING_DOWNLOAD The download
stage is completed and a commit is being carried out.

UL_SYNCH_STATE_SENDING_DOWNLOAD_ACK An
acknowledgement that download is complete is being sent.

UL_SYNCH_STATE_DISCONNECTING The synchronization
stream is about to be closed.

UL_SYNCH_STATE_DONE Synchronization has completed
successfully.

UL_SYNCH_STATE_ERROR Synchronization has completed, but
with an error.

& For adescription of the synchronization process, see "The
synchronization process' on page 24 of the book MobiLink
Synchronization User’s Guide.

99

Adding synchronization to your application

Example

100

¢ tableCount Thetotal number of tablesin the database. This number
may be more than the number of tables being synchronized.

¢ tableindex The current table which is being uploaded or downloaded.
This number may skip values when not all tables are being
synchronized.

¢ info A pointer to theul_synch_info structure.

¢ received.inserts The number of inserted rows that have been
downloaded so far.

¢ received.updates The number of updated rows that have been
downloaded so far.

¢ received.deletes The number of deleted rows that have been
downloaded so far.

¢ received.bytes The number of bytes that have been downloaded so
far.

¢ sent.inserts Thenumber of inserted rows that have been uploaded so
far.

¢ sent.uupdates The number of updated rows that have been uploaded so
far.

¢ sent.deletes Thenumber of deleted rows that have been uploaded so
far.

¢ sent.bytes Thenumber of bytes that have been uploaded so far.
¢ stop Setthis member to true to interrupt the synchronization

The following code illustrates how a very simple observer function could be
implemented:

extern void _ stdcall GhserverFunc(
p_ul _synch_status status)

printf("UL_SYNCH STATE is %l: ",
status->state);

switch(status->state) {
case UL_SYNCH STATE_STARTI NG
printf("Starting\n");
br eak;

case UL_SYNCH STATE_CONNECTI NG
printf("Connecting\n");
br eak;

case UL_SYNCH STATE_SENDI NG HEADER
printf("Sendi ng Header\n");
br eak;

Chapter 4 Developing UltraLite Applications

CustDB example

case UL_SYNCH STATE SENDI NG TABLE:
printf("Sending Table % of %\ n",

st atus->t abl el ndex + 1,

st at us- >t abl eCount);

br eak;

This function produces the following output when synchronizing two tables:

UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE
UL_SYNCH_STATE

is
is
is
is
is
is
is
is
is
is
is

Starting

Connecti ng

Sendi ng Header

Sending Table 1 of 2
Sending Table 2 of 2
Recei vi ng Upl oad Ack
Receiving Table 1 of 2
Receiving Table 2 of 2
Sendi ng Downl oad Ack
Di sconnecti ng

Done

An example of an observer function isincluded in the CustDB sample
application. The implementation in CustDB provides adialog that displays
synchronization progress and allows the user to cancel synchronization. The
user-interface component makes the observer function platform specific.

The CustDB sample code isin the Samples\UltraLite\CustDB subdirectory of
your SQL Anywhere directory. The observer function is contained in the
platform-specific subdirectories of the CustDB directory.

101

Configuring development tools for UltraLite development

Configuring development tools for UltraLite
development

102

Most development tools use a dependency model, sometimes expressed as a
makefile, in which the timestamp on each source file is compared with that
on the target file (object file, in most cases) to decide whether the target file
needs to be regenerated.

With UltraLite development, a change to any SQL statementin a
development project means that the generated code needs to be regenerated.
Changes are not reflected in the timestamp on any individual source file
because the SQL statements are stored in the reference database,.

This section describes in general terms a strategy for incorporating Ultral ite
application development into a dependency-based build environment. The
UltralLite plug-in for Metrowerks CodeWarrior automatically provides Palm
Computing platform devel opers with the features described here. For other
development tools, you must make the appropriate changes yourself.

& For information on the UltraLite plugin for CodeWarrior, see
"Developing UltralL ite applications with Metrowerks CodeWarrior" on
page 255.

& For specific instructions on adding embedded SQL projectsto a
dependency-based devel opment environment, see " Configuring development
tools for embedded SQL development™ on page 198.

To add UltraLite code generation into a dependency-based
development model:

1 Addadummy file to your development project.

The development project is defined in your development tool. It is
separate from the Ultral ite project name used by the UltraL ite
generator.

Add afile named, for example, uldatabase.ulg, in the same directory as
your generated files.

2 Setthebuild rulesfor thisfile to be the UltraLite generator command
line.

For example, in Visual C++, use acommand of the following form
(which should be all on oneline):

"%asany8%\win32\ulgen.exe" —q — "connection-string"
$(InputName) $(InputName).c

Chapter 4 Developing UltraLite Applications

where asany8 is an environment variable that points to your

SQL Anywhere installation directory, connection-string is a connection
to your reference database, and InputName is the UltraL ite project name,
and should match the root of the text file name. The output is
$(InputName).c.

Compile the dummy file to generate the Ultral ite database code.
Add the generated UltralL ite database file to your development project.

Add the UltraLite import libraries for your target platform to your
include path.

Theimport libraries are held in platform-specific directories under the
SQL Anywhere 8\UltraLite directory.

When you alter any SQL statements in the reference database, touch the
dummy file, to update its timestamp and force the UltraL ite generator to
be run.

103

Deploying UltraLite applications

Deploying UltraLite applications

Using the UltraLite
runtime DLL

104

Once huilt, your application is contained in a single executable file (C/C++)
or set of classes (Java).

Your UltraL ite application automatically initializes its own database the first
timeitisinvoked. At first, your database contains no data. Y ou can add data
explicitly using INSERT statements in your application, or you can import
data from a consolidated database through synchronization. Explicit INSERT
statements are especially useful when developing prototypes. Y ou do not
need to deploy a separate Ultral ite database with your application.

When deploying a new version of an application, the default behavior is for
Ultral ite to create a new database, losing any data in the database before the
new application was deployed. If you call UL EnableGenericSchema at the
beginning of your application, the database is instead upgraded to the schema
of the new application.

& For more information, see " UL EnableGenericSchema function” on
page 236.

If you linked a C/C++ UltraL ite application using the UltraL ite library, the
custom database engine is an integral component of this executable. To
deploy your application, copy the executable file to your target device.

Some platforms, such as Windows CE, support dynamic link libraries. If
your target is one of these platforms, you have the option to use the UltraL ite
runtime DLL.

To build and deploy an application using the UltraLite runtime DLL
1 Preprocess your code, then compile the output with UL_USE DLL.

2 Link your application using the UltraLite imports library.

3 Copy both your application executable and the UltraL ite runtime DLL to
your target device.

& For more information on specific platforms, see the following:
¢+ "Deploying Palm applications' on page 291.

¢+ "Deploying Windows CE applications’ on page 299.
¢ "Developing Applications for VxWorks" on page 309
.

"Deploying Java applications' on page 364

PART TWO
Developing UltraLite Applications in
C/C++

This part describes the development of applications written in C or C++. It
explains how to write and build applications using embedded SQL and using
the UltraLite C++ API. It also provides tutorials to guide you through the
development process.

105

106

CHAPTER 5

Tutorial: Build an Application Using the

C++ API

About this chapter

Contents

This chapter provides atutorial that guides you through the process of
developing a UltraL ite application using the C++ API. It describes how to
build a very simple application, and how to add synchronization to your

application.
Topic Page
Introduction to the Ultralite C++ API 108
Lesson 1: Getting started 110
Lesson 2: Create an UltraL ite database template 111
Lesson 3: Run the UltraLite generator 113
Lesson 4: Write the application source code 114
Lesson 5: Build and run your application 116
Lesson 6: Add synchronization to your application 118
Restore the sample database 120

107

Introduction to the UltraLite C++ API

Introduction to the UltraLite C++ API

Y ou can use the UltraLite C++ API to develop Ultralite C/C++ programs
using an API instead of embedded SQL . It provides an equivalent
functionality to embedded SQL, but in the form of a C++ interface.

Base classes

Generated classes

108

The UltraLite C++ API starts with a set of base classes that represent the
basic components of an UltraLite application. These are;

¢

¢

ULData Representsan UltraLite database.

ULConnection Represents a connection to an UltraL ite database, and
also handles synchronization.

ULCursor Provides methods used by generated table or result set
objects, for accessing and modifying the data.

ULTable Provides methods used by generated table objects, but not by
generated result set objects. This class inherits from UL Cur sor.

ULResultSet Provides methods used by generated result set objects,
but not by generated table objects. This class inherits from UL Cur sor,
and is not documented separately as it contains only methods that are in
ULCursor.

ULStatement Represents a statement that does not return a result set,
such asan INSERT or UPDATE statement. All methods of this class are
generated.

For each application, the UltraLite generator writes out a set of classes that
describe your particular UltralLite database.

¢

Generated result set classes Individual SQL statements that return
result sets are represented by a class, with methods for traversing the
result set, and for modifying the underlying data.

Generated table classes Each tablein the application is represented
by a class, and methods on that table allow the rows of the table to be
modified.

For example, for atable named Employee, the Ultralite generator
generates a class also named Employee.

Generated statement classes Individua SQL statements that do not
return result sets are represented by a simple class with an Execute
method.

Y ou use these classes in your application to access and modify data, and to
synchronize with consolidated databases.

Chapter 5 Tutorial: Build an Application Using the C++ API

Overview

Thistutorial describes how to construct a very simple application using the
UltraLite C++ API. The application is a Windows console application,
developed using Microsoft Visual C++, which queries datain the ULProduct
table of the UltraLite 8.0 Sample database.

The tutorial takes you through configuration of Visual C++, in such away
that users of other development platforms should be able to identify the steps
required. These steps are supplied so that you can start development of your
own applications.

In the tutorial, you write and build an application that carries out the
following tasks.

1 Connectsto an UltralLite database, consisting of asingle table. The table
isasubset of the ULProduct table of the UltraLite Sample database.

2 Insertsrowsinto the table. Initial datais usually added to an UltraLite
application by synchronizing with a consolidated database.
Synchronization is added later in the chapter.

3 Writesthefirst row of the table to standard outpuit.
In order to build the application, you must carry out the following steps:

1 Designthe Ultralite database in an Adaptive Server Anywhere
reference database.

Here we use a single table from the Ultral ite sample database (CustDB).

2 Runthe UltraLite generator to generate the API for this UltraLite
database.

The generator writes out a C++ file and a header file.
3 Write source code that implements the logic of the application.
Here, the source codeis just main.cpp.

4 Compile, link, and run the application.

Y ou then add synchronization to your application.

109

Lesson 1: Getting started

Lesson 1: Getting started

In thistutorial, you will be creating a set of files, including source filesand
executable files. Y ou should make a directory to hold these files. In addition,
you should make a copy of the Ultralite sample database so that you can
work on it, and be sure you still have the original sample database for other
projects.

Copies of the files used in thistutorial can be found in the
Samples\UltraLite\APITutorial subdirectory of your SQL Anywhere directory.

% To prepare atutorial directory:

¢ Create adirectory to hold the files you will create. In the remainder of
the tutorial, we assume that this directory is c:|APITutorial.

+ To copy the sample database:

¢ Make abackup copy of the UltraLite 8.0 Sample database into the
tutorial directory. The UltraLite 8.0 Sample database is the file
custdb.db, in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere installation directory. In thistutorial, we use the original
UltraLite 8.0 Sample database, and at the end of the tutorial you can
copy the untouched version from the APITutorial directory back into
place.

110

Chapter 5 Tutorial: Build an Application Using the C++ API

Lesson 2: Create an UltraLite database template

In thistutorial, you use the original copy of the UltraLite 8.0 Sample
database (CustDB) as a reference database. The copy you placed in the
APITutorial directory serves as a backup copy.

An UltralL ite database template is a set of tables, and columns within
tables, that are to be included in your UltralL ite database. Y ou create an
Ultral ite database template by creating a SQL Remote publication in the
reference database. The SQL Remote publication is simply a convenient
device for assembling tables and column-based subsets of tables: thereis no
direct connection to SQL Remote.

Y ou can also define your Ultral ite database by adding SQL statements to the
reference database. SQL statements allow you to include joins and more
advanced features in your Ultral ite application. Here, we build an UltraLite
database template by defining tables, asit is more ssimple.

& The Javatutorial uses SQL statements to define the Ultral ite database.
For an example of how to add SQL statements to a database, see "L esson 1:
Add SQL statements to your reference database”" on page 326.

+ To create the UltraLite database template:
1 Start Sybase Central.
2 Connect to the UltraLite 8.0 Sample database.
¢ Choose Tools Connect.
¢ If alist of pluginsisdisplayed, choose Adaptive Server Anywhere.

¢ Inthe Connect dialog, choose the UltraLite 8.0 Sample ODBC data
source.

¢ Click OK to connect.

3 Create a SQL Remote publication that reflects the data you wish to
include in your UltraLite database.

¢ In Sybase Central, open the custdb database.

¢ Open the SQL Remote folder. Open the Publications folder, and
click Add Publication. The Publication Creation wizard appears.

¢ Add the ULProduct table to the publication, including al columnsin
the publication.

¢ Click Finish to create the publication.

111

Lesson 2: Create an UltraLite database template

Y ou have now finished designing the UltraL ite database template. Leave
Sybase Central and the database server running for the next lesson.

112

Chapter 5 Tutorial: Build an Application Using the C++ API

Lesson 3: Run the UltraLite generator

The UltraLite generator writes a C++ file and a header file that define an
interface to the UltraLite database, as specified in the UltraLite database
template.

+ To generate the UltraLite interface code:

1

From a command prompt, change directory to your APITutorial
directory.

Run the UltraL ite generator with the following arguments (all on one
line):

ulgen -c "dsn=UltraLite 8.0 Sample" —t c++
-u ProductPub -f ProductPubAPI

The generator writes out the following files:

¢ ProductPubAPlL.hpp Thisfile contains prototypes for the
generated API. You should inspect thisfile to determine the API you
can use in your application.

¢ ProductPubAPl.cpp Thisfile containsthe interface source. You
do not need to look at thisfile.

¢ ProductPubAPI.h Thisfile containsinternal definitions required
by UltraLite. You do not need to look at thisfile.

113

Lesson 4: Write the application source code

Lesson 4: Write the application source code

Copy and paste the following source code into afile named sample.cpp in
your tutorial directory. Y ou can find this source codein
Samples\UltraLite\APITutorial\sample.cpp, although you may have to edit the
file to uncomment the inserts.

The code does not contain error checking or other features that you would
require in acomplete application. It is provided as a simplified application,
for illustrative purposes only.

[/ (1) include headers
#i ncl ude <stdio. h>
#i ncl ude " Product PubAPI . hpp"

void main() {
/Il (2) declare variables
| ong price;
ULDat a db;
ULConnecti on conn;
ULPr oduct product Tabl €;

/1 (3) connect to the Utralite database
db. Qpen() ;

conn. pen(&db, "dba", "sql");
product Tabl e. Qpen(&conn);

/1 (4) insert sanple data

product Tabl e. SetProd_id(1);

product Tabl e. Set Price(400);

product Tabl e. Set Prod_nane("4x8 Drywal | x100");
product Tabl e. I nsert();

product Tabl e. SetProd_id(2);

product Tabl e. Set Price(3000);

product Tabl e. Set Prod_nane("8 2x4 Studs x1000");
product Tabl e. I nsert ();

/1 (5) Wite out the price of the itens
product Tabl e. Bef oreFi rst () ;
whi | e(product Tabl e. Next ()) {
product Tabl e. Get Price(price);
printf("Price: %\n", price);

Il (6) close the objects to finish
product Tabl e. d ose();

conn. d ose();

db. d ose();

114

Chapter 5 Tutorial: Build an Application Using the C++ API

Explanation

The numbered comments in the code indicate the main tasks this routine
carries out:

1

Include headers.

In addition to stdio.h, you need to include the generated header file
ProductPubAPI.hpp to include the generated classes describing the
Product table. Thisfilein turn includes the UltraL ite header file ulapi.h.

Declare variables.

The Ultralite database is declared as an instance of classUL Data, and
the connection to the database is an instance of class UL Connection.
These classes are included from ulapi.h.

Thetableisdeclared as an instance of class UL Product, a generated
name derived from the name of the table in the reference database.

Connect to the database.

Opening each of the declared objects establishes access to the data.
Opening the database requires no arguments; opening a connection
requires a user ID and password, and also the name of the database.
Opening the table requires the name of the connection.

Insert sample data.

In a production application, datais entered into the database by
synchronizing. It is auseful practice to insert some sample data during
theinitial stages of development, and include synchronization at a later

stage.

The method names in the UL Product class are unique names that reflect
the columns of the table in the reference database.

& Synchronization is added to thisroutinein "Lesson 6: Add
synchronization to your application” on page 118.

Write out the price of each item.
The priceisretrieved and written out for each row in the table.
Close the objects.

Closing the objects used in the program frees the memory associated
with them.

115

Lesson 5: Build and run your application

Lesson 5: Build and run your application

116

Y ou can compile and link your application in the development tool of your
choice. In this section, we describe how to compile and link using Visual
C++; if you are using one of the other supported devel opment tools, modify
the instructions to fit your tool.

1
2

Start Microsoft Visual C++ from your desktop in the standard fashion.

Configure Visual C++ to search the appropriate directories for UltralLite
header filesand library files.

Select Tools[] Options and click on the Directories tab. In the Show
Directories For dropdown list, choose Include Files. Include the
following directory, so that the header files can be accessed.

C.\ Program Fi | es\ Sybase\ SQL Anywhere 8\ h

On the same tab, select Library Files under the Show Directories For
dropdown menu. Include the following directory so that the UltraLite
library files can be accessed.

C. \ Program Fi | es\ Sybase\ SQ. Anywhere
8\ultralite\win32\386\1ib

Click OK to submit the changes.

Create a project named APITutorial (it should be the same name as the
directory you have used to hold your files).

¢ Select Filed New. The New dialog is displayed.

¢ Onthe Projects tab choose Win32 Console Application.
¢ Specify aproject name of APITutorial.

¢ Specify the APITutorial directory as location.

¢ Select New Workspace and click OK.

¢ Chooseto create An Empty Project and click Finish.

.

On the Workspace window, click the FileView tab. The workspace
tutorial consists of just the APITutoria project. Double-click
APITutorial files to display the three folders: Source Files, Header
Files, Resource Files.

Configure the project settings.

¢ Right click on APITutorial files and select Settings. The Project
Settings dialog is displayed.

¢ From the Settings For dropdown menu, choose All Configurations.

Chapter 5 Tutorial: Build an Application Using the C++ API

¢ Click the Link tab. Add the following runtime library to the
Object/Library Modules box.

ulinp.lib
¢ Click on the C/C++ tab. From the Category dropdown menu,
choose General. Add the following to the Preprocessor definitions
list:
_ NT__, UL _USE DLL
Here, NT__ hastwo underscores either side of NT.
¢ Click OK tofinish.
Add sample.cpp and ProductPubAPI.cpp to the project.

¢ Right click on the Source Files folder and select Add Files to Folder.
Locate your sample.cpp file and click OK. Open the Source Files
folder to verify that it contains sample.cpp.

¢ Repeat to add the generated ProductPubAPI.cpp file to the project.
Add the file containing the base classes for the UltraLite API to the
project.

¢ Right click on the Source Files folder and choose Add Files to
Folder. Browse to ulapi.cpp, which isin the src subdirectory of your
SQL Anywhere directory, and click OK.

Compile and link the application.

¢ Select Build Build APITutorial.exe to compile and link the
executable. Depending on your settings, the APITutorial.exe
executable may be created in a Debug directory within your
APITutorial directory.

Ensure that the application can locate the UltraLite runtime library.

¢ TheUltraLite runtimelibrary is ulrt8.dll. In Visual C++, choose
Toolsd Options, click the Directories tab. From the Show
Directories For list choose Executable files. Add the win32
subdirectory of your SQL Anywhere directory to the list. Click OK
to complete.

Run the application.
¢ Select Buildd Execute APITutorial.exe.

A command prompt window appears and displays the prices of the
products in the product table.

Y ou have now built and run asimple Ultralite application. The next step is
to add synchronization to your application.

117

Lesson 6: Add synchronization to your application

Lesson 6: Add synchronization to your

application

118

Ultral ite applications exchange data with a consolidated database. In this
lesson, you add synchronization to the simple application you created in the
previous section. In addition, you change the output to verify that
synchronization has taken place.

Adding synchronization actually simplifies the code. Y our initial version of
main.cpp has the following lines, that inserts some data into your UltraLite
database.

product Tabl e. SetProd_id(1);

product Tabl e. Set Price(400);

product Tabl e. Set Prod_nane("4x8 Drywal | x100");
product Tabl e. I nsert ();

product Tabl e. SetProd_id(2);

product Tabl e. Set Pri ce(3000);

product Tabl e. Set Prod_nane("8 2x4 Studs x1000");
product Tabl e. I nsert ();

This code isincluded to provide an initial set of data for your application. In
a production application, you would usually not insert an initial copy of your
data from source code, but would carry out a synchronization.

+ To add synchronization to your application:

1 Add asynchronization information structure to your code.

¢

Add the following lineimmediately after the line that says
Il (2) declare variabl es.

auto ul _synch_info synch_info;

This structure holds the parameters that control the synchronization.

2 Replace the explicit inserts with a synchronization call.

¢

¢

Delete the product Table methods listed above.

Add the following linesin their place:

conn. I nit Synchl nfo(&synch_info);
synch_i nfo. user _name = UL_TEXT("50");
synch_i nfo.version = UL_TEXT("custdb");
synch_i nfo. stream = ULSocket Strean() ;
synch_i nfo.streamparns =

UL_TEXT("host =l ocal host");
conn. Synchroni ze(&ynch_info);

Chapter 5 Tutorial: Build an Application Using the C++ API

The value of 50 isthe MobiLink user name.

The string cust db instructs MobiLink to use the default script
version for synchronization.

ULSocket Strean() instructs the application to synchronize over
TCP/IP, and host =l ocal host specifies the host name of the
MobiLink server, which in this case is the current machine.

3 Compileand link your application.

¢ Select Build Build APITutorial.exe to compile and link the
executable. Depending on your settings, the APITutorial.exe
executable may be created in a Debug directory within your
APITutorial directory.

4 Start the MobiLink server running against the sample database.

From a command prompt in your APITutorial directory, enter the
following command:

start dbm srv8 -c "dsn=UtraLite 8.0 Sanpl e"

5 Runyour application.

From the Build menu, choose Execute APITutorial.exe.

The application connects, synchronizes to receive data, and writes out
information to the command prompt window. The output is as follows:

The ULData object is open

Price:
Price:
Price:
Price:
Price:
Price:
Price:
Price:
Price:
Price:

400
3000
40
75
100
400

In thislesson, you have added synchronization to asimple UltralLite

application.

119

Restore the sample database

Restore the sample database

Now that you have completed the tutorial, you should restore the sample
database so that it can be used again. Y ou created a copy of the UltraL ite 8.0
Sample database in "Lesson 1: Getting started" on page 110. Y ou can now
replace the version of custdb.db that you just changed with the copy.

% To restore the sample database:

1 Copy the custdb.db file from your tutorial directory to the
UltraLite\Samples\CustDB subdirectory of your SQL Anywhere
directory.

2 Inthe same directory, delete the transaction log file custdb.log.

Y our sample database is now restored to its original state.

120

CHAPTER 6

Developing C++ API Applications

About this chapter This chapter describes how to develop applications using the UltraLite C++
API. Thisinterface represents predefined queries or tablesin your Ultralite
database as objects, and provides methods that enable you to manipulate
them from your application without using SQL.

Contents

Topic Page
Introduction 122
Defining features for your application 123
Working with the C++ API classes 125
Building your UltraLite C++ application 127

121

Introduction

Introduction

What'’s in this
chapter?

Before you begin

122

This chapter provides notes for devel opers who are writing and building
UltraL ite applications using the C++ API.

The chapter includes the following information:;

+ Information about how to define the data access features to be used in
your application.

& See"Defining features for your application” on page 123.

¢ Information on generating C++ API classes from your reference
database.

& See"Generating Ultralite C++ classes' on page 127.

¢ Noteson the C++ API classes that are generated.
& See "Working with the C++ API classes' on page 125.

¢ Noteson compiling and linking UltraLite C++ API applications.
& See"Compiling and linking your application” on page 128.

The development process for the C++ API issimilar to that for other
Ultralite development models. This chapter assumes a familiarity with that
process.

& For moreinformation, see "Developing UltraLite Applications' on
page 67.

Chapter 6 Developing C++ API Applications

Defining features for your application

The SQL statements to be included in the UltraL ite application, and the
structure of the Ultralite database itself, are defined by adding the SQL
statements to the reference database for your application.

Defining projects

When you run the Ultral ite generator, it writes out class definitions for all
the SQL statementsin agiven project. A project is a name defined in the
reference database, which groups the SQL statements for an application. Y ou
can store SQL statements for multiple applicationsin asingle reference
database by defining multiple projects.

& For information on creating projects, see "Creating an UltraLite
project” on page 80.

You can use the ul_delete project stored procedure to remove a project
definition.

Adding statements to a project

& For information on adding SQL statements to an Ultralite project, see
"Adding SQL statementsto an UltraL ite project” on page 81.

& For information on using placeholders, and other aspects of writing
SQL statements for Ultral ite, see "Writing UltraLite SQL statements' on

page 83.

Defining UltraLite tables

If you do not intend to carry out joins, and if you have strong constraints on
your application executable size, you can define tables instead of queries for
your UltraL ite application.

Y ou define a subset of a database for use in a C++ API application by
creating a publication in the reference database. A publication defines the set
of tables, and columns in those tables, that you want to include in your
UltraL ite application. The use of a SQL Remote publication is purely a
convenience for UltralLite, and does not imply any connection with

SQL Remote or MobiLink software.

123

Defining features for your application

SQL Remote publications allow you to qualify which rows any SQL Remote
user receives using subgueries and parameters. Y ou cannot use these devices
when creating publications for use with UltraLite: only the set of tables and
columns within those tables is used for defining the Ultral ite classes.

Tables or queries?

Table definitions and query definitions provide alternative ways of defining
the data that isto be included in your Ultral ite database, and the range of
operations you can carry out on that data.

Using SQL statements and projects provides a more general approach to
defining applications, and are most likely to be used in larger enterprise
applications. Table definitions may be useful as a convenient device in the
following cases:

¢ Your application needs to access data only one table at atime. Y ou
cannot define joins using table definitions.

¢ You are severely constrained for memory use. The code generated for
table definitions is smaller than that for queries, because of their simpler
structure.

Defining database features for C++ APl applications

C++ API applications use some functions that are not part of the class
hierarchy. These functions control aspects of the database storage and access.
They are asfollows:

¢ "ULEnableFileDB function" on page 235.

¢ "ULEnablePalmRecordDB function" on page 237.

¢ "ULEnableStrongEncryption function" on page 238.
¢ "ULEnableUserAuthentication function" on page 238.

Other aspects of database storage are configured using the
UL_STORE_PARMS macro. For more information, see
"UL_STORE_PARMS macro" on page 428.

124

Chapter 6 Developing C++ API Applications

Working with the C++ API classes

This section contains notes about the classes that make up the C++ API.

Working with the ULData and ULConnection objects

Palm Computing
Platform
developers

The UL Data object makes the data in the database object available to your
application. Y ou need to call UL Data::Open() before you can connect to the
Ultral ite database or carry out any operations on the data.

The UL Data:: Open() method can be called with parameters that define the
storage and access parameters for the database (file name, cache size,
reserved size).

Once the UL Data object is opened, you can open a connection on the
database. Y ou do that using the UL Connection::Open() method, supplying
areference to the UL Data object and a set of connection parameters to
establish the connection. Y ou can use multiple connections on asingle
database. Once the connection is established, you can open the generated
UL Statement, UL ResultSet or UL Table objects that define the tables or
statements used in your application, and use these objects to manipulate the
data.

The UL Connection object defines the general characteristics of how you
interact with the data.

Synchronization is carried out using the UL Connection object. The
Synchronize method carries out synchronization of the datawith a
MobiLink server.

If you are developing an application for the Palm Computing Platform, there
are some extra considerations for how to use these objects. In particular, the
PalmL aunch and PalmExit methods are called when launching and leaving
the application. The UL Data:: Close() method is not called on the Palm
Computing Platform.

& For moreinformation, see "Developing Applications for the Palm
Computing Platform™ on page 253.

Using table and query classes

Each table or query isrepresented by a class. The API for accessing and
modifying the rowsin the table or query is based on a SQL cursor: a pointer
to aposition in the table or query.

125

Working with the C++ API classes

The cursor can have the following positions:

¢ Beforethe firstrow Thisposition hasvalue 0. Thisis the position of
the cursor when the table or query is opened.

¢ Onarow Ifatableor query hasnrows, positions 1 to n for the cursor
correspond to the rows.

¢ After the last row Thisposition hasvalue (n+ 1)

Y ou can move through the rows of the object using methods of the object,
including Next() and Previous().

Palm Computing If you are devel oping an application for the Palm Computing Platform, there
Platform are some extra considerations for how to use these objects.
developers

& For moreinformation, see "Launching and closing UltraLite
applications’ on page 261.

Row ordering

The order of the rows in the object is determined when it is opened. By
default, tables are ordered by primary key. The Ultral ite generator adds an
enumeration for the object definition, with a member for each index on the
table in the reference database (the primary key is named Primary), and by
specifying a member of this enumeration, you can control the ordering of the
rows in the object.

If you update arow so that it no longer belongsin the current position the
current row of the cursor moves to that row.

For example, consider a single-column object with the values A, B, C, and E.

¢ If acursor issitting on row B (position 2) and modifies the value to D,
then the row is moved to sit between C and E (becoming position 3) and
the current row of the cursor changes to position 3.

If you insert arow, the current position does not move to that row.

126

Chapter 6 Developing C++ API Applications

Building your UltraLite C++ application

This section covers the following subjects:
¢ "Generating UltraLite C++ classes" on page 127.
¢ "Compiling and linking your application" on page 128.

Some small sample applications are provided that include makefiles for
compilation. These applications can be found in subdirectories of the
Samples\UltraLite directory.

Generating UltraLite C++ classes

The generator generates table classes from publications in the database, and
query classes from any SQL statements added with the ul_add_statement
stored procedure, writing the output to the following files:

¢ filename.hpp Thisfile contains the prototypes for the generated
interface. Y ou should inspect thisfile to determine the API you can use
in your application.

+ filename.cpp Thisfile contains the interface source. Y ou do not need
to look at thisfile.

¢ filename.h Thisfile containsinternal definitions required by UltralLite.
Y ou do not need to look at thisfile.

Here, filename is the name supplied on the ulgen command line.

Whether you use queriesin a project, publications, or a mix to define the
classes in your application, you must generate al the code in asingle run of
the Ultralite generator.

+ To generate UltraLite code for a publication:

¢ Runthe UltraLite generator specifying the publication name with the - u
command-line switch. For example:

ulgen -c "uid=dba;pwd=sql" —t c++ -u pubName -f
fil enane
+ To generate UltraLite code for a UltraLite project:

¢ Runthe UltraLite generator, specifying the project name with the —j
command-line switch. For example:

ulgen -c "uid=dba;pwd=sql" —t c++ -j proj ect nane -f
fil enane

127

Building your UltraLite C++ application

% To generate UltraLite code for both a project and a publication:

¢ Runthe UltraLite generator, specifying the project name and the
publication name. For example:

ulgen -c "uid=dba;pwd=sql" -t c++ -j proj ect nane —u
pubname -f fil enane

& For more information on the Ultral ite generator, see "The UltraLite
generator” on page 419.

Compiling and linking your application

When you compile your Ultralite application, you must ensure that the
compiler can locate all the required files.

¢ Generated source files You must included the generated files
describing the API in your project. Thisincludes the generated .cpp file,
.hfile, and .hpp file.

¢ UltraLite header files Y ou must configure your compiler so that it can
locate the UltraL ite header files.

These header files are installed into the h directory under your Adaptive
Server Anywhere installation directory.

¢ UltraLite c file You must configure your linker so that it can locate the
UltraLite API file ulapi.cpp.

Thisfileisinstalled into the src subdirectory of your Adaptive Server
Anywhere installation directory.

¢ Library or import library You must configure your compiler so that it
can locate the UltraLite runtime library for your target platform or, in
the case that you are using the UltraLite runtime DLL, the UltraLite
imports library.

Thesefiles are installed under the UltraLite subdirectory of your
Adaptive Server Anywhere installation directory. Each target platform
has a separated directory, and if there are different processors for a
platform, each has its own subdirectory.

& For asample application that includes compilation options, see the files
in Samples\UltraLite\apitutorial.

128

CHAPTER 7

C++ API Re

About this chapter

Contents

ference

This chapter describes the UltraLite C++ API.

Topic Page
C++ API class hierarchy 130
C++ API language elements 131
UL Connection class 132
ULDataclass 144
ULCursor class 151
ULResultSet class 163
UL Table class 165
Generated result set class 171
Generated statement class 174
Generated table class 175

129

C++ API class hierarchy

C++ API class hierarchy

Functions available
from the C++ API

130

The classes in the C++ API are displayed in the following diagram:

ULCursor ULConnection ULData
\ * |
Def|neq n ULTable ULResultSet ULStatement
ulapi.h
A
Generated statement-
table-name query-name
classes name

The classes are described in the following header files:

¢

generated-name.hpp Theinterface generated for a particular set of
statements or tables is defined in the generated .hpp file.

ulapi.h The base classes are defined in ulapi.h, in the h subdirectory of
your SQL Anywhere installation directory.

ulglobal.h You may want to look at ulglobal.h, in the h subdirectory of
your SQL Anywhere installation directory, for some of the data types
and other definitions used in ulapi.h.

C++ API applications use some functions that are not part of the class
hierarchy. These functions are as follows:

¢

¢
¢
¢
¢

"ULEnableFileDB function" on page 235.
"ULEnableGenericSchema function” on page 236.
"UL EnablePalmRecordDB function" on page 237.
"UL EnableStrongEncryption function" on page 238.
"ULEnableUserAuthentication function" on page 238.

Chapter 7 C++ API Reference

C++ APl language elements

The UltraLite APl methods and variables are described in terms of a set of
Ultral ite data types. These data types are described in this section.

UltraLite data types

¢

¢

an_SQL_code A datatype for holding SQL error codes.

ul_char A datatype representing a character. If the operating system
uses Unicode, ul_char uses two bytes per character. For single-byte
character sets, ul_char uses asingle byte per character.

ul_binary A datatype representing one byte of binary information.

ul_column_num A datatype for holding a number indicating a
column of atable or query. Thefirst column in the table or query is
number one.

ul_fetch_offset A datatype for holding arelative number ina
UL Cursor object.

ul_length A datatype for holding the length of a data type.

DECL_DATETIME A typefor holding date and timeinformationin a
SQLDATETIME structure, which is defined as follows:

typedef struct sqldatetime {
unsi gned short year; /* e.g. 1999 */
unsi gned char nonth; /* 0-11 */
unsi gned char day_of week; /* 0-6 0=Sunday */
unsi gned short day_of year; /* 0-365 */
unsi gned char day; /* 1-31 */
unsi gned char hour; /* 0-23 */
unsi gned char mnute; /* 0-59 */
unsi gned char second; /* 0-59 */
unsi gned | ong m crosecond; /* 0-999999 */
} SQLDATETI ME;

DECL_DATETIME isaso used in embedded SQL programming. Other
embedded SQL data types with named DECL _type are not needed in
C++ API programming.

UL_NULL A constant representing a SQL NULL.

131

UL Connection class

ULConnection class

Object Represents a database connection.

Description A UL Connection object represents an UltralLite database connection. It
provides methods to open and close a connection, to check whether a
connection is open, to synchronize a database on the current connection, and
more.

For embedded SQL users, opening a UL Connection object is equivalent to
the EXEC SQL CONNECT statement.

Close method

Prototype bool Close ()

Description Disconnects your application from the database, and frees resources
associated with the UL Connection object. Once you have closed the
UL Connection object, your application is no longer connected to the
Ultral ite database.

Closing a connection rolls back any outstanding changes.

Y ou should not close a connection object in a Palm Computing Platform
application. Instead, use the Reopen method when the application is
reactivated. For more information, see "Reopen method" on page 140.

Returns true (1) if successful.
false (0) if unsuccessful.
Example The following example closes a UL Connection object:

conn. d ose();

See also "Open method" on page 139

Commit method

Prototype bool Commit()
Description Commits outstanding changes to the database.
Returns true (1) if successful.

false (0) if unsuccessful.
Example The following code inserts a value to the database, and commits the change.

132

Chapter 7 C++ API Reference

See also

pr oduct Tabl e. Qpen(&conn);

product Tabl e. SetProd_id(2);

product Tabl e. Set Price(3000);

product Tabl e. Set Prod_nane("8 2x4 Studs x1000");
product Tabl e. I nsert();

conn. Commi t () ;

"Rollback method" on page 141

CountUploadRows method

Prototype

Description

Parameters

Returns

GetCA method

Prototype

Description

Returns

Example

ul_u_long CountUploadRows(
ul_publication_mask mask,
ul_u_long threshold)

Returns the number of rows that need to be uploaded when the next
synchronization takes place.

Y ou can use this function to determine if a synchronization is needed.

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB PUBL | UL_PUB PUB2

& For more information on publication masks, see "publication
synchronization parameter" on page 386.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determinesif any rows need to be synchronized.

The number of rows to be uploaded.

SQLCA *GetCA()
Retrieves the SQLCA associated with the current connection.

Thisfunction is useful if you are combining embedded SQL and the C++
API in asingle application.

A pointer to the SQLCA.

ULConnecti on conn;
conn. Qpen();
conn. Get CA() ;

133

UL Connection class

See also "The SQL Communication Area (SQLCA)" on page 188 of the book ASA
Programming Guide

GetLastldentity method

Prototype ul_u_big GetLastldentity()

Description Returns the most recent identity value used. This function is equivalent to the
following SQL statement:

SELECT @@dentity

The function is particularly useful in the context of global autoincrement

columns.
Returns The last identity value.
See also "Determining the most recently assigned value" on page 61

"Global autoincrement default column values' on page 58

GetLastDownloadTime method

Prototype bool GetLastDownloadTime(
ul_publication_mask mask,
DECL_DATETIME *value)

Description Provides the last time a specified publication was downl oaded.
Parameters publication-mask A set of publications for which the last download time
isretrieved. A value of O corresponds to the entire database. The set is

supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB PUBL | UL_PUB_PUB2

& For moreinformation on publication masks, see "publication
synchronization parameter” on page 386.

value A pointer to the DECL_DATETIME structure to be popul ated.

A value of January 1, 1990 indicates that the publication has yet to be
synchronized.

Returns ¢ true Indicatesthat valueis successfully populated by the last
download time of the publication specified by publication-mask.

134

Chapter 7 C++ API Reference

¢ false Indicatesthat publication-mask specifies more than one
publication or that the publication is undefined. If the return valueis
false, the contents of value are not meaningful.

GetSQLCode method

Prototype

Description

Returns

Example

See also

an_SQL_code GetSQLCode()

Provides error checking capabilities by checking the SQLCODE value for
the success or failure of a database operation. The SQLCODE is the standard
Adaptive Server Anywhere code.

SQL CODE isreset by any subsequent Ultral ite database operation,
including those on other connections.

The SQLCODE value as an integer.

The following code writes out a SQLCODE. If the synchronization cal fails,
avalue of -85 isreturned.

conn. Synchroni ze(&ynch_info);
sqgl code = conn. Get SQLCode();
printf("sql code: %\ n", sqgl code);

"Database Error Messages' on page 1 of the book ASA Errors Manual

GetSynchResult method

Prototype

Description

Parameters

bool GetSynchResult(ul_synch_result * synch-result);

Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:;

The application must allocate aul_synch_result object before passing it to
GetSynchResult. The function fillsthe ul_synch_result with the result of
the last synchronization. These results are stored persistently in the database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes place
outside the application itself. The SQLCODE value set in the call to

UL Data.PalmL aunch reflects the UL Data.PalmL aunch operation itself.
The synchronization status and results are written to the HotSync log only.
To obtain extended synchronization result information, call GetSynchResult
after a successful UL Data.PalmL aunch.

synch-result A structure to hold the synchronization result. It is defined
in ulglobal.h as follows:.

135

UL Connection class

typedef struct {
an_sqgl_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;

} ul_synch_result, * p_ul_synch_result;

where the individual members have the following meanings:

¢ sqgl_code TheSQL codefrom thelast synchronization. For alist of
SQL codes, see "Error messages indexed by Adaptive Server Anywhere
SQLCODE" on page 2 of the book ASA Errors Manual.

¢ stream_error The communication stream error code from the last
synchronization. For alisting, see "MobiLink Communication Error
Messages' on page 631 of the book MobiLink Synchronization User’s
Guide.

¢ upload_ok Settotrueif the upload was successful; false otherwise.

¢ ignored_rows Settotrueif uploaded rows wereignored; false
otherwise.

¢ auth_status The synchronization authentication status. For more
information, see "auth_status synchronization parameter” on page 381.

¢ auth_value Thevalueused by the MobiLink synchronization server to
determine the auth_status result. For more information, see "auth_value
synchronization parameter" on page 382.

¢ timestamp Thetime and date of the last synchronization.

¢ status The statusinformation used by the observer function. For more
information, see "observer synchronization parameter”" on page 384.

Returns The method returns a boolean value.

true Success.

false Failure.

See also "PalmLaunch method" on page 148

GlobalAutoincUsage method

Prototype ul_u_short GlobalAutoincUsage()

136

Chapter 7 C++ API Reference

Description

Returns

See also

Returns the percentage of available global autoincrement values that have
been used.

If the percentage approaches 100, your application should set a new value for
the global database ID, using the SetDatabasel D.

The percent usage of the available global autoincrement values.

"Global autoincrement default column values' on page 58
"SetDatabasel D method" on page 142

GrantConnectTo method

Prototype

Parameters

Description

See also

bool GrantConnectTo(userid, password)

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password for userid. The maximum
length is 16 characters.

Grant access to an UltraL ite database for a user 1D with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application” on page 85
"RevokeConnectFrom method" on page 141

InitSynchinfo method

Prototype
Description
Returns

Example

See also

an_SQL_code InitSynchinfo(ul_synch_info * synch_info)
Initializes the synch_info structure used for synchronization.
None

The following code illustrates where the I nitSynchl nfo method is used in
the sequence of calls that synchronize datain a UltraLite application.

auto ul _synch_info synch_info;
conn. I ni t Synchl nfo(&synch_info);
conn. Synchroni ze(&ynch_info);

"Synchronize method" on page 143

137

UL Connection class

IsOpen method

Prototype
Description

Returns

Example

See also

bool IsOpen ()

Checks whether the UL Connection object is currently open.
true (1) if the ULConnection object is open.

false (0) if the ULConnection object is not open.

The following example checks that an attempt to Open a connection
succeeded:

ULConnecti on conn;
conn. Qpen();

if(conn.lsQpen()){
printf("Connected to the database.\n");

"Open method" on page 139

LastCodeOK method

Prototype

Description

Returns

Example

See also

138

bool LastCodeOK ()

Checks the most recent SQLCODE and returns true if the code represents a
warning or success. The function returns false if the most recent SQLCODE
represents an error.

This method provides a convenient way of checking for the success or
potential failure of operations. Y ou can use GetSQL Code to obtain the
numerical value.

SQL CODE isreset by any subsequent Ultral ite database operation,
including those on other connections.

true (1) if the previous SQL Code was zero or awarning.
false (0) if the previous SQL Code was an error.

The following example checks that an attempt to Open a connection
succeeded:

ULConnecti on conn;
conn. Qpen();
i f(conn. Last CodeCK()){
printf("Connected to the database.\n");

"GetSQL Code method" on page 135

Chapter 7 C++ API Reference

LastFetchOK method

Prototype

Description

Returns

Example

See also

Open method

Prototype

Description

Parameters

bool LastFetchOK()

Provides a convenient way of checking that the most recent fetch of arow
succeeded (true) or failed (false).

The value is reset by any subsequent Ultralite database operation, including
those on other connections.

true (1) if successful.
false (0) if unsuccessful.

The following example moves to the last row in atable, fetches a value from
the row, and checks for the success of the fetch:

tb. Qpen(&conn);

th. Last();

th.GetID(iVal);

if(th.LastFetch®K()){
operations on success. ..

}

"AfterLast method" on page 152
"First method" on page 154

bool Open (ULData* db,
ul_char* userid,
ul_char* password,
ul_char* name = SQLNULL)

Open a connection to a database. The UL Data object must be open for this
call to succeed.

db A pointer to the UL Data object on which the connection is made. This
argument is usually the address of the UL Data object opened prior to
making the connection.

userid The user ID argument is a placehol der reserved for possible future
use. Itisignored.

&> For more information on user IDs and UltraLite, see "User
authentication for Ultralite databases' on page 442.

password The password parameter is a placeholder reserved for possible
future use. It isignored.

139

UL Connection class

Returns

Example

See also

Reopen method

Prototype

Description

Returns

Example

See also

140

name An optional name for the connection. Thisis needed only if you
have multiple connections from a single application to the same database.

true (1) if successful.

false (0) if unsuccessful.

The following example opens a connection to the UltraL ite database.
ULDat a db;

ULConnecti on conn;

db. Qpen();

conn. Qpen(&db, "dumy", "dummy");

"Close method" on page 132

bool Reopen ()
bool Reopen(ULData *db, ul_char * name = SQLNULL)

This method is available for the Palm Computing Platform only. The
UL Data object must be reopened for this call to succeed.

When devel oping Palm applications, you should never close the connection
object. Instead, you should call Reopen when the user switches to the
UltraL ite application. The method prepares the datain use by the database
object for use by the application.

db A pointer to the UL Data object on which the connection is made. This
argument is usually the address of the UL Data object opened prior to
reopening the connection.

name An optional name for the connection. Thisis needed only if you
have multiple connections from a single application to the same database.

true (1) if successful.
false (0) if unsuccessful.

The following example reopens a database object, and then a connection
object:

db. Reopen();
conn. Reopen(&db);

"Open method" on page 139

Chapter 7 C++ API Reference

ResetLastDownloadTime method

Prototype bool ResetLastDownloadTime(ul_publication_mask publication-mask)

Description This method can be used to repopul ate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

Parameters publication-mask A set of publicationsto check. A value of O
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB PUBL | UL_PUB_PUB2

& For more information on publication masks, see "publication
synchronization parameter” on page 386.

Example The following example resets the download time for all tablesin the
database;

db. Reopen();
conn. Reset Last Downl oadTi me(UL_SYNC ALL);

See also "GetLastDownloadTime method" on page 134
"Timestamp-based synchronization" on page 86 of the book MobiLink
Synchronization User’s Guide

RevokeConnectFrom method

Prototype bool RevokeConnectFrom(ul_char * userid)
Description Revoke access from an UltraL ite database for auser ID.
Parameters userid Character array holding the user 1D to be excluded from database

access. The maximum length is 16 characters.

See also "User authentication for Ultralite databases" on page 442
"Adding user authentication to your application” on page 85
"GrantConnectTo method" on page 137

Rollback method

Prototype bool Rollback()
Description Rolls back outstanding changes to the database.
Returns true (1) if successful.

false (0) if unsuccessful.
141

UL Connection class

The following code inserts a value to the database, but then rolls back the

Example change.
pr oduct Tabl e. Qpen(&conn);
product Tabl e. SetProd_id(2);
product Tabl e. Set Price(3000);
product Tabl e. Set Prod_nane("8 2x4 Studs x1000");
product Tabl e. I nsert ();
conn. Rol | back();
See also "Commit method" on page 132

SetDatabaselD method

Prototype bool SetDatabaselD(ul_u_long value)
Description Sets the database ID value to be used for global autoincrement columns
Parameters

value Thevalueto use for generating global autoincrement values.
Returns true (1) if successful.

false (0) if unsuccessful.
See also "Global autoincrement default column values' on page 58
"GLOBAL_DATABASE _ID option" on page 569 of the book ASA

Database Administration Guide
" Global AutoincUsage method" on page 136

StartSynchronizationDelete method

Prototype bool StartSynchronizationDelete()
Description Once thisfunctionis called, all delete operations are again synchronized.
Returns true (1) if successful.

false (0) if unsuccessful.

See also "START SYNCHRONIZATION DELETE statement [MobiLink]" on
page 556 of the book ASA SQL Reference Manual
" StopSynchronizationDelete method" on page 142

StopSynchronizationDelete method

Prototype bool StopSynchronizationDelete()

142

Chapter 7 C++ API Reference

Description

Returns

See also

Prevents del ete operations from being synchronized. Thisis useful for
deleting old information from an UltraL ite database to save space, while not
deleting this information on the consolidated database.

true (1) if successful.

false (0) if unsuccessful.

"START SYNCHRONIZATION DELETE statement [MobiLink]" on
page 556 of the book ASA SQL Reference Manual
" StartSynchroni zationDel ete method" on page 142

Synchronize method

Prototype

Description

Returns

Example

See also

bool Synchronize (ul_synch_info * synch_info)
Synchronizes an UltraL ite database.

& For adetailed description of the members of the synch_info structure,
see " Synchronization parameters' on page 380.

true (1) if successful.
false (0) if unsuccessful.

The following code fragment illustrates how information is provided to the
Synchronize method.

auto ul _synch_i nfo synch_i nf o;
conn. I nit Synchl nfo(&synch_info);
synch_i nfo. user _name = UL_TEXT("50");
synch_i nfo.version = UL_TEXT("custdb");
synch_i nfo. stream = ULSocket Strean() ;
synch_i nfo. streamparns =

UL_TEXT(" host =l ocal host");
conn. Synchroni ze(&ynch_info);

"Synchronization parameters' on page 380

143

ULData class

ULData class

Object

Prototype

Description

Example

Close method

Prototype

Description

Returns

144

Represents an UltralL ite database.

ULData db;
db.Open();

The UL Data class represents an Ultral ite database to your application. It
provides methods to open and close a database, and to check whether a
database is open.

Y ou must open a database before connecting to it or carrying out any other
operation, and you must close the database after you have finished al
operations on the database, and before your application terminates.

For multi-threaded applications, each thread must create its own UL Data.
Neither the UL Data object nor the other objects inherited from it
(UL Connection and other classes) can be shared across threads.

For embedded SQL users, opening a UL Data object is equivalent to calling
db_init.

& For itsposition in the API hierarchy, see "C++ API class hierarchy" on
page 130.

The following example declares a UL Data object and opensit:

ULDat a db;
db. Qpen();

bool Close ()

Frees resources associated with a UL Data object, before you terminate your
application. Once you have closed the UL Data object, you cannot execute
any other operations on that database using the C++ API without reopening.

Palm Computing Platform

Do not call UL Data.Close() on the Palm Computing Platform. On the
Palm Computing Platform, the database must be kept open when you
leave the application. Use UL Data.PalmEXxit to save the state of the
application between sessions instead of calling UL Data.Close. Use the
Reopen method when the application is reactivated. For more
information, see "Reopen method" on page 150.

true (1) if successful.

Chapter 7 C++ API Reference

Example

See also

Drop method

Prototype

Description

Parameters

IsOpen method

Prototype
Description

Returns

Example

false (0) if unsuccessful.
The following example closes a UL Data object:
db. d ose();

"Open method" on page 146

bool Drop (SQLCA * sqlca, ul_char * store-parms)
Delete the UltraLite database file.

Caution
This function del etes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only after closing the database or before opening the database (C++
API).

On the Palm OS, call this function only after UL PalmExit or before
UL PalmL aunch (but after any UL Enable functions have been called)

sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name
to delete as a keyword-value pair of the form file_name=file.udb. It is often
convenient to use the UL_STORE_PARM S macro as this argument. A value
of UL_NULL deletes the default database filename.

& For moreinformation, see"UL_STORE_PARMS macro" on page 428.

bool IsOpen ()

Checks whether the ULData object is currently open.
true (1) if the ULData object is open.

false (0) if the ULData object is not open.

The following example declares a UL Data object, opensit, and checks that
the Open method succeeded:

145

ULData class

See also

Open method

Prototype

Description

Parameters

146

ULDat a db;
db. Qpen();

if(db.l1sQpen()){
printf("The ULData object is open\n");
}

"Open method" on page 146

bool Open ()

bool Open(SQLCA* ca)

bool Open(ul_char* parms)

bool Open(SQLCA* ca, ul_char* parms)

Prepares your application to work with a database. Y ou must open the
UL Data object before carrying out any other operations on the database
using the C++ API. Exceptions to this rule are as follows:;

¢ Onthe Pam Computing Platform, the UL Data.PalmL aunch method is
called before UL Data.Open. The resources that this library requires for
your program are alocated and initialized on this call.

On the Palm Computing Platform, call UL Data.Open whenever
UL Data.PalmL aunch returns LAUNCH_SUCCESS FIRST. For more
information, see "PalmLaunch method" on page 148.

¢ Functions that configure database storage can be called. These functions
have names starting with UL Enable.

For special purposes, you can specify persistent storage parameters
when opening a database to configure caching, encryption, and the
database file name. For information on these parameters, see
"Configuring and managing database storage" on page 45.

For multi-threaded applications, each thread must open its own UL Data
object. Neither the UL Data object nor the other objectsinherited from it
(UL Connection and other classes) can be shared across threads.

Open() Thisprototype can be used by most UltralL ite applications. Any
persistent storage parameters defined in the UL_STORE_PARMS macro are
employed when opening the database.

Open(SQLCA*ca) Usethisprototypeif you are using embedded SQL as
well asthe C++ API in your application, and if you have a SQLCA in use, to
access the same data using the C++ API.

Chapter 7 C++ API Reference

Open(ul_char*parms) Persistent storage parameters can be specified
using the UL_STORE_PARMS macro. This prototype provides an
alternative way of specifying persistent storage parameters. The stringisa
semicolon-separated list of assignments, of the form parameter=value.

Open(SQLCA *ca, ul_char* parms) A call specifying both the SQLCA
and persistent storage parameters.

& For moreinformation on persistent storage parameters, see
"UL_STORE_PARMS macro" on page 428.

Returns true (1) if successful.

false (0) if unsuccessful.

Example The following example declares a UL Data object and opensiit:
ULDat a db;
db. Qpen();

See also "Close method" on page 144

"Configuring and managing database storage" on page 45
"Developing multi-threaded applications’ on page 93
"UL_STORE_PARMS macro" on page 428

PalmExit method

Prototype bool PalmExit(SQLCA *ca)
bool PalmExit(ul_synch_info * synch_info)

Description Call this method just before your application is closed, to save the state of the
application.

For applications using HotSync or Scout Sync synchronization, the method
also writes an upload stream. When the user uses HotSync or Scout Sync to
synchronize data between their Palm device and a PC, the upload stream is
read by the MobiLink HotSync conduit or the MobiLink Scout conduit
respectively.

The MobiLink HotSync and ScoutSync conduits synchronize with the
MobiLink synchronization server through a TCP/IP or HTTP stream using
stream parameters. Specify the stream and stream parametersin the
synch_info.stream_parms. Alternatively, you may specify the stream and
stream parameters viathe ClientParms registry entry. If the ClientParms
registry entry does not exist, a default setting of

{strean¥t cpi p; host =l ocal host} isused.

147

ULData class

Parameters

Returns

sqlca A pointer to the SQLCA. Y ou do not need to supply this argument
unless you are using embedded SQL as well asthe C++ APl in your
application and have used a non-default SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL instead
of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to

UL Synchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of the stream parameter isignored, and
may be UL_NULL.

& For information on the members of the synch_info structure, see
" Synchronization parameters’ on page 380.

true (1) if successful.

false (0) if unsuccessful

PalmLaunch method

Prototype

Description

148

UL_PALM_LAUNCH_RET PalmLaunch();
UL_PALM_LAUNCH_RET PalmLaunch(ul_synch_info * synch_info);
UL_PALM_LAUNCH_RET PalmLaunch(SQLCA* ca);

UL_PALM_LAUNCH_RET PalmLaunch(SQLCA* ca,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST,
LAUNCH_SUCCESS,
LAUNCH_FAIL
}UL_PALM_LAUNCH_RET;

This function restores the application state when the application is activated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of processing the download stream prepared by the
MobiLink HotSync conduit or MobiLink Scout conduit.

If you are using TCP/IP or HTTP synchronization, supply a null value for the
stream parameter in the ul_synch_info synchronization structure. This
information is supplied instead in the synchronization structure called by the
UL Connection.Synchr onize method.

Chapter 7 C++ API Reference

Parameters

Returns

Examples

ca A pointer to the SQLCA. Y ou do not need to supply this argument
unless you are using embedded SQL as well asthe C++ APl in your
application and have used a non-default SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see " Synchronization parameters' on page 380.

If you are using TCP/IP or HT TP synchronization, supply a null value for the
stream parameter.

