
UltraLite
™

User’s Guide

Last modified: October 2002
Part Number: 38134-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 38134-01-0802-01.

iii

Contents

About This Manual.. ix
SQL Anywhere Studio documentation...................................... x
Documentation conventions..xiii
The UltraLite sample database ...xvi
Finding out more and providing feedback..............................xvii

PART ONE
Introduction to UltraLite .. 1

1 Introduction to UltraLite .. 3
UltraLite features...4
Supported platforms..6
UltraLite architecture...9
MobiLink synchronization..11
Enterprise productivity...13

2 Tutorial: A Sample UltraLite Application........................ 15
Introduction ...16
Lesson 1: Start the MobiLink synchronization
server ..20
Lesson 2: Install the sample application to your
target platform...21
Lesson 3: Start the sample application and
synchronize ...24
Lesson 4: Add an order...28
Lesson 5: Act on some existing orders31
Lesson 6: Synchronize your changes.....................................32
Lesson 7: Confirm the synchronization at the
consolidated database ..34
Lesson 8: Browse the consolidated database35
Summary...39

iv

3 Designing UltraLite Applications 41
Backup, recovery, and transaction processing 42
UltraLite database internals .. 43
Configuring and managing database storage......................... 45
Choosing an UltraLite development model............................. 54
Designing synchronization for UltraLite
applications ... 55
Global autoincrement default column values.......................... 58
Character sets in UltraLite .. 64

4 Developing UltraLite Applications.................................. 67
Introduction ... 68
Preparing a reference database ... 72
Designing your UltraLite database.. 76
Defining SQL statements for your application 80
Adding user authentication to your application 85
Generating the UltraLite data access code............................. 91
Developing multi-threaded applications.................................. 93
Adding synchronization to your application 94
Configuring development tools for UltraLite
development ... 102
Deploying UltraLite applications ... 104

PART TWO
Developing UltraLite Applications in C/C++ 105

5 Tutorial: Build an Application Using the C++ API 107
Introduction to the UltraLite C++ API 108
Lesson 1: Getting started.. 110
Lesson 2: Create an UltraLite database template 111
Lesson 3: Run the UltraLite generator.................................. 113
Lesson 4: Write the application source code........................ 114
Lesson 5: Build and run your application.............................. 116
Lesson 6: Add synchronization to your application 118
Restore the sample database... 120

6 Developing C++ API Applications 121
Introduction ... 122
Defining features for your application 123
Working with the C++ API classes.. 125
Building your UltraLite C++ application................................. 127

v

7 C++ API Reference... 129
C++ API class hierarchy..130
C++ API language elements ...131
ULConnection class ..132
ULData class...144
ULCursor class..151
ULResultSet class...163
ULTable class ...165
Generated result set class ..171
Generated statement class ...174
Generated table class ...175

8 Tutorial: Build an Application Using Embedded SQL . 181
Introduction ...182
Writing source files in embedded SQL..................................183
Building the sample embedded SQL UltraLite
application ...187

9 Developing Embedded SQL Applications.................... 193
Building embedded SQL applications...................................194
Preprocessing your embedded SQL files201

10 The Embedded SQL Interface 205
Introduction ...206
Using host variables..209
Indicator variables ...220
Fetching data ..222
The SQL Communication Area ...228
Library function reference ...231

11 Developing Applications for the Palm Computing Platform
.. 253

Introduction ...254
Developing UltraLite applications with
Metrowerks CodeWarrior ..255
Developing UltraLite applications with GCC PRC-
Tools ...259
Launching and closing UltraLite applications........................261
Building multi-segment applications......................................263
Palm synchronization overview...268
Adding HotSync or ScoutSync synchronization to
Palm applications ..272
Configuring HotSync synchronization...................................274

vi

Configuring ScoutSync synchronization 279
Adding TCP/IP, HTTP, or HTTPS synchronization
to Palm applications.. 283
Configuring TCP/IP, HTTP, or HTTPS
synchronization ... 285
Deploying Palm applications... 291

12 Developing Applications for Windows CE................... 293
Introduction ... 294
Building the CustDB sample application............................... 296
Storing persistent data .. 298
Deploying Windows CE applications 299
Synchronization on Windows CE.. 305

13 Developing Applications for VxWorks 309
Introduction ... 310
Building the CustDB sample application............................... 312
Downloading the sample application to the device............... 313
Running the sample application.. 314
Building UltraLite VxWorks applications 316
Storing persistent data .. 318
Synchronization on the VxWorks platform............................ 319

PART THREE
Developing UltraLite Java Applications....................... 321

14 Tutorial: Build an Application Using Java 323
Introduction ... 324
Lesson 1: Add SQL statements to your reference
database ... 326
Lesson 2: Run the UltraLite generator.................................. 328
Lesson 3: Write the application code.................................... 329
Lesson 4: Build and run the application................................ 333
Lesson 5: Add synchronization to your application 334
Lesson 6: Undo the changes you have made 336

15 Developing UltraLite Java Applications....................... 337
Introduction ... 338
The UltraLite Java sample application.................................. 339
Connecting to and configuring your UltraLite
database ... 344

vii

Including SQL statements in UltraLite Java
applications ...351
Adding synchronization to your application352
Monitoring and canceling synchronization............................356
UltraLite Java development notes...361
Building UltraLite Java applications362
UltraLite API reference..365

PART FOUR
Reference ... 377

16 UltraLite Reference.. 379
Synchronization parameters ...380
Synchronization stream parameters399
Reference database stored procedures411
The HotSync conduit installation utility414
The SQL preprocessor..415
The UltraLite generator ...419
The UltraLite segment utility..425
The UltraLite utility ..426
Macros and compiler directives for UltraLite
C/C++ applications..427

A UltraLite Features and Limitations 435
UltraLite data types ...436
SQL features and limitations of UltraLite
applications ...437
Size and number limitations for UltraLite
databases..440
UltraLite tables must have primary keys...............................441
User authentication for UltraLite databases..........................442

Index ... 443

viii

ix

About This Manual

This manual describes the UltraLite deployment technology for Adaptive
Server Anywhere. With UltraLite, you can develop and deploy database
applications to handheld, mobile, or embedded devices, such as devices
running the Palm Computing Platform, Windows CE, VxWorks, or Java.

This manual is intended for all application developers writing programs that
use UltraLite deployment. Familiarity with relational databases and Adaptive
Server Anywhere is assumed.

Subject

Audience

x

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

♦ Introducing SQL Anywhere Studio This book provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

 ♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

xi

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner equivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

♦ MobiLink Synchronization User’s Guide This book describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or UltraLite databases.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ UltraLite User’s Guide This book describes how to build database
applications for small devices such as handheld organizers using the
UltraLite deployment technology for Adaptive Server Anywhere
databases.

♦ UltraLite User’s Guide for PenRight! MobileBuilder This book is for
users of the PenRight! MobileBuilder development tool. It describes
how to use UltraLite technology in the MobileBuilder programming
environment.

♦ SQL Anywhere Studio Help This book is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

xii

♦ Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Start➤Programs➤Sybase SQL Anywhere 8➤Online Books. You can
navigate the online books using the HTML Help table of contents,
index, and search facility in the left pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf_docs directory.
You can choose to install them when running the setup program.

♦ Printed books The following books are included in the
SQL Anywhere Studio box:

♦ Introducing SQL Anywhere Studio.

♦ Adaptive Server Anywhere Getting Started.

♦ SQL Anywhere Studio Quick Reference. This book is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

xiii

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

xiv

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

xv

Icon Meaning

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
UltraLite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

API
A programming interface.

xvi

The UltraLite sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database is held in a file named custdb.db, and is
located in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere directory. A complete application built on this database is
also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

xvii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

xviii

1

P A R T O N E

Introduction to UltraLite

This part introduces UltraLite, presents a sample UltraLite application, and
provides general information on how to build your own UltraLite application.

2

3

C H A P T E R 1

Introduction to UltraLite

This chapter introduces the UltraLite database deployment technology,
describing the purpose and defining characteristics of UltraLite.

Topic Page

UltraLite features 4

Supported platforms 6

UltraLite architecture 9

MobiLink synchronization 11

Enterprise productivity 13

About this chapter

Contents

UltraLite features

4

UltraLite features
UltraLite is a deployment technology for Adaptive Server Anywhere
databases, aimed at small, mobile, and embedded devices. Supported target
platforms include Windows CE, Palm OS, Java, and VxWorks devices.

UltraLite provides the following benefits for users of small devices:

♦ The functionality and reliability of a transaction-processing SQL
database.

♦ The ability to synchronize data with your central database-management
system.

♦ An extremely small memory footprint.

♦ C/C++ or Java development.

UltraLite allows applications on small devices to use full-featured SQL to
accomplish data storage, retrieval, and manipulation. UltraLite supports
referential integrity, transaction processing, and multi-table joins of all
varieties. In fact, UltraLite supports most of the same data types, runtime
functions, and SQL data manipulation features as Sybase Adaptive Server
Anywhere.

UltraLite uses MobiLink synchronization technology to synchronize with
industry-standard database-management systems. MobiLink synchronization
works with ODBC-compliant data sources such as Sybase Adaptive Server
Anywhere, Sybase Adaptive Server Enterprise, IBM DB2, Microsoft
SQL Server, and Oracle.

UltraLite provides an ultra-small footprint by generating a custom database
engine for your application. This custom engine includes only the features
required by your application.

Each UltraLite application has its own database, modeled after a reference
Adaptive Server Anywhere database.

C/C++ UltraLite custom database engines for your application can be as
small as 50 kb, depending on your deployment platform and the number of
SQL statements in the application and the SQL features used.

In-memory database UltraLite target devices may have no hard disk and
tend to have relatively slow processors. The UltraLite runtime employs
algorithms and data structures that provide high performance and low
memory use.

You can develop UltraLite applications in the following ways:

Full-featured SQL

Synchronization to
industry-standard
RDBMS

Small footprint
custom database

Supported
development
models

Chapter 1 Introduction to UltraLite

5

♦ C/C++ using the UltraLite C++ API The C++ interface exposes tables
and SQL statements as objects, with methods to move through the rows
of the table or a result set and to execute statements.

♦ C/C++ using embedded SQL Embedded SQL is an easy way of
including SQL statements directly in C or C++ source code.

♦ Java using JDBC UltraLite Java applications support standard JDBC
data access methods.

Supported platforms

6

Supported platforms
Platform support for UltraLite is of the following kinds:

♦ Target platforms The target platform is the device and operating
system on which you deploy your finished UltraLite application.

♦ Host platforms For each target platform, you develop your
applications using a particular development tool and operating system.
The tool and operating system comprise the host platform. Target
platform manufacturers may supply emulators to ease development
tasks. Emulators simulate the target platform, while running on the host
platform.

You may be able to use other tools to develop your UltraLite
applications, but supporting documentation and technical assistance are
provided only for the supported development platforms.

The supported target platforms for UltraLite applications fall into two
categories: those supporting C/C++ UltraLite applications and those
supporting Java UltraLite applications.

Supported platforms for C/C++ applications

This version of UltraLite supports the following platforms for C/C++
applications using Embedded SQL or the UltraLite C++ API:

♦ Palm Computing Platform UltraLite applications can be built for
Palm Computing Platform devices running the Palm OS versions 3.x or
version 4.x. For example, the Palm III, Palm V, and Palm VII organizers
are suitable target platforms, as are the Handspring Visor, TR6Pro,
m505, and so on. PalmPilot Personal and PalmPilot Professional devices
running Palm OS version 2.x or earlier are not supported target
platforms.

UltraLite applications can be run for testing and demonstration purposes
on the Palm emulator.

The supported development platform for the Palm Computing Platform
is the Metrowerks CodeWarrior version 6, 7, or 8 on
Windows NT/2000/XP, and the GCC PRC Tools version 2.0.

♦ CE Windows CE 3.0 and later are supported.

Windows CE 3.0 support includes support for Pocket PC, including
Pocket PC 2002, as well as Handheld PC 2000.

Chapter 1 Introduction to UltraLite

7

The Windows CE 3.0 operating system is supported on any of the
following processors:

♦ MIPS processor

♦ ARM processor

♦ x86 processor. UltraLite supports the x86 processor for emulation
purposes only.

UltraLite applications can be run for testing and demonstration purposes
in the Pocket PC and Pocket PC 2002 emulators.

The supported development platforms for Windows CE are:

♦ Microsoft eMbedded Visual C++ 3.0 and later.

♦ WindRiver VxWorks UltraLite applications can be built for devices
running the VxWorks operating system in any of the following
configurations:

♦ A 386, 486 or Pentium PC running VxWorks 5.3 or 5.4 with the
Intel x86 Board Support Package (BSP) version 1.1 or above.

♦ A PowerPC running VxWorks 5.4. The UltraLite library has been
compiled for the PowerPC860 chip and tested on an MBX860 board
using TCP/IP synchronization.

VxWorks 5.5 is not supported.

The VxWorks version of UltraLite also runs under the VxSim emulator.
The full simulator is required to carry out synchronization. VxSim-Lite
can be used for testing, but does not support synchronization.

Development for VxWorks is supported on WindRiver Tornado
development environment for Windows, version 1.0.1 or above.

UltraLite requires a dosFs (MS-DOS-compatible file system) device or a
functionally equivalent device to store the database in a persistent
manner in a file.

♦ Windows Windows operating systems other than Windows CE are
supported for testing and demonstration purposes only.

$ For more information on supported platforms, see "UltraLite supported
operating systems" on page 144 of the book Introducing SQL Anywhere
Studio.

Supported platforms

8

Supported platforms for Java applications

Deployment using the Sun Java 2 (JDK 1.2.x or later) environment is
supported. Also, deployment using the Sun JDK 1.1.4 or later is supported.
To use UltraLite in applets, you must use the Java Plug-in 1.2.x to run the
applets. There is no guarantee that applets will work with the built-in Java
VMs for the Internet Explorer or Netscape browsers.

Development using Sybase PowerJ or the Sun JDK is supported.

Chapter 1 Introduction to UltraLite

9

UltraLite architecture
SQL database products typically use a client/server architecture. The
database is normally stored in one or more files in the file system, or directly
on a storage device. The database server receives and processes SQL
requests from client applications, maintaining the database according to the
requests. The server protects you from failures by guaranteeing that complete
transactions are recovered in case of a failure and incomplete transactions are
rolled back.

UltraLite has the same client/server architecture as other SQL database
systems. However, the UltraLite database engine is not a separate process,
but is instead a library of functions that is called by an application. If you
build your application using C/C++, this engine can be accessed either as a
DLL or from a statically linked library. If you build your application in Java,
the engine is accessed from Java byte code stored in a JAR file.

If you build your application using C/C++, the UltraLite development tools
generate C/C++ source code that is compiled along with your application
source code. When you link your application, you link all of the compiled
C/C++ together with the UltraLite runtime library or imports library. The
result is a single executable file containing application logic and database
logic required by the application.

When first executed on a new device, this executable automatically creates
the UltraLite database for your application. This database is initially empty,
but you can add data, either explicitly or through synchronization with a
central database.

If you build a Java UltraLite application, the UltraLite development process
generates Java source code that represents the database schema. The
generated source file is to be compiled into classes that you deploy as part of
your application with the UltraLite runtime JAR file. You may wish to
package all files together into a single JAR file for ease of deployment.

When first executed on a new device, the UltraLite runtime automatically
creates the database for your application. This database is initially empty, but
you can add data, either explicitly or through synchronization with a central
database.

C/C++ deployment

Java deployment

UltraLite architecture

10

UltraLite provides protection against system failures. Some UltraLite target
devices have no disk drive, but instead feature memory that retains content
when the device is not running. The storage mechanism for the UltraLite
database is platform-dependent, but is managed by the UltraLite runtime
library, and does not need explicit treatment from the application developer.

UltraLite does not allow the schema of an UltraLite database to be modified
once the application is deployed. When a newer version of the application
requires more tables or more columns, the newer version of the application is
deployed and the UltraLite database is repopulated through synchronization.

UltraLite development tools

The UltraLite development tools supplement a supported C/C++ or Java
development tool. They manage the generation of the data access code for
your application.

During UltraLite application development you create an Adaptive Server
Anywhere reference database, which is a model of your UltraLite database.
You use the UltraLite generator, which uses the reference database to
create the data access and data management code for your application.

The SQL statements used in the application must be determined at compile
time. In other words, you cannot dynamically construct a SQL statement
within an UltraLite application and execute it. However, SQL statements in
UltraLite applications can use placeholders or host variables to adjust their
behavior.

Persistent memory

Fixed schema

Parameterized
SQL statements

Chapter 1 Introduction to UltraLite

11

MobiLink synchronization
Many mobile and embedded computing applications are integrated into an
information infrastructure. They require data to be uploaded to a central
database, which consolidates all the data throughout the MobiLink
installation, and downloaded from a consolidated database. This bi-
directional sharing of information is called synchronization.

MobiLink synchronization technology, included in SQL Anywhere Studio
along with UltraLite, is designed to work with industry standard SQL
database-management systems from Sybase and other vendors. The UltraLite
runtime automatically keeps track of changes made to the UltraLite database
between each synchronization with the consolidated database. When the
UltraLite database is synchronized, all changes since the previous
synchronization are uploaded for synchronization.

Mobile and embedded databases may not contain all the data that exists in
the consolidated database.

The tables in each UltraLite database can have a subset of the rows and
columns in the central database. For example, a customer table might contain
over 100 columns and 100 000 rows in the consolidated database, but the
UltraLite database may only require 4 columns and 1000 rows. MobiLink
allows you to define the exact subset to be downloaded to each remote
database.

MobiLink synchronization is flexible. You define the subset of data using the
native SQL dialect of the consolidated database-management system. Tables
in the UltraLite database can correspond to tables in the consolidated
database, but you can also populate an UltraLite table from a consolidated
table with a different name, or from a join of one or more tables.

Mobile and embedded databases frequently share common data. They also
must allow updates to the same data. When two or more remote databases
simultaneously update the same row, the conflict cannot be prevented. It
must be detected and resolved when the changes are uploaded to the central
database. MobiLink synchronization automatically detects these conflicts.
The conflict resolution logic is defined in the native SQL dialect of the
central DBMS.

An UltraLite application synchronizes with a central, consolidated database
through the MobiLink synchronization server. This server provides an
interface between the UltraLite application and the database server.

Subset of the
central database

Flexibility

Conflict resolution

The MobiLink
synchronization
server

MobiLink synchronization

12

MobiLink
synchronization

server

Consolidated
database

Consolidated
database

server

UltraLite
application and

database

You control the synchronization process using synchronization scripts.
These scripts may be SQL statements or procedures written in the native
language of the consolidated DBMS, or they may be Java classes. For
example, you can use a SELECT statement to identify the columns and
tables in the consolidated database that correspond to each column of a row
to be downloaded to a table in your UltraLite application. Each script
controls a particular event during the synchronization process.

Synchronization occurs through a synchronization stream. Supported
streams include TCP/IP, HTTP, HTTPS, HotSync, Scout Sync, and
ActiveSync. Regardless of the stream, you control the synchronization
process using the same SQL scripts defined in your consolidated database.

$ For a detailed introduction to MobiLink synchronization, see
"Synchronization Basics" on page 9 of the book MobiLink Synchronization
User’s Guide.

$ For information on adding synchronization to your UltraLite
application, see "Designing synchronization for UltraLite applications" on
page 55.

Synchronization
streams

Chapter 1 Introduction to UltraLite

13

Enterprise productivity
UltraLite was designed for development using existing tools, skills, and
components. You can thus leverage the current capabilities of your
organization.

UltraLite encourages high productivity by providing robust, high-level
programming solutions on an increasing variety of devices. You can develop
applications for small devices using the proven and powerful methodology of
full-featured SQL. You need not become familiar with device-specific
aspects (such as flash memory) and the disparate operating system interfaces
that provide access to them. Similarly, synchronization can be achieved
without becoming an expert in the various transmission protocols. Moreover,
the database and synchronization components in your application are
portable.

UltraLite allows you to continue to use whatever tools you already use for
productive development. It adds functionality to your development process.
For example, you can develop applications using Microsoft Visual C++ and
test them in the various Windows environments before deploying them, for
final testing, on a specific device.

MobiLink synchronization allows UltraLite applications to synchronize with
many widely-used databases, not just those from Sybase. Built with the
established technology of Sybase Adaptive Server Anywhere, it uses mature
and proven database technology.

High-level
programming and
portability

High-level
development
environments

Industrial strength

Enterprise productivity

14

15

C H A P T E R 2

Tutorial: A Sample UltraLite Application

This chapter illustrates some key features of UltraLite by walking through a
sample application. The sample application is a simple sales-status
application built around a database named CustDB (Customer Database).

The chapter includes information on how to run the sample application, and a
brief description of how the application works.

Topic Page

Introduction 16

Lesson 1: Start the MobiLink synchronization server 20

Lesson 2: Install the sample application to your target platform 21

Lesson 3: Start the sample application and synchronize 24

Lesson 4: Add an order 28

Lesson 5: Act on some existing orders 31

Lesson 6: Synchronize your changes 32

Lesson 7: Confirm the synchronization at the consolidated database 34

Lesson 8: Browse the consolidated database 35

Summary 39

To get the most from this chapter, you should be able to run the sample
application as you read.

This chapter assumes that you have read the chapter "Introduction to
UltraLite" on page 3. Much of the material in this chapter is explained in a
more general manner elsewhere in the book. Cross references to these places
are provided.

About this chapter

Contents

Before you begin

Introduction

16

Introduction
CustDB is a sample application included with UltraLite. It is a simple sales-
status application that you can run against any of the supported databases,
and on any of the supported target operating systems.

By working with the CustDB sample application, this chapter demonstrates
the following core features of UltraLite.

♦ UltraLite database applications run on small devices using very limited
resources.

♦ UltraLite applications include a relational database engine.

♦ UltraLite applications share data with a central, consolidated database in
a two-way synchronization scheme. The UltraLite databases are also
called remote databases.

♦ Each remote database contains a subset of the data in the consolidated
database.

♦ The MobiLink synchronization server carries out data synchronization
between the consolidated database and each UltraLite installation.

♦ SQL scripts stored in the consolidated database implement the
synchronization logic.

♦ You can use Sybase Central to browse and edit the synchronization
scripts.

The CustDB sample application

Versions of the CustDB application are supplied for each supported
operating system. Also, source code for the application is provided in
embedded SQL, the C++ API, and Java. This tutorial uses the compiled
version of the application for Windows, the Palm Computing Platform, and
Windows CE.

$ For information about the Java version of the sample application, see
"The UltraLite Java sample application" on page 339.

When running the sample application, you are acting as an order taker or
sales manager. The application allows you to view outstanding orders,
approve or deny orders, and add new orders.

You can carry out the following tasks with the sample application.

♦ View lists of customers and products.

♦ Add new customers.

Chapter 2 Tutorial: A Sample UltraLite Application

17

♦ Add or delete orders.

♦ Scroll through the list of outstanding orders.

♦ Accept or deny orders.

♦ Synchronize changes with the consolidated database.

When you run the CustDB UltraLite application, you are working on a single
remote database, and synchronizing your changes with a consolidated
database.

In a typical UltraLite installation, there will be many remote databases, each
running on a handheld device, and each containing a small subset of the data
from the consolidated database.

File locations for the sample application

Your UltraLite installation includes the files needed to run the sample
application, and the source code used to develop it. Studying the sample
application source code is a good way to learn more about UltraLite.

When you install SQL Anywhere Studio, the UltraLite sample files are
installed into a directory named Samples\Ultralite under your installation
directory.

Runtime file location

To run the CustDB sample application, you need the following components:

♦ The consolidated database An Adaptive Server Anywhere version
of the customer database is installed as the file custdb.db in the
Samples\UltraLite\Custdb subdirectory of your SQL Anywhere
directory.

This database serves as a consolidated database. It contains the
following information:

♦ MobiLink system tables that hold the synchronization metadata.

♦ The CustDB data, stored in rows in base tables.

♦ The synchronization scripts.

During the installation process, an ODBC data source named
UltraLite 8.0 Sample is created for this database.

♦ The MobiLink synchronization server The MobiLink
synchronization server is in the win32 subdirectory of your
SQL Anywhere directory.

Introduction

18

♦ The UltraLite application executable A different executable is
supplied for each operating system. These executables are held in
subdirectories of your ultralite directory named for the operating system.
Each operating system directory has a separate subdirectory for each
supported CPU, and the executable files are located in these
subdirectories.

♦ ce Windows CE applications.

♦ palm Palm Computing Platform applications.

♦ vxw VxWorks applications.

♦ win32 A Windows application.

♦ java A Java application.

This chapter uses the win32, ce, and palm versions of the application.

Source file locations

Source code is provided for both the consolidated database and the UltraLite
application in the Samples\UltraLite\CustDB and Samples\MobiLink\CustDB
subdirectories of your SQL Anywhere directory.

♦ Consolidated database source In this chapter we use the Adaptive
Server Anywhere CustDB database as the consolidated database.

You can also build Sybase Adaptive Server Enterprise, Microsoft
SQL Server, or Oracle consolidated databases and run the application
against those database-management systems.

You can use one of the SQL scripts in the Samples\MobiLink\CustDB
directory to build a consolidated database for a DBMS other than
Adaptive Server Anywhere.

♦ custase.sql Sybase Adaptive Server Enterprise.

♦ custdb.sql Sybase Adaptive Server Anywhere.

♦ custdb2.sql IBM DB2.

♦ custmss.sql Microsoft SQL Server.

♦ custora.sql Oracle 8.

The Adaptive Server Anywhere consolidated database is already built
and installed. You only need the scripts to make a consolidated database
using another relational database product. You do not need the scripts
for this tutorial.

♦ Application source The source code for the sample application is in
two parts.

Chapter 2 Tutorial: A Sample UltraLite Application

19

♦ The user interface code for each platform is held in a separate
subdirectory of Samples\UltraLite\CustDB, named for each
supported development tool.

♦ The data access code is help in the Samples\UltraLite\CustDB
subdirectory of your UltraLite directory.

♦ The embedded SQL data access code is held in custdb.sqc.

♦ The C++ API data access code is held in custdbapi.cpp.

$ For information on the UltraLite development process, see
"Designing UltraLite Applications" on page 41.

$ For a list of supported development tools, see "Supported
platforms" on page 6. For information on building the application for
each supported platform, see the following locations:

♦ Palm Computing Platform (CodeWarrior) "Building the CustDB
sample application from CodeWarrior" on page 258.

♦ Palm Computing Platform (PRC Tools) "Building the CustDB
sample application with PRC Tools" on page 259.

♦ Windows CE "Building the CustDB sample application" on
page 296.

♦ VxWorks "Building the CustDB sample application" on page 312.

Synchronization techniques in the sample application

The sample application demonstrates several useful synchronization
techniques. This chapter provides a glimpse at synchronization, but in order
to understand how to use these techniques in applications, you need to
understand in more detail how the synchronization process works.

Synchronization is carried out using the MobiLink synchronization server,
running on your desktop machine, against the CustDB sample database.

For an overview of the synchronization process, see "The synchronization
process" on page 24 of the book MobiLink Synchronization User’s Guide.

For a description of how to write the synchronization scripts that control
synchronization, see "Writing Synchronization Scripts" on page 47 of the
book MobiLink Synchronization User’s Guide.

For information on the techniques used in the CustDB sample application,
see "The CustDB sample" on page 361 of the book MobiLink
Synchronization User’s Guide.

For more
information

Lesson 1: Start the MobiLink synchronization server

20

Lesson 1: Start the MobiLink synchronization
server

When you start the sample UltraLite application for the first time, it contains
no data. The application carries out an initial synchronization to download an
initial copy of the data from the consolidated database. You must have the
database server running in order to carry out this initial download, and you
must also have the MobiLink synchronization server running against the
UltraLite sample database.

The SQL Anywhere Studio installation adds some items to the Start menu to
make this step easier.

v To start the MobiLink synchronization server against the
consolidated database:

1 Start the consolidated database server, running the CustDB sample
database.

The Adaptive Server Anywhere consolidated database server runs on
your desktop machine. From the Start menu, choose Programs➤Sybase
SQL Anywhere 8➤UltraLite➤Personal Server Sample for UltraLite.

2 Start the MobiLink synchronization server against the CustDB database.

The MobiLink synchronization server connects to the consolidated
database server through ODBC. It could run from a separate machine
from the database server, but in this example we will run it on the same
machine.

From the Start menu, select Programs➤Sybase
SQL Anywhere 8➤MobiLink➤Synchronization Server Sample.

The command executed by this icon connects the MobiLink
synchronization server to the consolidated database server.

$ For the next step, see the section for your platform under "Lesson 2:
Install the sample application to your target platform" on page 21.

Chapter 2 Tutorial: A Sample UltraLite Application

21

Lesson 2: Install the sample application to your
target platform

The UltraLite application must be installed onto a target machine in order for
you to proceed. This section describes how to install the sample application
to your target machine.

No installation needed for Windows
If you want to run the Windows version of the CustDB application from
your desktop, you do not need to read this section.

$ For the next step, see "Lesson 3: Start the sample application and
synchronize" on page 24.

Install the sample application (Palm Computing Platform)

You need to carry out the steps in this section only if you wish to run the
tutorial on a Palm Computing device. If you wish to run the tutorial on a
desktop Windows machine, proceed to "Lesson 3: Start the sample
application and synchronize" on page 24.

Use the Palm Install Tool to deploy the application to your device. You must
tell Install Tool the location of the application, and then use HotSync to
transfer the executable file to the device.

The Adaptive Server Anywhere installation automatically sets registry
entries to enable CustDB synchronization via HotSync. These entries
associate the UltraLite conduit on Windows with the CustDB application on
the Palm Computing device. You must have HotSync Manager 3 installed
for HotSync synchronization to work properly.

v To install the sample application to a Palm Computing device:

1 Prepare your PC for running Adaptive Server Anywhere and the Palm
Desktop software.

Install Adaptive Server Anywhere onto a machine that has Palm
Desktop already installed. The Adaptive Server Anywhere installation
then adds the registry entries required for HotSync.

2 On your PC, start Palm Desktop.

3 Add the sample application to the list of files to install onto your
handheld.

Lesson 2: Install the sample application to your target platform

22

Click Install on the Palm Desktop toolbar.

Click Add. Locate the Palm Computing executable file for the sample
application. This executable is the file custdb.prc, and it is in the
UltraLite\palm\68k subdirectory of your SQL Anywhere directory.

Click Done.

4 HotSync your Palm Computing device.

The CustDB application is copied into the Applications view on your
Palm device.

v To copy the sample application to a Palm Computing Platform
emulator:

1 Start the Palm emulator.

2 Right click and select Install Application/Database from the popup menu.

3 Locate the application and click OK to install.

You may have to refresh the Applications view to see the installed
application on the emulator interface.

$ For the next step, see "Lesson 3: Start the sample application and
synchronize" on page 24.

Install the sample application (Windows CE)

You need to carry out the steps in this section only if you wish to run the
tutorial on a Windows CE device. If you wish to run the tutorial on a desktop
Windows machine, proceed to "Lesson 3: Start the sample application and
synchronize" on page 24.

v To copy the sample application to a CE device:

1 Ensure that Windows CE Services is properly installed. You can do this
by checking whether Windows Explorer can view and modify the file
system on the CE device.

2 Open the Windows Explorer. Right click on My Computer and select
Explore.

3 Find your SQL Anywhere installation directory. The default location is
as follows:

c:\Program Files\Sybase\SQL Anywhere 8

Chapter 2 Tutorial: A Sample UltraLite Application

23

Open the ultralite\ce folder so that the contents of the folder are visible.
Open processor-specific folder depending on the CPU used in the CE
device. The executable file CustDB.exe should be visible at this point.

4 Right click on CustDB.exe and select Copy.

5 Find the CE device in the Explorer hierarchy. It should be under the
Mobile Devices folder. Create a folder on the CE device called Sybase.
Open the Sybase folder on the device and paste the executable to copy
the CustDB.exe file to the CE device. You may be asked whether you
want the file to always be synchronized or converted before copying,
both of these actions can be refused.

6 In the Sybase folder on the device, there should be one executable file,
namely, CustDB.exe. Right click on CustDB.exe to create a shortcut and
rename the shortcut to CustDB.

7 On the CE Device, open the root folder Windows followed by Start
Menu and Programs. In the Programs folder, add a Sybase folder.

8 Move the shortcut for CustDB from \Sybase to the \Windows\Start
Menu\Programs\Sybase folder by cutting and pasting the shortcut.

9 The samples are now accessible from the CE device Start button. Select
Start➤Programs➤Sybase➤CustDB.

$ For the next step, see "Start the application (Windows CE)" on page 26.

Lesson 3: Start the sample application and synchronize

24

Lesson 3: Start the sample application and
synchronize

When started for the first time, the sample UltraLite application contains no
data. In this step, you start the sample application, and carry out an initial
synchronization with the consolidated database to obtain an initial set of
data. The particular data you download depends on the user ID you enter
when you start the application.

Start the application (Windows)

v To start and synchronize the sample application:

1 Launch the sample application.

From the Start menu, choose Programs➤Sybase
SQL Anywhere 8➤UltraLite➤Windows Sample Application.

2 Enter an employee ID.

When running through this section as a tutorial, enter a value of 50 and
press ENTER. The application also allows values of 51, 52, or 53, but
behaves slightly differently in these cases.

The application synchronizes after you enter the employee ID, and a set
of customers, products, and orders are downloaded to the application.

3 Confirm that the data has been synchronized into the application.

Confirm that a company name and a sample order appear on the
application window.

You have now synchronized your data.

$ For the next step, see "Lesson 4: Add an order" on page 28.

Start the sample application (Palm Computing Platform)

The sample application for the Palm Computing Platform uses HotSync as
the synchronization mechanism.

v To start and synchronize the sample application:

1 Place your Palm device into its cradle.

Chapter 2 Tutorial: A Sample UltraLite Application

25

When you start the sample application for the first time it must be able
to synchronize, to download an initial copy of the data. This step is
required only the first time you start the application. After that, the
downloaded data is stored in the UltraLite database.

2 Launch the sample application.

From the Applications view, tap CustDB. An initial dialog displays,
prompting you for an employee ID.

3 Enter an employee ID.

When running through this section as a tutorial, enter a value of 50. The
application also allows values of 51, 52, or 53, but behaves slightly
differently in these cases.

A message box tells you that you must synchronize before proceeding.

4 Synchronize your application.

Use HotSync to obtain an initial copy of the data.

5 Confirm that the data has been synchronized into the application.

From the Applications view, tap the CustDB application. The display
shows an entry sheet for a customer, with entries.

You have now synchronized your data.

$ For the next step, see "Lesson 4: Add an order" on page 28.

HotSync synchronization requires a MobiLink HotSync conduit to be
installed on the desktop computer. The SQL Anywhere setup program
automatically installs a conduit for the CustDB sample application. For other
applications, you would have to install the conduit yourself using the
dbcond8 command-line utility. The command line used to install the conduit
for the CustDB sample application is as follows:

dbcond8 -n CustDB Syb2

where CustDB is the name which HotSync Manager displays, and Syb2 is
the Palm creator ID for the application.

v To start and synchronize the sample application (Palm Emulator):

1 Start the emulator.

2 Ensure the emulator is set up for TCP/IP synchronization:

♦ Right-click the emulator and choose Settings➤Properties from the
popup menu.

♦ In the Properties dialog, check Redirect NetLib Calls to Host
TCP/IP.

Installing the
HotSync conduit

Lesson 3: Start the sample application and synchronize

26

3 Launch the sample application.

From the Applications view, tap CustDB. An initial dialog displays,
prompting you for an employee ID.

4 Enter an employee ID.

When running through this section as a tutorial, enter a value of 50. The
application also allows values of 51, 52, or 53, but behaves slightly
differently in these cases.

A message box tells you that you must synchronize before proceeding.

5 Set the application to synchronize using TCP/IP:

♦ Tap the Options menu.

♦ Set the Conduit to Disabled.

♦ Set the Synch Method to TCP/IP.

♦ Leave the Synch Parameters as host=localhost.

♦ Tap OK.

6 Synchronize your application:

♦ Tap the Synchronize menu. A set of data is uploaded and
downloaded.

7 Confirm that the data has been synchronized into the application.

From the Applications view, tap the CustDB application. The display
shows an entry sheet for a customer, with entries.

 Start the application (Windows CE)

For synchronization to succeed, you must have the consolidated database
server and a MobiLink synchronization server running when you start the
sample application.

v To start and synchronize the sample application:

1 Connect your Windows CE device to your PC.

When you start the sample application for the first time, it must be able
to connect to the MobiLink synchronization server and download an
initial copy of the data. This step is required only the first time you start
the application. Once you have downloaded the data, it is stored in the
UltraLite database.

2 Launch the sample application.

Chapter 2 Tutorial: A Sample UltraLite Application

27

On the CE device, choose Start➤Programs➤Sybase➤CustDB.

3 Enter an employee ID.

When running through this section as a tutorial, enter a value of 50 and
press ENTER. The application does also allow values of 51, 52, or 53, but
behaves slightly differently in these cases.

The application synchronizes after you enter the employee ID, and a set
of customers, products, and orders are downloaded to your machine.

4 Confirm that the data has been synchronized into the application.

Confirm that a company name and a sample order appear on the
application window.

You have now synchronized your data.

$ For the next step, see "Lesson 4: Add an order" on page 28.

Lesson 4: Add an order

28

Lesson 4: Add an order
In this section, you display the initial data in the sample application and add
a new order. These step are carried out in a similar way in each version of the
application.

The application holds information about a set of orders. For each order, this
data includes the customer, the product, the quantity, the price, and any
applicable discount. Also included are a status field and a notes field, which
you can modify from the application.

Only unapproved orders are downloaded to the application. The sample
application does not receive all the orders listed in the ULOrder table in the
consolidated database. You control which information is sent to your
application using synchronization scripts.

Add an order (Windows or Windows CE)

The procedure is the same for Windows CE as for other Windows operating
systems.

v To add an order:

1 Scroll through the outstanding orders.

Click Next to display the next customer.

2 Open the window to enter a new order.

From the Order menu, choose New.

The Add New Order screen is displayed.

3 Choose a customer.

The UltraLite application holds the complete list of customers from the
consolidated database. To see this list, open the Customer drop-down
list.

Choose Basements R Us from the list. The current list of orders does
not have any from this customer.

4 Choose a product.

The UltraLite application holds the complete list of products from the
consolidated database. To see this list, open the Product drop-down list
box.

Chapter 2 Tutorial: A Sample UltraLite Application

29

Choose Screwmaster Drill from the list. The price of this item is
automatically entered in the Price field.

5 Enter the quantity and discount.

Enter a value of 20 for the quantity, and a value of 5 for the discount.

6 Press Enter to add the new order.

7 Click X to close the New Order screen.

You have now modified the data in your local UltraLite database. This data
is not shared with the consolidated database until you synchronize.

$ For the next step, see "Lesson 5: Act on some existing orders" on
page 31.

Add an order (Palm Computing Platform)

v To add an order:

1 Scroll through the outstanding orders.

Tap the Down arrow in the bottom right corner to display the next
customer.

2 Open the window to enter a new order.

Tap New. The Add New Order screen is displayed.

3 Choose a customer.

The UltraLite application holds the complete list of customers from the
consolidated database. To see this list, open the Customer drop-down
list.

Choose Basements R Us from the list. The current list of orders does
not have any from this customer.

4 Choose a product.

The UltraLite application holds the complete list of products from the
consolidated database. To see this list, open the Product drop-down list
box.

Choose Screwmaster Drill from the list. The price of this item is
automatically entered in the Price field.

5 Enter the quantity and discount.

Enter a value of 20 for the quantity, and a value of 5 for the discount.

6 Add the new order.

Lesson 4: Add an order

30

Tap Add to add the order.

You have now modified the data in your local UltraLite database. This data
is not shared with the consolidated database until you synchronize.

$ For the next step, see "Lesson 5: Act on some existing orders" on
page 31.

Chapter 2 Tutorial: A Sample UltraLite Application

31

Lesson 5: Act on some existing orders
In this step, you approve one order and deny another. Approving or denying
orders updates two columns in the local database. No data in the consolidated
database is changed until you synchronize.

The instructions for this step are very similar for all platforms.

v To approve, deny, and delete orders:

1 Approve the order from Apple Street Builders.

♦ Go to the first order in the list, which is from Apple Street Builders.

♦ Tap or Click Approve to approve the order.

♦ Add a note to your approval, saying Good Work!.

♦ The order appears with a status of Approved.

2 Deny the order from Art’s Renovations.

♦ Go to the next order in the list, which is from Art’s Renovations.

♦ Tap or click Deny to deny this order.

♦ Add a note stating Discount too high.

3 Delete the order from Awnings R Us.

♦ Go to the next order in the list, which is from Awnings R Us.

♦ Delete this order by choosing the menu item Options➤Delete. It
disappears from your local copy of the data.

Having changed these orders, you now need to communicate your changes to
the consolidated database.

$ For the next step, see "Lesson 6: Synchronize your changes" on
page 32.

Lesson 6: Synchronize your changes

32

Lesson 6: Synchronize your changes
In this step, you synchronize changes you made on your handheld device to
the consolidated database.

For synchronization to take place, your MobiLink synchronization server
must be running. If you have shut down your MobiLink synchronization
server since the beginning of the tutorial, restart it.

$ For instructions, see "Lesson 1: Start the MobiLink synchronization
server" on page 20.

Synchronize your changes (Windows, Windows CE)

v To synchronize your changes:

1 If you are running on a Windows CE handheld device, place the device
in its cradle, so that it can connect to the machine running the MobiLink
synchronization server.

2 Choose File➤Synchronize to synchronize your data.

3 Confirm that the synchronization took place.

♦ Confirm that the approved order for Apple Street Builders is no
longer in your application.

♦ The synchronization process for this sample application removes
approved orders from your application.

$ For the next step, see "Lesson 7: Confirm the synchronization at the
consolidated database" on page 34.

Synchronize your changes (Palm Computing Platform)

v To synchronize your changes:

1 Place the Palm device in its cradle.

2 Press the HotSync button to synchronize.

3 Confirm that the synchronization took place.

♦ Confirm that the approved order for Apple Street Builders is no
longer in your application.

Chapter 2 Tutorial: A Sample UltraLite Application

33

♦ The synchronization process for this sample application removes
approved orders from your application.