A member of theUL_PALM_LAUNCH_RET enumeration. The return
values have the following meanings:

¢

¢

LAUNCH_SUCCESS_FIRST Thisvaueisreturned the first time the
application is successfully launched and at any subsequent time the
internal state of the Ultral ite database needs to be re-established. In
general, the state of the database needs to be re-established only after
severe failures.

Y ou should open a UL Data object when LAUNCH_SUCCESS FIRST
isreturned.

LAUNCH_SUCCESS Thisvalueisreturned when an application is
successfully launched, after the Palm user has been using other
applications.

LAUNCH_FAIL Thisvaueisreturned when the launch fails.

A typical C++ APl exampleis

ULDat a db;
ULEnabl ePal mRecor dDB(& sqlca);
switch(db. Pal mLaunch(&synch_info)){
case LAUNCH_SUCCESS Fl RST:
if(!db.Open()){
[/ initialization failed: add error handling here
br eak;

}

/1 fall through
case LAUNCH_SUCCESS:
db. Reopen();

[/ do work here

br eak;

case LAUNCH FAI L:
/1l error
br eak;

149

ULData class

Reopen method

Prototype

Description

Parameters

Returns

Example

See also

150

bool Reopen ()
bool Reopen(SQLCA* ca)
This method is available for the Palm Computing Platform only.

When devel oping Palm applications, you should never close the database
object. Instead, you should call Reopen when the user switches to the
UltraL ite application. The method prepares the datain use by the database
object for use by the application.

Open() No argumentsare needed if you are not using embedded SQL as
well asthe C++ APl in your application.

Open(SQLCA*ca) If you are also using embedded SQL in your
application, and you have a non-default SQLCA in use, you can use this
method to access the same data using the C++ API.

true (1) if successful.
false (0) if unsuccessful.
The following example reopens a database object and a connection object:

db. Reopen();
conn. Reopen(&db);

"Open method" on page 146

Chapter 7 C++ API Reference

ULCursor class

The UL Cursor class contains methods needed by both generated table
objects and generated result set objects.

& For itsposition in the API hierarchy, see"C++ API class hierarchy" on

page 130.

Data types enumeration

This enumeration lists the available UltraL ite data types, as constants. It
contains the following members:

Enumeration value

Description

BAD_INDEX
S LONG

S SHORT

LONG

SHORT

TINY

BIT
TIMESTAMP_STRUCT
DATE

TIME

S BIG

BIG

DOUBLE

REAL

BINARY

TCHAR

NUMERIC

MAX_INDEX

An inappropriate argument was provided
Signed 4-byte integer

Signed 2-byte integer

4-byte integer

2-byte integer

1-byte integer

Bit

Timestamp information as a struct.
Data and time information as a string
Timeinformation as a string

Signed 8-byte integer

8-byteinteger

Double precision number

Real number

Binary data, with a specified length
Character data, with a specified length

Exact numerical data, with a specified precision and
scale

Reserved

The GetColumnType method returns a value from this enumeration.

151

ULCursor class

See also "GetColumnType method" on page 156

SQL data types enumeration

This enumeration lists the available Ultralite SQL data types, as constants. It
contains the following members:

enum {

[
U'JU)I

ICI

>

=
m

AEASASAAEAES
@g Smwdwm

“NUMERI C,
SQL_BI NARY,
SQL_CHAR
SQL_LONGVARCHAR,
SQL_LONGBI NARY,
SQL_MAX_| NDEX

|
The GetColumnSQL Type method returns a value from this enumeration.
See also "GetColumnSQL Type method" on page 156

AfterLast method

Prototype bool AfterLast()

Description Changes the cursor position to be after the last row in the current table or
result set.

Returns true (1) if successful.

false (0) if unsuccessful.

Example The following example makes the current row the last row of the table tb:

152

Chapter 7 C++ API Reference

See also

tb. AfterLast();
tb. Previous();

"BeforeFirst method" on page 153
"Last method" on page 158

BeforeFirst method

Prototype

Description

Returns

Example

See also

Close method

Prototype

Description

Returns

Example

See also

bool BeforeFirst()

Changes the cursor position to be before the first row in the current table or
result set.

true (1) if successful.
false (0) if unsuccessful.

The following example makes the current row the first row of the table th:

tb. BeforeFirst();
th. Next ();

"AfterLast method" on page 152
"First method" on page 154

bool Close()

Frees resources associated with the generated object in your application. This
method must be called after all processing involving the table is complete,
and before the UL Connection and UL Data objects are closed.

Any uncommitted operations are rolled back when the Close() method is
caled.

true (1) if successful.
false (0) if unsuccessful.

The following example closes a generated object for a table named
UL Product:

tb. d ose();

"Open method" on page 177

153

ULCursor class

Delete method

Prototype
Description

Returns

Example

See also

First method

Prototype
Description

Returns

Example

See also

Get method

Prototype

154

bool Delete()
Deletes the current row from the current table or result set.
true (1) if successful.

false (0) if unsuccessful. For example, if you attempt to use the method on a
SQL statement that represents more than one table.

The following example deletes the last row from atable th:

tb. Qpen(&conn);
tbh. Last();
tb. Delete();

"Insert method" on page 157
"Update method" on page 162

bool First()

Moves the cursor to the first row of the table or result set.

true (1) if successful.

false (0) if unsuccessful. For example, the method fails if there are no rows.

The following example deletes the first row from atable th:

tb. Qpen(&conn);
th.First();
tb. Delete();

"BeforeFirst method" on page 153
"Last method" on page 158

bool Get(ul_column_num colnum,
value-declaration,
bool* isNull = UL_NULL)

Chapter 7 C++ API Reference

Description

Returns

See also

value-declaration:
ul_char * ptr, ul_length length
| p_ul_binary name , ul_length length
| DECL_DATETIME &date-value
| { DECL_BIGINT | DECL_UNSIGNED_BIGINT } &bigint-value
| [unsigned] long &integer-value
| unsigned char &char-value
| double & double-value
| float & float-value
| [unsigned] short &short-value

Gets a value from the specified column.
colnum A 2-byteinteger. The first column is column 1.

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to avariable of the proper type is needed. For character data, the
length parameter specifies the length of the C array including the space used
for the terminator.

isNULL If avalueinacolumnisNULL, isNull isset to true. In this case,
the value argument is not meaningful.

true (1) if successful.
false (0) if unsuccessful.

"Get generated method" on page 175
" Set method" on page 161

GetColumnCount method

Prototype
Description
Returns

Example

int GetColumnCount()
Returns the number of columns in the current table or result set.
Integer number of columns.

The following example opens a table object named t b and places the number
of columnsin the variable nuntol :

tb. Qpen(&conn);
nunCol = thb. Get Col umGCount () ;

GetColumnSize method

Prototype

ul_length GetColumnSize(ul_column_num column-index)

155

ULCursor class

Description

Parameters

Returns

Example

See also

Returns the number of bytes needed to hold the information in the specified
column.

column-index The number of the column. The first column in the table
has avalue of one.

The number of bytes.

The following example gets the number of bytes needed to hold the third
column in the table tb:

tb. Qpen(&conn);
col Si ze = th. Get Col umSi ze(3);

"GetColumnType method" on page 156

GetColumnType method

Prototype
Description

Parameters

Returns

Example

See also

int GetColumnType(ul_column_num column-index)
Returns the data type needed to hold the information in the specified column.

column-index The number of the column. The first column in the table or
result set has a value of one.

The column type is a member of the Ultral ite data types enumeration. For
more information, see " Data types enumeration” on page 151:

The following example gets the column type for the third column in the table
th:

tb. Qpen(&conn);
col Type = th. Get Col umType(3);

"Data types enumeration” on page 151
"Get generated method" on page 175
"GetColumnSQL Type method" on page 156

GetColumnSQLType method

Prototype
Description

Parameters

156

int GetColumnSQLType(ul_column_num column-index)

Returns the SQL data type of the specified column.

column-index The number of the column. The first column in the table or
result set has a value of one.

Chapter 7 C++ API Reference

Returns

Example

See also

The column type is a member of the UltralLite data types enumeration. For
more information, see " Data types enumeration” on page 151.:

The following example gets the column type for the third column in the table
th:

tb. Qpen(&conn);
col Type = th. Get Col umType(3);

"Data types enumeration” on page 151
"Get generated method" on page 175
"GetColumnType method" on page 156

GetSQLCode method

Insert method

Prototype
Description

Returns

Example

See also

Thisis aconvenience method that calls the UL Connection::GetSQL Code
method.

& For more information see " GetSQL Code method" on page 135.

bool Insert()

Inserts arow in the table with values specified in previous Set methods.
true (1) if successful.

false (0) if unsuccessful.

The following example inserts a new row into the table based at the current
position:

product Tabl e. SetProd_id(2);

product Tabl e. Set Price(3000);

product Tabl e. Set Prod_nane("8 2x4 Studs x1000");
product Tabl e. I nsert ();

When inserting arow, you must supply avalue for each column in the table.

& For information on cursor positioning after inserts, and the position of
the inserted row, see "Using table and query classes' on page 125.

"Delete method" on page 154
"Update method" on page 162

157

ULCursor class

IsOpen method

Prototype bool IsOpen ()
Description Checks whether the UL Cursor object is currently open.
Returns true (1) if the ULCursor object is open.

false (0) if the ULCursorobject is not open.

See also "Open method" on page 159

Last method

Prototype bool Last()
Description Move the cursor to the last row in the table or result set.
Returns true (1) if successful.

false (0) if unsuccessful.

Example The following example movesto a position after the last row in atable:
tb. Open(&conn);
th. Last();
th. Next ();

See also "AfterLast method" on page 152

"First method" on page 154

LastCodeOK method

Thisis a convenience method that calls the UL Connection::L astCodeOK
method.

& For more information see "LastCodeOK method" on page 138.

LastFetchOK method

Thisis a convenience method that calls the UL Connection::L astFetchOK
method.

& For more information see "LastFetchOK method" on page 158.

158

Chapter 7 C++ API Reference

Next method

Prototype
Description

Returns

Example

See also

Open method

Prototype

Description

Returns

Example

See also

Previous method

Prototype
Description

Returns

bool Next()

Moves the cursor position to the next row in the table or result set.
true (1) if successful.

false (0) if unsuccessful.

The following example moves the cursor position to the first row in the table:

tb. Qpen(&conn);
tb. BeforeFirst();
th. Next();

"Previous method" on page 159
"Relative method" on page 160

bool Open(ULConnection * conn)

Opens a cursor on the specified connection. If the object is aresult set with
parameters, you must set the parameters before opening the result set.

When using Open from the UL Table subclass of UL Cur sor, do not open
two connections on a UL Table objct at one time.

true (1) if successful.
false (0) if unsuccessful.

The following example opens a result set object (which extends the cursor
class) and moves the cursor position to the first row:

rs. Qpen(&conn);
rs.BeforeFirst();
rs. Next();

"Close method" on page 153
"Open method" on page 172

bool Previous()
Moves the cursor position to the previous row in the table or result set.

true (1) if successful.

159

ULCursor class

Example

See also

Relative method

Prototype

Description

Returns

See also

Reopen method

Prototype

Description

Parameters

160

false (0) if unsuccessful.

The following example movesto the last row in atable:

tb. Qpen(&conn);
th. AfterLast();
tb. Previous();

"Next method" on page 159
"Relative method" on page 160

bool Relative(ul_fetch_offset offset)

Moves the cursor position relative to the current position. If the row does not
exist, the method returns false, and the cursor isleft at AfterLast() if offsetis
positive, and Befor eFir st() if offset is negative.

offset The number of rowsto move. Negative values correspond to
moving backwards.

true (1) if therow exists.
false (0) if the row does not exist.

"Next method" on page 159
"Previous method" on page 159

bool Reopen(ULConnection *conn)

This method is available for the Palm Computing Platform only. The
UL Data and UL COnnection objects must already be reopened for this call
to succeed.

When devel oping Palm applications, you should never close result set
objects if you wish to maintain the cursor position. Instead, you should call
Reopen when the user switches back to the UltraLite application.

Although the UL Table object inherits from the UL Cursor class, you should
not use Reopen on table objects. Instead, you should close them on exiting
the Palm application and Open them on re-entering. The cursor position is
not maintained in UL Table objects.

conn A pointer to the UL Connection object on which the cursor is
defined.

Chapter 7 C++ API Reference

Returns

Example

See also

Set method

Prototype

Description

Returns

See also

true (1) if successful.
false (0) if unsuccessful.

The following example reopens a database object, and then a connection
object, and then aresult set object:

db. Reopen();
conn. Reopen(&db);
rs. Reopen(&conn);

"Open method" on page 139

bool Set(ul_column_num colnum, value)

value:
p_ul_binary buffer-name, ul_length buffer-length
| ul_char * buffer-name, ul_length buffer-length = 0
| DECL_DATETIME date-value
| DECL_UNSIGNED_BIGINT bigint-value
| unsigned char char-value
| double double-value
| float float-value
| [unsigned] long long-value
| [unsigned] short short-value

Sets avalue in the specified column, for the current row.
colnum A 2-byteinteger. The first column is column 1.

value For character and binary data you must supply a buffer name and
length. For other data types, a value of the proper type is needed. The
function fails if the data type isincorrect for the column.

true (1) if successful.
false (0) if unsuccessful.

"Get method" on page 154

SetColumnNull method

Prototype

Description

int SetColumNull(ul_column_num column-index)

Sets a column to the SQL NULL. The datais not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

161

ULCursor class

Parameters column-index The number of the column. Thefirst column in the table
has avalue of one.

Returns true (1) if successful.
false (0) if unsuccessful.

See also " SetNull<Column> generated method" on page 178

Update method

Prototype bool Update()
Description Updates arow in the table with values specified in previous Set methods.
Returns true (1) if successful.

false (0) if unsuccessful.

Example The following example sets a new price on the current row of the
productTable object, and then updates the row in the Ultral ite database:

product Tabl e. Set Price(400);
pr oduct Tabl e. Updat e() ;

See also "Delete method" on page 154
"Insert method" on page 157

162

Chapter 7 C++ API Reference

ULResultSet class

The UL ResultSet class extends the UL Cur sor class, and provides methods
needed by all generated result sets.

& For more information, see "ULCursor class' on page 151, and
"Generated result set class' on page 171.

& For itsposition in the API hierarchy, see "C++ API class hierarchy" on
page 130.

SetParameter method

Prototype

Description

Parameters

Returns

virtual bool SetParameter(int argnum, value-reference)

value-reference:
[unsigned] long & value
| p_ul_binary value
| unsigned char & value
| ul_char * value
| double & value
| float & value
| [unsigned] short & value
| DECL_DATETIME value
| DECL_BIGINT value
| DECL_UNSIGNED_BIGINT value

The following query defines aresult set with a parameter:

SELECT id
FROM nyt abl e
WHERE id < ?

The result set object defined in the C++ API that corresponds to this query
has a parameter. Y ou must set the value of the parameter before opening the
generated result set object.

argnum Anidentifier for the argument to be set. The first argument is 1,
the second 2, and so on.

value-reference A reference to the parameter value. The data type listing
above provides the possibilities. Asthe parameter are passed as pointers,
they must remain valid until used. Do not free them until they are used.

true (1) if successful.

false (0) if unsuccessful. If you supply a parameter of the wrong data type,
the method fails.

163

ULResultSet class

See also "Open method" on page 172

164

Chapter 7 C++ API Reference

ULTable class

The UL Table class extends the UL Cur sor class, and provides methods
needed by all generated table objects.

Y ou cannot have multiple connections to a UL Table object at one time.

& For itsposition in the API hierarchy, see "C++ API class hierarchy" on
page 130.

DeleteAllRows method

Prototype ul_ret_void DeleteAllRows()
Description The function deletes all rowsin the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of datainto the table. Rows can be deleted from the
Ultral ite database without being deleted from the consolidated database
using the UL Connection:: StartSynchronizationDelete method.

See also " StartSynchroni zationDel ete method" on page 142
" StopSynchronizationDel ete method" on page 142

Find method

Equivalent to the FindNext method.
& See"FindNext method" on page 167.

FindFirst method

Prototype bool FindFirst(ul_column_num ncols)

Description Move forwards through the table from the beginning, looking for arow that
exactly matches avalue or set of valuesin the current index.

The current index is that used to specify the sort order of thetable, It is
specified when your application calls the generated table Open method. The
default index isthe primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
theindex. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is After Last().

165

ULTable class

Parameters ncols For composite indexes, the number of columns to use in the lookup.

For example, if thereis athree column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

Returns true (1) if successful.
false (0) if unsuccessful.

See also "FindLast method" on page 166
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

FindLast method

Prototype bool FindLast(ul_column_num ncols)

Description Move backwards through the table from the end, looking for arow that
matches avalue or set of valuesin the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see " Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is Befor eFir st().

Parameters ncols For composite indexes, the number of columns to use in the lookup.

For example, if thereis athree column index, and you want to lookup avalue
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

Returns true (1) if successful.
false (0) if unsuccessful.

See also "FindFirst method" on page 165
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

166

Chapter 7 C++ API Reference

FindNext method

Prototype

Description

Parameters

Returns

See also

bool FindNext(ul_column_num ncols)

Move forwards through the table from the current position, looking for arow
that exactly matches a value or set of valuesin the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index isthe primary key. For more information, see " Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure, the cursor position is After L ast().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if thereis athree column index, and you want to lookup avalue
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.
false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindPrevious method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

FindPrevious method

Prototype

Description

bool FindPrevious(ul_column_num ncols)

Move backwards through the table from the current position, looking for a
row that exactly matches avalue or set of valuesin the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index isthe primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is Befor eFir st().

167

ULTable class

Parameters

Returns

See also

Lookup method

ncols For composite indexes, the number of columns to use in the lookup.
For example, if thereis athree column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.
false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindNext method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

Equivalent to the LookupForward method.
& See"LookupForward method" on page 169

GetRowCount method

Prototype

Description

Returns

See also

ul_ul_long GetRowCount()
The function returns the number of rows in the table.

One use for the function is to decide when to delete old rows to save space.
Old rows can be deleted from the UltraLite database without being deleted
from the consolidated database using the

UL Connection:: StartSynchronizationDelete method.

The number of rows in the table.

" StartSynchroni zationDel ete method" on page 142
" StopSynchronizationDel ete method" on page 142

LookupBackward method

Prototype

Description

168

bool LookupBackward(ul_column_num ncols)

Move backwards through the table starting from the end, looking for the first
row that matches or is less than avalue or set of valuesin the current index.

Chapter 7 C++ API Reference

Parameters

Returns

See also

The current index is that used to specify the sort order of thetable, It is
specified when your application calls the generated table Open method. The
default index isthe primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
theindex. The cursor is left on the first row that matches or is less than the
index value. On failure (that is, if no row isless than the value being looked
for), the cursor position is Befor eFir st().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if thereis athree column index, and you want to lookup avalue
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.
false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupForward method" on page 169

LookupForward method

Prototype

Description

Parameters

bool LookupForward(ul_column_num ncols)

Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than avalue or set of valuesin the current
index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index isthe primary key. For more information, see " Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor isleft on the first row that matches or is greater than
theindex value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is After L ast().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if thereis athree column index, and you want to lookup avalue
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

169

ULTable class

Returns

See also

170

true (1) if successful.
false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupBackward method" on page 168

Chapter 7 C++ API Reference

Generated result set class

Object

Prototype

Description

See also

The generated result set class represents a query result set to your
application. The name of the class is generated by the UltraLite generator,
based on the name of the statement supplied when it was added to the
database.

To create a generated result set object, you use the generated name in the
declaration

result-set rs;
rs.Open();

result-set. generated name

The UltraLite generator defines a class for each named statement in an
Ultral ite project that returns aresult set. This class inherits methods from
ULCursor.

& For itsposition in the API hierarchy, see "C++ API class hierarchy" on
page 130.

"ULCursor class' on page 151
"ul_add_statement system procedure” on page 411

Get<Column> generated method

Prototype

Description

Parameters

Returns

See also

bool Getcolumn-name(type* variable, [ul_length* length,]
bool* isNull = UL_NULL)

Retrieves a value from column-name. The type specification depends on the
column data type.

column-name The name of the column.

variable A variable of the proper data type for the column. This data type
can be retrieved using GetColumnType.

length For variable length data. For character data, the length parameter
specifies the length of the C array including the space used for the
terminator.

isNull If thevalueisNULL, thisargument istrue.
true (1) if successful.
false (0) if unsuccessful.

" Set<Column> generated method" on page 172

171

Generated result set class

Open method

Prototype bool Open(ULConnection * conn,
datatype value, ...)
Description The UltraLite generator defines a class for each named statement in an
Ultral ite project that returns aresult set. This class inherits methods from
ULCursor.

Y ou must supply a value for each placeholder in the result set.
Parameters conn The connection on which the result set is to be opened.

value Thevalue for the placeholder in the result set.

Example The following query contains a single placeholder:

select prod_id, price, prod_nane
from "DBA". ul product
where price < ?

The generator writes out the following methods for the object (in addition to
some others):

bool pen(UWLConnection* conn,
long Price);
bool pen(ULConnection* conn);
bool SetParaneter(int index, |long &val ue);

See also " SetParameter method" on page 163

Set<Column> generated method

Prototype bool Setcolumn-name()

Description Sets the value of the cursor at the current position. The datain the row is not
actually changed until you execute an Insert or Update, and that changeis
not permanent until it is committed.

Parameters column-name A generated name derived from the name of the columniin
the reference database.
Returns true (1) if successful.

false (0) if unsuccessful.

See also "Get<Column> generated method" on page 171
" SetNull<Column> generated method" on page 173

172

Chapter 7 C++ API Reference

SetNull<Column> generated method

Prototype

Description

Parameters

Returns

See also

bool SetNullcolumn-name()

Sets a column to the SQL NULL. The datais not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

column-name A generated name derived from the name of the columnin
the reference database.

true (1) if successful.
false (0) if unsuccessful.

" Set<Column> generated method" on page 172

173

Generated statement class

Generated statement class

For each SQL statement that does not return aresult set, including inserts,
updates, and deletes, the Ultralite generator defines a generated statement
class. The name of the classisthe name provided inthe ul_add_statement
stored procedure call that added the statement to the reference database.

The generated statement class inherits from the UL Statement class, which
has no methods of its own.

& For itsposition in the API hierarchy, see "C++ API class hierarchy" on
page 130.

Execute method

Prototype bool Execute(ULConnection* conn,
[datatype column-name,...])

Description Executes a named statement that does not return aresult set. Any change
made is not permanent until it is committed.

When a statement is defined using u/_add_statement, you supply
placeholders for the values, and supply them at run time. The generated
prototype has a data type and name for each value.

Parameters conn The connection on which the statement is to be executed.
datatype A member of the UltralLite data type enumeration.

column-name The name of the column.
Returns true (1) if successful.

false (0) if unsuccessful.

See also "ul_add_statement system procedure” on page 411

174

Chapter 7 C++ API Reference

Generated table class

Object

Prototype

Description

See also

The generated table class represents a database table to your application. The
name of the classis generated by the UltraL ite generator, based on the name
of the table in the database.

Tablename tb;
tb.Open();

Tablename:
generated name

The UltraLite generator defines a class for each table in a named

SQL Remote publication. The generated table class inherits from UL Table
and UL Cur sor. The class has a name based on the table or statement name,
so that for atable named Product, the generator defines a class named
Product.

& For itsposition in the API hierarchy, see"C++ API class hierarchy" on
page 130.

"ULCursor class' on page 151
"ULTableclass' on page 165

Get generated method

Prototype

Description

Parameters

bool Get (
ul_column_num column-index,
value-declaration,
bool* js-null = UL_NULL);

value-declaration:
ul_char * buffer-name, ul_length buffer-length
| p_ul_binary buffer-name, ul_length buffer-length
| DECL_DATETIME & date-value
| { DECL_BIGINT | DECL_UNSIGNED_BIGINT } & bigint-value
| unsigned char & char-value
| double & double-value
| float & float-value
| [unsigned] long & integer-value
| [unsigned] short & short-value

Gets avalue of from a column, specified by index.

column-index The number of the column. The first column in the table
has avalue of one.

175

Generated table class

Returns

Example

See also

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to avariable of the proper type is needed. For character data, the
length parameter specifies the length of the C array including the space used
for the terminator.

isNULL If avalueinacolumnisNULL, isNull isset to true. In this case,
the value argument is not meaningful.

true (1) if successful.
false (0) if unsuccessful.

The following example is part of aswitch statement that gets values from
rows based on their data type:

switch(tb. Get Col umType(collndex)) {
case th.S LONG :
ret = th.Get(collndex, longval);
printf("Long colum: %\n", |ongval);
br eak;

"Data types enumeration” on page 151

"Get method" on page 154

"Get<Column> generated method" on page 176
"GetColumnSize method" on page 155

Get<Column> generated method

Prototype

Description

Parameters

Returns

176

bool Getcolumn-name(type* variable, [ul_length* length,]
bool* isNull = UL_NULL)

Retrieves a value from column-name. The type specification depends on the
column data type.

column-name The name of the column.

variable A variable of the proper data type for the column. This data type
can be retrieved using GetColumnType.

length For variable length data types. For character data, the length
parameter specifies the length of the C array including the space used for the
terminator.

isNull If thevalueisNULL, thisargument istrue.

true (1) if successful.

Chapter 7 C++ API Reference

See also

false (0) if unsuccessful.

"Get generated method" on page 175

GetSize<Column> generated method

Prototype
Description

Parameters

Returns
See also

Open method

Prototype

Description

Parameters

Returns

Example

ul_length GetSizecolumn-name()

Returns the storage area needed to hold a value from the specified column.

column-name A generated name derived from the name of the columnin
the reference database.

true (1) if successful.
false (0) if unsuccessful.

"GetColumnType method" on page 156

bool Open(ULConnection* conn)

bool Open(ULConnection* conn, ul_index_num index)

Prepares your application to work with the data in a generated table object.

conn The address of a UL Connection object. The connection must be
open.

index An optional index number, used to order the rowsin thetable. The
index is one of the members of the generated index enumeration. By default,
the table is ordered by primary key value.

& For more information, see "Index enumeration” on page 178.
When the table is opened, the cursor is positioned before the first row
true (1) if successful.

false (0) if unsuccessful.

The following example declares a generated object for a table named
UL Product, and opensiit;

177

Generated table class

ULDat a db;
ULConnecti on conn;
ULPr oduct tb;

db. Qpen() ;
conn. Qpen(&db, "DBA', "SQ");
tb. Open(&conn);

See also "Close method" on page 153
"Index enumeration” on page 178

Set<Column> generated method

Prototype bool Setcolumn-name()

Description Sets the value of the cursor at the current position. The datain the row is not
actually changed until you execute an Insert or Update, and that changeis
not permanent until it is committed.

Parameters column-name A generated name derived from the name of the columniin
the reference database.
Returns true (1) if successful.

false (0) if unsuccessful.

See also "SetColumnNull method" on page 161

SetNull<Column> generated method

Prototype bool SetNullcolumn-name()

Description Sets a column to the SQL NULL. The datais not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

Parameters column-name A generated name derived from the name of the column in
the reference database.

Returns true (1) if successful.

false (0) if unsuccessful.

See also "SetColumnNull method" on page 161

Index enumeration

Prototype enum{ index-name,... }

178

Chapter 7 C++ API Reference

Description Each member of the enumeration is an index name in the table being
generated. Y ou can use the index name to specify an ordering for the table
when it is opened, and thereby control the behavior of the cursor movement
methods.

Parameters index-name The name of an index in the table. The primary key hasthe
name Primary, and other indexes have their name in the database.

See also "Open method" on page 177

179

Generated table class

180

CHAPTER 8

Tutorial: Build an Application Using
Embedded SQL

About this chapter This chapter provides atutorial that guides you through the process of
developing an embedded SQL UltraLite application. The first section
includes a sample embedded SQL source file and discusses the key elements
in the sample source file. The second section provides instructions for
building an UltraL ite application using this sample source file.

& For an overview of the development process and background
information on the UltraL ite database, see "Designing Ultralite
Applications’ on page 41.

& For information on devel oping embedded SQL UltraLite Applications,
see "Developing Embedded SQL Applications' on page 193.

& For adescription of embedded SQL, see "The Embedded SQL
Interface” on page 205.

Contents Topic Page
Introduction 182
Writing source files in embedded SQL 183
Building the sample embedded SQL UltraL ite application 187

181

Introduction

Introduction

*,
EX4

182

In thistutorial, you will create an embedded SQL source file and use this
source file to build a simple UltraLite application. The next section "Writing
source filesin embedded SQL" on page 183 provides a sample embedded
SQL program. Copy this programinto a new file and save it asa .sqc source
file. Then, follow the step by step instructionsin "Building the sample
embedded SQL Ultral ite application” on page 187 to build the UltralLite
application. The UltralLite application can be executed in the command
prompt on your PC.

This tutorial assumes that you have UltralLite installed on a machine with
Microsoft Visual C++ 6.0 installed. If you use adifferent C/C++
development tool, you will have to trandate the Visual C++ instructions into
their equivalent for your development tool.

The source files for this tutorial can be found in the
Samples\UltraLite\ESQL Tutorial subdirectory of your SQL Anywhere
directory.

To prepare for the tutorial

¢+ Createadirectory to hold the files you will create: c:lesqitutorial.

Chapter 8 Tutorial: Build an Application Using Embedded SQL

Writing source files in embedded SQL

The following sample program establishes a connection with the UltraLite
CustDB sample database and executes a select query. Copy the following
code into anew file and save it as sample.sqc in your c:lesqltutorial
directory, or retype the material into afile.

Y ou can also find this file as Samples\UltraLite\ESQL Tutoriallsample.sqc.
#i ncl ude <stdio. h>
EXEC SQ. | NCLUDE SQ.CA;

mai n()

[* Declare fields */

EXEC SQ. BEG N DECLARE SECTI O\
| ong pi d=1;
| ong cost;
char pnange[31];

EXEC SQ. END DECLARE SECTI O\

/* Before working with data*/
db_init(&sqlca);

/* Connect to database */
EXEC SQ. CONNECT " DBA" | DENTI FI ED BY "SQ.";

[* Fill table with data first */
EXEC SQ | NSERT | NTO ULProduct (
prod_id, price, prod_nane)
VALUES (1, 400, '4x8 Drywal | x100");
EXEC SQ | NSERT | NTO ULProduct (
prod_id, price, prod_nane)
VALUES (2, 3000, '8 ’'2x4 Studs x1000");
EXEC SQ. COW T;

/* Fetch row from dat abase */

EXEC SQ. SELECT price, prod_nane
I NTO : cost, :pnane
FROM ULPr oduct
WHERE prod_i d= : pi d;
/* Error handling. |If the row does not exist,
or if an error occurs, -1 is returned */

HFC(SQL ==SQLE_NOTFOUND) | | (SQLOODE<0)) {
return(-1);
}

/* Print query results */
printf("Product id: %d Price: %d Product nane: %",
pi d, cost, pnane);

183

Writing source files in embedded SQL

/* Preparing to exit:

rol | back any outstandi ng changes and di sconnect */
EXEC SQ. ROLLBACK;

EXEC SQ. DI SCONNECT;

db_fini(&sqlca);

return(0);

Tip

Y ou can configure Visual C++ to provide syntax highlighting for .sqc
files, by adding ;sqc to thelist of file extensionsin the following registry
location:

HKEY_CURRENT_USER\ Sof t war e\ M cr osof t \ DevSt udi o\ 6. O\
Text Editor\Tabs\Language Settings\C/ C++\ Fi | eExt ensi ons

Explanation of the sample program

Although too simple to be useful, this example contains elements that must
be present in every embedded SQL source file used for database access. The
following describes the key elements in the sample program. Use these steps
as aguide when creating your own embedded SQL Ultral ite application.

1 Include the appropriate header files.

The sample program utilizes standard 1/0, therefore the stdio.h header
file has been included.

2 Definethe SQL communications area, sglca.
Use the following command:
EXEC SQL | NCLUDE SQLCA;

This definition must be your first embedded SQL statement, so placeit
at the end of your include list.

Prefix SQL statements
All SQL statements must be prefixed with the keywords EXEC SQL
and must end with a semicolon.

3 Define host variables by creating a declaration section.

Host variables are used to send val ues to the database server or receive
values from the database server. Create a declaration section as follows:

EXEC SQ. BEG N DECLARE SECTI QN;
| ong pid=1;

184

Chapter 8 Tutorial: Build an Application Using Embedded SQL

| ong cost;
char pnange[31];
EXEC SQ. END DECLARE SECTI O\

& For information on host variables, see "Using host variables' on
page 209.

Call the embedded SQL library function db_init to initialize the UltralL ite
runtime library.

Call this function as follows:
db_i nit (&sql ca);
Connect to the database using the CONNECT statement.

To connect to the UltraL ite sample database, you must supply the login
user 1D and password. Connect as user DBA with password SQL as
follows:

EXEC SQ. CONNECT "DBA" | DENTI FI ED BY "SQ";
Insert datainto database tables.

When an application isfirst started, its database tables are empty. Only
when you choose to synchronize the remote database with the
consolidated database will the tables be filled with values so that you
may execute select, update or delete commands. Rather than using
synchronization, however, you may also directly insert data into the
tables. Directly inserting datais a useful technique during the early
stages of UltraLite development.

If you use synchronization and your application fails to execute a query,
it can be due to a problem in the synchronization process or due to a
mistake in your program. To locate the source of failure may be
difficult. On the other hand, if you directly fill tables with datain your
source code rather than perform synchronization, then, if your
application fails, you will know automatically that the failureis dueto a
mistake in your program.

After you have tested that there are no mistakes in your program,
remove the insert statements and replace them with a call to the

UL Synchronize function to synchronize the remote database with the
consolidated database.

& For information on adding synchronization to an UltraLite
application, see " Adding synchronization to your application” on
page 190.

Execute your SQL query.

185

Writing source files in embedded SQL

186

The sample program executes a select query that returns one row of
results. The results are stored in the previously defined host variables
cost and pnane.

Perform error handling.

The sample program executes a select request that returns an error code,
sqgl code. Thiscodeis negativeif an error occurs; SQL_NOTFOUND is
returned if there are no query results. The sample program handles these
errors by returning —1.

Disconnect from the database.

You should rollback or commit any outstanding changes before
disconnecting.

To disconnect, use the DISCONNECT statement as follows:
EXEC SQ. DI SCONNECT;

10 End your SQL work with a call to the library functidh fini.

db_fini(&sqlca);

Chapter 8 Tutorial: Build an Application Using Embedded SQL

Building the sample embedded SQL UltraLite

application

After you have created a source file sample.sqc using the sample code in the
previous section, you are ready to build your UltralL ite application. Follow
these steps in Microsoft Visual C++ 6.0 to create the sample embedded SQL
UltraL ite application.

+ To build the sample embedded SQL UltraLite application:

1

Start the Adaptive Server Anywhere personal database server.

By starting the database server, both the SQL preprocessor and the
UltraL ite analyzer will have access to your reference database. The
sample application uses the CustDB sample database custdb.db as a
reference database and as consolidated database. Start the database
server at the command line from the Samples\UltraLite\CusDB directory
containing custdb.db as follows:

dbeng8. exe cust db. db

Alternatively, you can start the database server by selecting
Startd Programsl] SQL Anywhere 800 UltraLite[] Personal Server
Sample for UltraL ite.

Start Microsoft Visual C++ from your desktop in the standard fashion.

Configure Visual C++ to search the appropriate directories for
Embedded SQL header filesand UltralLite library files.

Select Tools[] Options and click on the Directories tab. Choose Include
Files under the Show Directories For drop down menu. Include the
following directory, so that the embedded SQL header files can be
accessed.

C.\Program Fi | es\ Sybase\ SQL Anywhere 8\h

If you have installed SQL Anywhere to adirectory other than the
default, substitute your installation directory above. On the same tab,
select Library Files under the Show Directories For drop down menu.
Include the following directory so that the UltraL ite library files can be
accessed.

C. \ Program
Fi | es\ Sybase\ SQL Anywhere 8\U traLite\wi n32\386\1ib

Click OK to submit the changes.

Create a new workspace tutorial:

187

Building the sample embedded SQL UltraLite application

188

¢ Sdlect FileO New.
¢ Click the Workspaces tab.

¢ Choose Blank Workspace. Specify a workspace name tutorial and
specify C:lesgltutorial\tutorial as the location to save this workspace.
Click OK. Workspace tutorial will be added to the Workspace
window.

Create anew project ultutorial and add it to the tutorial workspace:
¢ Select FileO New.
¢ Click the Project tab.

¢ Choose Win32 Console Application. Specify a project name
ultutorial and select Add To Current Workspace. Click OK. Choose
to create An Empty Project and click Finish. The project will be
saved in the tutorial folder.

¢ Click the FileView tab on the Workspace window. The workspace
tutorial now consists of one project. Project ultutorial islisted under
the workspace tutorial and has three folders: Source Files, Header
Files, Resource Files.

Add the sample.sqc embedded SQL source file to the project:

¢ Right click on the Source Files folder and select Add Filesto
Folder. Locate your sample.sqc file and click OK. Open the Source
Filesfolder to verify that it contains sample.sqc.

Configure the sample.sqc source file settings to invoke the SQL
preprocessor to preprocess the source file:

¢ Right click on the sample.sqc file in the Workspace window and
select Settings. A Project Settings dialog appears.

¢ From the Settings For drop down menu, choose All Configurations.

¢ Inthe Custom Build tab, enter the following statement in the
Commands box. Ensure that the statement is entered all on oneline.

"%asany8%\win32\sglpp.exe" -q -0 WINNT —c
"dsn=Ultralite 8.0 Sample" $(InputPath) sample.cpp

¢ Specify sample.cpp in the Outputs box.

¢ Click OK to submit the changes. This statement runs the SQL
preprocessor sqlpp on the sample.sqc file, and writes the processed
output in afile named sample.cpp. The SQL preprocessor trandlates
SQL statementsin the source file into C/C++.

Chapter 8 Tutorial: Build an Application Using Embedded SQL

10

11

12

Because the sample application consists of only one source file, the
preprocessor automatically runs the Ultralite analyzer as well and
appends extra C/C++ code to the generated source file.

Preprocess the sample.sqc file:

¢ Select sample.sqc in the Workspace window. Choose Build
Compile sample.sqc. A sample.cpp file will be created and saved in
the tutoriallultutorial folder.

Add the sample.cpp file to the project:

¢ Right click on the Source Files folder in the Workspace window and
select Add Filesto Folder. Locate your sample.cpp file (in
c:\esqltutorial\tutoriallultutorial) and click OK. The sample.cpp file
appears inside the Source Files folder.

Configure the project settings:

¢ Right click on the ultutorial project and select Settings. The Project
Settings dial og appears.

¢ Sdlect All Configurations under the Settings For drop down menu.

¢ Click the Link tab and add the following runtime library to the
Object/Library Modules box.

ulimp.lib

¢ Click the C/C++ tab. Select Preprocessor from the Category drop-
down menu. Ensure that the following are included in the
Preprocessor definitions:

_ NT__, UL_USE DLL
¢ Click OK to closethe dialog.
Build the executable:

¢ Select Build Build ultutorial.exe. The ultutorial executable will be
created. Depending on your settings, the executable may be created
in a Debug directory within your tutoria directory.

Run the application:

¢ Select Build Execute ultutorial .exe. A screen will appear and
display the first row of the product table.

189

Building the sample embedded SQL UltraLite application

Adding synchronization to your application

Once you have tested that your program is functioning properly, you can
remove the lines of code that manually insert data into the ULProduct table.
Replace these statements with a call to the ULSynchr oni ze function to
synchronize the remote database with the consolidated database. This
process will fill the tables with data and you can subsequently execute a
select query.

Synchronization via TCP/IP

Y ou can synchronize the remote database with the consolidated database
using a TCP/IP socket connection. Call ULSynchr oni ze with the
ULSocket Strean() stream.

auto ul _synch_i nfo synch_i nf o;
ULl ni t Synchl nfo(&ynch_info);
synch_i nfo.user_name = UL_TEXT("50");
synch_i nfo.version = UL_TEXT("custdb");
synch_i nfo. stream = ULSocket Strean() ;
synch_i nfo. stream parns =

UL_TEXT(" host =l ocal host ; port=2439");
ULSynchroni ze(&sqlca, &synch_info);

In order to synchronize with the CustDB consolidated database, the
employee ID must be supplied. ThisID identifies an instance of an
application to the MobiLink server. Y ou may choose avalue of 50, 51, 52, or
53. The MobiLink server uses this value to determine the download content,
to record the synchronization state, and to recover from interruptions during
synchronization.

& For more information on the UL Synchronize function, see
"UL Synchronize function" on page 250.

Running the sample application with synchronization

After you have made changes to the sample.sqc file, you must preprocess the
atered sample.sqc file and rebuild ultutorial.exe.

This section assumes that you have completed the tutoria in the previous
section and therefore have the appropriate project settings for the ultutorial
project. If, however, you have not run the tutorial, you should refer to the
guidelinesin the previous section for including the appropriate project
settings.

190

Chapter 8 Tutorial: Build an Application Using Embedded SQL

% To rebuild the sample application:

1 Ensurethat the Adaptive Server Anywhere database server is still
running.

2 Preprocess your new sample.sqc file.

In the Workspace window, right click on sample.sqc and select Settings.
Ensure that the Commands box contains the appropriate command for
running the SQL preprocessor. Choose Build] Compile sample.sqc to
recompile the altered file. A new sample.cpp file will be generated.

3 Build the executable.
Select BuildO Build ultutorial .exe to build the sample executable.

% To run the sample application:
1 Startthe MobiLink synchronization server:

¢ Select Start[] Programsl] Sybase
SQL Anywhere 800 MobiLink Synchronization Server Sample, or

¢ At acommand prompt execute the following command (on asingle
line):

dbmisrv8 —c "DSN=UltraLite 8.0 Sample"
—0 ulsync.mls —vcr —x tcpip

2 Runthe application:
¢ Select Build Execute ultutorial.exe to run the sample application.

The remote database will be synchronized with the consolidated
database, filling the tables in the remote database with data. The
select query in the sample application will be processed, and arow
of query results will appear on the screen.

191

Building the sample embedded SQL UltraLite application

192

CHAPTER 9

Developing Embedded SQL Applications

About this chapter Embedded SQL is a method of mixing SQL statements for database access
with either C or C++ source code.

This chapter describes the development process for embedded SQL UltralLite
applications. It explains how to write applications using embedded SQL and
provides instructions on building and deploying an embedded SQL UltraL ite

application.
Contents Topic Page
Building embedded SQL applications 194
Preprocessing your embedded SQL files 201
Before you begin & This chapter assumes an elementary familiarity with the UltraLite

development process. For an overview, see "Developing UltralLite
Applications' on page 67

& For adescription of embedded SQL, see "The Embedded SQL
Interface” on page 205.

& For detailed information about the SQL preprocessor, see " The SQL
preprocessor” on page 415.

193

Building embedded SQL applications

Building embedded SQL applications

Y ou can use asimpler build procedure if all your embedded SQL source
code is contained in onefile.

If you have only one embedded SQL source file and specify no project name
when you run the SQL preprocessor, then the SQL preprocessor
automatically runs the Ultralite generator. The supplementary codeis
generated and appended to the generated C/C++ sourcefile.

If you specify a project name, or use more than one embedded SQL source
file, you must generate the UltraLite code using the Ultral ite generator.

Single-file build process

If you have asingle file containing embedded SQL code, you can use the
SQL preprocessor to run the Ultralite generator when it completes
processing of your file. The generator appends extra C/C++ code to the
single generated source file.

This single-file build process cannot be used if you wish to use any of the
following features:

¢ transport-layer security.
¢ publications for synchronization.

In these circumstances you must use the general build process. For
instructions, see "Build process for Ultralite embedded SQL applications "
on page 195.

+ To build an UltraLite application (one embedded SQL file only)

1 Start the Adaptive Server Anywhere personal database server,
specifying your reference database and a cache size of at least 10 Mb.

2 Preprocess the embedded SQL source file using the SQL preprocessor,
supplied with SQL Anywhere. Do not specify a project. The SQL
preprocessor runs the Ultralite generator automatically and appends
additional code to the generated C/C++ source file. This step relieson
your reference database and on the database server.

& For more information, see " Preprocessing your embedded SQL
files' on page 201.

3 Compilethe C or C++ sourcefile for the target platform of your choice.
Include

194

Chapter 9 Developing Embedded SQL Applications

¢ theCfile generated by the SQL preprocessor,
¢ any additional C/C++ source files that comprise your application.
4 Link all these object files, together with the UltraLite runtime library.

The following diagram depicts the procedure for building your own UltralLite
database application. In addition to your source files, you need to create a
reference database. As explained below, this database plays dual roles, acting
as an instance of the schema used in your application and storing information
that the UltraL ite analyzer needs to implement your database.

C or C++ one Adaptive Server

Anywhere
reference database

source files embedded SQL
(optional) source file

A
Adaptive Server Anywhere
A database server

preprocess
each file < »

@ with sqlpp | ¢

and UltraLite
analyzer

Pl 2
.

one
generated
C/C++ file

@ compile

each
C or C++
source file

Y

UltraLite library or
UltraLite imports library

A,

link all object
files and I N custom
database database

components application

Build process for UltraLite embedded SQL applications
The build process for embedded SQL UltraL ite applications has two steps:
195

Building embedded SQL applications

Sample code

196

2

Preprocess each embedded SQL file (.sqc) to produce .cpp files.

Y ou must supply a project name on the preprocessor command line and
use the same project name each time you preprocess an embedded SQL
sourcefile.

& For information about projects, see " Creating an UltralLite project”
on page 80.

Run the UltraL ite generator to generate the database code.

Y ou can find a makefile that uses this process in the
Samples\UltraLite\ESQL Security directory. Y ou require the separately-
licensable transport-layer security option to build that sample.

& For information on obtaining the transport-layer security option, see the
card in your SQL Anywhere package or see
http://www.sybase.com/detail 71 d=1015780.

To build an UltraLite embedded SQL application:

1

Start the Adaptive Server Anywhere personal database server,
specifying your reference database.

Preprocess each embedded SQL source file using the SQL preprocessor,
specifying the project name. This step relies on your reference database
and on the database server.

& For more information, see " Preprocessing your embedded SQL
files' on page 201.

Run the UltraLite generator. The generator uses the analyzer, inside your
reference database, to analyze information collected while pre-
processing your embedded SQL files. The analyzer prepares extra code
and the generator writes out anew C source file. This step also relies on
your reference database and database server.

& For more information, see "Generating the Ultral ite data access
code" on page 91.

Compile each C or C++ source file for the target platform of your
choice. Include

¢ each Cfiles generated by the SQL preprocessor,
¢ the C file made by the UltraL ite generator,
¢ any additional C or C++ source files that comprise your application.

Link all these object files, together with the UltraLite runtime library.

Chapter 9 Developing Embedded SQL Applications

The following diagram depicts the procedure for building your own UltralLite
database application. In addition to your source files, you need to create a
reference database. As explained below, this database plays dual roles, acting
as an instance of the schema used in your application and storing information
that the UltraL ite analyzer needs to implement your database.

Adaptive Server
Anywhere
reference database

Cor C++
source files
(optional)

embedded SQL
source files

Adaptive Server Anywhere
database server

preprocess
@ eachfile |« ‘
with sglpp |

i 2
" UltraLite
generated @ analyzer and
C/C++ files generator
ﬁ'—/ (ulgen)
v
@ compile
each one additonal
"I Ccorc++ [generated
source file @file/

UltraLite library or
UltraLite imports library

A
link all object
files and N custom
database datgba_se
components application

Each section remaining in this chapter describes one step in writing or
building your application.

&~ For more information about the SQL preprocessor, see " Preprocessing
your embedded SQL files' on page 201.

& For moreinformation on the generator, see "Generating the UltraLite
data access code" on page 91.

197

Building embedded SQL applications

Configuring development tools for embedded SQL development

SQL preprocessing

198

The SQL preprocessor and the Ultral ite generator are key features of

UltralL ite application development. Most development tools use a
dependency-based model to assist in compilation, and this section describes
how to incorporate UltraL ite features into such a model.

& For ageneral overview of the techniques needed, see " Configuring
development tools for UltraLite development” on page 102.

&~ The UltraLite plug-in for Metrowerks CodeWarrior automatically
provides Palm Computing platform developers with the techniques described
here. For information on this plug-in, see "Developing Ultral ite applications
with Metrowerks CodeWarrior" on page 255.

This section describes how to add Ultral ite code generation and the SQL
preprocessor into a dependency-based development environment. The
specific instructions provided are for Visual C++.

& For atutorial describing details for a very simple project, see "Tutorial:
Build an Application Using Embedded SQL" on page 181.

Thefirst set of instructions describes how to add instructions to run the SQL
preprocessor to your development tool.

To add embedded SQL preprocessing into a dependence-based
development tool:

1 Addthe.sqc filesto your development project.

The development project is defined in your development tool. It is
separate from the Ultral ite project name used by the UltraL ite
generator.

2 Add acustom build rule for each .sqc file.

¢ The custom build rule should run the SQL preprocessor. In
Visual C++, the build rule should have the following command
(entered on asingleline):

"%%asany8%\win32\sqlpp.exe" —q —0 WINNT
—C connection-string —p project-nane
$(InputPath) $(InputName).c

where asany8 is an environment variabl e that points to your

SQL Anywhere installation directory, connection-string provides
the connection to the reference database, and project-nameis the
name of your UltraLite project.

If you are generating an executable for a non-Windows platform,
choose the appropriate setting instead of WINNT.

Chapter 9 Developing Embedded SQL Applications

& For afull description of the SQL preprocessor command-line,
see "The SQL preprocessor” on page 415.

¢ Set the output for the command to $(InputName).c.

3 Compilethe .sqc files, and add the generated .c filesto your
development project.

Y ou need to add the generated files to your project even though they are
not source files, so that you can set up dependencies and build options.

4 For each generated .c file, set the preprocessor definitions.

¢ Under General or Preprocessor, add UL_USE DLL tothe
Preprocessor definitions.

¢ Under Preprocessor, add $(asany8)\h and any other include folders
you require to your include path, as a comma-separated list.

UltraLite code The following set of instructions describes how to add UltralLite code
generation generation to your development tool.

< To add UltraLite code generation into a dependency-based
development environment:

1 Addadummy fileto your development project.

Add afile named, for example, uldatabase.ulg, in the same directory as
your generated files.

2 Setthebuild rulesfor thisfile to be the UltraLite generator command
line.

In Visua C++, use acommand of the following form (which should be
all ononeline):

"%asany8%\win32\ulgen.exe" —q —¢ "connection-string"
$(InputName) $(InputName).c

where asany8 is an environment variable that points to your

SQL Anywhere installation directory, connection-string is a connection
to your reference database, and InputName is the UltraL ite project name,
and should match the root of the text file name. The output is
$(InputName).c.

3 Set the dummy file to depend on the output files from the preprocessor.

In Visual C++, click Dependencies on the custom build page, and enter
the names of the generated .c files produced by the SQL preprocessor.

Thisinstructs Visual C++ to run the UltraLite generator after all the
necessary embedded SQL files have been preprocessed.

199

Building embedded SQL applications

4 Compile your dummy file to generate the .c file that implements the
Ultral ite database.

5 Add the generated UltraL ite database file to your project and change its
C/C++ settings.

6 Add the UltraLite importslibrary to your object/libraries modules list.

In Visual C++, go to the project settings, choose the Link tab, and add
the following to the Object/libraries module list for Windows
development.

$(asany8)\ultralite\win32\386\lib\ulinmp.lib
For other targets, choose the appropriate import library.

200

Chapter 9 Developing Embedded SQL Applications

Preprocessing your embedded SQL files

The SQL preprocessor (sqlpp.exe) carries out two functionsin an UltraLite
development project:

¢ |t preprocesses the embedded SQL files, producing C filesto be
compiled into your application.

¢ |t addsthe SQL statements to the reference database, for use by the
Ultral ite generator. Y ou must use the —c switch to specify connection
parameters that give sqlpp access to the reference database.

& For information on adding SQL statements to a reference database,
see "Adding SQL statements to an UltraLite project” on page 81.

Caution

sqlpp overwrites the output file without regard to its contents. Ensure that
the output file name does not match the name of any of your sourcefiles.
By default, sqlpp constructs the output file name by changing the suffix of
your source fileto .c. When in doubt, specify the output file name
explicitly, following the name of the sourcefile.

Preprocessing projects with a single embedded SQL source file

Example

If all your embedded SQL code is contained in one source file, you may use
the following technique to preprocess this code using the SQL preprocessor
and generate the supplementary code in asingle step. In this case, the
preprocessor automatically runs the Ultralite generator, which writes
additional code that describes your database schema and implements the
SQL used in your application.

% To preprocess an embedded SQL source file (one file only):

¢ Specify no project name when you run sgipp, the SQL preprocessor.
When invoked without a project name, the preprocessor automatically
runs the Ultralite generator and appends the additional C/C++ code,
which implements your application database. A single C/C++ sourcefile
is generated.

¢ Do not run the UltraLite generator explicitly.
¢ Your application contains only one embedded SQL source file, called
store.sqc. Y ou can process this file using the following command. Do

not specify a project name. This command causes the SQL preprocessor
to write thefile store.c.

201

Preprocessing your embedded SQL files

sql pp -c¢ "uid=dba; pwd=sqgl " store.sqc

In addition, the preprocessor automatically runs the Ultralite analyzer,
which generates more C/C++ code to implement your application
database. This code is automatically appended to the file store.c.

& If the analyzer cannot be invoked, an error results. For more
information, see "Error on starting the analyzer" on page 92.

&~ For alist of the parameters to sqglpp, see " The SQL preprocessor” on
page 415.

Preprocessing projects with more than one embedded SQL file

Example

202

If you have more than one embedded SQL source file, you must run the
Ultral ite generator separately. Y ou must also run the UltralLite generator
separately if you use transport-layer security or if you use synchronization
publications.

Y ou must specify an Ultralite project on the sglpp command line so that the
SQL statementsin the files are grouped together in the same project in the
reference database.

& For information on projects, see " Creating an UltraLite project” on
page 80.

To preprocess an embedded SQL source file (more than one file):
¢ Preprocess each embedded SQL source file.

Use the —p switch to specify a project name when you run the SQL
preprocessor. Use the same project name when you preprocess each
embedded SQL file in your project.

¢ Runthe UltraLite generator to create the supplementary C/C++ code.

& For more information on the generator, see "Generating the
UltraL ite data access code" on page 91.

By default, the UltraL ite generator, ulgen, writesto the file project-name.c.
Choose a project name not already assigned to another C or embedded SQL
source file, so that an existing file will not be overwritten.

¢ Suppose that your project contains two embedded SQL source files,
called store.sqc and display.sqc. Y ou could give your project the name
salesdb and process these two commands using the following
commands. (Each command should be entered on asingle line)
sqlpp -c "uid=dba;pwd=sql" —p salesdb store.sqc

sqlpp -c "uid=dba;pwd=sql" —p salesdb display.sqc

Chapter 9 Developing Embedded SQL Applications

These two commands generate the files store.c and display.c,
respectively. In addition, they store information in the reference
database for the UltraL ite analyzer.

& For detailed information about the SQL preprocessor, see "The SQL
preprocessor” on page 415.

203

Preprocessing your embedded SQL files

204

CHAPTER 10

The Embedded SQL Interface

About this chapter Ultral ite applications can interact with their database through a static
embedded SQL programming interface, which is a subset of the
embedded SQL interface available in Adaptive Server Anywhere. This
chapter introduces the UltraL ite embedded SQL interface and describes its
language and functions.

& For information about the full Adaptive Server Anywhere
embedded SQL interface, see "Embedded SQL Programming" on page 163
of the book ASA Programming Guide.

Contents

Topic Page
Introduction 206
Using host variables 209
Indicator variables 220
Fetching data 222
The SQL Communication Area 228
Library function reference 231

205

Introduction

Introduction

206

Embedded SQL lets you insert standard SQL statements into either C or C++
code. A SQL preprocessor translates these SQL statementsinto C and C++
compatible source code. Y ou compile each preprocessed file as you would
an ordinary C or C++ sourcefile.

The preprocessor generates source code that makes calls to library functions.
These functions are defined in alibrary or imports library. Y ou include one
of these libraries when you link your program.

Thefollowing isavery simple embedded SQL program. It updates the
surname of employee 195 and commits the change.

#i ncl ude <stdio. h>
EXEC SQ. | NCLUDE SQLCA;

mai n()

db_init(&sglca);
EXEC SQ. WHENEVER SQLERROR GOTO error;
EXEC SQ CONNECT "DBA" | DENTI FI ED BY "SQ";
EXEC SQ. UPDATE enpl oyee
SET enp_|l nane = ' Pl ankt on’
WHERE enp_id = 195;
EXEC SQL COW T;
EXEC SQ. DI SCONNECT;
db_fini(&aqlca);
return(0);
error:
printf("update unsuccessful: sqgl code = %d\n",
sql ca. sql code);
return(-1);

}

Although too simple to be useful, this example demonstrates the following
aspects common to all embedded SQL applications:

¢ Each SQL statement is prefixed with the keywords EXEC SQL.
¢ Each SQL statement ends with a semicolon.

¢ Some embedded SQL statements are not found in standard SQL.
The INCLUDE SQLCA statement is one example.

¢ Embedded SQL provides library functions to perform some specific
tasks. The functions db_init and db_fini are examples.

Chapter 10 The Embedded SQL Interface

Before working
with data

Preparing to exit

Error handling

The above example demonstrates the necessary initialization statements. Y ou
must include these before working with the datain any database.

1 You must define the SQL communications ar ea, sglca, using the
following command.

EXEC SQL | NCLUDE SQLCA;

This definition must be your first embedded SQL statement, so a natural
placefor it isthe end of your include list.

If you have multiple .sqc filesin your application, each file must have
thisline.

2 Your first executable database action must be a call to an
embedded SQL library function named db_init. Thisfunction
initializes the UltraLite runtime library. Only embedded SQL definition
statements can be executed before this call.

& For more information, see "db_init function" on page 231.
3 You must use the CONNECT statement to connect to your database.

This example also demonstrates the sequence of calls you must make when
preparing to exit.

1 Commit or rollback any outstanding changes.
2 Disconnect from the database.

3 End your SQL work with acall to alibrary function named db_fini.

If you leave changes to the database uncommitted when you exit, any
uncommitted operations are automatically rolled back.

Thereisvirtually no interaction between the SQL and C code in this
example. The C code only controls flow. The WHENEVER statement is
used for error checking. The error action, GOTO in this example, is executed
after any SQL statement causes an error.

Structure of embedded SQL programs

All embedded SQL statements start with the words EXEC SQL and end with
asemicolon (;). Normal C-language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following statement
before any other embedded SQL statements in the source file.

EXEC SQL | NCLUDE SQLCA;

207

Introduction

The first embedded SQL executable statement executed in any program must
be a CONNECT statement. If you are not including UltraLite user
authentication in your application, this CONNECT statement isignored.

&~ For information about Ultralite user authentication in embedded SQL
applications, see "Managing user |Ds and passwords' on page 86, and "User
authentication for Ultralite databases' on page 442.

Some embedded SQL commands do not generate any executable C code, or
do not involve communication with the database. Only these commands are
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEV ER statement for specifying error processing.

208

Chapter 10 The Embedded SQL Interface

Using host variables

Host variables are C variables that are identified to the SQL preprocessor.
Y ou use host variables to send values to the database server or receive values
from the database server.

Declaring host variables

Example

Y ou can define host variables by placing them within adeclar ation section.
Host variables are declared by surrounding the normal C variable
declarations with BEGIN DECLARE SECTION and

END DECLARE SECTION statements.

Whenever you use a host variable in a SQL statement, you must prefix the
variable name with a colon (:) so that the SQL preprocessor can distinguish it
from other identifiers allowed in the statement.

Y ou can use host variables in place of value constants in any SQL statement.
When the database server executes the command, the value of the host
variableis read from or written to each host variable. Host variables cannot
be used in place of table or column names.

The SQL preprocessor does not scan C language code except inside a
declaration section. Initializers for variables are alowed inside a declaration
section, while typedef types and structures are not permitted.

¢ Thefollowing sample code illustrates the use of host variables with an
INSERT command. The variables are filled in by the program and then
inserted into the database:

/* Declare fields for personal data. */
EXEC SQ. BEA N DECLARE SECTI Q\;

| ong enpl oyee_nunber = O;

char enpl oyee_nane[50] ;

char enpl oyee_initials[8];

char enpl oyee_phone[15] ;
EXEC SQ. END DECLARE SECTI O\

/* Fill variables with appropriate values. */

/* Insert a rowin the database. */
EXEC SQ. | NSERT | NTO Enpl oyee
VALUES (: enpl oyee_nunber, :enpl oyee nane,
:enployee_initials, :enployee_phone);

209

Using host variables

Data types in embedded SQL

210

To transfer information between a program and the database server, every
piece of data must have a data type. Y ou can create a host variable with any
one of the supported types.

Only alimited number of C datatypes are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in the sglca.h header file can be used to declare a host
variable of type VARCHAR, FIXCHAR, BINARY, DECIMAL, or
SQLDATETIME. These macros are used as follows:;

EXEC SQL BEG N DECLARE SECTI O\
DECL_VARCHAR(10) v_varchar;
DECL_FI XCHAR(10) v_fixchar;
DECL_BI NARY(4000) v_binary;
DECL_DECI MAL(10, 2) v_packed_deci mal ;
DECL_DATETI ME v_dat et i ne;

EXEC SQL END DECLARE SECTI O\

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following data types are supported by the embedded SQL programming
interface:

¢ 16-bit signed integer.

short int i;
unsi gned short int i;

¢ 32-bit signed integer.

long int I;
unsi gned long int I;

¢ 4-bytefloating point number.
float f;

¢ 8-bytefloating point number.
doubl e d;

¢ Packed decima number.
DECL_DEC MAL(p, S)

typedef struct TYPE DEC NVAL {
char array[1];
} TYPE_DECI MAL;

¢ NULL-terminated blank-padded character string.

char a[n]; /* n>1*/
char *a; /* n = 2049 */

Chapter 10 The Embedded SQL Interface

Because the C-language array must also hold the NULL terminator, a
char a[n] datatype mapsto a CHAR(n — 1) SQL data type, which can
hold n — 1 characters.

Pointers to char, WCHAR, TCHAR

The SQL preprocessor assumes that a pointer to char pointsto a
character array of size 2049 bytes and that this array can safely hold
2048 characters, plusthe NULL terminator. In other words, a char*
data type mapsto a CHAR(2048) SQL type. If that is not the case,
your application may corrupt memory. If you are using a 16-bit
compiler, requiring 2049 bytes can make the program stack overflow.
Instead, use a declared array, even as a parameter to afunction, to let
the SQL preprocessor know the size of the array. WCHAR and
TCHAR behave similarly to char.

NULL terminated UNICODE or wide character string.

Each character occupies two bytes of space and so may contain
UNICODE characters.

WCHAR a[n]; /* n > 1 */
NULL terminated system-dependent character string.

A TCHAR isequivaent to aWCHAR for systems that use UNICODE
(for example, Windows CE) for their character set; otherwise, a TCHAR
is equivalent to a char. The TCHAR datatype is designed to support
character stringsin either kind of system automatically.

TCHAR a[n]; /* n > 1 */
Fixed-length blank padded character string.

char a; /* n =1 */
DECL_FI XCHAR(n) a; /* n >= 1 */

Variable-length character string with a two-byte length field.

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server setsthe length field (not padded).

DECL_VARCHAR(N) a; /* n >=1 */

typedef struct VARCHAR {
unsi gned short int len;
TCHAR array[1];

} VARCHAR,

Variable-length binary data with atwo-byte length field.

211

Using host variables

212

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server setsthe length field.

DECL_BI NARY(n) a; /* n >= 1 */

typedef struct BI NARY {
unsi gned short int len;
unsi gned char array[1];
} Bl NARY:

SQLDATETIME structure with fields for each part of atimestamp.
DECL_DATETI ME a;

typedef struct SQLDATETI ME {
unsi gned short year; /* e.g., 1999 */
unsi gned char nonth; /* 0-11 */
unsi gned char day_of week; /* 0-6, 0 = Sunday */
unsi gned short day_of year; /* 0-365 */
unsi gned char day; /* 1-31 */
unsi gned char hour; /* 0-23 */
unsi gned char mnute; /* 0-59 */
unsi gned char second; /* 0-59 */
unsi gned | ong m crosecond; /* 0-999999 */
} SQLDATETI ME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching datain this structure makesit easier for a
programmer to manipulate this data. Note that DATE, TIME and
TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or
timestamp into the database via, theday_of _year and day_of _week
members are ignored.

& For moreinformation, seethe DATE_FORMAT,
TIME_FORMAT, TIMESTAMP_FORMAT, and DATE_ORDER
database options in " Database Options’ on page 535 of the book ASA
Database Administration Guide. While these options cannot be set
during execution of an UltraLite program, their values are identical to
the settings in the reference database used to generate the program.

DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

Chapter 10 The Embedded SQL Interface

DATE and TIME
database types

#def i ne DECL_LONGVARCHAR(si ze) \
struct { a_sql _uint32 array_| en; \
a_sql _uint32 stored_l en; \
a_sql _uint 32 untrunc_len; \
char array[si ze+1];\

}

The DECL_LONGVARCHAR struct may be used with more than 32K
of data. Large data may be fetched all at once, or in pieces using the
GET DATA statement. Large data may be supplied to the server all at
once, or in pieces by appending to a database variable using the SET
statement. The datais not null terminated.

typedef struct BINARY {
unsi gned short int len;
char array[1];

} BI NARY;

DT_LONGBINARY Long binary data. The macro defines a structure,
asfollows:

#def i ne DECL_LONGBI NARY(size) \
struct { a_sql _uint32 array_| en; \
a_sql _uint32 stored_len; \
a_sql _uint 32 untrunc_len; \
char array[size]; \

}

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched al at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once,
or in pieces by appending to a database variable using the SET
statement.

The structures are defined in the sgica.h file. The VARCHAR, BINARY,

and TYPE_DECIMAL types contain a one-character array and are thus not
useful for declaring host variables, but they are useful for allocating variables
dynamically or typecasting other variables.

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are fetched
and updated either using the SQLDATETIME structure or using character
strings.

There are no embedded SQL interface data types for LONG VARCHAR and
LONG BINARY database types.

213

Using host variables

Host variable usage

Host variables can be used in the following circumstances:

¢ InaSELECT, INSERT, UPDATE, or DELETE statement in any place
where a number or string constant is allowed.

¢ IntheINTO clause of a SELECT or FETCH statement.

¢ InCONNECT, DISCONNECT, and SET CONNECT statements, a host
variable can be used in place of auser 1D, password, connection name,
or database environment name.

Host variables can never be used in place of atable name or a column name.

The scope of host variables

A host-variable declaration section can appear anywhere that C variables can
normally be declared, including the parameter declaration section of aC
function. The C variables have their normal scope (available within the block
in which they are defined). However, since the SQL preprocessor does not
scan C code, it does not respect C blocks.

The preprocessor Asfar asthe SQL preprocessor is concerned, host variables are globally
assumes all host known in the source module following their declaration. Two host variables
variables are cannot have the same name. The only exception to this ruleis that two host
global variables can have the same name if they have identical types (including any

necessary lengths).
The best practice isto give each host variable a unique name.

Examples ¢ Because the SQL preprocessor can not parse C code, it assumes that all
host variables, no matter where they are declared, are known globally
following their declaration.

/1 Exanpl e denonstrating poor codi ng
EXEC SQ. BEG N DECLARE SECTI Q\;

long enp_i d;
EXEC SQ. END DECLARE SECTI ON;

| ong get Manager | D(void)
{
EXEC SQ. BEA N DECLARE SECTI Q\;
| ong manager_id = O;
EXEC SQ. END DECLARE SECTI ON;

EXEC SQ. SELECT nanager_id
I NTO : manager _i d
FROM enpl oyee
WHERE enp_nunber = :enp_id,

214

Chapter 10 The Embedded SQL Interface

return(nanager _nunber);

}

voi d set Manager | D(| ong nmanager _id)

EXEC SQ. UPDATE enpl oyee
SET manager _nunber = :rmanager_id
WHERE enp_nunber = :enp_id;
}

Although it works, the above code is confusing because the

SQL preprocessor relies on the declaration inside getManager!D when
processing the statement within setManageriD. Y ou should rewrite this code
asfollows.

/!l Rewitten exanple
#if 0
/| Declarations for the SQ preprocessor
EXEC SQ. BEA N DECLARE SECTI Q\;
long enp_i d;
| ong manager _id;
EXEC SQ. END DECLARE SECTI O\
#endi f

| ong get Manager|I D(long enp_id)
{

| ong manager_id = O;
EXEC SQ. SELECT nmnager_id
I NTO : manager _i d
FROM enpl oyee
WHERE enp_nunber = :enp_id;

return(manager _nunber);

}
voi d set Manager| D(|l ong enp_id, |ong manager_id)

EXEC SQ. UPDATE enpl oyee
SET manager _nunber = :nmnager_id
WHERE enp_nunber = :enp_id,
}

The SQL preprocessor sees the declaration of the host variables contained
within the #if directive because it ignores these directives. On the other hand,
it ignores the declarations within the procedures because they are not inside a
DECLARE SECTION. Conversely, the C compiler ignores the declarations
within the #if directive and uses those within the procedures.

These declarations work only because variables having the same name are
declared to have exactly the same type.

215

Using host variables

Using expressions as host variables

216

Because host variables must be simple names, the SQL preprocessor does
not recognize pointer or reference expressions. For example, the following
statement does not work because the SQL preprocessor does not understand
the dot operator. The same syntax has a different meaning in SQL.

/1l Incorrect statemnent:
EXEC SQ. SELECT LAST sales_id I NTO : nystruct. nynenber;

Although the above syntax is not allowed, you can still use an expression
with the following technique:

¢ Worap the SQL declaration section in an #if O preprocessor directive. The
SQL preprocessor will read the declarations and use them for the rest of
the module because it ignores preprocessor directives.

¢ Define amacro with the same name as the host variable. Since the SQL
declaration section is not seen by the C compiler because of the #if
directive, no conflict will arise. Ensure that the macro evaluates to the
same type host variable.

The following code demonstrates this technique to hide the host_value
expression from the SQL preprocessor.

EXEC SQL | NCLUDE SQLCA;

#incl ude <sqlerr. h>
#i ncl ude <stdi o. h>

typedef struct ny_struct {
| ong host _fi el d;

} ny_struct;

#if 0
/1 Because it ignores #if preprocessing directives,
/1 SQPP reads the follow ng decl aration.

EXEC SQL BEG N DECLARE SECTI O\
| ong host _val ue;
EXEC SQL END DECLARE SECTI ON,
#endi f

/1 NMake T C++ recognize the "host_value’ identifier
// as a macro that expands to a struct field.
#def i ne host_value ny_s. host _field

Since the SQL PP processor ignores directives for conditional compilation,
host_value istreated as a long host variable and will emit that name when it
is subsequently used as a host variable. The C/C++ compiler processes the
emitted file and will substitute my_s.host _field for all such uses of that name.

With the above declarations in place, you can proceed to access host field as
follows.

Chapter 10 The Embedded SQL Interface

void main(void)

{
ny_struct ny_s;
db_init(&sqlca);
EXEC SQ. CONNECT " DBA" | DENTI FI ED BY "SQ.";
EXEC SQ. DECLARE ny_t abl e_cursor CURSOR FOR
SELECT int_col FROMny_table order by int_col;
EXEC SQ. OPEN ny_t abl e_cursor;
for(; ;) {
/'l :host_val ue references ny_s. host_field
EXEC SQ. FETCH NEXT Al Il Rows | NTO : host _val ue;
i f(SQLOODE == SQLE_NOTFOUND) {
br eak;
}
printf("%d\n", ny_s.host field);
}
EXEC SQ. CLCSE ny_t abl e_cursor;
EXEC SQ. DI SCONNECT;
db_fini(&sqlca);
}

Y ou can use the same technique to use other |values as host variables.
¢ pointer indirections
*ptr
p_struct->ptr
(*pp_struct)->ptr
¢ array references
ny_array[i]
¢ abitrarily complex lvalues

Using host variables in C++

A similar situation arises when using host variables within C++ classes. It is
frequently convenient to declare your classin a separate header file. This
header file might contain, for example, the following declaration of
my_class.

typedef short a_bool;
#define TRUE ((a_bool)(1==1))
#define FALSE ((a_bool)(0==1))

217

Using host variables

218

public class {
long host_rmenber;

ny_class(); /1 Constructor
~ny_cl ass(); /| Destructor

a_bool FetchNext Row(void);
/1 Fetch the next row into host_menber
} ny_cl ass;

In this example, each method is implemented in an embedded SQL source
file. Only simple variables can be used as host variables. The technique
introduced in the preceding section can be used to access a data member of a
class.

EXEC SQL | NCLUDE SQLCA;

#i ncl ude "ny_cl ass. hpp"

#if 0
/1 Because it ignores #if preprocessing directives,
/1 SQPP reads the follow ng decl aration.

EXEC SQ. BEG N DECLARE SECTI Q\;
long this_host nenber;
EXEC SQ. END DECLARE SECTI QN
#endi f

/'l NMacro used by the C++ conpiler only.
#define this_host_nenber this->host_nenber

ny_cl ass:: ny_cl ass()

EXEC SQ. DECLARE ny_t abl e_cursor CURSOR FOR
SELECT int_col FROM ny_tabl e order by int_col;

EXEC SQ. OPEN ny_t abl e_cursor;

}
ny_cl ass:: ~ny_cl ass()
{
EXEC SQ. CLCSE ny_t abl e_cursor;
}

a_bool ny_cl ass: : FetchNext Row(void)

/1 :this_host_nenber references this->host_nenber
EXEC SQ FETCH NEXT Al l Rows | NTO :thi s_host _nenber;
return(SQLCCDE != SQLE_NOTFQUND);

Chapter 10 The Embedded SQL Interface

void main(void)

{
db_init(&sqglca);
EXEC SQ. CONNECT " DBA" | DENTI FI ED BY "SQ";
{
ny_class nt; // Created after connecting.
whi I e(nt. Fet chNext Row()) {
printf("%d\n", nt.host_nenber);
}
EXEC SQ. DI SCONNECT;
db_fini(&sqlca);
}

The above example declarest hi s_host _nenber for the SQL preprocessor,
but the macro causes C++ to convert it to t hi s- >host _nmenber . The
preprocessor would otherwise not know the type of this variable. Many
C/C++ compilers do not tolerate duplicate declarations. The #i f directive
hides the second declaration from the compiler, but leavesit visible to the
SQL preprocessor.

While multiple declarations can be useful, you must ensure that each
declaration assigns the same variable name to the same type. The
preprocessor assumes that each host variable is globally known following its
declaration because it can not fully parse the C language.

219

Indicator variables

Indicator variables

Anindicator variableisa C variable that holds supplementary information
about a particular host variable. Y ou can use a host variable when fetching or
putting data. Use indicator variables to handle NULL values.

Anindicator variableis a host variable of type short int. To detect or specify
aNULL value, place the indicator variable immediately following aregular
host variablein a SQL statement.

Example ¢ For example, in the following INSERT statement, :ind_phoneisan
indicator variable.

EXEC SQ. | NSERT | NTO Enpl oyee
VALUES (: enpl oyee_nunber, :enpl oyee nane,
:enployee_initials, :enployee_phone:ind_phone);

Indicator variable The following table provides a summary of indicator variable usage.
values
Indicator | Supplying Value Receiving value from database
Value to database
0 ‘ Host variable value ‘ Fetched anon-NULL value.
-1 ‘ NULL value ‘ Fetched a NULL value

Using indicator variables to handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of
the same name. In the SQL language, NULL represents either an unknown
attribute or inapplicable information. The C-language constant represents a
pointer value which does not point to a memory location.

When NULL is used in the Adaptive Server Anywhere documentation, it
refersto the SQL database meaning given above. The C language constant is
referred to as the null pointer (lower case).

NULL isnot the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
you reguire something beyond regular host variables. I ndicator variables
serve this purpose.

Using indicator An INSERT statement can include an indicator variable as follows:
variables when
inserting NULL

220

Chapter 10 The Embedded SQL Interface

Using indicator
variables when
fetching NULL

EXEC SQ. BEG N DECLARE SECTI O\
short int enpl oyee_nunber;

char enpl oyee_nane[50] ;

char enpl oyee_initials[6];

char enpl oyee_phone[15] ;

short int ind_phone

EXEC SQ. END DECLARE SECTI O\

/* set val ues of enpnum enpnane,
initials, and honephone */

if(/* phone nunber is known */) {
i nd_phone = 0;

} else {
i nd_phone = -1; /* NULL */

}

EXEC SQ. | NSERT | NTO Enpl oyee
VALUES (: enpl oyee_nunber, :enpl oyee_ nane,
:enployee_initials, :enployee_phone:ind_phone);

If the indicator variable has a value of —1, a NULL is written. If it has a value
of 0, the actual value @mployee phone is written.

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, the SQLE_NO_INDICATOR error is generated.

& Errors and warnings are returned in the SQLCA structure, as described
in "The SQL Communication Area" on page 228.

221

Fetching data

Fetching data

Fetching datain embedded SQL is done using the SELECT statement. There
are two cases:

1 The SELECT statement returns at most one row.
2 The SELECT statement may return multiple rows.

Fetching one row

A singlerow query retrieves at most one row from the database. A single-
row query SELECT statement may have an INTO clause following the select
list and before the FROM clause. The INTO clause contains alist of host
variables to receive the value for each select list item. There must be the
same number of host variables as there are select list items. The host
variables may be accompanied by indicator variablesto indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables.

¢ |f the query selects more than one row, the database server returns the
SQLE_TOO_MANY_RECORDS error.

¢ |If the query selects no rows, the SQLE_NOTFOUND warning is
returned.

& Errors and warnings are returned in the SQLCA structure, as described
in"The SQL Communication Area"' on page 228.

Example For example, the following code fragment returns 1 if arow from the
employee table is successfully fetched, 0 if the row doesn't exist, and -1 if an
error occurs.

EXEC SQ. BEG N DECLARE SECTI Q\;
long int enp_id;

char nane[41] ;

char sex;

char bi rt hdat e[15];
short int i nd_bi rt hdat e;

EXEC SQL END DECLARE SECTI O\

int find_enployee(|ong enployee)
{
enp_i d = enpl oyee;

222

Chapter 10 The Embedded SQL Interface

Fetching multiple rows

EXEC SQ. SELECT enp_fnanme || ' ' || enp_l nane,
sex, birth_date
I NTO : nane, :sex, birthdate:ind _birthdate
FROM " DBA". enpl oyee
WHERE enp_id = :enp_id;

i f(SQLOODE == SQ.E_NOTFOUND) {
return(0); /* enployee not found */
} else if(SQLQCODE < 0) {
return(-1); /* error */
} else {
return(1); /* found */
}

You use acursor to retrieve rows from a query that has multiple rowsin its
result set. A cursor isahandle or an identifier for the SQL query result set
and a position within that result set.

&> For an introduction to cursors, see "Working with cursors' on page 19
of the book ASA Programming Guide.

To manage a cursor in embedded SQL

1

4

Declare a cursor for aparticular SELECT statement, using the
DECLARE statement.

Open the cursor using the OPEN statement.

Retrieve rows from the cursor one at atime using the FETCH statement.

Fetch rows until the SQLE_NOTFOUND warning is returned.

& Error and warning codes are returned in the variable SQL CODE,
defined in the SQL communications area structure.

Close the cursor, using the CLOSE statement.

Cursorsin UltralL ite applications are always opened using the WITH HOLD
option. They are never closed automatically. Y ou must close each cursor
explicitly using the CLOSE statement.

The following is a simple example of cursor usage:

voi d print_enpl oyees(void)

int status;

223

Fetching data

EXEC SQ. BEA N DECLARE SECTI Q\;
char nane[50];

char sex;

char birthdate[15];

short int ind_birthdate;

EXEC SQ. END DECLARE SECTI O\

/* 1. Declare the cursor. */
EXEC SQ DECLARE C1 CURSCR FOR
SELECT enp_fnane || ' ' || enp_l nane,
sex, birth_date
FROM " DBA" . enpl oyee
CRDER BY enp_f name, enp_| nang;

/* 2. Qpen the cursor. */
EXEC SQ. OPEN Ci;

/* 3. Fetch each row fromthe cursor. */
for(;5) {
EXEC SQL. FETCH C1 I NTO : nane, :sex,
:birthdate:ind_birthdate;
i f(SQLCODE == SQE _NOTFOUND) {
break; /* no nore rows */
} else if(SQLCCDE < 0) {
break; /* the FETCH caused an error */

}

if(ind_birthdate < 0) {
strcpy(birthdate, "UNKNOM');

printf("Nane: % Sex: % Birthdate:
%\n", nane, sex, birthdate);

}

/* 4, Cdose the cursor. */
EXEC SQ. CLCSE Ci;
}

& For details of the FETCH statement, see "FETCH statement [ESQL]
[SP]" on page 424 of the book ASA SQL Reference Manual.

Cursor positioning A cursor is positioned in one of three places:
¢ Onarow
¢+ Beforethefirst row
¢ After thelast row

224

Chapter 10 The Embedded SQL Interface

Order of the rows
in a cursor

Repositioning a
cursor

Absolute row Absolute row

from start from end

0 Before first row -n-1
1 -n

2 -n+1

3 -n+2
n-2 -3
n-1 -2
n -1
n+1 After last row 0

Y ou control the order of rows in acursor by including an ORDER BY clause
in the SELECT statements that defines that cursor. If you omit this clause,
the order of the rowsis unpredictable.

If you don't explicitly define an order, your only guarantee is that fetching
repeatedly will return each row in the result set once and only once before
SQLE_NOTFOUND is returned.

Order of rows in a cursor

If the cursor must have a specific order, include an ORDER BY clausein
the SELECT statement in the cursor definition. Without this clause, the
ordering is unpredictable and can vary from one time to the next.

When you open acursor, it is positioned before the first row. The FETCH
statement automatically advances the cursor position. An attempt to FETCH
beyond the last row resultsin an SQLE_NOTFOUND error, which can be
used as a convenient signal to complete sequential processing of the rows.

225

Fetching data

Cursor positioning
after updates

Y ou can also reposition the cursor to an absolute position relative to the start
or the end of the query results, or move it relative to the current cursor
position. There are specia positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, an SQLE_NOTFOUND error is returned.

To avoid unpredictabl e results when using explicit positioning, you can
include an ORDER BY clause in the SELECT statement that defines the
Cursor.

Y ou can use the PUT statement to insert a row into a cursor.

After updating any information that is being accessed by an open cursor, itis
best to fetch and display the rows again. If the cursor is being used to display
asinglerow, FETCH RELATIVE 0 will re-fetch the current row. When the
current row has been deleted, the next row will be fetched from the cursor (or
SQLE_NOTFOUND is returned if there are no more rows).

When atemporary tableis used for the cursor, inserted rowsin the
underlying tables do not appear at all until that cursor is closed and reopened.
Itisdifficult for most programmers to detect whether or not atemporary
tableisinvolved in a SELECT statement without examining the code
generated by the SQL preprocessor or by becoming knowledgeable about the
conditions under which temporary tables are used. Temporary tables can
usually be avoided by having an index on the columns used in the ORDER
BY clause.

& For more information about temporary tables, see "Use of work tables
in query processing” on page 160 of the book ASA SQL User’s Guide.

Inserts, updates and deletes to non-temporary tables may affect the cursor
positioning. Because Ultralite materializes cursor rows one at atime (when
temporary tables are not used), the data from a freshly inserted row (or the
absence of datafrom afreshly deleted row) may affect subsequent FETCH
operations. In the ssmple case where (parts of) rows are being selected from a
single table, an inserted or updated row will appear in the result set for the
cursor when it satisfies the selection criteria of the SELECT statement.
Similarly, afreshly deleted row that previously contributed to the result set
will no longer be within it.

Optimizing query operation

226

Although some aspects of UltraLite applications are optimized automaticaly,
you can improve the performance of your applications using the following
techniques.

Chapter 10 The Embedded SQL Interface

add an index If you frequently retrieve information in a particular
order, consider adding an index to your reference database. Primary keys
are automatically indexed, but other columns are not. Particularly on
sow devices, an index can improve performance dramatically.

add representative data The Adaptive Server Anywhere optimizer
automatically optimizes the performance of your queries. It chooses
access plans using the information present in your reference database.
To improve application performance, fill your reference database with
data that is representative in size and distribution of the data you expect
your application will hold once it is deployed.

227

The SQL Communication Area

The SQL Communication Area

SQLCA provides
error codes

SQLCA fields

228

The SQL Communication Area (SQLCA) isan area of memory that is
used for communicating statistics and errors from the application to the
database and back to the application. The SQLCA is used as a handle for the
application-to-database communication link. It is passed explicitly to all
database library functions that communicate with the database. It is
implicitly passed in all embedded SQL statements.

A global SQLCA variableis defined in the generated code. The preprocessor
generates an external reference for the global SQLCA variable. The external
reference is named sglca and is of type SQLCA. The actual global variableis
declared in the imports library.

The SQLCA type is defined by the sgica.h header file, which islocated in
the h subdirectory of your installation directory.

Y ou reference the SQLCA to test for a particular error code. The sglcode
field contains an error code when a database request causes an error (see

below). Some C macros are defined for referencing the sglcode field and
some other fields.

Thefieldsin the SQLCA have the following meanings:

¢ sglcaid An 8-byte character field that contains the string SQL CA as
an identification of the SQLCA structure. Thisfield helpsin debugging
when you are looking at memory contents.

¢ sqglcabc A longinteger that contains the length of the SQLCA
structure (136 bytes).

¢ sglcode A longinteger that specifiesthe error code when the database
detects an error on arequest. Definitions for the error codes can be
found in the header file sqglerr.h. The error code is 0 (zero) for a
successful operation, positive for awarning and negative for an error.

Y ou can access this field directly using the SQL CODE macro.

& For alist of error codes, see "Database Error Messages' on page 1
of the book ASA Errors Manual.

¢ sqglerrml Thelength of the information in the sglerrmc field.

Ultral ite applications do not use thisfield.

Chapter 10 The Embedded SQL Interface

sglerrmc May contain one or more character strings to be inserted into
an error message. Some error messages contain a placeholder string
(%1) which isreplaced with the text in this field.

Ultral ite applications do not use thisfield.
sqglerrp Reserved.

sqglerrd A utility array of long integers.
sqlwarn Reserved.

Ultral ite applications do not use thisfield.
sqlstate The SQLSTATE status value.
Ultral ite applications do not use thisfield.

SQLCA management for multi-threaded or reentrant code

UltraL ite applications should not be created where multiple threads access
the database simultaneously, as multi-threading is not supported.

Using multiple SQLCAs

+ To manage multiple SQLCASs in your application:

1

Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with acall to db_fini.

& For more information, see "db_init function" on page 231.

The embedded SQL statement SET SQLCA is used to tell the
SQL preprocessor to use a different SQLCA for database requests.
Usually, a statement such as the following:

EXEC SQ. SET SQLCA ’'task_data->sqlca’;

isused at the top of your program or in a header file to set the SQLCA
reference to point at task specific data. This statement does not generate
any code and thus has no performance impact. It changes the state
within the preprocessor so that any reference to the SQLCA will use the
given string.

& For information about creating SQLCAS, see"SET SQLCA
statement [ESQL]" on page 545 of the book ASA SQL Reference
Manual.

229

The SQL Communication Area

Connection management with multiple SQLCAs

230

Y ou do not need to use multiple SQLCAs to have more than one connection
to asingle database.

Each SQLCA can have one unnamed connection. Each SQLCA has an active
or current connection. All operations on a given database connection must
use the same SQL CA that was used when the connection was established.

&> For more information, see "SET CONNECTION statement
[Interactive SQL] [ESQL]" on page 536 of the book ASA SQL Reference
Manual.

Chapter 10 The Embedded SQL Interface

Library function reference

db_fini function

Prototype

Description

See also

db_init function

Prototype

Description

The SQL preprocessor generates calls to functionsin the runtime library or

DLL. In addition to the calls generated by the SQL preprocessor, several
routines are provided for the user to make database operations easier to
perform. Prototypes for these functions are included by the

EXEC SQL INCLUDE SQLCA command.

unsigned short db_fini(SQLCA * sqglca);
Frees resources used by the UltraLite runtime library.

Y ou must not make any other library calls or execute any embedded SQL
commands after db_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0.1f there are no errors, a
non-zero valueis returned.

You need to call db_fini once for each SQLCA being used.

Palm Computing Platform

Do not call db_fini on the Palm Computing Platform. The database must
be kept open when you leave the application. Use UL PalmEXxit to save
the state of the application between sessions instead of calling db_fini.

"db_init function" on page 231

unsigned short db_init(SQLCA * sqgica) ;

Initializes the UltraLite runtime library and creates a new Ultralite database,
if one does not exist.

This function must be called before any other library call is made, and before
any embedded SQL command is executed. Exceptionsto thisrule are as
follows:

¢ On the Palm Computing Platform, the UL PalmL aunch function can be
called before db_init. The resources that this library requires for your
program are allocated and initialized on this call.

231

Library function reference

See also

On the Palm Computing Platform, call db_init whenever
UL PalmL aunch returns LAUNCH_SUCCESS FIRST. For more
information, see "ULPalmLaunch function" on page 245.

¢ Functions that configure database storage can be called. These functions
have names starting with UL Enable.

If there are any errors during processing (for example, during initialization of
the persistent store), they are returned in the SQLCA and 0 is returned. If
there are no errors, anon-zero value is returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the global sqlca variable defined in the sgica.h header file). If you have
multiple execution paths in your application, you can use more than one
db_init call, aslong as each one has a separate sqlca pointer. This separate
SQL CA pointer can be a user-defined one, or could be a global SQLCA that
has been freed using db_fini.

In multi-threaded applications, each thread must call db_init to obtain a
separate SQL CA. Subseguent connections and transactions that use this
SQLCA must be carried out on a single thread.

"db_fini function" on page 231
"ULPalmLaunch function" on page 245
"Devel oping multi-threaded applications' on page 93

ULActiveSyncStream function

Prototype

Description

See also

232

ul_stream_defn ULActiveSyncStream(void);
Defines an ActiveSync stream suitable for synchronization.
The ActiveSync stream is available only on Windows CE devices.

Synchronization using ULActiveSyncStream must be initiated from the
ActiveSync software. The application receives a message, which must be
handled in its WindowPr oc function. Y ou can use

UL I sSynchronizeM essage to identify the message as an instruction to
synchronize.

"ULIsSynchronizeM essage function" on page 243
"UL Synchronize function" on page 250
"Synchronize method" on page 143

"ActiveSync parameters’ on page 399

Chapter 10 The Embedded SQL Interface

ULChangeEncryptionKey function

Prototype ul_bool ULChangeEncryptionKey(SQLCA *sgica, ul_char *new_key);
Description Changes the encryption key for an UltralLite database.
Caution

When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is
unrecoverable. If the application isinterrupted part-way through, the
databaseisinvalid and cannot be accessed. A new one must be created.

See also "Changing the encryption key for a database”" on page 49

ULClearEncryptionKey function

Prototype ul_bool ULClearEncryptionKey(
ul_u_long * creator,
ul_u_long * feature-num);

Description On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palm featur e. Features are indexed by creator and a feature
number.

This function clears the encryption key.

Parameters creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL isthe default.
feature-num A pointer to the feature number holding the encryption key.
A value of NULL usesthe UltraL ite default, which is feature number 100.
See also "ULRetrieveEncryptionK ey function" on page 247

"UL SaveEncryptionK ey function” on page 248
"Using the encryption key on the Palm Computing Platform" on page 50

ULConduitStream function (deprecated)

Prototype ul_stream_defn ULConduitStream(void);

Description Defines a stream under the Palm Computing Platform suitable for HotSync
synchronization.

This function is deprecated. The stream parameter is not needed for
HotSync synchronization, and may be UL_NULL.

233

Library function reference

See also "ULPamDBStream function (deprecated)" on page 243
"ULPamExit function" on page 244
"ULPamLaunch function”" on page 245
"HotSync and ScoutSync parameters' on page 401
"Synchronize method" on page 143

ULCountUploadRows function

Prototype ul_u_long ULCountUploadRows (
SQLCA * sqlca,
ul_publication_mask publication-mask,
ul_u_long threshold);

Description Returns the number of rows that need to be synchronized, either in a set of
publications or in the whole database.

One use of the function isto prompt users to synchronize.
Parameters sqlca A pointer to the SQLCA.

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB PUB1 | UL_PUB PUB2
& For more information on publication masks, see "publication
synchronization parameter” on page 386.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determinesif any rows need to be synchronized.

Example The following call checks the entire database for the number of rowsto be
synchronized:

count = ULCount Upl oadRows(sqglca, 0, 0);

The following call checks publications PUB1 and PUB2 for a maximum of
1000 rows:

count = ULCount Upl oadRows(sql ca,
UL_PUB PUB1 | UL_PUB PUB2, 1000);

The following call checks to seeif any rows need to be synchronized:
count = ULCount Upl oadRows(sqgl ca, UL_SYNC ALL, 1);

234

Chapter 10 The Embedded SQL Interface

ULDropDatabase function

Prototype

Description

Parameters

Example

ul_u_long ULDropDatabase (SQLCA * sqlca, ul_char * store-parms);

Delete the Ultralite database file.

Caution
This function del etes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only before db_init or after db_fini.

On the Palm OS, call this function only after UL PalmEXxit or before
UL PalmL aunch (but after any UL Enable functions have been called)

sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name to
delete as a keyword-value pair of the form file_name=file.udb. It is often
convenient to use the UL_STORE_PARM S macro as this argument. A value
of UL_NULL deletes the default database filename.

& For moreinformation, see"UL_STORE_PARMS macro" on page 428.

Thefollowing call deletes the UltraLite database file myfile.udb.

#define UL_STORE PARVE UL_TEXT("fil e_nane=nyfile.udb")
i f(ULDropDat abase(&sqlca;, UL_STORE PARMG)){

/'l success
b

ULEnableFileDB function

Prototype

Description

Parameters

Examples

void ULEnableFileDB(SQLCA * sqlca);

Use afile-based data store on a device operating the Palm Computing
Platform version 4.0 or later. To use the file-based data store on aPalm
expansion card, an UltraL ite application must call UL EnableFileDB to load
the persistent storage file-I/O modules before calling UL PalmL aunch.

This function can be used by C++ API applications as well as embedded
SQL applications.

sqlca A pointer to the SQLCA. Thisargument is supplied even in
C++ API applications.

The following code sample illustrates the use of the UL EnableFileDB
function, which is called before UL PalmL aunch.

235

Library function reference

See also

ULEnabl eFi | eDB(&sqlca);
swit ch(ULPal nLaunch(&sqlca, &ync_info) ({
case LAUNCH SUCCESS FI RST:
/] do init
br eak;
case LAUNCH_SUCCESS:
/1 do sonethi ng
br eak;
case LAUNCH FAI L:
// handl e error
br eak;
}

"UL EnablePalmRecordDB function" on page 237

ULEnableGenericSchema function

Prototype

Description

236

void ULEnableGenericSchema(SQLCA * sqlca);

When anew UltraLite application is deployed to adevice, UltralLite be
default re-creates an empty database, losing any data that was in the database
before the new application was deployed. If you call

UL EnableGenericSchema, the existing database is instead upgraded to the
schema of the new application.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before dbinit or UL Data.Open(). An
exception is the Palm Computing Platform, where there is no need to close
all cursors before upgrading. Immediately following an upgrade on the Palm
Computing Platform the LAUNCH_SUCCESS FIRST launch codeis
returned.

Backup before upgrading
It is strongly recommended that you backup your data before attempting
an upgrade, either by copying the database file or by synchronizing.

The schema upgrading process uses matching namesin the old and new
schema. It proceeds as follows:

1 Any tablesthat were in the old schemabut not in the new schema are
dropped.

2 Any tablesthat are in the new schemabut were not in the old are
created.

Chapter 10 The Embedded SQL Interface

Parameters

See also

3 For any table that existsin both old and new, but with a different

definition, columns are added and dropped as needed. If anew columnis
not nullable and has no default value, it isfilled with zeros (numeric data
types), the empty string (character data types) and an empty binary
value.

4 Columns whose properties have changed are then modified.

Caution

If an error occurs during conversion for any row, that row is dropped and
the SQL warning

SQLE ROW DROPPED DURING SCHEMA UPGRADE is s&t.

5 Indexes and constraints are rebuilt. This step may also result in rows
being dropped if, for example, an index is redefined as UNIQUE but has
duplicate values.

In general, adding constraints to tables that have datain them or carrying out
unpredictable column conversions may result in lost rows.

sqlca A pointer to the SQLCA. Thisargument is supplied even in
C++ API applications.

"Deploying UltralLite applications' on page 104

ULEnablePalmRecordDB function

Prototype

Description

Parameters

Examples

void ULEnablePalmRecordDB(SQLCA * sqlca);

Use a standard record-based data store on a device operating the Palm
Computing Platform. Y ou must call UL EnablePalmRecordDB or
UL EnableFileDB before calling UL PalmL aunch.

This function can be used by C++ API applications as well as embedded
SQL applications.

sqlca A pointer to the SQLCA. Thisargument is supplied even in
C++ API applications.

The following code sampleillustrates the use of the
UL EnablePalmRecor dDB function, which is called before
UL PalmL aunch.

237

Library function reference

See also

ULEnabl ePal nRecor dDB(&sqgl ca);
swit ch(ULPal nLaunch(&sqlca, &ync_info) ({
case LAUNCH SUCCESS FI RST:

/] do init

br eak;
case LAUNCH_SUCCESS:

/1 do sonethi ng

br eak;
case LAUNCH FAI L:

// handl e error

br eak;

}
"ULEnableFileDB function" on page 235

ULEnableStrongEncryption function

Prototype

Description

Parameters

See also

void ULEnableStrongEncryption(SQLCA * sqica)
Strongly encrypt an UltraL ite database.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before dbinit() or UL Data.Open().

sqlca A pointer to the SQLCA. Thisargument is supplied even in
C++ API applications.

"Encrypting UltraLite databases" on page 45
"Changing the encryption key for a database" on page 49

ULEnableUserAuthentication function

Prototype

Description

See also

238

void ULEnableUserAuthentication(SQLCA * sqlca);
Enable user authentication in the UltraLite application.

If you do not call this function, no user ID or password is required to access
an Ultral ite database. With this function, your application must supply a
valid user 1D and password. UltralLite databases are created with asingle
authenticated user ID DBA which hasinitial password SQL.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before dbinit() or UL Data.Open().

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application” on page 85

Chapter 10 The Embedded SQL Interface

ULGetLastDownloadTime function

Prototype

Description

Parameters

Returns

Examples

See also

ul_bool ULGetLastDownload Time(
SQLCA * sqlca,
ul_publication_mask publication-mask,
DECL_DATETIME * value);

Obtains the last time a specified publication was downl oaded.
sqlca A pointer to the SQLCA.

publication-mask A set of publications for which the last download time
isretrieved. A value of O corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB PUB1 | UL_PUB PUB2
& For moreinformation on publication masks, see "publication
synchronization parameter” on page 386.

value A pointer to the DECL_DATETIME structure to be popul ated.

A value of January 1, 1990 indicates that the publication has yet to be
synchronized.

¢ true Indicatesthat valueis successfully populated by the last
download time of the publication specified by publication-mask.

¢ false Indicatesthat publication-mask specifies more than one
publication or that the publication is undefined. If the return valueis
false, the contents of value are not meaningful.

The following call populates the dt structure with the date and time that
publication UL_PUB_PUB1 was downloaded:

DECL_DATETI ME dt ;
ret = ULGet Last Downl oadTi me(&sql ca, UL_PUB PUBLl, &dt);

The following call populates the dt structure with the date and time that the
entire database was last downloaded. It uses the special UL_SYNC_ALL
publication mask.

ret = ULGet Last Downl oadTi me(&sql ca, UL_SYNC ALL, &dt);

"publication synchronization parameter" on page 386
"UL_SYNC_ALL macro" on page 431
"UL_SYNC_ALL_PUBS macro" on page 431

239

Library function reference

ULGetSynchResult function

Prototype

Description

Parameters

240

ul_bool ULGetSynchResult(ul_synch_result * synch-result);

Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:

The application must allocate a ul_synch_result object before passing it to
UL GetSynchResult. The function fillsthe ul_synch_result with the result
of the last synchronization. These results are stored persistently in the
database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes place
outside the application itself. The SQLCODE value set in the call to

UL PalmL aunch reflects the UL PalmL aunch operation itself. The
synchronization status and results are written to the HotSync log only. To
obtain extended synchronization result information, call UL GetSynchResult
after a successful UL PalmL aunch.

synch-result A structure to hold the synchronization result. It is defined
in ulglobal.h as follows:..

typedef struct {
an_sqgl_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;

} ul_synch_result, * p_ul_synch_result;
where the individual members have the following meanings:

¢ sqgl_code TheSQL codefrom thelast synchronization. For alist of
SQL codes, see "Error messages indexed by Adaptive Server Anywhere
SQLCODE" on page 2 of the book ASA Errors Manual.

¢ stream_error The communication stream error code from the last
synchronization. For alisting, see "MobiLink Communication Error
Messages' on page 631 of the book MobiLink Synchronization User’s
Guide.

¢ upload_ok Settotrueif the upload was successful; false otherwise.

¢ ignored_rows Settotrueif uploaded rows wereignored; false
otherwise.

Chapter 10 The Embedded SQL Interface

Returns

Examples

See also

auth_status The synchronization authentication status. For more
information, see "auth_status synchronization parameter” on page 381.

auth_value The value used by the MobiLink synchronization server to
determine the auth_status result. For more information, see "auth_value

synchronization parameter” on page 382.

¢ timestamp Thetime and date of the last synchronization.

¢ status The statusinformation used by the observer function. For more

information, see "observer synchronization parameter” on page 384.

The function returns a Boolean value.
true Success.

false Failure.

The following code checks for success of the previous synchronization.

ul _synch_result synch_result;

nenset (&ynch_result, 0, sizeof(ul _synch_result));

db_init(&aqlca);

EXEC SQ. CONNECT "dba" | DENTI FI ED BY "sql ";

i f(!'ULGet SynchResult(&sqglca, &ynch result)) {
prMsg("ULGet SynchResult failed");

"ULPalmLaunch function" on page 245

ULGIlobalAutoincUsage function

Prototype

Description

Returns

See also

short ULGlobalAutoincUsage(SQLCA * sqlca);

Obtains the percent of the default values used in all the columns having

global autoincrement defaults. If the database contains more than one column
with this default, this valueis calculated for al columns and the maximum is

returned. For example, areturn value of 99 indicates that very few default
values remain for at least one of the columns.

The function returns a value of type short in the range 0-100.

"ULSetDatabaselD function" on page 248

241

Library function reference

ULGrantConnectTo function

Prototype

Description

Parameters

See also

void ULGrantConnectTo(
SQLCA * sqlca,
ul_char * userid,
ul_char * password);

Grant access to an UltraL ite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

sqlca A pointer to the SQLCA.

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password for userid. The maximum
length is 16 characters.

"User authentication for UltralLite databases" on page 442
"Adding user authentication to your application” on page 85
"ULRevokeConnectFrom function" on page 248

ULHTTPSStream function

Prototype

Description

See also

ul_stream_defn ULHTTPSStream(void);
Defines an UltraLite HTTPS stream suitable for synchronization viaHTTP.

The HTTPS stream uses TCP/IP as its underlying transport. Ultral ite
applications act as Web browsers and MobiLink acts as aweb server.

"UL Synchronize function" on page 250
"Synchronize method" on page 143

"stream synchronization parameter" on page 389
"HTTPS stream parameters' on page 406

ULHTTPStream function

Prototype

Description

242

ul_stream_defn ULHTTPStream(void);
Defines an UltraLite HTTP stream suitable for synchronization viaHTTP.

The HTTP stream uses TCP/IP as its underlying transport. UltralLite
applications act as Web browsers and MobiLink acts as aweb server.
UltraL ite applications send POST requests to send data to the server and
GET requests to read data from the server.

Chapter 10 The Embedded SQL Interface

See also "UL Synchronize function" on page 250
"Synchronize method" on page 143
"'stream synchronization parameter" on page 389
"HTTP stream parameters’ on page 403

ULIsSynchronizeMessage function

Prototype ul_bool ULIsSynchronizeMessage(ul_u_long uMsg);

Description On Windows CE, this function checks amessage to seeif itisa
synchronization message from the MobiLink provider for ActiveSync, so
that code to handle such a message can be called.

This function should be included in the WindowPr oc function of your
application.

Example The following code snippet illustrates how to use UL IsSynchronizeMessage
to handle a synchronization message.

LRESULT CALLBACK W ndowProc(HWAD hwnd,
U NT uMsg,
WPARAM wPar am
LPARAM | Par am)

i f(ULIsSynchroni zeMessage(uMsg)) {
/| execute synchroni zation code
if(wParam== 1) DestroyWndow hwd);
return O;

}
switch(uMsg) {

/1 code to handl e other wi ndows nessages

defaul t:
return Def WndowProc(hwnd, uMsg, wParam | Param);
}
return O;
}
See also "Adding ActiveSync synchronization to your application" on page 305

ULPalmDBStream function (deprecated)

Prototype ul_stream_defn ULPalmDBStream(void);
Description Defines a stream under the Palm Computing Platform suitable for HotSync
and Scout Sync.

243

Library function reference

See also

Thisfunction is deprecated. The stream parameter is not needed for
HotSync synchronization, and may be UL_NULL.

"ULPamExit function" on page 244

"ULPamLaunch function" on page 245

"HotSync and ScoutSync parameters' on page 401

"Synchronize method" on page 143

ULPalmExit function

Prototype

Description

Parameters

244

ul_bool ULPalmEXxit(SQLCA * sgica, ul_synch_info * synch_info);

Saves application state for UltralLite applications on the Palm Computing
Platform, and writes out an upload stream for HotSync or ScoutSync
synchronization. This function is required by all UltraLite Palm applications.

Call this function just before your application is closed, to save the state of
the application.

This function saves the application state when the application is deactivated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of writing an upload stream. When the user uses HotSync
or Scout Sync to synchronize data between their Palm device and a PC, the
upload stream is read by the MobiLink HotSync conduit or the MobiLink
Scout conduit respectively.

The MobiLink HotSync and ScoutSync conduits synchronize with the
MobiLink synchronization server through a TCP/IP or HTTP stream using
stream parameters. Specify the stream and stream parametersin
synch_info.stream_parms. Alternatively, you may specify the stream and
stream parameters viathe ClientParms registry entry. If the ClientParms
registry entry does not exist, a default setting of

{strean¥t cpi p; host =l ocal host} isused.

sqglca A pointer to the SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL instead
of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to

UL Synchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of the stream parameter isignored, and
may be UL_NULL.

& For information on the members of the synch_info structure, see
" Synchronization stream parameters’ on page 399.

Chapter 10 The Embedded SQL Interface

Returns

The function returns a Boolean value.
true Success.

false Failure.

ULPalmLaunch function

Prototype

Parameters

Description

Returns

UL_PALM_LAUNCH_RET ULPalmLaunch(
SQLCA * sqlca,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST,
LAUNCH_SUCCESS,
LAUNCH_FAIL
} UL_PALM_LAUNCH_RET;

sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see " Synchronization parameters' on page 380.

If you are using TCP/IP or HT TP synchronization, supply UL_NULL as
synch_info.

This function restores application state for UltralLite applications on the Palm
Computing Platform. This function is required by all UltraLite Palm
applications.

Y our application must call UL EnablePalmDB or UL EnableFileDB before
calling UL PalmL aunch.

All UltraLite Palm applications need to use this function to handle the launch
code in your application’s PilotM ain.

This function restores the application state when the application is activated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of processing the download stream prepared by the
MobiLink HotSync conduit or MobiLink Scout conduit.

If you are using TCP/IP or HT TP synchronization, supply a null value for the
stream parameter in the ul_synch_info synchronization structure. This
information is supplied instead in the call to UL Synchronize.

A member of theUL_PALM_LAUNCH_RET enumeration. The return
values have the following meanings:

245

Library function reference

¢ LAUNCH_SUCCESS FIRST Thisvalueisreturned the first timethe
application is successfully launched and at any subsequent time the
internal state of the Ultral ite database needs to be re-established. In
general, the state of the database needs to be re-established only after
severe failures.

In embedded SQL applications you should call db_init immediately
after this return code is detected; in C++ APl applications, you should
open a database object.

¢ LAUNCH_SUCCESS Thisvaueisreturned when an applicationis
successfully launched, after the Palm user has been using other
applications.

¢ LAUNCH_FAIL Thisvaueisreturned when the launch fails.

Examples A typical embedded SQL exampleis

ULEnabl ePal mRecor dDB(&sql ca);
switch(ULPal nLaunch(&sqlca, &ynch_info)){
case LAUNCH_SUCCESS Fl RST:
if('db_init(&glca)){
/1l db_init failed: add error handling here
br eak;

}

/1 fall through
case LAUNCH SUCCESS:
/1 do work here

br eak;

case LAUNCH FAI L:
/] error
br eak;

}

See also "Launching an UltraLite Palm application" on page 261
"ULEnableFileDB function" on page 235
"ULEnablePalmRecordDB function” on page 237

ULResetLastDownloadTime function

Prototype void ULResetLastDownload Time(
SQLCA * sqlca,
ul_publication_mask publication-mask);

Description This function can be used to repopul ate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

Parameters sqlca A pointer to the SQLCA.

246

Chapter 10 The Embedded SQL Interface

Example

See also

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB PUBL | UL_PUB_PUB2

& For more information on publication masks, see "publication
synchronization parameter" on page 386.

The following function call resets the last download time for all tables:
ULReset Last Downl oadTi me(&sql ca, UL_SYNC ALL);

"ULGetLastDownloadTime function" on page 239
"Timestamp-based synchronization" on page 86 of the book MobiLink
Synchronization User’s Guide

ULRetrieveEncryptionKey function

Prototype

Description

Parameters

Returns

See also

ul_bool ULRetrieveEncryptionKey(
ul_char * key,
ul_u_short len,
ul_u_long * creator,
ul_u_long * feature-num);

On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palm featur e. Features are indexed by creator and a feature
number.

This function retrieves the encryption key from memory.
key A pointer to a buffer in which to hold the retrieved encryption key.

len Thelength of the buffer that holds the encryption key with a
terminating null character.

creator A pointer to the creator 1D of the feature holding the encryption
key. A value of NULL isthe default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL usesthe UltraLite default, which is feature number 100.

¢ true if the operationis successful.

¢ false if the operation isunsuccessful. This occursif the feature was not
found or if the supplied buffer length isinsufficient to hold the key plus
aterminating null character.

"ULClearEncryptionKey function" on page 233
"UL SaveEncryptionK ey function” on page 248
"Using the encryption key on the Palm Computing Platform" on page 50

247

Library function reference

ULRevokeConnectFrom function

Prototype
Description

Parameters

See also

void ULRevokeConnectFrom(SQLCA * sqlca, ul_char * userid);

Revoke access from an Ultralite database for a user ID.
sqlca A pointer to the SQLCA.

userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application” on page 85
"ULGrantConnectTo function" on page 242

ULSaveEncryptionKey function

Prototype

Description

Parameters

Returns

See also

ul_bool ULSaveEncryptionKey(
ul_char * key,
ul_u_long * creator,
ul_u_long * feature-num);

On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palm featur e. Features are indexed by creator and a feature
number. They are not backed up and are cleared on any reset of the device.

This function saves the encryption key in Palm dynamic memory.

key A pointer to the encryption key.

creator A pointer to the creator 1D of the feature holding the encryption
key. A value of NULL isthe default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL usesthe UltraLite default, which is feature number 100.

¢ true if the operation is successful.
¢+ false if theoperationis unsuccessful.

"ULClearEncryptionKey function" on page 233
"ULRetrieveEncryptionKey function" on page 247
"Using the encryption key on the Palm Computing Platform" on page 50

ULSetDatabaselD function

Prototype

248

void ULSetDatabaselD(SQLCA * sgica, ul_u_long id);

Chapter 10 The Embedded SQL Interface

Description

Parameters

See also

Sets the database identification number.
sqlca A pointer to the SQLCA.

id A positive integer that uniquely identifies a particular databasein a
replication or synchronization setup.

"ULGlobal AutoincUsage function” on page 241

ULSocketStream function

Prototype
Description

See also

ul_stream_defn ULSocketStream(void);
Defines an UltralLite socket stream suitable for synchronization via TCP/IP.

"UL Synchronize function" on page 250
"Synchronize method" on page 143

UL StoreDefragFini function

Prototype

Description

Parameters

See also

ul_ret_void ULStoreDefragFini(
SQLCA * sqlca,
p_ul_store_defrag_info dfi);

This function disposes of the defragmentation information block returned by
UL StoreDefragl nit.

sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

"Defragmenting Ultral ite databases' on page 51
"UL StoreDefragl nit function" on page 249

UL StoreDefraglnit function

Prototype

Description

Parameters

p_ul_store_defrag_info ULStoreDefraglnit(SQLCA * sglca);

Thisfunction initializes and returns a defragmentation information block to
maintain the defragmentation state of the database.

sqlca A pointer to the SQLCA.

249

Library function reference

Returns

See also

If successful, returns a defragmentation information block
p_ul_store defrag_info. If unsuccessful, for example if there is not enough
memory, returns UL_NULL.