$ For the next step, see "Lesson 7: Confirm the synchronization at the
consolidated database" on page 34.

Lesson 7: Confirm the synchronization at the consolidated database

34

Lesson 7: Confirm the synchronization at the
consolidated database

In this step, you use Interactive SQL to connect to the consolidated database
and confirm that the changes made have been synchronized. This step is
independent of the platform on which your UltraLite application is running

v To confirm that the changes are synchronized to the consolidated
database:

1 Connect to the consolidated database from Interactive SQL.

In the Interactive SQL Connect dialog, choose the UltraLite 8.0 Sample
ODBC data source.

2 Confirm the status change of the approved and denied orders.

To confirm that the approval and denial have been synchronized, issue
the following statement.

SELECT order_id, status
FROM ULOrder
WHERE status IS NOT NULL

The results show that order 5100 is approved, and 5101 is denied.

3 Confirm that the deleted order has been removed.

The deleted order has an order_id of 5102. The following query returns
no rows, demonstrating that the order has been removed from the
system.

SELECT *
FROM ULOrder
WHERE order_id = 5102

The tutorial is now complete.

Chapter 2 Tutorial: A Sample UltraLite Application

35

Lesson 8: Browse the consolidated database
You can use Sybase Central to manage MobiLink synchronization. The
synchronization logic is held in the consolidated database.

This section describes how to use Sybase Central to browse the scripts in the
CustDB consolidated database.

The CustDB database

The following figure shows the tables in the CustDB consolidated database
and how they relate to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

The tables hold the following information.

♦ ULCustomer A list of customers.

♦ ULProduct A list of products.

♦ ULEmployee A list of sales employees. This table is not present in the
UltraLite database.

♦ ULEmpCust A many-to-many relationship between employees and
customers. This table is not present in the UltraLite database.

♦ ULOrder A list of orders, including details of the customer who placed
the order, the employee who took the order, and the product being
ordered.

Lesson 8: Browse the consolidated database

36

♦ ULCustomerIDPool A table to maintain unused unique primary key
values on the customer table throughout a deployed UltraLite system.

♦ ULOrderIDPool A table to maintain unused unique primary key values
on the order table throughout a deployed UltraLite system.

♦ ULIdentifyEmployee This table holds a list of employee ID numbers.

Connect to the CustDB database from Sybase Central

1 Start the CustDB database:

♦ Select Programs➤Sybase SQL Anywhere 8➤UltraLite➤Personal
Server Sample for UltraLite.

An Adaptive Server Anywhere database server starts, running the
CustDB UltraLite Sample Database.

2 Start Sybase Central:

♦ From the Start menu, select Programs➤ Sybase SQL Anywhere 8➤
Sybase Central.

3 Connect Sybase Central to the sample database:

♦ In Sybase Central, select Tools➤Connect. If there is a choice of
connection types, select MobiLink. The MobiLink Connect dialog
appears.

Chapter 2 Tutorial: A Sample UltraLite Application

37

Select ODBC, enter UltraLite 8.0 Sample in the Data Source box.
Click OK to connect.

You are now connected to the CustDB sample database.

Browse the synchronization scripts

From Sybase Central, you can browse through the tables, users, synchronized
tables, and synchronization scripts that are stored in the consolidated
database. Sybase Central is the primary tool for adding these scripts to the
database.

Lesson 8: Browse the consolidated database

38

Open the Connection Scripts folder. The right hand pane lists a set of
synchronization scripts and a set of events that these scripts are associated
with. As the MobiLink synchronization server carries out the
synchronization process, it triggers a sequence of events. Any
synchronization script associated with an event is run at that time. By writing
synchronization scripts and assigning them to the synchronization events,
you can control the actions that are carried out during synchronization.

Open the Synchronized Tables folder, and open the ULCustomer table folder.
The right hand pane lists a pair of scripts that are specific to this table, and
their corresponding events. These scripts control the way that data in the
ULCustomer table is synchronized with the remote databases.

This section does not discuss the content of the synchronization scripts.
These are discussed in detail in the chapter "Writing Synchronization
Scripts" on page 47 of the book MobiLink Synchronization User’s Guide.

Chapter 2 Tutorial: A Sample UltraLite Application

39

Summary
In this tutorial you learned how to:

♦ Copy an UltraLite application to a Palm or Windows CE device.

♦ Start and work with the sample application on a Palm or Windows CE
device, or on Windows.

♦ Synchronize changes with a consolidated database, via the MobiLink
synchronization server.

♦ Use Sybase Central to view the scripts controlling the synchronization
process.

The CustDB sample application is used throughout the current book and in
the MobiLink Synchronization Guide to illustrate programming methods and
synchronization techniques.

Summary

40

41

C H A P T E R 3

Designing UltraLite Applications

This chapter describes the features you can include in UltraLite applications,
as well as some general design features that apply to all UltraLite
applications.

The chapter also provides a description of UltraLite internals as background
information for application design.

Topic Page

Backup, recovery, and transaction processing 42

UltraLite database internals 43

Configuring and managing database storage 45

Choosing an UltraLite development model 54

Designing synchronization for UltraLite applications 55

Global autoincrement default column values 58

Character sets in UltraLite 64

About this chapter

Contents

Backup, recovery, and transaction processing

42

Backup, recovery, and transaction processing
The best way of making a backup of an UltraLite application is to
synchronize with a consolidated database. To restore an UltraLite database,
start with an empty database and populate it from the consolidated database
through synchronization.

UltraLite provides protection against system failures, but not against media
failures. If the UltraLite data store itself is corrupted, the only way to protect
is through synchronization.

UltraLite provides transaction processing. If an application using an
UltraLite database stops running unexpectedly, the UltraLite database
automatically recovers to a consistent state when the application is restarted.
All transactions committed prior to the unexpected failure are present in the
UltraLite database. All transactions not committed at the time of the failure
are rolled back.

UltraLite does not use a transaction log to perform recovery. Instead,
UltraLite uses the state byte for every row to determine the fate of a row
when recovering. When a row is inserted, updated, or deleted in an UltraLite
database, the state of the row is modified to reflect the operation and the
connection that performed the operations. When a transaction is committed,
the states of all rows affected by the transaction are modified to reflect the
commit. If an unexpected failure occurs during a commit, the entire
transaction is rolled back on recovery.

$ For more information on state bytes, see "How UltraLite tracks row
states" on page 44.

Chapter 3 Designing UltraLite Applications

43

UltraLite database internals
This section gives an outline of how data is stored in an UltraLite database,
and how UltraLite maintains data in a database.

Database storage mechanism

Each UltraLite application has its own database. The UltraLite runtime
creates the database when you first start your application. The physical
storage of the UltraLite database depends on the target platform. In all cases,
except for Java, the database is persistent by default: it continues to exist
when the application is not running.

♦ On the Palm Computing Platform, the UltraLite database is stored in the
Palm persistent (static) memory using the Data Manager API. For
devices operating Palm OS version 4.0, you can store UltraLite
databases in the file-based storage of expansion cards.

♦ On Windows, the UltraLite database is stored in the file system. On
Windows CE the default file is \UltraLiteDB\ul.udb. On other versions of
Windows the default file is ul_<project>.udb in the working directory of
the application, where <project> is the UltraLite project name used
during the development process.

♦ On VxWorks, UltraLite requires a dosFs (MS-DOS-compatible file
system) device or a functionally equivalent device to store the persistent
data file. UltraLite defaults to using a device named ULDEV:, and a
filename ul_<project>.udb, where <project> is the UltraLite project
name, and the filename is truncated to an 8.3 format. You can configure
a storage device with this name and it will be used to store persistent
data for the application, or you can override the default filename and
specify a different device.

♦ In Java applications, the database is either transient, or is stored as a file
in the file system. By default, it is transient.

$ For information on configuring UltraLite databases, see "Configuring
and managing database storage" on page 45. For information on configuring
UltraLite Java databases, see "UltraLite JDBC URLs" on page 346.

The information in an UltraLite database

UltraLite stores the rows of data in each table. It also stores state information
about each row, and stores indexes to efficiently access the rows.

UltraLite database internals

44

UltraLite compresses variable length strings, integers, numerical values, and
date/time data in the database. It does not compress columns containing
character or binary data, except on Windows CE where Unicode strings are
compressed by storing in a UTF-8 representation.

How UltraLite tracks row states

Each row in an UltraLite database has a one-byte marker to keep track of the
state of the row. The row states are used to control transaction processing,
recovery, and synchronization.

When a delete is issued, the state of each affected row is changed to reflect
the fact that it was deleted. Rolling back a delete is as simple as restoring the
original state of the row.

When a delete is committed, the affected rows are not always removed from
memory. If the row has never been synchronized, then it is removed. If the
row has been synchronized, then it is not removed until the next
synchronization confirms the delete with the consolidated database. After the
next synchronization, the row is removed from memory.

Similarly, when a row is updated in an UltraLite database, a new version of
the row is created. The states of the old and new rows are set so the old row
is no longer visible and the new row is visible. When an update is
synchronized, both the old and new versions of the row are needed to allow
conflict detection and resolution.

The old version of the row is deleted after synchronization. If a row is
updated many times between synchronizations, only the oldest version of the
row and the most recent version of the row are kept.

Indexes in UltraLite databases

UltraLite indexes are B+ trees with very small index entries.

In C/C++ UltraLite databases, each index entry is exactly two bytes, and
each index page contains 256 entries. Since index pages are rarely 100% full
and each index has some fixed overhead, the memory used by an UltraLite
index is more than two bytes per row in the table. The overhead for each
index is just over 1 kb per index. Typically, UltraLite index pages on larger
tables will be least 85% full.

No similar consistent rule can be given for the memory requirements of
UltraLite Java databases.

Chapter 3 Designing UltraLite Applications

45

Configuring and managing database storage
You can control several aspects of UltraLite persistent storage for C/C++
applications. The following aspects can be configured:

♦ The amount of memory used as a cache by the UltraLite database
engine.

♦ An encryption key.

♦ Preallocation of file-system space.

♦ The file name for the database.

♦ The database page size.

This configuration is controlled by the UL_STORE_PARMS macro, which
is placed in the header of your application source code so that it is visible to
all db_init() or ULPalmLaunch calls. The encryption key and page size can
be used on any supported C/C++ platform, while the other keys cannot be
used on the Palm Computing Platform.

$ For more information, see "UL_STORE_PARMS macro" on page 428.

Encrypting UltraLite databases

By default, UltraLite databases are unencrypted on disk and in permanent
memory. Text and binary columns are plainly readable within the database
store when using a viewing tool such as a hex editor. Two options are
provided for greater security:

♦ Obfuscation Obfuscating databases provides security against
straightforward attempts to view data in the database directly using a
viewing tool. It is not proof against skilled and determined attempts to
gain access to the data. Obfuscation has little or no performance impact.

$ For more information, see "Obfuscating an UltraLite database" on
page 46.

♦ Strong encryption UltraLite database files can be strongly encrypted
using the AES 128-bit algorithm, which is the same algorithm used to
encrypt Adaptive Server Anywhere databases. Use of strong encryption
does provide security against skilled and determined attempts to gain
access to the data, but has a significant performance impact.

Configuring and managing database storage

46

Caution
If the encryption key for a strongly encrypted database is lost or
forgotten, there is no way to access the database. Under these
circumstances, technical support cannot gain access to the
database for you. It must be discarded and you must create a new
database.

$ For more information, see "Encrypting an UltraLite database" on
page 46, and "Changing the encryption key for a database" on page 49.

Obfuscating an UltraLite database

v To obfuscate an UltraLite database (C/C++):

♦ Define the UL_ENABLE_OBFUSCATION compiler directive when
compiling the generated database.

$ For more information, see "UL_ENABLE_OBFUSCATION
macro" on page 427.

v To obfuscate an UltraLite database (Java):

♦ Add the following line to your code before creating the database (that is,
before connecting to the database for the first time):

UlDatabase.setDefaultObfuscation(true);

Encrypting an UltraLite database

UltraLite databases are created on the first connection attempt. To encrypt an
UltraLite database, you supply an encryption key before that connection
attempt. On the first attempt, the supplied key is used to encrypt the
database. On subsequent attempts, the supplied key is checked against the
encryption key, and connection fails unless the key matches.

v To strongly encrypt an UltraLite database (C/C++):

1 Load the encryption module.

Call ULEnableStrongEncryption before opening the database.

You open a database by calling db_init (embedded SQL) or
ULData::Open (C++ API).

On the Palm Computing Platform, you open a database by calling
ULPalmLaunch or ULData::PalmLaunch.

Encryption for
C/C++ programs

Chapter 3 Designing UltraLite Applications

47

2 Specify the encryption key.

Define the UL_STORE_PARMS macro with the parameter name key.

#define UL_STORE_PARMS "key=a secret key"

As with most passwords, it is best to choose a key value that cannot be
easily guessed. The key can be of arbitrary length, but generally the
longer the key, the better because a shorter key is easier to guess than a
longer one. As well, including a combination of numbers, letters, and
special characters decreases the chances of someone guessing the key.

Do not include semicolons in your key. Do not put the key itself in
quotes, or the quotes will be considered part of the key.

You must supply this key each time you want to start the database. Lost
or forgotten keys result in completely inaccessible databases.

$ For more information on UL_STORE_PARMS, see
"UL_STORE_PARMS macro" on page 428.

3 Handle attempts to open an encrypted database with the wrong key.

If an attempt is made to open an encrypted database and the wrong key
is passed in, db_init returns ul_false and SQLCODE -840 is set.

You can find a sample embedded SQL application demonstrating encryption
in the directory Samples\UltraLite\ESQLSecurity. The encryption code is held
in Samples\UltraLite\ESQLSecurity\sample.sqc.

Here is a code snippet from the sample:

Configuring and managing database storage

48

static void initStoreParms(){
 char enteredKey[15];
 strcpy(storeParms, "key=");
 // The key is used to encrypt the database on the first attempt.
 // On subsequent connections, the correct key is needed to
 // access the database.
 printf("Enter encryption key: ");
 scanf("%s", encryptionKey);
 strcat(storeParms, encryptionKey);
}

#undef UL_STORE_PARMS
#define UL_STORE_PARMS (initStoreParms(), storeParms)

int main(int argc, char * argv[])
{
 /* Declare fields */
 EXEC SQL BEGIN DECLARE SECTION;
 long pid=1;
 long cost;
 char pname[31];
 EXEC SQL END DECLARE SECTION;

 /* Encryption must be enabled before working with data*/
 ULEnableStrongEncryption(&sqlca);
 db_init(&sqlca);
 if(SQLCODE == -840){ // bad encryption key
 printf("Error: encryption key incorrect.");
 return(1);
 }

 EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";

v To strongly encrypt an UltraLite database (Java):

1 Set a property named key before creating a database object for the first
time.

Here is a code fragment that reads the encryption key from the command
line.

InputStreamReader isr = new InputStreamReader(
System.in);
BufferedReader br = new BufferedReader(isr);
String key = null ;
System.out.print("Enter encryption key:");
key = br.readLine() ;
System.out.println("The key is: " + key);

// (3) Connect to the database
java.util.Properties p = new java.util.Properties();
p.setProperty("persist", "file");
p.setProperty("key", key);
SampleDB db = new SampleDB(p);

Encryption for Java
programs

Chapter 3 Designing UltraLite Applications

49

Here, SampleDB is the database filename as supplied in the UltraLite
generator -f command-line option.

$ For more information, see "The UltraLite generator" on page 419,
and "Using a Properties object to store connection information" on
page 347.

2 Create the database object using the properties.

For example:

Connection conn = db.connect();

After the first connection attempt, subsequent attempts to access the
database produce an Incorrect or missing encryption key SQLException
if the wrong key is supplied.

You can find a sample Java application demonstrating encryption in the
directory \Samples\UltraLite\JavaSecurity. The encryption code is held in
\Samples\UltraLite\JavaSecurity\Sample.java.

Here is a code snippet from the sample:

// Obtain the encryption key
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String key = null ;
System.out.print("Enter encryption key:");
key = br.readLine() ;
System.out.println("The key is: " + key);

java.util.Properties p = new java.util.Properties();
p.setProperty("persist", "file");
p.setProperty("key", key);
SampleDB db = new SampleDB(p);
Connection conn = db.connect();

Changing the encryption key for a database

You can change the encryption key for a database. The application must
already be connected to the database using the existing key before the change
can be made.

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is
unrecoverable. If the application is interrupted part-way through, the
database is invalid and cannot be accessed. A new one must be created.

Configuring and managing database storage

50

v To change the encryption key on an UltraLite database (C/C++):

♦ Call the ULChangeEncryptionKey function, supplying the new key as
an argument.

The application must already be connected to the database using the old
key before this function is called.

$ For more information, see "ULChangeEncryptionKey function" on
page 233.

v To change the encryption key on an UltraLite database (Java):

♦ Call changeEncryptionKey on the database object, supplying the new
key as an argument.

db.changeEncryptionKey("new key");

$ For more information, see "changeEncryptionKey method" on
page 369.

Using the encryption key on the Palm Computing Platform

If you encrypt an UltraLite database on the Palm Computing Platform, you
are prompted to re-enter the key each time you launch the application. This
section describes how to add code that circumvents the re-entering of the
key. The feature is currently available only for embedded SQL applications.

You can save the encryption key in dynamic memory as a Palm feature, and
retrieve the key when you launch the application rather than prompting the
user. Features are indexed by creator and a feature number. Users can pass in
their creator ID or NULL, along with the feature number or NULL, to save
and retrieve the encryption key.

The encryption key is not backed up and is cleared on any reset of the
device. The retrieval of the key then fails, and the user is prompted to re-
enter the key.

The following sample code illustrates how to save and retrieve the
encryption key:

Chapter 3 Designing UltraLite Applications

51

#define UL_STORE_PARMS StoreParms
static ul_char StoreParms[STORE_PARMS_MAX];
...
startupRoutine() {
 ul_char buffer[MAX_PWD];

 if(!ULRetrieveEncryptionKey(
 buffer, MAX_PWD, NULL, NULL)){
 // prompt user for key
 userPrompt(buffer, MAX_PWD);
 if(!ULSaveEncryptionKey(buffer, NULL, NULL)) {
 // inform user save failed
 }
 }
 // build store parms
 StrCopy(StoreParms, "key=");
 StrCat(StoreParms, buffer);
 ULPalmLaunch(&sqlca, UL_NULL);
}

The following sample code illustrates how to use a menu item to secure the
device by clearing the encryption key:

case MenuItemClear
 ULClearEncryptionKey(NULL, NULL);
 break;

$ For more information, see "ULClearEncryptionKey function" on
page 233, "ULRetrieveEncryptionKey function" on page 247, and
"ULSaveEncryptionKey function" on page 248.

Defragmenting UltraLite databases

The UltraLite store is designed to efficiently reuse free space, so explicit
defragmentation is not required under normal circumstances. This section
describes a technique to explicitly defragment UltraLite databases, for use by
applications with extremely strict space requirements.

UltraLite provides a defragmentation step function, which defragments a
small part of the database. To defragment the entire database at once, call the
defragmentation step function in a loop until it returns ul_true. This can be
an expensive operation, and SQLCODE must also be checked to detect
errors (an error here usually indicates a file I/O error).

Explicit defragmentation occurs incrementally under application control
during idle time. Each step is a small operation.

Configuring and managing database storage

52

$ For embedded SQL reference information, see "ULStoreDefragFini
function" on page 249, "ULStoreDefragInit function" on page 249, and
"ULStoreDefragStep function" on page 250. The embedded SQL functions
can also be called from the C++ API.

$ For the Java interface to this feature, see "Class JdbcDefragIterator" on
page 373.

v To defragment UltraLite databases (C/C++):

1 Obtain a p_ul_store_defrag_info information block. For example,

p_ul_store_defrag_info DefragInfo;
//…
db_init(&sqlca);
DefragInfo = ULStoreDefragInit(&sqlca);

2 During idle time, call UlStoreDefragStep to defragment a piece of the
database. For example,

ULStoreDefragStep(&sqlca, DefragInfo);

3 When complete, dispose of the defragmentation block. For example,

ULStoreDefragFini(&sqlca, DefragInfo);

v To defragment UltraLite databases (Java):

1 Cast a Connection to a JdbcConnection object. For example,

…
Connection conn = db.connect();
JdbcConnection jconn = (JdbcConnection)conn ;

2 Call getDefragIterator() to obtain a JdbcDefragIterator object. Foe
example:

JdbcDefragIterator defrag =
jconn.getDefragIterator();

3 During idle time, call ulStoreDefragStep() to defragment a piece of the
database.

defrag.ulStoreDefragStep();

In this embedded SQL sample, defragmentation occurs incrementally under
application control during idle time. Each defragmentation step is a small
operation.

Example

Chapter 3 Designing UltraLite Applications

53

p_ul_store_defrag_info DefragInfo;

idle()
{

for(i = 0; i < DEFRAG_IDLE_STEPS; i++){
ULStoreDefragStep(&sqlca, DefragInfo);
if(SQLCODE != SQLE_NOERROR) break;

}
}

main()
{

db_init(&sqlca);
DefragInfo = ULStoreDefragInit(&sqlca);
//
// main application code,
// calls idle() when appropriate...
//
ULStoreDefragFini(&sqlca, DefragInfo);
db_fini(&sqlca);

}

To defragment the entire store at once, you can call ULStoreDefragStepin a
loop until it returns ul_true. This can be an expensive operation, and you
must check SQLCODE to detect errors such as file I/O errors.

Choosing an UltraLite development model

54

Choosing an UltraLite development model
There are three methods of developing UltraLite applications:

♦ C++ API Development using C or C++ with data access features using
a result-set based API.

♦ Embedded SQL Development using C or C++ with data access
features using embedded SQL statements.

♦ Java Development using the Java programming language.

The decision whether to use Java or C/C++ development will be determined
primarily by your target platform. Here are some considerations when
choosing between embedded SQL and the C++ API:

♦ Embedded SQL is an industry standard programming method, while the
C++ API is a proprietary API.

♦ Embedded SQL gives more control in designing your application. If you
are experienced with embedded SQL development, you can design a
more efficient application using this method.

♦ Many programmers are more familiar with API-based programmming.
The C++ API requires less learning for these developers.

♦ The C++ API generates classes and associated methods for manipulating
the database. It enforces standardized function names and so can be a
quicker approach in terms of development time.

Chapter 3 Designing UltraLite Applications

55

Designing synchronization for UltraLite
applications

UltraLite applications use MobiLink synchronization technology to share
data with a consolidated database and integrate into an enterprise information
system.

In the simplest scenario, an UltraLite application synchronizes all its data
with the consolidated database. However, additional options are possible:

♦ Synchronize subsets of your data You can identify portions of the
data named publications in your UltraLite application to be
synchronized separately. Publications allow you to separate high-priority
items from lower-priority data.

$ For more information, see "Designing sets of data to synchronize
separately" on page 76.

♦ Mark data for download only You can carry out download-only
synchronizations. By combining this with publications, UltraLite
applications can get updates from the consolidate database efficiently,
and upload changes at a convenient time.

♦ Exclude tables from synchronization You can maintain data on the
UltraLite database that is excluded from synchronization.

$ For more information, see "Including non-synchronizing tables in
UltraLite databases" on page 76.

This section describes how certain features of MobiLink affect the design
decisions you make for UltraLite applications. For a full description of
MobiLink synchronization, see the MobiLink Synchronization User’s Guide.
In particular:

♦ For more information on synchronization, see "Introducing MobiLink
Synchronization" on page 3 of the book MobiLink Synchronization
User’s Guide.

♦ For an introduction to synchronization concepts, see "Synchronization
Basics" on page 9 of the book MobiLink Synchronization User’s Guide.

♦ For information about synchronization techniques, see "Synchronization
Techniques" on page 83 of the book MobiLink Synchronization User’s
Guide.

Adding MobiLink synchronization to an UltraLite application is a matter of
supplying arguments to a function call. The details of the call, and the
synchronization options available to your application, depend on your target
platform.

See also

Adding
synchronization

Designing synchronization for UltraLite applications

56

$ For more information, see "Adding synchronization to your
application" on page 94.

Supported synchronization streams

The following synchronization streams are supported:

Synchronization
stream

Supported languages and platforms

TCP/IP C/C++ and Java. All platforms.

HTTP C/C++ and Java. All platforms.

HotSync Palm Computing Platform only.

ScoutSync Palm Computing Platform only.

$ For a list of the supported target platforms under C/C++ and Java, see
"Supported platforms" on page 6.

The HotSync synchronization stream is the method used by many Palm OS
applications. ScoutSync is a synchronization technology licensed by Palm
Computing for incorporation into their HotSync Server.

Foreign key cycles

This section describes a specific limitation in UltraLite synchronization that
results from a series of tables linked together by foreign keys so that a cycle
is formed.

MobiLink synchronization from an UltraLite remote database requires that
all changes be committed to the consolidated database in one transaction. To
facilitate this single transaction for multiple tables, the inserts, updates, and
deletes for each table must be ordered so that operations for a primary table
come before the associated foreign table. This ensures that the insert in the
foreign table will have its foreign key referential integrity constraint satisfied
(likewise for other operations like delete).

The UltraLite analyzer automatically orders all the tables in the remote
database so those primary tables are uploaded before foreign tables based on
the schema in the reference database. The ordering is always possible as long
as there are no foreign key cycles in the schema.

The figure illustrates a simple foreign key cycle between two tables.

Chapter 3 Designing UltraLite Applications

57

emp_id = dept_head_id

dept_id = dept_id

employee

emp_id
manager_id
emp_fname
emp_lname
dept_id
street
city
state
zip_code
phone
status
ss_number
salary
start_date
termination_date
birth_date
bene_health_ins
bene_life_ins
bene_day_care
sex

integer
integer
char(20)
char(20)
integer
char(40)
char(20)
char(4)
char(9)
char(10)
char(1)
char(11)
numeric(20,3)
date
date
date
char(1)
char(1)
char(1)
char(1)

<pk>

<fk>

department

dept_id
dept_name
dept_head_id

integer
char(40)
integer

<pk>

<fk>

If a foreign key cycle is detected by the UltraLite analyzer, the cycle must be
broken for the analyzer to successfully complete without any errors. The
foreign key cycle must be broken on both the reference database and the
consolidated database in order for synchronization transactions to be
successfully applied.

For an Adaptive Server Anywhere consolidated and reference database, one
of the foreign keys can be made to check on commit so that foreign key
referential integrity is checked during the commit phase rather than when the
operation is initiated. Other database vendors may have similar methods but
if not, the schema must be redesigned to eliminate the foreign key cycle.

create table c (
 id integer not null primary key,
 c_pk integer not null
);

create table p (
 pk integer not null primary key,
 c_id integer not null,
 foreign key p_to_c (c_id) references c(id)
);

alter table c
add foreign key c_to_p (c_pk)
references p(pk)
check on commit;

Example

Global autoincrement default column values

58

Global autoincrement default column values
You can declare the default value of a column in a reference database to be
of type GLOBAL AUTOINCREMENT. You can use this default for any
column in which you want to maintain unique values, but it is particularly
useful for primary keys. This feature simplifies the task of generating unique
values in setups where data is being replicated among multiple databases,
typically by MobiLink synchronization.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contains the same number of
values. For example, if you set the partition size for an integer column in a
database to 1000, one partition extends from 1001 to 2000, the next from
2001 to 3000, and so on.

$ For information on declaring columns as global autoincrement in your
reference database, see "Declaring default global autoincrement columns" on
page 58.

To use global autoincrement columns in your UltraLite database, you must
first assign each copy of the database a unique global database identification
number. UltraLite then supplies default values for the column only from the
partition uniquely identified by that database’s number. For example, if you
assigned a database in the above example the identity number 1, the default
values in that database would be chosen in the range 1001–2000. Another
copy of the database, assigned the identification number 2, would supply
default value for the same column in the range 2001–3000.

$ For information on assigning global database identification numbers,
see "Setting the global database identifier" on page 59.

$ For information on using global autoincrement values in Adaptive
Server Anywhere remote databases, see "Maintaining unique primary keys
using global autoincrement" on page 96 of the book MobiLink
Synchronization User’s Guide.

Declaring default global autoincrement columns

You declare default column values in the Adaptive Server Anywhere
reference database. When you build your UltraLite application, your
UltraLite database inherits the default column value. You can set default
values in your reference database by selecting the column properties in
Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a TABLE or ALTER TABLE statement.

Chapter 3 Designing UltraLite Applications

59

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is
216 = 65536; for columns of other types the default partition size is 232 =
4294967296. Since these defaults may be inappropriate it is best to specify
the partition size explicitly.

For example, the following statement creates a simple reference table with
two columns: an integer that holds a customer identification number and a
character string that holds the customer’s name.

CREATE TABLE customer (
id INT DEFAULT GLOBAL AUTOINCREMENT (5000)
name VARCHAR(128) NOT NULL
PRIMARY KEY (id)

)

In the above example, the chosen partition size is 5000.

Default partition sizes for some data types are different in UltraLite
applications than in Adaptive Server Anywhere databases. Declare the
partition size explicitly if you wish the reference database to behave in the
same manner as your UltraLite application.

$ For more information on GLOBAL AUTOINCREMENT, see
"CREATE TABLE statement" on page 350 of the book ASA SQL Reference
Manual.

Setting the global database identifier

When deploying an application, you must assign a different identification
number to each database. You can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

The method of setting this identification number varies according to the
programming interface you are using.

v To set the global database identifier (embedded SQL):

♦ Call the ULSetDatabaseID function. This function takes an argument
that indicates the identification number.

int n = 123;
ULSetDatabaseID(&sqlca, n);

Global autoincrement default column values

60

$ For more information, see "ULSetDatabaseID function" on
page 248.

v To set the global database identifier (C++ API):

♦ Call the ULConnection::SetDatabaseID method. This method takes a
single integer argument that indicates the identification number.

int n = 123;
conn.SetDatabaseID(n);

$ For more information, see "SetDatabaseID method" on page 142.

v To set the global database identifier (Java):

1 Call the JdbcConnection.setDatabaseID method. This method takes a
single argument, which is the integer global identification value.

int n = 123;
conn.setDatabaseID(n);

$ For more information, see "setDatabaseID method" on page 368.

How default values are chosen

The global database identifier in each deployed UltraLite application must be
set to a unique, non-negative integer before default values can be assigned.
These identification numbers uniquely identify the databases.

$ For information, see "Setting the global database identifier" on page 59.

The range of default values for a particular database is pn + 1 to p(n + 1),
where p is the partition size and n is the global database identification
number. For example, if the partition size is 1000 and the global database
identification number is set to 3, then the range is from 3001 to 4000.

UltraLite applications choose default values by applying the following rules:

♦ If the column contains no values in the current partition, the first default
value is pn + 1.

♦ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

♦ Default column values are not affect by values in the column outside of
the current partition; that is, by numbers less than pn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

Chapter 3 Designing UltraLite Applications

61

Caution
Column values downloaded via MobiLink synchronization do not update
the default value counter. Thus, an error can occur should one MobiLink
client insert a value into another client’s partition. To avoid this problem,
ensure that each copy of your UltraLite application inserts values only in
its own partition.

If the global database identification number is set to the default value of
2147483647, a NULL value is inserted into the column. Should NULL
values not be permitted, the attempt to insert the row causes an error. This
situation arises, for example, if the column is contained in the table’s primary
key.

Because the global database identification number cannot be set to negative
values, the values chosen are always positive. The maximum identification
number is restricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new global database
identification number should be assigned to the database to allow default
values to be chosen from another partition. Attempting to insert the NULL
value causes an error if the column does not permit nulls.

Should the values in a particular partition become exhausted, you can assign
a new database identification number to that database. You can assign new
database id numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database id values. This pool is
maintained in the same manner as a pool of primary keys.

$ For information on determining whether the range of default values is
becoming exhausted, see "Detecting the number of available default values"
on page 62.

$ For information on maintaining primary key uniqueness using explicit
primary key pools, see "Maintaining unique primary keys" on page 95 of the
book MobiLink Synchronization User’s Guide.

Determining the most recently assigned value

You can retrieve the value that was chosen during the most recently insert
operation. Since these values are often used for primary keys, knowing the
generated value may let you more easily insert rows that reference the
primary key of the first row.

From embedded SQL, you can obtain the most recently assigned global
autoincrement default value using the following statement.

Global autoincrement default column values

62

select @@identity

From the C++ API, the value is available using the GetLastIdentity()
method on the ULConnection object

The returned value is an unsigned 64-bit integer, database data type
UNSIGNED BIGINT. Since this statement only allows you to determine the
most recently assigned default value, you should retrieve this value soon
after executing the insert statement to avoid spurious results.

Occasionally, a single insert statement may include more than one column of
type global autoincrement. In this case, the return value is one of the
generated default values, but there is no reliable means to determine which
one. For this reason, you should design your database and write your insert
statements so as to avoid this situation.

Detecting the number of available default values

Default values are chosen from the partition identified by the global database
identification number until the maximum value is reached. When this state
has been reached or is imminent, you must assign the database a new
identification number.

The programming interfaces provide means of obtaining the proportion of
numbers that have been used. The return value is a short in the range 0–100
that represents the percent of values used thus far. For example, a value of 99
indicates that very few unused values remain and the database should be
assigned a new identification number.

v To find out the percent of values used (embedded SQL):

♦ Retrieve the proportion of used default values by calling the
ULGlobalAutincUsage function. This procedure takes no arguments. It
returns the maximum percent of used default values as a short in the
range 0–100.

short p;
p = ULGlobalAutincUsage();

$ For more information, see "ULGlobalAutoincUsage function" on
page 241.

Chapter 3 Designing UltraLite Applications

63

v To find out the percent of values used (C++ API):

♦ Retrieve the proportion of used default values by calling the
ULConnection::GlobalAutincUsage method. This method takes no
arguments. It returns the maximum percent of used default values as a
short in the range 0–100.

short p;
p = conn.GlobalAutincUsage();

$ For more information, see "GlobalAutoincUsage method" on
page 136.

v To find out the percent of values used (Java):

♦ Retrieve the proportion of used default values by calling the
JdbcConnection.globalAutincUsage method. This method takes no
arguments. It returns the maximum percent of used default values as a
short in the range 0–100.

$ For more information, see "globalAutoincUsage method" on
page 367.

Character sets in UltraLite

64

Character sets in UltraLite
An UltraLite application uses the collating sequence of the reference
database if either of the following conditions is met.

♦ The reference database uses a single-byte character set.

♦ The native character encoding of the target device is multi-byte, the
reference database uses the same multi-byte character encoding, and the
UltraLite analyzer can find a compact representation for the collation
sequence used by the reference database.

An UltraLite application uses the native multi-byte character encoding of the
target platform for reasons of efficiency. When the reference database uses a
different character encoding, the UltraLite application uses the default
collation of the target device.

For example, if you use a 932JPN reference database to build an UltraLite
application for the Windows CE platform, the application will use Unicode
and the default Unicode collation information. If, instead, you use a 932JPN
reference database to build an application for the Japanese Palm Computing
Platform, then the UltraLite application can inherit the collation information
because the native character encoding is the same as that of the reference
database.

If the character set is single byte, or the native character set of the target
device is the same as the character set of the reference database, columns that
are CHAR(n) or VARCHAR(n) compare and sort according to the collation
sequence of the reference database.

When you synchronize, the MobiLink synchronization server always
translates characters uploaded from your application database to Unicode and
passes them to your consolidated database server using the Unicode ODBC
API. The consolidated database server, or its ODBC driver, then performs
any translation that may be required to convert them to the character
encoding of your consolidated database. This second translation will always
occur unless your consolidated database uses Unicode.

When information is downloaded, the consolidated database server converts
the characters to Unicode. The MobiLink Synchronization server then
automatically translates the characters, if necessary, to suit the requirements
of your UltraLite application.

Multi-byte
platforms

Sort orders

Synchronization

Chapter 3 Designing UltraLite Applications

65

When both UltraLite application and consolidated database use the same
character encoding, no translation is necessary. If translation is necessary,
problems can arise when multiple character codes in your UltraLite
application map to a single Unicode value, or vice versa. In this event, the
MobiLink synchronization server translates in a consistent manner, but
behavior is influenced by the translation mechanism within the consolidated
database server.

At the time of printing, all single-byte Palm Computing Platform devices
uses a character set based on code page 1252 (the Windows US code page).
The default Adaptive Server Anywhere collation sequence (1252Latin1) is
appropriate for developing applications for the Palm Computing Platform.
Japanese Palm Computing Platform devices use 932JPN.

The Windows CE operating system uses Unicode. UltraLite running on
Windows CE also uses Unicode to store CHAR(n) and VARCHAR(n)
columns. Adaptive Server Anywhere collating sequences define behavior for
8-bit ASCII character sets.

UltraLite for Windows CE uses the Adaptive Server Anywhere collating
sequence when comparing Unicode characters that have a corresponding
8-bit ASCII character in the collating sequence being used, allowing
accented characters to compare equal and sort with unaccented characters.
Unicode characters that have no corresponding 8-bit ASCII character use a
comparison of two Unicode values.

The error-handling objects SQLException and SQLWarning provide the
capability for Java applications to obtain error or warning messages. By
default, these messages are supplied in English.

Localized error and warning messages may be obtained in a non-English
language by setting the Java Locale to the appropriate language.
For example, to obtain French messages, the following code fragment might
be used:

java.util.Locale locale = new java.util.Locale("fr", "");
java.util.Locale.setDefault(locale);

The default Locale should be set at the start of the program. Once a message
is placed in an error-handling object, the language to be used for the message
is established for that execution of the program.

Palm Computing
Platform

Windows CE

Java

Character sets in UltraLite

66

67

C H A P T E R 4

Developing UltraLite Applications

This chapter presents an overview of the UltraLite development process.

UltraLite applications can be developed using either C/C++ or using Java.
Later chapters in the book describe the specifics of each approach. This
chapter describes aspects common to all UltraLite application development.

Topic Page

Introduction 68

Preparing a reference database 72

Designing your UltraLite database 76

Defining SQL statements for your application 80

Adding user authentication to your application 85

Generating the UltraLite data access code 91

Developing multi-threaded applications 93

Adding synchronization to your application 94

Configuring development tools for UltraLite development 102

Deploying UltraLite applications 104

About this chapter

Contents

Introduction

68

Introduction
UltraLite supports the following development models:

♦ C++ applications using the UltraLite C++ API.

♦ C/C++ applications using embedded SQL.

♦ Java applications.

The overall development process for each model is similar, but the details are
different. This chapter describes those aspects of development that are
similar among the development models. It should be used together with the
chapter on the particular development model you are using:

♦ "Developing C++ API Applications" on page 121

♦ "Developing Embedded SQL Applications" on page 193

♦ "Developing UltraLite Java Applications" on page 337

UltraLite applications are developed on a host platform, and deployed on a
target platform. The host platform is PC-based, and the target platform is
generally a handheld or embedded device.

To create an UltraLite application, you need to use a development tool or
compiler that supports your target platform, together with the UltraLite
development tools. For example, you may want to use Metrowerks
CodeWarrior for Palm OS development, or Microsoft Visual C++ for
Windows CE development.

$ For information on supported host platforms, target platforms, and
development tools, see "Supported platforms" on page 6.

$ For information specific to each target platform, see the following
chapters:

♦ "Developing Applications for the Palm Computing Platform" on
page 253.

♦ "Developing Applications for Windows CE" on page 293.

♦ "Developing Applications for VxWorks" on page 309.

♦ "Developing UltraLite Java Applications" on page 337.

You can develop multi-threaded UltraLite applications on those C/C++
platforms that support it (Windows, Windows CE, and VxWorks). You
cannot develop multi-threaded UltraLite Java applications.

$ For more information, see "Developing multi-threaded applications" on
page 93.

UltraLite
development
models

Host and target
platforms

Multi-threaded
applications

Chapter 4 Developing UltraLite Applications

69

The UltraLite development environment

When developing UltraLite applications, you will be working with the
following tools.

♦ A reference database A reference database is an Adaptive Server
Anywhere database that serves as a model of the UltraLite database you
want to create. You create this database yourself, using tools such as
Sybase Central.

Your UltraLite database is a subset of the columns, tables, and indexes,
in your reference database. The arrangement of tables and of the foreign
key relationships between them is called the database schema.

In addition to modeling the UltraLite database, you need to add the SQL
statements that are to be included in your UltraLite application to the
reference database.

$ For more information, see "Preparing a reference database" on
page 72.

♦ A supported development tool You use a standard development tool
to develop UltraLite applications. For the non-UltraLite specific portions
of your application, such as the user interface, use your development
tool in the usual way. For the UltraLite-specific data-access portions,
you also need to use the UltraLite development tools.

It can be convenient to separate the data access code from the user
interface and internal logic of your application.

$ For information on supported application development tools, see
"Supported platforms" on page 6.

♦ UltraLite development tools UltraLite includes several tools for
development.

♦ The UltraLite generator This application uses Java classes in the
reference database to generate source code that implements the
underlying query execution, data storage, and synchronization
features of your application. The generator is required for all kinds
of UltraLite development. The Java classes in the database are
called the UltraLite Analyzer.

♦ The SQL preprocessor This application is needed only if you are
developing an UltraLite application using embedded SQL. It reads
your embedded SQL source files and generates standard C/C++
files. As it scans the embedded SQL source files, it also stores
information in the reference database that is used by the generator.

Introduction

70

♦ UltraLite runtime libraries UltraLite includes a runtime library for
each target platform. On some platforms, this is a static library that
becomes part of your application executable; on other platforms it is a
dynamic link library. For Java, the runtime library is a jar file. UltraLite
includes all the header files and import files needed to use the runtime
libraries.

The UltraLite development process

The basic features of the development process are common to all
development models. The following diagram summarizes the key features.

Reference
Database

UltraLite
Generator

Database
schemaDatabase

schemaDatabase
schema

Compiler

Application

Application
Source files

SQL
statements

Generated
Source files

♦ Create a reference database, which contains a superset of the tables to be
included in your application. It may also contain representative data for
your application. This reference database is needed only as part of the
development process, and is not required by your final application.

♦ Add the SQL statements into a special table in the reference database.
The way this is accomplished is dependent on the development model
you choose:

♦ If you are using the C++ API or Java, these statements are added to
your database using Sybase Central or a stored procedure.

Chapter 4 Developing UltraLite Applications

71

♦ If you are using embedded SQL, the SQL preprocessor adds the
statements to the reference database for you.