"Defragmenting Ultral ite databases" on page 51
"UL StoreDefragFini function" on page 249

UL StoreDefragStep function

Prototype

Description

Parameters

Returns

See also

ul_bool ULStoreDefragStep(
SQLCA * sglca
p_ul_store_defrag_info dfi);

This function defragments a piece of the database.
sqlca A pointer to the SQLCA.
dfi A defragmentation information block.

If the entire store has been defragmented, returns ul_true.
If the entire store is not defragmented, returnsul_false.
If an error occurs, SQLCODE is set.

"Defragmenting Ultral ite databases" on page 51
"UL StoreDefragFini function" on page 249
"UL StoreDefragl nit function" on page 249

ULSynchronize function

Prototype

Description

Parameters

250

void ULSynchronize(
SQLCA * sqlca,
ul_synch_info * synch_info);

Initiates synchronization in an UltraLite application.

For TCP/IP or HTTP synchronization, the UL Synchronize function initiates
synchronization. Errors during synchronization that are not handled by the
handle_error script are reported as SQL errors. Y our application should test
the SQLCODE return value of this function.

sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see " Synchronization parameters' on page 380.

Chapter 10 The Embedded SQL Interface

See also "MobiLink Synchronization Server Options' on page 379 of the book
MobiLink Synchronization User’s Guide
"START SYNCHRONIZATION DELETE statement” on page 583 of the
book MobiLink Synchronization User’s Guide

251

Library function reference

252

CHAPTER 11

Developing Applications for the Palm
Computing Platform

About this chapter

Contents

This chapter describes details of development, deployment and

synchronization that are specific to developing applications for the Palm

Computing Platform. These instructions assume familiarity with the general

Ultral ite devel opment process.

Topic Page
Introduction 254
Developing UltralLite applications with Metrowerks CodeWarrior 255
Developing UltraLite applications with GCC PRC-Tools 259
Launching and closing UltraLite applications 261
Building multi-segment applications 263
Palm synchronization overview 268
Adding HotSync or ScoutSync synchronization to Palm applications 272
Configuring HotSync synchronization 274
Configuring ScoutSync synchronization 279
Adding TCP/IP, HTTP, or HTTPS synchronization to Pam

applications 283
Configuring TCP/IP, HTTP, or HTTPS synchronization 285
Deploying Palm applications 291

253

Introduction

Introduction

Development
environments

Target platforms

Palm-specific
notes

254

This chapter describes features of UltralLite development specific to the Palm
Computing Platform.

Y ou can use one of the following development environments to build
Ultralite Palm applications:

¢ Metrowerks CodeWarrior, version 6, 7, or 8.

& See"Developing Ultral ite applications with Metrowerks
CodeWarrior" on page 255.

CodeWarrior includes a version of the Palm SDK. Depending on the
particular devices you are targeting, you may want to upgrade your Palm
SDK to amore recent version than that included in the devel opment
tool. Palm SDK versions 3.1, 3.5, and 4.x of the Palm SDK are
supported.

¢ GCCPRC Tools. This set of toolsis based on the GNU compiler.

& See"Developing Ultralite applications with GCC PRC-Tools' on
page 259.

& For more information on target platforms, see " Supported platforms for
C/C++ applications' on page 6.

For general information on development environments for the Palm,
including more information on each of the supported host platforms, see the
Palm Computing Platform Development Zone Web site.

& For alist of supported target operating systems, see " Supported
platforms for C/C++ applications’ on page 6.

The information in this chapter concerning Palm devel opment supplements
the general information on UltraLite development provided "Developing
UltraLite Applications’ on page 67.

Chapter 11 Developing Applications for the Palm Computing Platform

Developing UltraLite applications with
Metrowerks CodeWarrior

Metrowerks CodeWarrior versions 6 and 7 are supported host platforms for
Palm Computing Platform Ultral ite development.

A CodeWarrior plug-in is supplied to make building UltralLite applications
easier. Thisplug-in is supplied in the UltraLite\Palm\68k\cwplugin directory.

This section describes how to develop Ultralite applications using
CodeWarrior. It assumes a familiarity with CodeWarrior programming for
the Palm Computing Platform.

Installing the UltraLite plug-in for CodeWarrior

Uninstalling the
CodeWarrior plug-
in

Thefilesfor the UltraLite plug-in for CodeWarrior are placed on your disk
during UltraLite installation, but the plug-in is not available for use without
an additional installation step.

% To install the UltraLite plug-in for CodeWarrior:

1

Ensure that you are running CodeWarrior version 6 or CodeWarrior
version 7. Y ou can obtain patches for CodeWarrior from the
Metrowerks Web site.

From a command prompt, change to the UltraLite\palm\68k\cwplugin
subdirectory of your SQL Anywhere directory.

Run install.bat to copy the appropriate files into your CodeWarrior
installation directory: The install.bat file takes two arguments:

¢ Your CodeWarrior directory
¢ Your CodeWarrior version. Version 6 is the default.

For example, the following command (which should be entered on one
line) install s the plug-in for CodeWarrior 7 in the default CodeWarrior
installation directory.

install "c:\Program Fil es\Metrowerks\ CodeVarrior for
Palm Os Platform7.0" r7

Y ou only need double quotes around the directory if the path has spaces.

There isaso afile uninstall.bat, that you can use in the same way as
install.bat to uninstall the UltraLite Plug-in from CodeWarrior.

255

Developing UltraLite applications with Metrowerks CodeWarrior

Creating UltraLite projects in CodeWarrior

256

This section describes how to use the UltraLite Plug-in for CodeWarrior.

% To create an UltraLite project in CodeWarrior:

1
2

Start CodeWarrior.
Create a new project.

From the CodeWarrior menu, choose File[J New. A tabbed dialog
appears.

On the Projects dialog, choose one of the available choices, and choose a
name and location for the project. Click OK.

Choose an Ultral ite stationery.

The UltraL.ite plug-in adds two choices to the stationery list, one for
C++ API applications and one for embedded SQL applications.

Choose the development model you want to use and click OK to create
the project.

This stationery is standard C stationery for embedded SQL, and standard
C++ dtationery for the C++ API, and contains almost-empty source files.

Configure the target settings for your project.

On your project window (.mcp), choose the Targets tab, and click the
Settings icon on the toolbar. The Project Settings window opens.

In the tree on the left pane, choose Target Ultralite preprocessor. You
can enter the settings for your project, such as which reference database
to use.

When you build your project by pressing F7, the following preprocessing
steps are carried out:

¢

For embedded SQL applications, sglpp and ulgen utilities are invoked
automatically to convert any .sqc filesinto .c or .cpp filesand to
generate the database code.

For C++ API applications, ulgen isinvoked to generate the Ultral ite
API files and the database code.

Also, the paths to required UltraL ite files, such as headers and runtime
library, are automatically added to the search paths.

Chapter 11 Developing Applications for the Palm Computing Platform

Converting an existing CodeWarrior project to an UltraLite

application

If you install the UltraLite plug-in into CodeWarrior, you will be asked to
convert each existing project when you open it. In this conversion,
CodeWarrior sets the default SQL preprocessor settings and saves themin
the project file. This causes no disruption to projects that do not use the SQL
preprocessor. If you want to further convert a project to invoke the SQL
preprocessor automatically, you need to do the following:

1 Add afile mapping entry for .sqc and .ulg files to the File Mappings
panel of the Target settings.

Thesefiles are of file type TEXT and the Compiler is UltraLite
Preprocessor. All flags for these files should be unchecked.

2 For embedded SQL applications, remove all .cpp files generated by the
SQL preprocessor from the Files view. These files are automatically
generated and re-added when the .sqc files are built.

3 For C++ API applications, mark the .ulg dummy file dirty and remove
the UltraLite Files folder.

Using the UltraLite plug-in for CodeWarrior

Using prefix files

The UltraLite plug-in for CodeWarrior integrates the UltralL ite preprocessing
steps (running the UltraL ite generator and, for embedded SQL applications,
running the SQL preprocessor) into the CodeWarrior compilation model. It
ensures that the SQL preprocessor and Ultralite generator run when
required.

If you change the UltraL ite project name, or if you change the generated
database name, you should delete the UltraLite Files folder. This forces
regeneration of the generated files. To avoid filename collisions, do not use a
generated database name that is the same as the .sqc file name.

If you change a SQL statement in a C++ API UltraLite project, or if you alter
a SQL Remote publication used in a C++ APl project, you must manually
touch the dummy.ulg file to prompt the UltraLite generator to run.

& For an overview of the tasks the plug-in carries out, see "Configuring
development tools for UltraLite development” on page 102.

A prefix file isaheader file that all source filesin a Metrowerks
CodeWarrior project include. Y ou should use ulpalmXxX.h, where XX
indicates the version of the Palm SDK you are using, from the h subdirectory
of your SQL Anywhere Studio installation directory as your prefix file. The
CodeWarrior plug-in sets this for you automatically.

257

Developing UltraLite applications with Metrowerks CodeWarrior

If you have your own prefix file, it must include ulpalmxX.h. The
ulpalmxX.h file defines macros required by Palm applications, such as the
UL_PALMOS SDK macro (which is set to the version of the Palm OSin
use) and the UNDER_PALM_OS macro.

Building the CustDB sample application from CodeWarrior

258

CustDB is a simple sales-status application.

&~ For adiagram of the sample database schema, see " The UltraLite
sample database" on page xvi.

Files for the application are located in the Samples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. Generic files are located in
the CustDB directory. Files specific to CodeWarrior for the Palm Computing
Platform are in the following locations:

¢ cwcommon Filescommon to both CodeWarrior 6 and CodeWarrior 7.
¢ cw6 Filesfor CodeWarrior 6.
¢ cw7 Filesfor CodeWarrior 7.
¢ cw8 Filesfor CodeWarrior 8.

The instructions in this section describe how to build the CustDB application
using CodeWarrior 7. The processis very similar for CodeWarrior 6.

To build the CustDB sample application using CodeWarrior:
1 Start the CodeWarrior IDE.
2 Open the CustDB project file:

¢ Choose FileO Open.

¢ Open the project file Samples\UltraLite\custdblcw8\custdb.mcp
under your SQL Anywhere directory.

3 To build the target application (custdb.prc), choose Projectl] Make.

Y ou can use the UltraLite plug-in to customize settings for your own
application. For more information, see "Developing UltralLite applications
with Metrowerks CodeWarrior" on page 255.

Chapter 11 Developing Applications for the Palm Computing Platform

Developing UltraLite applications with GCC

PRC-Tools

Compiler issues

Y ou can use the GNU GCC PRC-Tools suite for the Palm Computing
Platform to develop UltraLite applications. This section assumes that you are
familiar with the installation and use of the GCC PRC-Tools, and provides
Ultralite-specific tips and information.

&> For information on the GCC PRC-Tools suite, see
http://www.pal mos.com/dev/tech/tools/gcc/.

The UltraLite runtime library for PRC-Toolsis located in subdirectories of
your SQL Anywhere directory:

UtraLite\Pal M 68k\Ilib\prctool s20\libulrt.a

No transport-layer security using GCC tools
The Certicom transport-layer security is not available when using GCC
tools.

Compile UltralL ite applications using the - DM68000 - moshort switches.
The first option declares a symbol required to properly set the SQL_OS
macro. The second option forces int data types to be four bytes (two is
default).

Building the CustDB sample application with PRC Tools

CustDB isasimple sales-status application. It is located in the UltraLite
Samples directory of your installation. Generic files are located in the
CustDB directory. Files specific to PRC Tools for the Palm Computing
Platform are located in the prctools20 subdirectory of CustDB.

Y ou must have the full set of PRC Toolsinstalled before building the
CustDB sample application, including the following:

¢ Cygnus cygwin tools. The directory containing cygwini.dll must be in
your path.

¢ GCCTool chain for the Palm OS (PRC Tools 2.0). The multigen.exe
utility must be in your path.

¢ PamSDK 3.5.

¢ PilRC resource compiler tools. The pilrc.exe utility must be in your path.

259

Developing UltraLite applications with GCC PRC-Tools

% To build the sample application:
1 Openacommand prompt window.

2 Change directory to the Samples\UltraLite\CustDB|\prctools20
subdirectory of your SQL Anywhere directory.

3 Entering the following command:
bui | d

The build.bat file contains instructions to build the Ultralite sasmple
application.

Once you have built the sample application, you can use the Palm Desktop
software deploy the custdb.prc executable to your target device.

260

Chapter 11 Developing Applications for the Palm Computing Platform

Launching and closing UltraLite applications

Palm OS applications are single threaded. To maintain the illusion that an
application is running in the background after you close it, the application
must save itsinterna state when the user switches to another application.
When the application is launched again, it must restore itsinternal state.

This section describes how to handle launching and closing of an UltralLite
Palm application.

Two Palm-gpecific UltraLite functions save and restore internal state
information, and must be used by all UltraL ite applications for the Palm
Computing Platform. These functions also handle synchronization if you are
using the HotSync or ScoutSync synchronization streams, but not if you are
using TCP/IP or HTTP streams.

Launching an UltraLite Palm application

Whenever your UltraL ite application is launched, your code must call the
function to restore state.

For embedded SQL development, this function is UL PalmL aunch. For
C++ API development, this function is the UL Data.PalmL aunch() method.

If your application has never been run before, or was abnormally terminated
the last time it was run, the function returns a value of
LAUNCH_SUCCESS FIRST. Inthis case, you must initialize the UltraL ite
data store. Otherwise, you must not initialize the data store.

& For more information, see "ULPalmLaunch function" on page 245, and
"PalmLaunch method" on page 148.

Closing an UltraLite Palm application

C++ API

Whenever your UltralLite application is closed, and the user switches to
another application, your code must call the function to save its state. Some
kinds of data cannot be kept open during the time that you move away from
an UltraL ite application.

For embedded SQL development, this function is UL PalmEXxit. For
C++ API development, this function is the UL Data.PalmExit() method.

For C++ API developers, the following considerations also apply:

¢ Do not close any UL Data or UL Connection objects.

261

Launching and closing UltraLite applications

Embedded SQL

262

¢ When the user returns to the application, call Reopen, first on the
UL Data and then on the UL Connection object.

¢ For cursor objects, including instances of generated result set classes,
you can do either of the following:

¢ Ensurethat the object is closed when the user switches away from
the application, and call Open when you next need the object. If
you choose this option, the current position is not restored.

¢ Do not close the object when the user switches away, and call
Reopen when you next need to access the object. The current
position is then maintained, but the application takes more memory
in the Palm when the user is using other applications.

+ For table objects, including instances of generated table classes, you
cannot save a position. Y ou must close table objects before a user moves
away from the application, and Open them when the user needs them
again. Do not use Reopen on table objects.

Do not call db_fini to close the application. Instead, call UL PalmExit. All
connections (on asingle SQLCA) and cursors remain open.

& For more information, see "ULPalmExit function" on page 244, and
"PalmExit method" on page 147.

Chapter 11 Developing Applications for the Palm Computing Platform

Building multi-segment applications

Application code for the Palm Computing Platform must be divided into
segments. For CodeWarrior, these segments are at most 64 kb in size. For
PRC Tools, they are at most 32 kb. This section describes how to manage the
assignment of code into segments.

UltraL ite applications include the following types of code:

¢ User-defined code Application code, including the .cpp file generated
by the SQL Preprocessor.

¢ Generated code for SQL statements Code generated by the
Ultralite Analyzer to execute SQL statements.

¢ Generated code for the database schema Code generated by the
Ultralite Analyzer to represent the database tables.

¢ Runtime library The UltraLite runtime library is compiled as multi-
segment code. Segment names of the form ULRTn and ULRTnn are
reserved for the UltraL ite runtime libraries.

Building multi-segment applicationsis a general feature of application
development for the Palm Computing Platform, whether or not you are using
UltraLite. Some familiarity with building multi-segment applications using
your development tool is assumed. User-defined code is no different to other
standard Palm applications. For areminder about assigning user-defined
code to segments, see "Assigning user-defined code to segments’ on

page 266.

Y ou can partition generated code into segments in the following ways:

¢ Enable multi-segment code generation, but let the UltraLite Analyzer
assign segments in a default manner.

& For moreinformation, see "Enabling multi-segment code
generation" on page 264.

¢ Enable multi-segment code-generation and explicitly assign segments
yourself.

& For moreinformation, see "Explicitly assigning segments' on
page 265.

263

Building multi-segment applications

Enabling multi-segment code generation

264

This section describes how to instruct the Ultralite Analyzer to generate
multi-segment code using its default scheme. If you wish to customize the
assignment of code to segments by explicitly assigning functions to
segments, you can do so. For more information, see "Explicitly assigning
segments’ on page 265.

Y ou enable generated code segments by defining macros. Macro definition is
different for the CodeWarrior and PRC Tools development tools, so the
procedure for enabling multi-segment code generation also differs.

+ To enable multi-segment code generation (CodeWarrior):

1

Define a prefix file for your CodeWarrior project with the following
contents:

#def i ne UL_ENABLE_SEGVENTS
#i ncl ude "ul pal nXX. h"

where XX=30, 31, 35, or 40.

& For moreinformation, see"UL_ENABLE_SEGMENTS macro"
on page 428.

% To enable multi-segment code generation (PRC Tools):

1

Instruct the gnu compiler to compile segmented code.

Define the following two macros on the compiler command line;
¢ UL_ENABLE SEGMENTS

¢ UL_ENABLE_GNU_SEGMENTS

& For an example, seethefile
Samples\UltraLitelCustDB\PRCTools20\ build.bat relative to your
SQL Anywhere directory.

& For moreinformation, see"UL_ENABLE_SEGMENTS macro"
on page 428, and ."UL_ENABLE_GNU_SEGMENTS macro" on
page 428.

Construct a segment definition file for the GNU link tools muitilink and
build-pre.

Run the dbulseg command-line utility against each source file, and
supply a name for the definition file. For example, the following
command line;

dbul seg gensource. c project.def AppNane Creatorl|D

creates a project.def definition file with the following content:

Chapter 11 Developing Applications for the Palm Computing Platform

Notes

PRC Tools
compiler issues

application{ "AppNane" Creator|D }
multiple code{ ULRT1 ... ULRT17 ULG512 ULG513 ... }

where the ULG segment names are obtained from the generated source
file gensource.c.

& For moreinformation on the Ultralite segment utility, see"The
Ultralite segment utility" on page 425.

When multi-segment code generation is enabled, the default behavior of the
UltraLite Analyzer is asfollows:

¢ The generated schema code fitsinto a single segment and is assigned to
a segment named UL SEGDB.

¢ For the C++ API, the generated statement code is assigned to a segment
named UL SEGDEF.

¢ For embedded SQL, the generated statement code is assigned to a
segment with a generated name based on the .sqc file. All the code for a
single .sqc file goesinto a single segment.

When a function defined at the bottom of a source file makes an inter-
segment call to afunction defined at the top of the same source file, and
there is more than 32 kb of code in between, the PRC Tools compiler may
generate jsr instructions unacceptable to the assembler. Normally, the offset
of thejsr instruction is replaced during the relocation stage of the linker, but
in this case, the error prevents the compilation from going any further. To
avoid thisissue, instruct the assembler to ignore any signed overflow errors
by using the -Wa,-J compiler switches.

Explicitly assigning segments

This section describes how to explicitly assign the generated code for SQL
statements to segments. Y ou must first enable multi-segment code generation
as described in "Enabling multi-segment code generation” on page 264.

The mechanism for assigning the code is different for the embedded SQL
and C++ API development models.

Explicit segment assignment requires a database upgraded to version 8
standards.

To explicitly assign generated statement code to segments
(embedded SQL):

¢ Split your .sqc filesinto separate files. The generated code for the
statementsin each .sqc fileis placed into a separate segment.

265

Building multi-segment applications

®,
o

To explicitly assign generated statement code to segments
(C++ API):

¢ Do one of the following:

¢ Cdl theul _set codesegment procedure for each SQL statement,
providing the name of the segment to which the statement should be
assigned.
For example, the following statement assigns the statement mystmt,
in the project myproject, to the segment MY SEG1.

call ul _set_codesegnent (

"nyproject’, 'nystnt’, 'MYSEGL)
& For moreinformation, see"ul_set_codesegment system
procedure” on page 413.

¢ From Sybase Central, open the UltraLite Project folder. Right click
the statement and choose Properties from the popup menu. Enter a
code segment name in the box.

Assigning user-defined code to segments

The first segment

266

Assigning user-defined code to segmentsis a standard part of programming
applications for the Palm Computing Platform. This section isintended as a
reminder for Palm programmers.

To assign user-defined code to segments (CodeWarrior):
¢ Addthefollowing line at various places in your .sqc file or .cpp file:
#pragna segnent segnent - nane

where segment-name is a unique name for the segment This forces code
after each #pr agma line to be in a separate segment.

To assign user-defined code to segments (PRC Tools):
¢ Add the following declaration to each function:
__attribute_(section("segnent-nane"))

Y ou must ensure that PilotM ain and all functionscalled in PilotM ain arein
the first segment.

If necessary, you can add aline of the following form before your startup
code:

#pragma segment segnent - nane

where segment-name is the name of your first segment.

Chapter 11 Developing Applications for the Palm Computing Platform

& For moreinformation on prefix files and segments, see your Palm
developer documentation.

267

Palm synchronization overview

Palm synchronization overview

UltraL ite applications running on the Palm Computing Platform can
synchronize using the following streams:

¢

¢

¢

TCP/IP Through the cradle or through a modem.
HTTP Through the cradle or through a modem.

HotSync The Palm Computing Platform built-in synchronization
method.

ScoutSync The synchronization method from Aether Systems.
ScoutSync cannot be used with Ultral ite databases stored on Palm OS 4
expansion cards.

ScoutSync support is deprecated. Version 8.0.x will continue to support
ScoutSync up to version 3.6, but the next major release of SQL
Anywhere Studio will not support ScoutSync.

& For more information regarding ScoutSync, see
http://www.aethersystems.com.

Choosing a synchronization method

268

Each synchronization method has its advantages and disadvantages.

¢

Multiple applications If you have more than one UltraL ite application
installed on a Palm device, they all synchronize when you invoke
HotSync or ScoutSync. To synchronize multiple applications through a
TCP/IP or HTTP connection, you must activate and synchronize each
application in turn.

Universal Serial Bus support HotSync synchronization has automatic
support for USB.

Publications Synchronization using HotSync or ScoutSync cannot
include WHERE clauses.

& For moreinformation, see "Designing sets of datato synchronize
separately" on page 76.

Chapter 11 Developing Applications for the Palm Computing Platform

Understanding HotSync and ScoutSync synchronization

Ultral ite applications on Palm devices can synchronize over a TCP/IP or
HTTP stream, in much the same manner as Ultral ite applications on other
platforms. They can also synchronize using the Palm-specific HotSync or
ScoutSync synchronization streams, which operate in a different manner.
This section describes the architecture of the HotSync and ScoutSync
synchronization.

The sequence of events that occur during HotSync and ScoutSync
synchronizationis as follows:

1

When your UltraLite application is closed, it saves the state of your
UltraL ite application. The state information is stored in the Palm
database, separately from the UltralLite database.

& For moreinformation, see "Closing an UltraLite Palm application”
on page 261.

When you synchronize your Palm device, HotSync or ScoutSync calls
the MobiLink conduit to synchronize with the MobiLink
synchronization server. The MobiLink conduit reads the pages from the
Ultral ite database and sends the upload to the MobiLink
synchronization server.

The MobiLink synchronization server integrates updates into the
consolidated database and sends a download stream to the conduit.

The conduit integrates the download stream into the UltraL ite database
on the Palm device.

When your application is launched, it loads the previously saved state of
your UltraL ite application.

& For moreinformation, see "Launching an Ultralite Palm
application” on page 261.

HotSync and ScoutSync architecture

The application code for HotSync and ScoutSync synchronization is
identical. The synchronization architecture is different, however.

269

Palm synchronization overview

The following diagram depi cts the ScoutSync architecture. A separate
instance of the conduit isinstantiated by the ScoutSync server for each Palm

device.
Consolidated database
ODBC
@ MobiLink server
MobiLink MobiLink MobiLink
ScoutSync ScoutSync ScoutSync
conduit conduit 3 conduit
1
2
ScoutSync
server
1 3
2

ScoutSync client ScoutSync client ScoutSync client

UltraLite applications UltraLite applications UltraLite applications

A Palm device A Palm device A Palm device

270

Chapter 11 Developing Applications for the Palm Computing Platform

The following diagram depicts the HotSync architecture. In this case, a
separate HotSync conduit is required for each application (as opposed to
each device for ScoutSync). Y ou can have multiple HotSync conduits on a

single PC.
-
Consolidated
database
OoDBC
|
MobiLink
synchronization
server
\

HotSync HotSync PC HotSync HotSync
conduit conduit conduit conduit
\ \ \ \
Palm
device

271

Adding HotSync or ScoutSync synchronization to Palm applications

Adding HotSync or ScoutSync synchronization
to Palm applications

See also

Synchronization
functions

Specifying the
stream parameters

272

This section describes what you need to include in your UltraL ite application
code to synchronize using HotSync or ScoutSync. From the Ultral ite
application side, the procedure is very similar for these two synchronization
streams.

For an overview of HotSync and ScoutSync, see "Understanding HotSync
and ScoutSync synchronization" on page 269.

For information on configuring HotSync and ScoutSync, see " Configuring
HotSync synchronization" on page 274, and " Configuring ScoutSync
synchronization" on page 279.

If you use HotSync or ScoutSync, then you synchronize by calling

UL PalmL aunch (embedded SQL) or UL Data.PalmL aunch (C++ API)
when your application is launched, and UL PalmExit (embedded SQL) or
UL Data.PalmExit (C++ API) when your application is closed. Y ou must
supply aul_synch_info structure holding the synchronization parameters to
UL PalmExit or UL Data.PalmExit. The stream parameter for the
ul_synch_info structureisignored, and can be UL_NULL.

Do not use UL Synchronize or UL Connection.Synchronize for HotSync or
ScoutSync synchronization.

& For moreinformation, see "Launching and closing UltraLite
applications’ on page 261, and " Synchronization parameters' on page 380.

If there are uncommitted transactions when you close your Palm application,
and if you synchronize, the conduit reports that synchronization fails because
of uncommitted changes in the database.

The synchronization stream parametersin the ul_synch_info structure
control communication with the MobiLink synchronization server. For
HotSync or ScoutSync synchronization, the UltraLite application does not
communicate directly with a MobiLink synchronization server; it isthe
HotSync or ScoutSync conduit instead.

Y ou can supply synchronization stream parameters to govern the behavior of
the MobiLink conduit in one of the following ways:

¢ Supply the required information in the stream_par ms member of
ul_synch_info passed to UL PalmEXxit or UL Data.PalmExit.

& For alist of available values, see " Synchronization stream
parameters' on page 399.

Chapter 11 Developing Applications for the Palm Computing Platform

Supply anull value for the stream_par ms member. The MobiLink
conduit then searches in the ClientParms registry entry on the machine
whereit is running for information on how to connect to the MobiLink
synchronization server.

The stream and stream parameters in the registry entry are specified in
the same format as in the ul_synch_info structure stream_parmsfield.

& For more information, see "HotSync configuration overview" on
page 274.

Adding HotSync or ScoutSync synchronization to your application

To call HotSync or ScoutSync synchronization from your application you
must add code for the following steps:

1
2

Prepare aul_synch_info structure.

Call the UL PalmEXxit or UL Data.PalmEXxit function, supplying the
ul_synch_info structure as an argument.

Thisfunction is called when the user switches away from the UltraLite
application. Y ou must ensure that all outstanding operations are
committed before calling the UL PalmExit or UL Data.PalmExit
function.

The ul_synch_info.stream parameter isignored, and so does not need
to be set.

Call the ULPalmL aunch or UL Data.PalmL aunch function

% To add HotSync or ScoutSync synchronization code to your
application:

¢

In the source code for your UltralLite application call UL PalmExit() or
UL Data.PalmExit with parameters such as the following:

ul _synch_info info;
ULl nit Synchinfo(& nfo);
info.stream parns =

UL_TEXT("streanvtcpip; host =l ocal host");
i nfo.user_nane = UL_TEXT("50");
info.version = UL_TEXT("custdb");

if('UPal nExit(&sqlca, & nfo)) {
return(false);

}

& For more information, see "Adding HotSync or ScoutSync
synchronization to Palm applications’ on page 272.

273

Configuring HotSync synchronization

Configuring HotSync synchronization

This section describes how to set up your MobiLink HotSync conduit which
isrequired for HotSync synchronization of UltralLite applications.

& For an overview of HotSync synchronization, see "HotSync and
ScoutSync architecture” on page 269.

HotSync configuration overview

274

During HotSync synchronization, the HotSync Manager starts the MobiLink
HotSync conduit, dbhsync8.dll, which sends the upload stream to a
MobiLink synchronization server, and receives the download stream from
the MobiLink synchronization server.

The MobiLink HotSync conduit synchronizes with the MobiLink
synchronization server using one of TCP/IP, HTTP, or HTTPS streams.

Depending on the demands of your installation, you may deploy only the
MobiLink HotSync conduit onto the desktop machines of your users.

& For information on HotSync architecture, see "HotSync and ScoutSync
architecture” on page 2609.

+ To install and configure the MobiLink HotSync conduit:

1 Placethe MobiLink conduit files on the user’'s machine.
& For ingtructions, see "HotSync conduit files' on page 275.

2 Addthe MobiLink conduit to the HotSync Manager. The HotSync
manager is then able to use the MobiLink conduit.

& For ingtructions, see "Adding the MobiLink conduit into HotSync
manager" on page 275.

3 If youdid not include a stream_par ms parameter in your UltraLite
ul_synch_info structure, enter these parameters from the HotSync
manager.

& For ingtructions, see " Configuring conduit synchronization" on
page 277.

& For information on including stream_par ms parameter in your
Ultral ite synchronization call, see " Adding HotSync or ScoutSync
synchronization to Palm applications’ on page 272.

Chapter 11 Developing Applications for the Palm Computing Platform

4

If you are using an encrypted database, enter the encryption key in the
conduit configuration dialog. If you do not enter this key, you will have
to enter it on every synchronization.

& For ingtructions, see " Configuring conduit synchronization" on
page 277.

HotSync conduit files

The HotSync conduit consists of the following files:

¢

¢

dbhsync8.dll TheDLL that is called by the HotSync manager.

dblgen8.dll Thelanguage resource library. For languages other than
English, the file has the letters en replaced by atwo-letter abbreviation
for the language, such as dblgde8.dli or dbigja8.dll.

Stream dll You need aDLL for the communication between the
conduit and the MobiLink synchronization server. A separate DLL for
each stream is provided:

¢ For TCP/IP, use dbsock8.dll.
¢ For HTTP, use dbsock8.dll and dbhttp8.dl.

¢ If you use encryption for this communication, you also need to
supply the encryption DLL dbt/s8.dll.

These files should be in the same directory, in your system path. When you
install SQL Anywhere Studio, they are installed into the win32 subdirectory
of your installation directory, which is already in the system path.

Adding the MobiLink conduit into HotSync manager

UltraL ite includes a command-line conduit installation utility named
dbcond8.exe to make a set of registry entries for the HotSync manager to be
able to use the MobiLink conduit. This utility requires the following files:

¢
¢

dbcond8.exe
condmgr.dll

% To deploy the conduit installation utility:

1 Choose atop-level deployment directory.

For example, you may choose a directory named c:ldeploy.

2 Add aregistry entry with the deployment directory asits value.

275

Configuring HotSync synchronization

The registry entry must be as follows:

HKEY _CURRENT _USER\ Sof t war e\ Sybase\ Adapti ve Server
Anywher e\ versi on string\ Locati on

where version string is 8.0 for this version of the software. If the entry is
not found in HKEY_CURRENT_USER, the software looksin
HKEY_LOCAL_MACHINE.

3 Addthe dbcond8.exefile.

The dbcond8.exe file must go in the win32 subdirectory of the
deployment directory.

4 Add the condmgr.diifile.

The condmgr.dll file must go in the win32\condmgr subdirectory of the
deployment directory.

The SQL Anywhere Studio installation creates the required registry entries
and places filesin the appropriate locations.

+ To add the MobiLink HotSync conduit into HotSync manager:
1 Ensurethe HotSync conduit files and the files for the conduit installation
utility arein place.

2 Runthe conduit installation utility, providing the creator ID of the Palm
application, and a name that HotSync will use to identify the conduit.
For example, the following command installs a conduit for the
application with creator ID Syb2, named CustDB. These are the settings
for the CustDB sample application:

dbcond8 "Syb2" —n CustDB

& For full syntax of the conduit installation utility, including the
options to use when uninstalling a conduit, see "The HotSync conduit
installation utility" on page 414.

Checking that conduit installation is correct

Y ou can check that a conduit isinstalled by right-clicking HotSync Manager
in the system tray and choosing Custom from the popup menu. A list of
conduitsis displayed for each user. Check that your conduit is listed.

% To check that the HotSync conduit is properly installed
1 Settheenvironment variable UL_DEBUG_CONDUIT to any value.
2 Shut down and restart the HotSync manager.

276

Chapter 11 Developing Applications for the Palm Computing Platform

3 If the MobiLink conduit is properly installed, two dialog boxes appear.
If no dialog appears, the conduit is not properly installed.

4 Unset the environment variable.

Shut down and restart the HotSync manager.

MobiLink must be started before using HotSync

Before using HotSync, the MobiLink synchronization server must be
started and be ready to accept connections from the MobiLink HotSync
conduit.

Configuring conduit synchronization

The conduit needs to communicate with a MobiLink synchronization server
to pass upload and download streams between the Ultral ite application and
the consolidated database. Y ou can provide the information needed by the
conduit to locate the MobiLink synchronization server in a stream_parms
member of the UltraLite ul_synch_info structure supplied to PalmExit. If
you did not specify anon-null stream_par ms value, you can enter the
reguired parameters from the HotSync manager.

In addition, if you are using a strongly encrypted UltralLite database, you can
save the encryption key so that you do not have to enter it on each
synchronization.

If you have Palm Desktop software installed, the Adaptive Server Anywhere
installation creates registry entries for the CustDB sample application. You
can use these entries as a starting point for your own application.

& For information on stream_parms, see "Adding HotSync or
ScoutSync synchronization to Palm applications" on page 272.

« To configure the HotSync conduit for synchronization:

1 Right-click the HotSync Manager icon in the system tray, and choose
Custom from the popup menu.

2 Select your MobiLink conduit from the list of conduit names, and click
Change.

3 Enter aset of stream parametersin the Synchronization Parameters text
box. These parameters are the same as those in astream_par ms
parameter. For example:

st rean¥t cpi p; host =l ocal host

277

Configuring HotSync synchronization

Registry location

Location of
synchronization log
files

278

& For moreinformation, see " Synchronization stream parameters' on
page 399.

4 If the database is strongly encrypted, you can enter the encryption key in
the Encryption Key text box. If no key is entered, you will be prompted
for the encryption key on each synchronization.

5 Click OK to complete the entry. The HotSync conduit is now ready to
use.

The stream parameters and encryption key are stored in the registry in
HKEY_CURRENT_USER|\Software|SybaselAdaptive Server
Anywhere\8.0\Conduit\Creator 1D, where Creator |1D is application-
dependent.

A secondary location for HotSync synchronization depends on the version of
the Palm Computing Platform software you are using. They are made under
the HKEY_CURRENT_USER\SoftwarelU.S. Robotics or the
HKEY_CURRENT _USER\Software|\Palm Computing folder.

The HotSync Manager uses | og files to record actions. HotSync writes log
information in the user-specific subdirectory User IHotSync.log of your Pilot
or Palmdirectory. Here, HotSync records when each synchronization takes
place and whether each installed conduit worked as expected.

Chapter 11 Developing Applications for the Palm Computing Platform

Configuring ScoutSync synchronization

ScoutSync support deprecated

Version 8.0.x will continue to support ScoutSync up to version 3.6, but
the next major release of SQL Anywhere Studio will not support
ScoutSync.

ScoutSync technology is similar to HotSync. ScoutSync technology allows
multiple users to simultaneously synchronize multiple Palm devices with the
consolidated database.

ScoutSync synchronization isinitiated from the Palm ScoutSync client, not
directly from the UltralL ite application. The ScoutSync client communicates
with the ScoutSync server, which loads the MobiLink ScoutSync conduit.
Each instance of the conduit manages all applications on a single Palm
device. Each application can specify its own synchronization conduit. For
MobiLink synchronization, the conduit is the MobiLink ScoutSync conduit.

The MobiLink ScoutSync conduit isa COM object. Since a ScoutSync
conduit is based on COM, it can be installed on any machine and not only
the one running the ScoutSync Application server.

& For an overview of ScoutSync synchronization, see "HotSync and
ScoutSync architecture” on page 269.

Configuring the MobiLink ScoutSync conduit

Registry location

During ScoutSync synchronization, the ScoutSync Application Server starts
the conduit, dbscout8.dll, which sends the upload stream to a MobiLink
synchronization server, and receives the download stream from the
MobiLink synchronization server.

The MobiLink ScoutSync conduit synchronizes with MobiLink
synchronization server using TCP/IP, HTTP, or HTTPS streams. Y ou
specify the stream and stream parameters in your Ultralite application
PalmExit cal or in the ClientParms registry entry.

Registry entries are located under

HKEY _CURRENT_USERI\Software\SybaselAdaptive Server
Anywhere\8.0\Conduit\Creator |D, where Creator 1D isthe Creator ID of the
Palm application. Each application having a different Creator ID will have its
own folder.

279

Configuring ScoutSync synchronization

MobiLink must be started before using ScoutSync

Before performing ScoutSync, the MobiLink synchronization server must
be running and be ready to accept connections from the MobiLink
ScoutSync conduit.

Setting up for ScoutSync synchronization

In order to perform ScoutSync synchronization, you must perform the
following:

¢ Configure the ScoutSync Application Server:
¢ Setup the MobiLink ScoutSync conduit.
¢ Setup auser profile.
¢ Configure the ScoutSync Client on the Palm device.

¢+ Configure RAS for ScoutSync Client to access ScoutSync Application
Server viaTCP/IP.

¢ Optionally configure the MobiLink ScoutSync conduit to work with
HotSync manager.

Configuring the ScoutSync Application Server

The following steps cover installation of the ScoutSync conduit on the
ScoutSync Application Server.

&~ For information on the COM properties of the MobiLink ScoutSync
conduit and for instructions on how to install it on another machine, see your
ScoutSync documentation.

« To setup the MobiLink ScoutSync conduit:

1 Register dbscout8.dll using the following command:
regsvr32 dbscout 8. dl |

A message box appears, indicating that the registration was successful.
2 Start the Scout Server Service.

See your ScoutSync documentation for instructions.
3 Start the Scout Management console.

See your ScoutSync documentation for instructions.

280

Chapter 11 Developing Applications for the Palm Computing Platform

Connect to the ScoutSync server by selecting ToolsJ Connect to Server
in the ScoutSync Management console.

Add a new conduit in the ScoutSync Management console. Click the
New Conduit button. Alternatively, you can right click on Conduits
under Sync Servicesin the hierarchy tree and select New Conduit. Enter
aconduit name ULSync, and set the Conduit Prog ID to
ULSctSyn.ULSSCond. Select PalmSyncService under Supported
Services.

+ To setup a user profile:

1

Add anew user profile. Click the New User Profiles button.
Alternatively, you can right click on User Profilesin the hierarchy tree
and select New User Profile. Click on the User Info Tab and enter a
profile name, ULSyncProfile.

Click on the Conduits Tab. Select ULSync and click Add. UL Sync will
be added to the Assigned list.

Configuring the ScoutSync Client on the Palm device

% Configuring the ScoutSync Client on the Palm device

1

Install Scout.prc and ScoutUpdateClient.pre, available under the
ScoutSync\Server\Services\PalmAdminServicelclients directory of your
main Scout directory, on the Palm device.

&> For information on how to install an application onto the Palm
device, see "Deploying Palm applications’ on page 291.

Configure the ScoutSync Client Preferences settings on the Palm device
as described in the following steps. Begin by tapping the Applications
silk-screen icon to open the Applications Launcher.

Tap the ScoutSync icon to display the main ScoutSync screen.

Tap the Preference button located at the bottom of the ScoutSync screen.
The ScoutSync Preferences screen appears.

Enter the ScoutSync Server Name, Port Number and Profile. The default
connection port is 8025 and should not be changed unless instructed to
do so by your system administrator.

Tap the word Unassigned in the Password field to display the Password
box. Enter a password and tap the OK button, if applicable. The word
"Assigned" displays after you have entered a password.

281

Configuring ScoutSync synchronization

7 Tapthe OK button on the ScoutSync Preferences screen to submit your
changes.

Configuring RAS TCP/IP synchronization

% To configure RAS for ScoutSync Client to access ScoutSync
Application Server via TCP/IP

¢ For step by step instructions, refer to " Configuring RAS TCP/IP
synchronization via serial port connection” on page 287.

Using ScoutSync for the first time

After ScoutSync has been set up, follow these step by step instructions to
perform ScoutSync synchronization:

1 Launch the ScoutUpdateClient program on the Palm device. Click on
the Update ScoutSync Client button to log onto the ScoutSync server
and update your client.

2 Launch the ScoutSync program on the Palm and tap on the ScoutSync
icon. Aninitial ScoutSync is required to download the list of conduits.

3 From the ScoutSync program, make sure that the ULSync entry is
chosen in the conduit list.

Now you are ready to perform ScoutSynchronization from your Palm device.

Location of synchronization log files for ScoutSync

ScoutSync uses log files to record their actions:

¢ By default, ScoutSync writes log information into the file user.log in the
subdirectory ScoutSynciServerlUserslprofile of your main Scout
directory, where profile is the name of your user profile. Here,
ScoutSync records when each synchronization takes place.

282

Chapter 11 Developing Applications for the Palm Computing Platform

Adding TCP/IP, HTTP, or HTTPS synchronization
to Palm applications

This section describes how to add TCP/IP, HTTP, or HTTPS
synchronization to your Palm application.

& For ageneral description of how to add synchronization to Ultral ite
applications, see " Adding synchronization to your application" on page 94.

Transport layer Y ou can use transport-layer security with Palm applications built with
security on the Metrowerks CodeWarrior. However, transport-layer security is unavailable
Palm Computing for Palm applications built with PRC Tools.

Platform

& For information on transport-layer security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s Guide.

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm
applications

Palm devices can synchronize using TCP/IP, HTTP, or HTTPS
communication by setting the stream member of the ul_synch_info
structure to the appropriate stream, and calling UL Synchr onize (embedded
SQL) or the UL Connection.Synchronize method (C++ API) to carry out the
synchronization.

When using TCP/IP, HTTP, or HTTPS synchronization, UL PalmL aunch
and UL PalmEXxit save and restore the state of the application on exiting and
activating the application, but do not participate in synchronization. These
functions take the ul_synch_info structure as an argument, but in this case
do not useit. You should set the stream member to NULL (the default) when
calling UL PalmExit or UL PalmL aunch.

When using TCP/IP, HTTP, or HTTPS synchronization from a Palm device,
you must specify an explicit host name or IP number in the stream_parms
member of the ul_synch_info structure. Specifying NULL defaultsto

| ocal host , which represents the device, not the host.

& For information on the ul_synch_info structure, see " Synchronization
stream parameters’ on page 399.

283

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications

Using multiple synchronization methods

284

Switching between two or more synchronization techniques from asingle
Ultral ite application is only convenient when using varied connection points
for synchronization. Switching techniques to connect to the same machineis
usually awkward.

Chapter 11 Developing Applications for the Palm Computing Platform

Configuring TCP/IP, HTTP, or HTTPS
synchronization

This section describes how to configure the synchronization setup for
UltraL ite Palm applications using TCP/IP or HTTP synchronization.

& For information on synchronization architecture for HTTP or TCP/IP
communications, see "Parts of the synchronization system” on page 10 of the
book MabiLink Synchronization User’s Guide.

Configuring TCP/IP synchronization for the Palm Computing
Platform

There are two ways of using TCP/IP networking in a Palm device. In either
case, you must connect to a Remote Access Service (RAS). The difference
liesin how you make the connection to the RAS.

¢ Use amodem to dial into an ISP The Internet Service Provider (ISP)
must provide access to a Remote Access Service (RAS). The
components of the connection are as follows:

Application

<--> Pal m Net Library
<--> Pal m nodem

<--> NT RAS

<--> TCP/I P network

4 Connect via the serial port to a Windows NT machine The
components of the connection are as follows:

Application

<--> Pal m Net Library
<--> serial cable
<--> NT RAS

<--> TCP/I P network

When using TCP/IP, the MobiLink synchronization server can be any
machine on the network that is accessible via TCP/IP.

Before synchronization, the following conditions must be satisfied:
1 Thedevicemust beinitscradle.

2 If you are using the serial port to connect to a Windows NT machine
running RAS, the HotSync Manager and other applications that use the
serial port must be shut down. Windows NT only allows one application
to use aserial port at atime.

285

Configuring TCP/IP, HTTP, or HTTPS synchronization

The MobiLink synchronization server must be started. By default, the
MobiLink synchronization server listens for TCP/IP communications
over port 2439.

The Palm device must have Network settings in place so that it can
connect to the network. Modem settings are also required if using a
modem to dia into an ISP.

Configuring RAS TCP/IP synchronization via modem

286

To use this method, you must have access to a Remote Access Service when
you did in.

To configure a Palm device for RAS TCP/IP via a modem:

1
2

Install the modem by plugging the Palm device into the modem module.

Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

Choose the Windows RAS service.
Set the dial-in username and password.

Set the phone number to the number at which the Remote Access
Service can be reached. Obtain this number from your I1SP.

Tap on Detalils.
Set the connection type (usualy PPP).

Set the DNS and | P addresses as recommended by your network
administrator.

Tap on Script and enter the script recommended by your |SP. This script
will be similar to the following sample.

Vit For: Usernane:
Del ay: 1

Send Userl D

Send CR

Wait For: Password:
Delay: 1

Send Passwor d:
Send CR

Wit For: >
Delay: 1
Send: ppp
Send CR

End:

Chapter 11 Developing Applications for the Palm Computing Platform

Tap on OK until you are back to the Network Preferences.

At this point, you are ready to test your TCP/IP connection.

Configuring RAS TCP/IP synchronization via serial port connection

This procedure involves actions both on Windows NT and on the Palm
Computing device.

To configure Windows NT for RAS TCP/IP via serial port:

1

10

From the Control Panel, open Modems. Make sure that amodem is
defined for Dial-Up Networking Serial Cable between 2 PCson the
COM port to which the cradle is connected.

Set the speed for this modem to the baud rate you are using. The default
is19200.

Make sure TCP/IP protocol isinstalled. Select Start(Settings Control
Panel and double-click the Network icon. Click on the Protocols tab. If
there isno TCP/IP entry, choose Add to install it.

Enable IP Forwarding (in the Routing tab of TCP/IP properties)

Under the Services tab, make sure that Remote Access Serviceis
installed. If thereis no entry for Remote Access Service, choose Add to
install it.

In Remote Access Service Properties, add Dial Up Network serial
cable between 2 pc'sfor that COM port if the cradle’'s COM port is not
inthelist of ports.

Configure this entry to receive calls. In the RAS Network properties set
encryption settings to Allow any authentication including clear text.
In the RAS Network properties allow only TCP/IP client.

Configure TCP/IP. Allow clients to access the entire network. Assigning
the TCP/IP addresses depends on your network. Contact your network
administrator for details.

Add auser for dia-in access. Select Startl] Programs Administrative
Tools User Manager. Uncheck User Must Change Password at Next
L ogon. Choose the Dialin button, and grant dialin permission to user
with No Call Back.

If the RAS COM port isthe same one that HotSync Manager uses, shut
down the HotSync Manager or any other applications that use the COM
port.

Start the Remote Access Administrator. Select
Start[] Programs] Administrative Tools[J Remote Access Admin.

287

Configuring TCP/IP, HTTP, or HTTPS synchronization

11 Start the RAS service. Select Serverd Start Remote Access Service.
Choose to start the service on the local machine.

HotSync Manager or any other applications that use the serial port and the
RAS service will not run at the same time. One must be shut down first for
the other to run, as Windows NT prevents two different applications from
accessing the same serial port. You have to stop the RAS service

(Server[] Stop Remote Access Service from the Remote Access Admin)
before you can restart the HotSync Manager. Alternatively, you can use
separate serial ports.

Once the RAS service isrunning, it is ready to receive connection requests
viathe serial port.

+ To configure a Palm device for RAS TCP/IP via serial port:

1 Gotothe Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

Choose the Windows RAS service.

Set the dial-in username and password.

Set the Palm to use the serial port.

¢ For Palm OS 3.3 and above, select Direct serial.

¢ For earlier versions of the Palm OS, set the phone number to 00
(zero zero). Thisis a special phone number that tells the Palm to use
the serial port directly, instead of a modem.

5 Tapon Details.
Set the connection type (usualy PPP).

Set the DNS and | P addresses as recommended by your network
administrator.

8 Tap on Script and enter the following script:

Send: CLIENT
Send CR

Del ay: 1
Send: CLI ENT
END

Tap on OK until you are back to the Network Preferences
At this point, you are ready to test your TCP/IP connection.

288

Chapter 11 Developing Applications for the Palm Computing Platform

Testing and troubleshooting

< To test the connection:

¢ viamodem Connect the Palm device to the modem and follow the
instructions provided by your ISP for connecting to their network. Once
connected, tap the Connect button in Prefsd Network on the Palm
device.

¢ viaserial port Ensure RASisrunning on the Windows NT machine.
Place the Palm device in the cradle and connect the cradle to the correct
COM port on the Windows NT machine. Tap the Connect button in
PrefsC] Network on the Palm device.

With TCP/IP, there are two levels of service. At the minimum level, you can
connect to another TCP/IP host using an P number of the following form.
NINN. NNN. NNN. NNIN

At the next level, when a DNS server is properly configured, you are able to
connect to another host by name.

sone_host _nachi ne. any_conpany. com

Having a DNS service is more convenient, since most people are better at
remembering a name than a number. Aslong as you have the minimum
TCP/IP service, and an | P number, you can synchronize an UltralLite
application using TCP/IP.

There are anumber of steps you can take to troubleshoot TCP/IP connections
on the Palm device.

¢ Hitting the scroll down button on the Palm device during the connection
phase displays the progress of the connection.

¢ Theconnection log is accessible from the Network Preferences panel.
Choose View Log from the Options menu to see information about the
network connection. Thelog is an interactive utility for controlling and
viewing your connection information. Enter ? for help.

¢ Thereare several toolsfor testing a TCP/IP connection from the Palm.
Y ou can find most of them at the following locations:

http://wwm. roadcoders. com

ht t p: / / waw. pal ncentral . com
There are a so steps you can take for troubleshooting on Windows NT:
¢ Inthe Remote Access Admin, double-click on the running server.

¢ Select the appropriate port and choose Port Status. The Port Status
dialog shows you the Line condition (connected or waiting for acall)
and lets you watch the byte counts for both directions.

289

Configuring TCP/IP, HTTP, or HTTPS synchronization

Configuring HTTP or HTTPS synchronization for the Palm

Computing platform

290

Touse HTTP or HTTPS synchronization, you must first configure RAS
TCP/IP synchronization. For information on configuring RAS, see
"Configuring TCP/IP synchronization for the Palm Computing Platform” on
page 285.

When using HTTP or HTTPS, the MobiLink synchronization server can be
any machine on the network that is accessible viathe protocol.

% To synchronize using HTTP or HTTPS:

1
2

Place the PAm deviceinits cradle.

If you are using the serial port to connect to a Windows NT machine
running RAS, shut down the HotSync Manager and other applications
that use the serial port. Windows NT only allows one application to use
aserial port at atime.

Start the MobiLink synchronization server.

Ensure that the network settings on the Palm device are configured so
that it can connect to the network. Modem settings are also required if
using a modem to dia into an ISP.

& For moreinformation, see " Configuring TCP/IP synchronization
for the Palm Computing Platform" on page 285.

Chapter 11 Developing Applications for the Palm Computing Platform

Deploying Palm applications

This section describes the following aspects of deploying Palm applications:

¢

Deploying the application.

& See "Deploying applications on the Palm Computing Platform" on
page 291.

Deploying the MobiLink synchronization conduit for HotSync.

& See "Deploying the MobiLink synchronization conduit" on
page 291.

Deploying an initial copy of the UltralLite database.

& See"Deploying Ultral ite databases on the Palm Computing
Patform" on page 292.

Deploying applications on the Palm Computing Platform

Install your UltraLite application on your Palm device as you would any
other Palm Computing Platform application.

+ To install an application on a Palm device:

1

Open the Install Tool, included with your Palm Desktop Organizer
Software.

Choose Add and locate your compiled application (.prc file).
ClosetheInstall Tool.
HotSync to copy the application to your Palm device.

Deploying the MobiLink synchronization conduit

For applications using HotSync or ScoutSync synchronization, each end user
must have the MobiLink synchronization conduit installed on their desktop.
This installation requires the following:

¢

Deploy the conduit files Thefilesfor the conduit must be installed
into alocation in the end user’s system path.

& For alist of conduit files, see "HotSync conduit files' on page 275.

201

Deploying Palm applications

¢ Install the conduit You can deploy the conduit installation utility to
your end users and provide instructions for them to run it, or you can use
the HotSync Manager to install the conduit.

& For instructions, see "Adding the MobiLink conduit into HotSync
manager" on page 275.

¢ Configure the conduit If youdid not include astream_parms
parameter in your UltraLite ul_synch_info structure, enter these
parameters from the HotSync manager. Also, if you are using an
encrypted database, you may want to enter the encryption key.

& For ingtructions, see " Configuring conduit synchronization™ on
page 277.

Deploying UltraLite databases on the Palm Computing Platform

292

If you deploy your application without a database, the database is created the
first timeit is accessed from the application. The user must then download an
initial copy of data on the first synchronization. Y ou can use the UL Util
utility to back up the UltraL ite database to the PC. To deploy many UltraLite
databases with an initial database including data, you can perform an initial
synchronization and then back up the UltraL ite database. The database can
be deployed on other devices so they do not need to perform an initial
synchronization.

& For more information, see "The UltraLite utility" on page 426.

If you are using HotSync or ScoutSync synchronization, each of your end
users must also install the synchronization conduit onto their desktop
machine.

& For information on installing the synchronization conduit, see
"Configuring HotSync synchronization" on page 274.

If you deploy a database using HotSync, HotSync sets abackup bit on the
database. When this backup bit is set, the entire database is backed up to the
desktop machine on each synchronization. This behavior is generally not
appropriate for Ultral ite databases. When an UltraL ite application is
launched, the Palm data store is checked to seeif its backup bit is set to true.
If itisset, itiscleared. If it is not set, thereis no change.

If you wish the backup bit to remain set to true, you can set the store
parameter palm_allow_backup in UL_STORE_PARMS.

& For moreinformation, see"UL_STORE_PARMS macro" on page 428.

CHAPTER 12

Developing Applications for Windows CE

About this chapter This chapter describes details of development, deployment and
synchronization that are specific to Windows CE. These instructions assume
familiarity with the general development process. They assist in building the
CustDB sample application, included with your UltraL ite software, on each
of these platforms.

Contents Topic Page
Introduction 294
Building the CustDB sample application 296
Storing persistent data 298
Deploying Windows CE applications 299
Synchronization on Windows CE 305

293

Introduction

Introduction

Preparing for
Windows CE
development

A first application

294

This section contains instructions pertaining to building UltraLite
applications for use under Microsoft Windows CE.

& For alist of supported host platforms and development tools for
Windows CE development, and for alist of supported target Windows CE
platforms, see " Supported platforms for C/C++ applications' on page 6.

Y ou can test your applications under an emulator on most Windows CE
target platforms.

The recommended devel opment environment for Windows CE at the time of
writing is Microsoft eMbedded Visual C++ 3.0. This development
environment is available from Microsoft as part of eMbedded Visual Tools.

&~ You can download eMbedded Visual C++ from the Microsoft
Developer Network at
http://www.microsoft.com/mobile/downl oads/emvt30.asp.

A sample eMbedded Visual C++ 3.0 project is provided in the
Samples\UltraLite\CE Starter directory under your SQL Anywhere directory.
The workspace file is Samples\UltraLite\CE Starter\ul_wceapplication.vcw.

When preparing to use eMbedded Visual C++ for UltraLite applications, you
should make the following changes to the project settings. The CEStarter
application has these changes made.

¢ Compiler settings:
¢ Add $(ASANY 8)\h to the include path.

¢ Define appropriate compiler directives. For example, the
UNDER_CE macro should be defined for eMbedded Visual C++
projects.

¢ Linker settings:
¢ Add"$(ASANYS8)\ultralite\celprocessor lliblulrt.lib"
where processor is the target processor for your application.
¢ Add winsock.lib.
¢ The .sqc file (embedded SQL applications):
¢ Add ul_database.sqc and ul_database.cpp to the project
¢ Add the following custom build step for the .sqc file:

"$(ASANY8) \ wi n32\'sql pp" -q -c "dsn=UtraLite 8.0
Sanpl e" $(1 nput Pat h) ul _dat abase. cpp

Chapter 12 Developing Applications for Windows CE

¢ Settheoutput fileto ul_database.cpp.
¢ Disablethe use of precompiled headers for ul_database.cpp.

Choosing how to link the runtime library

Windows CE supports dynamic link libraries. At link time, you have the
option of linking your UltralLite application to the runtime DLL using an
imports library, or statically linking your application using the UltraLite
runtime library.

If you have asingle UltralLite application on your target device, a statically
linked library uses less memory. If you have multiple UltraLite applications
on your target device, using the DLL may be more economical in memory
use.

If you are repeatedly downloading UltraL ite applications to a device, over a
slow link, then you may want to use the DLL in order to minimize the size of
the downloaded executable, after the initial download.

% To build and deploy an application using the UltraLite runtime DLL
1 Preprocess your code, then compile the output with UL_USE DLL.

2 Link your application using the UltraLite imports library.

3 Copy both your application executable and the UltraLite runtime DLL to
your target device.

295

Building the CustDB sample application

Building the CustDB sample application

296

CustDB isasimple sales-status application. It islocated in the UltraLite
samples directory of your Adaptive Server Anywhere installation. Generic
files are located in the CustDB directory. Files specific to Windows CE are
located in the ce subdirectory of CustDB.

The CustDB application is provided as an eMbedded Visual C++ 3.0 project.

& For adiagram of the sample database schema, see "The UltraLite
sample database" on page xvi.

To build the CustDB sample application
1 Start eMbedded Visual C++.

2 Open the project file Samples\UltraLite\CustDBIEVCIEVCCustDB.vcp
(eVC 3.0) or Open the project file
Samples\UltraLite\CustDBIEVC40\EVCCustDB.vcp..

3 Choose Buildd Set Active Platform to set the target platform.
¢ Setaplatform of your choice.

4 Choose Build->Set Active Configuration to select the configuration.
¢ Set an active configuration of your choice.

5 If you are building CustDB for the Pocket PC x86em emulator platform
only:

¢ Choose Project] Settings. The Project Settings dialog appears.

¢ OnthelLink tab, in the Object/library modules box, change the
UltraLite runtime library entry to the emulator30 directory rather
than the emulator directory.

6 Build the application:
¢ PressF7 or select Buildd Build EVCCustDB.exe to build CustDB.

When eMbedded Visual C++ has finished building the application,
it automatically attemptsto upload it to the remote device.

7 Start the synchronization server:

¢ To start the MobiLink synchronization server, select
Programs] Sybase SQL Anywhere 81 MobiLink Synchronization
Server Sample.

8 Runthe CustDB application:;
Press CTRL+F5 or select Build[Execute CustDB.exe

Chapter 12 Developing Applications for Windows CE

Folder locations and environment variables

The sample project uses environment variables wherever possible. It may
be necessary to adjust the project in order for the application to build
properly. If you experience problems, try searching for missing filesin the
MS V C++ folder and adding the appropriate directory settings.

The build process uses the SQL preprocessor, sqlpp, to preprocess the file
CustDB.sqc into the file CustDB.c. This one-step processis useful in smaller
UltraL ite applications where all the embedded SQL can be confined to one
source module. In larger Ultralite applications, you need to use multiple
sqglpp invocations followed by one ulgen command to create the customized
remote database.

& For more information, see " Preprocessing your embedded SQL files'
on page 201.

297

Storing persistent data

Storing persistent data

Example

298

The UltraLite database is stored in the Windows CE file system. The default
fileis \UltraLiteDB\ul_<project>.udb, with project being truncated to eight
characters. Y ou can override this choice using thefile_name parameter
which specifies the full pathname of the file-based persistent store.

The UltraLite runtime carries out no substitutions on the file_name
parameter. If a directory hasto be created in order for the file name to be
valid, the application must ensure that any directories are created before
caling db_init.

As an example, you could make use of a flash memory storage card by
scanning for storage cards and prefixing a name by the appropriate directory
name for the storage card. For example,

file_nane = "\\Storage Card\\ My Docunent s\\fl ash. udb"

The following sample embedded SQL code sets the file_name parameter:

#undef UL_STORE PARVS
#define UL_STORE_PARVE UL_TEXT(
"file_nanme=\\ul db\\ ny own nare. udb; cache_si ze=128k")

db_| nit(&sgqlca);

Chapter 12 Developing Applications for Windows CE

Deploying Windows CE applications

When compiling UltralLite applications for Windows CE, you can link the
UltraLite runtime library either statically or dynamically. If you link it
dynamically, you must copy the UltraLite runtime library for your platform
to the target device.

To build and deploy an application using the UltraLite runtime DLL
1 Preprocess your code, then compile the output with UL_USE DLL.
2 Link your application using the UltraLite imports library.

3 Copy both your application executable and the UltraL ite runtime DLL to
your target device.

The UltraLite runtime DLL isin chip-specific directories under the
UltraLite\ce subdirectory of your SQL Anywhere directory.

To deploy the UltraLite runtime DLL for the Windows CE emulator, place
the DLL in the appropriate subdirectory of your Windows CE tools
directory. The following directory isthe default setting for the Pocket PC
emulator:

C.\Program Fi | es\ Wndows CE Tool s\ wce300\ M5 Pocket
PQ enul at i on\ pal nBOO\ wi ndows

Deploying applications that use ActiveSync

Applications that use ActiveSync synchronization must be registered with
ActiveSync as well as copied onto the device. Also, each desktop machine
must have the MobiLink provider for ActiveSync installed. The architecture
for ActiveSync isillustrated in the following diagram.

299

Deploying Windows CE applications

300

— —
.
I
(- (-
. 5] O] e e
W”:jdows CE Desktop Server
evice computer computer
ActiveSync ActiveSync
software software
\ \
UltraLite or MobiLink
ASA MobiLink provider for —
client ActiveSync MobilLink
synchronization
server

% To deploy ActiveSync applications:

1

Install the MobiLink provider for ActiveSync on each end user’s
machine.

An ActiveSync provider install utility is provided with SQL Anywhere.
Thisisthe dbasinst.exe command-line utility.

& For information, see "Installing the MobiLink provider for
ActiveSync" on page 301, and "ActiveSync provider installation utility"
on page 610 of the book MobiLink Synchronization User’s Guide.

Register the application for use with ActiveSync.

Y ou can register the application either by using ActiveSync, or by using
the ActiveSync provider installation utility dbasinst.exe.

& For information see "Registering applications for use with
ActiveSync" on page 302.

Copy the application onto the device.

If your application is a single executable, statically linked with the
runtime library, you can use the ActiveSync provider installation utility
dbasinst.exe to copy the application to the device.

If the application includes multiple files (for example, if you use the
UltraLite runtime DLL rather than the static runtime library), you must
copy the files onto the device in some other way.

Chapter 12 Developing Applications for Windows CE

Installing the MobiLink provider for ActiveSync

Before you register your application for use with ActiveSync, you must
install the MobiLink provider for ActiveSync using the installation utility
(dbasinst.exe).

The MobiLink provider for ActiveSync includes a desktop component and a
device component. Y ou must install the provider for each device that
synchronizes through your desktop machine.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see "Registering
applications for use with ActiveSync" on page 302.

+ To install the MobiLink provider for ActiveSync:

1

Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

Enter the following command to install the MobiLink provider:
dbasi nst -k desk-path -v dev-path

where desk-path is the location of the desktop component of the
provider (dbasdesk.dll) and dev-path is the location of the device
component (dbasdev.dll).

If you have SQL Anywhere installed on your machine, dbasdesk.dllisin
the win32 subdirectory of your SQL Anywhere directory and dbasdev.dll
isin a platform-specific directory in the CE subdirectory. These
directories are default search locations, and you can omit both - k and - v
command-line switches.

& For moreinformation, see "ActiveSync provider installation
utility" on page 610 of the book MabiLink Synchronization User’s
Guide.

Restart your machine.

ActiveSync does not recognize new providers until the machineis
restarted.

4 Enablethe MobiLink provider.

¢ From the ActiveSync window, click Options.

¢ Check the MobiLink item in thelist and click OK to activate the
provider.

¢ Toseealist of registered applications, click Options again, choose
the MobiLink provider, and click Settings.

301

Deploying Windows CE applications

& For more information on registering applications, see "Registering
applications for use with ActiveSync" on page 302.

Registering applications for use with ActiveSync

302

Y ou can register you application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

& For information on the alternative approach, see "ActiveSync provider
installation utility" on page 610 of the book MobiLink Synchronization
User’'s Guide.

To register an application for use with ActiveSync:

1

ga A W N

Ensure that the MobiLink provider for ActiveSync isinstalled.

& For information, see "Installing the MobiLink provider for
ActiveSync" on page 301.

Start the ActiveSync software on your desktop machine.
From the ActiveSync window, choose Options.
From the list of information types, choose MobiLink and click Settings.

In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

Enter the following information for your application:

¢ Application name A name identifying the application to be
displayed in the ActiveSync user interface.

¢ Class name Theregistered class name for the application.
& See"Assigning class names for applications’ on page 303
¢ Path Thelocation of the application on the device.

¢ Arguments Any command-line arguments to be used when
ActiveSync starts the application.

Click OK to register the application.

Chapter 12 Developing Applications for Windows CE

Assigning class names for applications

When registering applications for use with ActiveSync you must supply a
window class name. Assigning class namesis carried out at devel opment
time and your application development tool documentation is the primary
source of information on the topic.

Microsoft Foundation Classes (MFC) dialog boxes are given a generic class
name of Dialog, which is shared by all dialogsin the system. This section
describes how to assign a distinct class name for your application if you are
using MFC and eMbedded Visual C++.

To assign awindow class name for MFC applications using
eMbedded Visual C++:

1

Create and register a custom window class for dialog boxes, based on
the default class.

Add the following code to your application’s startup code. The code
must be executed before any dialogs get created:

VWADCLASS wc;

if(! Getdasslnfo(NULL, L"D alog", &)) {
Af xMessageBox(L"Error getting class info");

}

we. | pszd assNanme = L" MY _APP_CLASS';
if(! AfxRegisterdass(&)) {
Af xMessageBox(L"Error registering class");

}
where MY_APP_CLASS s the unique class name for your application.

Determine which dialog is the main dialog for your application.

If your project was created with the MFC Application Wizard, thisis
likely to be a dialog named CM yAppDiIg.

Find and record the resource ID for the main dialog.

Theresource ID is a constant of the same general form as
IDD_MYAPP_DIALOG.

Ensure that the main dialog remains open any time your applicationis
running.

Add the following line to your application’s I nitl nstance function. The
line ensures that if the main dialog dlg is closed, the application also
closes.

m pMai nWid = &dl g;

For more information see the Microsoft documentation for
CWinThread::m_pMainWnd.

303

Deploying Windows CE applications

304

If the dialog does not remain open for the duration of your application,
you must change the window class of other dialogs as well.

Save your changes.

If Embedded Visual C++ is open, save your changes and close your
project and workspace.

Modify the resource file for your project.

¢

¢

Open your resource file (which has an extension of .rc) in atext
editor such as notepad.

Locate the resource ID of your main dialog.

Change the main dialog’s definition to use the new window class as
in the following example. The only change that you should make is
the addition of the CLASS line:

| DD_MYAPP_DI ALOG DI ALOG DI SCARDABLE 0, 0, 139, 103
STYLE W5_PCPUP | W5 VI SIBLE | W5_CAPTI ON
EXSTYLE W5s_EX_APPW NDOW | WS_EX_CAPTI ONOKBTN
CAPTI ON " MyApp"
FONT 8, "Systent
CLASS " MY_APP_CLASS'
BEG N
LTEXT "TODQ Pl ace dialog controls
here.", | DC_STATIC, 13, 33, 112, 17
END

where MY_APP_CLASS s the name of the window class you used
earlier.

Savethe .rcfile

Reopen eMbedded Visual C++ and load your project.

Add code to catch the synchronization message.

& For information, see "Adding ActiveSync synchronization (MFC)"
on page 306.

Chapter 12 Developing Applications for Windows CE

Synchronization on Windows CE

UltraLite applications on Windows CE can synchronize through the
following streams:

¢ ActiveSync See"Adding ActiveSync synchronization to your
application” on page 305

¢ TCP/IP See"TCP/IP, HTTP, or HTTPS synchronization from
Windows CE" on page 308.

¢ HTTP See"TCP/IP, HTTP, or HTTPS synchronization from
Windows CE" on page 308.

The user_name and stream_parms parameters must be surrounded by the
UL_TEXT() macro for Windows CE when initializing, since the
compilation environment is Unicode wide characters.

& For information on adding synchronization to your application, see
"Adding synchronization" on page 71. For detailed information on
synchronization parameters, see " Synchronization stream parameters' on
page 399.

Adding ActiveSync synchronization to your application

ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. UltraL ite supports ActiveSync versions 3.1 and 3.5.

This section describes how to add ActiveSync to your application, and how
to register your application for use with ActiveSync on your end users’
machines.

If you use ActiveSync, synchronization can be initiated only by ActiveSync
itself. ActiveSync automatically initiates a synchronization when the device
is placed in the cradle or when the Synchronization command is selected
from the ActiveSync window. The MobiLink provider starts the application,
if itis not aready running, and sends a message to the application.

& For information on setting up ActiveSync synchronization, see
"Deploying applications that use ActiveSync" on page 299.

The ActiveSync provider uses the wParam parameter. A wParam vaue of 1
indicates that the MobiLink provider for ActiveSync launched the
application. The application must then shut itself down after it has finished
synchronizing. If the application was aready running when called by the
MobiLink provider for ActiveSync, wParam is 0. The application can ignore
the wPar am parameter if it wants to keep running.

305

Synchronization on Windows CE

Adding synchronization depends on whether you are addressing the
Windows API directly or whether you are using the Microsoft Foundation
Classes. Both development models are described here.

Adding ActiveSync synchronization (Windows API)

If you are programming directly to the Windows API, you must handle the
message from the MobiLink provider in your application’s WindowProc
function, using the UL | sSynchr onizeM essage function to determineiif it has
received the message.

Here is an example of how to handle the message:

LRESULT CALLBACK W ndowProc(HWAD hwnd,
U NT uMsg,
WPARAM wPar am
LPARAM | Par am)

{
i f(ULI sSynchroni zeMessage(uMsg)) {
DoSync();
if(wParam== 1) DestroyWndow hwd);
return O;
}

switch(uMsg) {
/1 code to handl e other w ndows nessages

defaul t:
return Def WndowProc(hwnd, uMsg, wParam | Param);

}

return O;

}
where DoSync is the function that actually calls UL Synchronize.

& For more information, see "ULIsSynchronizeMessage function” on
page 243.

Adding ActiveSync synchronization (MFC)

If you are using Microsoft Foundation Classes to develop your application,
you can catch the synchronization message in the main dialog class or in
your application class. Both methods are described here.

& Your application must create and register a custom window class name
for notification. See "Assigning class names for applications' on page 303.

306

Chapter 12 Developing Applications for Windows CE

+ To add ActiveSync synchronization in the main dialog class:

¢

Add aregistered message and declare a message handler.

Find the message map in the source file for your main dialog (the name
is of the same form as CMyAppDIg.cpp). Add a registered message using
the static and declare a message handler using
ON_REGISTERED_MESSAGE asin the following example:

static U NT Wv ULTRALI TE_SYNC MESSAGE =
.. Regi st er Wndowvessage(UL_AS_SYNCHRON ZE) ;
BEA N_MESSACE MAP(OWAppD g, CD al og)
11 {{ AFX_NSG_MAP(OWAppDl g)
/1}} AFX_NMSG_MAP
ON_REQ STERED MESSAGE(WM ULTRALI TE_SYNC MESSAGE,
OnDoU traLiteSync)
END_MESSAGE MAP()

I mplement the message handler.

Add a method to the main dialog class with the following signature. This
method is automatically executed any time the MaobiLink provider for
ActiveSync requests that your application synchronize. The method
should call UL Synchronize.

LRESULT CWAppD g: : OnDoUl traLi t eSync(
WPARAM wPar am
LPARAM | Par am

)
The return value of this function should be 0.

& For information on handling the synchronization message, see
"ULIsSynchronizeM essage function” on page 243.

+ To add ActiveSync synchronization in the Application class:

1
2

Open up the Class Wizard for the application class.

In the Messages list, highlight PreTrand ateM essage and then click the
Add Function button.

Click the Edit Code button. The PreTranslateM essage function appears.
Changeit to read as follows:

307

Synchronization on Windows CE

BOOL CMyApp: : PreTransl at eMessage(MSG* pMsQ)

i f(ULI sSynchroni zeMessage(pMsg- >nessage)) {
DoSync();
Il close application if launched by provider
if(pMsg->wParam== 1) {
ASSERT(Af xGet Mai nWAd() !'= NULL);
Af xCGet Mai nWAd() - >SendMessage(WV CLCSE) ;

return TRUE, // message has been processed

}
return CWnApp: : PreTransl at eMessage(pMsQ) ;

}
where DoSync is the function that actually calls UL Synchronize.

& For information on handling the synchronization message, see
"ULIsSynchronizeM essage function” on page 243.

TCP/IP, HTTP, or HTTPS synchronization from Windows CE

For TCP/IP, HTTP, or HTTPS synchronization, the application controls
when synchronization occurs. Y our application will usually provide a menu
item or user interface control so that the user can request synchronization.

308

CHAPTER 13

Developing Applications for VxWorks

About this chapter

Contents

This chapter describes details of development, deployment and

synchronization that are specific to the VxWorks operating system. These
instructions assume familiarity with the general development process. They
assist in building the CustDB sample application, included with your

Ultral ite software, on each of these platforms.

Topic Page
Introduction 310
Building the CustDB sample application 312
Downloading the sample application to the device 313
Running the sample application 314
Building UltraLite VxWorks applications 316
Storing persistent data 318
Synchronization on the VxWorks platform 319

309

Introduction

Introduction

The following instructions pertain to writing and building UltraL ite
applications for use with the VxWorks platform.

& For alist of supported host platforms and development tools for
VxWorks development, and for alist of supported target VxWorks
platforms, see " Supported platforms for C/C++ applications' on page 6.

Installation directory

Tornado/VxWorks devel opment tools may not support the use of
directories with spaces in the name. As Ultral ite header and include files
areinstalled under the Adaptive Server Anywhere installation directory,
which by default has spaces, you may wish to reinstall. An aternativeis
to reset your ASANY 8 environment variable to use the short form of the
directory name (c:\progra~1\...)

Features and limitations

Follow the VxWorks Programmer’s Guide, Tornado User’s Guide as well as
B SP-specific documentation for instructions on setting up your system and
troubleshooting.

Y ou should also note the following when devel oping Ultralite applications

for the VxWorks platform.
Synchronization You may use TCP/IP or HTTP for UltraLite synchronization. The TCP/IP
components are typically included and initialized by default in VxWorks.
Resolving host The default VxWorks configuration does not include resolving of host names
names viaDNS. Therefore, if you use a host name to specify the location of the

MobiLink synchronization server for synchronization, you must define
INCLUDE_DNS RESOLVER and associated macros when building
VxWorks. However, if you use only the |P number to specify your host
machine, you do not need to include DNS support. Without DNS support,
you may get awarning regarding an undefined _r esol vGet Host ByNane
symbol, but this warning will not affect the running or synchronization of
your application aslong as only an |P number is used.

310

Chapter 13 Developing Applications for VxWorks

Persistent storage

Persistent storage
for CustDB sample

UltraL ite requires a dosFs (MS-DOS-compatible file system) device or a
functionally equivalent device to store the persistent data file. UltraLite
defaults to using a device named ULDEV:. Y ou can configure a storage
device with thisname and it will be used to store persistent data for the
application, or you can override the default filename and specify a different
device.

If aULDEV: device does not exist when you run the CustDB sample, the
application createsa ULDEV: device using a RAM disk and dosFsfile
system. The VxWorks RAM disk driver component is required, and you can
include the component by defining INCLUDE_RAMDRYV when building
VxWorks.

&~ For more information on persistent data storage, see " Storing persistent
data' on page 318.

311

Building the CustDB sample application

Building the CustDB sample application

312

The following are general guidelines for building the sample application
included in your Adaptive Server Anywhere installation.

& For instructions on how to build your own UltraL ite application, see
"Building UltraLite VxWorks applications' on page 316.

CustDB is a simple sales-status application. It has already been built into an
executable custdb.out that is located in the UltraLitelvxwiplatform
subdirectory, where platformindicates the chip for which the sampleis
compiled. Other files specific to the VxWorks platform are located in the
Samples\UltraLite\CustDBlvxw directory. The gnuvxw.bat filein this
subdirectory is abatch file used to build the sample application in embedded
SQL or C++ API form, and the custio.c file contains the source code for the
user interface of the sample application. The sample application uses
standard 1/0 via printf() and getchar ().

&~ For adiagram of the sample database schema, see " The UltraLite
sample database" on page xvi.

Although the sample application has already been built into an executable,
you can build it yourself by doing the following:

To build the sample application
1 OpenaCommand Prompt window.

2 Run torvars.bat (included with Tornado) to set up the environment to
include the Tornado compiler and environment variables. Minimally,
you must set your WIND_BASE environment variable.

3 Change to the subdirectory CustDBlvxw, located in the Adaptive Server
Anywhere Samples\UltraLite\CustDB directory.

cd " Y%ASANY8% Sanpl es\ U t raLi t e\ Qust DB\ vxw'

4 Run gnuvxw.bat to generate an embedded SQL executable with name
custdb.out, or a C++ API executable with the name custdbapi.out.

This command runs the SQL preprocessor (sqipp.exe) to preprocess the
embedded SQL source file custdb.sqc and to generate source code that
implements the SQL in the application.

Chapter 13 Developing Applications for VxWorks

Downloading the sample application to the
device

Download the sample application module using the Tornado shell.

The CustDB sampl e application has been built into an executable custdb.out,
located in the UltraLitelvxw|386 subdirectory. Y ou can download thisfile to
VxWorks using the following Tornado shell command:

1 d(0,0,"c:/sybase/ asa8/ultralitel/ vxw 386/ custdb. out");

Downloading the
sample application

313

Running the sample application

Running the sample application

To run the CustDB sample application after downloading, call the custDB
function by typing custDB() at the Tornado Shell prompt.

Viewing the data in the sample application

314

When you start the CustDB sample application, the application prompts you
for a method of synchronization. Press T if you wish to synchronize via
TCP/IP and D if you wish to use the default method. The default method of
synchronization for the sample application is TCP/IP to localhost. Note that
the default VxWorks configuration does not automatically map localhost to
your host machine and you may have to specify the name or |P address of
your machine directly, after typing T.

The application subsequently prompts you for an employee ID. Enter avalue
of 50. The application also allows values of 51, 52, or 53. After
synchronization, a set of customers, products, and orders are downloaded to
your target machine.

& For adiagram of the sample database schema, see "The UltraL ite
sample database" on page xvi.

& For information about synchronization, see " Synchronization on the
VxWorks platform™" on page 319.

Here are some actions you can perform with the sample application:

¢ Scroll through the outstanding orders The application holds
information about a set of orders. Scroll forward through the orders by
pressing F and scroll backward by pressing B. For each order, this
includes the ID number, the customer, the product, the quantity, and
other information. Also included are a status column and a notes
column, which you can modify from the application. Y ou can approve,
deny, add as well as delete an order.

Only unapproved orders for the customers that you list in the ulEmpCust
table are downloaded to the application. The sample application does not
receive al the orderslisted in the ULOrder table in the consolidated
database. Y ou control which information is sent to your application
using synchronization scripts.

¢ Display alist of customers The UltraLite application holds the
complete list of customers from the consolidated database. To see this
list, pressc.

Chapter 13 Developing Applications for VxWorks

Display a list of products The UltraLite application holds the
complete list of products from the consolidated database. To seethislist,
pressp.

Synchronize with the consolidated database Presssto synchronize
with the consolidated database.

Display help Press?to display alist that indicates which key to press
for each task.

Enter keys in lower case
Enter keysin lower case when you perform actions with the sample

application.

315

Building UltraLite VxWorks applications

Building UltraLite VxWorks applications

316

The following are general guidelines for building your own UltraLite
application.

& For instructions on how to build the sample application included in
your Adaptive Server Anywhere installation, see "Building the CustDB
sample application" on page 312.

To build an UltraLite VxWorks application:

1

Start the Adaptive Server Anywhere personal database server,
specifying your reference database.

Preprocess your embedded SQL files using the SQL preprocessor sqipp.
When sqipp isinvoked, a C/C++ source file is generated for each .sqc
file

If you have only one embedded SQL source file, sglpp automatically
runs the UltraLite analyzer in addition to preprocessing the SQL file.
The analyzer generates more C/C++ code to implement your application
database. Y ou may also skip step 3.

& For moreinformation, refer to "Preprocessing your embedded SQL
files' on page 201.

Run the UltraL ite generator ulgen to perform code generation. The
generator creates a C/C++ source file.

& For moreinformation, see "Generating the Ultralite data access
code" on page 91.

Set up the environment to include the Tornado compiler and
environment variables by running torvars.bat.

Invoke the compiler to compile all source files. For example, cc386 is
the cross compiler for the Intel x86 BSP. This process generatesa.o file
for each C/C++ file. Note that C++ files require use of the munch tool.

Code compiled for VxWorks should have the UNDER_VXW macro
defined. For more information, see "UNDER_VXW macro" on
page 433.

& For moreinformation, refer to cross-development in the Tornado
User’s Guide.

Link all the object files along with the runtime library libulrt.a as
follows:

|d386 —0 myapp.out myapp.o util.o —r -lulrt —L
%ASANY8%!\ultralite\vxw\386\lib

Chapter 13 Developing Applications for VxWorks

Preserving data
when upgrading

The runtime library libulrt.a is located in the UltraLitelvxwliplatfor milib
subdirectory. myapp.out will include the .o files (generated by the
compiler) as well as the necessary modules acquired from the runtime
library.

Note
Id will look for libulrt.a when —lulrt is specified.

To avoid the possibility of losing data stored in your Ultralite database, it is
recommended that you synchronize your existing Ultralite application with
the consolidated database before upgrading your application.

If your new application introduces obfuscation or encryption of the database,
or if the new schame isincompatible with the older version, datain the
database is lost on upgrading.

317

Storing persistent data

Storing persistent data

318

UltraLite requires a dosFs (MS-DOS-compatible file system) device or a
functionally equivalent device to store the persistent data. UltraLite defaults
to using a device named ULDEV:. Unless you override the default persistent
storage filename, this device must exist before db_init is called.

The following linesillustrate how to create such adevice using a RAM disk
and dosFs file system:

pBl kDev = ramDevCreate(0, 512, 2048, 2048, 0);
pVol Desc = dosFsMkfs("ULDEV:", pBlkDev);

By default, the UltraLite runtime saves persistent data to the file
ULDEV:/ul_<project_name>.udb, where the filename ul_<project_name>is
truncated to 8 characters.

& Y ou can configure various aspects of the database store using the
UL_STORE_PARMS macro. For information on persistent-storage
parameters, see " Configuring and managing database storage” on page 45.

Chapter 13 Developing Applications for VxWorks

Synchronization on the VxWorks platform

Synchronization for
CustDB sample
application

Transport-layer
security on
VxWorks

The VxWorks UltraL ite applications can synchronize via TCP/IP or HTTP.

& For information on synchronization architecture for TCP/IP see " Parts
of the synchronization system™" on page 10 of the book MobiLink
Synchronization User’s Guide.

To synchronize aVxWorks UltraL ite application using a TCP/IP socket
connection, call UL Synchr onize with the UL SocketStream() stream. The
following embedded SQL example illustrates the arguments:

ul _synch_i nfo synch_info;

ULl ni t Synchl nfo(&synch_info);

synch_i nfo.user _name = UL_TEXT("50");

synch_i nfo.version = UL_TEXT("custdb");

synch_i nfo. stream = ULSocket Strean();

synch_i nfo. stream parns =

UL_TEXT("host =l ocal host");
ULSynchroni ze(&synch_info);

When using TCP/IP sockets, the MobiLink synchronization server can be
any machine on the network that is accessible via TCP/IP. Before

UL Synchronizeis caled, the MobiLink synchronization server must be
started as follows:

dbm srv8 -c "DSN=U traLite 8.0 Sanple" ...
By default, the MobiLink synchronization server listens on port 2439.

TCP/IP isthe default method of synchronization for the CustDB sample
application. In addition, UltraLite specifies |ocalhost as the hostname by
default. Note that the default VxWorks configuration does not automatically
map localhost to your host machine and you may need to specify the name or
IP address of your machine explicitly.

Y ou can use transport-layer security on VxWorks on Intel x86 chips and on
the Windows VxSim emulator.

& For information on transport-layer security, see " Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s Guide.
For information on synchronization parameters, see " Synchronization stream
parameters' on page 399.

Y ou must ensure that the time is set properly on the client VxWorks device,
as certificate dates are checked during synchronization. The timeis not set
automatically on VxWorks devices. Y ou can set the time on the device by
using the clock_settime() function. When the time isincorrect, MobiLink
returns an error.

319

Synchronization on the VxWorks platform

320

PART THREE

Developing UltraLite Java
Applications

This part focuses on details of the development process that are specific to
Java. It explains how to write and build Java applications and provides a
tutorial that guides you through the development process.

321

322

CHAPTER 114
Tutorial: Build an Application Using Java

About this chapter

Contents

This chapter provides atutorial that guides you through the process of
developing a Java UltraL ite application. The first section describes how to
build avery simple Java UltraL ite application. The second section describes
how to add synchronization to your application.

& For an overview of the development process and background
information on the UltraL ite database, see "Designing UltraLite
Applications’ on page 41.

& For information on devel oping Java Ultralite Applications, see
"Developing UltraLite Java Applications' on page 337.

Topic Page
Introduction 324
Lesson 1: Add SQL statements to your reference database 326
Lesson 2: Run the UltraL ite generator 328
Lesson 3: Write the application code 329
Lesson 4: Build and run the application 333
Lesson 5: Add synchronization to your application 334
Lesson 6: Undo the changes you have made 336

323

Introduction

Introduction

Thistutorial describes how to construct a very simple application using
Ultralite Java. The application is a command-line application, developed
using the Sun JDK, which queries datain the ULProduct table of the UltraLite
8.0 Sample database.

In thistutorial, you create a Java source file, create a project in areference
database, and use these sources to build and run your application. The early
lessons describe a version of the application without synchronization.
Synchronization is added in alater lesson.

To follow the tutorial, you should have a Java Development Kit installed.

Overview

In the first lesson, you write and build an application that carries out the
following tasks.

1 Connectsto an UltralLite database, consisting of asingle table. The table
isasubset of the ULProduct table of the UltraLite Sample database.

2 Insertsrowsinto the table. Initial datais usually added to an UltraLite
application by synchronizing with a consolidated database.
Synchronization is added later in the chapter.

3 Writesthe rows of the table to standard output.

In order to build the application, you must carry out the following steps:
1 Create an Adaptive Server Anywhere reference database.
Here we use the Ultral ite sample database (CustDB).

2 Addthe SQL statementsto be used in your application to the reference
database.

3 Runthe UltraLite generator to generate the Java code and also an
additional source file for this Ultral ite database.

The generator writes out a .java file holding the SQL statements, in a
form you can usein your application, and a .java file holding the code
that executes the queries.

4 Write source code that implements the logic of the application.
Here, the source codeis asingle file, named Sample.java.

5 Compile and run the application.

324

Chapter 14 Tutorial: Build an Application Using Java

In the second lesson you add synchronization to your application.

Create a directory to hold your files

In thistutorial, you will be creating a set of files, including source files and
executable files. Y ou should make a directory to hold these files. In addition,
you should make a copy of the Ultral ite sample database so that you can
work on it, and be sure you still have the original sample database for other
projects.

Copies of the files used in thistutorial can be found in the
Samples\UltraLite\JavaTutorial subdirectory of your SQL Anywhere
directory.

« To prepare atutorial directory:

¢ Create adirectory to hold the files you will create. In the remainder of
the tutorial, we assume that this directory is c:\JavaTutorial.

¢ Make abackup copy of the UltraL ite 8.0 Sample database into the
tutorial directory. The UltraLite 8.0 Sample database is the file
custdb.db, in the UltraLitelSamples\CustDB subdirectory of your
SQL Anywhere installation directory. In this tutorial, we use the original
UltraLite 8.0 Sample database, and at the end of the tutorial you can
copy the untouched version from the APITutorial directory back into
place.

325

Lesson 1: Add SQL statements to your reference database

Lesson 1: Add SQL statements to your reference
database

The reference database for this tutorial isthe Ultralite 8.0 Sample database.
In alater step, you use this same directory as a consolidated database for
synchronization. These two uses are separate, and in your work you may use
different databases for the two roles.

Add the SQL statements to the reference database using the
ul_add_statement stored procedure. In this simple application, use the
following statements:

¢ Insert AnINSERT statement adds an initial copy of the datainto the
ULProduct table. This statement is not needed when synchronization is
added to the application.

¢ Select A SELECT statement queries the ULProduct table.

When you add a SQL statement, you must associate it with an UltraLite
project. Here, we use a project name of Product. Y ou must also add a name
for the statement, which by convention isin upper case.

« To add the SQL statements to the reference database:

1 Start Sybase Central, and connect to the UltraLite 8.0 Sample data
source using the Adaptive Server Anywhere plug-in.

2 Add aproject to the database:
¢ In Sybase Central, open the custdb database.
¢ Open the UltraLite projects folder.

The folder contains one project already: the custapi project used for
the sample application. Y ou must create a new project.

¢ Double-click Add UltraLite Project.
¢ Enter Product asthe project name, and click Finish.
3 Addthe INSERT statement to the Product project.
¢ Double-click Product to open the project.
¢ Double-click Add UltraLite Statement.
¢ Enter InsertProduct as the statement name. Click Next.
¢ Enter the statement text:

I NSERT | NTO ULProduct (prod_id, price, prod_nane)
VALUES (?,?,7?)

326

Chapter 14 Tutorial: Build an Application Using Java

Thefirst argument is the project name, the second is the statement
name, and the third is the SQL statement itself. The question marks
in the SQL statement are placeholders, and you can supply values at
runtime.

¢ Click Finish to complete the operation.

This operation in Sybase Central is equivalent to executing the following
stored procedure call:

call ul _add_statenent(' Product’, 'lInsertProduct’,
"I NSERT | NTO ULProduct(prod_id, price, prod_nane)
VALUES (?2,2,?) ')

4 Addthe SELECT statement to the Product project.
¢ From the Product project, double-click Add UltraLite Statement.
¢ Enter SelectProduct asthe statement name. Click Next.
¢ Enter the statement text:
SELECT prod_id, prod_nane, price FROM ULProduct
¢ Click Finish to complete the operation.

This operation in Sybase Central is equivalent to executing the following
stored procedure call:

call ul _add_statenent(' Product’, ' SelectProduct’,
" SELECT prod_id, prod_name, price FROM ULProduct’)

5 Close Sybase Central.

Y ou have now added the SQL statements to the database, and you are ready
to generate the UltralL ite database.

& For moreinformation, see "ul_add_project system procedure" on
page 412, and "ul_add_statement system procedure" on page 411.

327

Lesson 2: Run the UltraLite generator

Lesson 2: Run the UltraLite generator

328

The Ultralite generator writes out two Java files. One contains the SQL
statements, as an interface definition, which is here named I1SampleSQL .java.
Y ou can use thisinterface definition in your main application code. The
second file holds the code that implements the queries and the database, and
is here named SampleDB.java.

% To generate the UltraLite database code:

1 Openacommand prompt, and go to your JavaTutorial directory.

2 Runthe UltraLite generator with the following arguments (all on one
line):

ulgen —a -t java -c "dsn=UltraLite 8.0 Sample"
-j Product -s ISampleSQL -f SampleDB

The arguments have the following meanings:

¢

-a Generate SQL string namesin upper case. The InsertProduct
and SelectProduct statements cometo INSERT_PRODUCT and
SELECT_PRODUCT.

-t Thelanguage of the generated code. Generate Java code instead
of C code.

-c The connection string to connect to the database.

-j TheUltraLite project name. This hame corresponds to the
project name you provided when you added the SQL statement to
the database. The generator produces code only for those statements
associated with this project.

-s The name of the interface that contains the SQL statements as
strings.

-f The name of the file that holds the generated database code and
query execution code.

Chapter 14 Tutorial: Build an Application Using Java

Lesson 3: Write the application code

The following code listing holds a very simple UltraL ite application.

Y ou can copy the code into anew file and save it as Sample.java in your
c:\JavaTutorial directory, or open anew file and type the content. Y ou can
find this source code in Samplesi\UltraLite\JavaTutorial\Sample.java.

11 (1)
i mport
i mport
i mport
i mport

11 (2)

I nport required packages
java.sql.*;

| Sanpl eSQ.. *;

i anywhere.ultralite.jdbc.*;

i anywhere.ultralite. support.*;

Cass inplenents the interface containing SQ

statenents
public class Sanpl e inplenents | Sanpl eSQL

public static void main(String[] args)

{

try{

/1 (3) Connect to the database
java. util.Properties p = new
java.util.Properties();
p.put("persist", "file");
Sanpl eDB db = new Sanpl eDB(p);
Connection conn = dh. connect();

/1 (4) Initialize the database with data
PreparedStatenent pstntl =

conn. prepar eSt at ement (| NSERT_PRODUCT) ;
pstntl.setint(1, 1);
pstnt 1. setlnt(2, 400);
pstntl.setString(3, "4x8 Drywal |
int rowsl=pstntl. executeUpdate();
pstntl.setint(1, 2);
pstnt 1. setlnt(2, 3000);
pstntl.setString(3, "8 2x4 Studs x1000");
int rows2=pstntl. executeUpdate();

x100");

/Il (5) Query the data and wite out the results

Statenent stnt = conn.createStatemnment();

Resul tSet result = stnt.executeQuery(
SELECT_PRODUCT) ;

while(result.next()) {

int id=result.getlnt(1);
String name = result.getString(2);
int price =result.getlint(3);
Systemout.println (name +
"Atld=" +id +
" \tPrice=" + price);

329

Lesson 3: Write the application code

Explanation of the
sample program

330

/1 (6) Cose the connection to end
conn. cl ose();

} catch (SQ.Exception e) {
Support. print Exception(e);

}

}
}

Although too simple to be useful, this example contains elements that must
be present in all Java programs used for database access. The following
describes the key elementsin the sample program. Use these steps as a guide
when creating your own Java UltraL ite application.

The numbered steps correspond to the numbered comments in the source
code.

1

Import required packages.

The sample program utilizes JDBC interfaces and classes and therefore
must import this package. It also requires the UltraL ite runtime classes,
and the generated interface that contains the SQL statement strings.

Define the class.

The SQL statements used in the application are stored in a separate file,
as an interface. The class must declare that it implements the interface to
be able to use the SQL statements for the project. The class names are
based on the statement names you provided when adding the statements
to the database.

Connect to the database.

The connection is established using an instance of the database class.
The database name must match the name of the generated Java class (in
this case SampleDB). Thefi | e value of the per si st Properties object
states that the database should be persistent.

Insert sample data.

In a production application, you would generally not insert sample data.
Instead, you would obtain an initial copy of data by synchronization. In
the early stages of development, it can simplify your work to directly
insert data.

¢ Create aPreparedStatement object using the prepar eStatement()
method.

Chapter 14 Tutorial: Build an Application Using Java

To execute SQL commands, you must create a Statement or
Prepar edStatement object. Use a Statement object to execute
simple SQL commands without any parameters and a
PreparedStatement object to execute SQL commands with
parameters. The sample program first creates a Prepar edStatement
object to execute an insert command:

PreparedStatenent pstnml =
conn. prepareSt at enent (| NSERT_PRODUCT) ;

The prepar eStatement method takes a SQL string as an argument;
this SQL string is included from the generated interface.

5 Execute aselect SQL command using a Statement object

¢

Create a Statement object using the createStatement() method.

Unlike the Prepar edStatement object, you do not need to supply a
SQL statement when you create a Statement object. Therefore, a
single Statement object can be used to execute more than one SQL
statement.

Statenent stnt = conn.createStatemnment();
Execute your SQL query.

Use the executeQuery() method to execute a select query. A select
statement returns a ResultSet object.

Implement aloop to sequentially obtain query results.

The ResultSet object maintains a cursor that initially points just
before the first row. The cursor isincremented by one row each
time the next() method is called. The next() method returns atrue
value when the cursor moves to arow with data and returns a false
value when it has moved beyond the last row.

whil e(result.next()) {

Retrieve query results using the getxxx() methods.

Supply the column number as an argument to these methods. The
sample program uses the getInt() method to retrieve the product 1D
and price from the first and second columns respectively, and the
getString() method to retrieve the product name from the third.

int id = result.getint(1);
int price = result.getint(2);
String name = result.getString(3);

6 End your Java UltralLite program

331

Lesson 3: Write the application code

¢ Close the connection to the database, using the Connection.close()
method:

conn. cl ose();

332

Chapter 14 Tutorial: Build an Application Using Java

Lesson 4: Build and run the application

After you have created a source file Sample.java using the sample code in
the previous section, you are ready to build your UltralLite application.

+« To build your application:

1

Start the Adaptive Server Anywhere personal database server.

By starting the database server, the UltraLite generator has access to
your reference database. Start the database server from the Start menu:

Startd Programs] Sybase SQL Anywhere 801 UltraLite[] Personal
Server Sample for UltralLite.

Compile your Java source files.
Include the following locations in your classpath:
¢ Thecurrent directory (use adot in your classpath).

¢ TheJavaruntime classes. For JDK 1.2, include the jrellibirt.jar filein
your classpath. For JDK 1.1, include the classes.zip file from your
Javainstallation.

¢ The UltraLite runtime classes. These classes are in the following
location

YASANY8% Ul traLite\java\lib\ulrt.jar
where %ASANY8% represents your SQL Anywhere directory.

Use the javac function of the Java devel opment kit as follows:

javac *.java

Y ou are now ready to run your application.

% To run your application:

1
2
3

Go to acommand prompt in the Javatutorial directory.
Include the same classesin the classpath asin the earlier step.
Enter the following command to run the application

java Sanpl e

Thelist of two items is written out to the screen, and the application
terminates.

Y ou have now built and run your first UltraLite Java application. The next
step isto add synchronization to the application.

333

Lesson 5: Add synchronization to your application

Lesson 5: Add synchronization to your

application

334

Once you have tested that your program is functioning properly, you can
remove the lines of code that manually insert data into the ULProduct table.
Replace these statements with a call to the JdbcConnection.synchronize()
function to synchronize the remote database with the consolidated database.
This process will fill the tables with data and you can subsequently execute a
select query.

Adding synchronization actually simplifies the code. Y our initial version of
Sample.java uses the following lines to insert data into your Ultralite
database.

PreparedSt at enent pstnil = conn. prepareSt at enent (
ADD_PRODUCT_1);

pstml.setint(1, 1);

pstntl.setlnt(2, 400);

pstmt 1. setString(3, "4x8 Drywall x100");

int rowsl=pstntl. executeUpdate();

pstml.setint(1, 2);

pstntl.setlnt(2, 3000);

pstm 1. setString(3, "8 2x4 Studs x1000");

int rows2=pstntl. executeUpdate();

This code isincluded to provide an initial set of datafor your application. In
aproduction application, you would not insert an initial copy of your data
from source code, but would carry out a synchronization.

+ To add synchronization to your application:

1 Replace the hard-coded inserts with a synchronization call.
¢+ Deletetheinstructions listed above, which insert code.

¢ Addthefollowing linein their place:

U SynchQptions synch_opts = new U SynchQptions();
synch_opts. set User Name("50");

synch_opts. set Passwor d(" pwd50");

synch_opts. set Scri pt Versi on("custdb");
synch_opts. set Stream(new U Socket Strean());
synch_opts. set StreanPar ns("host =l ocal host");

((JdbcConnecti on)conn).synchroni ze(synch_opts);

The UL Socket Stream argument instructs the application to
synchronize over TCP/IP, to a MobiLink synchronization server on
the current machine (localhost), using a MobiLink user name of 50.

2 Compile and link your application.

Chapter 14 Tutorial: Build an Application Using Java

Enter the following command, with a CLASSPATH that includes the
current directory, the UltraLite runtime classes, and the Java runtime
classes:

javac *.java

3 Start the MobiLink synchronization server running against the sasmple
database.

From a command prompt in your JavaTutorial directory, enter the
following command:

start dbmsrv8 -c "dsn=UtraLite 8.0 Sanpl e"
4 Run your application.

From a command prompt in your JavaTutorial directory, enter the
following command:

java Sanpl e

The application connects, synchronizes to receive data, and writes out
information to the command line. The output is as follows:

Connecting to server: por | ocal host (a. b. c. d): 2439

t =

4x8 Drywal | x100 I d=1 Pri ce=400
8 2x4 Studs x1000 | d=2 Pri ce=3000
Drywal | Screws 10l b | d=3 Pri ce=40
Joi nt Conpound 100l b | d=4 Price=75
Joi nt Tape x25x500 | d=5 Pri ce=100
Putty Knife x25 | d=6 Pri ce=400
8 2x10 Supports x 200 1d=7 Pri ce=3000
400 @it Sandpaper | d=8 Price=75
Screwraster Drill I d=9 Pri ce=40
200 it Sandpaper Id=10 Price=100

In thislesson, you have added synchronization to a simple UltraLite
application.

& For moreinformation on the JdbcConnection.synchronize() function,
see "Adding synchronization to your application” on page 352.

335

Lesson 6: Undo the changes you have made

Lesson 6: Undo the changes you have made

To complete the tutorial, you should shut down the MobiLink
synchronization server and restore the UltraLite 8.0 Sample database.

+ To finish the tutorial:
1 Close down the MobiLink synchronization server.
2 Restore the Ultralite 8.0 Sample database.

¢ Deletethe custdb.db and custdb.log filesin the
Samples\UltraLite\custdb subdirectory of your SQL Anywhere
directory.

¢ Copy the custdb.db file from your Javatutorial directory to the
Samples\UltraLite\custdb directory.

3 Delete the UltraLite database.

¢ TheUltralLite database is in the same directory asthe jar file, and
has a .udb extension. The application will initialize a new database
next time the application isrun.

336

CHAPTER 15
Developing UltraLite Java Applications

About this chapter This chapter provides details of the UltraLite development processthat are
specific to Java. It explains how to write UltralLite applications using Java
and providesinstructions on building and deploying a Java UltraL ite

application.

Contents Topic Page
Introduction 338
The Ultralite Java sample application 339
Connecting to and configuring your Ultral ite database 344
Including SQL statementsin UltraLite Java applications 351
Adding synchronization to your application 352
Monitoring and canceling synchronization 356
Ultral ite Java devel opment notes 361
Building UltraL ite Java applications 362
UltraLite API reference 365

Before you begin This chapter assumes that you are familiar with Java programming and

JDBC at an elementary level. Y ou can learn about Java from the book
Thinking in Java, included with SQL Anywhere Studio in PDF format.

337

Introduction

Introduction

Ultral ite applications can be written in the Java language using JDBC for
database access.

The UltraLite development process for Javais similar to that for other
development models. For a description, see "Developing UltraLite
Applications' on page 67.

This chapter describes only those aspects of application development that are
specific to Ultralite Java applications. It assumes an el ementary familiarity
with Java and JDBC.

338

Chapter 15 Developing UltraLite Java Applications

The UltraLite Java sample application

This section describes how to compile and run the Ultralite Java version of
the CustDB sampl e application.

The sample application is provided in the Samples\UltraLite\CustDB\java
subdirectory of your SQL Anywhere directory.

The applet version of the sample uses the Sun appletviewer to view the file
custdb.html, which contains a simple <APPLET > tag.

The appletviewer security restrictions require the applet to be downloaded
from aWeb server, rather than to be run from the file system, for socket
connections to be permitted and synchronization to succeed.

The application version of CustDB persistsits data to afile, while the applet
version does not use persistence.

& For awalkthrough of the C/C++ version of the application, which has
very similar features, see "Tutorial: A Sample Ultralite Application” on

page 15.

The UltraLite Java sample files

The code for the UltraL ite Java sample application is held in the
Samples\UltraLite\CustDBljava subdirectory of your SQL Anywhere
directory.

The directory holds the following files:

¢ Dataaccess code Thefile CustDB.java holds the UltralL ite-specific
data access logic. The SQL statements are stored in SQL.sql.

¢ User interface code Thefiles DialogDelOrder.java, Dialogs.java,
DialogNewOrder.java, and DialogUserID.java all hold user interface
features.

¢ readme.txt A text file containing detailed, release-dependent
information about the sample.

¢ Subdirectories There are two subdirectories in which you can run the
sample. These are java11 (for Java l) and java13 (for Java2). You
should make the former your current directory if you are using a 1.1.x
version of the JDK, and the latter if you are using 1.2.x or later. These
subdirectories contain batch files to run the samples. In each directory,
the batch files depend on the JAVA_HOME environment variable,
which should be set to the directory containing the JDK. For example;

339

The UltraLite Java sample application

SET JAVA HOME=c:\j dk1.3.1

¢ Batch files to build the application Thefiles build.bat and clean.bat
compile the application and delete all files except the source files,
respectively.

¢ Files to run the sample as an application The Application.java file
contains instructions necessary for running the example as a Java
application, and run.bat runs the sample application.

¢ Files to run the sample as an applet The Applet.java file contains
instructions necessary for running the example as a Java applet, and
avapplet.bat runs the sample applet using the appletviewer, with
custdb.html as the Web page.

You must install and start a Web server to run the sample as an applet. The
applet can be run using the appletviewer utility or by using a Web browser.
For more information, see the Samples\UltraLite\CustDB\Javalreadme.txt
file

Building the UltraLite Java sample

340

This section describes how to build the Ultral ite Java sample application for
the Sun Java 1 or 2 environment.

« To build the UltraLite Java sample:
1 Ensure you have the right JDK.

Y ou must have JDK 1.1 or JDK 1.3 to build the sample application, and
the JDK tools must be in your path.

Open acommand prompt.

3 Changeto the Samples\UltraLite|CustDBljava\javal3 subdirectory of
your SQL Anywhere directory, or the javal1 directory if you are using
Java 1.

4 Build the sample:
¢ Setthe JAVA_HOME environment variable. For example:
SET JAVA HOME=c:\j dk1.3.1
¢ From the command prompt, enter the following command:
bui | d
The build procedure carries out the following operations;
¢ Loadsthe SQL statements into the Ultralite sample database.

Chapter 15 Developing UltraLite Java Applications

This step uses Interactive SQL, the SQL.sql file, and relies on the
Ultral ite 8.0 Sample data source.

Generates the Java database class custdb.Database.

This step uses the Ultral ite generator and the UltraLite 8.0 Sample
data source.

Compilesthe Javafiles.

This step uses the IDK compiler (javac) and jar utility.

Running the UltraLite Java sample

Y ou can run the sample application as a Java application or as an applet. In
either case, you need to prepare to run the sample by starting the MobiLink
synchronization server running on the same machine that the application is
running on.

% To prepare to run the sample:

¢ Start the MobiLink synchronization server running on the UltraLite
sampl e database;

From the Start menu, choose Programsl] Sybase
SQL Anywhere 800 MobiLink Synchronization Server Sample.

+ To run the sample as an application:

1 Openacommand prompt in the Samples\UltraLite\CustDBljavaljaval3
directory (or the javal11 directory if you are using Java 1).

2 Runthesample:

¢

Set the JAVA_HOME environment variable. For example:
SET JAVA HOVE=c:\j dk1l.3.1

Enter the following command:

run

The application starts and the Enter ID dialog is displayed.

3 Enter the employeeID.

Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. If you have
run the sample as either an application or applet before, thereisdatain
the database.

341

The UltraLite Java sample application

342

4

If there is no datain the database, synchronize.

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

Y ou can now carry out operations on the datain the database.

& For moreinformation on the sample database and the Ultral ite features
it demonstrates, see "Tutorial: A Sample UltraLite Application” on page 15.

1

« To run the sample as an applet using appletviewer:

Start a Web server and ensure that the appropriate subdirectory is
configured as the default directory for the server, or as one of the virtual
directories.

Open a command prompt in the UltraLite\samples|CustDB\javaljaval3
directory, or javail if you are using Java 1.

Enter the following command:
avappl et
The applet starts and a field to enter an employee ID is displayed.
Enter the employee ID.
Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. The first
time you run the sample, there is no data in the database. If you have run
the sample as either an application or applet before, thereis datain the
database.

Synchronize the application:

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

Y ou can now carry out operations on the datain the database.

< To run the sample as an applet using A Web browser:

1

Start a Web server and ensure that the appropriate subdirectory is
configured as the default directory for the server, or as one of the virtual
directories.

Start aWeb browser and enter the URL for the
Samples\UltraLite\CustDB\javalcustdb.htm file into the browser.

The applet starts and afield to enter an employee ID is displayed.
Enter the employee ID.

Enter an employee ID of 50, and click OK.

Chapter 15 Developing UltraLite Java Applications

Resetting the
sample

The UltraLite Customer Demonstration window is displayed. The first
time you run the sample, there is no data in the database. If you have run
the sample as either an application or applet before, thereis datain the
database.

4 Synchronize the application:

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

& For moreinformation on the sample database and the Ultral ite features
it demonstrates, see "Tutorial: A Sample Ultralite Application” on page 15.

Y ou can delete all compiled files, the sample database, and the generated
code by running the clean.bat file.

343

Connecting to and configuring your UltraLite database

Connecting to and configuring your UltraLite

database

This section describes how to connect to an Ultral ite database. It describes
the recommended UltralLite method for connecting to your database, and also
how you can use the standard JDBC connection model to connect.

Connections to UltraL ite databases have no user IDs or passwords. For more
information, see "User authentication for UltralLite databases' on page 442.

In multi-threaded applications, connections cannot be shared among threads.

Ultral ite Java databases can be persistent (stored in afile when the
application closes) or transient (the database vanishes when the application
is closed). By default, they are transient.

Y ou configure the persistence of your Ultralite database when connecting to
it. This section describes how to configure your Ultral ite database.

Using the UltraLite JdbcDatabase.connect method

344

The generated Ultral ite database code is in the form of a class that extends
JdbcDatabase, which has a connect method that establishes a connection.

The following exampleillustrates typical code, for a generated database class
called SampleDB:

try {

Sanpl eDB db = new Sanpl eDB() ;

java. sqgl . Connection conn = db. connect();
} catch(SQException e){
Il error processing here

}

The generated database class is supplied on the UltraL ite generator command
ling, using the - f option.

If you wish to use a persistent database, the characteristics are specified on
the connection as a Properties object. The following exampleillustrates
typical code:

java.util.Properties p = new java.utils.Properties();
p.put("persist", "file");

p.put("persistfile", "c:\\dbdir\\database.udb");
Sanpl eDB db = new Sanpl eDB(p);

java. sgl . Connecti on conn = db. connect();

The Properties are used on the database constructor. Y ou cannot change the
persistence model of the database between connections.

Chapter 15 Developing UltraLite Java Applications

The two properties specify that the database is persistent, and is stored in the
file c:\dbdirldatabase.udb.

& For moreinformation on the properties you can specify in the URL, see
"UltraLite JDBC URLS' on page 346.

& For moreinformation see " Configuring the UltraLite Java database" on
page 348, and "The generated database class' on page 373.

Loading and registering the JDBC driver

Loading multiple
drivers

getDriver method

Error handling

d ass.

The UltraLite JdbcDatabase.connect() method discussed in the previous
section provides the simplest method of connecting to an UltraLite database.
However, you can also establish a connection in the standard JDBC manner,
and this section describes how to do so.

Ultral ite applications connect to their database using a JDBC driver, which
isincluded in the UltraL ite runtime classes (uirt.jar). Y ou must load and
register the JDBC driver in your application before connecting to the
database. Use the Class.forName() method to load the driver. This method
takes the driver package name as its argument:

forName("ianywhere.ultralite.jdbc.JdbcDriver");
The JDBC driver automatically registersitself when it isloaded.

Although there istypically only one driver registered in each application,
you can load multiple driversin one application. Load each driver using the
same methods as above. The DriverM anager decides which driver to use
when connecting to the database.

The Driver M anager .getDriver (url) method returnsthe Driver for the
specified URL.

To handle the case where the driver cannot be found, catch
ClassNotFoundException as follows:

try{
Cd ass. f or Nang(

"ianywhere.ultralite.jdbc.JdbcDriver");
} catch(d assNot FoundException e){
Systemout.println("Exception: " + e.getMessage());
e.printStackTrace();

Connecting to the database using JDBC

Once the driver is declared, you can connect to the database using the
standard JDBC Driver M anager .getConnection method.