♦ Run the UltraLite generator, which produces source files that include
code needed to execute your SQL statements, and code needed to define
the database schema for your UltraLite application. This generated code
includes function calls into the UltraLite runtime library.

♦ Create application source files. If you are using embedded SQL, the
SQL preprocessor reads your .sqc files and inserts the SQL statements
into the reference database for you.

♦ Compile your application source files together with the generated source
files to produce your UltraLite application.

Adding synchronization

Most UltraLite applications include synchronization to integrate their data
with data on a consolidated database. Adding synchronization to your
application is a straightforward task.

$ For information on how to add synchronization to your application, and
the kinds of synchronization available, see "Adding synchronization to your
application" on page 94.

Preparing a reference database

72

Preparing a reference database
To implement the UltraLite database engine for your application, the
UltraLite generator must have access to an Adaptive Server Anywhere
reference database. This database must contain the following information:

♦ Database schema The database objects used in your UltraLite
application, including tables and any indexes on those tables you wish to
use in your application.

$ For more information, see "Using an existing database as a
reference database" on page 74.

♦ Data (Optional) You can fill your reference database with data that is
similar in quantity and distribution to the data you expect your UltraLite
database to hold. The UltraLite analyzer automatically uses this
information to optimize the performance of your application.

$ For more information, see "Using an existing database as a
reference database" on page 74.

♦ Queries The UltraLite system tables must contain any SQL statements
you wish to use in your application.

$ For more information, see "Defining SQL statements for your
application" on page 80.

♦ Publications If you wish to add multiple synchronization options to
your application, you can do so using publications. You also add
publications to your database if you wish to develop a C++ API
application without defining queries.

$ For information on multiple synchronization options, see
"Designing sets of data to synchronize separately" on page 76. For
information on using publications for C++ API applications, see
"Defining UltraLite tables" on page 123.

♦ Database options Database options such as date formats and govern
some aspects of database behavior that can make applications behave
differently. The UltraLite database is generated with the same option
settings as those in the reference database.

For many purposes, you can leave all database options at their default
settings.

$ For more information, see "Setting database options in the
reference database" on page 73.

Chapter 4 Developing UltraLite Applications

73

Creating a reference database

The analyzer uses the reference database as a template when constructing
your UltraLite application.

v To create a reference database:

1 Start with an existing Adaptive Server Anywhere database or create a
new database using the dbinit command.

$ For more information on upgrading a database, see "Using an
existing database as a reference database" on page 74.

2 Add the tables and foreign key relationships that you need within your
application. You can use any convenient tool, such as Sybase Central or
Sybase PowerDesigner Physical Architect (included with
SQL Anywhere Studio), or a more powerful database design tool such as
the complete Sybase PowerDesigner package.

Performance tip
You do not need to include any data in your reference database. However,
if you populate your database tables with data representative of the data
you expect to be stored by a typical user of your application, the UltraLite
analyzer automatically uses this data to optimize the performance of your
application.

$ For information about designing a database and creating a schema, see
"Designing Your Database" on page 3 of the book ASA SQL User’s Guide.

1 Create a database.

From a command prompt, execute the following statement:

dbinit path\dbname.db

2 Use Sybase Central to add tables for your UltraLite application, based
on your own needs.

3 Add your sample data. Interactive SQL includes an Import menu item
that allows several common file formats to be imported.

$ For more information, see "Importing data" on page 429 of the
book ASA SQL User’s Guide.

Setting database options in the reference database

UltraLite does not support the getting or setting of option values.

Example

Preparing a reference database

74

When the UltraLite application is generated, certain option values in the
reference database affect the behavior of the generated code. The following
options have an effect:

♦ Date_format

♦ Date_order

♦ Nearest_century

♦ Precision

♦ Scale

♦ Time_format

♦ Timestamp_format

By setting these options in the reference database, you can control the
behavior of your UltraLite database. The option setting in your reference
database is used when generating your UltraLite application.

Using an existing database as a reference database

Many UltraLite applications synchronize data via MobiLink with a central,
master store of data called the consolidated database. Do not confuse a
reference database with a consolidated database. The reference database for
the UltraLite application is generally a different database from the
consolidated database.

Only an Adaptive Server Anywhere consolidated database can also be used
as a reference database. If your consolidated database is of another type, you
must create an Adaptive Server Anywhere reference database. Even if your
consolidated database is Adaptive Server Anywhere, you must create a
separate reference database if you wish to have a different schema or use
different settings in your UltraLite application.

You can choose any of the supported ODBC-compliant database
management products to create and manage the consolidated database,
including Adaptive Server Enterprise, Adaptive Server Anywhere, Oracle,
Microsoft SQL Server, and IBM DB2.

If you have an existing Adaptive Server Anywhere database that you will be
using as a consolidated database, you could make a copy of it for your
reference database.

v To create a reference database from a non-Adaptive Server
Anywhere database:

1 Create a new Adaptive Server Anywhere database.

Chapter 4 Developing UltraLite Applications

75

You can use the dbinit command or use Sybase Central. The database
must be Java-enabled, which is the default setting.

2 Add the tables and foreign-key relationships that you need within your
application using your consolidated database as a guide.

You can use a tool such as Sybase Physical Data Architect to re-
engineer the consolidated database.

3 Populate your database tables with representative data from your
consolidated database.

You need not transfer all the information in your consolidated database,
only a representative sample. In the early stages of development, you do
not need sample data at all. For production applications, you may want
to use representative data because access plans of UltraLite queries are
based on the distribution of data in the reference database.

$ For more information on creating reference databases from non-
Adaptive Server Anywhere databases, see "Migrating databases to Adaptive
Server Anywhere" on page 449 of the book ASA SQL User’s Guide.

Designing your UltraLite database

76

Designing your UltraLite database
The tables to be included in your UltraLite database are defined by the SQL
statements you add to your reference database or, if you use publications and
the C++ API development model, by the publications you add to your
reference database.

The indexes to be included in your UltraLite database are also determined by
the indexes defined in the reference database.

This section describes other aspects of UltraLite database design, including
non-synchronizing tables, separate data sets for synchronization such as
high-priority synchronization, and read-only tables.

Including non-synchronizing tables in UltraLite databases

By default, all tables in an UltraLite database are synchronized to the
consolidated database. You can include tables in your UltraLite database that
are excluded from synchronization, but you must explicitly identify these
tables when you create your reference database.

Tables with names ending in nosync are excluded from synchronization. You
can use these tables for persistent data that is not related to the consolidated
database. Other than being excluded from synchronization, you can use these
tables in exactly the same way as other tables in the UltraLite database.

You can alternatively use publications to achieve the same effect. For more
information, see "Designing sets of data to synchronize separately" on
page 76.

Designing sets of data to synchronize separately

The schema of an UltraLite database is defined by the queries included in the
application. You can add publications to the reference database to define sets
of data that can be synchronized separately. If you do not use publications to
define which changes are to be synchronized, all changes are synchronized.

Publications are used for several purposes in SQL Anywhere. A publication
consists of a set of articles. In general, each article can be a whole table, or
can define a subset of the data in a table.

Articles defined for UltraLite applications can use row subsets by supplying
a WHERE clause, but cannot use column subsets or the SUBSCRIBE BY
clause. Articles in UltraLite publications governing HotSync or ScoutSync
synchronization cannot use a WHERE clause.

Chapter 4 Developing UltraLite Applications

77

v To synchronize subsets of data from an UltraLite database:

1 Create publications representing the data you wish to synchronize.

$ For more information, see "Creating publications for UltraLite
databases" on page 77.

2 Run the UltraLite generator, specifying the publications on the -v
command-line option.

$ For more information, see "The UltraLite generator" on page 419.

3 When calling the synchronization function, specify the publication.

If you specify no publication, all changes to the database are
synchronized. If you specify one or more publications, only changes that
fall within one or more of the listed publications are synchronized.

$ For more information, see "publication synchronization parameter"
on page 386.

 Creating publications for UltraLite databases

For UltraLite synchronization, each article in a publication may include
either a complete table or may include a WHERE clause.

v To publish data from an UltraLite reference database (Sybase
Central):

1 Connect to the database as a user with DBA authority.

2 Open the Publications folder and double-click Add Publication.

3 Type a name for the new publication. Click Next.

4 On the Tables tab, select a table from the list of Matching Tables.
Click Add. The table appears in the list of Selected Tables on the right.

5 Add additional tables as required. The order of the tables is not
important.

6 If necessary, click the Where tab to specify the rows to be included in
the publication. You cannot specify column subsets. If you are using
HotSync or ScoutSync synchronization, do not specify a WHERE
clause.

7 Click Finish.

v To publish data from an UltraLite reference database (SQL):

1 Connect to the database as a user with DBA authority.

Designing your UltraLite database

78

2 Execute a CREATE PUBLICATION statement that specifies the name
of the new publication and the table you want to publish.

$ For more information, see "CREATE PUBLICATION statement"
on page 314 of the book ASA SQL Reference Manual.

Synchronizing high-priority changes

Publications permit the synchronization of specific portions of your UltraLite
database. You can combine publications with upload-only or download-only
synchronization to synchronize high-priority changes efficiently. Both
upload-only and download-only synchronization are less time-consuming
than two-way synchronization.

$ For more information, see "Creating publications for UltraLite
databases" on page 77, and "upload_only synchronization parameter" on
page 396.

Including read-only tables in an UltraLite database

Some applications include tables in the UltraLite database that are not
updated locally. Price lists and company policies are two examples. You can
synchronize these tables efficiently by including them in a publication, and
synchronizing the publication using download-only synchronization.
Download-only synchronization is less time-consuming than a two-way
synchronization, as no data is uploaded.

To use download-only synchronization, you must ensure that the data is not
changed locally. If any data is changed locally, synchronization fails with a
SQLE_DOWNLOAD_CONFLICT error.

Unlike for two-way synchronization, you do not have to commit all changes
to the UltraLite database before download-only synchronization.
Uncommitted changes to tables not involved in synchronization are not
uploaded, and so there incomplete transactions do not cause problems.

$ For information on download-only synchronization, see
"download_only synchronization parameter" on page 383.

Chapter 4 Developing UltraLite Applications

79

Using client-specific data to control synchronization

Some UltraLite applications require client-specific data that control
synchronization, but which are not needed on the consolidated database. For
example, you may wish your UltraLite applications to indicate which of a
number of channels or topics they are interested in, and use this information
to download the appropriate rows.

If you create a table in your UltraLite database with a name ending in
allsync, all rows of that table are synchronized at each synchronization,
whether or not they have been changed since the last synchronization.

You can store user-specific or client-specific data in allsync tables. If you
upload the data in the table to a temporary table in the consolidated database
on synchronization, you can use the data to control synchronization by your
other scripts without having to be maintained in the consolidated database.

Defining SQL statements for your application

80

Defining SQL statements for your application
All the data access instructions for your application are defined by adding
SQL statements to the reference database.

If you use the C++ API, you can also use SQL Remote publications to define
data access methods. For information on using publications, see "Defining
UltraLite tables" on page 123.

If you are using embedded SQL, the SQL preprocessor carries out the tasks
in this section for you.

Creating an UltraLite project

When you add SQL statements to a reference database, you assign them to
an UltraLite project. By grouping them this way, you can develop multiple
applications using the same reference database.

When the UltraLite generator runs against a reference database to generate
the database source code files, it takes a project name as an argument and
generates the code for the SQL statements in that project.

You can define an UltraLite project using Sybase Central or by directly
calling a system stored procedure.

If you are using embedded SQL, the SQL preprocessor defines the UltraLite
project for you and you do not need to create it explicitly.

v To create an UltraLite project (Sybase Central):

1 From Sybase Central, connect to your reference database.

$ For instructions on using Sybase Central, see "Connect to the
sample database" on page 53 of the book ASA Getting Started.

2 In the left pane, open the database container.

3 In the left pane, open the UltraLite Projects folder.

4 In the right pane, double-click Add UltraLite Project.

The UltraLite Project Creation wizard appears.

5 Enter an UltraLite project name and click OK to create the project in the
database.

$ For information on UltraLite project naming rules, see
"ul_add_project system procedure" on page 412.

Chapter 4 Developing UltraLite Applications

81

v To create an UltraLite project (SQL):

♦ From Interactive SQL or another application, enter the following
command:

call ul_add_project(’project-name’)

where project-name is the name of the project.

$ For more information, see "ul_add_project system procedure" on
page 412.

v To create an UltraLite project (embedded SQL):

♦ If you are using the embedded SQL development model, specify the
UltraLite project name on the SQL Preprocessor command line, and the
preprocessor adds the project to the database for you.

$ For more information, see "Preprocessing your embedded SQL
files" on page 201.

UltraLite project names must conform to the rules for database identifiers. If
you include spaces in the project name, do not enclose the name in double
quotes, as these are added for you by Sybase Central or the stored procedure.

$ For more information, see "Identifiers" on page 7 of the book ASA SQL
Reference Manual.

Adding SQL statements to an UltraLite project

Each UltraLite application carries out a set of data access requests. These
requests are implemented differently in each development model, but the
data access requests are defined in the same way for each model.

You define the data access requests that an UltraLite application can carry
out by adding a set of SQL statements to the UltraLite project for that
application in your reference database. The UltraLite generator then creates
the code for a database engine that can execute the set of SQL statements.

In the C++ API, you can also use SQL Remote publications to define data
access methods. For information on using publications, see "Defining
UltraLite tables" on page 123.

You can add SQL statements to an UltraLite project using Sybase Central, or
by directly calling a system stored procedure. If you are using embedded
SQL, the SQL preprocessor adds the SQL statements in your embedded SQL
source files to the reference database for you.

Notes

Defining SQL statements for your application

82

v To add a SQL statement to an UltraLite project (Sybase Central):

1 From Sybase Central, connect to your reference database.

$ For instructions on using Sybase Central, see "Connect to the
sample database" on page 53 of the book ASA Getting Started.

2 In the left pane, open the database container.

3 In the left pane, open the UltraLite Projects folder.

4 Open the project for your application.

5 Double-click Add UltraLite Statement.

The UltraLite Statement Creation wizard appears.

6 Enter a short, descriptive name for the statement, and click Next

7 Enter the statement itself, and click Finish to add the statement to the
project.

You can test the SQL statements against the database by right-clicking
the statement and choosing Execute From Interactive SQL from the
popup menu.

$ For information on what kinds of statement you can use, see
"Writing UltraLite SQL statements" on page 83.

v To add a SQL statement to an UltraLite project (SQL):

♦ From Interactive SQL or another application, enter the following
command:

call ul_add_statement(’project-name’,
’statement-name’,
’SQL-statement’)

where project-name is the name of the project, statement-name is a short
descriptive name, and SQL-statement is the actual SQL statement.

$ For more information, see "ul_add_statement system procedure"
on page 411.

v To add a SQL statement to an UltraLite project (embedded SQL):

♦ If you are using the embedded SQL development model, specify the
UltraLite project name on the SQL Preprocessor command line.

No statement name is used in embedded SQL development.

$ For more information, see "Preprocessing your embedded SQL
files" on page 201.

Chapter 4 Developing UltraLite Applications

83

Statement names should be short and descriptive. They are used by the
UltraLite generator to identify the statement for use in Java or in the
C++ API. For example, a statement named ProductQuery generates a
C++ API class named ProductQuery and a Java constant named
PRODUCT_QUERY. Names should be valid SQL identifiers.

The SQL statement syntax is checked when you add the statement to the
database, and syntax errors give an error message to help you identify
mistakes.

You can use Sybase Central or ul_add_statement to update a statement in a
project, in just the same way as you add a statement. If a statement already
exists, it is overwritten with the new syntax. You must regenerate the
UltraLite code whenever you modify a statement.

Writing UltraLite SQL statements

This section describes what SQL statements you can add to an UltraLite
project, and describes how to use placeholders in your SQL statements.

$ For information on the range of SQL that you can use, see "SQL
features and limitations of UltraLite applications" on page 437.

The SQL statement that you enter, whether into Sybase Central or as an
argument to ul_add_statement, is added to the reference database as a
string. It must therefore conform to the rules for SQL strings.

You must escape some characters in your SQL statements using the
backslash character.

$ For information on SQL strings, see "Strings" on page 9 of the book
ASA SQL Reference Manual.

For most insert or update statements, you do not know the new values ahead
of time. You can use question marks as placeholders for variables, and
supply values at run time:

call ul_add_statement(
’ProductApp’,
’AddCap’,
’INSERT INTO \"DBA\".product (id, name, price)

VALUES(?, ?, ?)’
)

Placeholders can also be used in the WHERE clause of queries:

Notes

How to supply
double quotes

Using variables
with statements

Defining SQL statements for your application

84

call ul_add_statement(
’ProductApp’,
’ProductQuery’,
’SELECT id, name, price
 FROM \"DBA\".product
 WHERE price > ?’

)

The backslash characters are used to escape the double quotes.

In embedded SQL, you use host variables as placeholders. For more
information, see "Using host variables" on page 209.

For SQL statements containing placeholders, an extra parameter on the Open
or Execute method of the generated C++ class is defined for each parameter.
For Java applications, you use the JDBC set methods to assign values for the
parameters.

Chapter 4 Developing UltraLite Applications

85

Adding user authentication to your application
UltraLite provides an optional built-in user authentication scheme. You can
take advantage of this scheme to authenticate users before allowing them to
connect to the UltraLite database. By default, UltraLite databases have no
user authentication mechanism.

The UltraLite user authentication scheme does not provide the permissions
features implemented in multi-user database systems and in MobiLink.

$ For a general description of UltraLite user authentication, see "User
authentication for UltraLite databases" on page 442.

When you create an UltraLite database with user authentication enabled, one
authenticated user is created, with user ID DBA and password SQL. UltraLite
permits up to four different users to be defined at a time, with both user ID
and password being less than 16 characters long. Each user has full access to
the database once successfully authenticated.

The case sensitivity of the UltraLite user ID and password is determined by
the reference database. If the reference database is case insensitive (the
default) then the UltraLite database is also case insensitive, in cluding user
authentication.

Enabling user authentication

Enabling user authentication requires the application to supply a valid
UltraLite user ID and password when connecting to the UltraLite database. If
you do not explicitly enable user authentication, UltraLite does not
authenticate users.

v To enable user authentication (embedded SQL):

♦ Call ULEnableUserAuthentication before calling db_init. For
example:

app(){
…
ULEnableUserAuthentication(&sqlca);
db_init(&sqlca);
…

The call to db_init precedes all other database activity in the
application.

Adding user authentication to your application

86

v To enable user authentication (C++ API):

1 Define the compiler directive UL_ENABLE_USER_AUTH when
compiling ulapi.cpp.

2 Call ULEnableUserAuthentication before opening the database. For
example:

ULData db;
…
ULEnableUserAuthentication(&sqlca);
db.open();
…

v To enable user authentication (Java):

♦ Call the JdbcSupport.enableUserAuthentication method before
creating a new database object: For example:

JdbcSupport.enableUserAuthentication();
java.util.Properties p = new java.util.Properties();
p.put("persist", "file");
SampleDB db = new SampleDB(p);

$ Once you have enabled user authentication, you must add user
management code to your application. For more information, see "Managing
user IDs and passwords" on page 86.

Managing user IDs and passwords

There is a common sequence of events to managing user IDs and passwords.

1 New users have to be added from an existing connection. As all
UltraLite databases are created with a default user ID and password of
DBA and SQL, respectively, you must first attempt to connect as this
initial user and implement user management only upon successful
connection.

2 You cannot change a user ID: you add a user and delete an existing user.
A maximum of four user IDs are permitted for each UltraLite database.

3 To change the password for an existing user ID, call the same function
as adding a user ID. This function is ULGrantConnectTo (embedded
SQL), ULConnection.GrantConnectTo (C++ API), or
JdbcDatabase.grant (Java).

Applications on the Palm Computing Platform do not terminate. If you wish
to authenticate users whenever they return to an application from some other
application, you must include the prompt for user and password information
in your PilotMain routine.

Palm Computing
Platform

Chapter 4 Developing UltraLite Applications

87

Embedded SQL user authentication example

The following code fragment performs user management and authentication
for an embedded SQL UltraLite application.

A complete sample can be found in the Samples\UltraLite\esqlauth
subdirectory of your SQL Anywhere directory. The code below is taken from
Samples\UltraLite\esqlauth\sample.sqc.

app() {
...

/* Declare fields */
EXEC SQL BEGIN DECLARE SECTION;

char uid[31];
char pwd[31];

EXEC SQL END DECLARE SECTION;
ULEnableUserAuthentication(&sqlca);
db_init(&sqlca);
...
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
if(SQLCODE == SQLE_NOERROR) {

printf("Enter new user ID and password\n");
scanf("%s %s", uid, pwd);
ULGrantConnectTo(&sqlca,

UL_TEXT(uid), UL_TEXT(pwd));
if(SQLCODE == SQLE_NOERROR) {

// new user added: remove DBA
ULRevokeConnectFrom(&sqlca, UL_TEXT("DBA"));

}
EXEC SQL DISCONNECT;

}
// Prompt for password

 printf("Enter user ID and password\n");
 scanf("%s %s", uid, pwd);
 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

The code carries out the following tasks:

1 Enable user authentication by calling ULEnableUserAuthentication.

2 Initiate database functionality by calling db_init.

3 Attempt to connect using the default user ID and password.

4 If the connection attempt is successful, add a new user.

5 If the new user is successfully added, delete the DBA user from the
UltraLite database.

6 Disconnect. An updated user ID and password is now added to the
database.

7 Connect using the updated user ID and password.

Adding user authentication to your application

88

$ For more information, see "ULGrantConnectTo function" on page 242,
and "ULRevokeConnectFrom function" on page 248.

C++ API user authentication example

The following code fragment performs user management and authentication
for a C++ API UltraLite application.

A complete sample can be found in the Samples\UltraLite\apiauth
subdirectory of your SQL Anywhere directory. The code below is taken from
Samples\UltraLite\apiauth\sample.cpp.

ULEnableUserAuthentication(&sqlca);
db.Open() ;

if(conn.Open(&db,
UL_TEXT("dba"),
UL_TEXT("sql"))){

// prompt for new user ID and password
printf("Enter new user ID and password\n");
scanf("%s %s", uid, pwd);
if(conn.GrantConnectTo(uid, pwd)){

// new user added, remove dba
conn.RevokeConnectFrom(UL_TEXT("dba"));

}
conn.Close();

}
// regular connection
printf("Enter user ID and password\n");
scanf("%s %s", uid, pwd);
if(conn.Open(&db, uid, pwd)){
…

The code carries out the following tasks:

1 Initiate database functionality by opening the database object.

2 Attempt to connect using the default user ID and password.

3 If the connection attempt is successful, add a new user.

4 If the new user is successfully added, delete the DBA user from the
UltraLite database.

5 Disconnect. An updated user ID and password is now added to the
database.

6 Connect using the updated user ID and password.

$ For more information, see "GrantConnectTo method" on page 137, and
"RevokeConnectFrom method" on page 141.

Chapter 4 Developing UltraLite Applications

89

Java user authentication example

The following code fragment performs user management and authentication
for an UltraLite Java application.

A complete sample can be found in the Samples\UltraLite\javaauth
subdirectory of your SQL Anywhere directory. The code below is based on
that in Samples\UltraLite\javaauth\Sample.java.

JdbcSupport.enableUserAuthentication();
// Create database environment
java.util.Properties p = new java.util.Properties();
p.put("persist", "file");
SampleDB db = new SampleDB(p);

// Get new user ID and password
try{

conn = db.connect("dba", "sql");
// Set user ID and password
// a real application would prompt the user.
uid = "50";
pwd = "pwd50";

db.grant(uid, pwd);
db.revoke("dba");
conn.close();

}
catch(SQLException e){

// dba connection failed - prompt for user ID and
password

uid = "50";
pwd = "pwd50";

}

// Connect
conn = db.connect(uid, pwd);

The code carries out the following tasks:

1 Opening the database object.

2 Attempt to connect using the default user ID and password.

3 If the connection attempt is successful, add a new user.

4 Delete the default user from the UltraLite database.

5 Disconnect. An updated user ID and password is now added to the
database.

6 Connect using the updated user ID and password.

$ For more information, see "GrantConnectTo method" on page 137, and
"RevokeConnectFrom method" on page 141.

Adding user authentication to your application

90

Sharing MobiLink and UltraLite user IDs

Although UltraLite user IDs and MobiLink user authentication mechanisms
are separate, you may wish to provide your end users with a single user ID
and password that provides both MobiLink and UltraLite user authentication.
To share user IDs and passwords, store them in variables and use the same
variable in the UltraLite user authentication calls and the synchronization
call.

You can design your application so that, if passwords are reset at a MobiLink
consolidated site, your application prompts for the new password.

v To prompt for a new MobiLink/UltraLite password:

1 Save the user ID and password in variables.

2 Synchronize.

3 If synchronization fails because the user was not authenticated, prompt
the user for a new password.

4 Update the UltraLite user’s password using the appropriate function or
method:

♦ ULGrantConnectTo (embedded SQL)

♦ Connection.GrantConnectTo method (C++ API).

♦ JdbcDatabase.grant method (Java)

5 Update the synch_info structure and synchronize again.

$ For information on MobiLink user authentication, see "Authenticating
MobiLink Users" on page 251 of the book MobiLink Synchronization User’s
Guide.

Chapter 4 Developing UltraLite Applications

91

Generating the UltraLite data access code
To generate the code for storing and accessing the UltraLite database, the
UltraLite generator analyzes your reference database and the SQL
statements you use in your application. It does so using a set of Java classes
that run inside your reference database, called the UltraLite analyzer.

The UltraLite analyzer generates code that implements data access and
storage for your application. It is a single application that can generate either
C/C++ or Java code, depending on the command-line options you supply.

The data storage code includes only those tables and columns of the
reference database that you use in your application. Additionally, the
analyzer includes indexes present in your reference database whenever they
improve the efficiency of your application.

The data access code includes only those SQL statements that you have
added to the project in the reference database.

The result is a custom database engine tailored to your application. The
engine is much smaller than a general-purpose database engine because the
analyzer includes only the features your application uses.

Using the UltraLite generator

The UltraLite generator is a command-line application. It takes a set of
command-line options to customize the behavior for each project.

v To run the UltraLite generator:

♦ Enter the following command at a command-prompt:

ulgen –c " connection-string" options

where options depend on the specifics of your project.

The UltraLite generator command-line customizes its behavior. The
following command-line switches are used across development models:

♦ -c You must supply a connection string, to connect to the reference
database.

$ For information on Adaptive Server Anywhere connection strings,
see "Connection parameters" on page 70 of the book ASA Database
Administration Guide.

♦ -f Specify the output file name.

♦ -j Specify the UltraLite project name.

Generating the UltraLite data access code

92

$ For more information on UltraLite generator options, see "The
UltraLite generator" on page 419.

If you are using embedded SQL, and if you need to run only a single source
file through the SQL preprocessor, you can instruct the preprocessor to also
run the UltraLite generation process as a shortcut.

$ For more information, see "Preprocessing your embedded SQL files"
on page 201.

The generator relies on a current version of the UltraLite analyzer classes
being installed into the reference database. If you have upgraded your
UltraLite software, you must also upgrade the reference database so that it
contains the new analyzer classes.

Older databases, created with previous versions of Adaptive Server
Anywhere, may not contain any version of the analyzer. You can upgrade
these older databases using the Upgrade utility.

$ For more information about upgrading an older Java-enabled database,
see "Preparing a reference database" on page 72.

Error on starting the analyzer

Either sqlpp or ulgen can report the error message Unable to use Java in the
database when these utilities are unable to run the analyzer. The UltraLite
analyzer is a Java class that is added to your reference database when it is
initialized. For the analyzer to run, the database must have been initialized
with Java classes and the database engine must be able to start the Java
support in Adaptive Server Anywhere.

The following situations may cause this error to happen:

♦ The database was not initialized with Java classes.

♦ The Adaptive Server Anywhere database server was not started with a
cache of sufficient size. This should not generally be a problem as the
database server can dynamically increase its cache size.

♦ SQL Anywhere Studio was moved to a new directory without
uninstalling and reinstalling. In this case, there may be registry entries
pointing to the old location.

♦ There may be mismatched DLLs or mismatched Java jar files. This can
happen if you copy files from a maintenance release or emergency bug
fix, but miss copying all the files.

Which databases
contain the
UltraLite analyzer?

Chapter 4 Developing UltraLite Applications

93

Developing multi-threaded applications
You can develop multi-threaded UltraLite C or C++ applications on the
Windows, Windows CE, and VxWorks platforms. You cannot develop
multi-threaded UltraLite applications on the Palm Computing Platform, as
the platform does not support such applications.

You can also develop multi-threaded UltraLite Java applications.

Each thread of a multi-threaded application must make its own call to
db_init(). A SQLCA cannot be shared among different threads.
Consequently, each thread must have separate connections and separate
transactions from other threads.

$ For more information, see "db_init function" on page 231.

Each thread of a multi-threaded application must make its own objects,
including the ULData, ULConnection, ULTable, ULStatement and
ULResultSet objects.

$ For more information, see "Open method" on page 146.

The UltraLite Java runtime library is thread-safe. Users of the Sun Java VM
must use version 1.2 or later to run multi-threaded UltraLite applications.
Users of the Jeode VM on Pocket PC and the IBM Java VM can run multi-
threaded UltraLite applications even though these VMs are based on JDK
1.1.8.

The entire runtime is treated as a single critical section, only allowing one
thread to enter it at a time.

Connections cannot be shared among threads: each Java thread must obtain
its own JDBC connection to the database and statements used by a Java
thread for must be created with the thread’s own connection. Any one thread
can have multiple connections.

$ For more information, see "Using the UltraLite JdbcDatabase.connect
method" on page 344.

Multi-threaded
embedded SQL
applications

Multi-threaded
C++ API
applications

Multi-threaded
UltraLite Java
applications

Adding synchronization to your application

94

Adding synchronization to your application
Synchronization is a key feature of many UltraLite applications. This section
describes how to add synchronization to your application.

The specifics of each synchronization is controlled by a set of
synchronization parameters. These parameters are gathered into a structure
(C/C++) or object (Java), which is then supplied as an argument in a function
call to synchronize. The outline of the method is the same in each
development model.

v To add synchronization to your application:

1 Initialize the structure (C/C++) or object (Java) that holds the
synchronization parameters.

$ For information, see "Initializing the synchronization parameters"
on page 94.

2 Assign the parameter values for your application.

$ For information, see "Synchronization stream parameters" on
page 399.

3 Call the synchronization function, supplying the structure or object as
argument.

$ For information, see "Invoking synchronization" on page 96.

You must ensure that there are no uncommitted changes when you
synchronize. For more information, see "Commit all changes before
synchronizing" on page 97.

Synchronization specifics are controlled through a set of synchronization
parameters. For information on these parameters, see "Synchronization
stream parameters" on page 399.

Initializing the synchronization parameters

The synchronization parameters are stored in a C/C++ structure or Java
object.

In C/C++ the members of the structure may not be well-defined on
initialization. You must set your parameters to their initial values with a call
to a special function. The synchronization parameters are defined in a
structure declared in the UltraLite header file ulglobal.h.

Overview

Synchronization
parameters

Chapter 4 Developing UltraLite Applications

95

$ For a complete list of synchronization parameters, see "Synchronization
parameters" on page 380.

v To initialize the synchronization parameters (embedded SQL):

♦ Call the ULInitSynchInfo function. For example:

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);

v To initialize the synchronization parameters (C++ API):

♦ Call the InitSynchInfo() method on the Connection object. For
example:

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);

v To initialize the synchronization parameters (Java):

♦ Create a UlSynchOptions object. For example:

UlSynchOptions synch_options = new UlSynchOptions();

Once the structure or object is initialized, you must set the values to meet
your particular requirements.

$ For information on the individual parameters, see "Synchronization
stream parameters" on page 399.

Setting synchronization parameters: C/C++ examples

$ For Java examples, see "Initiating synchronization" on page 353.

The following code fragment initiates TCP/IP synchronization in an
embedded SQL application. The MobiLink user name is Betty Best, with
password TwentyFour, the script version is default, and the MobiLink
synchronization server is running on the host machine test.internal, on
port 2439:

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("Betty Best");
synch_info.password = UL_TEXT("TwentyFour");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=test.internal;port=2439");
ULSynchronize(&sqlca, &synch_info);

Adding synchronization to your application

96

The following code fragment initiates TCP/IP synchronization in a C++ API
application. The MobiLink user name is 50, with an empty password, the
script version is custdb, and the MobiLink synchronization server is
running on the same machine as the application (localhost), on the default
port (2439):

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
conn.Synchronize(&synch_info);

The following code fragment for an embedded SQL application on the Palm
Computing Platform is called when the user exits the application. It allows
HotSync synchronization to take place, with a MobiLink user name of 50, an
empty password, a script version of custdb. The HotSync conduit
communicates over TCP/IP with a MobiLink synchronization server running
on the same machine as the conduit (localhost), on the default port (2439):

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.name = UL_TEXT("Betty Best");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULConduitStream();
synch_info.stream_parms =

UL_TEXT("stream=tcpip;host=localhost");
ULPalmExit(&sqlca, &synch_info);

Invoking synchronization

The details of how to invoke synchronization depends on your target
platform and programming language, and also on the particular
synchronization stream.

v To invoke synchronization (TCP/IP, HTTP, or HTTPS streams):

♦ When using embedded SQL, call ULInitSynchInfo to initialize the
synchronization parameters, and call ULSynchronize to synchronize.
or
When using the C++ API, use the Connection.InitSynchInfo() method
to initialize the synchronization parameters, and
Connection.Synchronize() method to synchronize. See "Synchronize
method" on page 143.

Chapter 4 Developing UltraLite Applications

97

or
When using Java, construct a new ULSynchInfo object to initialize the
synchronization parameters, and use the
JdbcConnection.synchronize() method to synchronize. See "Adding
synchronization to your application" on page 352.

v To invoke synchronization (HotSync or ScoutSync streams):

♦ In embedded SQL, use ULInitSynchInfo to initialize the
synchronization parameters, and call ULPalmExit and ULPalmLaunch
functions to manage synchronization.
or
In the C++ API, use the ULConnection.InitSynchInfo to initialize the
synchronization parameters, and call ULData.PalmExit and
ULData.PalmLaunch functions to manage synchronization.

$ For more information on the embedded SQL functions, see
"ULPalmExit function" on page 244, and "ULPalmLaunch function" on
page 245. For more information on the C++ API methods, see "PalmExit
method" on page 147, and "PalmLaunch method" on page 148.

The synchronization call requires a structure that holds a set of parameters
describing the specifics of the synchronization. The particular parameters
used depend on the stream.

Commit all changes before synchronizing

An UltraLite database cannot have uncommitted changes when it is
synchronized. If you attempt to synchronize an UltraLite database when any
connection has an uncommitted transaction, the synchronization fails, an
exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS
error is set. This error code also appears in the MobiLink synchronization
server log.

$ For more information on download-only synchronizations, see
"download_only synchronization parameter" on page 383.

Adding initial data to your application

Many UltraLite application need data in order to start working. You can
download data into your application by synchronizing. You may want to add
logic to your application to ensure that, the first time it is run, it downloads
all necessary data before any other actions are carried out.

Adding synchronization to your application

98

Development tip
It is easier to locate errors if you develop an application in stages. When
developing a prototype, temporarily code INSERT statements in your
application to provide data for testing and demonstration purposes. Once
your prototype is working correctly, enable synchronization and discard
the temporary INSERT statements.

$ For more synchronization development tips, see "Development tips" on
page 85 of the book MobiLink Synchronization User’s Guide.

Monitoring and canceling synchronization

This section describes how to monitor and cancel synchronization from
C/C++ applications. For information on carrying out these tasks in Java, see
"Monitoring and canceling synchronization" on page 356.

To monitor and cancel synchronization, you specify a synchronization
observer callback function in the ul_synch_info structure. This structure is
passed to the synchronization function (embedded SQL) or method
(C++ API). The observer function is then called at various points during the
synchronization, and supplied with information about the synchronization
state.

To monitor synchronization from an UltraLite C/C++ application, you
supply the name of a callback function in the observer member of your
synchronization structure.

The overall process for monitoring synchronization is as follows:

♦ Specify the name of your callback function in the synchronization
structure.

♦ Call the synchronization function or method to start synchronization.

♦ UltraLite calls your callback function called whenever the
synchronization state changes. The following section describes the
synchronization state.

The following code shows how this sequence of tasks can be implemented in
an embedded SQL application:

ULInitSynchInfo(&info);
info.user_name = m_EmpIDStr;
...
//The info parameter of ULSynchronization() contains
// a pointer to the observer function
info.observer = ObserverFunc;
ULSynchronize(&sqlca, &info);

Monitoring
synchronization

Example

Chapter 4 Developing UltraLite Applications

99

Writing a synchronization callback function

The callback function that you use to monitor synchronization takes a
ul_synch_status structure as parameter. The ul_synch_status structure has
the following members:

♦ state One of the following states:

♦ UL_SYNCH_STATE_STARTING No synchronization actions
have yet been taken.

♦ UL_SYNCH_STATE_CONNECTING The synchronization stream
has been built, but not yet opened.

♦ UL_SYNCH_STATE_SENDING_HEADER The synchronization
stream has been opened, and the header is about to be sent.

♦ UL_SYNCH_STATE_SENDING_TABLE A table is being sent.

♦ UL_SYNCH_STATE_SENDING_DATA Schema information or
data is being sent.

♦ UL_SYNCH_STATE_FINISHING_UPLOAD The upload stage is
completed and a commit is being carried out.

♦ UL_SYNCH_STATE_RECEIVING_UPLOAD_ACK An
acknowledgement that the upload is complete is being received.

♦ UL_SYNCH_STATE_RECEIVING_TABLE A table is being
received.

♦ UL_SYNCH_STATE_SENDING_DATA Schema information or
data is being received.

♦ UL_SYNCH_STATE_COMMITTING_DOWNLOAD The download
stage is completed and a commit is being carried out.

♦ UL_SYNCH_STATE_SENDING_DOWNLOAD_ACK An
acknowledgement that download is complete is being sent.

♦ UL_SYNCH_STATE_DISCONNECTING The synchronization
stream is about to be closed.

♦ UL_SYNCH_STATE_DONE Synchronization has completed
successfully.

♦ UL_SYNCH_STATE_ERROR Synchronization has completed, but
with an error.

$ For a description of the synchronization process, see "The
synchronization process" on page 24 of the book MobiLink
Synchronization User’s Guide.

Adding synchronization to your application

100

♦ tableCount The total number of tables in the database. This number
may be more than the number of tables being synchronized.

♦ tableIndex The current table which is being uploaded or downloaded.
This number may skip values when not all tables are being
synchronized.

♦ info A pointer to the ul_synch_info structure.

♦ received.inserts The number of inserted rows that have been
downloaded so far.

♦ received.updates The number of updated rows that have been
downloaded so far.

♦ received.deletes The number of deleted rows that have been
downloaded so far.

♦ received.bytes The number of bytes that have been downloaded so
far.

♦ sent.inserts The number of inserted rows that have been uploaded so
far.

♦ sent.updates The number of updated rows that have been uploaded so
far.

♦ sent.deletes The number of deleted rows that have been uploaded so
far.

♦ sent.bytes The number of bytes that have been uploaded so far.

♦ stop Set this member to true to interrupt the synchronization

The following code illustrates how a very simple observer function could be
implemented:

extern void __stdcall ObserverFunc(
 p_ul_synch_status status)
{
 printf("UL_SYNCH_STATE is %d: ",
 status->state);

 switch(status->state) {
 case UL_SYNCH_STATE_STARTING:
 printf("Starting\n");
 break;

 case UL_SYNCH_STATE_CONNECTING:
 printf("Connecting\n");
 break;

 case UL_SYNCH_STATE_SENDING_HEADER:
 printf("Sending Header\n");
 break;

Example

Chapter 4 Developing UltraLite Applications

101

 case UL_SYNCH_STATE_SENDING_TABLE:
 printf("Sending Table %d of %d\n",
 status->tableIndex + 1,
 status->tableCount);
 break;
...

This function produces the following output when synchronizing two tables:

UL_SYNCH_STATE is 0: Starting
UL_SYNCH_STATE is 1: Connecting
UL_SYNCH_STATE is 2: Sending Header
UL_SYNCH_STATE is 3: Sending Table 1 of 2
UL_SYNCH_STATE is 3: Sending Table 2 of 2
UL_SYNCH_STATE is 4: Receiving Upload Ack
UL_SYNCH_STATE is 5: Receiving Table 1 of 2
UL_SYNCH_STATE is 5: Receiving Table 2 of 2
UL_SYNCH_STATE is 6: Sending Download Ack
UL_SYNCH_STATE is 7: Disconnecting
UL_SYNCH_STATE is 8: Done

An example of an observer function is included in the CustDB sample
application. The implementation in CustDB provides a dialog that displays
synchronization progress and allows the user to cancel synchronization. The
user-interface component makes the observer function platform specific.

The CustDB sample code is in the Samples\UltraLite\CustDB subdirectory of
your SQL Anywhere directory. The observer function is contained in the
platform-specific subdirectories of the CustDB directory.

CustDB example

Configuring development tools for UltraLite development

102

Configuring development tools for UltraLite
development

Most development tools use a dependency model, sometimes expressed as a
makefile, in which the timestamp on each source file is compared with that
on the target file (object file, in most cases) to decide whether the target file
needs to be regenerated.

With UltraLite development, a change to any SQL statement in a
development project means that the generated code needs to be regenerated.
Changes are not reflected in the timestamp on any individual source file
because the SQL statements are stored in the reference database,.

This section describes in general terms a strategy for incorporating UltraLite
application development into a dependency-based build environment. The
UltraLite plug-in for Metrowerks CodeWarrior automatically provides Palm
Computing platform developers with the features described here. For other
development tools, you must make the appropriate changes yourself.

$ For information on the UltraLite plugin for CodeWarrior, see
"Developing UltraLite applications with Metrowerks CodeWarrior" on
page 255.

$ For specific instructions on adding embedded SQL projects to a
dependency-based development environment, see "Configuring development
tools for embedded SQL development" on page 198.

v To add UltraLite code generation into a dependency-based
development model:

1 Add a dummy file to your development project.

The development project is defined in your development tool. It is
separate from the UltraLite project name used by the UltraLite
generator.