345

Connecting to and configuring your UltraLite database

getConnection The JDBC Driver M anager .getConnection method has several prototypes.
prototypes These take the following arguments:

Dri ver Manager . get Connection(String url, Properties info)

Dri ver Manager . get Connection(String url)

The UltraLite driver supports each of these prototypes. The arguments are
discussed in the following sections.

Driver Manager The DriverManager class maintains alist of the Driver classesthat are
currently loaded. It asks each driver inthelist if it is capable of connecting to
the URL. Once such adriver is found, the Driver M anager attemptsto useit
to connect to the database.

Error handling To handle the case where a connection cannot be made, catch the
SQL Exception asfollows:

try{
C ass. f or Nang(

"ianywhere.ultralite.jdbc.JdbcDriver");
Connection conn = Driver Manager. get Connect i on(
"jdbc:ultralite: asadeno");
} catch(SQ.Exception e){
Systemout.println("Exception: " + e.getMessage());
e. printStackTrace();

}

UltraLite JDBC URLS

The URL isarequired argument to the Driver M anager .getConnection
method used to connect to Ultral ite databases.

& For an overview of connection methods, see " Connecting to the
database using JDBC" on page 345.

The syntax for UltraLite JDBC URLsis asfollows:

jdbc:ultralite:[database: persist:persistfile][;option=va
lue...]

The components are all case sensitive, and have the following meanings:
¢ jdbc Identifiesthedriver asaJDBC driver. Thisis mandatory.
¢ ultralite ldentifiesthe driver asthe UltraLite driver. Thisis mandatory.

¢ database Theclass name for the database. It isrequired and must be a
fully-qualified name: if the database classisin a package, you must
include the package name.

346

Chapter 15 Developing UltraLite Java Applications

For example, the URL j dbc: ul tralite: MyProj ect causesaclass
named MyPr oj ect to be loaded.

As Java classes share their name with the .java file in which they are
defined, this component is the same as the output file parameter from the
Ultral ite generator.

& For more information, see "The UltraLite generator" on page 419.

persist Specifies whether or not the database should be persistent. By
default, it istransient.

&~ For more information, see " Configuring the Ultral ite Java
database" on page 348.

persistfile For persistent databases, specifies the filename.

&~ For more information, see " Configuring the UltraL ite Java
database" on page 348. The UltraLite Java properties are very similar to
those for C/C++ applications. Their names differ only in the absence of
underscore characters., except that per sistfile isanalogousto file_name.
See"UL_STORE_PARMS macro" on page 428.

options The following options are provided:
¢ uid AuserlID.

¢ pwd A password for the user ID.

Alternatively, you can connect using a Properties object. The following
properties may be specified. Each have the same meaning as in the explicit
URL syntax above:

¢

¢
¢
¢
¢

database
persist
persistfile
user

password

Using a Properties object to store connection information

Y ou can use a Properties object to store connection information, and supply
this object as an argument to getConnection along with the URL.

& For an overview of connection methods, see " Connecting to the
database using JDBC" on page 345.

347

Connecting to and configuring your UltraLite database

The following components of the URL, described in "UltraLite JDBC URLS"
on page 346, can be supplied either as part of the URL or as a member of a
Properties object.

¢ pesist
¢ pergdtfile
Thej dbc: ul tral ite components must be supplied inthe URL.

If you wish to encrypt your database, you can do so by supplying akey
property. For more information, see "Encrypting Ultral ite databases' on

page 45.

Connecting to multiple databases

UltraLite Java applications can connect to more than one database, unlike
Ultralite C/C++ applications.

To connect to more than one database, simply create more than one
connection object.

& For moreinformation see " Connecting to the database using JDBC" on
page 345.

Configuring the UltraLite Java database

348

Y ou can configure the following aspects of the UltraLite Java database:
¢ Whether the database is transient or persistent.
+ |f the database is persistent, you can supply afilename.

¢ If thedatabase istransient, you can supply a URL for aninitializing
database.

¢ You can set an encryption key.

These aspects can be configured by supplying specia valuesin the database
URL, or by supplying a Properties object when creating the database. The
encryption key cannot be set on the URL, but must be set in a Properties
object.

& For moreinformation, see "Using the UltraLite JdbcDatabase.connect
method" on page 344, and "Using a Properties object to store connection
information" on page 347.

Chapter 15 Developing UltraLite Java Applications

Transient and
persistent
databases

Initializing transient
databases

Configuring the
database

By default, Ultralite Java databases are transient: they are initialized when
the database object is instantiated, and vanish when the application closes
down. The next time the application starts, it must reinitialize a database.

Y ou can make Ultralite Java databases persistent by storing them in afile.
Y ou do this by specifying the persist and per sistfile elements of the JIDBC
URL, or by supplying persist and persistfile Properties to the database
connect method.

The database for C/C++ UltraLite applicationsisinitialized on the first
synchronization call. For Ultralite Java applications that use a transient
database, thereis an alternative method of initializing the database. The URL
for an UltraLite database that is used asthe initial databaseis supplied in the
per sistfile component to the URL.

The database configuration components of the URL are as follows:
¢ persist This can take one of the following values:

¢ none Inthiscase, the databaseistransient. It is stored in memory
while the application runs, but vanishes once the application
terminates.

¢ file Inthiscase, the databaseis stored as afile. The default
filename is database.udb, where database is the database class
name.

The default setting is none.
¢ persistfile The meaning of this component depends on the setting for
persist.

¢ If the persist component has a value of none, the per sistfile
component isaURL for an Ultralite database file that is used to
initialize the database.

Both the schema and the data from the URL are used to initialize
the application database, but there is no further connection between
the two. Any changes made by your application apply only to the
transient database, not to the initializing database.

The following JDBC URL is an example:

jdbc:ultralite:transi ent:none: http://ww address. conitransi ent. udb

Y ou can prepare the initializing database with an application that
uses the persistent form of the URL to create the database,
synchronize, and exit.

349

Connecting to and configuring your UltraLite database

¢ |f the persist component has avalue of file, the persistfile
component is afilename for the persistent UltraLite database. The
filename should include any extension (such as .udb) that you wish

to use.

350

Chapter 15 Developing UltraLite Java Applications

Including SQL statements in UltraLite Java

applications

Defining the SQL
statements for your
application

Defining projects

Adding statements
to your project

This section describes how to add SQL statements to your Ultralite
application.

&~ For information on SQL features that can and cannot be used in
Ultral ite application, see "SQL features and limitations of UltraLite
applications’ on page 437.

The SQL statements to be used in your application must be added to the
reference database. The Ultralite generator writes out an interface that
defines these SQL statements as public static final strings. Y ou invoke the
statements in your application by implementing the interface and referencing
the SQL statement by itsidentifier, or by referencing it directly from the
interface.

The SQL statements to be included in the UltraL ite application, and the
structure of the UltraL ite database itself, are defined by adding the SQL
statements to the reference database for your application.

& For information on reference databases, see "Preparing areference
database" on page 72.

Each SQL statement stored in the reference database is associated with a
project. A project is aname, defined in the reference database, which groups
the SQL statements for one application. Y ou can store SQL statements for
multiple applications in a single reference database by defining multiple
projects.

& For information on creating projects, see "Creating an UltralLite
project” on page 80.

The data access statements you are going to use in your UltralL ite application
must be added to your project.

& For information on adding SQL statements to your database, see
"Adding SQL statementsto an UltraL ite project” on page 81.

351

Adding synchronization to your application

Adding synchronization to your application

This section describes how to initiate synchronization from an UltraLite Java
application.

The synchronization logic that keeps UltraL ite applications up to date with
the consolidated database is not held in the application itself.
Synchronization scripts stored in the consolidated database, together with the
MobiLink synchronization server and the UltraLite runtime library, control
how changes are processed when they are uploaded and determines which
changes are to be downloaded.

Call the JdbcConnection.synchronize() method to initiate synchronization
in an UltraL ite application. The synchronization process can only work if the
device running the UltraL ite application is able to communicate with the
synchronization server. For some platforms, this means that the device needs
to be physically connected by placing it inits cradle or by attaching it to a
server computer using acable. Y ou need to add error handling code to your
application in case the synchronization cannot be carried out.

& Ultralite Java applications synchronize in avery similar fashion to
other UltraL ite applications. For general information about synchronization,
see "Adding synchronization to your application” on page 94.

Initializing the synchronization options

Notes

352

The details of any synchronization, including the URL of the MobiLink
synchronization server, the script version to use, the MobiLink user ID, and
so on, are all held in a UISynchOptions object.

Before synchronizing, initialize the synchronization parameters as follows:
U SynchQptions opts = new U SynchQpti ons();

The UISynchOptions() object has a set of methods to set and get itsfields.
For alist, see " Synchronization parameters’ on page 380. Use these methods
to set the required synchronization parameters before synchronizing. For
example:

opt s. set User Nane("50");
opts.setScriptVersion("default");
opts.set Strean{ new U Socket Strean());

The synchronization streams for Ultralite Java applications are objects, and
are set by their constructors. The available streams are as follows:

¢ UlSocketStream TCP/IP synchronization

Chapter 15 Developing UltraLite Java Applications

¢ UlSecureSocketStream TCP/IP synchronization with Certicom
eliptic-curve transport-layer security.

¢ UlSecureRSASocketStream TCP/IP synchronization with Certicom
RSA transport-layer security.

¢ UIHTTPStream HTTP synchronization.
¢ UIHTTPSStream HTTPS synchronization.
The following line sets the stream to TCP/IP:
synch_opts. set Stream(new U Socket Strean());

& For more information, see " Synchronization parameters' on page 380.

Separately-licensable option required

Use of UIHTTPSStream, Ul Secur eSocket Stream and

Ul Secur eRSA Socket Stream require Certicom technology, whichin turn
requires that you obtain the separately-licensable SQL Anywhere Studio
security option and is subject to export regulations. For more information
on this option, see "Welcome to SQL Anywhere Studio” on page 4 of the
book Introducing SQL Anywhere Sudio.

Initiating synchronization

Once you have initialized the synchronization parameters, and set them to
the values needed for your application, you can initiate synchronization using
the JdbcConnection.synchronize() method.

The method takes a UlSynchOptions object as argument. The set of cals
needed to synchronizeis asfollows:

U SynchQptions opts = new U SynchQpti ons;
opt s. set User Nane("50");
opts.setScriptVersion("default");
opts.setStrean{ new U Socket Strean());
opts. set StreanPar ns("host =123. 45. 678. 90");
conn. synchroni ze(opts);

Using transport-layer security from UltraLite Java applications
For additional security during synchronization, you can use transport-layer

security encrypt messages as they pass between Ultral ite application and the
consolidated database.

353

Adding synchronization to your application

Client changes

Setting up the
MobiLink server

354

& For information about encryption technology, see " Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s Guide.

Transport-layer security from UltraLite Java client applications uses a
separate synchronization stream. Y ou must set up your MobiLink
synchronization server as well as your UltraLite client to use this
synchronization stream.

At the client, you need to choose the Ul Secur eSocket Stream or

Ul Secur eRSA Socket Stream synchronization stream, and supply a set of
stream parameters. The stream parameters include parameters that control
Security.

Set the parameter as follows:

U SynchOptions opts = new U SynchQpti ons;
opts. set Strean(new U SecureSocket Strean());
opts. set StreanPar ns("host =nyserver;"

+ "port=2439;"

+ "certificate_conpany=Sybase Inc.;"

+ "certificate_unit="MC "

+ "certificate_nane=Mobilink");
/| set other options here
conn. synchroni ze(opts);

& For details on the stream parameters, see " UISecureSocketStream
synchronization parameters’ on page 409.

As the secure synchronization streams for Java applications are separate
streams, you must ensure that the MobiLink synchronization server is
listening for it. To do this, you must supply thejava_certicom_tls or
java_rsa_tls synchronization streams, to match your choice on the client.

The following command line is an example:

dbmi srv8 -x java_certicomtls(certificate=nycertificate.crt;port=1234)

The security parameters for the java _certicom_tlsand java rsa tls streams
are asfollows:

¢ certificate The name of the certificate file that contains the server's
identity. Thisfile needsto include the server’s certificate, the
certificates of all the certificate authoritiesin the certificate signing
chain, and the server’s private key.

The certificate parameter defaults to sample.crt for java_certicom_tls
and rsaserver.crtfor java_rsa_tls, which isthe default identity for
MobiLink. These files are distributed with SQL Anywhere Studio, in the
same directory as the MobiLink server.

¢ certificate_password The password used to encrypt the private key in
the certificatefile.

Chapter 15 Developing UltraLite Java Applications

The default is the password for the private key in sample.crt and
rsaserver.crt, which is test.

355

Monitoring and canceling synchronization

Monitoring and canceling synchronization

Monitoring
synchronization

Example

UltraL ite provides the following features for monitoring synchronization;

¢

¢

The UISynchObser ver interface for monitoring synchronization
progress and for canceling synchronization.

A progress indicator component that implements the interface, which
you can add to your application.

To monitor synchronization from an UltralL ite Java application, you write a
class that implements the UISynchObserver interface. Thisinterface
contains a single method:

voi d updat eSynchroni zati onStat us(U SynchStatus status)

The overall process for monitoring synchronization is as follows:

¢

Register your UlSynchObserver object using the UISynchOptions
class.

Call the synchronize() method to synchronize.

The updateSynchr onizationStatus method of your observer classis
called whenever the synchronization state changes. The following
section describes the synchronization state.

Hereisatypical sequence of instructions for synchronization. In this
example, the class M yObserver implements the UlSynchObserver
interface:

U SynchCQbserver observer = new M/Cbserver ();
U SynchQptions opts = new U SynchQpti ons();
/1 set options

opts. set User Nane("m user");

opts. set Password("m pwd");
opts.setStrean{ new U Socket Strean());
opts. set StreanParns("l ocal host");

opts. set Cbserver (observer);

opt s. set User Dat a(nyDat aCbj ect);

/'l synchroni ze

conn. synchroni ze(opts);

Implementing the UISynchObserver interface

356

In the class that implements UISynchObser ver, the UISynchStatus object
holds synchronization information. This object isfilled by UltraLite with
synchronization status information each time your
updateSynchronizationStatus method is called.

Chapter 15 Developing UltraLite Java Applications

UlISynchStatus

methods

The UISynchStatus object has the following methods:

int getState()

i nt get Tabl eCount ()

i nt get Tabl el ndex()

Ohj ect get User Dat a()

U SynchQpti ons get SynchOpti ons()
U Sgl Sttt get St at enrent ()

i nt get ErrorCode()

bool ean i sOKToCont i nue()

voi d cancel Synchroni zati on()

These methods have the following meanings:

¢

getState Returns a constant indicating the state of the synchronization.
The constant is one of the following values:

¢ STARTING No synchronization actions have yet been taken.

¢ CONNECTING The synchronization stream has been built, but not
yet opened.

¢ SENDING_HEADER The synchronization stream has been
opened, and the header is about to be sent.

¢ SENDING_TABLE A tableisbeing sent.

¢ RECEIVING_UPLOAD_ACK An acknowledgement that the
upload is complete is being received.

¢ RECEIVING_TABLE A tableisbeing received.

¢ SENDING_DOWNLOAD_ACK An acknowledgement that
download is complete is being sent.

¢ DISCONNECTING The synchronization stream is about to be
closed.

¢ DONE Synchronization has completed successfully.
¢ ERROR Synchronization has completed, but with an error.

& For adescription of the synchronization process, see " The
synchronization process' on page 24 of the book MobiLink
Synchronization User’s Guide.

getTableCount Returnsthe number of tables being synchronized. For
each table there is a sending and receiving phase.

getTableindex Returnsthe current table index for sending and
receiving, starting at O.

getUserData Returns the user data object.
getSynchOptions Returnsthe UISynchOptions object.

357

Monitoring and canceling synchronization

Example

getStatement Returns the statement that called the synchronization.
The statement is an internal UltraLite statement, and this method is
unlikely to be of practical use, but isincluded for completion.

getErrorCode When the synchronization state is set to ERROR, this
method returns a diagnostic error code.

isOKToContinue Thisis set to false when cancel Synchronization is
caled. Otherwise, itistrue.

cancelSynchronization The SQL exception SQLE_INTERRUPTED
is set, and the synchronization stops as if a communications error had
occurred. The observer is always called with either the DONE or
ERROR state so that it can do proper cleanup.

The following code snippet illustrates a very simple observer:

voi d updat eSynchroni zati onStatus(U SynchStatus status)
{
int state = status.getState();
Systemout.println("Sync status: " + state);
if(state == U SynchSt at us. SENDI NG TABLE | |
state == U SynchSt at us. RECEI VI NG_TABLE) {
Systemout.println("send/receive table " +
(status.getTablelndex() + 1) +
" of " + status.getTableCount());

Using the progress viewer

358

The UltraLite runtime library includes two progress viewer classes, which
provide an implementation of synchronization monitoring, together with the
ability for end usersto cancel synchronization. The progress viewer classes
are asfollows:

¢

ianywhere.ultralite.ui.SynchProgressViewer A heavyweight AWT
version.

ianywhere.ultralite.ui.SynchProgressViewer A Swing version of the
viewer that respects the Swing threading model.

The two classes are used identically. The viewer displays amodal or
modeless dialog, which shows a series of messages and a progress bar. Both
the messages and the bar are updated during synchronization. The viewer
also provides a Cancel button. If the user clicks the Cancel button,
synchronization stops and the SQL exception SQLE_INTERRUPTED is
thrown.

Chapter 15 Developing UltraLite Java Applications

Threading issues

[23 Synchronizing Data
sending table 6 of 6

In aJavaapplication, al events occur on a single thread called the event
thread. Also, al user interface objects are created on the event thread, even
if the application is on adifferent thread at the time. There is only one event
thread in an application.

The event thread must never block. Consequently, you should not perform
long operations on the event thread, as thisleads to painting aberrations.
Even calling the show() method on a modal dialog suspends execution of the
event thread. Y ou must therefore avoid calling the synchr onize() method on
the event thread.

Displaying a modal The following code snippet illustrates how to invoke a modal instance of the

viewer

Displaying a
modeless viewer

viewer. Theimport statement usesthe AWT version:

i mport ianywhere.ultralite. ui.SynchProgressVi ewer;
Il create a frane to displ ay a di al og

java.awt . Frane frame = ...;

/1 get UtraLite connection

Connection conn = ...;

I/ set synchronization options

U SynchQptions options = new U SynchQptions();
options. set User Nane("ny_user");

Il create the viewer

SynchProgressViewer viewer = new SynchProgressViewer(frame);
viewer.synchronize(frame, options);

/I execution stops here until synchronization is complete

When invoked in this manner, the viewer carries out the following
operations;

1 registersitself asasynchronization observer,
2 gpawns athread to do the synchronization,

3 displaysitself, blocking the current thread.
4

When synchronization finishes, the observer callback disposes of the
dialog, which lets the thread continue.

The following code snippet illustrates how to invoke a model ess instance of
the viewer:

359

Monitoring and canceling synchronization

Notes

360

SynchPr ogr essVi ewer viewer = new SynchProgressVi ewer(frane, false);
options. set Chserver(viewer);
conn. synchroni ze(options);

In this case, you must ensure that the synchronization occurs on a thread
other than the event thread, so that the viewer is not blocked.

¢

All messages come from the SynchPr ogr essViewer Resour ces resource
bundle.

The viewer implements the UISynchObser ver interface so it can hook
into the synchronization process.

The CustDB sample application includes a progress viewer. The CustDB
sample code isin the UltraLitelsamples\CustDB\java subdirectory of
your SQL Anywhere directory.

Chapter 15 Developing UltraLite Java Applications

UltraLite Java development notes

This section provides notes for development of Ultralite Java applications.

Creating UltraLite Java applets

Including an applet
in an HTML page

If you create your JDBC program as an applet, your application can only
synchronize with the machine from which the applet is loaded, which is
usualy the same asthe HTML.

Thefollowing is asample HTML page used to create an Ultralite applet:

<htm >
<head>
</ head>
<body bgcol or =" FFFF00" >
<appl et code="Cust DbAppl et. cl ass" wi dt h=440
hei ght =188 archi ve="custdb. zip,ulrt.jar" >
</ appl et >
</ body>
</htm >

The applet tag specifies the following:

¢ Theclassthat the applet starts:
code="Cust DbAppl et . cl ass"

¢ Thesize of the window in the web browser to display the applet to.
w dt h=440 hei ght =188

¢ Thezpfilesthat are necessary in order to run the applet.
archive="custdb.zip,ulrt.jar"

In this case, the custdb.zip file and the UltraLite runtime zip file are
necessary in order to run the UltraLite CustDB sampl e application.

361

Building UltraLite Java applications

Building UltraLite Java applications

This section covers the following subjects:
¢ "Generating Ultralite Java classes" on page 362
¢ "Compiling UltraLite Java applications' on page 363

Generating UltralLite Java classes

Overview

Common
command-line
combinations

362

When you have prepared a reference database, defined an UltraL ite project
for your application, and added SQL statements to define your data access
features, al the information the generator needs is inside your reference
database.

& For general information on the Ultralite generator, see " Generating the
UltraLite data access code" on page 91. For command-line options, see "The
UltraLite generator" on page 419.

The generator output is a Java source file with a filename of your choice.
Depending on the design of your database and the sophistication of the
database functionality your application requires, thisfile can vary greatly in
both size and content.

There are several ways to customize the Ultral ite generator output,
depending on the nature of your application.

Y ou generate the classes by running the Ultral ite generator against the
reference database.

To run the UltralLite generator:
¢ Enter the following command at a command-prompt:
ulgen—c" connection-string" options
where options depend on the specifics of your project.

When you are generating Java code, there are several options you may want
to specify:

¢ -tjava Generate Javacode. The generator isthe same tool used for
C/C++ development, so this option is required for al Java use.

¢ -i Some Javacompilers do not support inner classes correctly, and so
the default behavior of the generator is not to generate Java code that
includes inner classes. If you wish to take advantage of a compiler that
does support inner classes, use this option.

Chapter 15 Developing UltraLite Java Applications

Example L4

-p Itiscommon to include your generated classes in a package, which
may include other classes from your application. Y ou can use this switch
to instruct the generator to include a package name for the classesin the
generated files

-s In addition to the code for executing the SQL statements, generate
the SQL statements themselves as an interface. Without this option, the
strings are written out as members of the database classitself.

-a Make SQL string names upper case. If you choose the —a option,
theidentifier used in the generated file to represent each SQL statement
is derived from the name you gave the statement when you added it to
the database. It is a common convention in Java to use upper case letters
to represent constants. As the SQL string names are constants in your
Java code, you should use this option to generate string identifiers that
conform to the common convention.

The following command (which should be all on one line) generates
code that represents the SQL statements in the CustDemo project, and
the required database schema, with output in the file uldemo.java.

ulgen -c "dsn=Ultralite 8.0 Sample;uid=DBA;pwd=SQL"
—a -t java -s IStatements CustDemo uldemo.java

Compiling UltraLite Java applications

% To compile the generated file:

1

Set your classpath

When you compile your Ultral ite Java application, the Java compiler
must have access to the following classes:

¢ The Javaruntime classes.
¢ The UltraLite runtime classes
¢ Thetarget classes (usually in the current directory).

The following classpath gives access to these classes.

%JAVA _HOME%\jre\lib\rt.jar;%ASANY 8%!\ultralite\java\l
ib\ulrt.jar;.

where JAVA_HOME represents your Java installation directory, and
ASANY 8 represents your SQL Anywhere installation directory.

For JDK 1.1 development, uirt.jar isin a jdk11\lib subdirectory of the
UltraLiteljava directory.

Compile the classes.

363

Building UltraLite Java applications

With the classpath set asin step one, use javac and enter the following
command (on asingleline):

javac file.java
The compiler creates the class files for file.java.

The compilation step produces a number of classfiles. Y ou must include all
the generated .class files in your deployment.

Deploying Java applications
Y our Ultral ite application consists of the following:
¢ Classfilesyou created to implement your application.
¢ Generated classfiles.
¢ TheJavacore classes (rt.jar).
¢ UltraLiteruntime JAR file (ulrt.jar).

Y our UltraLite application can be deployed in whatever manner is
appropriate. Y ou may wish to package together these classfilesin a JAR file,
for ease of deployment.

Your UltraL ite application automatically initializes its own database the first
timeitisinvoked. At first, your database will contain no data. Y ou can add
data explicitly using INSERT statementsin your application, or you can
import data from a consolidated database through synchronization. Explicit
INSERT statements are especially useful when devel oping prototypes.

& For moreinformation, see "Adding synchronization to your
application” on page 352.

364

Chapter 15 Developing UltraLite Java Applications

UltraLite API reference

This section describes extensions to the JDBC interface provided by
UltraLite, and also describes JDBC features unsupported in UltraL ite.

JDBC features in UltraLite

The following are features and limitations specific to the devel opment of
JDBC UltraL ite applications.

The UltraLite APl ismodeled on JDBC 1.2, with the addition of the
following ResultSet methods from JDBC 2.0:

¢

*® & & ¢ & O O o o o

absolute(),
afterLast(),
beforeFirst(),
first(),
isAfterLast(),
isBeforeFirst(),
isFirst(),
isLast(),
last(),
previous(),
relative()

The following features are incompatible with the UltraL ite development
model and are not supported by UltraL ite.

¢

Thereisonly limited support for metadata access (system table access).
Therefore, you cannot use the DatabaseM etaData I nterface. Metadata
accessislimited to the number and type of columns.

Java objects cannot be stored in the database
There is no support for stored procedures or stored functions.

Only static SQL statements are supported and they must be added to the
database so that the UltralL ite generator can generate them.

365

UltraLite API reference

Unsupported JDBC methods

UltraL ite does not support the following JDBC 1.2 methods. An attempt to
use any of the following methods results in a SQL Exception with a vendor
code indicating that the feature is not supported in UltralL ite.

getCatalog
getMetaData

Connection ¢
.
¢ getTransactionlsolation
.
.

interface

setCatalog
setTransactionl solation
ResultSet interface
¢ getMetaData
cancel
getMaxFieldSize
getMaxRows
setMaxFieldSize
setMaxRows

Statement
interface

* & & oo o

Class JdbcConnection

Package ianywhere.ultralite.jdbc

Description Represents an UltraL ite database connection. Most methods are inherited
from the JDBC Connection class. Unsupported methods throw an
unsupported feature exception.

In a multi-threaded application, each thread must obtain a separate
connection. For more information, see "Devel oping multi-threaded
applications’ on page 93.

getDefraglterator method

Prototype JdbcDefraglterator getDefraglterator()
Description Initializes and returns a defragmentation iterator.
Parameters

user_name The MobiLink user name. See "user_name synchronization
parameter” on page 397.

366

Chapter 15 Developing UltraLite Java Applications

Returns
Throws

See also

password The password associated with user_name. See "password
synchronization parameter” on page 384.

script_version The script version. See "version synchronization
parameter” on page 397.

stream_defn The stream to use for synchronization. See "stream
synchronization parameter" on page 389.

parms Any user-supplied parameters used for the synchronization.

& See"stream_parms synchronization parameter” on page 394, and
" Synchronization stream parameters’ on page 399.

The defragmentation iterator.
java.sgl.SQLException
"Defragmenting Ultral ite databases' on page 51

getLastldentity method

Prototype

Description

Returns

See also

long getLastldentity()

Returns the most recent identity value used. This function is equivalent to the
following SQL statement:

SELECT @@dentity

The function is particularly useful in the context of global autoincrement
columns.

The last identity value.

"Determining the most recently assigned value" on page 61
"Global autoincrement default column values' on page 58

globalAutoincUsage method

Prototype

Description

Returns
Throws

See also

short globalAutoincUsage()

Returns the maximum global autoincrement counter percentage of all tables
in the database. The value is useful when deciding whether to set a database
ID.

The percentage of global autoincrement val ues that have been used.
java.sgl.SQLException

"Global autoincrement default column values' on page 58
"setDatabasel D method" on page 368

367

UltraLite API reference

setDatabaselD method

Prototype
Description

Parameters

Throws

See also

synchronize method

Prototype

Description

Parameters

Throws

void setDatabaselD(int value)

Setsthe

value Theinteger value to use as the global database identifier.
java.sgl.SQL Exception

"Global autoincrement default column values' on page 58
"global AutoincUsage method" on page 367

void synchronize(
java.lang.String user_name,
java.lang.String password,
java.lang.String script_version,
UlStream stream_defn,
java.lang.String parms’)

Synchronizes data with a MobiLink synchronization server.

user_name The MobiLink user name. See "user_name synchronization
parameter” on page 397.

password The password associated with user_name. See "password
synchronization parameter” on page 384.

script_version The script version. See "version synchronization
parameter” on page 397.

stream_defn The stream to use for synchronization. See "stream
synchronization parameter” on page 389.

parms Any user-supplied parameters used for the synchronization.

& See"stream_parms synchronization parameter” on page 394, and
" Synchronization stream parameters’ on page 399.

java.sgl.SQLException

startSynchronizationDelete method

Prototype
Description

Throws

368

void startSynchronizationDelete()
Restart logging of deletes for MaobiLink synchronization
java.sgl.SQL Exception

Chapter 15 Developing UltraLite Java Applications

See also "START SYNCHRONIZATION DELETE statement [MobiLink]" on
page 556 of the book ASA SQL Reference Manual

stopSynchronizationDelete method

Prototype void stopSynchronizationDelete()

Description Prevent logging of deletes for MobiLink synchronization.

Throws java.sql.SQLException

See also "STOP SYNCHRONIZATION DELETE statement [MobiLink]" on

page 563 of the book ASA SQL Reference Manual

Class JdbcDatabase

Package ianywhere.ultralite.jdbc

Description The JdbcDatabase is used directly only for obfuscating databases. The
generated database class extends JdbcDatabase and provides an object that
represents the Ultral ite database. Most JdbcDatabase methods are used from
the generated database class.

& For more information, see "The generated database class' on page 373.

changeEncryptionKey method

Prototype Connection changeEncryptionKey()

Description Changes the encryption key for an UltraL ite database.
Returns A JDBC Connection object.

Throws java.sgl.SQL Exception

See also "Encrypting UltraLite databases" on page 45

close method

Prototype void close()

Description Closes dl connections to an UltraLite database. This method must be
executed before an UltraLite database can be deleted.

Returns void

Throws java.sql.SQLException

369

UltraLite API reference

connect method
Prototype

Description

Parameters

Returns

Throws

Connection connect()
Connection connect(String user, String password)

Connection connect(String user, String password, Properties info)

Connects to an UltraL ite database. The user name and password are checked
only when user authentication has been enabled with
JdbcSupport.enableUser Authentication.

user A user name that can connect to the database.
password A string that must be entered as a password when connecting.

info A Properties object holding the user name and password.
A JDBC Connection object.
java.sgl.SQLException

countUploadRows method

Prototype

Description

Parameters

Returns

Throws

370

long countUploadRows(UISqIStmt stmt, int mask, long threshold)

Returns the number of rows that need to be uploaded when the next
synchronization takes place.

Y ou can use this function to determine if a synchronization is needed.
stmt The statement for which the upload rows are to be counted.

mask A set of publicationsto check. A value of 0 corresponds to the entire
database. The set is supplied as a mask. For example, the following mask
corresponds to publications PUB1 and PUB2.:

UL_PUB PUBL | UL_PUB PUB2

& For moreinformation on publication masks, see "publication
synchronization parameter” on page 386.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determinesif any rows need to be synchronized.

The number of rows to be uploaded.

java.sgl.SQLException

Chapter 15 Developing UltraLite Java Applications

drop method
Prototype

Description

Returns
Throws

See also

void drop()

Deletes an Ultral ite database file. This method should be used with care, and
can be executed only after the JdbcDatabase.close() method has been called.

void
java.sgl.SQL Exception
"close method" on page 369

getLastDownloadTimeCalendar method

Prototype

Description

Parameters

Returns

java.util.Calendar getLastDownload TimeCalendar(UISqlStmtint stmt, int
mask)

Returns the last time changes to the result set of a given statement were
downloaded.

stmt The statement for which the download time is to be checked.

mask A set of publications for which the last download timeis retrieved.
A value of 0 corresponds to the entire database. The set is supplied asa
mask. For example, the following mask corresponds to publications PUB1
and PUB2..

UL_PUB PUBL | UL_PUB_PUB2

& For more information on publication masks, see "publication
synchronization parameter" on page 386.

The last time the statement was downloaded.

getLastDownloadTimeDate method

Prototype

Description

Parameters

java.util.Date getLastDownload TimeDate(UISqglStmtint stmt, int mask)
Returns the last time changes to the result set of a given statement were
downloaded.

stmt The statement for which the download time is to be checked.

mask A set of publications for which the last download time s retrieved.
A value of 0 corresponds to the entire database. The set is supplied asa
mask. For example, the following mask corresponds to publications PUB1
and PUB2..

UL_PUB PUBL | UL_PUB_PUB2

371

UltraLite API reference

& For more information on publication masks, see "publication
synchronization parameter” on page 386.

Returns The last time the statement was downloaded.

getLastDownloadTimeLong method

Prototype long getLastDownloadTimeLong(UISqIStmt stmt, int mask)

Description Returns the last time changes to the result set of a given statement were
downloaded.

Parameters

stmt The statement for which the download time is to be checked.

mask A set of publications for which the last download time s retrieved.
A value of 0 corresponds to the entire database. The set is supplied asa
mask. For example, the following mask corresponds to publications PUB1
and PUB2..

UL_PUB PUBL | UL_PUB_PUB2

& For moreinformation on publication masks, see "publication
synchronization parameter" on page 386.

Returns The last time the statement was downloaded.

grant method
Prototype void grant(String user, String password)

Description Grants a user name and password permission to connect to an UltraLite
database. To take effect, this method requires that user authentication has
been enabled with JdbcSupport.enableUser Authentication.

Parameters user A string that must be entered as a user name when connecting.
password A string that must be entered as a password when connecting.

Returns void.

Throws java.sql.SQLException

revoke method
Prototype void revoke(String user)

Description Revokes permission to connect to an UltraL ite database from a user name.
To take effect, this method requires that user authentication has been enabled
with JdbcSupport.enableUser Authentication.

372

Chapter 15 Developing UltraLite Java Applications

Parameters user The user name that can no longer connect to the database.
Returns void.
Throws java.sgl.SQL Exception

setDefaultObfuscation method

Prototype setDefaultObfuscation (true | false)
Description Obfuscates the database
See also "Obfuscating an UltraL ite database" on page 46

The generated database class

Description The generated database class extends JdbcDatabase. It provides an object
that represents the UltraLite database. JdbcDatabase methods are typically
used on the generated database class.

Constructor new database-name(Properties props)

where database-name is the name of the generated database class. Y ou can
specify the class name using the Ultralite generator - f command-line
option.

& For more information, see "The UltraLite generator" on page 419.

Parameters props A Properties object containing some or al of the following items:
¢ pesist
¢ pesstfile
¢ key

& For more information, see "Using a Properties object to store
connection information” on page 347.

Class JdbcDefraglterator

Package ianywhere.ultralite.jdbc

Description Provides an object used for explicit defragmentation of the database store.

373

UltraLite API reference

ulStoreDefragStep method

Prototype
Description

Parameters

Returns

Throws

See also

boolean ulStoreDefragStep(UlConnection conn)

Defragments a portion of an Ultral ite database.
conn The current connection, as a JdbcConnection object.
true if successful.

false in unsuccessful.
java.sgl.SQL Exception

"STOP SYNCHRONIZATION DELETE statement [MobiLink]" on
page 563 of the book ASA SQL Reference Manual

Class JdbcSupport

Package

Description

ianywhere.ultralite.jdbc

A static class that provides methods to enable Ultralite features.

enableUserAuthentication method

Prototype

Description

Parameters
Returns

Throws

See also

void enableUserAuthentication()

Sets the Ultral ite database so that user authentication is required to connect
toit. Must be called before the database object is created.

None.
Void.
java.sgl.SQLException

"Java user authentication example" on page 89

disableUserAuthentication method

Prototype

Description

Parameters

Returns

374

void disableUserAuthentication()

Sets the UltralL ite database so that user authentication is not required to
connect to it. Must be called before the database object is created.

None.

Void.

Chapter 15 Developing UltraLite Java Applications

Throws java.sql.SQLException
See also "enableUserA uthentication method" on page 374

375

UltraLite API reference

376

PART FOUR
Reference

This part provides reference material that applies to more than one of the
UltraLite development models.

377

378

CHAPTER 16
UltraLite Reference

About this chapter

Contents

This chapter provides reference information about the UltralLite utility

programs and synchronization parameters.

Topic Page
Synchronization parameters 380
Synchronization stream parameters 399
Reference database stored procedures 411
The HotSync conduit installation utility 414
The SQL preprocessor 415
The UltralLite generator 419
The UltraLite segment utility 425
The UltraLite utility 426
Macros and compiler directives for UltraLite C/C++ applications 427

379

Synchronization parameters

Synchronization parameters

The synchronization parameters are grouped into a structure (C/C++) or
object (Java) that is provided as an argument in the call to synchronize. The
C/C++ structure has the following members, and the Java UISynchOptions
object has equivalent access methods.

String parameters are null-terminated strings in C/C++, and String objectsin
Java.

Use UL_TEXT around constant strings in C/C++ applications
The UL_TEXT macro allows constant strings to be compiled as single-
byte strings or wide-character strings. In embedded SQL and C++ API
applications, use this macro to enclose al constant strings supplied as
members of the ul_synch_info structure so that the compiler handles
these parameters correctly.

For C/C++ users, the ul_synch_info structure that holds the synchronization

parameters is defined in ulglobal.h as follows:;

struct ul_synch_info {

}s

ul _char *

ul _char *

ul _char *

ul _char *

p_ul _streamdefn
ul _streamerror
ul _char *

p_ul _streamdefn
ul _char *

ul _synch_observer _fn
ul _void *

ul _bool
ul _bool
ul _bool
ul _bool
ul _aut h_status
ul _bool

ul _publication_mask
ul _bool

ul _s_l ong
ul _bool
ul _bool

p_ul _synch_info

user _narre;
passwor d;
new_passwor d
version

stream
streamerror;

st ream par ns;
security;
security_parns;
observer;

user _dat a;

upl oad_onl y;

downl oad_onl y;

upl oad_ok

i gnor ed_r ows;

aut h_st at us;
send_downl oad_ack
publ i cati on;
send_col um_nanes;
aut h_val ue
checkpoi nt _store
pi ng;

init_verify

Theinit_verify field isreserved for internal use.

380

Chapter 16 UltraLite Reference

auth_status synchronization parameter

Function

C/C++ usage

Java usage

Reports the status of MaobiLink user authentication. The MobiLink
synchronization server provides this information to the client.

If you are implementing a custom authentication scheme, the
authenticate_user or authenticate _user_hashed synchronization script must
return one of the allowed values of this parameter.

The parameter is read-only.

After synchronization, the auth_status member of ul_synch_info holds one
of the following values:

Constant Value | Description

UL_AUTH_STATUS UNKNOWN | 0 Authorization status is unknown,
possibly because the connection
has not yet synchronized.

UL_AUTH_STATUS_VALID 1000 User ID and password were
valid at the time of
synchronization.

UL_AUTH_STATUS VALID_BU | 2000 User ID and password were
T_EXPIRES SOON valid at thetime of
synchronization but will expire
soon.

UL_AUTH_STATUS EXPIRED 3000 Authorization failed: user ID or
password have expired.

UL_AUTH_STATUS INVALID 4000 Authorization failed: bad user ID
or password.

UL_AUTH_STATUS IN_USE 5000 | Authorization failed: user ID is
aready in use.

If acustom authenticate user synchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in "authenticate_user connection event" on page 446 of the book
MobiLink Synchronization User’s Guide.

Access the parameter as follows:

ul _synch_i nfo info;
1 .
returncode = info.auth_status;

Retrieve the authorization status using UISynchOptions.getAuthStatus().

381

Synchronization parameters

U SynchQptions opts = new U SynchQpti ons;
I/ set options here

conn. synchroni ze(opts);

returncode = opts. get Aut hStatus();

The constants are the same as for C/C++, but prefixed with UIDefn.

See also "Authenticating MobiLink Users' on page 251 of the book MobiLink
Synchronization User’s Guide.

auth_value synchronization parameter

Function Provides a place to hold return values from custom user authentication
synchronization scripts.
Default The values set by the default MobiLink user authentication mechanism are
described in "auth_status synchronization parameter” on page 381
C/C++ usage Get the parameter as follows:
ul _synch_i nfo info;
...
returncode = info.auth_val ue;
Java usage The Java access method is getAuthValue.

Get the parameter as follows:

U SynchQptions opts = new U SynchQpti ons;
[/ set other options here

conn. synchroni ze(opts);

returncode = opts. get Aut hVal ue();

See also "authenticate_user connection event" on page 446 of the book MobiLink
Synchronization User’s Guide
"authenticate _user _hashed connection event" on page 450 of the book
MobiLink Synchronization User’s Guide
"auth_status synchronization parameter” on page 381

checkpoint_store synchronization parameter

Function Adds additional checkpoints of the database during synchronization to limit
database growth during the synchronization process.

The checkpoint operation adds 1/O operations for the application and for the
Palm conduit and so slows synchronization. The option is most useful for
large downloads with many updates. Devices with slow flash memory may
not want to pay the performance penalty.

382

Chapter 16

UltraLite Reference

Default By default, limited checkpointing is done.

C/C++ usage Set the parameter as follows:

ul _synch_info info;
1.
i nfo. checkpoint_store = ul _true ;

Java usage Not used by Java applications.

download_only synchronization parameter

Function Do not upload any changes from the UltraL ite database during this
synchronization.

Default The parameter is an optional Boolean value, and by default is false.

C/C++ usage Set the parameter as follows:

ul _synch_i nfo info;
...
i nfo. downl oad_only = ul _true;

Java usage The Java access methods are getDownloadOnly and setDownloadOnly.

Set the parameter as follows:

U SynchQptions opts = new U SynchQpti ons;

opt s. set Downl oadOnl y(true);
I/l set other options here
conn. synchroni ze(opts);

See also "Including read-only tablesin an UltralLite database" on page 78.

"upload_only synchronization parameter" on page 396

ignored_rows synchronization parameter

Function This boolean parameter is set to true if any rows were ignored by the
MobiLink synchronization server during synchronization because of absent

scripts.

The parameter isread-only.

new_password synchronization parameter

Function Setsanew MobiLink password associated with the user_name.

Default The parameter is optional, and isa string.

383

Synchronization parameters

C/C++ usage

Java usage

See also

Set the parameter as follows:

ul _synch_info info;

...

i nfo. password = UL_TEXT("nyol dpassword");

i nfo. new _password = UL_TEXT("nynewpassword");

The Java access methods are getNewPasswor d and setNewPasswor d.

Set the parameter as follows:

U SynchQptions opts = new U SynchQpti ons;
opt s. set User Nane("50");

opts. set Password("nypassword");
opt s. set NewPasswor d(" nynewpassword");
/1 set other options here

conn. synchroni ze(opts);

"Authenticating MobiLink Users' on page 251 of the book MobiLink
Synchronization User’s Guide.

observer synchronization parameter

Function

See also

A pointer to a callback function that monitors synchronization.

The Java access method is setObser ver, which takes a UISynchObser ver
object as argument.

"Monitoring and canceling synchronization" on page 98
"user_data synchronization parameter" on page 396

password synchronization parameter

Function

Default

C/C++ usage

Java usage

384

A string specifying the MobiLink password associated with the user_name.
This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

The parameter is optional, and is a string.

Set the parameter as follows:

ul _synch_i nfo info;
/o,
i nfo. password = UL_TEXT("nypassword");
The Java access methods are getPasswor d and setPassword.

Set the parameter as follows:

Chapter 16 UltraLite Reference

See also

U SynchQptions opts = new U SynchQpti ons;
opt s. set User Nane("50");

opts. set Password("nypassword");

/| set other options here

conn. synchroni ze(opts);

" Authenticating MobiLink Users' on page 251 of the book MobiLink
Synchronization User’s Guide.

ping synchronization parameter

Function

Default

C/C++ usage

Java usage

Confirm communications between the UltraL.ite client and the MobiLink
synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server isrunning with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exit, for a ping request;

¢ begin_connection

¢ authenticate user

¢ authenticate user_hashed
¢

end_connection

The parameter is optional, and is a boolean.

Set the parameter as follows:

ul _synch_i nfo info;
...
info.ping = ul _true;

The Java access method is setPing.

Set the parameter as follows:

385

Synchronization parameters

See also

U SynchQptions opts = new U SynchQpti ons;
opt s. set User Nane("50");

opts.setPing(true);

/|l set other options here

conn. synchroni ze(opts);

"-pi option" on page 427 of the book MobiLink Synchronization User’s
Guide

publication synchronization parameter

Function
Default

C/C++ usage

Java usage

386

Specifies the publications to be synchronized.
If you do not specify a publication, all datais synchronized.

The UltraL ite generator identifies the publications specified on the ulgen - v
command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option. For
example, the following command line generates a publication identified by
the constant UL_PUB_SALES

ulgen -v sales ...

When synchronizing, set the publication parameter to a publication mask:
an ORd list of publication constants. For example:

ul _synch_i nfo info;

...

i nfo.publication = U._PUB_MYPUBL | UL_PUB MYPUB2 ;

The special publication mask UL_SYNC_ALL describes all the tablesin the
database, whether in a publication or not. The mask
UL_SYNC_ALL_PUBSdescribesal tablesin publicationsin the database.

The UltraLite generator identifies the publications specified on the ulgen - v
command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option.
These constants are fields of the generated project class. For example, the
following command line generates a publication identified by the constant
sal esproj ect. UL_PUB_SALES.

ulgen -j salesproject -v sales ...

When synchronizing, use the setSynchPublication method to set the
parameter to an OR'd list .

Set the parameter as follows:

Chapter 16 UltraLite Reference

U SynchQptions opts = new U SynchQpti ons;
opt s. set SynchPubl i cat i on(
proj ect nane. UL_PUB_MYPUBL |
proj ect name. UL_PUB_MYPUB2);
/1 set other options here
conn. synchroni ze(opts);

where projectname is the name of the main project class generated by the
analyzer.

See also "The UltraLite generator" on page 419
"Designing sets of datato synchronize separately” on page 76

security synchronization parameter

Function Set the UltraLite client to use Certicom encryption technology when
exchanging messages with the MobiLink synchronization server.

Separately-licensable option required

Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to

SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere

Sudio.
Default The security parameter is null by default, corresponding to no transport-
layer security.
CI/C++ usage The following security streams are supported:

¢ ULSecureCerticomTLSStream() Elliptic-curve transport-layer
security provided by Certicom.

¢ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom.

For C/C++ applications, the security stream is specified in addition to the
synchronization stream. For example, in embedded SQL :

ul _synch_i nfo info;

|nfo stream = ULSocket Stream() ;
info.security = ULRSATLSStrean();

Java usage To use secure synchronization from UltraLite Java applications, choose a
Separate stream. For more information, see "Initializing the synchronization
options" on page 352.

387

Synchronization parameters

See also

"Transport-Layer Security" on page 283 of the book MabiLink
Synchronization User’s Guide.

security_parms synchronization parameter

Function

C/C++ usage

Java usage

388

Sets the parameters required when using transport-layer security. This
parameter must be used together with the security parameter.

& For moreinformation, see "security synchronization parameter” on
page 387.

The UL Secur eCerticomTL SStream() and UL Secur eRSATL SStream()
security parameters take a string composed of the following optional
parameters, supplied in an semicolon-separated string.

¢ certificate_company The UltralLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, thisfield is not checked.

¢ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches
this value. By default, thisfield is not checked.

¢ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, thisfield is not checked.

For example, in embedded SQL :

ul _synch_info info;

i nfo. stream = ULSocket Strean();
info.security = ULSecureCerticonfLSStrean();
info.security parns =

UL_TEXT("certificate_conpany=Sybase")

UL_TEXT(";")

UL_TEXT("certificate_unit=Sal es");

The security_parms parameter is astring, and by default is null.

If you use secure synchronization, you must also use the—r command-line
option on the UltralLite generator. For more information, see "The UltraL ite
generator” on page 419.

To use secure synchronization from Ultralite Java applications, choose a
Separate stream. For more information, see "Initializing the synchronization
options" on page 352.

Chapter 16 UltraLite Reference

send_column_names synchronization parameter

Function

Java usage

See also

When send_column_namesis set to ul_true UltralLite sends each column
name to the MobiLink synchronization server. By default UltralLite does not
send column names.

This parameter is typically used together with the - za or - ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

This parameter is not available for UltraLite Java applications.

"-zaoption" on page 402 of the book MabiLink Synchronization User’s
Guide

send_download_ack synchronization parameter

Function

Set this boolean parameter to false to instruct the MobiLink synchronization
server that the client will not provide a download acknowledgement.

If the client does send download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

stream synchronization parameter

Function

Default

C/C++ usage

Set the MobiLink synchronization stream to use for synchronization.

Most synchronization streams require parameters to identify the MobiLink
synchronization server address and other behavior. These parameters are
supplied in the stream_par ms parameter.

& For moreinformation, see "stream_parms synchronization parameter”
on page 39%4.

The parameter has no default value, and must be explicitly set.

For embedded SQL, set the parameter asin the following example:
ul _synch_info info;
i .nfo. stream = ULSocket Stream();

C++ API usageisas follows:

389

Synchronization parameters

390

Connecti on conn;
auto ul _synch_info info;

ébﬁn. I nitSynchlnfo(& nfo);
i nfo. stream = ULSocket Strean();

When the type of stream requires a parameter, pass that parameter using the
stream_par ms parameter; otherwise, set the stream_par ms parameter to
null.

The following C/C++ stream functions are available, but may not be
supported on all target platforms:

Chapter 16 UltraLite Reference

Stream

Description

UL ActiveSyncStream()

UL ConduitStream()

ULHTTPStream()

ULHTTPSStream()

ActiveSync synchronization (Windows CE only).

& For alist of stream parameters, see
"ActiveSync parameters’ on page 399.

Synchronize via HotSync or ScoutSync stream
(C/C++ only, Pam Computing Platform only).

This function is deprecated. Y ou can supply
UL_NULL to synchronize viaHotSync or
ScoutSync.

& For alist of stream parameters, see "HotSync
and ScoutSync parameters' on page 401.

Synchronize viaHTTP.

The HTTP stream uses TCP/IP asits underlying
transport. UltraLite applications act as Web
browsers and the MaobiLink synchronization server
acts as aWeb server. Ultralite applications send
POST requests to send data to the server and GET
requests to read data from the server.

& For alist of stream parameters, see "HTTP
stream parameters’ on page 403.

Synchronize viathe HTTPS synchronization
stream.

The HTTPS stream uses SSL or TLS asits
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS stream requires the use of technology
supplied by Certicom. Use of Certicom technology
requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is
subject to export regulations. For more information
on this option, see "Welcome to SQL Anywhere
Studio" on page 4 of the book Introducing SQL
Anywhere Sudio.

& For alist of stream parameters, see "HTTPS
stream parameters’ on page 406.

391

Synchronization parameters

Java usage

392

Stream

Description

ULPalmDBStream()

UL SocketStream()

Synchronize via HotSync or ScoutSync stream
(C/C++ only, Palm Computing Platform only).

This function is deprecated. Y ou can supply
UL_NULL to synchronize viaHotSync or
ScoutSync.

& For alist of stream parameters, see "HotSync
and ScoutSync parameters' on page 401.

Synchronize via TCP/IP.

& For alist of stream parameters, see "TCP/IP
stream parameters’ on page 402.

The Java access methods are getStream and setStream. The streamitself is
an object, and the stream names differ slightly from the C/C++ versions.

Stream

Description

UIHTTPStream()

UIHTTPSStream()

Ul SecureSocketStream()

Ul SecureRSA SocketStream()

Ul SocketStream()

HTTP synchronization.

& For alist of stream parameters, see "HTTP
stream parameters' on page 403.

HTTPS synchronization.

& For alist of stream parameters, see
"HTTPS stream parameters’ on page 406.

TCP/IP or HTTP synchronization with
transport-layer security using elliptic curve
encryption.

& For alist of stream parameters, see
"Ul SecureSocketStream synchronization
parameters” on page 409.

TCP/IP or HTTP synchronization with
transport-layer security using RSA encryption.

& For alist of stream parameters, see
"Ul SecureRSA SocketStream synchronization
parameters" on page 408..

TCP/IP synchronization.

& For alist of stream parameters, see
"TCP/IP stream parameters” on page 402.

Set the parameter as follows:

Chapter 16 UltraLite Reference

U SynchQptions opts = new U SynchQpti ons;

opts. set Strean(new U Socket Stream());

opts. set StreanPar ns("host =nyserver; port=2439");
/| set other options here

conn. synchroni ze(opts);

& For information on Java synchronization streams, see "Initiaizing the
synchronization options" on page 352.

stream_error synchronization parameter

Function Set a structure to hold communications error reporting information.
Default The parameter has no default value, and must be explicitly set.
Description Thestream_error field isastructure of typeul_stream_error.
typedef struct ss_error {
ss_streamid streamid;
ss_stream cont ext st ream cont ext ;
ss_error_code stream error_code;
asa_ui nt 32 system error _code;
rp_char *error_string;
asa_ui nt 32 error_string_l ength;

} ss_ error, *p_ss_ error;

The structure is defined in sserror.h, in the h subdirectory of your
SQL Anywhere directory.

Theul_stream_error fields are as follows;

¢ stream_id The network layer reporting the error. This enumeration
has the following constants:

STREAM | D_TCPI P
STREAM | D_HTTP
STREAM | D_CERTI COM TLS
STREAM | D_PALM CONDUI T
STREAM | D_ACTI VESYNC

¢ stream_context The basic network operation being performed, such
as open, read, or write. For details, see sserror.h.

¢ stream_error_code The error reported by the streamitself. The
stream_error_codeis of type ss error_code. The stream error codes
are all prefixed with STREAM_ERROR . A write error, for example, is
STREAM_ERROR_WRITE.

& For alisting of error numbers, see "MobiLink Communication
Error Messages' on page 631 of the book MabiLink Synchronization
User’s Guide. For the error code suffixes, see sserror.h.

393

Synchronization parameters

In thisversion, to find the constant associated with each number you
must count down the number of lines prefixed by DO_STREAM_Error
in sserror.h. For example, to find the constant for error number 10, you
use the tenth DO_STREAM_ERROR entry in sserror.h, which isas
follows:

DO STREAM ERROR(WRI TE)

Th constant associated with this error is therefore
STREAM_ERROR_WRITE.

¢ stream_error The network operation being performed (the context)
and the error itself as an enumeration constant.

¢ stream_error_code A system-specific error code.
¢ error_string An application-provided error message

CI/C++ usage For embedded SQL, check for SQLE_ COMMUNICATIONS ERROR as
follows:

ul _char error_buff[100];
ul _synch_info info;

ULl ni t Synchlinfo(& nfo);
info.streamerror.error_string = error_buff;
info.streamstring error.error_length = sizeof(
error_buff);

ULSynchroni ze(&sqglca, & nfo)

i f(SQLOODE == SQE _COVWMUN CATI ONS_ERROR) {
printf(error_buff);

.../l nore error handling here

C++ API usageis as follows:

Connecti on conn;
auto ul _synch_info info;

conn. I nitSynchlnfo(& nfo);
info.streamerror.error_string = error_buff;
info.streamerror.error_length = sizeof (error_buff);
i f(!'conn. Synchronize(&ynch_info)){
i f(SQLCODE == SQLE_COMMUNI CATI ONS_ERRCR){
printf(error_buff);
/1 nmore error handline here

Java usage Thisfeature is not available for Java applications.

stream_parms synchronization parameter
Function Sets parameters to configure the synchronization stream.

394

Chapter 16 UltraLite Reference

Default

C/C++ usage

Java usage

See also

A semi-colon separated list of parameter assignments. Each assignment is of
the form keyword=value, where the allowed sets of keywords depends on the
communications protocol.

For more information, see the following sections:

¢ "HotSync and ScoutSync parameters' on page 401
¢ "HTTP stream parameters’ on page 403

¢ "ActiveSync parameters' on page 399

¢ "TCP/IP stream parameters' on page 402

The parameter is optional, is astring, and by default is null.

For embedded SQL, set the parameter as follows:

ul _synch_info info;
...
i nfo. stream parns= UL_TEXT("host =nyserver; port=2439");

For the C++ API, set the parameter as follows:

Connection conn;
auto ul _synch_info info;

ébﬁn. I nitSynchlnfo(& nfo);
i nfo.streamrparns = UL_TEXT("host=nyserver; port=2439")

Set the parameter as follows:

U SynchQpti ons synch_options = new U SynchOpti ons();
synch_opts. set Stream(new U Socket Strean());
synch_opts. set StreanPar ns("host =nyserver; port=2439");

" Synchronization stream parameters' on page 399.

upload_ok synchronization parameter

Function

C/C++ usage

Reports the status of MobiLink uploads. The MobiLink synchronization
server provides thisinformation to the client.

The parameter isread-only.

After synchronization, the upload_ok member of ul_synch_info holdstrue
if the upload was successful, and fal se otherwise.

Access the parameter as follows:

ul _synch_info info;
1.
returncode = info. upl oad_ok;

395

Synchronization parameters

Java usage

Retrieve the authorization status using UISynchOptions.getAuthStatus().

U SynchQptions opts = new U SynchQpti ons;
[/ set options here

conn. synchroni ze(opts);

returncode = opts. get Upl oadOXK() ;

upload_only synchronization parameter

Function

Default

C/C++ usage

Java usage

See also

Indicates that there should be no downloads in the current synchronization,
which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

The parameter is an optiona Boolean value, and by default is false.

Set the parameter to true as follows:

ul _synch_i nfo info;
...
i nfo.upload_only = ul _true;

The Java access methods are setUploadOnly and getUploadOnly.

"Synchronizing high-priority changes' on page 78
"download_only synchronization parameter”" on page 383

user_data synchronization parameter

Function

C/C++ usage

Java usage

See also

396

M ake application-specific information available to the synchronization
observer class (Java) or the synchronization observer callback function
(C++ API).

When implementing the synchronization observer callback function
observer, you may wish to make application-specific information available.
Y ou do this by providing information using user _data.

When implementing the synchronization observer interface
UISynchObserver, you may wish to make application-specific information
to the synchronization observer class. Y ou do this by providing an object in
the setUser Data method.

"observer synchronization parameter" on page 384
"Monitoring and canceling synchronization" on page 356

Chapter 16 UltraLite Reference

user_name synchronization parameter

Function

Default

C/C++ usage

Java usage

See also

A string specifying the user name that uniquely identifies the MobiLink
client to the MobiLink synchronization server. MobiLink uses this value to
determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

The parameter isrequired, and isastring.

Set the parameter as follows:

ul _synch_i nfo info;
...
i nfo.user_name= UL_TEXT("uluser");

The Java access methods are getUser Name and setUser Name.

Set the parameter as follows:

U SynchQpti ons synch_options = new U SynchQpti ons();
synch_opts. set User Name("nynane");

" Authenticating MobiLink Users' on page 251 of the book MobiLink
Synchronization User’s Guide.

"The MobiLink user" on page 22 of the book MobiLink Synchronization
User’s Guide.

version synchronization parameter

Function

Default

C/C++ usage

Java usage

Each synchronization script in the consolidated database is marked with a
version string. For example, there may be two different download_cur sor
scripts, identified by different version strings. The version string allows an
UltralL ite application to choose from a set of synchronization scripts.

The parameter is astring, and by default isthe MobiLink default version
string.
Set the parameter as follows:

ul _synch_info info;
1.
info.version = UL_TEXT("default");

The Java access methods are getScriptVersion and setScriptVersion.

Set the parameter as follows:

U SynchQpti ons synch_options = new U SynchQpti ons();
synch_opts. set Version("default");

397

Synchronization parameters

See also " Script versions' on page 61 of the book MobiLink Synchronization User’s
Guide.

398

Chapter 16 UltraLite Reference

Synchronization stream parameters

Setting a stream

Each synchronization stream has a set of appropriate stream parameters.
These parameters set required values for the stream, such as the location of
the MobiLink synchronization server, and network-specific control
parameters. This section lists the stream parameter values for each stream.

Meaning differs for HotSync and ActiveSync

For HotSync and ScoutSync synchronization, the meaning of the
synchronization stream parameters is different than for other streams. For
information, see "HotSync and ScoutSync parameters' on page 401 and
"ActiveSync parameters’ on page 399.

For C/C++ applications, the synchronization stream parameters are supplied
in the stream_par ms member of the ul_synch_info structure, as a string.
The following embedded SQL codeis an example for TCP/IP
synchronization:

ul _synch_info info;

i nfo.stream = ULSocket Strean();
info.streamparns = UL_TEXT("host=nyserver");

For Java applications, the synchronization stream parameters are supplied
using the setStreamPar ms method. The following example illustrates how
to call the method:
U SynchQpti ons synch_options = new U SynchQpti ons();
synch_opts. set Strean(new U Socket Strean());
synch_opts. set StreanPar ns("host =nyserver; port=2439");

& For alist of synchronization streams and how to set a synchronization
stream, see "stream synchronization parameter” on page 389. For syntax
information, see "stream_parms synchronization parameter" on page 394.

ActiveSync parameters

Meaning of
synchronization
stream parameters

The ActiveSync synchronization stream is accessible from C/C++
applications running on Windows CE.

The stream_par ms values control the connection from the MobiLink
ActiveSync provider, running on the desktop machine, to the MobiLink
synchronization server.

The stream_par ms argument has the following form:

{strean¥st ream nane; provi der_st ream par anet er s}

399

Synchronization stream parameters

Adding encryption
to ActiveSync
synchronization

400

where stream_name indicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

¢ tepip
¢ http

and where provider_stream parametersisa set of stream parameters for use
by the ActiveSync provider, and has the same form as the stream_parms
argument for the protocol in use. For the given stream, the

provider_stream parameters adopts the same defaults as the stream_par ms
argument for the protocol. The default value for the stream _nameis tcpip.

For example, the following snippet uses an HTTP synchronization stream;

ULl ni t Synchlinfo(& nfo);

i nfo.stream = ULActiveSyncStrean();
info.stream parns = "streanrhttp";
ULSynchroni ze(&sqglca, & nfo);

& For moreinformation on provider_stream parameters, see " TCP/IP
stream parameters' on page 402, and "HTTP stream parameters’ on
page 403.

To add Certicom encryption to the stream, the root certificates must bein a
file on the desktop machine. Thisis different from other UltraLite
applications, where the encryption information is embedded in the security
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients. The
format is:

security=cipher{ keyword=value;... }

where cipher must be certicom_tls and the keywords are taken from the
following list:

¢ certificate_company The organization field on the certificate.
¢ certificate_unit The organization unit field on the certificate.
¢ certificate_name The common name field on the certificate.
¢ trusted_certificates Thelocation of the trusted certificates.

For example:

info.streamparns =
"streanrtcpi p; security=certicomtls{trusted_certificates
=trusted.crt}";

&~ For more information, see "CREATE SYNCHRONIZATION USER
statement [MobiLink]" on page 335 of the book ASA SQL Reference Manual.

Chapter 16 UltraLite Reference

HotSync and ScoutSync parameters

Meaning of
synchronization
stream parameters

Null value and
default settings

To choose HotSync synchronization, supply the ul_synch_info structure to
the UL PalmEXxit or UL Data::PalmExit method of your application. The
stream parameter isignored, and may be set to UL_NULL.

& For more information on choosing a HotSync synchronization stream,
see "Understanding HotSync and ScoutSync synchronization™ on page 269.

For HotSync and ScoutSync synchronization, the stream_par ms values do
not control the connection from the device to the HotSync Manager or
HotSync Server. Instead, they specify the connection from the MobiLink
conduit, running at the HotSync manager or server, to the MobiLink
synchronization server.

The stream_par ms argument has the following form:
{streanrst ream nane;, condui t _st ream par anet er s}

where stream_name indicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

¢ tepip
¢ http

and where conduit_stream parametersis a set of stream parameters for use
by the conduit, and has the same form as the stream_par ms argument for
the protocol in use. For the given stream, the conduit_stream parameters
adopts the same defaults as the stream_par ms argument for the protocol.
The default value for the stream_name is tcpip.

For example, the following snippet uses an HTTP synchronization stream;

ULl ni t Synchlinfo(& nfo);
i nfo.streamparnms = "streanrhttp";

& For moreinformation on conduit_stream parameters, see "TCP/IP
stream parameters' on page 402, and "HTTP stream parameters’ on
page 403.

If you use HotSync or ScoutSync synchronization, and supply anull value to
stream_par ms, the conduit searches in the registry for the stream name and
stream parameters. If it finds no valid stream, the default stream and stream
parameters is used. This default stream_par ms parameter is:

{'strean¥t cpi p; host =l ocal host}

& For information on registry locations, see ""Configuring conduit
synchronization” on page 277.

401

Synchronization stream parameters

Adding encryption
to HotSync and
ScoutSync
synchronization

To add Certicom encryption to the stream, the root certificates must bein a
file on the desktop machine. Thisis different from other UltraLite
applications, where the encryption information is embedded in the security
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients. The
format is:

security=cipher{ keyword=value;... }

where cipher must be certicom_tls and the keywords are taken from the
following list:

¢ certificate_company The organization field on the certificate.
¢ certificate_unit The organization unit field on the certificate.
¢ certificate_name The common name field on the certificate.
¢ trusted_certificates Thelocation of the trusted certificates.

For example:

info.streamparns =
"streanrtcpi p; security=certicomtl|s{trusted_certificates
=trusted.crt}";

& For moreinformation, see "CREATE SYNCHRONIZATION USER
statement [MobiLink]" on page 335 of the book ASA SQL Reference Manual.

TCP/IP stream parameters

402

The TCP/IP synchronization stream is accessible from C/C++ applications
by using the UL Socket Stream() function , or from Java applications by
using the Ul Socket Stream object.

Synchronization stream parameters for the TCP/IP stream are chosen from
the following table:

Chapter 16 UltraLite Reference

Parameter

Description

client_port=nnnnn

client_port=nnnnn-
mmmmm

host=hostname

keep_alive

por t=portnumber

HTTP stream parameters

A range of client ports for communication. If only one
valueis specified, the end of the range is 100 greater
than theinitial value, for atotal of 101 ports.

The option can be useful for clientsinside afirewall
communicating with a MobiLink synchronization server
outside the firewall.

The host name or |P number for the machine on which
the MobiLink synchronization server isrunning. The
default value is localhost, except on Windows CE.

For Windows CE, the default setting corresponds to the
desktop machine where the CE device'scradleis
connected, which is stored as the ijpaddr entry in the
registry folder Comm\Tcpip\Hosts\ppp_peer. Do not
use localhost, which refersto the device itself, on
Windows CE.

For the Palm Computing Platform, the default value of
localhost refers to the deviceitself. Y ou should supply
an explicit host name or IP address to connect to a
desktop machine.

In some circumstances, MobiLink worker threads
become unavailable when connections disappear during
synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all
worker threads reach this state, MobiLink cannot
process synchronizations. Similarly, MobiLink clients
can become blocked if the connection disappears.

The keep_alive parameter manages liveness. The default
is1 (On). Set the parameter to O (Off) to disable liveness
checking for this connection.

The socket port number on the host machine. The port
number must be a decimal number that matches the port
the MobiLink synchronization server is setup to monitor.
The default value for the port parameter is 2439, which
isthe IANA registered port number for the MobiLink
synchronization server.

The HTTP synchronization stream is accessible from C/C++ applications by
using the ULHTTPStream() function , or from Java applications by using
the UIHT TPStream object.

403

Synchronization stream parameters

Synchronization stream parameters for the HTTP stream are chosen from the
following table:

404

Chapter 16 UltraLite Reference

Parameter

Description

client_port=nnnnn

client_port=nnnnn-mmmmm

version=
versionnumber

host=hostname

keep_alive

por t=portnumber

proxy_host=
proxy_hostname

proxy_port=

A range of client ports for communication. If only
one valueis specified, the end of the rangeis 100
greater than the initial value, for atotal of 101
ports.

The option can be useful for clientsinside a
firewall communicating with aMobiLink
synchronization server outside the firewall.

A string specifying the version of HTTP to use.
You have achoice of 1.0 or 1.1. The default value
is1.1.

The host name or IP number for the machine on
which the MobiLink synchronization server is
running. The default valueis localhost.

For Windows CE, the default value is the value of
ipaddrin the registry folder
Comm\Tcpip\Hosts\ppp_peer. Thisalows a
CE device to connect to aMobiLink
synchronization server executing on the desktop
machine where the CE device's cradleis
connected.

For the Palm Computing Platform, the default
vaue of localhost refersto the device. Itis
recommended that an explicit host name or IP
address be specified.

In some circumstances, MobiLink worker threads
become unavailable when connections disappear
during synchronization. These blocked worker
threads are waiting for replies from the MobiLink
client. If al worker threads reach this state,
MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked
if the connection disappears.

The keep_adlive parameter manages liveness. The
default is 1 (On). Set the parameter to 0 (Off) to
disable liveness checking for this connection.

The socket port number. The port number must be
adecimal number that matches the port the
MobiLink synchronization server is setup to
monitor. The default value for the port parameter
is 80.

The host name of the proxy server.

The port number of the proxy server. The default

405

Synchronization stream parameters

Parameter Description
proxy_portnumber valueis 80.
url_suffix=suffix The suffix to add to the URL on the first line of

each HTTP request. When synchronizing through
aproxy server, the suffix may be necessary in
order to find the MobiLink synchronization server.
The default valueis MobiLink.

HTTPS stream parameters

406

The HTTPS synchronization stream is accessible from C/C++ applications
by using the ULHT TPStream() function , or from Java applications by
using the UIHT TPStream object.

Separately-licensable option required

Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to

SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere
Sudio.

Synchronization stream parameters for the HTTPS stream are chosen from
the following table:

Chapter 16 UltraLite Reference

Parameter

Description

client_port=nnnnn

client_port=nnnnn-mmmmm

host=hostname

keep_alive

por t=portnumber

proxy_host=
proxy_hostname

proxy_port=
proxy_portnumber

A range of client ports for communication. If only
one valueis specified, the end of the rangeis 100
greater than the initial value, for atotal of 101
ports.

The option can be useful for clientsinside a
firewall communicating with aMobiLink
synchronization server outside the firewall.

The host name or |P number for the machine on
which the MobiLink synchronization server is
running. The default valueis localhost.

For Windows CE, the default value is the value of
ipaddrin the registry folder
Comm\Tcpip\Hosts\ppp_peer. Thisalowsa
CE device to connect to aMobiLink
synchronization server executing on the desktop
machine where the CE device's cradleis
connected.

For the Palm Computing Platform, the default
vaue of localhost refersto the device. Itis
recommended that an explicit host name or IP
address be specified.

In some circumstances, MobiLink worker threads
become unavailable when connections disappear
during synchronization. These blocked worker
threads are waiting for replies from the MobiLink
client. If all worker threads reach this state,
MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked
if the connection disappears.

The keep_alive parameter manages liveness. The
default is 1 (On). Set the parameter to 0 (Off) to
disable liveness checking for this connection.

The socket port number. The port number must be
adecimal number that matches the port the
MobiLink synchronization server is setup to
monitor. The default value for the port parameter
is 2439, which isthe IANA registered port number
for the MobiLink synchronization server.

The host name of the proxy server.

The port number of the proxy server. The default
vaueis 80.

407

Synchronization stream parameters

Parameter

Description

certificate_company

certificate_name

certificate_unit

url_suffix=suffix

version=
versionnumber

The UltraLite application only accepts server
certificates when the organization field on the
certificate matches this value. By default, thisfield
is not checked.

The UltraLite application only accepts server
certificates when the common name field on the
certificate matches this value. By default, thisfield
is not checked.

The UltraLite application only accepts server
certificates when the organization unit field on the
certificate matches this value. By default, thisfield
is not checked.

The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through
aproxy server, the suffix may be necessary in
order to find the MobiLink synchronization server.
The default valueis M obiLink.

A string specifying the version of HTTP to use.
You have achoice of 1.0 or 1.1. The default value
isl.1.

UlSecureRSASocketStream synchronization parameters

Transport-layer security using RSA encryption is accessed from Java
applications as a separate stream, accessed using the
UlSecur eRSA Socket Stream object. Thisis different behavior from C/C++
applications, where a separate parameter is supplied to the synchronization

structure.

Sudio.

Separately-licensable option required

Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to

SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere

The synchronization parameters for UlSecur eRSA SocketStream are
identical to those for Ul Secur eSocketStream. For a complete listing, see
"Ul SecureSocketStream synchronization parameters' on page 409.

408

Chapter 16 UltraLite Reference

& For moreinformation, see "stream synchronization parameter" on
page 389, and "Using transport-layer security from Ultralite Java
applications' on page 353.

UlSecureSocketStream synchronization parameters

Transport-layer security using éliptic curve encryption is accessed from Java
applications as a separate stream, accessed using the Ul Secur eSocketStream
object. Thisisdifferent behavior from C/C++ applications, where a separate
parameter is supplied to the synchronization structure.

Separately-licensable option required

Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to

SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere
Sudio.

& For moreinformation, see "stream synchronization parameter" on
page 389, and "Using transport-layer security from UltraLite Java
applications’ on page 353.

The parameters for the Ul Secur eSocketStream are supplied in an
semicolon-separated string. These parameters are chosen from the following
table:

409

Synchronization stream parameters

Parameter

Description

certificate_company

certificate_unit

certificate_name

client_port=nnnnn

client_port=nnnnn-
mmmmm

host=hostname

por t=portnumber

410

The UltraLite application only accepts server certificates
when the organization field on the certificate matches
this value. By default, thisfield is not checked.

The UltraLite application only accepts server certificates
when the organization unit field on the certificate
matches this value. By default, this field is not checked.

The UltraLite application only accepts server certificates
when the common name field on the certificate matches
this value. By default, thisfield is not checked.

A range of client ports for communication. If only one
valueis specified, the end of the range is 100 greater
than theinitial value, for atotal of 101 ports.

The option can be useful for clientsinside afirewall
communicating with a MobiLink synchronization server
outside the firewall.

The host name or |P number for the machine on which
the MobiLink synchronization server isrunning. The
default value is localhost, except on Windows CE.

For Windows CE, the default setting corresponds to the
desktop machine where the CE device'scradleis
connected, which is stored as the jpaddr entry in the
registry folder Comm\Tcpip\Hosts\ppp_peer. Do not
use localhost, which refersto the device itself, on
Windows CE.

For the Palm Computing Platform, the default value of
localhost refers to the deviceitself. Y ou should supply
an explicit host name or |P address to connect to a
desktop machine.

The socket port number on the host machine. The port
number must be a decimal number that matches the port
the MobiLink synchronization server is setup to monitor.
The default value for the port parameter is 2439, which
isthe IANA registered port number for the MobiLink
synchronization server.

Chapter 16 UltraLite Reference

Reference database stored procedures

This section describes system stored procedures in the Adaptive Server
Anywhere reference database, which can be used to add SQL statementsto a
project.

For each SQL statement added in this way, the UltraLite generator defines a
C++ or Javaclass.

These system procedures are owned by the built-in user ID dbo.

ul_add_statement system procedure

Function

Syntax

Permissions
Side effects

See also

Description

Examples

Adds a SQL statement to an UltraL ite project.

ul_add_statement (in @project char(128),
in @name char(128),
in @statement text)

DBA authority required
None

"ul_add_project system procedure" on page 412
"ul_delete_statement system procedure” on page 412

Adds or modifies a statement to an UltraLite project.

project The UltraLite project to which the statement should be added. The
Ultral ite generator defines classes for al statementsin a project at one time.

name The name of the statement. This nameis used in the generated
classes.
statement A string containing the SQL statement.

If a statement of the same name in the same project exists, it is updated with
the new syntax. If project does not exist, it is created.

The following call adds a statement to the TestSQL project:

call ul _add_statenent (

"Test SQ', ' TestQery’,

"select prod_id, price, prod_nane from ul product where
price < ?)

411

Reference database stored procedures

ul_add_project system procedure

Function Creates an Ultral ite project.

Syntax ul_add_project (in @project char(128))

Permissions DBA authority required

Side effects None

See also "ul_delete_statement system procedure” on page 412

Description Adds an UltraL ite project to the database. The project acts as a container for

the SQL statementsin an application, and the project name is supplied on the
Ultral ite generator command line so that it can define classes for all
statements in the project.

project The UltraLite project name.
Examples The following call adds a project named Product to the database:

call ul _add_project(’'Product’)

ul_delete project system procedure

Function Removes an UltraL ite project from a database.
Syntax ul_delete_project (in @project char(128))
Permissions DBA authority required

Side effects None

See also "ul_add_project system procedure” on page 412

"ul_delete_statement system procedure” on page 412
Description Removes an UltraL ite project from the database.

project The UltraLite project to be deleted from the database.
Examples Thefollowing call deletes the Product project:

call ul _delete_project(’'Product’)

ul_delete_statement system procedure

Function Removes a SQL statement from an UltraLite project.

Syntax ul_delete_statement (in @project char(128),
in @name char(128))

412

Chapter 16 UltraLite Reference

Permissions
Side effects

See also

Description

Examples

DBA authority required
None

"ul_add_project system procedure" on page 412
"ul_add_statement system procedure" on page 411

Removes a statement from an Ultral ite project.

project The UltraLite project from which the statement should be
removed.

name The name of the statement. This nameis used in the generated
classes.

The following call removes a statement from the Product project:
call ul _delete_statenment('Product’, ’AddProd)

ul_set _codesegment system procedure

Function

Syntax

Side effects

See also

Description

Examples

For Palm Computing Platform development using the C++ API, assigns a
SQL statement from an UltraLite project to a particular segment.

ul_set_codesegment(in @project char(128),
in @name char(128), in @segment_name char(8))

None

"ul_add_statement system procedure” on page 411
"Explicitly assigning segments' on page 265

Explicitly assigns the generated code for a C++ APl SQL statement to a
named Palm segment.

project The UltraLite project to which the statement applies.

name The name of the statement as defined in "ul_add_statement system
procedure” on page 411..

segment_name The name of the segment to which the statement is
assigned.

The following call assigns the statement mystmt in project mypr oject to
segment MY SEGL1.

call ul _set_codesegnent (
"nyproject’, 'nystnt’, 'MYSEGL)

413

The HotSync conduit installation utility

The HotSync conduit installation utility

Function

Syntax

Description

Switches

Examples

414

The utility installs or removes a HotSync conduit onto the current machine.
dbcond8 [switches] id

Remove the conduit for the specified creator 1D

Switch | Description
id ‘ The creator 1D of the application to use the conduit
-n name ‘ The name displayed by the HotSync manager.

Install aHotSync conduit onto the current machine. The HotSync manager
must be installed in order for thisto be run.

id Theapplication user ID who is to use the conduit. If a conduit already
exists for the specified creator|D, it is replaced by the new conduit. Thisisa
required option.

-n name The name displayed by the HotSync manager. Thisis also the
name of the subdirectory where the conduit stores data. Do not use this
option together with —x. The default valueis M obiLink conduit.

-x Remove the conduit for the named creator|D. If —x is not specified, a
conduit isinstalled.

The following command line installs the conduit for the CustDB sample
application, which has a creator 1D of Syb2:

dbcond8 -n CustDB Syb2

Chapter 16 UltraLite Reference

The SQL preprocessor

Function

Syntax

See also

Description

The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler isrun.

sqlpp [switches]| SQL-filename [output-filename]

Switch Description

—c"keyword=value;...." | Supply database connection parameters for your
reference database

-d Generate code that favors small data size

—elevel Flag non-conforming SQL syntax as an error

-g Do not display Ultralite warnings

—hline-width Limit the maximum line length of output

-k Include user

-m version Spgcify the version name for generated synchronization
scripts

-n Line numbers

-0 operating-sys Target operating system: WIN32, WINNT, NETWARE,
or UNIX

—p project-name UltralLite project name

—q Quiet mode—do not print banner

—sstring-len Maximum string length for the compiler

-w level Flag non-conforming SQL syntax as awarning

—X Change multi-byte SQL strings to escape sequences.

—z sequence Specify collation sequence

"Introduction” on page 164 of the book ASA Programming Guide

The SQL preprocessor processes a C or C++ source file that contains
embedded SQL, before the compiler isrun. This preprocessor translates the
SQL statementsin the input-file into C/C++. It writes the result to the output-
file. The normal extension for source files containing embedded SQL is sqc.
The default output filename is the SQL-filename base name with an
extension of c¢. However, if the SQL-filename already hasthe .c extension,
the default output extensioniis.cc.

415

The SQL preprocessor

Switches

416

When preprocessing files that are part of an UltralLite application, the SQL
preprocessor requires access to an Adaptive Server Anywhere reference
database. Y ou must supply the connection parameters for the reference
database using the —c option.

If you specify no project name, the SQL preprocessor aso runs the UltralLite
generator and appends additional code to the generated C/C++ sourcefile.
This code contains a C/C++ language description of your database schema as
well as the implementation of the SQL statements in the application.

Customizing UltraLite generator operations The UltralLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraL ite analyzer invokes them before and
after the analysis process:

¢ sp_hook_ulgen_begin()

¢ sp_hook ulgen_end()

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ul gen_begin ()
BEGA N

/'l actions here

END

CREATE PROCEDURE sp_hook_ul gen_end ()
BEGA N

/'l actions here

END

—c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

—d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. Thisincreases code size.

—e Thisoption flags any Embedded SQL that is not part of a specified set
of SQL/92 as an error.

The alowed values of level and their meanings are as follows:
¢ e flag syntax that isnot entry-level SQL/92 syntax

¢ i flagsyntax that is not intermediate-level SQL/92 syntax
¢ f flag syntax that is not full-SQL/92 syntax

¢ t flag non-standard host variable types

Chapter 16 UltraLite Reference

¢ u flag features not supported by UltraLite
¢ w adlow all supported syntax

-g Do not display warning specific to UltraLite code generation.

—h num Limits the maximum length of lines output by sqgipp to NUM
characters. The continuation character is a backslash (1), and the minimum
value of NUM isten.

-k Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization.

—n Generate line number information in the C file. This consists of #line
directives in the appropriate places in the generated C code. If your compiler
supports the #line directive, this switch will make the compiler report errors
on line numbersin the SQL -filename, as opposed to reporting errors on line
numbers in the C/C++ output file. Also, the #line directives will indirectly be
used by the source-level debugger so that you can debug while viewing the
SQL -filename.

o Specify the target operating system. Note that this option must match the
operating system where you will run the program. A reference to a special
symbol will be generated in your program. This symbol is defined in the
interface library. If you use the wrong operating system specification or the
wrong library, an error will be detected by the linker. The supported
operating systems are:

¢ WIN32 Microsoft Windows 95/98/Me and Windows CE
¢ WINNT Microsoft Windows NT/2000/XP

¢ NETWARE Novell NetWare

¢ UNIX UNIX

—p project-name Identifies the UltraL ite project to which the embedded
SQL filesbelong. Applies only when processing files that are part of an
UltraL ite application.

—gq Operate quietly. Do not print the banner.

417

The SQL preprocessor

418

—s string-len Set the maximum size string that the preprocessor will put
into the C file. Strings longer than this value will be initialized using alist of
characters ('a’,’b’,'c’, etc). Most C compilers have alimit on the size of string
literal they can handle. This option is used to set that upper limit. The default
value is 500.

—-w level Thisoption flags any Embedded SQL that is not part of a
specified set of SQL/92 as a warning.

The allowed values of level and their meanings are as follows:
¢ e flagsyntax that isnot entry-level SQL/92 syntax

¢ i flagsyntax that is not intermediate-level SQL/92 syntax
¢ f flag syntax that is not full-SQL/92 syntax

¢ t flagnon-standard host variable types

¢ u flag features not supported by UltraLite

.

w alow all supported syntax

—x Change multi-byte strings to escape sequences so that they can pass
through compilers.

—z sequence This option specifies the collation sequence or filename. For
alisting of recommended collation sequences, type dbinit —I at the command
prompt.

Chapter 16 UltraLite Reference

The UltralLite generator

Function

Syntax

The UltraL ite generator, using the Analyzer classes, implements your
application database and generates additional C/C++ or Java source files,
which must be compiled and linked into your application.

ulgen [switches | [project [output-filename]]

Switch

Description

-a

-c "keyword=value;..."

-j project-name

-| type

-m version

-0 table-name,...

-p package-name
-q
-r filename

Uppercase SQL string names [Java]

Supply database connection parameters for your
reference database

Replace SQL strings with generated constants [Java]
Specify output file name

Do not display warnings

Generate inner classes [Java |

Project name

Log the execution plan for each statement to a file. The
type must be one of the following:

¢ xml
¢ short
¢ long

Specify the version name for generated synchronization
scripts

Specify the order in which tables are uploaded during
synchronization

Package name for generated classes [Java]
Do not print the banner

The file containing the trusted root certificates

419

The UltraLite generator

Description

420

Switch Description
-sfilename Generate alist of SQL stringsin an interface definition
[Java]
-t target Target language. Must be one of the following:
¢ C
4 Cc++
¢ java
-u pub-name The publication to use (C++ API only)
-V pub-name The publication to use for synchronization
-X Generate more and smaller C/C++ files.

The UltraLite generator creates code that you compile and make part of an
Ultral ite application. Its output is based on the schema of the Adaptive
Server Anywhere reference database and the specific SQL statements or
tables that you use in your embedded SQL source files.

Y ou must ensure that all your statements and tables are defined in the
dbo.ul_statement table before running the generator. Y ou do this as follows:

¢ Inembedded SQL, run the SQL preprocessor on each file.

¢ Inthe C/C++ API and Java, add statements to the database using
ul_add_statement, and/or define SQL Remote publicationsin the
database.

In thistable, statements are associated with projects. By specifying a project
name on the generator command line, you determine which statements are
included in your generated database.

Y ou can include multiple projects, and also mix projects with a publication,
on the generator command line. Y ou must run the generator only once for
each generated database.

If you do not specify an output file name, the generated code is written to a
file with aname of project. It is recommended that you specify an output file
name using the —-f command-line switch.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraL ite analyzer invokes them before and
after the analysis process:

¢ sp_hook_ulgen_begin()
¢ sp_hook_ulgen_end()

Chapter 16 UltraLite Reference

Switches

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ul gen_begin ()
BEG N

/1 actions here

END

CREATE PROCEDURE sp_hook_ul gen_end ()
BEGA N

/'l actions here

END

project The project name determines the set of statements that are to be
included in the generated database. For a more precise specification of the
filename, use the - option.

output-filename The name for the generated file, without extension. For a
more precise specification of the filename, use the—f option.

In Java, this name is also the database name, which you must supply on
connection.

-a If you are developing a Java application, the names of the SQL
statements in the project are used as constants in your application. By
convention, constants are upper case, with underscore characters between
words. The —a option makes the names of SQL statements fit this convention
by uppercasing the characters and inserting an underscore whenever an
uppercase character in the original nameis found if not already preceded by
an underscore or an uppercase character. For example, a statement named
MyStatement becomes MY_STATEMENTBNd a statement named

AStatement becomes ASTATEMENT

The generated names have spaces and non-alphanumeric characters replaced
with an underscore, regardless of whether —a is used.

-c connection-string The connection string must give the generator
permission to read and modify your reference database. This parameter is
required.

-e The SQL strings in the generated database are replaced by smaller,
generated strings. This option is useful when you are trying to reduce the
footprint of a database with alot of statements.

-f filename Thisisthe recommended way to specify the output file. Do not
specify an extension.

-g Suppress the display of warning messages. Error messages are still
displayed.

421

The UltraLite generator

422

The UltraLite generator provides warnings to indicate that some generated
code may, under some circumstances, cause problems. For example, it
generates awarning for SQL statements that include temporary tables.

-i By default, generated classes are written astop-level non-public classes
except for the main database class. If you use-i , the generated classes are
written asinner classes. If you use this option, you must use a Java compiler
that can correctly compile inner classes.

-j project-name Thisis the recommended way to specify the project. You
can specify multiple projects using this switch as follows:

ulgen -j projectl -j project2 ...

-l type Log the execution plan for queriesin the application. These plans
can be viewed in Interactive SQL. The types available are:

¢ xml Descriptionin XML format. Use the Interactive SQL File(l Open
command to display the plan.

¢ short Brief description of the planin afile named <statement>.txt.
The content is that generated by the EXPLANATION function

¢ long Detailed description of the plan in afile named <statement>.txt.
The content is that generated by the PLAN function.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization.

-0 table-name,... Specify the order in which tables are uploaded during
synchronization. This option can be used to avoid referential integrity errors
during upload. Each table to be uploaded must be specified exactly once. The
option cannot be used when there are circular foreign key relationships
among the tables.

-p package-name A package name for generated files when generating
Java output.

-g Do not display output messages.

-r filename Thefile containing the trusted root certificates used for secure
synchronization using Certicom security software.

The generator embeds these trusted roots into the UltraL ite application.
When the application receives a certificate chain from a MobiLink
synchronization server, it checks if its root is among the trusted roots, and
only accepts aconnection if it is.

Chapter 16 UltraLite Reference

The generator checks the expiry dates of all the certificates in the trusted root
certificate file and issues the following warning for any certificate that
expiresin less than 6 months (180 days):

Warning: Certificate will expire in %1 days"

The generator issues a Certificate has expired error for any certificate that has
already expired.

& For more information, see " Synchronization parameters' on page 380,
and "Transport-Layer Security" on page 283 of the book MaobiLink
Synchronization User’s Guide.

-s filename Generate an interface that contains the SQL statements as
constants. This option is for use with Java only. The interface file hasa
format similar to the following example:

package com sybase. test;
public interface EnpTest SQL {
String EMPLOYEE = "sel ect enp_fnane, enp_| name
from enpl oyee where enp_id = ?";
String UPDATE_EMPLOYEE = "update enpl oyee
set enp_fnane = ?, enp_l name = ?
where enp_id = ?";
}

Do not supply the .java extension in filename. The —a option controls the
case of the statement names.

-t target Specifies the kind and extension of the generated file.

¢ If youare using Java, you must use atarget of java. If you are using
embedded SQL or the C++ API, you can use atarget of either c or
c++. Which one you choose decides the extension of the file name,
and has nothing to do with whether you are using the C++ API or
embedded SQL.

¢ If you specify c++, the following files are generated:
¢ filename.cpp The code for the generated API.
¢ filename.h A header file. Y ou do not need to look at thisfile.
¢ filename.hpp The C++ API definition for your application.

¢ If you specify atarget of c, filename.c is generated.

-u pub-name If you are generating a C++ API for a publication, specify
the publication name with the -u switch.

-v pub-name Specifies a publication to synchronize. If you do not use
publications to define which changes are to be synchronized, all changes are
synchronized.

423

The UltraLite generator

424

If columns or tables specified in publications are not referenced by SQL
statements in your application, they are not included in the UltraLite
database.

To specify multiple publications, repeat the - v option. For example:
ulgen -v publ -v pub?2 ...
The maximum number of publicationsis 32.

& For more information, see "Designing synchronization for UltraLite
applications’ on page 55.

-x Thisoption isintended for use in situations where the file containing the
generated code istoo large for the C/C++ compiler to compile.

This switch causes the Ultral ite generator to produce more and smaller files.
When -x isused, the UltraLite generater writes out one C/C++ file for the
database and one for each SQL statement.

This switch has no effect when generating Java code.

Chapter 16 UltraLite Reference

The UltraLite segment utility

Function

Syntax

Description

Example

The UltraLite segment utility is for use when building applications for the
Palm Computing Platform using the GCC PRC-Tools tool chain.

dbulseg generated-source-file definition-file app-name creator-id

Switch Description

generated-source-file The name of the source code file written by the
Ultralite generator.

definition-file The name of the definition file to be written out. It
should end in the extension .def.

app-name The name of the application.

creator-id The application creator ID

The GCC PRC-Tools suite requires a set of segment identifiersina
definition file. The dbulseg utility reads the UltraLite generated code (in file
generated-source-file) and writes out the definition file definition-file.

The segment definition file also includes the Palm application name and
application creator ID. These Palm-specific identifiers must be supplied in
the command line.

The command line included in the build.bat file that compiles the UltraL ite
CustDB sample application is as follows:

dbul seg custdb. ¢ custdb. def CustDB Syb2

The resulting output file is as follows:

application { "CQustDB" Syb2 }

nmultiple code { ULRT1 ULRT2 WLRT3 ULRT4 ULRT5 ULRT6
ULRT7 ULRT8 ULRT9 ULRT10 ULRT11 ULRT12 ULRT13 ULRT14
ULRT15 ULRT16 ULRT17 ULG512 WLGH13 ULGh14 ULGH15 ULGH16
ULG17 ULGH18 ULGH19 ULGE20 WLGh21 ULGh22 ULGHE23 ULGh24
ULGE25 ULGE26 ULGh27 ULGE28 WLGH29 ULGH30 ULGH31 ULGh32
ULGL31 }

The file contents are on two lines: the second line is wrapped for display
purposes.

425

The UltraLite utility

The UltraLite utility

Function

Description

426

The UltraLite utility is a Palm Computing Platform application that deletes
all of the data stored in an UltraL ite application’s remote database.

The UltraLite utility isinstalled as the following file:
YASANY8% Ul traLite\ Pal M 68k\ ULWi | . prc

UL Util is useful in deployments where devices are shared between different
users. When a different user gets a device, they may want to clear out the
previous user’s data, to save storage space. Also, the previous user might
want to clear out their data because it is confidential. Without UL Util, the
only way to clear out an application’s data would be to delete and re-install
the application.

Y ou can set UL Util to back up the Palm store to the PC on subsequent
synchronization. Y ou can use this feature to perform an initial
synchronization and then backup the store which can be deployed on other
devices so they do not need to perform an initial synchronization. The
backup option is automatically turned off by the UltraLite runtime to prevent
subsequent backups. If you explicitly want to require the database to be
backed up on every synchronization, you must add the palm_allow_backup
parameter in UL_STORE_PARMS.

& For moreinformation, see"UL_STORE_PARMS macro" on page 428.

Once UL Util isinstalled on the device, you can delete an UltraLite
application’s data as follows:

1 Switchto UL Util.
2 Select an application from the list of UltraLite Applications.
3 Tap the Delete button.

On devices with expansion cards, UL ULtil provides access to both file-based
and record-based stores.

Chapter 16 UltraLite Reference

Macros and compiler directives for UltralLite
C/C++ applications

This section describes compiler directivesto supply for Ultralite C/C++
applications. Unless stated otherwise, directives apply to both embedded
SQL and C++ API applications.

Compiler directives can be supplied on your compiler command line or in
the compiler settings dialog box of your user interface. Alternatively, they
can be defined in source code.

On the compiler command line, a compiler directive is commonly set by
using the /D command-line option. For example, to compile an UltraLite
application with user authentication, a makefile for the Microsoft Visual C++
compiler may look as follows:

Conpi l eQptions=/c /DPRNWN32 /Cd /Zi /DWN32
/D_NT__ /DUL_USE DLL /DULB_USE BI G NT_TYPES
/ DULB_USE_FLOAT_TYPES / DUL_ENABLE_USER_AUTH

I ncl udeFol ders=\
/1"$(VCD R \i ncl ude" \
/1" $(ASANY8)\ h"

sanpl e. obj : sanpl e. cpp
cl $(Conpil eOptions) $(IncludeFol ders) sanpl e. cpp

where VCDIR is your Visual C++ directory and ASANYS8 is your
SQL Anywhere directory.

In source code, directives are supplied using the #def i ne statement.

UL_AS_SYNCHRONIZE macro

Function Provides the name of the callback message used to indicate an ActiveSync
synchronization.

Applies to Windows CE applications using ActiveSync only.

See also "Adding ActiveSync synchronization to your application" on page 305

UL_ENABLE_OBFUSCATION macro

Function By default, obfuscation is disabled. To enable obfuscation, define
UL_ENABLE_OBFUSCATION when compiling the generated database.

427

Macros and compiler directives for UltraLite C/C++ applications

Applies to The generated database code.
See also "Encrypting UltraLite databases" on page 45

UL_ENABLE_USER_AUTH macro

Function For C++ API applications only, define this directive to enable user
authentication. Without this directive, thereis no user authentication on
C++ API UltraLite applications.

Applies to The ulapi.cpp file.
See also "Adding user authentication to your application” on page 85

UL_ENABLE_GNU_SEGMENTS macro

Function Instructs the compiler to generate multi-segment code for Palm Computing
Platform applications using the PRC Tools development environment.

TheUL_ENABLE_SEGMENTS macro must also be defined.
Applies to The generated database code.

See also "Enabling multi-segment code generation” on page 264
"UL_ENABLE_SEGMENTS macro" on page 428

UL_ENABLE_SEGMENTS macro

Function Instructs the compiler to generate multi-segment code for Palm Computing
Platform applications.

Applies to The generated database code.

See also "Enabling multi-segment code generation” on page 264

UL STORE_PARMS macro

Function Supply a set of keyword-value pairs to configure database storage.
Syntax #define UL_STORE_PARMS UL_TEXT("keyword=value;...")

All spaces in the keyword-value list are significant, except spaces at the start
of the string and any spaces that immediately follow a semicolon.

428

Chapter 16 UltraLite Reference

Usage

Parameters

Definethe UL_STORE_PARMS macro in the header of your application
source code so that it isvisibleto al db_init() cals.

Keywords are case insensitive. The case sensitivity of the values depends on
the application interpreting it. For example, the case sensitivity of the
filename depends on the operating system.

cache_size Definesthe size of the cache. Y ou can specify the sizein units
of bytes. Use the suffix k or K to indicate units of kilobytes and use the
suffix Mor mto indicate megabytes. For example, the following string sets
the cache sizeto 128 kb.

#def i ne UL_STORE_PARVB UL_TEXT("cache_si ze=128k")

The default cache size for 16-bit architecturesis 8 K. The default cache size
for 32-bit architecturesis 64 K. The minimum cache sizeis 4 K.

This parameter does not apply to the Palm Computing Platform.

file_name Definesthe full pathname of the file-based persistent store. No
substitutions are performed on this value. In addition, you must ensure that
this directory exists when db_init iscalled. The directory is not created
automatically.

#def i ne UL_STCORE_PARMB
UL_TEXT("fil e_name=\\ul db\\ ny own nane. udb")

Under Windows CE, the filename must include the absolute path. Under
other Windows operating systems and VxWorks, the path may either be
absolute, or relative to the current directory.

An adias for this parameter isDBF.
Y ou must escape any backslash charactersin the path.
This parameter does not apply to the Palm Computing Platform.

key Define an encryption key for strong encryption of the database store.
An adias for this parameter isDBK ey.

& For moreinformation, see "Encrypting Ultralite databases' on
page 45.

page_size Ultralite databases are stored in pages. I/O operations are
carried out apage at atime. The default page size for Ultralite databases is
4kb. Y ou can specify 2 kb pages using the following storage parameters
string:

#def i ne UL_STORE _PARVE UL_TEXT("page_si ze=2k")

429

Macros and compiler directives for UltraLite C/C++ applications

Examples

430

This parameter isignored when starting an existing database. It can be used
on any C/C++ target platform. Setting a page size of 2 kb reduces the
maximum number of tables to approximately 500.

palm_allow_backup If the backup bit is set on the UltraL ite database,
and if this parameter is set to yes, the entire Palm database is backed up
every time the device is synchronized using HotSync. If this parameter is not
set, UltraLite ensures that the backup bit is cleared.

In most applications, datais backed up by synchronization, so thereisno
need to set this parameter.

The backup hit is set when a database file is deployed by HotSync, and can
also be set by the UL UMl utility. For more information, see "The UltraLite
utility" on page 426.

The following string sets the parameter.

#define UL_STORE_PARMVB
UL_TEXT(" pal m al | ow backup=yes")

reserve_size Reservesfile system space for storage of Ultral ite persistent
data.

Thereserve_size parameter allows you to pre-allocate the file system space
required for your Ultral ite database without actually inserting any data.
Reserving file system space can improve performance slightly and also
prevent out of memory failures. By default, the persistent storage file only
grows when required as the application updates the database.

Note that reserve_size reserves file system space, which includes the
metadata in the persistent store file, and not just the raw data. The metadata
overhead as well as data compression must be considered when deriving the
required file system space from the amount of database data. Running the
database with test data and observing the persistent storefilesizeis
recommended.

Thereserve_size parameter reserves space by growing the persistent store
file to the given reserve size on startup, regardless of whether the file
previously existed. Thefileis never truncated.

Usethereserve_size parameter to pre-allocate space as follows:
#define UL_STORE _PARMS UL_TEXT("reserve_size=2n")

This example ensures that the persistent storefileis at least 2 Mb upon
startup.

This parameter does not apply to the Palm Computing Platform unless the
application usesthe Virtual File System (VFS).

The following statements set the cache size to 128 kb.

Chapter 16 UltraLite Reference

See also

#undef UL_STORE PARMS
#define UL_STORE PARMB UL_TEXT("cache_si ze=128k")

db_init(&gqlca):

You can set UL_STORE_PARMS to a string, then set the value of that string
programmatically before calling db_init, asin the following example. The
UL_TEXT macro and the _stprintf function are used to achieve proper
character encoding.

char store_parns[32];
#undef UL_STORE PARVB
#define UL_STORE PARME store_parns
)*.Sét cache_size to the correct nunber of bytes. */

_st p')ri' nff(store_parns, UL_TEXT("cache_size=%u"),
cache_size);
db_init(&sqlca);

"Configuring and managing database storage” on page 45
"Encrypting UltraLite databases" on page 45

UL _SYNC_ALL macro

Function

See also

Provides a publication mask that refersto all tables in the database, including
those not in publications.

"publication synchronization parameter" on page 386
"ULGetLastDownloadTime function" on page 239
"UL CountUploadRows function” on page 234
"UL_SYNC_ALL_PUBS macro" on page 431

UL_SYNC_ALL_PUBS macro

Function

See also

Provides a publication mask that refersto all tablesin the database that are in
publications.

"publication synchronization parameter" on page 386
"ULGetLastDownloadTime function" on page 239
"UL CountUploadRows function" on page 234
"UL_SYNC_ALL macro" on page 431

431

Macros and compiler directives for UltraLite C/C++ applications

UL_TEXT macro

Function Prepares constant strings to be compiled as single-byte strings or wide-
character strings. In embedded SQL and C++ API applications, use this
macro to enclose al constant strings so that the compiler handles these
parameters correctly.

UL USE DLL macro

Function For Windows CE and Windows applications only, define this directive to use
theruntime library DLL, rather than a static runtime library.

Applies to The generated database code.

See also "Choosing how to link the runtime library" on page 295.

UNDER_NT macro

Function Use this macro when compiling UltraLite code for Windows NT/2000/XP
only.

By default, this macro is defined in all new Visual C++ projects that target
Windows NT/2000/XP.

UNDER_CE macro

Function Use this macro when compiling Ultral ite applications for Windows CE only.
By default, this macro is defined in all new eMbedded Visual C++ projects.

See also "Developing Applications for Windows CE" on page 293.

UNDER_PALM_OS macro

Function Use this macro when compiling UltraL ite applications for Palm OS only.

This macro is defined in the ulpalmXxX.h header fileincluded in UltraLite
Palm OS applications by the UltraL ite plugin. For more information, see
"Using the UltraLite plug-in for CodeWarrior" on page 257.

See also "Developing Applications for the Palm Computing Platform” on page 253.

432

Chapter 16 UltraLite Reference

UNDER_VXW macro

Function Use this directive when compiling UltraLite code for VxWorks.

See also "Developing Applications for VxWorks" on page 309.

433

Macros and compiler directives for UltraLite C/C++ applications

434

APPENDIX A

UltraLite Features and Limitations

About this
appendix

Contents

This background information is provided to help you better understand the

features supported by Ultral ite databases.

Topic Page
Ultralite data types 436
SQL features and limitations of UltraLite applications 437
Size and number limitations for UltraL ite databases 440
UltraL ite tables must have primary keys 441
User authentication for Ultral ite databases 442

435

UltraL ite data types

UltraLite data types

436

UltraLite supports all Adaptive Server Anywhere data types, with the
following exceptions.

¢ Javadatatypes.

¢ CHAR(n), VARCHAR(n), BINARY (n), VARBINARY (n) data types,
where n > 2048. Y ou can use LONG VARCHAR and LONG BINARY
data typesto hold this kind of information.

¢ Themaximum size of LONG VARCHAR and LONG BINARY values
is 64 kb.

¢ Domains (user-defined data types) that include DEFAULT values or
CHECK constraints. You can use IMAGE or TEXT datatypes.

As you design your database, you should aso confirm that MobiLink
synchronization supports the features you wish to use.

& For alist of Adaptive Server Anywhere data types, see "SQL Data
Types' on page 51 of the book ASA SQL Reference Manual.

Appendix A UltraLite Features and Limitations

SQL features and limitations of UltraLite

applications

Limitations

The following SQL statements can be used in UltraL ite applications:

¢

Data Manipulation Language SELECT, INSERT, UPDATE, and
DELETE statements can be included. Y ou can use placeholders in these
statements that arefilled in at runtime.

& For more information, see "Writing UltraLite SQL statements’ on
page 83.

TRUNCATE TABLE statement Y ou can use this statement to rapidly
delete entire tables.

Transaction control You can use COMMIT and ROLLBACK
statements to provide transaction control within your UltraLite
application.

START/STOP SYNCHRONIZATION DELETE statements These
statements are used to temporarily suspend synchronization of delete
operations.

& For more information, see "Temporarily stopping synchronization
of deletes’ on page 156 of the book MobiLink Synchronization User’s
Guide.

Some features of Adaptive Server Anywhere cannot be used in UltraLite
databases. Y ou cannot use the following Adaptive Server Anywhere SQL
featuresin your UltralLite applications:

¢

Dynamic SQL All SQL in UltraLite applications must be known at
compile time (static SQL), so that the analyzer can generate code to
process the statements. Y ou can not include code in your application that
generates and executes arbitrary SQL statements. Y ou can, however, use
parameterized SQL statements to control the behavior of your
statements at run time.

If you need the capability to execute dynamic SQL, or need other
features not present in UltraLite, consider using Adaptive Server
Anywhere. Adaptive Server Anywhere is afull-featured database that
has a footprint small enough for many mobile and embedded
applications.

Cascading updates and deletes Some applicationsrely on
declarative referential integrity to implement business rules. These
features are not available in Ultral ite databases.

437

SQL features and limitations of UltralLite applications

438

Check constraints Y ou cannot include table or column check
constraints in an Ultralite database.

Computed columns Y ou cannot include computed columnsin an
Ultral ite database.

Timestamp columns Y ou cannot use Transact-SQL timestamp
columnsin UltraL ite databases. Transact-SQL timestamp columns are
created with the following default:

DEFAULT TI MESTAWP

Y ou can use columns created as follows:
DEFAULT CURRENT TI MESTAMP

Thereis abehavior difference between the two: aDEFAULT
CURRENT TIMESTAMP column is not automatically updated when
the row is updated, while aDEFAULT TIMESTAMP columnis
automatically updated. Y ou must explicitly update columns created with
DEFAULT CURRENT TIMESTAMP if you wish the column to reflect
the latest update time.

Schema modification To modify the schema of a Ultral ite database,
you must build a new version of your application.

& For moreinformation, see " Schema changes in remote databases'
on page 116 of the book MobiLink Synchronization User’s Guide.

Global temporary tables Thetemporary aspect of global temporary
tablesis not recognized by UltraLite. They are treated as if they were
permanent base tables, which you should use instead.

Declared temporary tables Y ou cannot declare atemporary table
within an UltraL ite application.

System table access There are no system tablesin an UltraLite
database.

Stored procedures You cannot call stored procedures or user-defined
functionsin an UltraLite application.

Java in the database Y ou cannot include Java methodsin your
gueries or make any other use of Javain the database.

SQL variables You cannot use SQL variablesin UltraLite
applications, including global variables.

The @@identity global variable is an exception, and can be used within
Ultral ite applications.

SAVEPOINT statement Ultralite databases support transactions, but
not savepoints within transactions.

Appendix A UltraLite Features and Limitations

¢

SET OPTION statement Y ou can determine the option settingsin an
Ultral ite database by setting them in the reference database, but you
cannot use the SET OPTION statement in an UltraL ite application to
change option settings.

System functions Y ou cannot use Adaptive Server Anywhere system
functions, including property functions, in UltraLite applications.

Functions Not al SQL functions are available for usein UltraLite
applications. For example, the ISDATE and ISNUMERIC functions are
not available for use in UltralL ite databases.

Use of an unsupported function gives a Feature not available in UltraLite
error.

Triggers Triggers are not available in UltraLite databases.

The SQL error message Feature not available in UltraLite is reported when an
UltraLite program attempts to use a SQL statement or feature that is not
supported in UltraL ite.

& For information on other UltraLite limitations, see "UltralLite data
types' on page 436, and " Size and number limitations for UltraLite
databases' on page 440.

439

Size and number limitations for UltraLite databases

Size and number limitations for UltraLite

databases

440

The following table lists the absol ute limitations imposed by data structures
in the software on the size and number of objectsin an Ultralite database. In
most cases, the memory, CPU, and storage device of the computer impose

stricter limits.
Item Limitation
Number of connections per database 14

Number of columns per table

Number of indexes

Number of rows per database

Number of rows per table

Number of tables per database

Number of tables referenced per transaction

Row size

File-based persistent store
Palm Computing Platform database size

65535 but limited by row size”
65535

Limited by persistent store
65534

Approximately 1000

No limit

Approximately 4 kb
(compressed). LONG
VARCHAR and LONG BINARY
values are stored separately, and
arein addition to the 4 kb limit.

2 Gbfileor OSlimit on file size
128 Mb (Primary storage)
2 Gb (expansion card file system)

" Row sizeis limited to about 4 kb, so the practical limit on the number of columns per tableis
much smaller than this: much less than 4000 in most situations.
" If you set the page size to 2 kb, the maximum number of tables is reduced to approximately

500.

& For other limitations, see "Ultralite datatypes' on page 436, and "SQL
features and limitations of UltraLite applications’ on page 437.

Appendix A UltraLite Features and Limitations

UltraLite tables must have primary keys

Each table in your UltralLite application must include a primary key.

The UltraLite generator uses primary keys from your reference database to
generate primary keysin the UltraLite database. If the primary key columns
for any table are not included in the data required in the UltralL ite database,
the UltraLite generator looks for a uniqueness constraint on the table, and
promotes the columns with such a constraint to a primary key in the

Ultral ite database. If there are no unique columns, the generator reports an
error.

Primary keys are required not only for UltraLite applications, but aso during
MobiLink synchronization, to associate rows in the Ultral ite database with
rowsin the consolidated database.

441

User authentication for Ultralite databases

User authentication for UltraLite databases

442

UltraLite provides optional database user 1Ds and passwords for user
authentication. Unlike Adaptive Server Anywhere and other multi-user
database systems, UltraLite user IDs are used for authentication only, not for
permission checking or object ownership within a database. By default,
Ultral ite databases have no user authentication.

& For information on implementing user IDs, see "Adding user
authentication to your application” on page 85.

UltraLite user IDs are separate from MobiLink user names and from user 1Ds
in any reference database or consolidated databases you use during
development and after deployment. In many cases you may wish to provide
code so that the values used for each are the same, but they do remain

distinct concepts. For example, in the CustDB sample application, you are
prompted for an employee number when starting the application. This
employee number identifies the database for the purposes of MobiLink
synchronization, and is not an UltraLite user ID for connection or data access
purposes.