Add a file named, for example, uldatabase.ulg, in the same directory as
your generated files.

2 Set the build rules for this file to be the UltraLite generator command
line.

For example, in Visual C++, use a command of the following form
(which should be all on one line):

"%asany8%\win32\ulgen.exe" –q –c "connection-string"
$(InputName) $(InputName).c

Chapter 4 Developing UltraLite Applications

103

where asany8 is an environment variable that points to your
SQL Anywhere installation directory, connection-string is a connection
to your reference database, and InputName is the UltraLite project name,
and should match the root of the text file name. The output is
$(InputName).c.

3 Compile the dummy file to generate the UltraLite database code.

4 Add the generated UltraLite database file to your development project.

5 Add the UltraLite import libraries for your target platform to your
include path.

The import libraries are held in platform-specific directories under the
SQL Anywhere 8\UltraLite directory.

6 When you alter any SQL statements in the reference database, touch the
dummy file, to update its timestamp and force the UltraLite generator to
be run.

Deploying UltraLite applications

104

Deploying UltraLite applications
Once built, your application is contained in a single executable file (C/C++)
or set of classes (Java).

Your UltraLite application automatically initializes its own database the first
time it is invoked. At first, your database contains no data. You can add data
explicitly using INSERT statements in your application, or you can import
data from a consolidated database through synchronization. Explicit INSERT
statements are especially useful when developing prototypes. You do not
need to deploy a separate UltraLite database with your application.

When deploying a new version of an application, the default behavior is for
UltraLite to create a new database, losing any data in the database before the
new application was deployed. If you call ULEnableGenericSchema at the
beginning of your application, the database is instead upgraded to the schema
of the new application.

$ For more information, see "ULEnableGenericSchema function" on
page 236.

If you linked a C/C++ UltraLite application using the UltraLite library, the
custom database engine is an integral component of this executable. To
deploy your application, copy the executable file to your target device.

Some platforms, such as Windows CE, support dynamic link libraries. If
your target is one of these platforms, you have the option to use the UltraLite
runtime DLL.

v To build and deploy an application using the UltraLite runtime DLL

1 Preprocess your code, then compile the output with UL_USE_DLL.

2 Link your application using the UltraLite imports library.

3 Copy both your application executable and the UltraLite runtime DLL to
your target device.

$ For more information on specific platforms, see the following:

♦ "Deploying Palm applications" on page 291.

♦ "Deploying Windows CE applications" on page 299.

♦ "Developing Applications for VxWorks" on page 309

♦ "Deploying Java applications" on page 364

Using the UltraLite
runtime DLL

105

P A R T T W O

Developing UltraLite Applications in
C/C++

This part describes the development of applications written in C or C++. It
explains how to write and build applications using embedded SQL and using

the UltraLite C++ API. It also provides tutorials to guide you through the
development process.

106

107

C H A P T E R 5

Tutorial: Build an Application Using the
C++ API

This chapter provides a tutorial that guides you through the process of
developing a UltraLite application using the C++ API. It describes how to
build a very simple application, and how to add synchronization to your
application.

Topic Page

Introduction to the UltraLite C++ API 108

Lesson 1: Getting started 110

Lesson 2: Create an UltraLite database template 111

Lesson 3: Run the UltraLite generator 113

Lesson 4: Write the application source code 114

Lesson 5: Build and run your application 116

Lesson 6: Add synchronization to your application 118

Restore the sample database 120

About this chapter

Contents

Introduction to the UltraLite C++ API

108

Introduction to the UltraLite C++ API
You can use the UltraLite C++ API to develop UltraLite C/C++ programs
using an API instead of embedded SQL. It provides an equivalent
functionality to embedded SQL, but in the form of a C++ interface.

The UltraLite C++ API starts with a set of base classes that represent the
basic components of an UltraLite application. These are:

♦ ULData Represents an UltraLite database.

♦ ULConnection Represents a connection to an UltraLite database, and
also handles synchronization.

♦ ULCursor Provides methods used by generated table or result set
objects, for accessing and modifying the data.

♦ ULTable Provides methods used by generated table objects, but not by
generated result set objects. This class inherits from ULCursor.

♦ ULResultSet Provides methods used by generated result set objects,
but not by generated table objects. This class inherits from ULCursor,
and is not documented separately as it contains only methods that are in
ULCursor.

♦ ULStatement Represents a statement that does not return a result set,
such as an INSERT or UPDATE statement. All methods of this class are
generated.

For each application, the UltraLite generator writes out a set of classes that
describe your particular UltraLite database.

♦ Generated result set classes Individual SQL statements that return
result sets are represented by a class, with methods for traversing the
result set, and for modifying the underlying data.

♦ Generated table classes Each table in the application is represented
by a class, and methods on that table allow the rows of the table to be
modified.

For example, for a table named Employee, the UltraLite generator
generates a class also named Employee.

♦ Generated statement classes Individual SQL statements that do not
return result sets are represented by a simple class with an Execute
method.

You use these classes in your application to access and modify data, and to
synchronize with consolidated databases.

Base classes

Generated classes

Chapter 5 Tutorial: Build an Application Using the C++ API

109

Overview

This tutorial describes how to construct a very simple application using the
UltraLite C++ API. The application is a Windows console application,
developed using Microsoft Visual C++, which queries data in the ULProduct
table of the UltraLite 8.0 Sample database.

The tutorial takes you through configuration of Visual C++, in such a way
that users of other development platforms should be able to identify the steps
required. These steps are supplied so that you can start development of your
own applications.

In the tutorial, you write and build an application that carries out the
following tasks.

1 Connects to an UltraLite database, consisting of a single table. The table
is a subset of the ULProduct table of the UltraLite Sample database.

2 Inserts rows into the table. Initial data is usually added to an UltraLite
application by synchronizing with a consolidated database.
Synchronization is added later in the chapter.

3 Writes the first row of the table to standard output.

In order to build the application, you must carry out the following steps:

1 Design the UltraLite database in an Adaptive Server Anywhere
reference database.

Here we use a single table from the UltraLite sample database (CustDB).

2 Run the UltraLite generator to generate the API for this UltraLite
database.

The generator writes out a C++ file and a header file.

3 Write source code that implements the logic of the application.

Here, the source code is just main.cpp.

4 Compile, link, and run the application.

You then add synchronization to your application.

Lesson 1: Getting started

110

Lesson 1: Getting started
In this tutorial, you will be creating a set of files, including source files and
executable files. You should make a directory to hold these files. In addition,
you should make a copy of the UltraLite sample database so that you can
work on it, and be sure you still have the original sample database for other
projects.

Copies of the files used in this tutorial can be found in the
Samples\UltraLite\APITutorial subdirectory of your SQL Anywhere directory.

v To prepare a tutorial directory:

♦ Create a directory to hold the files you will create. In the remainder of
the tutorial, we assume that this directory is c:\APITutorial.

v To copy the sample database:

♦ Make a backup copy of the UltraLite 8.0 Sample database into the
tutorial directory. The UltraLite 8.0 Sample database is the file
custdb.db, in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere installation directory. In this tutorial, we use the original
UltraLite 8.0 Sample database, and at the end of the tutorial you can
copy the untouched version from the APITutorial directory back into
place.

Chapter 5 Tutorial: Build an Application Using the C++ API

111

Lesson 2: Create an UltraLite database template
In this tutorial, you use the original copy of the UltraLite 8.0 Sample
database (CustDB) as a reference database. The copy you placed in the
APITutorial directory serves as a backup copy.

An UltraLite database template is a set of tables, and columns within
tables, that are to be included in your UltraLite database. You create an
UltraLite database template by creating a SQL Remote publication in the
reference database. The SQL Remote publication is simply a convenient
device for assembling tables and column-based subsets of tables: there is no
direct connection to SQL Remote.

You can also define your UltraLite database by adding SQL statements to the
reference database. SQL statements allow you to include joins and more
advanced features in your UltraLite application. Here, we build an UltraLite
database template by defining tables, as it is more simple.

$ The Java tutorial uses SQL statements to define the UltraLite database.
For an example of how to add SQL statements to a database, see "Lesson 1:
Add SQL statements to your reference database" on page 326.

v To create the UltraLite database template:

1 Start Sybase Central.

2 Connect to the UltraLite 8.0 Sample database.

♦ Choose Tools➤Connect.

♦ If a list of plugins is displayed, choose Adaptive Server Anywhere.

♦ In the Connect dialog, choose the UltraLite 8.0 Sample ODBC data
source.

♦ Click OK to connect.

3 Create a SQL Remote publication that reflects the data you wish to
include in your UltraLite database.

♦ In Sybase Central, open the custdb database.

♦ Open the SQL Remote folder. Open the Publications folder, and
click Add Publication. The Publication Creation wizard appears.

♦ Add the ULProduct table to the publication, including all columns in
the publication.

♦ Click Finish to create the publication.

Lesson 2: Create an UltraLite database template

112

You have now finished designing the UltraLite database template. Leave
Sybase Central and the database server running for the next lesson.

Chapter 5 Tutorial: Build an Application Using the C++ API

113

Lesson 3: Run the UltraLite generator
The UltraLite generator writes a C++ file and a header file that define an
interface to the UltraLite database, as specified in the UltraLite database
template.

v To generate the UltraLite interface code:

1 From a command prompt, change directory to your APITutorial
directory.

2 Run the UltraLite generator with the following arguments (all on one
line):

ulgen -c "dsn=UltraLite 8.0 Sample" –t c++
-u ProductPub -f ProductPubAPI

The generator writes out the following files:

♦ ProductPubAPI.hpp This file contains prototypes for the
generated API. You should inspect this file to determine the API you
can use in your application.

♦ ProductPubAPI.cpp This file contains the interface source. You
do not need to look at this file.

♦ ProductPubAPI.h This file contains internal definitions required
by UltraLite. You do not need to look at this file.

Lesson 4: Write the application source code

114

Lesson 4: Write the application source code
Copy and paste the following source code into a file named sample.cpp in
your tutorial directory. You can find this source code in
Samples\UltraLite\APITutorial\sample.cpp, although you may have to edit the
file to uncomment the inserts.

The code does not contain error checking or other features that you would
require in a complete application. It is provided as a simplified application,
for illustrative purposes only.

// (1) include headers
#include <stdio.h>
#include "ProductPubAPI.hpp"

void main() {
// (2) declare variables
long price;
ULData db;
ULConnection conn;
ULProduct productTable;

// (3) connect to the UltraLite database
db.Open() ;

 conn.Open(&db, "dba", "sql");
productTable.Open(&conn);

// (4) insert sample data
productTable.SetProd_id(1);
productTable.SetPrice(400);
productTable.SetProd_name("4x8 Drywall x100");
productTable.Insert();

productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();

// (5) Write out the price of the items
productTable.BeforeFirst();
while(productTable.Next()) {

productTable.GetPrice(price);
printf("Price: %d\n", price);

}

// (6) close the objects to finish
productTable.Close();
conn.Close();
db.Close();

}

Chapter 5 Tutorial: Build an Application Using the C++ API

115

The numbered comments in the code indicate the main tasks this routine
carries out:

1 Include headers.

In addition to stdio.h, you need to include the generated header file
ProductPubAPI.hpp to include the generated classes describing the
Product table. This file in turn includes the UltraLite header file ulapi.h.

2 Declare variables.

The UltraLite database is declared as an instance of class ULData, and
the connection to the database is an instance of class ULConnection.
These classes are included from ulapi.h.

The table is declared as an instance of class ULProduct, a generated
name derived from the name of the table in the reference database.

3 Connect to the database.

Opening each of the declared objects establishes access to the data.
Opening the database requires no arguments; opening a connection
requires a user ID and password, and also the name of the database.
Opening the table requires the name of the connection.

4 Insert sample data.

In a production application, data is entered into the database by
synchronizing. It is a useful practice to insert some sample data during
the initial stages of development, and include synchronization at a later
stage.

The method names in the ULProduct class are unique names that reflect
the columns of the table in the reference database.

$ Synchronization is added to this routine in "Lesson 6: Add
synchronization to your application" on page 118.

5 Write out the price of each item.

The price is retrieved and written out for each row in the table.

6 Close the objects.

Closing the objects used in the program frees the memory associated
with them.

Explanation

Lesson 5: Build and run your application

116

Lesson 5: Build and run your application
You can compile and link your application in the development tool of your
choice. In this section, we describe how to compile and link using Visual
C++; if you are using one of the other supported development tools, modify
the instructions to fit your tool.

1 Start Microsoft Visual C++ from your desktop in the standard fashion.

2 Configure Visual C++ to search the appropriate directories for UltraLite
header files and library files.

Select Tools➤Options and click on the Directories tab. In the Show
Directories For dropdown list, choose Include Files. Include the
following directory, so that the header files can be accessed.

C:\Program Files\Sybase\SQL Anywhere 8\h

On the same tab, select Library Files under the Show Directories For
dropdown menu. Include the following directory so that the UltraLite
library files can be accessed.

C:\Program Files\Sybase\SQL Anywhere
8\ultralite\win32\386\lib

Click OK to submit the changes.

3 Create a project named APITutorial (it should be the same name as the
directory you have used to hold your files).

♦ Select File➤New. The New dialog is displayed.

♦ On the Projects tab choose Win32 Console Application.

♦ Specify a project name of APITutorial.

♦ Specify the APITutorial directory as location.

♦ Select New Workspace and click OK.

♦ Choose to create An Empty Project and click Finish.

♦ On the Workspace window, click the FileView tab. The workspace
tutorial consists of just the APITutorial project. Double-click
APITutorial files to display the three folders: Source Files, Header
Files, Resource Files.

4 Configure the project settings.

♦ Right click on APITutorial files and select Settings. The Project
Settings dialog is displayed.

♦ From the Settings For dropdown menu, choose All Configurations.

Chapter 5 Tutorial: Build an Application Using the C++ API

117

♦ Click the Link tab. Add the following runtime library to the
Object/Library Modules box.

ulimp.lib

♦ Click on the C/C++ tab. From the Category dropdown menu,
choose General. Add the following to the Preprocessor definitions
list:

__NT__,UL_USE_DLL

Here, __NT__ has two underscores either side of NT.

♦ Click OK to finish.

5 Add sample.cpp and ProductPubAPI.cpp to the project.

♦ Right click on the Source Files folder and select Add Files to Folder.
Locate your sample.cpp file and click OK. Open the Source Files
folder to verify that it contains sample.cpp.

♦ Repeat to add the generated ProductPubAPI.cpp file to the project.

6 Add the file containing the base classes for the UltraLite API to the
project.

♦ Right click on the Source Files folder and choose Add Files to
Folder. Browse to ulapi.cpp, which is in the src subdirectory of your
SQL Anywhere directory, and click OK.

7 Compile and link the application.

♦ Select Build➤Build APITutorial.exe to compile and link the
executable. Depending on your settings, the APITutorial.exe
executable may be created in a Debug directory within your
APITutorial directory.

8 Ensure that the application can locate the UltraLite runtime library.

♦ The UltraLite runtime library is ulrt8.dll. In Visual C++, choose
Tools➤Options, click the Directories tab. From the Show
Directories For list choose Executable files. Add the win32
subdirectory of your SQL Anywhere directory to the list. Click OK
to complete.

9 Run the application.

♦ Select Build➤Execute APITutorial.exe.

A command prompt window appears and displays the prices of the
products in the product table.

You have now built and run a simple UltraLite application. The next step is
to add synchronization to your application.

Lesson 6: Add synchronization to your application

118

Lesson 6: Add synchronization to your
application

UltraLite applications exchange data with a consolidated database. In this
lesson, you add synchronization to the simple application you created in the
previous section. In addition, you change the output to verify that
synchronization has taken place.

Adding synchronization actually simplifies the code. Your initial version of
main.cpp has the following lines, that inserts some data into your UltraLite
database.

productTable.SetProd_id(1);
productTable.SetPrice(400);
productTable.SetProd_name("4x8 Drywall x100");
productTable.Insert();

productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();

This code is included to provide an initial set of data for your application. In
a production application, you would usually not insert an initial copy of your
data from source code, but would carry out a synchronization.

v To add synchronization to your application:

1 Add a synchronization information structure to your code.

♦ Add the following line immediately after the line that says
// (2) declare variables.

auto ul_synch_info synch_info;

This structure holds the parameters that control the synchronization.

2 Replace the explicit inserts with a synchronization call.

♦ Delete the productTable methods listed above.

♦ Add the following lines in their place:

conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
conn.Synchronize(&synch_info);

Chapter 5 Tutorial: Build an Application Using the C++ API

119

The value of 50 is the MobiLink user name.

The string custdb instructs MobiLink to use the default script
version for synchronization.

ULSocketStream() instructs the application to synchronize over
TCP/IP, and host=localhost specifies the host name of the
MobiLink server, which in this case is the current machine.

3 Compile and link your application.

♦ Select Build➤Build APITutorial.exe to compile and link the
executable. Depending on your settings, the APITutorial.exe
executable may be created in a Debug directory within your
APITutorial directory.

4 Start the MobiLink server running against the sample database.

From a command prompt in your APITutorial directory, enter the
following command:

start dbmlsrv8 -c "dsn=UltraLite 8.0 Sample"

5 Run your application.

From the Build menu, choose Execute APITutorial.exe.

The application connects, synchronizes to receive data, and writes out
information to the command prompt window. The output is as follows:

The ULData object is open
Price: 400
Price: 3000
Price: 40
Price: 75
Price: 100
Price: 400
Price: 3000
Price: 75
Price: 40
Price: 100

In this lesson, you have added synchronization to a simple UltraLite
application.

Restore the sample database

120

Restore the sample database
Now that you have completed the tutorial, you should restore the sample
database so that it can be used again. You created a copy of the UltraLite 8.0
Sample database in "Lesson 1: Getting started" on page 110. You can now
replace the version of custdb.db that you just changed with the copy.

v To restore the sample database:

1 Copy the custdb.db file from your tutorial directory to the
UltraLite\Samples\CustDB subdirectory of your SQL Anywhere
directory.

2 In the same directory, delete the transaction log file custdb.log.

Your sample database is now restored to its original state.

121

C H A P T E R 6

Developing C++ API Applications

This chapter describes how to develop applications using the UltraLite C++
API. This interface represents predefined queries or tables in your UltraLite
database as objects, and provides methods that enable you to manipulate
them from your application without using SQL.

Topic Page

Introduction 122

Defining features for your application 123

Working with the C++ API classes 125

Building your UltraLite C++ application 127

About this chapter

Contents

Introduction

122

Introduction
This chapter provides notes for developers who are writing and building
UltraLite applications using the C++ API.

The chapter includes the following information:

♦ Information about how to define the data access features to be used in
your application.

$ See "Defining features for your application" on page 123.

♦ Information on generating C++ API classes from your reference
database.

$ See "Generating UltraLite C++ classes" on page 127.

♦ Notes on the C++ API classes that are generated.

$ See "Working with the C++ API classes" on page 125.

♦ Notes on compiling and linking UltraLite C++ API applications.

$ See "Compiling and linking your application" on page 128.

The development process for the C++ API is similar to that for other
UltraLite development models. This chapter assumes a familiarity with that
process.

$ For more information, see "Developing UltraLite Applications" on
page 67.

What’s in this
chapter?

Before you begin

Chapter 6 Developing C++ API Applications

123

Defining features for your application
The SQL statements to be included in the UltraLite application, and the
structure of the UltraLite database itself, are defined by adding the SQL
statements to the reference database for your application.

Defining projects

When you run the UltraLite generator, it writes out class definitions for all
the SQL statements in a given project. A project is a name defined in the
reference database, which groups the SQL statements for an application. You
can store SQL statements for multiple applications in a single reference
database by defining multiple projects.

$ For information on creating projects, see "Creating an UltraLite
project" on page 80.

You can use the ul_delete_project stored procedure to remove a project
definition.

Adding statements to a project

$ For information on adding SQL statements to an UltraLite project, see
"Adding SQL statements to an UltraLite project" on page 81.

$ For information on using placeholders, and other aspects of writing
SQL statements for UltraLite, see "Writing UltraLite SQL statements" on
page 83.

Defining UltraLite tables

If you do not intend to carry out joins, and if you have strong constraints on
your application executable size, you can define tables instead of queries for
your UltraLite application.

You define a subset of a database for use in a C++ API application by
creating a publication in the reference database. A publication defines the set
of tables, and columns in those tables, that you want to include in your
UltraLite application. The use of a SQL Remote publication is purely a
convenience for UltraLite, and does not imply any connection with
SQL Remote or MobiLink software.

Defining features for your application

124

SQL Remote publications allow you to qualify which rows any SQL Remote
user receives using subqueries and parameters. You cannot use these devices
when creating publications for use with UltraLite: only the set of tables and
columns within those tables is used for defining the UltraLite classes.

Tables or queries?

Table definitions and query definitions provide alternative ways of defining
the data that is to be included in your UltraLite database, and the range of
operations you can carry out on that data.

Using SQL statements and projects provides a more general approach to
defining applications, and are most likely to be used in larger enterprise
applications. Table definitions may be useful as a convenient device in the
following cases:

♦ Your application needs to access data only one table at a time. You
cannot define joins using table definitions.

♦ You are severely constrained for memory use. The code generated for
table definitions is smaller than that for queries, because of their simpler
structure.

Defining database features for C++ API applications

C++ API applications use some functions that are not part of the class
hierarchy. These functions control aspects of the database storage and access.
They are as follows:

♦ "ULEnableFileDB function" on page 235.

♦ "ULEnablePalmRecordDB function" on page 237.

♦ "ULEnableStrongEncryption function" on page 238.

♦ "ULEnableUserAuthentication function" on page 238.

Other aspects of database storage are configured using the
UL_STORE_PARMS macro. For more information, see
"UL_STORE_PARMS macro" on page 428.

Chapter 6 Developing C++ API Applications

125

Working with the C++ API classes
This section contains notes about the classes that make up the C++ API.

Working with the ULData and ULConnection objects

The ULData object makes the data in the database object available to your
application. You need to call ULData::Open() before you can connect to the
UltraLite database or carry out any operations on the data.

The ULData::Open() method can be called with parameters that define the
storage and access parameters for the database (file name, cache size,
reserved size).

Once the ULData object is opened, you can open a connection on the
database. You do that using the ULConnection::Open() method, supplying
a reference to the ULData object and a set of connection parameters to
establish the connection. You can use multiple connections on a single
database. Once the connection is established, you can open the generated
ULStatement, ULResultSet or ULTable objects that define the tables or
statements used in your application, and use these objects to manipulate the
data.

The ULConnection object defines the general characteristics of how you
interact with the data.

Synchronization is carried out using the ULConnection object. The
Synchronize method carries out synchronization of the data with a
MobiLink server.

If you are developing an application for the Palm Computing Platform, there
are some extra considerations for how to use these objects. In particular, the
PalmLaunch and PalmExit methods are called when launching and leaving
the application. The ULData::Close() method is not called on the Palm
Computing Platform.

$ For more information, see "Developing Applications for the Palm
Computing Platform" on page 253.

Using table and query classes

Each table or query is represented by a class. The API for accessing and
modifying the rows in the table or query is based on a SQL cursor: a pointer
to a position in the table or query.

Palm Computing
Platform
developers

Working with the C++ API classes

126

The cursor can have the following positions:

♦ Before the first row This position has value 0. This is the position of
the cursor when the table or query is opened.

♦ On a row If a table or query has n rows, positions 1 to n for the cursor
correspond to the rows.

♦ After the last row This position has value (n+ 1)

You can move through the rows of the object using methods of the object,
including Next() and Previous().

If you are developing an application for the Palm Computing Platform, there
are some extra considerations for how to use these objects.

$ For more information, see "Launching and closing UltraLite
applications" on page 261.

Row ordering

The order of the rows in the object is determined when it is opened. By
default, tables are ordered by primary key. The UltraLite generator adds an
enumeration for the object definition, with a member for each index on the
table in the reference database (the primary key is named Primary), and by
specifying a member of this enumeration, you can control the ordering of the
rows in the object.

If you update a row so that it no longer belongs in the current position the
current row of the cursor moves to that row.

For example, consider a single-column object with the values A, B, C, and E.

♦ If a cursor is sitting on row B (position 2) and modifies the value to D,
then the row is moved to sit between C and E (becoming position 3) and
the current row of the cursor changes to position 3.

If you insert a row, the current position does not move to that row.

Palm Computing
Platform
developers

Chapter 6 Developing C++ API Applications

127

Building your UltraLite C++ application
This section covers the following subjects:

♦ "Generating UltraLite C++ classes" on page 127.

♦ "Compiling and linking your application" on page 128.

Some small sample applications are provided that include makefiles for
compilation. These applications can be found in subdirectories of the
Samples\UltraLite directory.

Generating UltraLite C++ classes

The generator generates table classes from publications in the database, and
query classes from any SQL statements added with the ul_add_statement
stored procedure, writing the output to the following files:

♦ filename.hpp This file contains the prototypes for the generated
interface. You should inspect this file to determine the API you can use
in your application.

♦ filename.cpp This file contains the interface source. You do not need
to look at this file.

♦ filename.h This file contains internal definitions required by UltraLite.
You do not need to look at this file.

Here, filename is the name supplied on the ulgen command line.

Whether you use queries in a project, publications, or a mix to define the
classes in your application, you must generate all the code in a single run of
the UltraLite generator.

v To generate UltraLite code for a publication:

♦ Run the UltraLite generator specifying the publication name with the -u
command-line switch. For example:

ulgen -c "uid=dba;pwd=sql" –t c++ -u pubName -f
filename

v To generate UltraLite code for a UltraLite project:

♦ Run the UltraLite generator, specifying the project name with the –j
command-line switch. For example:

ulgen -c "uid=dba;pwd=sql" –t c++ -j projectname -f
filename

Building your UltraLite C++ application

128

v To generate UltraLite code for both a project and a publication:

♦ Run the UltraLite generator, specifying the project name and the
publication name. For example:

ulgen -c "uid=dba;pwd=sql" –t c++ -j projectname –u
pubname -f filename

$ For more information on the UltraLite generator, see "The UltraLite
generator" on page 419.

Compiling and linking your application

When you compile your UltraLite application, you must ensure that the
compiler can locate all the required files.

♦ Generated source files You must included the generated files
describing the API in your project. This includes the generated .cpp file,
.h file, and .hpp file.

♦ UltraLite header files You must configure your compiler so that it can
locate the UltraLite header files.

These header files are installed into the h directory under your Adaptive
Server Anywhere installation directory.

♦ UltraLite c file You must configure your linker so that it can locate the
UltraLite API file ulapi.cpp.

This file is installed into the src subdirectory of your Adaptive Server
Anywhere installation directory.

♦ Library or import library You must configure your compiler so that it
can locate the UltraLite runtime library for your target platform or, in
the case that you are using the UltraLite runtime DLL, the UltraLite
imports library.

These files are installed under the UltraLite subdirectory of your
Adaptive Server Anywhere installation directory. Each target platform
has a separated directory, and if there are different processors for a
platform, each has its own subdirectory.

$ For a sample application that includes compilation options, see the files
in Samples\UltraLite\apitutorial.

129

C H A P T E R 7

C++ API Reference

This chapter describes the UltraLite C++ API.

Topic Page

C++ API class hierarchy 130

C++ API language elements 131

ULConnection class 132

ULData class 144

ULCursor class 151

ULResultSet class 163

ULTable class 165

Generated result set class 171

Generated statement class 174

Generated table class 175

About this chapter

Contents

C++ API class hierarchy

130

C++ API class hierarchy
The classes in the C++ API are displayed in the following diagram:

ULTable

ULCursor

ULResultSet

ULDataULConnection

table-name query-name

Defined in
ulapi.h

Generated
classes

statement-
name

ULStatement

The classes are described in the following header files:

♦ generated-name.hpp The interface generated for a particular set of
statements or tables is defined in the generated .hpp file.

♦ ulapi.h The base classes are defined in ulapi.h, in the h subdirectory of
your SQL Anywhere installation directory.

♦ ulglobal.h You may want to look at ulglobal.h, in the h subdirectory of
your SQL Anywhere installation directory, for some of the data types
and other definitions used in ulapi.h.

C++ API applications use some functions that are not part of the class
hierarchy. These functions are as follows:

♦ "ULEnableFileDB function" on page 235.

♦ "ULEnableGenericSchema function" on page 236.

♦ "ULEnablePalmRecordDB function" on page 237.

♦ "ULEnableStrongEncryption function" on page 238.

♦ "ULEnableUserAuthentication function" on page 238.

Functions available
from the C++ API

Chapter 7 C++ API Reference

131

C++ API language elements
The UltraLite API methods and variables are described in terms of a set of
UltraLite data types. These data types are described in this section.

UltraLite data types

♦ an_SQL_code A data type for holding SQL error codes.

♦ ul_char A data type representing a character. If the operating system
uses Unicode, ul_char uses two bytes per character. For single-byte
character sets, ul_char uses a single byte per character.

♦ ul_binary A data type representing one byte of binary information.

♦ ul_column_num A data type for holding a number indicating a
column of a table or query. The first column in the table or query is
number one.

♦ ul_fetch_offset A data type for holding a relative number in a
ULCursor object.

♦ ul_length A data type for holding the length of a data type.

♦ DECL_DATETIME A type for holding date and time information in a
SQLDATETIME structure, which is defined as follows:

typedef struct sqldatetime {
unsigned short year; /* e.g. 1999 */
unsigned char month; /* 0-11 */
unsigned char day_of_week; /* 0-6 0=Sunday */
unsigned short day_of_year; /* 0-365 */
unsigned char day; /* 1-31 */
unsigned char hour; /* 0-23 */
unsigned char minute; /* 0-59 */
unsigned char second; /* 0-59 */
unsigned long microsecond; /* 0-999999 */

} SQLDATETIME;

DECL_DATETIME is also used in embedded SQL programming. Other
embedded SQL data types with named DECL_type are not needed in
C++ API programming.

♦ UL_NULL A constant representing a SQL NULL.

ULConnection class

132

ULConnection class
Represents a database connection.

A ULConnection object represents an UltraLite database connection. It
provides methods to open and close a connection, to check whether a
connection is open, to synchronize a database on the current connection, and
more.

For embedded SQL users, opening a ULConnection object is equivalent to
the EXEC SQL CONNECT statement.

Close method

bool Close ()

Disconnects your application from the database, and frees resources
associated with the ULConnection object. Once you have closed the
ULConnection object, your application is no longer connected to the
UltraLite database.

Closing a connection rolls back any outstanding changes.

You should not close a connection object in a Palm Computing Platform
application. Instead, use the Reopen method when the application is
reactivated. For more information, see "Reopen method" on page 140.

true (1) if successful.

false (0) if unsuccessful.

The following example closes a ULConnection object:

conn.Close();

"Open method" on page 139

Commit method

bool Commit()

Commits outstanding changes to the database.

true (1) if successful.

false (0) if unsuccessful.

The following code inserts a value to the database, and commits the change.

Object

Description

Prototype

Description

Returns

Example

See also

Prototype

Description

Returns

Example

Chapter 7 C++ API Reference

133

productTable.Open(&conn);
productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();
conn.Commit();

"Rollback method" on page 141

CountUploadRows method

ul_u_long CountUploadRows(
ul_publication_mask mask,
ul_u_long threshold)

Returns the number of rows that need to be uploaded when the next
synchronization takes place.

You can use this function to determine if a synchronization is needed.

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

The number of rows to be uploaded.

GetCA method

SQLCA *GetCA()

Retrieves the SQLCA associated with the current connection.

This function is useful if you are combining embedded SQL and the C++
API in a single application.

A pointer to the SQLCA.

ULConnection conn;
conn.Open();
conn.GetCA();

See also

Prototype

Description

Parameters

Returns

Prototype

Description

Returns

Example

ULConnection class

134

"The SQL Communication Area (SQLCA)" on page 188 of the book ASA
Programming Guide

GetLastIdentity method

ul_u_big GetLastIdentity()

Returns the most recent identity value used. This function is equivalent to the
following SQL statement:

SELECT @@identity

The function is particularly useful in the context of global autoincrement
columns.

The last identity value.

"Determining the most recently assigned value" on page 61
"Global autoincrement default column values" on page 58

GetLastDownloadTime method

bool GetLastDownloadTime(
ul_publication_mask mask,
DECL_DATETIME *value)

Provides the last time a specified publication was downloaded.

publication-mask A set of publications for which the last download time
is retrieved. A value of 0 corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

value A pointer to the DECL_DATETIME structure to be populated.

A value of January 1, 1990 indicates that the publication has yet to be
synchronized.

♦ true Indicates that value is successfully populated by the last
download time of the publication specified by publication-mask.

See also

Prototype

Description

Returns

See also

Prototype

Description

Parameters

Returns

Chapter 7 C++ API Reference

135

♦ false Indicates that publication-mask specifies more than one
publication or that the publication is undefined. If the return value is
false, the contents of value are not meaningful.

GetSQLCode method

an_SQL_code GetSQLCode()

Provides error checking capabilities by checking the SQLCODE value for
the success or failure of a database operation. The SQLCODE is the standard
Adaptive Server Anywhere code.

SQLCODE is reset by any subsequent UltraLite database operation,
including those on other connections.

The SQLCODE value as an integer.

The following code writes out a SQLCODE. If the synchronization call fails,
a value of -85 is returned.

conn.Synchronize(&synch_info);
sqlcode = conn.GetSQLCode();
printf("sqlcode: %d\n", sqlcode);

"Database Error Messages" on page 1 of the book ASA Errors Manual

GetSynchResult method

bool GetSynchResult(ul_synch_result * synch-result);

Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:

The application must allocate a ul_synch_result object before passing it to
GetSynchResult. The function fills the ul_synch_result with the result of
the last synchronization. These results are stored persistently in the database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes place
outside the application itself. The SQLCODE value set in the call to
ULData.PalmLaunch reflects the ULData.PalmLaunch operation itself.
The synchronization status and results are written to the HotSync log only.
To obtain extended synchronization result information, call GetSynchResult
after a successful ULData.PalmLaunch.

synch-result A structure to hold the synchronization result. It is defined
in ulglobal.h as follows:.

Prototype

Description

Returns

Example

See also

Prototype

Description

Parameters

ULConnection class

136

typedef struct {
an_sql_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;
} ul_synch_result, * p_ul_synch_result;

where the individual members have the following meanings:

♦ sql_code The SQL code from the last synchronization. For a list of
SQL codes, see "Error messages indexed by Adaptive Server Anywhere
SQLCODE" on page 2 of the book ASA Errors Manual.

♦ stream_error The communication stream error code from the last
synchronization. For a listing, see "MobiLink Communication Error
Messages" on page 631 of the book MobiLink Synchronization User’s
Guide.

♦ upload_ok Set to true if the upload was successful; false otherwise.

♦ ignored_rows Set to true if uploaded rows were ignored; false
otherwise.

♦ auth_status The synchronization authentication status. For more
information, see "auth_status synchronization parameter" on page 381.

♦ auth_value The value used by the MobiLink synchronization server to
determine the auth_status result. For more information, see "auth_value
synchronization parameter" on page 382.

♦ timestamp The time and date of the last synchronization.

♦ status The status information used by the observer function. For more
information, see "observer synchronization parameter" on page 384.

The method returns a boolean value.

true Success.

false Failure.

"PalmLaunch method" on page 148

GlobalAutoincUsage method

ul_u_short GlobalAutoincUsage()

Returns

See also

Prototype

Chapter 7 C++ API Reference

137

Returns the percentage of available global autoincrement values that have
been used.

If the percentage approaches 100, your application should set a new value for
the global database ID, using the SetDatabaseID.

The percent usage of the available global autoincrement values.

"Global autoincrement default column values" on page 58
"SetDatabaseID method" on page 142

GrantConnectTo method

bool GrantConnectTo(userid, password)

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password for userid. The maximum
length is 16 characters.

Grant access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application" on page 85
"RevokeConnectFrom method" on page 141

InitSynchInfo method

an_SQL_code InitSynchInfo(ul_synch_info * synch_info)

Initializes the synch_info structure used for synchronization.

None

The following code illustrates where the InitSynchInfo method is used in
the sequence of calls that synchronize data in a UltraLite application.

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
conn.Synchronize(&synch_info);

"Synchronize method" on page 143

Description

Returns

See also

Prototype

Parameters

Description

See also

Prototype

Description

Returns

Example

See also

ULConnection class

138

IsOpen method

bool IsOpen ()

Checks whether the ULConnection object is currently open.

true (1) if the ULConnection object is open.

false (0) if the ULConnection object is not open.

The following example checks that an attempt to Open a connection
succeeded:

ULConnection conn;
conn.Open();
if(conn.IsOpen()){

printf("Connected to the database.\n");
}

"Open method" on page 139

LastCodeOK method

bool LastCodeOK ()

Checks the most recent SQLCODE and returns true if the code represents a
warning or success. The function returns false if the most recent SQLCODE
represents an error.

This method provides a convenient way of checking for the success or
potential failure of operations. You can use GetSQLCode to obtain the
numerical value.

SQLCODE is reset by any subsequent UltraLite database operation,
including those on other connections.

true (1) if the previous SQLCode was zero or a warning.

false (0) if the previous SQLCode was an error.

The following example checks that an attempt to Open a connection
succeeded:

ULConnection conn;
conn.Open();
if(conn.LastCodeOK()){

printf("Connected to the database.\n");
};

"GetSQLCode method" on page 135

Prototype

Description

Returns

Example

See also

Prototype

Description

Returns

Example

See also

Chapter 7 C++ API Reference

139

LastFetchOK method

bool LastFetchOK()

Provides a convenient way of checking that the most recent fetch of a row
succeeded (true) or failed (false).

The value is reset by any subsequent UltraLite database operation, including
those on other connections.

true (1) if successful.

false (0) if unsuccessful.

The following example moves to the last row in a table, fetches a value from
the row, and checks for the success of the fetch:

tb.Open(&conn);
tb.Last();
tb.GetID(iVal);
if(tb.LastFetchOK()){

... operations on success...
}

"AfterLast method" on page 152
"First method" on page 154

Open method

bool Open (ULData* db,
ul_char* userid,
ul_char* password,
ul_char* name = SQLNULL)

Open a connection to a database. The ULData object must be open for this
call to succeed.

db A pointer to the ULData object on which the connection is made. This
argument is usually the address of the ULData object opened prior to
making the connection.

userid The user ID argument is a placeholder reserved for possible future
use. It is ignored.

$ For more information on user IDs and UltraLite, see "User
authentication for UltraLite databases" on page 442.

password The password parameter is a placeholder reserved for possible
future use. It is ignored.

Prototype

Description

Returns

Example

See also

Prototype

Description

Parameters

ULConnection class

140

name An optional name for the connection. This is needed only if you
have multiple connections from a single application to the same database.

true (1) if successful.

false (0) if unsuccessful.

The following example opens a connection to the UltraLite database.

ULData db;
ULConnection conn;

db.Open();
conn.Open(&db, "dummy", "dummy");

"Close method" on page 132

Reopen method

bool Reopen ()

bool Reopen(ULData *db, ul_char * name = SQLNULL)

This method is available for the Palm Computing Platform only. The
ULData object must be reopened for this call to succeed.

When developing Palm applications, you should never close the connection
object. Instead, you should call Reopen when the user switches to the
UltraLite application. The method prepares the data in use by the database
object for use by the application.

db A pointer to the ULData object on which the connection is made. This
argument is usually the address of the ULData object opened prior to
reopening the connection.

name An optional name for the connection. This is needed only if you
have multiple connections from a single application to the same database.

true (1) if successful.

false (0) if unsuccessful.

The following example reopens a database object, and then a connection
object:

db.Reopen();
conn.Reopen(&db);

"Open method" on page 139

Returns

Example

See also

Prototype

Description

Returns

Example

See also

Chapter 7 C++ API Reference

141

ResetLastDownloadTime method

bool ResetLastDownloadTime(ul_publication_mask publication-mask)

This method can be used to repopulate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

The following example resets the download time for all tables in the
database:

db.Reopen();
conn.ResetLastDownloadTime(UL_SYNC_ALL);

"GetLastDownloadTime method" on page 134
"Timestamp-based synchronization" on page 86 of the book MobiLink

Synchronization User’s Guide

RevokeConnectFrom method

bool RevokeConnectFrom(ul_char * userid)

Revoke access from an UltraLite database for a user ID.

userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application" on page 85
"GrantConnectTo method" on page 137

Rollback method

bool Rollback()

Rolls back outstanding changes to the database.

true (1) if successful.

false (0) if unsuccessful.

Prototype

Description

Parameters

Example

See also

Prototype

Description

Parameters

See also

Prototype

Description

Returns

ULConnection class

142

The following code inserts a value to the database, but then rolls back the
change.

productTable.Open(&conn);
productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();
conn.Rollback();

"Commit method" on page 132

SetDatabaseID method

bool SetDatabaseID(ul_u_long value)

Sets the database ID value to be used for global autoincrement columns

value The value to use for generating global autoincrement values.

true (1) if successful.

false (0) if unsuccessful.

"Global autoincrement default column values" on page 58
"GLOBAL_DATABASE_ID option" on page 569 of the book ASA

Database Administration Guide
"GlobalAutoincUsage method" on page 136

StartSynchronizationDelete method

bool StartSynchronizationDelete()

Once this function is called, all delete operations are again synchronized.

true (1) if successful.

false (0) if unsuccessful.

"START SYNCHRONIZATION DELETE statement [MobiLink]" on
page 556 of the book ASA SQL Reference Manual

"StopSynchronizationDelete method" on page 142

StopSynchronizationDelete method

bool StopSynchronizationDelete()

Example

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Description

Returns

See also

Prototype

Chapter 7 C++ API Reference

143

Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

true (1) if successful.

false (0) if unsuccessful.

"START SYNCHRONIZATION DELETE statement [MobiLink]" on
page 556 of the book ASA SQL Reference Manual

"StartSynchronizationDelete method" on page 142

Synchronize method

bool Synchronize (ul_synch_info * synch_info)

Synchronizes an UltraLite database.

$ For a detailed description of the members of the synch_info structure,
see "Synchronization parameters" on page 380.

true (1) if successful.

false (0) if unsuccessful.

The following code fragment illustrates how information is provided to the
Synchronize method.

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
conn.Synchronize(&synch_info);

"Synchronization parameters" on page 380

Description

Returns

See also

Prototype

Description

Returns

Example

See also

ULData class

144

ULData class
Represents an UltraLite database.

ULData db;
db.Open();

The ULData class represents an UltraLite database to your application. It
provides methods to open and close a database, and to check whether a
database is open.

You must open a database before connecting to it or carrying out any other
operation, and you must close the database after you have finished all
operations on the database, and before your application terminates.

For multi-threaded applications, each thread must create its own ULData.
Neither the ULData object nor the other objects inherited from it
(ULConnection and other classes) can be shared across threads.

For embedded SQL users, opening a ULData object is equivalent to calling
db_init.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

The following example declares a ULData object and opens it:

ULData db;
db.Open();

Close method

bool Close ()

Frees resources associated with a ULData object, before you terminate your
application. Once you have closed the ULData object, you cannot execute
any other operations on that database using the C++ API without reopening.

Palm Computing Platform
Do not call ULData.Close() on the Palm Computing Platform. On the
Palm Computing Platform, the database must be kept open when you
leave the application. Use ULData.PalmExit to save the state of the
application between sessions instead of calling ULData.Close. Use the
Reopen method when the application is reactivated. For more
information, see "Reopen method" on page 150.

true (1) if successful.

Object

Prototype

Description

Example

Prototype

Description

Returns

Chapter 7 C++ API Reference

145

false (0) if unsuccessful.

The following example closes a ULData object:

db.Close();

"Open method" on page 146

Drop method

bool Drop (SQLCA * sqlca, ul_char * store-parms)

Delete the UltraLite database file.

Caution
This function deletes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only after closing the database or before opening the database (C++
API).

On the Palm OS, call this function only after ULPalmExit or before
ULPalmLaunch (but after any ULEnable functions have been called)

sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name
to delete as a keyword-value pair of the form file_name=file.udb. It is often
convenient to use the UL_STORE_PARMS macro as this argument. A value
of UL_NULL deletes the default database filename.

$ For more information, see "UL_STORE_PARMS macro" on page 428.

IsOpen method

bool IsOpen ()

Checks whether the ULData object is currently open.

true (1) if the ULData object is open.

false (0) if the ULData object is not open.

The following example declares a ULData object, opens it, and checks that
the Open method succeeded:

Example

See also

Prototype

Description

Parameters

Prototype

Description

Returns

Example

ULData class

146

ULData db;
db.Open();
if(db.IsOpen()){

printf("The ULData object is open\n");
}

"Open method" on page 146

Open method

bool Open ()

bool Open(SQLCA* ca)

bool Open(ul_char* parms)

bool Open(SQLCA* ca , ul_char* parms)

Prepares your application to work with a database. You must open the
ULData object before carrying out any other operations on the database
using the C++ API. Exceptions to this rule are as follows:

♦ On the Palm Computing Platform, the ULData.PalmLaunch method is
called before ULData.Open. The resources that this library requires for
your program are allocated and initialized on this call.

On the Palm Computing Platform, call ULData.Open whenever
ULData.PalmLaunch returns LAUNCH_SUCCESS_FIRST. For more
information, see "PalmLaunch method" on page 148.

♦ Functions that configure database storage can be called. These functions
have names starting with ULEnable.

For special purposes, you can specify persistent storage parameters
when opening a database to configure caching, encryption, and the
database file name. For information on these parameters, see
"Configuring and managing database storage" on page 45.

For multi-threaded applications, each thread must open its own ULData
object. Neither the ULData object nor the other objects inherited from it
(ULConnection and other classes) can be shared across threads.

Open() This prototype can be used by most UltraLite applications. Any
persistent storage parameters defined in the UL_STORE_PARMS macro are
employed when opening the database.

Open(SQLCA* ca) Use this prototype if you are using embedded SQL as
well as the C++ API in your application, and if you have a SQLCA in use, to
access the same data using the C++ API.

See also

Prototype

Description

Parameters

Chapter 7 C++ API Reference

147

Open(ul_char* parms) Persistent storage parameters can be specified
using the UL_STORE_PARMS macro. This prototype provides an
alternative way of specifying persistent storage parameters. The string is a
semicolon-separated list of assignments, of the form parameter=value.

Open(SQLCA *ca, ul_char* parms) A call specifying both the SQLCA
and persistent storage parameters.

$ For more information on persistent storage parameters, see
"UL_STORE_PARMS macro" on page 428.

true (1) if successful.

false (0) if unsuccessful.

The following example declares a ULData object and opens it:

ULData db;
db.Open();

"Close method" on page 144
"Configuring and managing database storage" on page 45
"Developing multi-threaded applications" on page 93
"UL_STORE_PARMS macro" on page 428

PalmExit method

bool PalmExit(SQLCA *ca)

bool PalmExit(ul_synch_info * synch_info)

Call this method just before your application is closed, to save the state of the
application.

For applications using HotSync or Scout Sync synchronization, the method
also writes an upload stream. When the user uses HotSync or Scout Sync to
synchronize data between their Palm device and a PC, the upload stream is
read by the MobiLink HotSync conduit or the MobiLink Scout conduit
respectively.

The MobiLink HotSync and ScoutSync conduits synchronize with the
MobiLink synchronization server through a TCP/IP or HTTP stream using
stream parameters. Specify the stream and stream parameters in the
synch_info.stream_parms. Alternatively, you may specify the stream and
stream parameters via the ClientParms registry entry. If the ClientParms
registry entry does not exist, a default setting of
{stream=tcpip;host=localhost} is used.

Returns

Example

See also

Prototype

Description

ULData class

148

sqlca A pointer to the SQLCA. You do not need to supply this argument
unless you are using embedded SQL as well as the C++ API in your
application and have used a non-default SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL instead
of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to
ULSynchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of the stream parameter is ignored, and
may be UL_NULL.

$ For information on the members of the synch_info structure, see
"Synchronization parameters" on page 380.

true (1) if successful.

false (0) if unsuccessful

PalmLaunch method

UL_PALM_LAUNCH_RET PalmLaunch();

UL_PALM_LAUNCH_RET PalmLaunch(ul_synch_info * synch_info);

UL_PALM_LAUNCH_RET PalmLaunch(SQLCA* ca);

UL_PALM_LAUNCH_RET PalmLaunch(SQLCA* ca ,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST,
LAUNCH_SUCCESS,
LAUNCH_FAIL
} UL_PALM_LAUNCH_RET;

This function restores the application state when the application is activated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of processing the download stream prepared by the
MobiLink HotSync conduit or MobiLink Scout conduit.

If you are using TCP/IP or HTTP synchronization, supply a null value for the
stream parameter in the ul_synch_info synchronization structure. This
information is supplied instead in the synchronization structure called by the
ULConnection.Synchronize method.

Parameters

Returns

Prototype

Description

Chapter 7 C++ API Reference

149

ca A pointer to the SQLCA. You do not need to supply this argument
unless you are using embedded SQL as well as the C++ API in your
application and have used a non-default SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see "Synchronization parameters" on page 380.

If you are using TCP/IP or HTTP synchronization, supply a null value for the
stream parameter.

A member of the UL_PALM_LAUNCH_RET enumeration. The return
values have the following meanings:

♦ LAUNCH_SUCCESS_FIRST This value is returned the first time the
application is successfully launched and at any subsequent time the
internal state of the UltraLite database needs to be re-established. In
general, the state of the database needs to be re-established only after
severe failures.

You should open a ULData object when LAUNCH_SUCCESS_FIRST
is returned.

♦ LAUNCH_SUCCESS This value is returned when an application is
successfully launched, after the Palm user has been using other
applications.

♦ LAUNCH_FAIL This value is returned when the launch fails.

A typical C++ API example is

ULData db;
ULEnablePalmRecordDB(& sqlca);
switch(db.PalmLaunch(&synch_info)){
case LAUNCH_SUCCESS_FIRST:

if(!db.Open()){
// initialization failed: add error handling here
break;

}
// fall through

case LAUNCH_SUCCESS:
db.Reopen();
// do work here
break;

case LAUNCH_FAIL:
// error
break;

}

Parameters

Returns

Examples

ULData class

150

Reopen method

bool Reopen ()

bool Reopen(SQLCA* ca)

This method is available for the Palm Computing Platform only.

When developing Palm applications, you should never close the database
object. Instead, you should call Reopen when the user switches to the
UltraLite application. The method prepares the data in use by the database
object for use by the application.

Open() No arguments are needed if you are not using embedded SQL as
well as the C++ API in your application.

Open(SQLCA* ca) If you are also using embedded SQL in your
application, and you have a non-default SQLCA in use, you can use this
method to access the same data using the C++ API.

true (1) if successful.

false (0) if unsuccessful.

The following example reopens a database object and a connection object:

db.Reopen();
conn.Reopen(&db);

"Open method" on page 146

Prototype

Description

Parameters

Returns

Example

See also

Chapter 7 C++ API Reference

151

ULCursor class
The ULCursor class contains methods needed by both generated table
objects and generated result set objects.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

Data types enumeration

This enumeration lists the available UltraLite data types, as constants. It
contains the following members:

Enumeration value Description

BAD_INDEX An inappropriate argument was provided

S_LONG Signed 4-byte integer

S_SHORT Signed 2-byte integer

LONG 4-byte integer

SHORT 2-byte integer

TINY 1-byte integer

BIT Bit

TIMESTAMP_STRUCT Timestamp information as a struct.

DATE Data and time information as a string

TIME Time information as a string

S_BIG Signed 8-byte integer

BIG 8-byte integer

DOUBLE Double precision number

REAL Real number

BINARY Binary data, with a specified length

TCHAR Character data, with a specified length

NUMERIC Exact numerical data, with a specified precision and
scale

MAX_INDEX Reserved

The GetColumnType method returns a value from this enumeration.

ULCursor class

152

"GetColumnType method" on page 156

SQL data types enumeration

This enumeration lists the available UltraLite SQL data types, as constants. It
contains the following members:

enum {
 SQL_BAD_INDEX,
 SQL_S_LONG,
 SQL_U_LONG,
 SQL_LONG = SQL_U_LONG,
 SQL_S_SHORT,
 SQL_U_SHORT,
 SQL_SHORT = SQL_U_SHORT,
 SQL_S_BIG,
 SQL_U_BIG,
 SQL_BIG = SQL_U_BIG,
 SQL_TINY,
 SQL_BIT,
 SQL_TIMESTAMP,
 SQL_DATE,
 SQL_TIME,
 SQL_DOUBLE,
 SQL_REAL,
 SQL_NUMERIC,
 SQL_BINARY,
 SQL_CHAR,
 SQL_LONGVARCHAR,
 SQL_LONGBINARY,
 SQL_MAX_INDEX
};

The GetColumnSQLType method returns a value from this enumeration.

"GetColumnSQLType method" on page 156

AfterLast method

bool AfterLast()

Changes the cursor position to be after the last row in the current table or
result set.

true (1) if successful.

false (0) if unsuccessful.

The following example makes the current row the last row of the table tb:

See also

See also

Prototype

Description

Returns

Example

Chapter 7 C++ API Reference

153

tb.AfterLast();
tb.Previous();

"BeforeFirst method" on page 153
"Last method" on page 158

BeforeFirst method

bool BeforeFirst()

Changes the cursor position to be before the first row in the current table or
result set.

true (1) if successful.

false (0) if unsuccessful.

The following example makes the current row the first row of the table tb:

tb.BeforeFirst();
tb.Next();

"AfterLast method" on page 152
"First method" on page 154

Close method

bool Close()

Frees resources associated with the generated object in your application. This
method must be called after all processing involving the table is complete,
and before the ULConnection and ULData objects are closed.

Any uncommitted operations are rolled back when the Close() method is
called.

true (1) if successful.

false (0) if unsuccessful.

The following example closes a generated object for a table named
ULProduct:

tb.Close();

"Open method" on page 177

See also

Prototype

Description

Returns

Example

See also

Prototype

Description

Returns

Example

See also

ULCursor class

154

Delete method

bool Delete()

Deletes the current row from the current table or result set.

true (1) if successful.

false (0) if unsuccessful. For example, if you attempt to use the method on a
SQL statement that represents more than one table.

The following example deletes the last row from a table tb:

tb.Open(&conn);
tb.Last();
tb.Delete();

"Insert method" on page 157
"Update method" on page 162

First method

bool First()

Moves the cursor to the first row of the table or result set.

true (1) if successful.

false (0) if unsuccessful. For example, the method fails if there are no rows.

The following example deletes the first row from a table tb:

tb.Open(&conn);
tb.First();
tb.Delete();

"BeforeFirst method" on page 153
"Last method" on page 158

Get method

bool Get(ul_column_num colnum,
value-declaration,
bool* isNull = UL_NULL)

Prototype

Description

Returns

Example

See also

Prototype

Description

Returns

Example

See also

Prototype

Chapter 7 C++ API Reference

155

value-declaration:
 ul_char * ptr, ul_length length
| p_ul_binary name , ul_length length
| DECL_DATETIME &date-value
| { DECL_BIGINT | DECL_UNSIGNED_BIGINT } &bigint-value
| [unsigned] long &integer-value
| unsigned char &char-value
| double & double-value
| float & float-value
| [unsigned] short &short-value

Gets a value from the specified column.

colnum A 2-byte integer. The first column is column 1.

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to a variable of the proper type is needed. For character data, the
length parameter specifies the length of the C array including the space used
for the terminator.

isNULL If a value in a column is NULL, isNull is set to true. In this case,
the value argument is not meaningful.

true (1) if successful.

false (0) if unsuccessful.

"Get generated method" on page 175
"Set method" on page 161

GetColumnCount method

int GetColumnCount()

Returns the number of columns in the current table or result set.

Integer number of columns.

The following example opens a table object named tb and places the number
of columns in the variable numCol:

tb.Open(&conn);
numCol = tb.GetColumnCount();

GetColumnSize method

ul_length GetColumnSize(ul_column_num column-index)

Description

Returns

See also

Prototype

Description

Returns

Example

Prototype

ULCursor class

156

Returns the number of bytes needed to hold the information in the specified
column.

column-index The number of the column. The first column in the table
has a value of one.

The number of bytes.

The following example gets the number of bytes needed to hold the third
column in the table tb:

tb.Open(&conn);
colSize = tb.GetColumnSize(3);

"GetColumnType method" on page 156

GetColumnType method

int GetColumnType(ul_column_num column-index)

Returns the data type needed to hold the information in the specified column.

column-index The number of the column. The first column in the table or
result set has a value of one.

The column type is a member of the UltraLite data types enumeration. For
more information, see "Data types enumeration" on page 151:

The following example gets the column type for the third column in the table
tb:

tb.Open(&conn);
colType = tb.GetColumnType(3);

"Data types enumeration" on page 151
"Get generated method" on page 175
"GetColumnSQLType method" on page 156

GetColumnSQLType method

int GetColumnSQLType(ul_column_num column-index)

Returns the SQL data type of the specified column.

column-index The number of the column. The first column in the table or
result set has a value of one.

Description

Parameters

Returns

Example

See also

Prototype

Description

Parameters

Returns

Example

See also

Prototype

Description

Parameters

Chapter 7 C++ API Reference

157

The column type is a member of the UltraLite data types enumeration. For
more information, see "Data types enumeration" on page 151:

The following example gets the column type for the third column in the table
tb:

tb.Open(&conn);
colType = tb.GetColumnType(3);

"Data types enumeration" on page 151
"Get generated method" on page 175
"GetColumnType method" on page 156

GetSQLCode method

This is a convenience method that calls the ULConnection::GetSQLCode
method.

$ For more information see "GetSQLCode method" on page 135.

Insert method

bool Insert()

Inserts a row in the table with values specified in previous Set methods.

true (1) if successful.

false (0) if unsuccessful.

The following example inserts a new row into the table based at the current
position:

productTable.SetProd_id(2);
productTable.SetPrice(3000);
productTable.SetProd_name("8’ 2x4 Studs x1000");
productTable.Insert();

When inserting a row, you must supply a value for each column in the table.

$ For information on cursor positioning after inserts, and the position of
the inserted row, see "Using table and query classes" on page 125.

"Delete method" on page 154
"Update method" on page 162

Returns

Example

See also

Prototype

Description

Returns

Example

See also

ULCursor class

158

IsOpen method

bool IsOpen ()

Checks whether the ULCursor object is currently open.

true (1) if the ULCursor object is open.

false (0) if the ULCursorobject is not open.

"Open method" on page 159

Last method

bool Last()

Move the cursor to the last row in the table or result set.

true (1) if successful.

false (0) if unsuccessful.

The following example moves to a position after the last row in a table:

tb.Open(&conn);
tb.Last();
tb.Next();

"AfterLast method" on page 152
"First method" on page 154

LastCodeOK method

This is a convenience method that calls the ULConnection::LastCodeOK
method.

$ For more information see "LastCodeOK method" on page 138.

LastFetchOK method

This is a convenience method that calls the ULConnection::LastFetchOK
method.

$ For more information see "LastFetchOK method" on page 158.

Prototype

Description

Returns

See also

Prototype

Description

Returns

Example

See also

Chapter 7 C++ API Reference

159

Next method

bool Next()

Moves the cursor position to the next row in the table or result set.

true (1) if successful.

false (0) if unsuccessful.

The following example moves the cursor position to the first row in the table:

tb.Open(&conn);
tb.BeforeFirst();
tb.Next();

"Previous method" on page 159
"Relative method" on page 160

Open method

bool Open(ULConnection * conn)

Opens a cursor on the specified connection. If the object is a result set with
parameters, you must set the parameters before opening the result set.

When using Open from the ULTable subclass of ULCursor, do not open
two connections on a ULTable objct at one time.

true (1) if successful.

false (0) if unsuccessful.

The following example opens a result set object (which extends the cursor
class) and moves the cursor position to the first row:

rs.Open(&conn);
rs.BeforeFirst();
rs.Next();

"Close method" on page 153
"Open method" on page 172

Previous method

bool Previous()

Moves the cursor position to the previous row in the table or result set.

true (1) if successful.

Prototype

Description

Returns

Example

See also

Prototype

Description

Returns

Example

See also

Prototype

Description

Returns

ULCursor class

160

false (0) if unsuccessful.

The following example moves to the last row in a table:

tb.Open(&conn);
tb.AfterLast();
tb.Previous();

"Next method" on page 159
"Relative method" on page 160

Relative method

bool Relative(ul_fetch_offset offset)

Moves the cursor position relative to the current position. If the row does not
exist, the method returns false, and the cursor is left at AfterLast() if offset is
positive, and BeforeFirst() if offset is negative.

offset The number of rows to move. Negative values correspond to
moving backwards.

true (1) if the row exists.

false (0) if the row does not exist.

"Next method" on page 159
"Previous method" on page 159

Reopen method

bool Reopen(ULConnection *conn)

This method is available for the Palm Computing Platform only. The
ULData and ULCOnnection objects must already be reopened for this call
to succeed.

When developing Palm applications, you should never close result set
objects if you wish to maintain the cursor position. Instead, you should call
Reopen when the user switches back to the UltraLite application.

Although the ULTable object inherits from the ULCursor class, you should
not use Reopen on table objects. Instead, you should close them on exiting
the Palm application and Open them on re-entering. The cursor position is
not maintained in ULTable objects.

conn A pointer to the ULConnection object on which the cursor is
defined.

Example

See also

Prototype

Description

Returns

See also

Prototype

Description

Parameters

Chapter 7 C++ API Reference

161

true (1) if successful.

false (0) if unsuccessful.

The following example reopens a database object, and then a connection
object, and then a result set object:

db.Reopen();
conn.Reopen(&db);
rs.Reopen(&conn);

"Open method" on page 139

Set method

bool Set(ul_column_num colnum, value)

value:
 p_ul_binary buffer-name, ul_length buffer-length
| ul_char * buffer-name, ul_length buffer-length = 0
| DECL_DATETIME date-value
| DECL_UNSIGNED_BIGINT bigint-value
| unsigned char char-value
| double double-value
| float float-value
| [unsigned] long long-value
| [unsigned] short short-value

Sets a value in the specified column, for the current row.

colnum A 2-byte integer. The first column is column 1.

value For character and binary data you must supply a buffer name and
length. For other data types, a value of the proper type is needed. The
function fails if the data type is incorrect for the column.

true (1) if successful.

false (0) if unsuccessful.

"Get method" on page 154

SetColumnNull method

int SetColumNull(ul_column_num column-index)

Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

Returns

Example

See also

Prototype

Description

Returns

See also

Prototype

Description

ULCursor class

162

column-index The number of the column. The first column in the table
has a value of one.

true (1) if successful.

false (0) if unsuccessful.

"SetNull<Column> generated method" on page 178

Update method

bool Update()

Updates a row in the table with values specified in previous Set methods.

true (1) if successful.

false (0) if unsuccessful.

The following example sets a new price on the current row of the
productTable object, and then updates the row in the UltraLite database:

productTable.SetPrice(400);
productTable.Update();

"Delete method" on page 154
"Insert method" on page 157

Parameters

Returns

See also

Prototype

Description

Returns

Example

See also

Chapter 7 C++ API Reference

163

ULResultSet class
The ULResultSet class extends the ULCursor class, and provides methods
needed by all generated result sets.

$ For more information, see "ULCursor class" on page 151, and
"Generated result set class" on page 171.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

SetParameter method

virtual bool SetParameter(int argnum, value-reference)

value-reference:
 [unsigned] long & value
| p_ul_binary value
| unsigned char & value
| ul_char * value
| double & value
| float & value
| [unsigned] short & value
| DECL_DATETIME value
| DECL_BIGINT value
| DECL_UNSIGNED_BIGINT value

The following query defines a result set with a parameter:

SELECT id
FROM mytable
WHERE id < ?

The result set object defined in the C++ API that corresponds to this query
has a parameter. You must set the value of the parameter before opening the
generated result set object.

argnum An identifier for the argument to be set. The first argument is 1,
the second 2, and so on.

value-reference A reference to the parameter value. The data type listing
above provides the possibilities. As the parameter are passed as pointers,
they must remain valid until used. Do not free them until they are used.

true (1) if successful.

false (0) if unsuccessful. If you supply a parameter of the wrong data type,
the method fails.

Prototype

Description

Parameters

Returns

ULResultSet class

164

"Open method" on page 172See also

Chapter 7 C++ API Reference

165

ULTable class
The ULTable class extends the ULCursor class, and provides methods
needed by all generated table objects.

You cannot have multiple connections to a ULTable object at one time.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

DeleteAllRows method

ul_ret_void DeleteAllRows()

The function deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using the ULConnection::StartSynchronizationDelete method.

"StartSynchronizationDelete method" on page 142
"StopSynchronizationDelete method" on page 142

Find method

Equivalent to the FindNext method.

$ See "FindNext method" on page 167.

FindFirst method

bool FindFirst(ul_column_num ncols)

Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is AfterLast().

Prototype

Description

See also

Prototype

Description

ULTable class

166

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"FindLast method" on page 166
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

FindLast method

bool FindLast(ul_column_num ncols)

Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is BeforeFirst().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"FindFirst method" on page 165
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

Parameters

Returns

See also

Prototype

Description

Parameters

Returns

See also

Chapter 7 C++ API Reference

167

FindNext method

bool FindNext(ul_column_num ncols)

Move forwards through the table from the current position, looking for a row
that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure, the cursor position is AfterLast().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindPrevious method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

FindPrevious method

bool FindPrevious(ul_column_num ncols)

Move backwards through the table from the current position, looking for a
row that exactly matches a value or set of values in the current index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is BeforeFirst().

Prototype

Description

Parameters

Returns

See also

Prototype

Description

ULTable class

168

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindNext method" on page 167
"LookupBackward method" on page 168
"LookupForward method" on page 169

Lookup method

Equivalent to the LookupForward method.

$ See "LookupForward method" on page 169

GetRowCount method

ul_ul_long GetRowCount()

The function returns the number of rows in the table.

One use for the function is to decide when to delete old rows to save space.
Old rows can be deleted from the UltraLite database without being deleted
from the consolidated database using the
ULConnection::StartSynchronizationDelete method.

The number of rows in the table.

"StartSynchronizationDelete method" on page 142
"StopSynchronizationDelete method" on page 142

LookupBackward method

bool LookupBackward(ul_column_num ncols)

Move backwards through the table starting from the end, looking for the first
row that matches or is less than a value or set of values in the current index.

Parameters

Returns

See also

Prototype

Description

Returns

See also

Prototype

Description

Chapter 7 C++ API Reference

169

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is less than the
index value. On failure (that is, if no row is less than the value being looked
for), the cursor position is BeforeFirst().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupForward method" on page 169

LookupForward method

bool LookupForward(ul_column_num ncols)

Move forward through the table starting from the beginning, looking for the
first row that matches or is greater than a value or set of values in the current
index.

The current index is that used to specify the sort order of the table, It is
specified when your application calls the generated table Open method. The
default index is the primary key. For more information, see "Open method"
on page 177.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches or is greater than
the index value. On failure (that is, if no rows are greater than the value
being looked for), the cursor position is AfterLast().

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

Parameters

Returns

See also

Prototype

Description

Parameters

ULTable class

170

true (1) if successful.

false (0) if unsuccessful.

"FindFirst method" on page 165
"FindLast method" on page 166
"FindNext method" on page 167
"FindPrevious method" on page 167
"LookupBackward method" on page 168

Returns

See also

Chapter 7 C++ API Reference

171

Generated result set class
The generated result set class represents a query result set to your
application. The name of the class is generated by the UltraLite generator,
based on the name of the statement supplied when it was added to the
database.

To create a generated result set object, you use the generated name in the
declaration

result-set rs;
rs.Open();

result-set: generated name

The UltraLite generator defines a class for each named statement in an
UltraLite project that returns a result set. This class inherits methods from
ULCursor.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

"ULCursor class" on page 151
"ul_add_statement system procedure" on page 411

Get<Column> generated method

bool Getcolumn-name(type* variable, [ul_length* length,]
bool* isNull = UL_NULL)

Retrieves a value from column-name. The type specification depends on the
column data type.

column-name The name of the column.

variable A variable of the proper data type for the column. This data type
can be retrieved using GetColumnType.

length For variable length data. For character data, the length parameter
specifies the length of the C array including the space used for the
terminator.

isNull If the value is NULL, this argument is true.

true (1) if successful.

false (0) if unsuccessful.

"Set<Column> generated method" on page 172

Object

Prototype

Description

See also

Prototype

Description

Parameters

Returns

See also

Generated result set class

172

Open method

bool Open(ULConnection * conn,
datatype value, …)

The UltraLite generator defines a class for each named statement in an
UltraLite project that returns a result set. This class inherits methods from
ULCursor.

You must supply a value for each placeholder in the result set.

conn The connection on which the result set is to be opened.

value The value for the placeholder in the result set.

The following query contains a single placeholder:

select prod_id, price, prod_name
from "DBA".ulproduct
where price < ?

The generator writes out the following methods for the object (in addition to
some others):

bool Open(ULConnection* conn,
 long Price);
bool Open(ULConnection* conn);
bool SetParameter(int index, long &value);

"SetParameter method" on page 163

Set<Column> generated method

bool Setcolumn-name()

Sets the value of the cursor at the current position. The data in the row is not
actually changed until you execute an Insert or Update, and that change is
not permanent until it is committed.

column-name A generated name derived from the name of the column in
the reference database.

true (1) if successful.

false (0) if unsuccessful.

"Get<Column> generated method" on page 171
"SetNull<Column> generated method" on page 173

Prototype

Description

Parameters

Example

See also

Prototype

Description

Parameters

Returns

See also

Chapter 7 C++ API Reference

173

SetNull<Column> generated method

bool SetNullcolumn-name()

Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

column-name A generated name derived from the name of the column in
the reference database.

true (1) if successful.

false (0) if unsuccessful.

"Set<Column> generated method" on page 172

Prototype

Description

Parameters

Returns

See also

Generated statement class

174

Generated statement class
For each SQL statement that does not return a result set, including inserts,
updates, and deletes, the UltraLite generator defines a generated statement
class. The name of the class is the name provided in the ul_add_statement
stored procedure call that added the statement to the reference database.

The generated statement class inherits from the ULStatement class, which
has no methods of its own.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

Execute method

bool Execute(ULConnection* conn,
[datatype column-name,…])

Executes a named statement that does not return a result set. Any change
made is not permanent until it is committed.

When a statement is defined using ul_add_statement, you supply
placeholders for the values, and supply them at run time. The generated
prototype has a data type and name for each value.

conn The connection on which the statement is to be executed.

datatype A member of the UltraLite data type enumeration.

column-name The name of the column.

true (1) if successful.

false (0) if unsuccessful.

"ul_add_statement system procedure" on page 411

Prototype

Description

Parameters

Returns

See also

Chapter 7 C++ API Reference

175

Generated table class
The generated table class represents a database table to your application. The
name of the class is generated by the UltraLite generator, based on the name
of the table in the database.

Tablename tb;
tb.Open();

Tablename:
generated name

The UltraLite generator defines a class for each table in a named
SQL Remote publication. The generated table class inherits from ULTable
and ULCursor. The class has a name based on the table or statement name,
so that for a table named Product, the generator defines a class named
Product.

$ For its position in the API hierarchy, see "C++ API class hierarchy" on
page 130.

"ULCursor class" on page 151
"ULTable class" on page 165

Get generated method

bool Get (
ul_column_num column-index,
value-declaration,
bool* is-null = UL_NULL);

value-declaration:
 ul_char * buffer-name, ul_length buffer-length
| p_ul_binary buffer-name, ul_length buffer-length
| DECL_DATETIME & date-value
| { DECL_BIGINT | DECL_UNSIGNED_BIGINT } & bigint-value
| unsigned char & char-value
| double & double-value
| float & float-value
| [unsigned] long & integer-value
| [unsigned] short & short-value

Gets a value of from a column, specified by index.

column-index The number of the column. The first column in the table
has a value of one.

Object

Prototype

Description

See also

Prototype

Description

Parameters

Generated table class

176

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to a variable of the proper type is needed. For character data, the
length parameter specifies the length of the C array including the space used
for the terminator.

isNULL If a value in a column is NULL, isNull is set to true. In this case,
the value argument is not meaningful.

true (1) if successful.

false (0) if unsuccessful.

The following example is part of a switch statement that gets values from
rows based on their data type:

switch(tb.GetColumnType(colIndex)) {
case tb.S_LONG :

ret = tb.Get(colIndex, longval);
printf("Long column: %d\n", longval);
break;

...

"Data types enumeration" on page 151
"Get method" on page 154
"Get<Column> generated method" on page 176
"GetColumnSize method" on page 155

Get<Column> generated method

bool Getcolumn-name(type* variable, [ul_length* length,]
bool* isNull = UL_NULL)

Retrieves a value from column-name. The type specification depends on the
column data type.

column-name The name of the column.

variable A variable of the proper data type for the column. This data type
can be retrieved using GetColumnType.

length For variable length data types. For character data, the length
parameter specifies the length of the C array including the space used for the
terminator.

isNull If the value is NULL, this argument is true.

true (1) if successful.

Returns

Example

See also

Prototype

Description

Parameters

Returns

Chapter 7 C++ API Reference

177

false (0) if unsuccessful.

"Get generated method" on page 175

GetSize<Column> generated method

ul_length GetSizecolumn-name()

Returns the storage area needed to hold a value from the specified column.

column-name A generated name derived from the name of the column in
the reference database.

true (1) if successful.

false (0) if unsuccessful.

"GetColumnType method" on page 156

Open method

bool Open(ULConnection* conn)

bool Open(ULConnection* conn, ul_index_num index)

Prepares your application to work with the data in a generated table object.

conn The address of a ULConnection object. The connection must be
open.

index An optional index number, used to order the rows in the table. The
index is one of the members of the generated index enumeration. By default,
the table is ordered by primary key value.

$ For more information, see "Index enumeration" on page 178.

When the table is opened, the cursor is positioned before the first row

true (1) if successful.

false (0) if unsuccessful.

The following example declares a generated object for a table named
ULProduct, and opens it:

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Description

Parameters

Returns

Example

Generated table class

178

ULData db;
ULConnection conn;
ULProduct tb;
db.Open();
conn.Open(&db, "DBA", "SQL");
tb.Open(&conn);

"Close method" on page 153
"Index enumeration" on page 178

Set<Column> generated method

bool Setcolumn-name()

Sets the value of the cursor at the current position. The data in the row is not
actually changed until you execute an Insert or Update, and that change is
not permanent until it is committed.

column-name A generated name derived from the name of the column in
the reference database.

true (1) if successful.

false (0) if unsuccessful.

"SetColumnNull method" on page 161

SetNull<Column> generated method

bool SetNullcolumn-name()

Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

column-name A generated name derived from the name of the column in
the reference database.

true (1) if successful.

false (0) if unsuccessful.

"SetColumnNull method" on page 161

Index enumeration

enum{ index-name,... }

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Chapter 7 C++ API Reference

179

Each member of the enumeration is an index name in the table being
generated. You can use the index name to specify an ordering for the table
when it is opened, and thereby control the behavior of the cursor movement
methods.

index-name The name of an index in the table. The primary key has the
name Primary, and other indexes have their name in the database.

"Open method" on page 177

Description

Parameters

See also

Generated table class

180

181

C H A P T E R 8

Tutorial: Build an Application Using
Embedded SQL

This chapter provides a tutorial that guides you through the process of
developing an embedded SQL UltraLite application. The first section
includes a sample embedded SQL source file and discusses the key elements
in the sample source file. The second section provides instructions for
building an UltraLite application using this sample source file.

$ For an overview of the development process and background
information on the UltraLite database, see "Designing UltraLite
Applications" on page 41.

$ For information on developing embedded SQL UltraLite Applications,
see "Developing Embedded SQL Applications" on page 193.

$ For a description of embedded SQL, see "The Embedded SQL
Interface" on page 205.

Topic Page

Introduction 182

Writing source files in embedded SQL 183

Building the sample embedded SQL UltraLite application 187

About this chapter

Contents

Introduction

182

Introduction
In this tutorial, you will create an embedded SQL source file and use this
source file to build a simple UltraLite application. The next section "Writing
source files in embedded SQL" on page 183 provides a sample embedded
SQL program. Copy this program into a new file and save it as a .sqc source
file. Then, follow the step by step instructions in "Building the sample
embedded SQL UltraLite application" on page 187 to build the UltraLite
application. The UltraLite application can be executed in the command
prompt on your PC.

This tutorial assumes that you have UltraLite installed on a machine with
Microsoft Visual C++ 6.0 installed. If you use a different C/C++
development tool, you will have to translate the Visual C++ instructions into
their equivalent for your development tool.

The source files for this tutorial can be found in the
Samples\UltraLite\ESQLTutorial subdirectory of your SQL Anywhere
directory.

v To prepare for the tutorial

♦ Create a directory to hold the files you will create: c:\esqltutorial.

Chapter 8 Tutorial: Build an Application Using Embedded SQL

183

Writing source files in embedded SQL
The following sample program establishes a connection with the UltraLite
CustDB sample database and executes a select query. Copy the following
code into a new file and save it as sample.sqc in your c:\esqltutorial
directory, or retype the material into a file.

You can also find this file as Samples\UltraLite\ESQLTutorial\sample.sqc.

#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

main()
{

/* Declare fields */
EXEC SQL BEGIN DECLARE SECTION;

long pid=1;
long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;

/* Before working with data*/
db_init(&sqlca);

/* Connect to database */
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";

/* Fill table with data first */
EXEC SQL INSERT INTO ULProduct(

prod_id, price, prod_name)
VALUES (1, 400, ’4x8 Drywall x100’);

EXEC SQL INSERT INTO ULProduct (
prod_id, price, prod_name)

VALUES (2, 3000, ’8’’2x4 Studs x1000’);
EXEC SQL COMMIT;

/* Fetch row from database */

EXEC SQL SELECT price, prod_name
INTO :cost, :pname
FROM ULProduct
WHERE prod_id= :pid;

/* Error handling. If the row does not exist,
or if an error occurs, -1 is returned */

if((SQLCODE==SQLE_NOTFOUND)||(SQLCODE<0)) {
return(-1);

}

/* Print query results */
printf("Product id: %ld Price: %ld Product name: %s",

pid, cost, pname);

Writing source files in embedded SQL

184

/* Preparing to exit:
rollback any outstanding changes and disconnect */
EXEC SQL ROLLBACK;
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);

}

Tip
You can configure Visual C++ to provide syntax highlighting for .sqc
files, by adding ;sqc to the list of file extensions in the following registry
location:

HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\
Text Editor\Tabs\Language Settings\C/C++\FileExtensions

Explanation of the sample program

Although too simple to be useful, this example contains elements that must
be present in every embedded SQL source file used for database access. The
following describes the key elements in the sample program. Use these steps
as a guide when creating your own embedded SQL UltraLite application.

1 Include the appropriate header files.

The sample program utilizes standard I/O, therefore the stdio.h header
file has been included.

2 Define the SQL communications area, sqlca.

Use the following command:

EXEC SQL INCLUDE SQLCA;

This definition must be your first embedded SQL statement, so place it
at the end of your include list.

Prefix SQL statements
All SQL statements must be prefixed with the keywords EXEC SQL
and must end with a semicolon.

3 Define host variables by creating a declaration section.

Host variables are used to send values to the database server or receive
values from the database server. Create a declaration section as follows:

EXEC SQL BEGIN DECLARE SECTION;
long pid=1;

Chapter 8 Tutorial: Build an Application Using Embedded SQL

185

long cost;
char pname[31];

EXEC SQL END DECLARE SECTION;

$ For information on host variables, see "Using host variables" on
page 209.

4 Call the embedded SQL library function db_init to initialize the UltraLite
runtime library.

Call this function as follows:

db_init(&sqlca);

5 Connect to the database using the CONNECT statement.

To connect to the UltraLite sample database, you must supply the login
user ID and password. Connect as user DBA with password SQL as
follows:

EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";

6 Insert data into database tables.

When an application is first started, its database tables are empty. Only
when you choose to synchronize the remote database with the
consolidated database will the tables be filled with values so that you
may execute select, update or delete commands. Rather than using
synchronization, however, you may also directly insert data into the
tables. Directly inserting data is a useful technique during the early
stages of UltraLite development.

If you use synchronization and your application fails to execute a query,
it can be due to a problem in the synchronization process or due to a
mistake in your program. To locate the source of failure may be
difficult. On the other hand, if you directly fill tables with data in your
source code rather than perform synchronization, then, if your
application fails, you will know automatically that the failure is due to a
mistake in your program.

After you have tested that there are no mistakes in your program,
remove the insert statements and replace them with a call to the
ULSynchronize function to synchronize the remote database with the
consolidated database.

$ For information on adding synchronization to an UltraLite
application, see "Adding synchronization to your application" on
page 190.

7 Execute your SQL query.

Writing source files in embedded SQL

186

The sample program executes a select query that returns one row of
results. The results are stored in the previously defined host variables
cost and pname.

8 Perform error handling.

The sample program executes a select request that returns an error code,
sqlcode. This code is negative if an error occurs; SQL_NOTFOUND is
returned if there are no query results. The sample program handles these
errors by returning –1.

9 Disconnect from the database.

You should rollback or commit any outstanding changes before
disconnecting.

To disconnect, use the DISCONNECT statement as follows:

EXEC SQL DISCONNECT;

10 End your SQL work with a call to the library function db_fini:

db_fini(&sqlca);

Chapter 8 Tutorial: Build an Application Using Embedded SQL

187

Building the sample embedded SQL UltraLite
application

After you have created a source file sample.sqc using the sample code in the
previous section, you are ready to build your UltraLite application. Follow
these steps in Microsoft Visual C++ 6.0 to create the sample embedded SQL
UltraLite application.

v To build the sample embedded SQL UltraLite application:

1 Start the Adaptive Server Anywhere personal database server.

By starting the database server, both the SQL preprocessor and the
UltraLite analyzer will have access to your reference database. The
sample application uses the CustDB sample database custdb.db as a
reference database and as consolidated database. Start the database
server at the command line from the Samples\UltraLite\CusDB directory
containing custdb.db as follows:

dbeng8.exe custdb.db

Alternatively, you can start the database server by selecting
Start➤Programs➤SQL Anywhere 8➤UltraLite➤Personal Server
Sample for UltraLite.

2 Start Microsoft Visual C++ from your desktop in the standard fashion.

3 Configure Visual C++ to search the appropriate directories for
Embedded SQL header files and UltraLite library files.

Select Tools➤Options and click on the Directories tab. Choose Include
Files under the Show Directories For drop down menu. Include the
following directory, so that the embedded SQL header files can be
accessed.

C:\Program Files\Sybase\SQL Anywhere 8\h

If you have installed SQL Anywhere to a directory other than the
default, substitute your installation directory above. On the same tab,
select Library Files under the Show Directories For drop down menu.
Include the following directory so that the UltraLite library files can be
accessed.

C:\Program
Files\Sybase\SQL Anywhere 8\UltraLite\win32\386\lib

Click OK to submit the changes.

4 Create a new workspace tutorial:

Building the sample embedded SQL UltraLite application

188

♦ Select File➤New.

♦ Click the Workspaces tab.

♦ Choose Blank Workspace. Specify a workspace name tutorial and
specify C:\esqltutorial\tutorial as the location to save this workspace.
Click OK. Workspace tutorial will be added to the Workspace
window.

5 Create a new project ultutorial and add it to the tutorial workspace:

♦ Select File➤New.

♦ Click the Project tab.

♦ Choose Win32 Console Application. Specify a project name
ultutorial and select Add To Current Workspace. Click OK. Choose
to create An Empty Project and click Finish. The project will be
saved in the tutorial folder.

♦ Click the FileView tab on the Workspace window. The workspace
tutorial now consists of one project. Project ultutorial is listed under
the workspace tutorial and has three folders: Source Files, Header
Files, Resource Files.

6 Add the sample.sqc embedded SQL source file to the project:

♦ Right click on the Source Files folder and select Add Files to
Folder. Locate your sample.sqc file and click OK. Open the Source
Files folder to verify that it contains sample.sqc.

7 Configure the sample.sqc source file settings to invoke the SQL
preprocessor to preprocess the source file:

♦ Right click on the sample.sqc file in the Workspace window and
select Settings. A Project Settings dialog appears.

♦ From the Settings For drop down menu, choose All Configurations.

♦ In the Custom Build tab, enter the following statement in the
Commands box. Ensure that the statement is entered all on one line.