Index

#

#define
Ultralite applications, 427

Q@

@@error global variable
UltraLite limitations, 438

@@identity global variable
usein UltraLite, 61

@@rowcount global variable
UltraL ite limitations, 438

1
16-bit signed integer embedded SQL datatype, 210

3

32-bit signed integer embedded SQL datatype, 210

4
4-byte floating point embedded SQL data type, 210

8
8-byte floating point embedded SQL data type, 210

A

absolute method
Ultral ite Java JDBC support, 365

ActiveSync
about, 305
adding to UltraLite applications, 305
class names, 303
configuring, 399
deploying Ultral ite applications, 299
installing the MobiLink provider, 301
MFC UltralLite applications, 306
registering applications with, 302
supported versions, 305
transport-layer security, 400
UL IsSynchronizeM essage function, 243
Ultralite message, 427
WindowProc function, 306

AES encryption algorithm
Ultral ite databases, 45

afterLast method
Ultral ite Java JDBC support, 365

AfterLast method (ULCursor class)
about, 152

alsync tables
Ultralite databases, 79

an_SQL_code Ultral ite data type
C++ API, 131

analyzer
defined, 91
error on starting, 92

443

B-C

applets
running the UltraLite Java sample, 339

UltraLite, 361

applications
building, 194, 333

building the sample embedded SQL application,

187
compiling, 194
deploying, 104, 364
deploying on Palm Computing Platform, 291
preprocessing, 194
writing, 68
writing in embedded SQL, 183, 193
writing in Java, 324, 338

ARM chip
Windows CE, 6

articles
UltraLite databases, 76
UltraLiterestrictions, 76

auth_status synchronization parameter
about, 381

auth_value synchronization parameter
MobiLink synchronization, 382

automating scripts
MobiLink synchronization, 389

B

backups
UltraLite databases, 42
UltraLite databases on Pam, 426

beforeFirst method
UltraLite Java JDBC support, 365

BeforeFirst method (ULCursor class)
about, 153

binary embedded SQL datatype, 212

browsing
Sybase Central, 35

build processes
single-file embedded SQL applications, 194
UltralLite embedded SQL applications, 195

444

building
C++ API applications, 127
embedded SQL applications, 194
Java applications, 333
sample application, 340
sample embedded SQL application, 187

C

C++ API
about, 108, 122
class hierarchy, 130
compiling applications, 128
generating classes, 127
header files, 130
linking applications, 128
Palm Computing Platform, 140, 150, 160, 261
query classes, 125
Reopen methods, 261
table classes, 125
tutorial, 109

cache_size persistent storage parameter, 45
about, 429

cascading deletes
UltraLite limitations, 437

cascading updates
Ultralite limitations, 437

case sengitivity
UltraLite user authentication, 85

Certicom
security, 422
transport-layer security, 387, 388
unavailable on Power PC, 283
unavailable using GCC tools, 259

certificate option
MobiLink synchronization server -x, 354

certificate_password option
MobiLink synchronization server -x, 354

changeEncryptionKey method, 49
JdbcDatabase class, 49, 369

character sets
synchronization, 64
UltraLite, 64

UltraLite Java, 65
UltraLite limitations, 437

character string embedded SQL data type
fixed length, 211
variable length, 211

character strings, 418

check constraints
UltraLite limitations, 438

checkpoint_store synchronization parameter
MobiLink synchronization, 382

class names
ActiveSync synchronization, 303

Class.forName method, 345

classes
C++ AlP, 130

ClassNotFoundException, 345

client_port stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

close method
JdbcDatabase class, 369

Close method (UL Connection class)
about, 132

Close method (UL Cursor class)
about, 153

Close method (UL Data class)
about, 144
do not use on Palm Computing Platform, 144

CLOSE statement
about, 223

closing
Palm applications, 261

code generation
UltraLite, 91

code pages
synchronization, 64

CodeWarrior
converting projects, 257
creating Ultral ite projects, 256
installing UltraLite plug-in, 255

supported versions, 6
Ultral ite devel opment, 255
using UltraLite plug-in, 257

collation sequences
UltraL ite databases, 64

Commit method (UL Connection class)
about, 132

commits
Ultral ite databases, 44

compiler
GNU for Palm, 259

compiler directives
UltraLite applications, 427
UNDER_CE, 432
UNDER_NT, 432
UNDER_PALM_QOS, 432
UNDER_VXW, 433

compilers
Palm Computing Platform, 254
supported, 6, 7
VxWorks, 310
Windows CE, 294

compiling
C++ API applications, 127, 128
UltralLite applications, 194
Ultralite embedded SQL applications, 195
UltraLite Java, 363
UltraLite VxWorks applications, 316

compression
UltralL ite databases, 43

computed columns
UltraLite limitations, 438

conduit
dbcond8.exe, 274
deploying, 291
deploying UltraLite applications, 275
HotSync synchronization, 290
installing, 275, 414
installing for CustDB, 414
testing, 276

conduit installation utility
about, 275

configuring
development tools, 102, 198

445

D-D

connect method
JdbcDatabase class, 370

connecting
multiple UltraLite Java databases, 348
Properties object and Ultralite Java, 347
Ultralite databases, 85, 442
Ultral ite Java databases, 344, 345

Connection object, 345

connections
UltraLite limitations, 440

consolidated databases
creating reference databases, 74
Sybase Central, 35

conventions
documentation, Xiii

CountUploadRows method (UL Connection class)
about, 133

creating
reference databases, 72, 73
UltraLite databases, 9
UltraLite Java databases, 373
UltraL ite publications, 77

CURRENT TIMESTAMP
SQL specia value, 438

cursors
embedded SQL, 223

custase.sql
location, 18

CustDB application
about, 15
building for Palm Computing Platform, 258, 259
building for VxWorks, 312
building for Windows CE, 296
features, 16
filelocations, 17
installing conduit, 414
introduction, 16
starting, 24
synchronization, 19

CustDB database
about, 35
location, 17

446

custdb.db
location, 17

custdb.sqc
location, 18

custdb.sql
location, 18

custmss.sql
location, 18

custora.sq
location, 18

D

Data Manager
Ultral ite database storage, 43

data types
embedded SQL, 210
UltraLite, 436
UltraLite enumeration, 151
UltraLite SQL enumeration, 152

database files
changing the encryption key, 49
defragmenting Ultral ite databases, 51
encrypting, 46, 429
obfuscating, 45, 427
setting the file name, 45
Ultralite VxWorks, 318
Ultralite Windows CE, 298

database options
reference databases, 73

databases
collation sequences, 64
connections from UltralLite Java, 344
deleting Ultralite, 426
generating Ultral ite Java, 362
multiple UltraLite Java, 348
reference, 72
Ultral ite database storage, 43
UltraLite Java, 348
UltraLite limitations, 440

DATE_FORMAT option
Ultral ite databases, 73

DATE_ORDER option
UltralLite databases, 73

dates
Ultral ite databases, 73

db_fini function
do not use on the Palm Computing Platform, 231
UltraL ite usage, 231

db_init function
multi-threaded Ultralite applications, 93
Ultralite usage, 231

dbasinst command-line utility
installing the MobiLink provider for ActiveSync,
301

dbcond8 command-line utility
command-line arguments, 414
deploying, 275
HotSync conduit, 274

dbhsync8.dll
HotSync conduit, 275

dbhttp8.dil
deploying UltraLite applications, 275

dblgen8.dil
HotSync conduit deployment, 275

dbser8.dll
deploying UltraLite applications, 275

dbsock8.dll
deploying UltraLite applications, 275

dbtls8.dll
deploying UltraLite applications, 275

dbulseg command-line utility
command line, 425

decima embedded SQL data type, packed, 210

DECL_BINARY macro
about, 210

DECL_DATETIME data type
UltraLite C++ API, 131

DECL_DATETIME macro
about, 210

DECL_DECIMAL macro
about, 210

DECL_FIXCHAR macro
about, 210

DECL_VARCHAR macro
about, 210

declaration section
about, 209

DECLARE statement
about, 223

declaring
host variables, 209

definitions
persistent storage parameters, 45

defragmenting
UltraL ite databases, 51

Delete method (UL Cursor class)
about, 154

DeleteAllRows method (UL Table class)
about, 165

deletes
UltralLite databases, 44

deleting
UltraLite utility to delete databases, 426

dependencies
embedded SQL, 198

deploying
applications on Palm Computing Platform, 291
applications that use ActiveSync, 299
MobiLink synchronization conduit for Palm, 291
Palm Computing Platform, 291
Palm Computing Platform CustDB sample

application, 21

Ultralite applications, 104
Ultralite databases, 236
UltraLite databases on Palm, 292
Ultral ite Java applications, 364
Ultralite Palm applications, 274
Ultralite VxWorks applications, 313
UltraLite Windows CE applications, 299
Windows CE CustDB sample application, 22

development
UltraLite, 70

development model
UltraLite, 68

447

E-E

development tools
configuring for UltraLite, 102, 198
embedded SQL, 198
preprocessing, 102, 198

dia-up networking

about, 285

configuring, 287
directives

Ultralite applications, 427

disableUserAuthentication method
JdbcSupport class, 374

documentation
conventions, Xiii
SQL Anywhere Studio, x

download acknowledgements
send_download_ack synchronization parameter,
389

download_only synchronization parameter
MobiLink synchronization, 383

download-only synchronization
Ultralite databases, 78, 383

Driver class, 345
DriverManager class, 345
DriverManager.getConnection() method, 345

drop method
JdbcDatabase class, 371

Drop method (UL Data class)
about, 145

DT_BINARY embedded SQL datatype, 213

DT_LONGVARCHAR embedded SQL data type,
213

dynamic SQL
UltraLite limitations, 437

E

embedded SQL
about, 183, 193, 205
authorization, 417
character strings, 418
cursors, 223

448

fetching data, 222
functions, 231

host variables, 209

line numbers, 417
preprocessing Ultralite, 201
preprocessor, 415

sample program, 183
Ultralitetutorial, 182

embedded SQL library functions
UL ActiveSyncStream, 232
UL ChangeEncryptionKey, 233
UL ClearEncryptionKey, 233
UL ConduitStream, 233
UL CountUploadRows, 234
UL DropDatabase, 235
ULEnableFileDB, 235
UL EnableGenericSchema, 236
UL EnablePamRecordDB, 237
UL EnableStrongEncryption, 238
UL EnableUserAuthentication, 238
UL GetLastDownloadTime, 239
UL GetSynchResult, 240
UL Globa AutoincUsage, 241
UL GrantConnectTo, 242
ULHTTPSStream, 242
ULHTTPStream, 242
ULPamDBStream, 243
ULResetL astDownloadTime, 246
UL RetrieveEncryptionK ey, 247
UL RevokeConnectFrom, 248
UL SaveEncryptionKey, 248
UL SetDatabasel D, 248
UL SocketStream, 249
UL StoreDefragFini, 249
UL StoreDefraglnit, 249
UL StoreDefragStep, 250
UL Synchronize, 250

eMbedded Visua C++
obtaining, 294

emulator
Windows CE, 299

enableUserAuthentication method
JdbcSupport class, 374

encryption
C++ API, 124
changing UltraL ite encryption keys, 49, 233
HotSync synchronization, 277
Palm Computing Platform, 50

storing the encryption key, 50
UltralLite databases, 45, 46, 238, 429

encryption keys
guidelines, 46

error handling
UltraL ite applications, 344
UltraLite JDBC, 345

errors
codes, 228
SQLCODE, 228
sglcode SQLCA field, 228
unable to use Javain the database, 92

EXEC SQL
embedded SQL development, 207

Execute method (generated statement class)
about, 174

F

feature not availablein UltraLite
error message, 439

feedback
documentation, xvii
providing, xvii

FETCH statement
about, 222, 223

fetching
embedded SQL, 222

file_name persistent storage parameter, 45
about, 429

files
CustDB sample application, 17

Find method (UL Table class)
about, 165

FindFirst method (UL Table class)
about, 165

FindLast method (UL Table class)
about, 166

FindNext method (UL Table class)
about, 167

FindPrevious method (UL Table class)
about, 167

first method
UltraLite Java JDBC support, 365

First method (UL Cursor class)
about, 154

first time
synchronization, 97

foreign key cycles
UltraLite, 56

functions
embedded SQL, 231

G

GCC toals
troubleshooting, 259
UltralLite applications, 259

generated database
naming, 257

generated database class
Ultralite Java databases, 373

generated result set class
about, 174

generating
database, 362
supplementary code, 202

generating multi-segment code
about, 264

generator
about, 362
database options, 74

Get method (generated table class)
about, 175

Get method (UL Cursor class)
about, 154

GetCA method (UL Connection class)
about, 133

GetColumn method (generated result set class)
about, 171

449

H-H

GetColumn method (generated table class)
about, 176

GetColumnCount method (UL Cursor class)
about, 155

GetColumnSize method (UL Cursor class)
about, 155

GetColumnSQL Type method (UL Cursor class), 156
GetColumnType method (UL Cursor class), 156

getDefraglterator method
JdbcConnection class, 366

getDriver method, 345

GetLastDownloadTime method (UL Connection
class)
about, 134

getLastDownloadTimeCalendar method
JdbcConnection class, 371

getLastDownloadTimeDate method
JdbcConnection class, 371

getL astDownloadTimel ong method
JdbcConnection class, 372

getL astldentity method
JdbcConnection class, 367

GetL astldentity method
using, 61

GetL astldentity method (UL Connection class)
about, 134

getNewPassword method
MobiLink synchronization, 383

GetRowCount method (UL Table class)
about, 168

GetSizeColumn method (generated table class)
about, 177

GetSQL Code method (UL Connection class)
about, 135

GetSQL Code method (UL Cursor class)
about, 157

GetSynchStatus method (UL Connection class)
about, 135

450

global autoincrement
C++ API, 136, 142
exhausted range, 62
setting default in UltraLite, 58
setting in UltraL ite, 59
UL Global AutoincUsage function, 241
UL SetDatabasel D function, 248
UltraLite Java getL astldentity method, 367
UltraLite Java global AutoincUsage method, 367
UltraLite Java setDatabasel D method, 368
using in UltraLite, 58

global database identifier
C++ API, 142
setting, 59
UltraLite embedded SQL, 248
Ultralite Java, 368

GLOBAL_DATABASE_ID option
setting in UltralLite, 59

global AutoincUsage method
JdbcConnection class, 367

Global AutoincUsage method (UL Connection class)
about, 136

GNU GCC tools
UltralLite applications, 259

grant method
JdbcDatabase class, 372

GrantConnectTo method (UL Connection class)
about, 137

H

header files
C++ API, 130

high-priority changes
synchronization, 78

hooks
sglpp customization, 416
ulgen customization, 420

host name
UL Synchronize arguments, 394

host platforms
supported, 6
UltralLite, 6
UltraL ite development, 68

host stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

host variables
about, 209
declaring, 209
uses, 214

HotSync conduit
configuring, 277
installing, 414
installing for CustDB, 414
testing, 276

HotSync Server
supported versions, 268

HotSync synchronization
about, 269
architecture, 269
configuring, 401
Palm Computing Platform, 272, 273, 274
supported, 12
transport-layer security, 402

hpp file
C++ API, 130

HTTP
synchronization, 403

http stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

HTTP synchronization
Palm Computing Platform, 283, 290

HTTPS
synchronization, 406

HTTPS synchronization
Palm Computing Platform, 283, 290

icons
used in manuals, xiv

ignored rows
synchronization, 383

ignored_rows synchronization parameter
MobiLink synchronization, 383

INCLUDE statement
SQLCA, 228

index enumeration (generated table class)
about, 178

indexes
Ultralite databases, 44

indicator variables
about, 220
NULL, 220

InitSynchinfo method
about, 95

InitSynchinfo method (UL Connection class)
about, 137

Insert method (UL Cursor class)
about, 157

installing
MobiLink provider for ActiveSync, 301
Palm Computing Platform, 21, 291
UltraLite plug-in for CodeWarrior, 255
Windows CE development, 294

isAfterLast method
UltraLite Java JDBC support, 365

isBeforeFirst method
UltraLite Java JDBC support, 365

isFirst method
Ultralite Java JDBC support, 365

isLast method
Ultral ite Java JDBC support, 365

1sOpen method (UL Connection class)
about, 138

1sOpen method (UL Cursor class)
about, 158

451

J-L

IsOpen method (UL Data class)
about, 145

J

Java
sample program, 324
supported platforms, 8
UltraLite character sets, 65
UltralLite limitations, 365
UltraLite tutorial, 324

Java applets
UltralLite, 361

java certicom tls stream
MobiLink synchronization server, 354

java rsa tls stream
MobiLink synchronization server, 354

JDBC
about, 324
database parameter in UltraLite URL, 346
loading drivers, 345
registering drivers, 345
UltraLite Java SQL statements, 351
UltraLite limitations, 365
URLs, 346

JDBC drivers
loading multiple drivers, 345
loading UltraLite, 345
registering UltraLite, 345
UltraLite, 345

JdbcConnection class
about, 366
getDefraglterator method, 366
getL astldentity method, 367
global AutoincUsage method, 367
setDatabasel D method, 368
startSynchronizationDel ete method, 368
stopSynchronizationDel ete method, 369
synchronize method, 368

JdbcConnection.synchronize method
about, 334, 352

JdbcDatabase class
about, 344, 369, 373
close method, 369
connect method, 344, 370

452

drop method, 371
grant method, 372
revoke method, 372

JdbcDefraglterator class
about, 373
ul StoreDefragStep method, 374

JdbcSupport class
about, 374
disableUserAuthentication method, 374
enableUserAuthentication method, 374

JDK
UltraL ite supported versions, 8

JSynchProgressViewer class
about, 358

K

keep_dlive stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

key parameter
database encryption, 429

key property
Ultralite Java databases, 347

L

large files
Ultral ite generator, 424

last download timestamp
resetting in UltraLite databases, 141, 246
UL GetLastDownloadTime function, 239

last method
UltraLite Java JDBC support, 365

Last method (UL Cursor class)
about, 158

LastCodeOK method (UL Connection class)
about, 138

LastCodeOK method (UL Cursor class)
about, 158

LastFetchOK method (UL Cursor class)
about, 139, 158

LAUNCH_SUCCESS FIRST
C++ API, 149
embedded SQL, 246
UltraLite Palm applications, 261

launching
Palm applications, 261

library functions
embedded SQL, 231
UL ActiveSyncStream, 232
UL ChangeEncryptionKey, 233
UL ClearEncryptionKey, 233
UL ConduitStream, 233
UL CountUploadRows, 234
UL DropDatabase, 235
UL EnableFileDB, 235
UL EnableGenericSchema, 236
UL EnablePalmRecordDB, 237
UL EnableStrongEncryption, 238
UL EnableUserAuthentication, 238
UL GetLastDownloadTime, 239
UL GetSynchResult, 240
UL Global AutoincUsage, 241
UL GrantConnectTo, 242
ULHTTPSStream, 242
ULHTTPStream, 242
UL IsSynchronizeM essage, 243
ULPamDBStream, 243
UL ResetLastDownloadTime, 246
UL RetrieveEncryptionKey, 247
UL RevokeConnectFrom, 248
UL SaveEncryptionKey, 248
UL SetDatabasel D, 248
UL SocketStream, 249
UL StoreDefragFini, 249
UL StoreDefraglinit, 249
UL StoreDefragStep, 250
UL Synchronize, 250

limitations
JDBC UltraLite, 366
UltraL ite, 440
UltraL ite data types, 436
UltraLite SQL features, 437

line length
sglpp output, 417

line numbers, 417

linking
C++ API applications, 128
UltralL ite applications, 295

loading
JDBC driver, 345

log files
synchronization, 278, 282

Lookup method (UL Table class)
about, 168

LookupBackward method (UL Table class)
about, 168

LookupForward method (UL Table class)
about, 169

M

macros
UL_ENABLE_GNU_SEGMENTS, 428
UL_ENABLE_OBFUSCATION, 427
UL_ENABLE_SEGMENTS, 428
UL_ENABLE_USER_AUTH, 428
UL_STORE_PARMS, 428
UL_SYNC_ALL, 431
UL_SYNC_ALL_PUBS, 431
UL_TEXT, 432
UL_USE_DLL, 432
UltralLite applications, 427

makefiles
embedded SQL, 198

maximum
columns per table, 440
connections per database, 440
rows per table, 440
tables per database, 440

memory usage
Ultral ite database storage, 43
UltraLite indexes, 44
UltraLite row states, 44

MetroWerks CodeWarrior
supported versions, 6

MFC
ActiveSync for UltraLite, 306

453

N-O

Microsoft Visual C++
supported versions, 6, 7

MIPS chip
Windows CE, 6

MobiLink
UltraLiteand, 11

MobiLink conduit
installing, 414

MobiLink synchronization server
HotSync, 274
ScoutSync, 279

modems
Palm Computing Platform, 285

multi-row queries
cursors, 223

multi-segment code
generating, 264

multi-threaded applications
embedded SQL, 229
UltralLite thread-safe, 68

N

NEAREST_CENTURY option
UltraLite databases, 73

new_password synchronization parameter
about, 383

newsgroups
technical support, xvii

Next method (UL Cursor class)
about, 159

nosync suffix
non-synchronizing tables, 76

NULL
C++ API, 154
indicator variables, 220

NULL-terminated string embedded SQL data type,
210

NULL-terminated TCHAR character string SQL
datatype, 211

454

NULL-terminated UNICODE character string SQL
datatype, 211

NULL-terminated WCHAR character string SQL
datatype, 211

NULL-terminated wide character string SQL data
type, 211

O

obfuscating
compiler directive, 427
Ultralite databases, 45, 427
UltraLite Java databases, 373

obfuscation
Ultralite databases, 45

Object Store
Ultral ite database storage, 43

objects
generated result set, 171
generated statement, 174
generated table, 175
UL Connection, 132
UL Cursor, 151
ULData, 144
UL ResultSet, 163
ULTable, 165

observer
synchronization example, 100, 358

observer synchronization parameter
about, 384

Open method (generated result set class)
about, 172

Open method (generated table class)
about, 177

Open method (UL Connection class)
about, 139

Open method (UL Cursor class)
about, 159, 161

Open method (UL Data class)
about, 146

OPEN statement
about, 223

P-pP

options
reference databases, 73

P
packed decimal embedded SQL data type, 210

page size
UltraLite databases, 429

page_size parameter
UltraL ite databases, 429

Palm Computing Platform
C++ AP, 140, 150, 160
code pages, 64
collation sequences, 64
deployment, 21
development for, 254
file-based data store, 235
HotSync synchronization, 272, 273, 274
HTTP synchronization, 283
installing UltraLite applications, 291
platform requirements, 254
publication restrictions, 76
record-based data store, 237
ScoutSync synchronization, 272, 279
security, 283
segments, 263, 264, 265
supported versions, 6
synchronization, 285
TCP/IP synchronization, 283, 285
ULDataclass, 125
user authentication, 86
version 4.0, 235, 237

palm_allow_backup parameter
persistent storage, 430

PalmExit method
about, 261

PalmExit method (UL Data class)
about, 147

PalmL aunch method
about, 261

PalmLaunch method (UL Data class)
about, 148

PalmPilot
unsupported versions, 6

password synchronization parameter
about, 384

passwords
MobiLink synchronization, 383, 384
Palm Computing Platform, 86
Ultral ite case sensitivity, 85
UltraLite databases, 85, 86, 442
UltraLite Java, 347

PATH environment variable
HotSync, 254
ScoutSync, 254

performance
upload-only synchronization, 383, 396

permissions
embedded SQL, 208

persist property
Ultral ite Java databases, 347

persistent memory
Ultral ite database storage, 43

persistent storage
cache_size parameter, 429
file_name parameter, 429
pam_allow_backup parameter, 430
parameters, 45
reserve_size parameter, 430
Ultral ite databases, 344, 348
VxWorks, 318
Windows CE, 298

persistfile property
UltralLite Java databases, 347

physical limitations
UltraL ite, 440

PilotMain function
Ultralite applications, 261, 272

ping synchronization parameter
about, 385

platforms
supported, 6

Pocket PC
UltraL ite supported versions, 6

port number
UL Synchronize arguments, 394

455

O-R

port stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

PRC Tools
compiling the sample application, 259

PRC-Tools chain
Ultral ite applications, 259

PRECISION option
UltraL ite databases, 73

prefix files
about, 257
CodeWarrior, 264

preprocessing
development tool settings, 198
Ultralite applications, 194
Ultralite embedded SQL, 201

preprocessor
database options, 74

previous method
UltraLite Java JDBC support, 365

Previous method (UL Cursor class)
about, 159

primary keys
UltraL ite requirements, 441

primary-key pools
generating unique values using in UltralLite, 58

procedures
UltraLite limitations, 438

program structure
embedded SQL, 207

progress viewer
synchronization, 358

projects
adding statements to, 123
Java, 362
UltraLite, 80, 81, 123

Properties object
UltraLite Java connections, 347, 348

proxy_host stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

456

proxy_port stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

publication creation wizard
creating UltraLite publications, 77
using, 111

publication masks
about, 386

publication synchronization parameter
about, 386

publications
MobiLink synchronization, 386
UltraL ite databases, 76, 77

publishing
whole table, 77

Q

queries
single-row, 222
UltraLite, 123

R

RAS
about, 285
configuring, 287

read-only tables
Ultral ite databases, 78

recovery
UltralLite databases, 42, 44

reference databases
creating, 72, 73
creating from existing databases, 74
options, 73
Ultral ite development, 10
upgrading, 92

referential integrity
UltraLite limitations, 437
registering

applications with ActiveSync, 302
JDBC driver, 345

S-S5

registry
ClientParms registry entry, 273, 280
HotSync parameters, 274
ScoutSync parameters, 279

relative method
UltraLite Java JDBC support, 365

Relative method (UL Cursor class)
about, 160

Remote Access Service
about, 285
configuring, 287

remote databases
defined, 16
deleting data, 426

Reopen method
C++ API, 261

Reopen method (UL Connection class)
about, 140

Reopen method (UL Cursor class)
about, 160

Reopen method (UL Data class)
about, 150

reserve_size parameter
persistent storage, 430

ResetL astDownloadTime method (UL Connection
class)
about, 141

restoring
UltraL ite databases, 42

RevokeConnectFrom method (UL Connection class)
about, 141

revokemethod
JdbcDatabase class, 372

Rollback method (UL Connection class)
about, 141

rollbacks
UltraL ite databases, 44

running
sample application, 341

runtime library
Windows CE, 295, 432

S

sample application
about CustDB, 15
building for Palm Computing Platform, 258, 259
building for VxWorks, 312
building for Windows CE, 296
building UltralLite Java, 340
CustDB database, 35
CustDB features, 16
CustDB file locations, 17
CustDB requirements, 21
CustDB synchronization, 19
installing CustDB, 21
introduction to CustDB, 16
running UltraLite Java, 341
starting CustDB, 24
UltraLite Java, 339, 340, 341

sample database
schemafor CustDB, 35

SAVEPOINT statement
UltraLite limitations, 438

SCALE option
UltraLite databases, 73

schema
UltralLite databases, 69

schema upgrades
Ultral ite databases, 236

ScoutSync synchronization
about, 269
architecture, 269
configuring, 401
configuring RAS TCP/IP, 282
configuring the conduit, 279
configuring the ScoutSync client, 281
configuring the ScoutSync server, 280
Palm Computing Platform, 272, 279
setting up, 280
supported versions, 268
synchronization log files, 282
transport-layer security, 402
using for thefirst time, 282

scripts
browsing with Sybase Central, 35

457

S-S

security
Certicom, 387, 388, 422
changing the encryption key, 49
database encryption, 46, 429
database obfuscation, 45, 427
encryption on Paim, 50
MobiLink synchronization, 387, 388
synchronization parameters, 387, 388
UltraLite applications, 283, 319, 387, 388
UltraL ite generator, 422
UltraLite Java transport-layer security, 353
unavailable on Power PC, 283
unavailable using GCC tools, 259

security synchronization parameter
about, 387

security_parms
synchronization parameters, 388

security_parms synchronization parameter
about, 388

segments
about, 263, 265
assigning statements, 413
explicitly assigning, 265
generating multi-segment code, 264
Palm Computing Platform, 263, 265, 266, 413,
428
user-defined code, 266

SELECT statement
single row, 222

send_columns_names synchronization parameter
about, 389

send_download_ack synchronization parameter
about, 389

Set method (UL Cursor class)
about, 161

SET OPTION statement
UltraLite limitations, 439

SetColumn method (generated result set)
about, 172

SetColumn method (generated table class)
about, 178

setDatabasel D method
JdbcConnection class, 368

458

SetDatabasel D method (UL Connection class)
about, 142

setDefaultObfuscation method
JdbcDatabase class, 373
UlDatabase class, 46

setNewPassword method
MobiLink synchronization, 383

SetNullColumn method (generated result set class)
about, 173

SetNullColumn method (generated table class)
about, 178

setObserver method
MobiLink synchronization, 384

SetParameter method (UL ResultSet class)
about, 163

Setting
persistent storage parameters, 45

setUserData synchronization parameter
about, 396

sp_hook_ulgen_begin

sglpp, 416
ulgen hook, 420

sp_hook_ulgen_end

sqlpp, 416
ulgen hook, 420

SQC files
multiple, 202

SQL Anywhere Studio
documentation, x

SQL Communications Area
about, 228

SQL preprocessor
about, 415
command line, 415
Ultralite embedded SQL applications, 195

SQL statements
UltraLite, 83
UltraLite Java, 351

sglaid SQLCA field
about, 228

S-S5

SQLCA
about, 228
fields, 228
multiple, 229

sqlcabe SQLCA fild
about, 228

sglcode SQLCA field
about, 228

sglerrd SQLCA field
about, 229

sglerrmec SQLCA field
about, 229

sglerrml SQLCA field
about, 228

sglerrp SQLCA field
about, 229

SQLException
UltralLite applications, 344

sglpp command-line utility
command line, 415
UltraLite embedded SQL applications, 195

solstate SQLCA field
about, 229

sglwarn SQLCA field
about, 229

startSynchronizationDel ete method
JdbcConnection class, 368

StartSynchroni zationDel ete method (UL Connection
class)
about, 142

state bytes
UltraLite databases, 44

static SQL
authorization, 208

stopSynchronizationDel ete method
JdbcConnection class, 369

StopSynchronizationDel ete method (UL Connection
class)
about, 142

storage parameters, 45

stored procedures
UltraLite limitations, 438

stream definition functions
GetSynchStatus method, 135
UL ActiveSyncStream, 232
UL ConduitStream, 233
UL GetSynchResult, 240
UL Globa AutoincUsage, 241
ULHTTPSStream, 242
ULHTTPStream, 242
ULPamDBStream, 243
UL SetDatabasel D, 248
UL SocketStream, 249

stream parameters
UL Synchronize arguments, 394

stream synchronization parameter
about, 389

stream_error synchronization parameter
about, 393
ul_stream_error structure, 393

stream_parms synchronization parameter
about, 394, 399
configuring, 399, 401
HotSync conduit, 277
HotSync synchronization, 269
ScoutSync synchronization, 269
UL Synchronize arguments, 394

string embedded SQL data type
fixed length, 211
NULL-terminated, 210
variable length, 211

strings
UL_TEXT macro, 432

strong encryption
UltralLite databases, 45, 238

SUBSCRIBE BY clause
UltralLite restrictions, 76

supplementary code
generating, 202

support
newsgroups, xvii

supported platforms, 6
MobiLink synchronization, 56

459

S-S

Sybase Centra
adding SQL statementsto an Ultralite project,
81, 326
connecting, 36
creating Ultral ite projects, 80
creating UltraLite publications, 77
CustDB sample application, 36
MobiLink synchronization, 35

SynchProgressViewer class
about, 358

synchronization
about, 94
adding to UltraLite applications, 94
applets, 361
auth_value, 382
C++ API, 143
canceling, 98, 356, 384
character sets, 64
checkpoint_store, 382
client-specific data, 79
commit before, 97
CustDB application, 19
CustDB sample application, 19
download only, 383
embedded SQL function, 190
excluding tables, 76
high-priority changes, 78
HotSync Palm Computing Platform, 272, 273,
274
HTTP Pam Computing Platform, 283
ignored rows, 383
initial copy, 97
invoking, 96
Java application, 334
Java applications, 352
Java example, 353
JdbcConnection.synchronize method, 334, 352
monitoring, 98, 356, 384
multiple methods, 284
Palm Computing Platform, 285
progress viewer, 358
protocols, 12
publications, 76
ScoutSync Palm Computing Platform, 272, 279
stopping, 384
Sybase Central, 35
TCP/IP Palm Computing Platform, 283
troubleshooting, 135, 240
UL Synchronize function, 190
UltraLite and MobiLink, 11

460

UltraL ite applications, 55
UltraLite C++ API, 118
UltraLite Java, 352
upload-only, 396
VxWorks, 319

Windows CE, 305

synchronization conduit

HotSync, 290

synchronization library functions

UL Synchronize, 250

synchronization parameters

about, 380
auth_status, 381
new_password, 383
password, 384
ping, 385
publication, 386
stream, 389
stream_error, 393
upload_ok, 395
user_name, 397
version, 397

synchronization scripts

browsing with Sybase Central, 35

synchronization status

GetSynchStatus method, 135
UL GetSynchResult function, 240

synchronization streams

parameters, 399

setting, 389

UL ActiveSyncStream, 391
UIHTTPSStream, 352, 392
UIHTTPStream, 352, 392
ULHTTPStream, 391

Ul SecureRSA SocketStream, 352
Ul SecureSocketStream, 352, 354, 392
UlSocketStream, 352, 392

UL SocketStream, 391

UltraL ite support, 56

synchronize method

JdbcConnection class, 368
JdbcConnection object, 352

Synchronize method (UL Connection class)

about, 143

sysAppLaunchCmdNormal Launch

UltraL ite applications, 261, 272

T-T

system functions
UltraLite limitations, 439

system procedures
ul_add project, 412
ul_add_statement, 411
ul_delete project, 412
ul_delete_statement, 412
ul_set_codesegment, 413

system tables
UltraLite limitations, 438

T

tables
publishing, 77
UltraL ite development, 123
UltraLite limitations, 440
UltraL ite requirements, 441

target platforms
supported, 6
synchronization support, 56
UltralLite, 6
UltraL ite devel opment, 68

TCP/IP synchronization
Palm Computing Platform, 283, 285
paremeters, 402
streams, 12

technical support
Newsgroups, Xvii

temporary tables
synchronization using client-specific data, 79
UltraLite limitations, 438

threads
embedded SQL, 229
Java synchronization, 359
synchronization monitoring, 359
UltralLite applications, 68, 93
UltraLite Java, 93

TIME_FORMAT option
UltraLite databases, 73
times
UltraLite databases, 73

timestamp columns
UltraLite limitations, 438

timestamp structure embedded SQL data type, 212

TIMESTAMP_FORMAT option
UltraLite databases, 73

tips
Ultralite development, 97

Tornado
supported versions, 7

transactions
UltralLite databases, 42, 44

transient databases
UltraLite, 344, 348

transport-layer security
ActiveSync synchronization, 400
HotSync synchronization, 402
java_certicom_tls stream, 354
java_rsa _tls stream, 354
ScoutSync synchronization, 402
Ultralite Java applications, 353, 408, 409
UltraLite Java clients, 352
unavailable on Power PC, 283
unavailable using GCC tools, 259

triggers
UltraLite limitations, 439

troubleshooting
commit al changes before synchronizing, 97
conduit, 276
dial-up networking, 289
previous synchronization, 135, 240
RAS, 289
Remote Access Service, 289
synchronization of UltraLite applications, 393
Ultralite compilation problems, 424
Ultralite development, 97
UltraLite Palm applications, 259
VxWorks synchronization, 319

truncation

on FETCH, 221

tutorials

UltraLite C++ API, 109
Ultralite embedded SQL, 182
UltraLite Java, 324

UltralLite sample application, 15

461

u-u

U

ul_add_project system procedure
about, 412

ul_add_statement system procedure
about, 411

UL_AS _SYNCHRONIZE macro
ActiveSync UltralLite messages, 427

UL_AUTH_STATUS EXPIRED auth_status value
about, 381

UL_AUTH_STATUS IN_USE auth_status value
about, 381

UL_AUTH_STATUS INVALID auth_status value
about, 381

UL_AUTH_STATUS UNKNOWN auth_status
value
about, 381

UL_AUTH_STATUS VALID auth_status value
about, 381

UL_AUTH_STATUS VALID BUT_EXPIRES S
OON auth_status value
about, 381

ul_binary data UltraLite type
C++ API, 131

ul_char data UltraLite type
C++ API, 131

ul_column_num UltraL ite data type
C++ API, 131

UL_DEBUG_CONDUIT environment variable
troubleshooting conduit, 276

ul_delete project system procedure
about, 412

ul_delete_statement procedure
about, 412

ul_delete_statement system procedure
about, 412

UL_ENABLE_GNU_SEGMENTS macro
about, 428

UL_ENABLE_OBFUSCATION macro
about, 427

462

UL_ENABLE_SEGMENTS macro
about, 428

UL_ENABLE_USER AUTH macro
about, 428

ul_fetch offset UltraLite data type
C++ API, 131

ul_length Ultral ite data type
C++ API, 131

UL_NULL, 131

ul_set_codesegment procedure
about, 413

ul_set codesegment system procedure
about, 413

UL_STORE_PARMS macro
about, 428
using, 45

ul_stream_error structure
about, 393

UL_SYNC_ALL macro
about, 431
publication mask, 386

UL_SYNC_ALL_PUBS macro
about, 431
publication mask, 386

ul_synch_info structure
about, 95

ul_synch_status structure
about, 99

UL_TEXT macro
about, 432

UL_USE_DLL macro
about, 432

UL ActiveSyncStream function
about, 232
parameters, 399
setting synchronization stream, 391
Windows CE, 305

ulapi.h
C++ API, 130

UL ChangeEncryptionKey function
about, 233
using, 49

UL ClearEncryptionKey function, 233
using, 50

UL ConduitStream function, 233
setting synchronization stream, 391

UL Connection class
about, 132
Resetl astDownloadTime method, 141
RevokeConnectFrom method, 141
using, 125

UL CountUploadRows function, 234

UL Cursor class
about, 151, 175

ULData class
about, 144
multi-threaded Ultralite applications, 93
Palm Computing Platform, 125
using, 125

UlDatabase class
obfuscating databases, 46

UL DropDatabase function, 235

ULEnableFileDB function
about, 235
C++ API, 124, 130

UL EnableGenericSchema function
about, 236
upgrading UltraLite applications, 104

UL EnablePalmRecordDB function
about, 237
C++ API, 124

UL EnableStrongEncryption function
about, 238
C++ AP, 124, 130

UL EnableUserAuthentication function
about, 87, 88, 89, 238
C++ API, 124, 130
using, 85

ulgen command-line utility
about, 362
C++ API, 127
syntax, 419

UL GetLastDownloadTime function
about, 239

UL GetSynchResult function
about, 240

ulglobal .h
C++ API, 130
ul_synch_info structure, 380

UL Global AutoincUsage function
about, 241

UL GrantConnectTo function
about, 242

ULHTTPSStream function
about, 242
parameters, 406
setting synchronization stream, 391
Windows CE, 308

UIHTTPSStream object
Java synchronization stream, 352, 392
parameters, 406

ULHTTPStream function
about, 242
parameters, 403
setting synchronization stream, 391
Windows CE, 308

UIHTTPStream object
Java synchronization stream, 352, 392
parameters, 403

UL InitSynchinfo function
about, 95

UL IsSynchronizeM essage function
about, 243
ActiveSync, 305

ULPamDBStream function, 243

UL PamExit function
about, 244, 261, 283
using, 272, 273, 274, 279

UL PalmLaunch function
about, 245, 261, 283
using, 272, 273

UL ResetL astDownloadTime function
about, 246

463

u-u

ULResultSet class
about, 163

UL RetrieveEncryptionKey function, 247
using, 50

UL RevokeConnectFrom function
about, 248

UL SaveEncryptionKey function, 248
using, 50

UL SecureCerticomTL SStream
about, 387

UL SecureCerticomTL SStream function
security, 388

Ul SecureRSA SocketStream object
about, 354
Java synchronization stream, 352
parameters, 408

UL SecureRSATL SStream
about, 387

UL SecureRSATL SStream function
security, 388

Ul SecureSocketStream object
about, 354
Java synchronization stream, 352, 392
parameters, 409

UL SetDatabasel D function
about, 248

UL SocketStream function
about, 249
parameters, 402
setting synchronization stream, 391
Windows CE, 308

Ul SocketStream object
Java synchronization stream, 352, 392
parameters, 402

UL StoreDefragFini function
about, 249

UL StoreDefraglnit function
about, 249

UL StoreDefragStep function
about, 250

ul StoreDefragStep method
JdbcDefraglterator class, 374

464

UISynchObserver interface
implementing, 99, 356

UISynchOptions object
members, 380

UL Synchronize function
about, 250
seria port on Palm Computing Platform, 283

UL Synchronize library function
about, 190

ULTable class
about, 165

UL Table objects
reopening, 262

UltraLite
about, 3
architecture, 9
C++ API, 122
C++ API class hierarchy, 130
code generation, 91
defining tables, 123
development overview, 70
directory, 17
features, 4
JDBC driver, 345

Ultral ite databases
deploying on Palm Computing Platform, 292
encrypting, 45
multiple Java, 348
storage, 43
user IDs, 85, 86, 442
VxWorks, 318
Windows CE, 298

UltraL ite directory
defined, 17

Ultral ite generator
command line, 91
defined, 91
syntax, 419
UltralLite development, 10
using, 91

UltraLite Java
threads, 93

Ultral ite passwords
about, 85, 442
maximum length, 85

UltraLite plug-in for CodeWarrior
converting projects, 257
installing, 255
using, 257

Ultral ite project creation wizard
using, 80, 326

UltraL ite projects
about, 80
adding statementsto, 81, 123
CodeWarrior, 256
defining, 123

UltraLite runtime library
deploying, 299

Ultralite segment utility
syntax, 425

Ultralite statement creation wizard
using, 81, 326

UltraLite user IDs
about, 85, 442
limit, 85
maximum length, 85

UL Util
about, 426

unable to use Javain the database
error message, 92

UNDER_CE compiler directive
about, 432

UNDER_NT compiler directive
about, 432

UNDER_PALM_OS compiler directive
about, 432

UNDER_VXW compiler directive
about, 433

unique values
using default global autoincrement in Ultralite,
58

Universal Serial Bus
HotSync support for, 268

unsupported features
UltralLite limitations, 365, 437

unsupported JDBC methods
UltraLite limitations, 366

Update method (UL Cursor class)
about, 162

updates
Ultralite databases, 44

upgrading
Ultralite applications, 104
Ultral ite databases, 236

upgrading databases
creating reference databases, 74

upload_ok synchronization parameter
about, 395

upload_only synchronization parameter
MobiLink synchronization, 396

upload-only synchronization
Ultral ite databases, 78, 396

URL
UltraLite Java database, 345, 346

url_suffix stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

USB
HotSync support for, 268

user authentication

auth_status synchronization parameter, 381

C++ API, 124

C++ API UltraLite applications, 88

compiler directive, 428

embedded SQL UltraL ite applications, 87, 89,
137, 238, 242, 248

MobiLink and UltraLite, 90

reporting, 381

status, 381

Ultral ite case sensitivity, 85

Ultral ite databases, 85, 86, 137, 141, 238, 242,
248, 442

user IDs
Palm Computing Platform, 86
Ultral ite case sensitivity, 85
Ultral ite databases, 85, 86, 442
UltraLite Java, 347

user_data synchronization parameter
about, 396

465

V-Z

user_name synchronization parameter
about, 397

user-defined data types
unsupported, 436

utilities
SQL preprocessor, 415
UltraLite, 426
Ultral ite generator, 419
Ultralite segment utility, 425

Vv

variables
UltraLite limitations, 438

version synchronization parameter
about, 397

versions
synchronization scripts, 250

Visua C++
supported versions, 6, 7
Windows CE development, 294

VxWorks

compiling UltraLite applications, 316

deployment, 313
development for, 310
downloading, 313
persistent storage, 318
platform requirements, 310
security, 319

setting time, 319

supported versions, 7
synchronization, 319

wW

warnings
UltraL ite generator, 421

whole tables
publishing in UltralLite, 77

WindowProc function
ActiveSync, 243, 306

466

Windows CE
collation sequences, 64
deployment, 22
development for, 294
platform requirements, 294
supported versions, 6
synchronization on, 305
UltraLite supported versions, 6

WindRiver Tornado
supported versions, 7

WindRiver VxWorks
supported versions, 7

winsock.lib
Windows CE applications, 294

wizards
publication creation, 77, 111
UltraL ite project creation, 80, 326
Ultral ite statement creation, 81, 326

writing applications, 68

writing applications in embedded SQL, 183, 193

writing applicationsin Java, 324, 338

X

x86 chip
Windows CE, 6

Y

year 2000
NEAREST_CENTURY option, 73

Z

-zacommand-line option
dbmlsrv8, 389

-ze command-line option
dbmlsrv8, 389

	UltraLite User's Guide
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The UltraLite sample database

	1. Introduction to UltraLite
	UltraLite features
	Supported platforms
	Supported platforms for C/C++ applications
	Supported platforms for Java applications

	UltraLite architecture
	UltraLite development tools

	MobiLink synchronization
	Enterprise productivity

	2. Tutorial: A Sample UltraLite Application
	Introduction
	The CustDB sample application
	File locations for the sample application
	Synchronization techniques in the sample application

	Lesson 1: Start the MobiLink synchronization server
	Lesson 2: Install the sample application to your target platform
	Install the sample application (Palm Computing Platform)
	Install the sample application (Windows CE)

	Lesson 3: Start the sample application and synchronize
	Start the application (Windows)
	Start the sample application (Palm Computing Platform)
	 Start the application (Windows CE)

	Lesson 4: Add an order
	Add an order (Windows or Windows CE)
	Add an order (Palm Computing Platform)

	Lesson 5: Act on some existing orders
	Lesson 6: Synchronize your changes
	Synchronize your changes (Windows, Windows CE)
	Synchronize your changes (Palm Computing Platform)

	Lesson 7: Confirm the synchronization at the consolidated database
	Lesson 8: Browse the consolidated database
	The CustDB database
	Connect to the CustDB database from Sybase Central
	Browse the synchronization scripts

	Summary

	3. Designing UltraLite Applications
	Backup, recovery, and transaction processing
	UltraLite database internals
	Database storage mechanism
	The information in an UltraLite database
	How UltraLite tracks row states
	Indexes in UltraLite databases

	Configuring and managing database storage
	Encrypting UltraLite databases
	Defragmenting UltraLite databases

	Choosing an UltraLite development model
	Designing synchronization for UltraLite applications
	Supported synchronization streams
	Foreign key cycles

	Global autoincrement default column values
	Declaring default global autoincrement columns
	Setting the global database identifier
	How default values are chosen
	Determining the most recently assigned value
	Detecting the number of available default values

	Character sets in UltraLite

	4. Developing UltraLite Applications
	Introduction
	The UltraLite development environment
	The UltraLite development process
	Adding synchronization

	Preparing a reference database
	Creating a reference database
	Setting database options in the reference database
	Using an existing database as a reference database

	Designing your UltraLite database
	Including non-synchronizing tables in UltraLite databases
	Designing sets of data to synchronize separately
	Synchronizing high-priority changes
	Including read-only tables in an UltraLite database
	Using client-specific data to control synchronization

	Defining SQL statements for your application
	Creating an UltraLite project
	Adding SQL statements to an UltraLite project
	Writing UltraLite SQL statements

	Adding user authentication to your application
	Enabling user authentication
	Managing user IDs and passwords
	Sharing MobiLink and UltraLite user IDs

	Generating the UltraLite data access code
	Using the UltraLite generator
	Error on starting the analyzer

	Developing multi-threaded applications
	Adding synchronization to your application
	Initializing the synchronization parameters
	Setting synchronization parameters: C/C++ examples
	Invoking synchronization
	Commit all changes before synchronizing
	Adding initial data to your application
	Monitoring and canceling synchronization
	Writing a synchronization callback function

	Configuring development tools for UltraLite development
	Deploying UltraLite applications

	5. Tutorial: Build an Application Using the C++ API
	Introduction to the UltraLite C++ API
	Overview

	Lesson 1: Getting started
	Lesson 2: Create an UltraLite database template
	Lesson 3: Run the UltraLite generator
	Lesson 4: Write the application source code
	Lesson 5: Build and run your application
	Lesson 6: Add synchronization to your application
	Restore the sample database

	6. Developing C++ API Applications
	Introduction
	Defining features for your application
	Defining projects
	Adding statements to a project
	Defining UltraLite tables
	Tables or queries?
	Defining database features for C++ API applications

	Working with the C++ API classes
	Working with the ULData and ULConnection objects
	Using table and query classes

	Building your UltraLite C++ application
	Generating UltraLite C++ classes
	Compiling and linking your application

	7. C++ API Reference
	C++ API class hierarchy
	C++ API language elements
	UltraLite data types

	ULConnection class
	Close method
	Commit method
	CountUploadRows method
	GetCA method
	GetLastIdentity method
	GetLastDownloadTime method
	GetSQLCode method
	GetSynchResult method
	GlobalAutoincUsage method
	GrantConnectTo method
	InitSynchInfo method
	IsOpen method
	LastCodeOK method
	LastFetchOK method
	Open method
	Reopen method
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	SetDatabaseID method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	Synchronize method

	ULData class
	Close method
	Drop method
	IsOpen method
	Open method
	PalmExit method
	PalmLaunch method
	Reopen method

	ULCursor class
	Data types enumeration
	SQL data types enumeration
	AfterLast method
	BeforeFirst method
	Close method
	Delete method
	First method
	Get method
	GetColumnCount method
	GetColumnSize method
	GetColumnType method
	GetColumnSQLType method
	GetSQLCode method
	Insert method
	IsOpen method
	Last method
	LastCodeOK method
	LastFetchOK method
	Next method
	Open method
	Previous method
	Relative method
	Reopen method
	Set method
	SetColumnNull method
	Update method

	ULResultSet class
	SetParameter method

	ULTable class
	DeleteAllRows method
	Find method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Lookup method
	GetRowCount method
	LookupBackward method
	LookupForward method

	Generated result set class
	Get<Column> generated method
	Open method
	Set<Column> generated method
	SetNull<Column> generated method

	Generated statement class
	Execute method

	Generated table class
	Get generated method
	Get<Column> generated method
	GetSize<Column> generated method
	Open method
	Set<Column> generated method
	SetNull<Column> generated method
	Index enumeration

	8. Tutorial: Build an Application Using Embedded SQL
	Introduction
	Writing source files in embedded SQL
	Explanation of the sample program

	Building the sample embedded SQL UltraLite application
	Adding synchronization to your application

	9. Developing Embedded SQL Applications
	Building embedded SQL applications
	Single-file build process
	Configuring development tools for embedded SQL development

	Preprocessing your embedded SQL files
	Preprocessing projects with a single embedded SQL source file
	Preprocessing projects with more than one embedded SQL file

	10. The Embedded SQL Interface
	Introduction
	Structure of embedded SQL programs
	Declaring host variables
	Data types in embedded SQL
	Host variable usage
	The scope of host variables
	Using expressions as host variables
	Using host variables in C++

	Indicator variables
	Using indicator variables to handle NULL

	Fetching data
	Fetching one row
	Fetching multiple rows
	Optimizing query operation

	The SQL Communication Area
	SQLCA fields
	SQLCA management for multi-threaded or reentrant code
	Using multiple SQLCAs

	Library function reference
	db_fini function
	db_init function
	ULActiveSyncStream function
	ULChangeEncryptionKey function
	ULClearEncryptionKey function
	ULConduitStream function (deprecated)
	ULCountUploadRows function
	ULDropDatabase function
	ULEnableFileDB function
	ULEnableGenericSchema function
	ULEnablePalmRecordDB function
	ULEnableStrongEncryption function
	ULEnableUserAuthentication function
	ULGetLastDownloadTime function
	ULGetSynchResult function
	ULGlobalAutoincUsage function
	ULGrantConnectTo function
	ULHTTPSStream function
	ULHTTPStream function
	ULIsSynchronizeMessage function
	ULPalmDBStream function (deprecated)
	ULPalmExit function
	ULPalmLaunch function
	ULResetLastDownloadTime function
	ULRetrieveEncryptionKey function
	ULRevokeConnectFrom function
	ULSaveEncryptionKey function
	ULSetDatabaseID function
	ULSocketStream function
	ULStoreDefragFini function
	ULStoreDefragInit function
	ULStoreDefragStep function
	ULSynchronize function

	11. Developing Applications for the Palm Computing Platform
	Introduction
	Developing UltraLite applications with Metrowerks CodeWarrior
	Installing the UltraLite plug-in for CodeWarrior
	Creating UltraLite projects in CodeWarrior
	Converting an existing CodeWarrior project to an UltraLite application
	Using the UltraLite plug-in for CodeWarrior
	Building the CustDB sample application from CodeWarrior

	Developing UltraLite applications with GCC PRC-Tools
	Building the CustDB sample application with PRC Tools

	Launching and closing UltraLite applications
	Launching an UltraLite Palm application
	Closing an UltraLite Palm application

	Building multi-segment applications
	Enabling multi-segment code generation
	Explicitly assigning segments
	Assigning user-defined code to segments

	Palm synchronization overview
	Choosing a synchronization method
	Understanding HotSync and ScoutSync synchronization
	HotSync and ScoutSync architecture

	Adding HotSync or ScoutSync synchronization to Palm applications
	Adding HotSync or ScoutSync synchronization to your application

	Configuring HotSync synchronization
	HotSync configuration overview
	HotSync conduit files
	Adding the MobiLink conduit into HotSync manager
	Checking that conduit installation is correct
	Configuring conduit synchronization

	Configuring ScoutSync synchronization
	Configuring the MobiLink ScoutSync conduit
	Setting up for ScoutSync synchronization
	Configuring the ScoutSync Application Server
	Configuring the ScoutSync Client on the Palm device
	Configuring RAS TCP/IP synchronization
	Using ScoutSync for the first time
	Location of synchronization log files for ScoutSync

	Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications
	Using multiple synchronization methods

	Configuring TCP/IP, HTTP, or HTTPS synchronization
	Configuring TCP/IP synchronization for the Palm Computing Platform
	Configuring HTTP or HTTPS synchronization for the Palm Computing platform

	Deploying Palm applications
	Deploying applications on the Palm Computing Platform
	Deploying the MobiLink synchronization conduit
	Deploying UltraLite databases on the Palm Computing Platform

	12. Developing Applications for Windows CE
	Introduction
	Choosing how to link the runtime library

	Building the CustDB sample application
	Storing persistent data
	Deploying Windows CE applications
	Deploying applications that use ActiveSync
	Installing the MobiLink provider for ActiveSync
	Registering applications for use with ActiveSync
	Assigning class names for applications

	Synchronization on Windows CE
	Adding ActiveSync synchronization to your application
	TCP/IP, HTTP, or HTTPS synchronization from Windows CE

	13. Developing Applications for VxWorks
	Introduction
	Features and limitations

	Building the CustDB sample application
	Downloading the sample application to the device
	Running the sample application
	Viewing the data in the sample application

	Building UltraLite VxWorks applications
	Storing persistent data
	Synchronization on the VxWorks platform

	14. Tutorial: Build an Application Using Java
	Introduction
	Overview
	Create a directory to hold your files

	Lesson 1: Add SQL statements to your reference database
	Lesson 2: Run the UltraLite generator
	Lesson 3: Write the application code
	Lesson 4: Build and run the application
	Lesson 5: Add synchronization to your application
	Lesson 6: Undo the changes you have made

	15. Developing UltraLite Java Applications
	Introduction
	The UltraLite Java sample application
	The UltraLite Java sample files
	Building the UltraLite Java sample
	Running the UltraLite Java sample

	Connecting to and configuring your UltraLite database
	Using the UltraLite JdbcDatabase.connect method
	Loading and registering the JDBC driver
	Connecting to the database using JDBC
	UltraLite JDBC URLs
	Using a Properties object to store connection information
	Connecting to multiple databases
	Configuring the UltraLite Java database

	Including SQL statements in UltraLite Java applications
	Adding synchronization to your application
	Initializing the synchronization options
	Initiating synchronization
	Using transport-layer security from UltraLite Java applications

	Monitoring and canceling synchronization
	Implementing the UlSynchObserver interface
	Using the progress viewer

	UltraLite Java development notes
	Creating UltraLite Java applets

	Building UltraLite Java applications
	Generating UltraLite Java classes
	Compiling UltraLite Java applications
	Deploying Java applications

	UltraLite API reference
	JDBC features in UltraLite
	Unsupported JDBC methods
	Class JdbcConnection
	Class JdbcDatabase
	The generated database class
	Class JdbcDefragIterator
	Class JdbcSupport

	16. UltraLite Reference
	Synchronization parameters
	auth_status synchronization parameter
	auth_value synchronization parameter
	checkpoint_store synchronization parameter
	download_only synchronization parameter
	ignored_rows synchronization parameter
	new_password synchronization parameter
	observer synchronization parameter
	password synchronization parameter
	ping synchronization parameter
	publication synchronization parameter
	security synchronization parameter
	security_parms synchronization parameter
	send_column_names synchronization parameter
	send_download_ack synchronization parameter
	stream synchronization parameter
	stream_error synchronization parameter
	stream_parms synchronization parameter
	upload_ok synchronization parameter
	upload_only synchronization parameter
	user_data synchronization parameter
	user_name synchronization parameter
	version synchronization parameter

	Synchronization stream parameters
	ActiveSync parameters
	HotSync and ScoutSync parameters
	TCP/IP stream parameters
	HTTP stream parameters
	HTTPS stream parameters
	UlSecureRSASocketStream synchronization parameters
	UlSecureSocketStream synchronization parameters

	Reference database stored procedures
	ul_add_statement system procedure
	ul_add_project system procedure
	ul_delete_project system procedure
	ul_delete_statement system procedure
	ul_set_codesegment system procedure

	The HotSync conduit installation utility
	The SQL preprocessor
	The UltraLite generator
	The UltraLite segment utility
	The UltraLite utility
	Macros and compiler directives for UltraLite C/C++ applications
	UL_AS_SYNCHRONIZE macro
	UL_ENABLE_OBFUSCATION macro
	UL_ENABLE_USER_AUTH macro
	UL_ENABLE_GNU_SEGMENTS macro
	UL_ENABLE_SEGMENTS macro
	UL_STORE_PARMS macro
	UL_SYNC_ALL macro
	UL_SYNC_ALL_PUBS macro
	UL_TEXT macro
	UL_USE_DLL macro
	UNDER_NT macro
	UNDER_CE macro
	UNDER_PALM_OS macro
	UNDER_VXW macro

	APPENDIX A: UltraLite Features and Limitations
	UltraLite data types
	SQL features and limitations of UltraLite applications
	Size and number limitations for UltraLite databases
	UltraLite tables must have primary keys
	User authentication for UltraLite databases

	Index