"%asany8%\win32\sqlpp.exe" -q -o WINNT –c
"dsn=Ultralite 8.0 Sample" $(InputPath) sample.cpp

♦ Specify sample.cpp in the Outputs box.

♦ Click OK to submit the changes. This statement runs the SQL
preprocessor sqlpp on the sample.sqc file, and writes the processed
output in a file named sample.cpp. The SQL preprocessor translates
SQL statements in the source file into C/C++.

Chapter 8 Tutorial: Build an Application Using Embedded SQL

189

Because the sample application consists of only one source file, the
preprocessor automatically runs the UltraLite analyzer as well and
appends extra C/C++ code to the generated source file.

8 Preprocess the sample.sqc file:

♦ Select sample.sqc in the Workspace window. Choose Build➤
Compile sample.sqc. A sample.cpp file will be created and saved in
the tutorial\ultutorial folder.

9 Add the sample.cpp file to the project:

♦ Right click on the Source Files folder in the Workspace window and
select Add Files to Folder. Locate your sample.cpp file (in
c:\esqltutorial\tutorial\ultutorial) and click OK. The sample.cpp file
appears inside the Source Files folder.

10 Configure the project settings:

♦ Right click on the ultutorial project and select Settings. The Project
Settings dialog appears.

♦ Select All Configurations under the Settings For drop down menu.

♦ Click the Link tab and add the following runtime library to the
Object/Library Modules box.

ulimp.lib

♦ Click the C/C++ tab. Select Preprocessor from the Category drop-
down menu. Ensure that the following are included in the
Preprocessor definitions:

__NT__,UL_USE_DLL

♦ Click OK to close the dialog.

11 Build the executable:

♦ Select Build➤Build ultutorial.exe. The ultutorial executable will be
created. Depending on your settings, the executable may be created
in a Debug directory within your tutorial directory.

12 Run the application:

♦ Select Build➤Execute ultutorial.exe. A screen will appear and
display the first row of the product table.

Building the sample embedded SQL UltraLite application

190

Adding synchronization to your application

Once you have tested that your program is functioning properly, you can
remove the lines of code that manually insert data into the ULProduct table.
Replace these statements with a call to the ULSynchronize function to
synchronize the remote database with the consolidated database. This
process will fill the tables with data and you can subsequently execute a
select query.

Synchronization via TCP/IP

You can synchronize the remote database with the consolidated database
using a TCP/IP socket connection. Call ULSynchronize with the
ULSocketStream() stream.

auto ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost;port=2439");
ULSynchronize(&sqlca, &synch_info);

In order to synchronize with the CustDB consolidated database, the
employee ID must be supplied. This ID identifies an instance of an
application to the MobiLink server. You may choose a value of 50, 51, 52, or
53. The MobiLink server uses this value to determine the download content,
to record the synchronization state, and to recover from interruptions during
synchronization.

$ For more information on the ULSynchronize function, see
"ULSynchronize function" on page 250.

Running the sample application with synchronization

After you have made changes to the sample.sqc file, you must preprocess the
altered sample.sqc file and rebuild ultutorial.exe.

This section assumes that you have completed the tutorial in the previous
section and therefore have the appropriate project settings for the ultutorial
project. If, however, you have not run the tutorial, you should refer to the
guidelines in the previous section for including the appropriate project
settings.

Chapter 8 Tutorial: Build an Application Using Embedded SQL

191

v To rebuild the sample application:

1 Ensure that the Adaptive Server Anywhere database server is still
running.

2 Preprocess your new sample.sqc file.

In the Workspace window, right click on sample.sqc and select Settings.
Ensure that the Commands box contains the appropriate command for
running the SQL preprocessor. Choose Build➤Compile sample.sqc to
recompile the altered file. A new sample.cpp file will be generated.

3 Build the executable.

Select Build➤Build ultutorial.exe to build the sample executable.

v To run the sample application:

1 Start the MobiLink synchronization server:

♦ Select Start➤Programs➤Sybase
SQL Anywhere 8➤MobiLink➤Synchronization Server Sample, or

♦ At a command prompt execute the following command (on a single
line):

dbmlsrv8 –c "DSN=UltraLite 8.0 Sample"
–o ulsync.mls –vcr –x tcpip

2 Run the application:

♦ Select Build➤Execute ultutorial.exe to run the sample application.

The remote database will be synchronized with the consolidated
database, filling the tables in the remote database with data. The
select query in the sample application will be processed, and a row
of query results will appear on the screen.

Building the sample embedded SQL UltraLite application

192

193

C H A P T E R 9

Developing Embedded SQL Applications

Embedded SQL is a method of mixing SQL statements for database access
with either C or C++ source code.

This chapter describes the development process for embedded SQL UltraLite
applications. It explains how to write applications using embedded SQL and
provides instructions on building and deploying an embedded SQL UltraLite
application.

Topic Page

Building embedded SQL applications 194

Preprocessing your embedded SQL files 201

$ This chapter assumes an elementary familiarity with the UltraLite
development process. For an overview, see "Developing UltraLite
Applications" on page 67

$ For a description of embedded SQL, see "The Embedded SQL
Interface" on page 205.

$ For detailed information about the SQL preprocessor, see "The SQL
preprocessor" on page 415.

About this chapter

Contents

Before you begin

Building embedded SQL applications

194

Building embedded SQL applications
You can use a simpler build procedure if all your embedded SQL source
code is contained in one file.

If you have only one embedded SQL source file and specify no project name
when you run the SQL preprocessor, then the SQL preprocessor
automatically runs the UltraLite generator. The supplementary code is
generated and appended to the generated C/C++ source file.

If you specify a project name, or use more than one embedded SQL source
file, you must generate the UltraLite code using the UltraLite generator.

Single-file build process

If you have a single file containing embedded SQL code, you can use the
SQL preprocessor to run the UltraLite generator when it completes
processing of your file. The generator appends extra C/C++ code to the
single generated source file.

This single-file build process cannot be used if you wish to use any of the
following features:

♦ transport-layer security.

♦ publications for synchronization.

In these circumstances you must use the general build process. For
instructions, see "Build process for UltraLite embedded SQL applications "
on page 195.

v To build an UltraLite application (one embedded SQL file only)

1 Start the Adaptive Server Anywhere personal database server,
specifying your reference database and a cache size of at least 10 Mb.

2 Preprocess the embedded SQL source file using the SQL preprocessor,
supplied with SQL Anywhere. Do not specify a project. The SQL
preprocessor runs the UltraLite generator automatically and appends
additional code to the generated C/C++ source file. This step relies on
your reference database and on the database server.

$ For more information, see "Preprocessing your embedded SQL
files" on page 201.

3 Compile the C or C++ source file for the target platform of your choice.
Include

Chapter 9 Developing Embedded SQL Applications

195

♦ the C file generated by the SQL preprocessor,

♦ any additional C/C++ source files that comprise your application.

4 Link all these object files, together with the UltraLite runtime library.

The following diagram depicts the procedure for building your own UltraLite
database application. In addition to your source files, you need to create a
reference database. As explained below, this database plays dual roles, acting
as an instance of the schema used in your application and storing information
that the UltraLite analyzer needs to implement your database.

preprocess
each file

with sqlpp

one
embedded SQL

source file

Adaptive Server
Anywhere

reference database

C or C++
source files
(optional)

Adaptive Server Anywhere
database server

compile
each

C or C++
source file

link all object
files and
database

components

UltraLite library or
UltraLite imports library

custom
database

application

one
generated
C/C++ file

and UltraLite
analyzer

1

2

3

4

Build process for UltraLite embedded SQL applications

The build process for embedded SQL UltraLite applications has two steps:

Building embedded SQL applications

196

1 Preprocess each embedded SQL file (.sqc) to produce .cpp files.

You must supply a project name on the preprocessor command line and
use the same project name each time you preprocess an embedded SQL
source file.

$ For information about projects, see "Creating an UltraLite project"
on page 80.

2 Run the UltraLite generator to generate the database code.

You can find a makefile that uses this process in the
Samples\UltraLite\ESQLSecurity directory. You require the separately-
licensable transport-layer security option to build that sample.

$ For information on obtaining the transport-layer security option, see the
card in your SQL Anywhere package or see
http://www.sybase.com/detail?id=1015780.

v To build an UltraLite embedded SQL application:

1 Start the Adaptive Server Anywhere personal database server,
specifying your reference database.

2 Preprocess each embedded SQL source file using the SQL preprocessor,
specifying the project name. This step relies on your reference database
and on the database server.

$ For more information, see "Preprocessing your embedded SQL
files" on page 201.

3 Run the UltraLite generator. The generator uses the analyzer, inside your
reference database, to analyze information collected while pre-
processing your embedded SQL files. The analyzer prepares extra code
and the generator writes out a new C source file. This step also relies on
your reference database and database server.

$ For more information, see "Generating the UltraLite data access
code" on page 91.

4 Compile each C or C++ source file for the target platform of your
choice. Include

♦ each C files generated by the SQL preprocessor,

♦ the C file made by the UltraLite generator,

♦ any additional C or C++ source files that comprise your application.

5 Link all these object files, together with the UltraLite runtime library.

Sample code

Chapter 9 Developing Embedded SQL Applications

197

The following diagram depicts the procedure for building your own UltraLite
database application. In addition to your source files, you need to create a
reference database. As explained below, this database plays dual roles, acting
as an instance of the schema used in your application and storing information
that the UltraLite analyzer needs to implement your database.

preprocess
each file

with sqlpp

embedded SQL
source files

UltraLite
analyzer and

generator
(ulgen)

Adaptive Server
Anywhere

reference database

C or C++
source files
(optional)

Adaptive Server Anywhere
database server

compile
each

C or C++
source file

link all object
files and
database

components

UltraLite library or
UltraLite imports library

one additonal
generated
C/C++ file

custom
database

application

generated
C/C++ files

1

2

3

4

5

Each section remaining in this chapter describes one step in writing or
building your application.

$ For more information about the SQL preprocessor, see "Preprocessing
your embedded SQL files" on page 201.

$ For more information on the generator, see "Generating the UltraLite
data access code" on page 91.

Building embedded SQL applications

198

Configuring development tools for embedded SQL development

The SQL preprocessor and the UltraLite generator are key features of
UltraLite application development. Most development tools use a
dependency-based model to assist in compilation, and this section describes
how to incorporate UltraLite features into such a model.

$ For a general overview of the techniques needed, see "Configuring
development tools for UltraLite development" on page 102.

$ The UltraLite plug-in for Metrowerks CodeWarrior automatically
provides Palm Computing platform developers with the techniques described
here. For information on this plug-in, see "Developing UltraLite applications
with Metrowerks CodeWarrior" on page 255.

This section describes how to add UltraLite code generation and the SQL
preprocessor into a dependency-based development environment. The
specific instructions provided are for Visual C++.

$ For a tutorial describing details for a very simple project, see "Tutorial:
Build an Application Using Embedded SQL" on page 181.

The first set of instructions describes how to add instructions to run the SQL
preprocessor to your development tool.

v To add embedded SQL preprocessing into a dependence-based
development tool:

1 Add the .sqc files to your development project.

The development project is defined in your development tool. It is
separate from the UltraLite project name used by the UltraLite
generator.

2 Add a custom build rule for each .sqc file.

♦ The custom build rule should run the SQL preprocessor. In
Visual C++, the build rule should have the following command
(entered on a single line):

"%asany8%\win32\sqlpp.exe" –q –o WINNT
–c connection-string –p project-name
$(InputPath) $(InputName).c

where asany8 is an environment variable that points to your
SQL Anywhere installation directory, connection-string provides
the connection to the reference database, and project-name is the
name of your UltraLite project.

If you are generating an executable for a non-Windows platform,
choose the appropriate setting instead of WINNT.

SQL preprocessing

Chapter 9 Developing Embedded SQL Applications

199

$ For a full description of the SQL preprocessor command-line,
see "The SQL preprocessor" on page 415.

♦ Set the output for the command to $(InputName).c.

3 Compile the .sqc files, and add the generated .c files to your
development project.

You need to add the generated files to your project even though they are
not source files, so that you can set up dependencies and build options.

4 For each generated .c file, set the preprocessor definitions.

♦ Under General or Preprocessor, add UL_USE_DLL to the
Preprocessor definitions.

♦ Under Preprocessor, add $(asany8)\h and any other include folders
you require to your include path, as a comma-separated list.

The following set of instructions describes how to add UltraLite code
generation to your development tool.

v To add UltraLite code generation into a dependency-based
development environment:

1 Add a dummy file to your development project.

Add a file named, for example, uldatabase.ulg, in the same directory as
your generated files.

2 Set the build rules for this file to be the UltraLite generator command
line.

In Visual C++, use a command of the following form (which should be
all on one line):

"%asany8%\win32\ulgen.exe" –q –c "connection-string"
$(InputName) $(InputName).c

where asany8 is an environment variable that points to your
SQL Anywhere installation directory, connection-string is a connection
to your reference database, and InputName is the UltraLite project name,
and should match the root of the text file name. The output is
$(InputName).c.

3 Set the dummy file to depend on the output files from the preprocessor.

In Visual C++, click Dependencies on the custom build page, and enter
the names of the generated .c files produced by the SQL preprocessor.

This instructs Visual C++ to run the UltraLite generator after all the
necessary embedded SQL files have been preprocessed.

UltraLite code
generation

Building embedded SQL applications

200

4 Compile your dummy file to generate the .c file that implements the
UltraLite database.

5 Add the generated UltraLite database file to your project and change its
C/C++ settings.

6 Add the UltraLite imports library to your object/libraries modules list.

In Visual C++, go to the project settings, choose the Link tab, and add
the following to the Object/libraries module list for Windows
development.

$(asany8)\ultralite\win32\386\lib\ulimp.lib

For other targets, choose the appropriate import library.

Chapter 9 Developing Embedded SQL Applications

201

Preprocessing your embedded SQL files
The SQL preprocessor (sqlpp.exe) carries out two functions in an UltraLite
development project:

♦ It preprocesses the embedded SQL files, producing C files to be
compiled into your application.

♦ It adds the SQL statements to the reference database, for use by the
UltraLite generator. You must use the –c switch to specify connection
parameters that give sqlpp access to the reference database.

$ For information on adding SQL statements to a reference database,
see "Adding SQL statements to an UltraLite project" on page 81.

Caution
sqlpp overwrites the output file without regard to its contents. Ensure that
the output file name does not match the name of any of your source files.
By default, sqlpp constructs the output file name by changing the suffix of
your source file to .c. When in doubt, specify the output file name
explicitly, following the name of the source file.

Preprocessing projects with a single embedded SQL source file

If all your embedded SQL code is contained in one source file, you may use
the following technique to preprocess this code using the SQL preprocessor
and generate the supplementary code in a single step. In this case, the
preprocessor automatically runs the UltraLite generator, which writes
additional code that describes your database schema and implements the
SQL used in your application.

v To preprocess an embedded SQL source file (one file only):

♦ Specify no project name when you run sqlpp, the SQL preprocessor.
When invoked without a project name, the preprocessor automatically
runs the UltraLite generator and appends the additional C/C++ code,
which implements your application database. A single C/C++ source file
is generated.

♦ Do not run the UltraLite generator explicitly.

♦ Your application contains only one embedded SQL source file, called
store.sqc. You can process this file using the following command. Do
not specify a project name. This command causes the SQL preprocessor
to write the file store.c.

Example

Preprocessing your embedded SQL files

202

sqlpp -c "uid=dba;pwd=sql" store.sqc

In addition, the preprocessor automatically runs the UltraLite analyzer,
which generates more C/C++ code to implement your application
database. This code is automatically appended to the file store.c.

$ If the analyzer cannot be invoked, an error results. For more
information, see "Error on starting the analyzer" on page 92.

$ For a list of the parameters to sqlpp, see "The SQL preprocessor" on
page 415.

Preprocessing projects with more than one embedded SQL file

If you have more than one embedded SQL source file, you must run the
UltraLite generator separately. You must also run the UltraLite generator
separately if you use transport-layer security or if you use synchronization
publications.

You must specify an UltraLite project on the sqlpp command line so that the
SQL statements in the files are grouped together in the same project in the
reference database.

$ For information on projects, see "Creating an UltraLite project" on
page 80.

v To preprocess an embedded SQL source file (more than one file):

♦ Preprocess each embedded SQL source file.

Use the –p switch to specify a project name when you run the SQL
preprocessor. Use the same project name when you preprocess each
embedded SQL file in your project.

♦ Run the UltraLite generator to create the supplementary C/C++ code.

$ For more information on the generator, see "Generating the
UltraLite data access code" on page 91.

By default, the UltraLite generator, ulgen, writes to the file project-name.c.
Choose a project name not already assigned to another C or embedded SQL
source file, so that an existing file will not be overwritten.

♦ Suppose that your project contains two embedded SQL source files,
called store.sqc and display.sqc. You could give your project the name
salesdb and process these two commands using the following
commands. (Each command should be entered on a single line.)

sqlpp -c "uid=dba;pwd=sql" –p salesdb store.sqc

sqlpp -c "uid=dba;pwd=sql" –p salesdb display.sqc

Example

Chapter 9 Developing Embedded SQL Applications

203

These two commands generate the files store.c and display.c,
respectively. In addition, they store information in the reference
database for the UltraLite analyzer.

$ For detailed information about the SQL preprocessor, see "The SQL
preprocessor" on page 415.

Preprocessing your embedded SQL files

204

205

C H A P T E R 1 0

The Embedded SQL Interface

UltraLite applications can interact with their database through a static
embedded SQL programming interface, which is a subset of the
embedded SQL interface available in Adaptive Server Anywhere. This
chapter introduces the UltraLite embedded SQL interface and describes its
language and functions.

$ For information about the full Adaptive Server Anywhere
embedded SQL interface, see "Embedded SQL Programming" on page 163
of the book ASA Programming Guide.

Topic Page

Introduction 206

Using host variables 209

Indicator variables 220

Fetching data 222

The SQL Communication Area 228

Library function reference 231

About this chapter

Contents

Introduction

206

Introduction
Embedded SQL lets you insert standard SQL statements into either C or C++
code. A SQL preprocessor translates these SQL statements into C and C++
compatible source code. You compile each preprocessed file as you would
an ordinary C or C++ source file.

The preprocessor generates source code that makes calls to library functions.
These functions are defined in a library or imports library. You include one
of these libraries when you link your program.

The following is a very simple embedded SQL program. It updates the
surname of employee 195 and commits the change.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;

main()
{

db_init(&sqlca);
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
EXEC SQL UPDATE employee

SET emp_lname = ’Plankton’
WHERE emp_id = 195;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT;
db_fini(&sqlca);
return(0);
error:

printf("update unsuccessful: sqlcode = %ld\n",
sqlca.sqlcode);

return(-1);
}

Although too simple to be useful, this example demonstrates the following
aspects common to all embedded SQL applications:

♦ Each SQL statement is prefixed with the keywords EXEC SQL.

♦ Each SQL statement ends with a semicolon.

♦ Some embedded SQL statements are not found in standard SQL.
The INCLUDE SQLCA statement is one example.

♦ Embedded SQL provides library functions to perform some specific
tasks. The functions db_init and db_fini are examples.

Chapter 10 The Embedded SQL Interface

207

The above example demonstrates the necessary initialization statements. You
must include these before working with the data in any database.

1 You must define the SQL communications area, sqlca, using the
following command.

EXEC SQL INCLUDE SQLCA;

This definition must be your first embedded SQL statement, so a natural
place for it is the end of your include list.

If you have multiple .sqc files in your application, each file must have
this line.

2 Your first executable database action must be a call to an
embedded SQL library function named db_init. This function
initializes the UltraLite runtime library. Only embedded SQL definition
statements can be executed before this call.

$ For more information, see "db_init function" on page 231.

3 You must use the CONNECT statement to connect to your database.

This example also demonstrates the sequence of calls you must make when
preparing to exit.

1 Commit or rollback any outstanding changes.

2 Disconnect from the database.

3 End your SQL work with a call to a library function named db_fini.

If you leave changes to the database uncommitted when you exit, any
uncommitted operations are automatically rolled back.

There is virtually no interaction between the SQL and C code in this
example. The C code only controls flow. The WHENEVER statement is
used for error checking. The error action, GOTO in this example, is executed
after any SQL statement causes an error.

Structure of embedded SQL programs

All embedded SQL statements start with the words EXEC SQL and end with
a semicolon (;). Normal C-language comments are allowed in the middle of
embedded SQL statements.

Every C program using embedded SQL must contain the following statement
before any other embedded SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

Before working
with data

Preparing to exit

Error handling

Introduction

208

The first embedded SQL executable statement executed in any program must
be a CONNECT statement. If you are not including UltraLite user
authentication in your application, this CONNECT statement is ignored.

$ For information about UltraLite user authentication in embedded SQL
applications, see "Managing user IDs and passwords" on page 86, and "User
authentication for UltraLite databases" on page 442.

Some embedded SQL commands do not generate any executable C code, or
do not involve communication with the database. Only these commands are
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

Chapter 10 The Embedded SQL Interface

209

Using host variables
Host variables are C variables that are identified to the SQL preprocessor.
You use host variables to send values to the database server or receive values
from the database server.

Declaring host variables

You can define host variables by placing them within a declaration section.
Host variables are declared by surrounding the normal C variable
declarations with BEGIN DECLARE SECTION and
END DECLARE SECTION statements.

Whenever you use a host variable in a SQL statement, you must prefix the
variable name with a colon (:) so that the SQL preprocessor can distinguish it
from other identifiers allowed in the statement.

You can use host variables in place of value constants in any SQL statement.
When the database server executes the command, the value of the host
variable is read from or written to each host variable. Host variables cannot
be used in place of table or column names.

The SQL preprocessor does not scan C language code except inside a
declaration section. Initializers for variables are allowed inside a declaration
section, while typedef types and structures are not permitted.

♦ The following sample code illustrates the use of host variables with an
INSERT command. The variables are filled in by the program and then
inserted into the database:

/* Declare fields for personal data. */
EXEC SQL BEGIN DECLARE SECTION;

long employee_number = 0;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];

EXEC SQL END DECLARE SECTION;

/* Fill variables with appropriate values. */

/* Insert a row in the database. */
EXEC SQL INSERT INTO Employee

VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

Example

Using host variables

210

Data types in embedded SQL

To transfer information between a program and the database server, every
piece of data must have a data type. You can create a host variable with any
one of the supported types.

Only a limited number of C data types are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

Macros defined in the sqlca.h header file can be used to declare a host
variable of type VARCHAR, FIXCHAR, BINARY, DECIMAL, or
SQLDATETIME. These macros are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(10) v_varchar;
DECL_FIXCHAR(10) v_fixchar;
DECL_BINARY(4000) v_binary;
DECL_DECIMAL(10, 2) v_packed_decimal;
DECL_DATETIME v_datetime;

EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and
treats the variable as the appropriate type.

The following data types are supported by the embedded SQL programming
interface:

♦ 16-bit signed integer.

short int i;
unsigned short int i;

♦ 32-bit signed integer.

long int l;
unsigned long int l;

♦ 4-byte floating point number.

float f;

♦ 8-byte floating point number.

double d;

♦ Packed decimal number.

DECL_DECIMAL(p,s)

typedef struct TYPE_DECIMAL {
char array[1];

} TYPE_DECIMAL;

♦ NULL-terminated blank-padded character string.

char a[n]; /* n > 1 */
char *a; /* n = 2049 */

Chapter 10 The Embedded SQL Interface

211

Because the C-language array must also hold the NULL terminator, a
char a[n] data type maps to a CHAR(n – 1) SQL data type, which can
hold n – 1 characters.

Pointers to char, WCHAR, TCHAR
The SQL preprocessor assumes that a pointer to char points to a
character array of size 2049 bytes and that this array can safely hold
2048 characters, plus the NULL terminator. In other words, a char*
data type maps to a CHAR(2048) SQL type. If that is not the case,
your application may corrupt memory. If you are using a 16-bit
compiler, requiring 2049 bytes can make the program stack overflow.
Instead, use a declared array, even as a parameter to a function, to let
the SQL preprocessor know the size of the array. WCHAR and
TCHAR behave similarly to char.

♦ NULL terminated UNICODE or wide character string.

Each character occupies two bytes of space and so may contain
UNICODE characters.

WCHAR a[n]; /* n > 1 */

♦ NULL terminated system-dependent character string.

A TCHAR is equivalent to a WCHAR for systems that use UNICODE
(for example, Windows CE) for their character set; otherwise, a TCHAR
is equivalent to a char. The TCHAR data type is designed to support
character strings in either kind of system automatically.

TCHAR a[n]; /* n > 1 */

♦ Fixed-length blank padded character string.

char a; /* n = 1 */
DECL_FIXCHAR(n) a; /* n >= 1 */

♦ Variable-length character string with a two-byte length field.

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field (not padded).

DECL_VARCHAR(n) a; /* n >= 1 */

typedef struct VARCHAR {
unsigned short int len;
TCHAR array[1];

} VARCHAR;

♦ Variable-length binary data with a two-byte length field.

Using host variables

212

When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field.

DECL_BINARY(n) a; /* n >= 1 */

typedef struct BINARY {
unsigned short int len;
unsigned char array[1];

} BINARY;

♦ SQLDATETIME structure with fields for each part of a timestamp.

DECL_DATETIME a;

typedef struct SQLDATETIME {
unsigned short year; /* e.g., 1999 */
unsigned char month; /* 0-11 */
unsigned char day_of_week; /* 0-6, 0 = Sunday */
unsigned short day_of_year; /* 0-365 */
unsigned char day; /* 1-31 */
unsigned char hour; /* 0-23 */
unsigned char minute; /* 0-59 */
unsigned char second; /* 0-59 */
unsigned long microsecond; /* 0-999999 */

} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a
programmer to manipulate this data. Note that DATE, TIME and
TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or
timestamp into the database via, the day_of_year and day_of_week
members are ignored.

$ For more information, see the DATE_FORMAT,
TIME_FORMAT, TIMESTAMP_FORMAT, and DATE_ORDER
database options in "Database Options" on page 535 of the book ASA
Database Administration Guide. While these options cannot be set
during execution of an UltraLite program, their values are identical to
the settings in the reference database used to generate the program.

♦ DT_LONGVARCHAR Long varying length character data. The macro
defines a structure, as follows:

Chapter 10 The Embedded SQL Interface

213

#define DECL_LONGVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }

The DECL_LONGVARCHAR struct may be used with more than 32K
of data. Large data may be fetched all at once, or in pieces using the
GET DATA statement. Large data may be supplied to the server all at
once, or in pieces by appending to a database variable using the SET
statement. The data is not null terminated.

typedef struct BINARY {
 unsigned short int len;
 char array[1];
} BINARY;

♦ DT_LONGBINARY Long binary data. The macro defines a structure,
as follows:

#define DECL_LONGBINARY(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \
 }

The DECL_LONGBINARY struct may be used with more than 32K of
data. Large data may be fetched all at once, or in pieces using the GET
DATA statement. Large data may be supplied to the server all at once,
or in pieces by appending to a database variable using the SET
statement.

The structures are defined in the sqlca.h file. The VARCHAR, BINARY,
and TYPE_DECIMAL types contain a one-character array and are thus not
useful for declaring host variables, but they are useful for allocating variables
dynamically or typecasting other variables.

There are no corresponding embedded SQL interface data types for the
various DATE and TIME database types. These database types are fetched
and updated either using the SQLDATETIME structure or using character
strings.

There are no embedded SQL interface data types for LONG VARCHAR and
LONG BINARY database types.

DATE and TIME
database types

Using host variables

214

Host variable usage

Host variables can be used in the following circumstances:

♦ In a SELECT, INSERT, UPDATE, or DELETE statement in any place
where a number or string constant is allowed.

♦ In the INTO clause of a SELECT or FETCH statement.

♦ In CONNECT, DISCONNECT, and SET CONNECT statements, a host
variable can be used in place of a user ID, password, connection name,
or database environment name.

Host variables can never be used in place of a table name or a column name.

The scope of host variables

A host-variable declaration section can appear anywhere that C variables can
normally be declared, including the parameter declaration section of a C
function. The C variables have their normal scope (available within the block
in which they are defined). However, since the SQL preprocessor does not
scan C code, it does not respect C blocks.

As far as the SQL preprocessor is concerned, host variables are globally
known in the source module following their declaration. Two host variables
cannot have the same name. The only exception to this rule is that two host
variables can have the same name if they have identical types (including any
necessary lengths).

The best practice is to give each host variable a unique name.

♦ Because the SQL preprocessor can not parse C code, it assumes that all
host variables, no matter where they are declared, are known globally
following their declaration.

// Example demonstrating poor coding
EXEC SQL BEGIN DECLARE SECTION;

long emp_id;
EXEC SQL END DECLARE SECTION;

long getManagerID(void)
{

EXEC SQL BEGIN DECLARE SECTION;
long manager_id = 0;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT manager_id
INTO :manager_id
FROM employee
WHERE emp_number = :emp_id;

The preprocessor
assumes all host
variables are
global

Examples

Chapter 10 The Embedded SQL Interface

215

return(manager_number);
}

void setManagerID(long manager_id)
{

EXEC SQL UPDATE employee
SET manager_number = :manager_id
WHERE emp_number = :emp_id;

}

Although it works, the above code is confusing because the
SQL preprocessor relies on the declaration inside getManagerID when
processing the statement within setManagerID. You should rewrite this code
as follows.

// Rewritten example
#if 0

// Declarations for the SQL preprocessor
EXEC SQL BEGIN DECLARE SECTION;

long emp_id;
long manager_id;

EXEC SQL END DECLARE SECTION;
#endif

long getManagerID(long emp_id)
{

long manager_id = 0;

EXEC SQL SELECT manager_id
INTO :manager_id
FROM employee
WHERE emp_number = :emp_id;

return(manager_number);
}

void setManagerID(long emp_id, long manager_id)
{

EXEC SQL UPDATE employee
SET manager_number = :manager_id
WHERE emp_number = :emp_id;

}

The SQL preprocessor sees the declaration of the host variables contained
within the #if directive because it ignores these directives. On the other hand,
it ignores the declarations within the procedures because they are not inside a
DECLARE SECTION. Conversely, the C compiler ignores the declarations
within the #if directive and uses those within the procedures.

These declarations work only because variables having the same name are
declared to have exactly the same type.

Using host variables

216

Using expressions as host variables

Because host variables must be simple names, the SQL preprocessor does
not recognize pointer or reference expressions. For example, the following
statement does not work because the SQL preprocessor does not understand
the dot operator. The same syntax has a different meaning in SQL.

// Incorrect statement:
EXEC SQL SELECT LAST sales_id INTO :mystruct.mymember;

Although the above syntax is not allowed, you can still use an expression
with the following technique:

♦ Wrap the SQL declaration section in an #if 0 preprocessor directive. The
SQL preprocessor will read the declarations and use them for the rest of
the module because it ignores preprocessor directives.

♦ Define a macro with the same name as the host variable. Since the SQL
declaration section is not seen by the C compiler because of the #if
directive, no conflict will arise. Ensure that the macro evaluates to the
same type host variable.

The following code demonstrates this technique to hide the host_value
expression from the SQL preprocessor.

EXEC SQL INCLUDE SQLCA;

#include <sqlerr.h>
#include <stdio.h>

typedef struct my_struct {
long host_field;

} my_struct;

#if 0
// Because it ignores #if preprocessing directives,
// SQLPP reads the following declaration.

EXEC SQL BEGIN DECLARE SECTION;
long host_value;

EXEC SQL END DECLARE SECTION;
#endif

// Make C/C++ recognize the ’host_value’ identifier
// as a macro that expands to a struct field.
#define host_value my_s.host_field

Since the SQLPP processor ignores directives for conditional compilation,
host_value is treated as a long host variable and will emit that name when it
is subsequently used as a host variable. The C/C++ compiler processes the
emitted file and will substitute my_s.host_field for all such uses of that name.

With the above declarations in place, you can proceed to access host_field as
follows.

Chapter 10 The Embedded SQL Interface

217

void main(void)
{

my_struct my_s;

db_init(&sqlca);
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";

EXEC SQL DECLARE my_table_cursor CURSOR FOR
SELECT int_col FROM my_table order by int_col;

EXEC SQL OPEN my_table_cursor;

for(; ;) {
// :host_value references my_s.host_field

EXEC SQL FETCH NEXT AllRows INTO :host_value;

if(SQLCODE == SQLE_NOTFOUND) {
break;

}

printf("%ld\n", my_s.host_field);
}

EXEC SQL CLOSE my_table_cursor;
EXEC SQL DISCONNECT;
db_fini(&sqlca);

}

You can use the same technique to use other lvalues as host variables.

♦ pointer indirections

*ptr

p_struct->ptr

(*pp_struct)->ptr

♦ array references

my_array[i]

♦ arbitrarily complex lvalues

Using host variables in C++

A similar situation arises when using host variables within C++ classes. It is
frequently convenient to declare your class in a separate header file. This
header file might contain, for example, the following declaration of
my_class.

typedef short a_bool;
#define TRUE ((a_bool)(1==1))
#define FALSE ((a_bool)(0==1))

Using host variables

218

public class {
long host_member;

my_class(); // Constructor

~my_class(); // Destructor

a_bool FetchNextRow(void);
// Fetch the next row into host_member

} my_class;

In this example, each method is implemented in an embedded SQL source
file. Only simple variables can be used as host variables. The technique
introduced in the preceding section can be used to access a data member of a
class.

EXEC SQL INCLUDE SQLCA;
#include "my_class.hpp"

#if 0
// Because it ignores #if preprocessing directives,
// SQLPP reads the following declaration.

EXEC SQL BEGIN DECLARE SECTION;
long this_host_member;

EXEC SQL END DECLARE SECTION;
#endif

// Macro used by the C++ compiler only.
#define this_host_member this->host_member

my_class::my_class()
{

EXEC SQL DECLARE my_table_cursor CURSOR FOR
SELECT int_col FROM my_table order by int_col;

EXEC SQL OPEN my_table_cursor;
}

my_class::~my_class()
{

EXEC SQL CLOSE my_table_cursor;
}

a_bool my_class::FetchNextRow(void)
{

// :this_host_member references this->host_member
EXEC SQL FETCH NEXT AllRows INTO :this_host_member;
return(SQLCODE != SQLE_NOTFOUND);

}

Chapter 10 The Embedded SQL Interface

219

void main(void)
{

db_init(&sqlca);
EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
{

my_class mc; // Created after connecting.
while(mc.FetchNextRow()) {

printf("%ld\n", mc.host_member);
}

}

EXEC SQL DISCONNECT;
db_fini(&sqlca);

}

The above example declares this_host_member for the SQL preprocessor,
but the macro causes C++ to convert it to this->host_member. The
preprocessor would otherwise not know the type of this variable. Many
C/C++ compilers do not tolerate duplicate declarations. The #if directive
hides the second declaration from the compiler, but leaves it visible to the
SQL preprocessor.

While multiple declarations can be useful, you must ensure that each
declaration assigns the same variable name to the same type. The
preprocessor assumes that each host variable is globally known following its
declaration because it can not fully parse the C language.

Indicator variables

220

Indicator variables
An indicator variable is a C variable that holds supplementary information
about a particular host variable. You can use a host variable when fetching or
putting data. Use indicator variables to handle NULL values.

An indicator variable is a host variable of type short int. To detect or specify
a NULL value, place the indicator variable immediately following a regular
host variable in a SQL statement.

♦ For example, in the following INSERT statement, :ind_phone is an
indicator variable.

EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

The following table provides a summary of indicator variable usage.

Indicator
Value

Supplying Value
to database

Receiving value from database

0 Host variable value Fetched a non-NULL value.

–1 NULL value Fetched a NULL value

Using indicator variables to handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of
the same name. In the SQL language, NULL represents either an unknown
attribute or inapplicable information. The C-language constant represents a
pointer value which does not point to a memory location.

When NULL is used in the Adaptive Server Anywhere documentation, it
refers to the SQL database meaning given above. The C language constant is
referred to as the null pointer (lower case).

NULL is not the same as any value of the column’s defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
you require something beyond regular host variables. Indicator variables
serve this purpose.

An INSERT statement can include an indicator variable as follows:

Example

Indicator variable
values

Using indicator
variables when
inserting NULL

Chapter 10 The Embedded SQL Interface

221

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
short int ind_phone;
EXEC SQL END DECLARE SECTION;

/* set values of empnum, empname,
initials, and homephone */

if(/* phone number is known */) {
ind_phone = 0;

} else {
ind_phone = -1; /* NULL */

}

EXEC SQL INSERT INTO Employee
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of –1, a NULL is written. If it has a value
of 0, the actual value of employee_phone is written.

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, the SQLE_NO_INDICATOR error is generated.

$ Errors and warnings are returned in the SQLCA structure, as described
in "The SQL Communication Area" on page 228.

Using indicator
variables when
fetching NULL

Fetching data

222

Fetching data
Fetching data in embedded SQL is done using the SELECT statement. There
are two cases:

1 The SELECT statement returns at most one row.

2 The SELECT statement may return multiple rows.

Fetching one row

A single row query retrieves at most one row from the database. A single-
row query SELECT statement may have an INTO clause following the select
list and before the FROM clause. The INTO clause contains a list of host
variables to receive the value for each select list item. There must be the
same number of host variables as there are select list items. The host
variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables.

♦ If the query selects more than one row, the database server returns the
SQLE_TOO_MANY_RECORDS error.

♦ If the query selects no rows, the SQLE_NOTFOUND warning is
returned.

$ Errors and warnings are returned in the SQLCA structure, as described
in "The SQL Communication Area" on page 228.

For example, the following code fragment returns 1 if a row from the
employee table is successfully fetched, 0 if the row doesn't exist, and –1 if an
error occurs.

EXEC SQL BEGIN DECLARE SECTION;
long int emp_id;
char name[41];
char sex;
char birthdate[15];
short int ind_birthdate;

EXEC SQL END DECLARE SECTION;

int find_employee(long employee)
{

emp_id = employee;

Example

Chapter 10 The Embedded SQL Interface

223

EXEC SQL SELECT emp_fname || ’ ’ || emp_lname,
sex, birth_date

INTO :name, :sex, birthdate:ind_birthdate
FROM "DBA".employee
WHERE emp_id = :emp_id;

if(SQLCODE == SQLE_NOTFOUND) {
return(0); /* employee not found */

} else if(SQLCODE < 0) {
return(-1); /* error */

} else {
return(1); /* found */

}
}

Fetching multiple rows

You use a cursor to retrieve rows from a query that has multiple rows in its
result set. A cursor is a handle or an identifier for the SQL query result set
and a position within that result set.

$ For an introduction to cursors, see "Working with cursors" on page 19
of the book ASA Programming Guide.

v To manage a cursor in embedded SQL

1 Declare a cursor for a particular SELECT statement, using the
DECLARE statement.

2 Open the cursor using the OPEN statement.

3 Retrieve rows from the cursor one at a time using the FETCH statement.

♦ Fetch rows until the SQLE_NOTFOUND warning is returned.

$ Error and warning codes are returned in the variable SQLCODE,
defined in the SQL communications area structure.

4 Close the cursor, using the CLOSE statement.

Cursors in UltraLite applications are always opened using the WITH HOLD
option. They are never closed automatically. You must close each cursor
explicitly using the CLOSE statement.

The following is a simple example of cursor usage:

void print_employees(void)
{

int status;

Fetching data

224

EXEC SQL BEGIN DECLARE SECTION;
char name[50];
char sex;
char birthdate[15];
short int ind_birthdate;
EXEC SQL END DECLARE SECTION;

/* 1. Declare the cursor. */
EXEC SQL DECLARE C1 CURSOR FOR

SELECT emp_fname || ’ ’ || emp_lname,
sex, birth_date

FROM "DBA".employee
ORDER BY emp_fname, emp_lname;

/* 2. Open the cursor. */
EXEC SQL OPEN C1;

/* 3. Fetch each row from the cursor. */
for(;;) {

EXEC SQL FETCH C1 INTO :name, :sex,
:birthdate:ind_birthdate;

if(SQLCODE == SQLE_NOTFOUND) {
break; /* no more rows */

} else if(SQLCODE < 0) {
break; /* the FETCH caused an error */

}

if(ind_birthdate < 0) {
strcpy(birthdate, "UNKNOWN");

}

printf("Name: %s Sex: %c Birthdate:
%s\n",name, sex, birthdate);

}

/* 4. Close the cursor. */
EXEC SQL CLOSE C1;

}

$ For details of the FETCH statement, see "FETCH statement [ESQL]
[SP]" on page 424 of the book ASA SQL Reference Manual.

A cursor is positioned in one of three places:

♦ On a row

♦ Before the first row

♦ After the last row

Cursor positioning

Chapter 10 The Embedded SQL Interface

225

0

1

2

3

n – 2

n – 1

n

n + 1

–n – 1

–n

–n + 1

–n + 2

–3

–2

–1

0After last row

Before first row

Absolute row
from start

Absolute row
from end

You control the order of rows in a cursor by including an ORDER BY clause
in the SELECT statements that defines that cursor. If you omit this clause,
the order of the rows is unpredictable.

If you don’t explicitly define an order, your only guarantee is that fetching
repeatedly will return each row in the result set once and only once before
SQLE_NOTFOUND is returned.

Order of rows in a cursor
If the cursor must have a specific order, include an ORDER BY clause in
the SELECT statement in the cursor definition. Without this clause, the
ordering is unpredictable and can vary from one time to the next.

When you open a cursor, it is positioned before the first row. The FETCH
statement automatically advances the cursor position. An attempt to FETCH
beyond the last row results in an SQLE_NOTFOUND error, which can be
used as a convenient signal to complete sequential processing of the rows.

Order of the rows
in a cursor

Repositioning a
cursor

Fetching data

226

You can also reposition the cursor to an absolute position relative to the start
or the end of the query results, or move it relative to the current cursor
position. There are special positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, an SQLE_NOTFOUND error is returned.

To avoid unpredictable results when using explicit positioning, you can
include an ORDER BY clause in the SELECT statement that defines the
cursor.

You can use the PUT statement to insert a row into a cursor.

After updating any information that is being accessed by an open cursor, it is
best to fetch and display the rows again. If the cursor is being used to display
a single row, FETCH RELATIVE 0 will re-fetch the current row. When the
current row has been deleted, the next row will be fetched from the cursor (or
SQLE_NOTFOUND is returned if there are no more rows).

When a temporary table is used for the cursor, inserted rows in the
underlying tables do not appear at all until that cursor is closed and reopened.
It is difficult for most programmers to detect whether or not a temporary
table is involved in a SELECT statement without examining the code
generated by the SQL preprocessor or by becoming knowledgeable about the
conditions under which temporary tables are used. Temporary tables can
usually be avoided by having an index on the columns used in the ORDER
BY clause.

$ For more information about temporary tables, see "Use of work tables
in query processing" on page 160 of the book ASA SQL User’s Guide.

Inserts, updates and deletes to non-temporary tables may affect the cursor
positioning. Because UltraLite materializes cursor rows one at a time (when
temporary tables are not used), the data from a freshly inserted row (or the
absence of data from a freshly deleted row) may affect subsequent FETCH
operations. In the simple case where (parts of) rows are being selected from a
single table, an inserted or updated row will appear in the result set for the
cursor when it satisfies the selection criteria of the SELECT statement.
Similarly, a freshly deleted row that previously contributed to the result set
will no longer be within it.

Optimizing query operation

Although some aspects of UltraLite applications are optimized automatically,
you can improve the performance of your applications using the following
techniques.

Cursor positioning
after updates

Chapter 10 The Embedded SQL Interface

227

♦ add an index If you frequently retrieve information in a particular
order, consider adding an index to your reference database. Primary keys
are automatically indexed, but other columns are not. Particularly on
slow devices, an index can improve performance dramatically.

♦ add representative data The Adaptive Server Anywhere optimizer
automatically optimizes the performance of your queries. It chooses
access plans using the information present in your reference database.
To improve application performance, fill your reference database with
data that is representative in size and distribution of the data you expect
your application will hold once it is deployed.

The SQL Communication Area

228

The SQL Communication Area
The SQL Communication Area (SQLCA) is an area of memory that is
used for communicating statistics and errors from the application to the
database and back to the application. The SQLCA is used as a handle for the
application-to-database communication link. It is passed explicitly to all
database library functions that communicate with the database. It is
implicitly passed in all embedded SQL statements.

A global SQLCA variable is defined in the generated code. The preprocessor
generates an external reference for the global SQLCA variable. The external
reference is named sqlca and is of type SQLCA. The actual global variable is
declared in the imports library.

The SQLCA type is defined by the sqlca.h header file, which is located in
the h subdirectory of your installation directory.

You reference the SQLCA to test for a particular error code. The sqlcode
field contains an error code when a database request causes an error (see
below). Some C macros are defined for referencing the sqlcode field and
some other fields.

SQLCA fields

The fields in the SQLCA have the following meanings:

♦ sqlcaid An 8-byte character field that contains the string SQLCA as
an identification of the SQLCA structure. This field helps in debugging
when you are looking at memory contents.

♦ sqlcabc A long integer that contains the length of the SQLCA
structure (136 bytes).

♦ sqlcode A long integer that specifies the error code when the database
detects an error on a request. Definitions for the error codes can be
found in the header file sqlerr.h. The error code is 0 (zero) for a
successful operation, positive for a warning and negative for an error.

You can access this field directly using the SQLCODE macro.

$ For a list of error codes, see "Database Error Messages" on page 1
of the book ASA Errors Manual.

♦ sqlerrml The length of the information in the sqlerrmc field.

UltraLite applications do not use this field.

SQLCA provides
error codes

Chapter 10 The Embedded SQL Interface

229

♦ sqlerrmc May contain one or more character strings to be inserted into
an error message. Some error messages contain a placeholder string
(%1) which is replaced with the text in this field.

UltraLite applications do not use this field.

♦ sqlerrp Reserved.

♦ sqlerrd A utility array of long integers.

♦ sqlwarn Reserved.

UltraLite applications do not use this field.

♦ sqlstate The SQLSTATE status value.

UltraLite applications do not use this field.

SQLCA management for multi-threaded or reentrant code

UltraLite applications should not be created where multiple threads access
the database simultaneously, as multi-threading is not supported.

Using multiple SQLCAs

v To manage multiple SQLCAs in your application:

1 Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with a call to db_fini.

$ For more information, see "db_init function" on page 231.

2 The embedded SQL statement SET SQLCA is used to tell the
SQL preprocessor to use a different SQLCA for database requests.
Usually, a statement such as the following:

EXEC SQL SET SQLCA ’task_data->sqlca’;

is used at the top of your program or in a header file to set the SQLCA
reference to point at task specific data. This statement does not generate
any code and thus has no performance impact. It changes the state
within the preprocessor so that any reference to the SQLCA will use the
given string.

$ For information about creating SQLCAs, see "SET SQLCA
statement [ESQL]" on page 545 of the book ASA SQL Reference
Manual.

The SQL Communication Area

230

Connection management with multiple SQLCAs

You do not need to use multiple SQLCAs to have more than one connection
to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an active
or current connection. All operations on a given database connection must
use the same SQLCA that was used when the connection was established.

$ For more information, see "SET CONNECTION statement
[Interactive SQL] [ESQL]" on page 536 of the book ASA SQL Reference
Manual.

Chapter 10 The Embedded SQL Interface

231

Library function reference
The SQL preprocessor generates calls to functions in the runtime library or
DLL. In addition to the calls generated by the SQL preprocessor, several
routines are provided for the user to make database operations easier to
perform. Prototypes for these functions are included by the
EXEC SQL INCLUDE SQLCA command.

db_fini function

unsigned short db_fini(SQLCA * sqlca);

Frees resources used by the UltraLite runtime library.

You must not make any other library calls or execute any embedded SQL
commands after db_fini is called. If an error occurs during processing, the
error code is set in SQLCA and the function returns 0.If there are no errors, a
non-zero value is returned.

You need to call db_fini once for each SQLCA being used.

Palm Computing Platform
Do not call db_fini on the Palm Computing Platform. The database must
be kept open when you leave the application. Use ULPalmExit to save
the state of the application between sessions instead of calling db_fini.

"db_init function" on page 231

db_init function

unsigned short db_init(SQLCA * sqlca) ;

Initializes the UltraLite runtime library and creates a new UltraLite database,
if one does not exist.

This function must be called before any other library call is made, and before
any embedded SQL command is executed. Exceptions to this rule are as
follows:

♦ On the Palm Computing Platform, the ULPalmLaunch function can be
called before db_init. The resources that this library requires for your
program are allocated and initialized on this call.

Prototype

Description

See also

Prototype

Description

Library function reference

232

On the Palm Computing Platform, call db_init whenever
ULPalmLaunch returns LAUNCH_SUCCESS_FIRST. For more
information, see "ULPalmLaunch function" on page 245.

♦ Functions that configure database storage can be called. These functions
have names starting with ULEnable.

If there are any errors during processing (for example, during initialization of
the persistent store), they are returned in the SQLCA and 0 is returned. If
there are no errors, a non-zero value is returned and you can begin using
embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the global sqlca variable defined in the sqlca.h header file). If you have
multiple execution paths in your application, you can use more than one
db_init call, as long as each one has a separate sqlca pointer. This separate
SQLCA pointer can be a user-defined one, or could be a global SQLCA that
has been freed using db_fini.

In multi-threaded applications, each thread must call db_init to obtain a
separate SQLCA. Subsequent connections and transactions that use this
SQLCA must be carried out on a single thread.

"db_fini function" on page 231
"ULPalmLaunch function" on page 245
"Developing multi-threaded applications" on page 93

ULActiveSyncStream function

ul_stream_defn ULActiveSyncStream(void);

Defines an ActiveSync stream suitable for synchronization.

The ActiveSync stream is available only on Windows CE devices.

Synchronization using ULActiveSyncStream must be initiated from the
ActiveSync software. The application receives a message, which must be
handled in its WindowProc function. You can use
ULIsSynchronizeMessage to identify the message as an instruction to
synchronize.

"ULIsSynchronizeMessage function" on page 243
"ULSynchronize function" on page 250
"Synchronize method" on page 143
"ActiveSync parameters" on page 399

See also

Prototype

Description

See also

Chapter 10 The Embedded SQL Interface

233

ULChangeEncryptionKey function

ul_bool ULChangeEncryptionKey(SQLCA *sqlca, ul_char *new_key);

Changes the encryption key for an UltraLite database.

Caution
When the key is changed, every row in the database is decrypted using the
old key and re-encrypted using the new key. This operation is
unrecoverable. If the application is interrupted part-way through, the
database is invalid and cannot be accessed. A new one must be created.

"Changing the encryption key for a database" on page 49

ULClearEncryptionKey function

ul_bool ULClearEncryptionKey(
ul_u_long * creator,
ul_u_long * feature-num);

On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palm feature. Features are indexed by creator and a feature
number.

This function clears the encryption key.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

"ULRetrieveEncryptionKey function" on page 247
"ULSaveEncryptionKey function" on page 248
"Using the encryption key on the Palm Computing Platform" on page 50

ULConduitStream function (deprecated)

ul_stream_defn ULConduitStream(void);

Defines a stream under the Palm Computing Platform suitable for HotSync
synchronization.

This function is deprecated. The stream parameter is not needed for
HotSync synchronization, and may be UL_NULL.

Prototype

Description

See also

Prototype

Description

Parameters

See also

Prototype

Description

Library function reference

234

"ULPalmDBStream function (deprecated)" on page 243
"ULPalmExit function" on page 244
"ULPalmLaunch function" on page 245
"HotSync and ScoutSync parameters" on page 401
"Synchronize method" on page 143

ULCountUploadRows function

ul_u_long ULCountUploadRows (
SQLCA * sqlca,
ul_publication_mask publication-mask,
ul_u_long threshold);

Returns the number of rows that need to be synchronized, either in a set of
publications or in the whole database.

One use of the function is to prompt users to synchronize.

sqlca A pointer to the SQLCA.

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

The following call checks the entire database for the number of rows to be
synchronized:

count = ULCountUploadRows(sqlca, 0, 0);

The following call checks publications PUB1 and PUB2 for a maximum of
1000 rows:

count = ULCountUploadRows(sqlca,
UL_PUB_PUB1 | UL_PUB_PUB2, 1000);

The following call checks to see if any rows need to be synchronized:

count = ULCountUploadRows(sqlca, UL_SYNC_ALL, 1);

See also

Prototype

Description

Parameters

Example

Chapter 10 The Embedded SQL Interface

235

ULDropDatabase function

ul_u_long ULDropDatabase (SQLCA * sqlca, ul_char * store-parms);

Delete the UltraLite database file.

Caution
This function deletes the database file and all data in it. Use with care.

Do not call this function while a database connection is open. Call this
function only before db_init or after db_fini.

On the Palm OS, call this function only after ULPalmExit or before
ULPalmLaunch (but after any ULEnable functions have been called)

sqlca A pointer to the SQLCA.

store-parms A string of connection parameters, including the file name to
delete as a keyword-value pair of the form file_name=file.udb. It is often
convenient to use the UL_STORE_PARMS macro as this argument. A value
of UL_NULL deletes the default database filename.

$ For more information, see "UL_STORE_PARMS macro" on page 428.

The following call deletes the UltraLite database file myfile.udb.

#define UL_STORE_PARMS UL_TEXT("file_name=myfile.udb")
if(ULDropDatabase(&sqlca;, UL_STORE_PARMS)){
 // success
};

ULEnableFileDB function

void ULEnableFileDB(SQLCA * sqlca);

Use a file-based data store on a device operating the Palm Computing
Platform version 4.0 or later. To use the file-based data store on a Palm
expansion card, an UltraLite application must call ULEnableFileDB to load
the persistent storage file-I/O modules before calling ULPalmLaunch.

This function can be used by C++ API applications as well as embedded
SQL applications.

sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

The following code sample illustrates the use of the ULEnableFileDB
function, which is called before ULPalmLaunch.

Prototype

Description

Parameters

Example

Prototype

Description

Parameters

Examples

Library function reference

236

ULEnableFileDB(&sqlca);
switch(ULPalmLaunch(&sqlca, &sync_info) ({
case LAUNCH_SUCCESS_FIRST:

// do init
break;

case LAUNCH_SUCCESS:
// do something
break;

case LAUNCH_FAIL:
// handle error
break;

}

"ULEnablePalmRecordDB function" on page 237

ULEnableGenericSchema function

void ULEnableGenericSchema(SQLCA * sqlca);

When a new UltraLite application is deployed to a device, UltraLite be
default re-creates an empty database, losing any data that was in the database
before the new application was deployed. If you call
ULEnableGenericSchema, the existing database is instead upgraded to the
schema of the new application.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before dbinit or ULData.Open(). An
exception is the Palm Computing Platform, where there is no need to close
all cursors before upgrading. Immediately following an upgrade on the Palm
Computing Platform the LAUNCH_SUCCESS_FIRST launch code is
returned.

Backup before upgrading
It is strongly recommended that you backup your data before attempting
an upgrade, either by copying the database file or by synchronizing.

The schema upgrading process uses matching names in the old and new
schema. It proceeds as follows:

1 Any tables that were in the old schema but not in the new schema are
dropped.

2 Any tables that are in the new schema but were not in the old are
created.

See also

Prototype

Description

Chapter 10 The Embedded SQL Interface

237

3 For any table that exists in both old and new, but with a different
definition, columns are added and dropped as needed. If a new column is
not nullable and has no default value, it is filled with zeros (numeric data
types), the empty string (character data types) and an empty binary
value.

4 Columns whose properties have changed are then modified.

Caution
If an error occurs during conversion for any row, that row is dropped and
the SQL warning
SQLE_ROW_DROPPED_DURING_SCHEMA_UPGRADE is set.

5 Indexes and constraints are rebuilt. This step may also result in rows
being dropped if, for example, an index is redefined as UNIQUE but has
duplicate values.

In general, adding constraints to tables that have data in them or carrying out
unpredictable column conversions may result in lost rows.

sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

"Deploying UltraLite applications" on page 104

ULEnablePalmRecordDB function

void ULEnablePalmRecordDB(SQLCA * sqlca);

Use a standard record-based data store on a device operating the Palm
Computing Platform. You must call ULEnablePalmRecordDB or
ULEnableFileDB before calling ULPalmLaunch.

This function can be used by C++ API applications as well as embedded
SQL applications.

sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

The following code sample illustrates the use of the
ULEnablePalmRecordDB function, which is called before
ULPalmLaunch.

Parameters

See also

Prototype

Description

Parameters

Examples

Library function reference

238

ULEnablePalmRecordDB(&sqlca);
switch(ULPalmLaunch(&sqlca, &sync_info) ({
case LAUNCH_SUCCESS_FIRST:

// do init
break;

case LAUNCH_SUCCESS:
// do something
break;

case LAUNCH_FAIL:
// handle error
break;

}

"ULEnableFileDB function" on page 235

ULEnableStrongEncryption function

void ULEnableStrongEncryption(SQLCA * sqlca)

Strongly encrypt an UltraLite database.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before dbinit() or ULData.Open().

sqlca A pointer to the SQLCA. This argument is supplied even in
C++ API applications.

"Encrypting UltraLite databases" on page 45
"Changing the encryption key for a database" on page 49

ULEnableUserAuthentication function

void ULEnableUserAuthentication(SQLCA * sqlca);

Enable user authentication in the UltraLite application.

If you do not call this function, no user ID or password is required to access
an UltraLite database. With this function, your application must supply a
valid user ID and password. UltraLite databases are created with a single
authenticated user ID DBA which has initial password SQL.

This function can be used by C++ API applications as well as embedded
SQL applications. It must be called before dbinit() or ULData.Open().

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application" on page 85

See also

Prototype

Description

Parameters

See also

Prototype

Description

See also

Chapter 10 The Embedded SQL Interface

239

ULGetLastDownloadTime function

ul_bool ULGetLastDownloadTime(
SQLCA * sqlca,
ul_publication_mask publication-mask,
DECL_DATETIME * value);

Obtains the last time a specified publication was downloaded.

sqlca A pointer to the SQLCA.

publication-mask A set of publications for which the last download time
is retrieved. A value of 0 corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

value A pointer to the DECL_DATETIME structure to be populated.

A value of January 1, 1990 indicates that the publication has yet to be
synchronized.

♦ true Indicates that value is successfully populated by the last
download time of the publication specified by publication-mask.

♦ false Indicates that publication-mask specifies more than one
publication or that the publication is undefined. If the return value is
false, the contents of value are not meaningful.

The following call populates the dt structure with the date and time that
publication UL_PUB_PUB1 was downloaded:

DECL_DATETIME dt;
ret = ULGetLastDownloadTime(&sqlca, UL_PUB_PUB1, &dt);

The following call populates the dt structure with the date and time that the
entire database was last downloaded. It uses the special UL_SYNC_ALL
publication mask.

ret = ULGetLastDownloadTime(&sqlca, UL_SYNC_ALL, &dt);

"publication synchronization parameter" on page 386
"UL_SYNC_ALL macro" on page 431
"UL_SYNC_ALL_PUBS macro" on page 431

Prototype

Description

Parameters

Returns

Examples

See also

Library function reference

240

ULGetSynchResult function

ul_bool ULGetSynchResult(ul_synch_result * synch-result);

Stores the results of the most recent synchronization, so that appropriate
action can be taken in the application:

The application must allocate a ul_synch_result object before passing it to
ULGetSynchResult. The function fills the ul_synch_result with the result
of the last synchronization. These results are stored persistently in the
database.

The function is of particular use when synchronizing applications on the
Palm Computing Platform using HotSync, as the synchronization takes place
outside the application itself. The SQLCODE value set in the call to
ULPalmLaunch reflects the ULPalmLaunch operation itself. The
synchronization status and results are written to the HotSync log only. To
obtain extended synchronization result information, call ULGetSynchResult
after a successful ULPalmLaunch.

synch-result A structure to hold the synchronization result. It is defined
in ulglobal.h as follows:.

typedef struct {
an_sql_code sql_code;
ul_stream_error stream_error;
ul_bool upload_ok;
ul_bool ignored_rows;
ul_auth_status auth_status;
ul_s_long auth_value;
SQLDATETIME timestamp;
ul_synch_status status;
} ul_synch_result, * p_ul_synch_result;

where the individual members have the following meanings:

♦ sql_code The SQL code from the last synchronization. For a list of
SQL codes, see "Error messages indexed by Adaptive Server Anywhere
SQLCODE" on page 2 of the book ASA Errors Manual.

♦ stream_error The communication stream error code from the last
synchronization. For a listing, see "MobiLink Communication Error
Messages" on page 631 of the book MobiLink Synchronization User’s
Guide.

♦ upload_ok Set to true if the upload was successful; false otherwise.

♦ ignored_rows Set to true if uploaded rows were ignored; false
otherwise.

Prototype

Description

Parameters

Chapter 10 The Embedded SQL Interface

241

♦ auth_status The synchronization authentication status. For more
information, see "auth_status synchronization parameter" on page 381.

♦ auth_value The value used by the MobiLink synchronization server to
determine the auth_status result. For more information, see "auth_value
synchronization parameter" on page 382.

♦ timestamp The time and date of the last synchronization.

♦ status The status information used by the observer function. For more
information, see "observer synchronization parameter" on page 384.

The function returns a Boolean value.

true Success.

false Failure.

The following code checks for success of the previous synchronization.

ul_synch_result synch_result;
memset(&synch_result, 0, sizeof(ul_synch_result));
db_init(&sqlca);
EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";
if(!ULGetSynchResult(&sqlca, &synch_result)) {
 prMsg("ULGetSynchResult failed");
}

"ULPalmLaunch function" on page 245

ULGlobalAutoincUsage function

short ULGlobalAutoincUsage(SQLCA * sqlca);

Obtains the percent of the default values used in all the columns having
global autoincrement defaults. If the database contains more than one column
with this default, this value is calculated for all columns and the maximum is
returned. For example, a return value of 99 indicates that very few default
values remain for at least one of the columns.

The function returns a value of type short in the range 0–100.

"ULSetDatabaseID function" on page 248

Returns

Examples

See also

Prototype

Description

Returns

See also

Library function reference

242

ULGrantConnectTo function

void ULGrantConnectTo(
SQLCA * sqlca,
ul_char * userid,
ul_char * password);

Grant access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

sqlca A pointer to the SQLCA.

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password for userid. The maximum
length is 16 characters.

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application" on page 85
"ULRevokeConnectFrom function" on page 248

ULHTTPSStream function

ul_stream_defn ULHTTPSStream(void);

Defines an UltraLite HTTPS stream suitable for synchronization via HTTP.

The HTTPS stream uses TCP/IP as its underlying transport. UltraLite
applications act as Web browsers and MobiLink acts as a web server.

"ULSynchronize function" on page 250
"Synchronize method" on page 143
"stream synchronization parameter" on page 389
"HTTPS stream parameters" on page 406

ULHTTPStream function

ul_stream_defn ULHTTPStream(void);

Defines an UltraLite HTTP stream suitable for synchronization via HTTP.

The HTTP stream uses TCP/IP as its underlying transport. UltraLite
applications act as Web browsers and MobiLink acts as a web server.
UltraLite applications send POST requests to send data to the server and
GET requests to read data from the server.

Prototype

Description

Parameters

See also

Prototype

Description

See also

Prototype

Description

Chapter 10 The Embedded SQL Interface

243

"ULSynchronize function" on page 250
"Synchronize method" on page 143
"stream synchronization parameter" on page 389
"HTTP stream parameters" on page 403

ULIsSynchronizeMessage function

ul_bool ULIsSynchronizeMessage(ul_u_long uMsg);

On Windows CE, this function checks a message to see if it is a
synchronization message from the MobiLink provider for ActiveSync, so
that code to handle such a message can be called.

This function should be included in the WindowProc function of your
application.

The following code snippet illustrates how to use ULIsSynchronizeMessage
to handle a synchronization message.

LRESULT CALLBACK WindowProc(HWND hwnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(ULIsSynchronizeMessage(uMsg)) {
 // execute synchronization code
 if(wParam == 1) DestroyWindow(hWnd);
 return 0;
 }

 switch(uMsg) {

 // code to handle other windows messages

 default:
 return DefWindowProc(hwnd, uMsg, wParam, lParam);
 }
 return 0;
}

"Adding ActiveSync synchronization to your application" on page 305

ULPalmDBStream function (deprecated)

ul_stream_defn ULPalmDBStream(void);

Defines a stream under the Palm Computing Platform suitable for HotSync
and Scout Sync.

See also

Prototype

Description

Example

See also

Prototype

Description

Library function reference

244

This function is deprecated. The stream parameter is not needed for
HotSync synchronization, and may be UL_NULL.
"ULPalmExit function" on page 244
"ULPalmLaunch function" on page 245
"HotSync and ScoutSync parameters" on page 401
"Synchronize method" on page 143

ULPalmExit function

ul_bool ULPalmExit(SQLCA * sqlca, ul_synch_info * synch_info);

Saves application state for UltraLite applications on the Palm Computing
Platform, and writes out an upload stream for HotSync or ScoutSync
synchronization. This function is required by all UltraLite Palm applications.

Call this function just before your application is closed, to save the state of
the application.

This function saves the application state when the application is deactivated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of writing an upload stream. When the user uses HotSync
or Scout Sync to synchronize data between their Palm device and a PC, the
upload stream is read by the MobiLink HotSync conduit or the MobiLink
Scout conduit respectively.

The MobiLink HotSync and ScoutSync conduits synchronize with the
MobiLink synchronization server through a TCP/IP or HTTP stream using
stream parameters. Specify the stream and stream parameters in
synch_info.stream_parms. Alternatively, you may specify the stream and
stream parameters via the ClientParms registry entry. If the ClientParms
registry entry does not exist, a default setting of
{stream=tcpip;host=localhost} is used.

sqlca A pointer to the SQLCA.

synch_info A synchronization structure.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL instead
of the ul_synch_info structure. When using these streams, the
synchronization information is supplied instead in the call to
ULSynchronize.

If you use HotSync or Scout Sync synchronization, supply the
synchronization structure. The value of the stream parameter is ignored, and
may be UL_NULL.

$ For information on the members of the synch_info structure, see
"Synchronization stream parameters" on page 399.

See also

Prototype

Description

Parameters

Chapter 10 The Embedded SQL Interface

245

The function returns a Boolean value.

true Success.

false Failure.

ULPalmLaunch function

UL_PALM_LAUNCH_RET ULPalmLaunch(
SQLCA * sqlca,
ul_synch_info * synch_info);

typedef enum {
LAUNCH_SUCCESS_FIRST,
LAUNCH_SUCCESS,
LAUNCH_FAIL
} UL_PALM_LAUNCH_RET;

sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see "Synchronization parameters" on page 380.

If you are using TCP/IP or HTTP synchronization, supply UL_NULL as
synch_info.

This function restores application state for UltraLite applications on the Palm
Computing Platform. This function is required by all UltraLite Palm
applications.

Your application must call ULEnablePalmDB or ULEnableFileDB before
calling ULPalmLaunch.

All UltraLite Palm applications need to use this function to handle the launch
code in your application’s PilotMain.

This function restores the application state when the application is activated.
For applications using HotSync or Scout Sync synchronization, it carries out
the additional task of processing the download stream prepared by the
MobiLink HotSync conduit or MobiLink Scout conduit.

If you are using TCP/IP or HTTP synchronization, supply a null value for the
stream parameter in the ul_synch_info synchronization structure. This
information is supplied instead in the call to ULSynchronize.

A member of the UL_PALM_LAUNCH_RET enumeration. The return
values have the following meanings:

Returns

Prototype

Parameters

Description

Returns

Library function reference

246

♦ LAUNCH_SUCCESS_FIRST This value is returned the first time the
application is successfully launched and at any subsequent time the
internal state of the UltraLite database needs to be re-established. In
general, the state of the database needs to be re-established only after
severe failures.

In embedded SQL applications you should call db_init immediately
after this return code is detected; in C++ API applications, you should
open a database object.

♦ LAUNCH_SUCCESS This value is returned when an application is
successfully launched, after the Palm user has been using other
applications.

♦ LAUNCH_FAIL This value is returned when the launch fails.

A typical embedded SQL example is

ULEnablePalmRecordDB(&sqlca);
switch(ULPalmLaunch(&sqlca, &synch_info)){
case LAUNCH_SUCCESS_FIRST:

if(!db_init(&sqlca)){
// db_init failed: add error handling here
break;

}
// fall through

case LAUNCH_SUCCESS:
// do work here
break;

case LAUNCH_FAIL:
// error
break;

}

"Launching an UltraLite Palm application" on page 261
"ULEnableFileDB function" on page 235
"ULEnablePalmRecordDB function" on page 237

ULResetLastDownloadTime function

void ULResetLastDownloadTime(
SQLCA * sqlca,
ul_publication_mask publication-mask);

This function can be used to repopulate values and return an application to a
known clean state. It resets the last download time so that the application
resynchronizes previously downloaded data.

sqlca A pointer to the SQLCA.

Examples

See also

Prototype

Description

Parameters

Chapter 10 The Embedded SQL Interface

247

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

The following function call resets the last download time for all tables:

ULResetLastDownloadTime(&sqlca, UL_SYNC_ALL);

"ULGetLastDownloadTime function" on page 239
"Timestamp-based synchronization" on page 86 of the book MobiLink

Synchronization User’s Guide

ULRetrieveEncryptionKey function

ul_bool ULRetrieveEncryptionKey(
ul_char * key,
ul_u_short len,
ul_u_long * creator,
ul_u_long * feature-num);

On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palm feature. Features are indexed by creator and a feature
number.

This function retrieves the encryption key from memory.

key A pointer to a buffer in which to hold the retrieved encryption key.

len The length of the buffer that holds the encryption key with a
terminating null character.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

♦ true if the operation is successful.

♦ false if the operation is unsuccessful. This occurs if the feature was not
found or if the supplied buffer length is insufficient to hold the key plus
a terminating null character.

"ULClearEncryptionKey function" on page 233
"ULSaveEncryptionKey function" on page 248
"Using the encryption key on the Palm Computing Platform" on page 50

Example

See also

Prototype

Description

Parameters

Returns

See also

Library function reference

248

ULRevokeConnectFrom function

void ULRevokeConnectFrom(SQLCA * sqlca, ul_char * userid);

Revoke access from an UltraLite database for a user ID.

sqlca A pointer to the SQLCA.

userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

"User authentication for UltraLite databases" on page 442
"Adding user authentication to your application" on page 85
"ULGrantConnectTo function" on page 242

ULSaveEncryptionKey function

ul_bool ULSaveEncryptionKey(
ul_char * key,
ul_u_long * creator,
ul_u_long * feature-num);

On the Palm Computing Platform the encryption key is saved in dynamic
memory as a Palm feature. Features are indexed by creator and a feature
number. They are not backed up and are cleared on any reset of the device.

This function saves the encryption key in Palm dynamic memory.

key A pointer to the encryption key.

creator A pointer to the creator ID of the feature holding the encryption
key. A value of NULL is the default.

feature-num A pointer to the feature number holding the encryption key.
A value of NULL uses the UltraLite default, which is feature number 100.

♦ true if the operation is successful.

♦ false if the operation is unsuccessful.

"ULClearEncryptionKey function" on page 233
"ULRetrieveEncryptionKey function" on page 247
"Using the encryption key on the Palm Computing Platform" on page 50

ULSetDatabaseID function

void ULSetDatabaseID(SQLCA * sqlca, ul_u_long id);

Prototype

Description

Parameters

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Chapter 10 The Embedded SQL Interface

249

Sets the database identification number.

sqlca A pointer to the SQLCA.

id A positive integer that uniquely identifies a particular database in a
replication or synchronization setup.

"ULGlobalAutoincUsage function" on page 241

ULSocketStream function

ul_stream_defn ULSocketStream(void);

Defines an UltraLite socket stream suitable for synchronization via TCP/IP.

"ULSynchronize function" on page 250
"Synchronize method" on page 143

ULStoreDefragFini function

ul_ret_void ULStoreDefragFini(
SQLCA * sqlca,
p_ul_store_defrag_info dfi);

This function disposes of the defragmentation information block returned by
ULStoreDefragInit.

sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

"Defragmenting UltraLite databases" on page 51
"ULStoreDefragInit function" on page 249

ULStoreDefragInit function

p_ul_store_defrag_info ULStoreDefragInit(SQLCA * sqlca);

This function initializes and returns a defragmentation information block to
maintain the defragmentation state of the database.

sqlca A pointer to the SQLCA.

Description

Parameters

See also

Prototype

Description

See also

Prototype

Description

Parameters

See also

Prototype

Description

Parameters

Library function reference

250

If successful, returns a defragmentation information block
p_ul_store_defrag_info. If unsuccessful, for example if there is not enough
memory, returns UL_NULL.

"Defragmenting UltraLite databases" on page 51
"ULStoreDefragFini function" on page 249

ULStoreDefragStep function

ul_bool ULStoreDefragStep(
SQLCA * sqlca
p_ul_store_defrag_info dfi);

This function defragments a piece of the database.

sqlca A pointer to the SQLCA.

dfi A defragmentation information block.

If the entire store has been defragmented, returns ul_true.

If the entire store is not defragmented, returns ul_false.

If an error occurs, SQLCODE is set.

"Defragmenting UltraLite databases" on page 51
"ULStoreDefragFini function" on page 249
"ULStoreDefragInit function" on page 249

ULSynchronize function

void ULSynchronize(
SQLCA * sqlca,
ul_synch_info * synch_info);

Initiates synchronization in an UltraLite application.

For TCP/IP or HTTP synchronization, the ULSynchronize function initiates
synchronization. Errors during synchronization that are not handled by the
handle_error script are reported as SQL errors. Your application should test
the SQLCODE return value of this function.

sqlca A pointer to the SQLCA.

synch_info A synchronization structure. For information on the members
of this structure, see "Synchronization parameters" on page 380.

Returns

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Description

Parameters

Chapter 10 The Embedded SQL Interface

251

"MobiLink Synchronization Server Options" on page 379 of the book
MobiLink Synchronization User’s Guide

"START SYNCHRONIZATION DELETE statement" on page 583 of the
book MobiLink Synchronization User’s Guide

See also

Library function reference

252

253

C H A P T E R 1 1

Developing Applications for the Palm
Computing Platform

This chapter describes details of development, deployment and
synchronization that are specific to developing applications for the Palm
Computing Platform. These instructions assume familiarity with the general
UltraLite development process.

Topic Page

Introduction 254

Developing UltraLite applications with Metrowerks CodeWarrior 255

Developing UltraLite applications with GCC PRC-Tools 259

Launching and closing UltraLite applications 261

Building multi-segment applications 263

Palm synchronization overview 268

Adding HotSync or ScoutSync synchronization to Palm applications 272

Configuring HotSync synchronization 274

Configuring ScoutSync synchronization 279

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm
applications 283

Configuring TCP/IP, HTTP, or HTTPS synchronization 285

Deploying Palm applications 291

About this chapter

Contents

Introduction

254

Introduction
This chapter describes features of UltraLite development specific to the Palm
Computing Platform.

You can use one of the following development environments to build
UltraLite Palm applications:

♦ Metrowerks CodeWarrior, version 6, 7, or 8.

$ See "Developing UltraLite applications with Metrowerks
CodeWarrior" on page 255.

CodeWarrior includes a version of the Palm SDK. Depending on the
particular devices you are targeting, you may want to upgrade your Palm
SDK to a more recent version than that included in the development
tool. Palm SDK versions 3.1, 3.5, and 4.x of the Palm SDK are
supported.

♦ GCC PRC Tools. This set of tools is based on the GNU compiler.

$ See "Developing UltraLite applications with GCC PRC-Tools" on
page 259.

$ For more information on target platforms, see "Supported platforms for
C/C++ applications" on page 6.

For general information on development environments for the Palm,
including more information on each of the supported host platforms, see the
Palm Computing Platform Development Zone Web site.

$ For a list of supported target operating systems, see "Supported
platforms for C/C++ applications" on page 6.

The information in this chapter concerning Palm development supplements
the general information on UltraLite development provided "Developing
UltraLite Applications" on page 67.

Development
environments

Target platforms

Palm-specific
notes

Chapter 11 Developing Applications for the Palm Computing Platform

255

Developing UltraLite applications with
Metrowerks CodeWarrior

Metrowerks CodeWarrior versions 6 and 7 are supported host platforms for
Palm Computing Platform UltraLite development.

A CodeWarrior plug-in is supplied to make building UltraLite applications
easier. This plug-in is supplied in the UltraLite\Palm\68k\cwplugin directory.

This section describes how to develop UltraLite applications using
CodeWarrior. It assumes a familiarity with CodeWarrior programming for
the Palm Computing Platform.

Installing the UltraLite plug-in for CodeWarrior

The files for the UltraLite plug-in for CodeWarrior are placed on your disk
during UltraLite installation, but the plug-in is not available for use without
an additional installation step.

v To install the UltraLite plug-in for CodeWarrior:

1 Ensure that you are running CodeWarrior version 6 or CodeWarrior
version 7. You can obtain patches for CodeWarrior from the
Metrowerks Web site.

2 From a command prompt, change to the UltraLite\palm\68k\cwplugin
subdirectory of your SQL Anywhere directory.

3 Run install.bat to copy the appropriate files into your CodeWarrior
installation directory: The install.bat file takes two arguments:

♦ Your CodeWarrior directory

♦ Your CodeWarrior version. Version 6 is the default.

For example, the following command (which should be entered on one
line) installs the plug-in for CodeWarrior 7 in the default CodeWarrior
installation directory.

install "c:\Program Files\Metrowerks\CodeWarrior for
Palm OS Platform 7.0" r7

You only need double quotes around the directory if the path has spaces.

There is also a file uninstall.bat, that you can use in the same way as
install.bat to uninstall the UltraLite Plug-in from CodeWarrior.

Uninstalling the
CodeWarrior plug-
in

Developing UltraLite applications with Metrowerks CodeWarrior

256

Creating UltraLite projects in CodeWarrior

This section describes how to use the UltraLite Plug-in for CodeWarrior.

v To create an UltraLite project in CodeWarrior:

1 Start CodeWarrior.

2 Create a new project.

From the CodeWarrior menu, choose File➤New. A tabbed dialog
appears.

On the Projects dialog, choose one of the available choices, and choose a
name and location for the project. Click OK.

3 Choose an UltraLite stationery.

The UltraLite plug-in adds two choices to the stationery list, one for
C++ API applications and one for embedded SQL applications.

Choose the development model you want to use and click OK to create
the project.

This stationery is standard C stationery for embedded SQL, and standard
C++ stationery for the C++ API, and contains almost-empty source files.

4 Configure the target settings for your project.

On your project window (.mcp), choose the Targets tab, and click the
Settings icon on the toolbar. The Project Settings window opens.

In the tree on the left pane, choose Target➤UltraLite preprocessor. You
can enter the settings for your project, such as which reference database
to use.

When you build your project by pressing F7, the following preprocessing
steps are carried out:

♦ For embedded SQL applications, sqlpp and ulgen utilities are invoked
automatically to convert any .sqc files into .c or .cpp files and to
generate the database code.

♦ For C++ API applications, ulgen is invoked to generate the UltraLite
API files and the database code.

Also, the paths to required UltraLite files, such as headers and runtime
library, are automatically added to the search paths.

Chapter 11 Developing Applications for the Palm Computing Platform

257

Converting an existing CodeWarrior project to an UltraLite
application

If you install the UltraLite plug-in into CodeWarrior, you will be asked to
convert each existing project when you open it. In this conversion,
CodeWarrior sets the default SQL preprocessor settings and saves them in
the project file. This causes no disruption to projects that do not use the SQL
preprocessor. If you want to further convert a project to invoke the SQL
preprocessor automatically, you need to do the following:

1 Add a file mapping entry for .sqc and .ulg files to the File Mappings
panel of the Target settings.

These files are of file type TEXT and the Compiler is UltraLite
Preprocessor. All flags for these files should be unchecked.

2 For embedded SQL applications, remove all .cpp files generated by the
SQL preprocessor from the Files view. These files are automatically
generated and re-added when the .sqc files are built.

3 For C++ API applications, mark the .ulg dummy file dirty and remove
the UltraLite Files folder.

Using the UltraLite plug-in for CodeWarrior

The UltraLite plug-in for CodeWarrior integrates the UltraLite preprocessing
steps (running the UltraLite generator and, for embedded SQL applications,
running the SQL preprocessor) into the CodeWarrior compilation model. It
ensures that the SQL preprocessor and UltraLite generator run when
required.

If you change the UltraLite project name, or if you change the generated
database name, you should delete the UltraLite Files folder. This forces
regeneration of the generated files. To avoid filename collisions, do not use a
generated database name that is the same as the .sqc file name.

If you change a SQL statement in a C++ API UltraLite project, or if you alter
a SQL Remote publication used in a C++ API project, you must manually
touch the dummy.ulg file to prompt the UltraLite generator to run.

$ For an overview of the tasks the plug-in carries out, see "Configuring
development tools for UltraLite development" on page 102.

A prefix file is a header file that all source files in a Metrowerks
CodeWarrior project include. You should use ulpalmXX.h, where XX
indicates the version of the Palm SDK you are using, from the h subdirectory
of your SQL Anywhere Studio installation directory as your prefix file. The
CodeWarrior plug-in sets this for you automatically.

Using prefix files

Developing UltraLite applications with Metrowerks CodeWarrior

258

If you have your own prefix file, it must include ulpalmXX.h. The
ulpalmXX.h file defines macros required by Palm applications, such as the
UL_PALMOS_SDK macro (which is set to the version of the Palm OS in
use) and the UNDER_PALM_OS macro.

Building the CustDB sample application from CodeWarrior

CustDB is a simple sales-status application.

$ For a diagram of the sample database schema, see "The UltraLite
sample database" on page xvi.

Files for the application are located in the Samples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. Generic files are located in
the CustDB directory. Files specific to CodeWarrior for the Palm Computing
Platform are in the following locations:

♦ cwcommon Files common to both CodeWarrior 6 and CodeWarrior 7.

♦ cw6 Files for CodeWarrior 6.

♦ cw7 Files for CodeWarrior 7.

♦ cw8 Files for CodeWarrior 8.

The instructions in this section describe how to build the CustDB application
using CodeWarrior 7. The process is very similar for CodeWarrior 6.

v To build the CustDB sample application using CodeWarrior:

1 Start the CodeWarrior IDE.

2 Open the CustDB project file:

♦ Choose File➤Open.

♦ Open the project file Samples\UltraLite\custdb\cw8\custdb.mcp
under your SQL Anywhere directory.

3 To build the target application (custdb.prc), choose Project➤Make.

You can use the UltraLite plug-in to customize settings for your own
application. For more information, see "Developing UltraLite applications
with Metrowerks CodeWarrior" on page 255.

Chapter 11 Developing Applications for the Palm Computing Platform

259

Developing UltraLite applications with GCC
PRC-Tools

You can use the GNU GCC PRC-Tools suite for the Palm Computing
Platform to develop UltraLite applications. This section assumes that you are
familiar with the installation and use of the GCC PRC-Tools, and provides
UltraLite-specific tips and information.

$ For information on the GCC PRC-Tools suite, see
http://www.palmos.com/dev/tech/tools/gcc/.

The UltraLite runtime library for PRC-Tools is located in subdirectories of
your SQL Anywhere directory:

UltraLite\Palm\68k\lib\prctools20\libulrt.a

No transport-layer security using GCC tools
The Certicom transport-layer security is not available when using GCC
tools.

Compile UltraLite applications using the -DM68000 -mnoshort switches.
The first option declares a symbol required to properly set the SQL_OS
macro. The second option forces int data types to be four bytes (two is
default).

Building the CustDB sample application with PRC Tools

CustDB is a simple sales-status application. It is located in the UltraLite
Samples directory of your installation. Generic files are located in the
CustDB directory. Files specific to PRC Tools for the Palm Computing
Platform are located in the prctools20 subdirectory of CustDB.

You must have the full set of PRC Tools installed before building the
CustDB sample application, including the following:

♦ Cygnus cygwin tools. The directory containing cygwin1.dll must be in
your path.

♦ GCC Tool chain for the Palm OS (PRC Tools 2.0). The multigen.exe
utility must be in your path.

♦ Palm SDK 3.5.

♦ PilRC resource compiler tools. The pilrc.exe utility must be in your path.

Compiler issues

Developing UltraLite applications with GCC PRC-Tools

260

v To build the sample application:

1 Open a command prompt window.

2 Change directory to the Samples\UltraLite\CustDB\prctools20
subdirectory of your SQL Anywhere directory.

3 Entering the following command:

build

The build.bat file contains instructions to build the UltraLite sample
application.

Once you have built the sample application, you can use the Palm Desktop
software deploy the custdb.prc executable to your target device.

Chapter 11 Developing Applications for the Palm Computing Platform

261

Launching and closing UltraLite applications
Palm OS applications are single threaded. To maintain the illusion that an
application is running in the background after you close it, the application
must save its internal state when the user switches to another application.
When the application is launched again, it must restore its internal state.

This section describes how to handle launching and closing of an UltraLite
Palm application.

Two Palm-specific UltraLite functions save and restore internal state
information, and must be used by all UltraLite applications for the Palm
Computing Platform. These functions also handle synchronization if you are
using the HotSync or ScoutSync synchronization streams, but not if you are
using TCP/IP or HTTP streams.

Launching an UltraLite Palm application

Whenever your UltraLite application is launched, your code must call the
function to restore state.

For embedded SQL development, this function is ULPalmLaunch. For
C++ API development, this function is the ULData.PalmLaunch() method.

If your application has never been run before, or was abnormally terminated
the last time it was run, the function returns a value of
LAUNCH_SUCCESS_FIRST. In this case, you must initialize the UltraLite
data store. Otherwise, you must not initialize the data store.

$ For more information, see "ULPalmLaunch function" on page 245, and
"PalmLaunch method" on page 148.

Closing an UltraLite Palm application

Whenever your UltraLite application is closed, and the user switches to
another application, your code must call the function to save its state. Some
kinds of data cannot be kept open during the time that you move away from
an UltraLite application.

For embedded SQL development, this function is ULPalmExit. For
C++ API development, this function is the ULData.PalmExit() method.

For C++ API developers, the following considerations also apply:

♦ Do not close any ULData or ULConnection objects.

C++ API

Launching and closing UltraLite applications

262

♦ When the user returns to the application, call Reopen, first on the
ULData and then on the ULConnection object.

♦ For cursor objects, including instances of generated result set classes,
you can do either of the following:

♦ Ensure that the object is closed when the user switches away from
the application, and call Open when you next need the object. If
you choose this option, the current position is not restored.

♦ Do not close the object when the user switches away, and call
Reopen when you next need to access the object. The current
position is then maintained, but the application takes more memory
in the Palm when the user is using other applications.

♦ For table objects, including instances of generated table classes, you
cannot save a position. You must close table objects before a user moves
away from the application, and Open them when the user needs them
again. Do not use Reopen on table objects.

Do not call db_fini to close the application. Instead, call ULPalmExit. All
connections (on a single SQLCA) and cursors remain open.

$ For more information, see "ULPalmExit function" on page 244, and
"PalmExit method" on page 147.

Embedded SQL

Chapter 11 Developing Applications for the Palm Computing Platform

263

Building multi-segment applications
Application code for the Palm Computing Platform must be divided into
segments. For CodeWarrior, these segments are at most 64 kb in size. For
PRC Tools, they are at most 32 kb. This section describes how to manage the
assignment of code into segments.

UltraLite applications include the following types of code:

♦ User-defined code Application code, including the .cpp file generated
by the SQL Preprocessor.

♦ Generated code for SQL statements Code generated by the
UltraLite Analyzer to execute SQL statements.

♦ Generated code for the database schema Code generated by the
UltraLite Analyzer to represent the database tables.

♦ Runtime library The UltraLite runtime library is compiled as multi-
segment code. Segment names of the form ULRTn and ULRTnn are
reserved for the UltraLite runtime libraries.

Building multi-segment applications is a general feature of application
development for the Palm Computing Platform, whether or not you are using
UltraLite. Some familiarity with building multi-segment applications using
your development tool is assumed. User-defined code is no different to other
standard Palm applications. For a reminder about assigning user-defined
code to segments, see "Assigning user-defined code to segments" on
page 266.

You can partition generated code into segments in the following ways:

♦ Enable multi-segment code generation, but let the UltraLite Analyzer
assign segments in a default manner.

$ For more information, see "Enabling multi-segment code
generation" on page 264.

♦ Enable multi-segment code-generation and explicitly assign segments
yourself.

$ For more information, see "Explicitly assigning segments" on
page 265.

Building multi-segment applications

264

Enabling multi-segment code generation

This section describes how to instruct the UltraLite Analyzer to generate
multi-segment code using its default scheme. If you wish to customize the
assignment of code to segments by explicitly assigning functions to
segments, you can do so. For more information, see "Explicitly assigning
segments" on page 265.

You enable generated code segments by defining macros. Macro definition is
different for the CodeWarrior and PRC Tools development tools, so the
procedure for enabling multi-segment code generation also differs.

v To enable multi-segment code generation (CodeWarrior):

1 Define a prefix file for your CodeWarrior project with the following
contents:

#define UL_ENABLE_SEGMENTS
#include "ulpalmXX.h"

where XX=30, 31, 35, or 40.

$ For more information, see "UL_ENABLE_SEGMENTS macro"
on page 428.

v To enable multi-segment code generation (PRC Tools):

1 Instruct the gnu compiler to compile segmented code.

Define the following two macros on the compiler command line:

♦ UL_ENABLE_SEGMENTS

♦ UL_ENABLE_GNU_SEGMENTS

$ For an example, see the file
Samples\UltraLite\CustDB\PRCTools20\ build.bat relative to your
SQL Anywhere directory.

$ For more information, see "UL_ENABLE_SEGMENTS macro"
on page 428, and ."UL_ENABLE_GNU_SEGMENTS macro" on
page 428.

2 Construct a segment definition file for the GNU link tools multilink and
build-prc.

Run the dbulseg command-line utility against each source file, and
supply a name for the definition file. For example, the following
command line:

dbulseg gensource.c project.def AppName CreatorID

creates a project.def definition file with the following content:

Chapter 11 Developing Applications for the Palm Computing Platform

265

application{ "AppName" CreatorID }
multiple code{ ULRT1 … ULRT17 ULG512 ULG513 … }

where the ULG segment names are obtained from the generated source
file gensource.c.

$ For more information on the UltraLite segment utility, see "The
UltraLite segment utility" on page 425.

When multi-segment code generation is enabled, the default behavior of the
UltraLite Analyzer is as follows:

♦ The generated schema code fits into a single segment and is assigned to
a segment named ULSEGDB.

♦ For the C++ API, the generated statement code is assigned to a segment
named ULSEGDEF.

♦ For embedded SQL, the generated statement code is assigned to a
segment with a generated name based on the .sqc file. All the code for a
single .sqc file goes into a single segment.

When a function defined at the bottom of a source file makes an inter-
segment call to a function defined at the top of the same source file, and
there is more than 32 kb of code in between, the PRC Tools compiler may
generate jsr instructions unacceptable to the assembler. Normally, the offset
of the jsr instruction is replaced during the relocation stage of the linker, but
in this case, the error prevents the compilation from going any further. To
avoid this issue, instruct the assembler to ignore any signed overflow errors
by using the -Wa,-J compiler switches.

Explicitly assigning segments

This section describes how to explicitly assign the generated code for SQL
statements to segments. You must first enable multi-segment code generation
as described in "Enabling multi-segment code generation" on page 264.

The mechanism for assigning the code is different for the embedded SQL
and C++ API development models.

Explicit segment assignment requires a database upgraded to version 8
standards.

v To explicitly assign generated statement code to segments
(embedded SQL):

♦ Split your .sqc files into separate files. The generated code for the
statements in each .sqc file is placed into a separate segment.

Notes

PRC Tools
compiler issues

Building multi-segment applications

266

v To explicitly assign generated statement code to segments
(C++ API):

♦ Do one of the following:

♦ Call the ul_set_codesegment procedure for each SQL statement,
providing the name of the segment to which the statement should be
assigned.

For example, the following statement assigns the statement mystmt,
in the project myproject, to the segment MYSEG1.

call ul_set_codesegment(
 ’myproject’, ’mystmt’, ’MYSEG1’)

$ For more information, see "ul_set_codesegment system
procedure" on page 413.

♦ From Sybase Central, open the UltraLite Project folder. Right click
the statement and choose Properties from the popup menu. Enter a
code segment name in the box.

Assigning user-defined code to segments

Assigning user-defined code to segments is a standard part of programming
applications for the Palm Computing Platform. This section is intended as a
reminder for Palm programmers.

v To assign user-defined code to segments (CodeWarrior):

♦ Add the following line at various places in your .sqc file or .cpp file:

#pragma segment segment-name

where segment-name is a unique name for the segment This forces code
after each #pragma line to be in a separate segment.

v To assign user-defined code to segments (PRC Tools):

♦ Add the following declaration to each function:

__attribute__(section("segment-name"))

You must ensure that PilotMain and all functions called in PilotMain are in
the first segment.

If necessary, you can add a line of the following form before your startup
code:

#pragma segment segment-name

where segment-name is the name of your first segment.

The first segment

Chapter 11 Developing Applications for the Palm Computing Platform

267

$ For more information on prefix files and segments, see your Palm
developer documentation.

Palm synchronization overview

268

Palm synchronization overview
UltraLite applications running on the Palm Computing Platform can
synchronize using the following streams:

♦ TCP/IP Through the cradle or through a modem.

♦ HTTP Through the cradle or through a modem.

♦ HotSync The Palm Computing Platform built-in synchronization
method.

♦ ScoutSync The synchronization method from Aether Systems.
ScoutSync cannot be used with UltraLite databases stored on Palm OS 4
expansion cards.

ScoutSync support is deprecated. Version 8.0.x will continue to support
ScoutSync up to version 3.6, but the next major release of SQL
Anywhere Studio will not support ScoutSync.

$ For more information regarding ScoutSync, see
http://www.aethersystems.com.

Choosing a synchronization method

Each synchronization method has its advantages and disadvantages.

♦ Multiple applications If you have more than one UltraLite application
installed on a Palm device, they all synchronize when you invoke
HotSync or ScoutSync. To synchronize multiple applications through a
TCP/IP or HTTP connection, you must activate and synchronize each
application in turn.

♦ Universal Serial Bus support HotSync synchronization has automatic
support for USB.

♦ Publications Synchronization using HotSync or ScoutSync cannot
include WHERE clauses.

$ For more information, see "Designing sets of data to synchronize
separately" on page 76.

Chapter 11 Developing Applications for the Palm Computing Platform

269

Understanding HotSync and ScoutSync synchronization

UltraLite applications on Palm devices can synchronize over a TCP/IP or
HTTP stream, in much the same manner as UltraLite applications on other
platforms. They can also synchronize using the Palm-specific HotSync or
ScoutSync synchronization streams, which operate in a different manner.
This section describes the architecture of the HotSync and ScoutSync
synchronization.

The sequence of events that occur during HotSync and ScoutSync
synchronization is as follows:

1 When your UltraLite application is closed, it saves the state of your
UltraLite application. The state information is stored in the Palm
database, separately from the UltraLite database.

$ For more information, see "Closing an UltraLite Palm application"
on page 261.

2 When you synchronize your Palm device, HotSync or ScoutSync calls
the MobiLink conduit to synchronize with the MobiLink
synchronization server. The MobiLink conduit reads the pages from the
UltraLite database and sends the upload to the MobiLink
synchronization server.

3 The MobiLink synchronization server integrates updates into the
consolidated database and sends a download stream to the conduit.

4 The conduit integrates the download stream into the UltraLite database
on the Palm device.

5 When your application is launched, it loads the previously saved state of
your UltraLite application.

$ For more information, see "Launching an UltraLite Palm
application" on page 261.

HotSync and ScoutSync architecture

The application code for HotSync and ScoutSync synchronization is
identical. The synchronization architecture is different, however.

Palm synchronization overview

270

The following diagram depicts the ScoutSync architecture. A separate
instance of the conduit is instantiated by the ScoutSync server for each Palm
device.

MobiLink
ScoutSync

conduit

ScoutSync
server

MobiLink server

Consolidated database

ODBC

ScoutSync client

A Palm device

ScoutSync client

A Palm device

ScoutSync client

A Palm device

UltraLite applications UltraLite applicationsUltraLite applications

MobiLink
ScoutSync

conduit

MobiLink
ScoutSync

conduit 1

1

2

2

3

3

Chapter 11 Developing Applications for the Palm Computing Platform

271

The following diagram depicts the HotSync architecture. In this case, a
separate HotSync conduit is required for each application (as opposed to
each device for ScoutSync). You can have multiple HotSync conduits on a
single PC.

 HotSync
conduit

 HotSync
conduit

 HotSync
conduit

 HotSync
conduit

MobiLink
synchronization
server

Consolidated
database

Palm
device

PC

ODBC

Adding HotSync or ScoutSync synchronization to Palm applications

272

Adding HotSync or ScoutSync synchronization
to Palm applications

This section describes what you need to include in your UltraLite application
code to synchronize using HotSync or ScoutSync. From the UltraLite
application side, the procedure is very similar for these two synchronization
streams.

For an overview of HotSync and ScoutSync, see "Understanding HotSync
and ScoutSync synchronization" on page 269.

For information on configuring HotSync and ScoutSync, see "Configuring
HotSync synchronization" on page 274, and "Configuring ScoutSync
synchronization" on page 279.

If you use HotSync or ScoutSync, then you synchronize by calling
ULPalmLaunch (embedded SQL) or ULData.PalmLaunch (C++ API)
when your application is launched, and ULPalmExit (embedded SQL) or
ULData.PalmExit (C++ API) when your application is closed. You must
supply a ul_synch_info structure holding the synchronization parameters to
ULPalmExit or ULData.PalmExit. The stream parameter for the
ul_synch_info structure is ignored, and can be UL_NULL.

Do not use ULSynchronize or ULConnection.Synchronize for HotSync or
ScoutSync synchronization.

$ For more information, see "Launching and closing UltraLite
applications" on page 261, and "Synchronization parameters" on page 380.

If there are uncommitted transactions when you close your Palm application,
and if you synchronize, the conduit reports that synchronization fails because
of uncommitted changes in the database.

The synchronization stream parameters in the ul_synch_info structure
control communication with the MobiLink synchronization server. For
HotSync or ScoutSync synchronization, the UltraLite application does not
communicate directly with a MobiLink synchronization server; it is the
HotSync or ScoutSync conduit instead.

You can supply synchronization stream parameters to govern the behavior of
the MobiLink conduit in one of the following ways:

♦ Supply the required information in the stream_parms member of
ul_synch_info passed to ULPalmExit or ULData.PalmExit.

$ For a list of available values, see "Synchronization stream
parameters" on page 399.

See also

Synchronization
functions

Specifying the
stream parameters

Chapter 11 Developing Applications for the Palm Computing Platform

273

♦ Supply a null value for the stream_parms member. The MobiLink
conduit then searches in the ClientParms registry entry on the machine
where it is running for information on how to connect to the MobiLink
synchronization server.

The stream and stream parameters in the registry entry are specified in
the same format as in the ul_synch_info structure stream_parms field.

$ For more information, see "HotSync configuration overview" on
page 274.

Adding HotSync or ScoutSync synchronization to your application

To call HotSync or ScoutSync synchronization from your application you
must add code for the following steps:

1 Prepare a ul_synch_info structure.

2 Call the ULPalmExit or ULData.PalmExit function, supplying the
ul_synch_info structure as an argument.

This function is called when the user switches away from the UltraLite
application. You must ensure that all outstanding operations are
committed before calling the ULPalmExit or ULData.PalmExit
function.

The ul_synch_info.stream parameter is ignored, and so does not need
to be set.

3 Call the ULPalmLaunch or ULData.PalmLaunch function

v To add HotSync or ScoutSync synchronization code to your
application:

♦ In the source code for your UltraLite application call ULPalmExit() or
ULData.PalmExit with parameters such as the following:

ul_synch_info info;
ULInitSynchInfo(&info);
info.stream_parms =
 UL_TEXT("stream=tcpip;host=localhost");
info.user_name = UL_TEXT("50");
info.version = UL_TEXT("custdb");

if(!ULPalmExit(&sqlca, &info)) {
 return(false);
}

$ For more information, see "Adding HotSync or ScoutSync
synchronization to Palm applications" on page 272.

Configuring HotSync synchronization

274

Configuring HotSync synchronization

This section describes how to set up your MobiLink HotSync conduit which
is required for HotSync synchronization of UltraLite applications.

$ For an overview of HotSync synchronization, see "HotSync and
ScoutSync architecture" on page 269.

HotSync configuration overview

During HotSync synchronization, the HotSync Manager starts the MobiLink
HotSync conduit, dbhsync8.dll, which sends the upload stream to a
MobiLink synchronization server, and receives the download stream from
the MobiLink synchronization server.

The MobiLink HotSync conduit synchronizes with the MobiLink
synchronization server using one of TCP/IP, HTTP, or HTTPS streams.

Depending on the demands of your installation, you may deploy only the
MobiLink HotSync conduit onto the desktop machines of your users.

$ For information on HotSync architecture, see "HotSync and ScoutSync
architecture" on page 269.

v To install and configure the MobiLink HotSync conduit:

1 Place the MobiLink conduit files on the user’s machine.

$ For instructions, see "HotSync conduit files" on page 275.

2 Add the MobiLink conduit to the HotSync Manager. The HotSync
manager is then able to use the MobiLink conduit.

$ For instructions, see "Adding the MobiLink conduit into HotSync
manager" on page 275.

3 If you did not include a stream_parms parameter in your UltraLite
ul_synch_info structure, enter these parameters from the HotSync
manager.

$ For instructions, see "Configuring conduit synchronization" on
page 277.

$ For information on including stream_parms parameter in your
UltraLite synchronization call, see "Adding HotSync or ScoutSync
synchronization to Palm applications" on page 272.

Chapter 11 Developing Applications for the Palm Computing Platform

275

4 If you are using an encrypted database, enter the encryption key in the
conduit configuration dialog. If you do not enter this key, you will have
to enter it on every synchronization.

$ For instructions, see "Configuring conduit synchronization" on
page 277.

HotSync conduit files

The HotSync conduit consists of the following files:

♦ dbhsync8.dll The DLL that is called by the HotSync manager.

♦ dblgen8.dll The language resource library. For languages other than
English, the file has the letters en replaced by a two-letter abbreviation
for the language, such as dblgde8.dll or dblgja8.dll.

 ♦ Stream dll You need a DLL for the communication between the
conduit and the MobiLink synchronization server. A separate DLL for
each stream is provided:

♦ For TCP/IP, use dbsock8.dll.

♦ For HTTP, use dbsock8.dll and dbhttp8.dll.

♦ If you use encryption for this communication, you also need to
supply the encryption DLL dbtls8.dll.

These files should be in the same directory, in your system path. When you
install SQL Anywhere Studio, they are installed into the win32 subdirectory
of your installation directory, which is already in the system path.

Adding the MobiLink conduit into HotSync manager

UltraLite includes a command-line conduit installation utility named
dbcond8.exe to make a set of registry entries for the HotSync manager to be
able to use the MobiLink conduit. This utility requires the following files:

♦ dbcond8.exe

♦ condmgr.dll

v To deploy the conduit installation utility:

1 Choose a top-level deployment directory.

For example, you may choose a directory named c:\deploy.

2 Add a registry entry with the deployment directory as its value.

Configuring HotSync synchronization

276

The registry entry must be as follows:

HKEY_CURRENT_USER\Software\Sybase\Adaptive Server
Anywhere\version string\Location

where version string is 8.0 for this version of the software. If the entry is
not found in HKEY_CURRENT_USER, the software looks in
HKEY_LOCAL_MACHINE.

3 Add the dbcond8.exe file.

The dbcond8.exe file must go in the win32 subdirectory of the
deployment directory.

4 Add the condmgr.dll file.

The condmgr.dll file must go in the win32\condmgr subdirectory of the
deployment directory.

The SQL Anywhere Studio installation creates the required registry entries
and places files in the appropriate locations.

v To add the MobiLink HotSync conduit into HotSync manager:

1 Ensure the HotSync conduit files and the files for the conduit installation
utility are in place.

2 Run the conduit installation utility, providing the creator ID of the Palm
application, and a name that HotSync will use to identify the conduit.
For example, the following command installs a conduit for the
application with creator ID Syb2, named CustDB. These are the settings
for the CustDB sample application:

dbcond8 "Syb2" –n CustDB

$ For full syntax of the conduit installation utility, including the
options to use when uninstalling a conduit, see "The HotSync conduit
installation utility" on page 414.

Checking that conduit installation is correct

You can check that a conduit is installed by right-clicking HotSync Manager
in the system tray and choosing Custom from the popup menu. A list of
conduits is displayed for each user. Check that your conduit is listed.

v To check that the HotSync conduit is properly installed

1 Set the environment variable UL_DEBUG_CONDUIT to any value.

2 Shut down and restart the HotSync manager.

Chapter 11 Developing Applications for the Palm Computing Platform

277

3 If the MobiLink conduit is properly installed, two dialog boxes appear.
If no dialog appears, the conduit is not properly installed.

4 Unset the environment variable.

5 Shut down and restart the HotSync manager.

MobiLink must be started before using HotSync
Before using HotSync, the MobiLink synchronization server must be
started and be ready to accept connections from the MobiLink HotSync
conduit.

Configuring conduit synchronization

The conduit needs to communicate with a MobiLink synchronization server
to pass upload and download streams between the UltraLite application and
the consolidated database. You can provide the information needed by the
conduit to locate the MobiLink synchronization server in a stream_parms
member of the UltraLite ul_synch_info structure supplied to PalmExit. If
you did not specify a non-null stream_parms value, you can enter the
required parameters from the HotSync manager.

In addition, if you are using a strongly encrypted UltraLite database, you can
save the encryption key so that you do not have to enter it on each
synchronization.

If you have Palm Desktop software installed, the Adaptive Server Anywhere
installation creates registry entries for the CustDB sample application. You
can use these entries as a starting point for your own application.

$ For information on stream_parms, see "Adding HotSync or
ScoutSync synchronization to Palm applications" on page 272.

v To configure the HotSync conduit for synchronization:

1 Right-click the HotSync Manager icon in the system tray, and choose
Custom from the popup menu.

2 Select your MobiLink conduit from the list of conduit names, and click
Change.

3 Enter a set of stream parameters in the Synchronization Parameters text
box. These parameters are the same as those in a stream_parms
parameter. For example:

stream=tcpip;host=localhost

Configuring HotSync synchronization

278

$ For more information, see "Synchronization stream parameters" on
page 399.

4 If the database is strongly encrypted, you can enter the encryption key in
the Encryption Key text box. If no key is entered, you will be prompted
for the encryption key on each synchronization.

5 Click OK to complete the entry. The HotSync conduit is now ready to
use.

The stream parameters and encryption key are stored in the registry in
HKEY_CURRENT_USER\Software\Sybase\Adaptive Server
Anywhere\8.0\Conduit\Creator ID, where Creator ID is application-
dependent.

A secondary location for HotSync synchronization depends on the version of
the Palm Computing Platform software you are using. They are made under
the HKEY_CURRENT_USER\Software\U.S. Robotics or the
HKEY_CURRENT_USER\Software\Palm Computing folder.

The HotSync Manager uses log files to record actions. HotSync writes log
information in the user-specific subdirectory User\HotSync.log of your Pilot
or Palmdirectory. Here, HotSync records when each synchronization takes
place and whether each installed conduit worked as expected.

Registry location

Location of
synchronization log
files

Chapter 11 Developing Applications for the Palm Computing Platform

279

Configuring ScoutSync synchronization

ScoutSync support deprecated
Version 8.0.x will continue to support ScoutSync up to version 3.6, but
the next major release of SQL Anywhere Studio will not support
ScoutSync.

ScoutSync technology is similar to HotSync. ScoutSync technology allows
multiple users to simultaneously synchronize multiple Palm devices with the
consolidated database.

ScoutSync synchronization is initiated from the Palm ScoutSync client, not
directly from the UltraLite application. The ScoutSync client communicates
with the ScoutSync server, which loads the MobiLink ScoutSync conduit.
Each instance of the conduit manages all applications on a single Palm
device. Each application can specify its own synchronization conduit. For
MobiLink synchronization, the conduit is the MobiLink ScoutSync conduit.

The MobiLink ScoutSync conduit is a COM object. Since a ScoutSync
conduit is based on COM, it can be installed on any machine and not only
the one running the ScoutSync Application server.

$ For an overview of ScoutSync synchronization, see "HotSync and
ScoutSync architecture" on page 269.

Configuring the MobiLink ScoutSync conduit

During ScoutSync synchronization, the ScoutSync Application Server starts
the conduit, dbscout8.dll, which sends the upload stream to a MobiLink
synchronization server, and receives the download stream from the
MobiLink synchronization server.

The MobiLink ScoutSync conduit synchronizes with MobiLink
synchronization server using TCP/IP, HTTP, or HTTPS streams. You
specify the stream and stream parameters in your UltraLite application
PalmExit call or in the ClientParms registry entry.

Registry entries are located under
HKEY_CURRENT_USER\Software\Sybase\Adaptive Server
Anywhere\8.0\Conduit\Creator ID, where Creator ID is the Creator ID of the
Palm application. Each application having a different Creator ID will have its
own folder.

Registry location

Configuring ScoutSync synchronization

280

MobiLink must be started before using ScoutSync
Before performing ScoutSync, the MobiLink synchronization server must
be running and be ready to accept connections from the MobiLink
ScoutSync conduit.

Setting up for ScoutSync synchronization

In order to perform ScoutSync synchronization, you must perform the
following:

♦ Configure the ScoutSync Application Server:

♦ Setup the MobiLink ScoutSync conduit.

♦ Setup a user profile.

♦ Configure the ScoutSync Client on the Palm device.

♦ Configure RAS for ScoutSync Client to access ScoutSync Application
Server via TCP/IP.

♦ Optionally configure the MobiLink ScoutSync conduit to work with
HotSync manager.

Configuring the ScoutSync Application Server

The following steps cover installation of the ScoutSync conduit on the
ScoutSync Application Server.

$ For information on the COM properties of the MobiLink ScoutSync
conduit and for instructions on how to install it on another machine, see your
ScoutSync documentation.

v To setup the MobiLink ScoutSync conduit:

1 Register dbscout8.dll using the following command:

regsvr32 dbscout8.dll

A message box appears, indicating that the registration was successful.

2 Start the Scout Server Service.

See your ScoutSync documentation for instructions.

3 Start the Scout Management console.

See your ScoutSync documentation for instructions.

Chapter 11 Developing Applications for the Palm Computing Platform

281

4 Connect to the ScoutSync server by selecting Tools➤Connect to Server
in the ScoutSync Management console.

5 Add a new conduit in the ScoutSync Management console. Click the
New Conduit button. Alternatively, you can right click on Conduits
under Sync Services in the hierarchy tree and select New Conduit. Enter
a conduit name ULSync, and set the Conduit Prog ID to
ULSctSyn.ULSSCond. Select PalmSyncService under Supported
Services.

v To setup a user profile:

1 Add a new user profile. Click the New User Profiles button.
Alternatively, you can right click on User Profiles in the hierarchy tree
and select New User Profile. Click on the User Info Tab and enter a
profile name, ULSyncProfile.

2 Click on the Conduits Tab. Select ULSync and click Add. ULSync will
be added to the Assigned list.

Configuring the ScoutSync Client on the Palm device

v Configuring the ScoutSync Client on the Palm device

1 Install Scout.prc and ScoutUpdateClient.prc, available under the
ScoutSync\Server\Services\PalmAdminService\clients directory of your
main Scout directory, on the Palm device.

$ For information on how to install an application onto the Palm
device, see "Deploying Palm applications" on page 291.

2 Configure the ScoutSync Client Preferences settings on the Palm device
as described in the following steps. Begin by tapping the Applications
silk-screen icon to open the Applications Launcher.

3 Tap the ScoutSync icon to display the main ScoutSync screen.

4 Tap the Preference button located at the bottom of the ScoutSync screen.
The ScoutSync Preferences screen appears.

5 Enter the ScoutSync Server Name, Port Number and Profile. The default
connection port is 8025 and should not be changed unless instructed to
do so by your system administrator.

6 Tap the word Unassigned in the Password field to display the Password
box. Enter a password and tap the OK button, if applicable. The word
"Assigned" displays after you have entered a password.

Configuring ScoutSync synchronization

282

7 Tap the OK button on the ScoutSync Preferences screen to submit your
changes.

Configuring RAS TCP/IP synchronization

v To configure RAS for ScoutSync Client to access ScoutSync
Application Server via TCP/IP

♦ For step by step instructions, refer to "Configuring RAS TCP/IP
synchronization via serial port connection" on page 287.

Using ScoutSync for the first time

After ScoutSync has been set up, follow these step by step instructions to
perform ScoutSync synchronization:

1 Launch the ScoutUpdateClient program on the Palm device. Click on
the Update ScoutSync Client button to log onto the ScoutSync server
and update your client.

2 Launch the ScoutSync program on the Palm and tap on the ScoutSync
icon. An initial ScoutSync is required to download the list of conduits.

3 From the ScoutSync program, make sure that the ULSync entry is
chosen in the conduit list.

Now you are ready to perform ScoutSynchronization from your Palm device.

Location of synchronization log files for ScoutSync

ScoutSync uses log files to record their actions:

♦ By default, ScoutSync writes log information into the file user.log in the
subdirectory ScoutSync\Server\Users\profile of your main Scout
directory, where profile is the name of your user profile. Here,
ScoutSync records when each synchronization takes place.

Chapter 11 Developing Applications for the Palm Computing Platform

283

Adding TCP/IP, HTTP, or HTTPS synchronization
to Palm applications

This section describes how to add TCP/IP, HTTP, or HTTPS
synchronization to your Palm application.

$ For a general description of how to add synchronization to UltraLite
applications, see "Adding synchronization to your application" on page 94.

You can use transport-layer security with Palm applications built with
Metrowerks CodeWarrior. However, transport-layer security is unavailable
for Palm applications built with PRC Tools.

$ For information on transport-layer security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s Guide.

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm
applications

Palm devices can synchronize using TCP/IP, HTTP, or HTTPS
communication by setting the stream member of the ul_synch_info
structure to the appropriate stream, and calling ULSynchronize (embedded
SQL) or the ULConnection.Synchronize method (C++ API) to carry out the
synchronization.

When using TCP/IP, HTTP, or HTTPS synchronization, ULPalmLaunch
and ULPalmExit save and restore the state of the application on exiting and
activating the application, but do not participate in synchronization. These
functions take the ul_synch_info structure as an argument, but in this case
do not use it. You should set the stream member to NULL (the default) when
calling ULPalmExit or ULPalmLaunch.

When using TCP/IP, HTTP, or HTTPS synchronization from a Palm device,
you must specify an explicit host name or IP number in the stream_parms
member of the ul_synch_info structure. Specifying NULL defaults to
localhost, which represents the device, not the host.

$ For information on the ul_synch_info structure, see "Synchronization
stream parameters" on page 399.

Transport layer
security on the
Palm Computing
Platform

Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications

284

Using multiple synchronization methods

Switching between two or more synchronization techniques from a single
UltraLite application is only convenient when using varied connection points
for synchronization. Switching techniques to connect to the same machine is
usually awkward.

Chapter 11 Developing Applications for the Palm Computing Platform

285

Configuring TCP/IP, HTTP, or HTTPS
synchronization

This section describes how to configure the synchronization setup for
UltraLite Palm applications using TCP/IP or HTTP synchronization.

$ For information on synchronization architecture for HTTP or TCP/IP
communications, see "Parts of the synchronization system" on page 10 of the
book MobiLink Synchronization User’s Guide.

Configuring TCP/IP synchronization for the Palm Computing
Platform

There are two ways of using TCP/IP networking in a Palm device. In either
case, you must connect to a Remote Access Service (RAS). The difference
lies in how you make the connection to the RAS.

♦ Use a modem to dial into an ISP The Internet Service Provider (ISP)
must provide access to a Remote Access Service (RAS). The
components of the connection are as follows:

Application
<--> Palm Net Library
<--> Palm modem
<--> NT RAS
<--> TCP/IP network

♦ Connect via the serial port to a Windows NT machine The
components of the connection are as follows:

Application
<--> Palm Net Library
<--> serial cable
<--> NT RAS
<--> TCP/IP network

When using TCP/IP, the MobiLink synchronization server can be any
machine on the network that is accessible via TCP/IP.

Before synchronization, the following conditions must be satisfied:

1 The device must be in its cradle.

2 If you are using the serial port to connect to a Windows NT machine
running RAS, the HotSync Manager and other applications that use the
serial port must be shut down. Windows NT only allows one application
to use a serial port at a time.

Configuring TCP/IP, HTTP, or HTTPS synchronization

286

3 The MobiLink synchronization server must be started. By default, the
MobiLink synchronization server listens for TCP/IP communications
over port 2439.

4 The Palm device must have Network settings in place so that it can
connect to the network. Modem settings are also required if using a
modem to dial into an ISP.

Configuring RAS TCP/IP synchronization via modem

To use this method, you must have access to a Remote Access Service when
you dial in.

v To configure a Palm device for RAS TCP/IP via a modem:

1 Install the modem by plugging the Palm device into the modem module.

2 Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

3 Choose the Windows RAS service.

4 Set the dial-in username and password.

5 Set the phone number to the number at which the Remote Access
Service can be reached. Obtain this number from your ISP.

6 Tap on Details.

7 Set the connection type (usually PPP).

8 Set the DNS and IP addresses as recommended by your network
administrator.

9 Tap on Script and enter the script recommended by your ISP. This script
will be similar to the following sample.

Wait For: Username:
Delay: 1
Send UserID:
Send CR:

Wait For: Password:
Delay: 1
Send Password:
Send CR:

Wait For: >
Delay: 1
Send: ppp
Send CR:

End:

Chapter 11 Developing Applications for the Palm Computing Platform

287

Tap on OK until you are back to the Network Preferences.

At this point, you are ready to test your TCP/IP connection.

Configuring RAS TCP/IP synchronization via serial port connection

This procedure involves actions both on Windows NT and on the Palm
Computing device.

v To configure Windows NT for RAS TCP/IP via serial port:

1 From the Control Panel, open Modems. Make sure that a modem is
defined for Dial-Up Networking Serial Cable between 2 PCs on the
COM port to which the cradle is connected.

2 Set the speed for this modem to the baud rate you are using. The default
is 19200.

3 Make sure TCP/IP protocol is installed. Select Start➤Settings➤Control
Panel and double-click the Network icon. Click on the Protocols tab. If
there is no TCP/IP entry, choose Add to install it.

4 Enable IP Forwarding (in the Routing tab of TCP/IP properties)

5 Under the Services tab, make sure that Remote Access Service is
installed. If there is no entry for Remote Access Service, choose Add to
install it.

In Remote Access Service Properties, add Dial Up Network serial
cable between 2 pc’s for that COM port if the cradle’s COM port is not
in the list of ports.

6 Configure this entry to receive calls. In the RAS Network properties set
encryption settings to Allow any authentication including clear text.
In the RAS Network properties allow only TCP/IP client.

7 Configure TCP/IP. Allow clients to access the entire network. Assigning
the TCP/IP addresses depends on your network. Contact your network
administrator for details.

8 Add a user for dial-in access. Select Start➤Programs➤Administrative
Tools➤User Manager. Uncheck User Must Change Password at Next
Logon. Choose the Dialin button, and grant dialin permission to user
with No Call Back.

9 If the RAS COM port is the same one that HotSync Manager uses, shut
down the HotSync Manager or any other applications that use the COM
port.

10 Start the Remote Access Administrator. Select
Start➤Programs➤Administrative Tools➤Remote Access Admin.

Configuring TCP/IP, HTTP, or HTTPS synchronization

288

11 Start the RAS service. Select Server➤Start Remote Access Service.
Choose to start the service on the local machine.

HotSync Manager or any other applications that use the serial port and the
RAS service will not run at the same time. One must be shut down first for
the other to run, as Windows NT prevents two different applications from
accessing the same serial port. You have to stop the RAS service
(Server➤Stop Remote Access Service from the Remote Access Admin)
before you can restart the HotSync Manager. Alternatively, you can use
separate serial ports.

Once the RAS service is running, it is ready to receive connection requests
via the serial port.

v To configure a Palm device for RAS TCP/IP via serial port:

1 Go to the Preferences (Prefs) panel and choose Network from the
dropdown list at the top right of screen.

2 Choose the Windows RAS service.

3 Set the dial-in username and password.

4 Set the Palm to use the serial port.

♦ For Palm OS 3.3 and above, select Direct serial.

♦ For earlier versions of the Palm OS, set the phone number to 00
(zero zero). This is a special phone number that tells the Palm to use
the serial port directly, instead of a modem.

5 Tap on Details.

6 Set the connection type (usually PPP).

7 Set the DNS and IP addresses as recommended by your network
administrator.

8 Tap on Script and enter the following script:

Send: CLIENT
Send CR:
Delay: 1
Send: CLIENT
END

Tap on OK until you are back to the Network Preferences

At this point, you are ready to test your TCP/IP connection.

Chapter 11 Developing Applications for the Palm Computing Platform

289

Testing and troubleshooting

v To test the connection:

♦ via modem Connect the Palm device to the modem and follow the
instructions provided by your ISP for connecting to their network. Once
connected, tap the Connect button in Prefs➤ Network on the Palm
device.

♦ via serial port Ensure RAS is running on the Windows NT machine.
Place the Palm device in the cradle and connect the cradle to the correct
COM port on the Windows NT machine. Tap the Connect button in
Prefs➤ Network on the Palm device.

With TCP/IP, there are two levels of service. At the minimum level, you can
connect to another TCP/IP host using an IP number of the following form.

NNN.NNN.NNN.NNN

At the next level, when a DNS server is properly configured, you are able to
connect to another host by name.

some_host_machine.any_company.com

Having a DNS service is more convenient, since most people are better at
remembering a name than a number. As long as you have the minimum
TCP/IP service, and an IP number, you can synchronize an UltraLite
application using TCP/IP.

There are a number of steps you can take to troubleshoot TCP/IP connections
on the Palm device.

♦ Hitting the scroll down button on the Palm device during the connection
phase displays the progress of the connection.

♦ The connection log is accessible from the Network Preferences panel.
Choose View Log from the Options menu to see information about the
network connection. The log is an interactive utility for controlling and
viewing your connection information. Enter ? for help.

♦ There are several tools for testing a TCP/IP connection from the Palm.
You can find most of them at the following locations:

http://www.roadcoders.com

http://www.palmcentral.com

There are also steps you can take for troubleshooting on Windows NT:

♦ In the Remote Access Admin, double-click on the running server.

♦ Select the appropriate port and choose Port Status. The Port Status
dialog shows you the Line condition (connected or waiting for a call)
and lets you watch the byte counts for both directions.

Configuring TCP/IP, HTTP, or HTTPS synchronization

290

Configuring HTTP or HTTPS synchronization for the Palm
Computing platform

To use HTTP or HTTPS synchronization, you must first configure RAS
TCP/IP synchronization. For information on configuring RAS, see
"Configuring TCP/IP synchronization for the Palm Computing Platform" on
page 285.

When using HTTP or HTTPS, the MobiLink synchronization server can be
any machine on the network that is accessible via the protocol.

v To synchronize using HTTP or HTTPS:

1 Place the Palm device in its cradle.

2 If you are using the serial port to connect to a Windows NT machine
running RAS, shut down the HotSync Manager and other applications
that use the serial port. Windows NT only allows one application to use
a serial port at a time.

3 Start the MobiLink synchronization server.

4 Ensure that the network settings on the Palm device are configured so
that it can connect to the network. Modem settings are also required if
using a modem to dial into an ISP.

$ For more information, see "Configuring TCP/IP synchronization
for the Palm Computing Platform" on page 285.

Chapter 11 Developing Applications for the Palm Computing Platform

291

Deploying Palm applications
This section describes the following aspects of deploying Palm applications:

♦ Deploying the application.

$ See "Deploying applications on the Palm Computing Platform" on
page 291.

♦ Deploying the MobiLink synchronization conduit for HotSync.

$ See "Deploying the MobiLink synchronization conduit" on
page 291.

♦ Deploying an initial copy of the UltraLite database.

$ See "Deploying UltraLite databases on the Palm Computing
Platform" on page 292.

Deploying applications on the Palm Computing Platform

Install your UltraLite application on your Palm device as you would any
other Palm Computing Platform application.

v To install an application on a Palm device:

1 Open the Install Tool, included with your Palm Desktop Organizer
Software.

2 Choose Add and locate your compiled application (.prc file).

3 Close the Install Tool.

4 HotSync to copy the application to your Palm device.

Deploying the MobiLink synchronization conduit

For applications using HotSync or ScoutSync synchronization, each end user
must have the MobiLink synchronization conduit installed on their desktop.
This installation requires the following:

♦ Deploy the conduit files The files for the conduit must be installed
into a location in the end user’s system path.

$ For a list of conduit files, see "HotSync conduit files" on page 275.

Deploying Palm applications

292

♦ Install the conduit You can deploy the conduit installation utility to
your end users and provide instructions for them to run it, or you can use
the HotSync Manager to install the conduit.

$ For instructions, see "Adding the MobiLink conduit into HotSync
manager" on page 275.

♦ Configure the conduit If you did not include a stream_parms
parameter in your UltraLite ul_synch_info structure, enter these
parameters from the HotSync manager. Also, if you are using an
encrypted database, you may want to enter the encryption key.

$ For instructions, see "Configuring conduit synchronization" on
page 277.

Deploying UltraLite databases on the Palm Computing Platform

If you deploy your application without a database, the database is created the
first time it is accessed from the application. The user must then download an
initial copy of data on the first synchronization. You can use the ULUtil
utility to back up the UltraLite database to the PC. To deploy many UltraLite
databases with an initial database including data, you can perform an initial
synchronization and then back up the UltraLite database. The database can
be deployed on other devices so they do not need to perform an initial
synchronization.

$ For more information, see "The UltraLite utility" on page 426.

If you are using HotSync or ScoutSync synchronization, each of your end
users must also install the synchronization conduit onto their desktop
machine.

$ For information on installing the synchronization conduit, see
"Configuring HotSync synchronization" on page 274.

If you deploy a database using HotSync, HotSync sets a backup bit on the
database. When this backup bit is set, the entire database is backed up to the
desktop machine on each synchronization. This behavior is generally not
appropriate for UltraLite databases. When an UltraLite application is
launched, the Palm data store is checked to see if its backup bit is set to true.
If it is set, it is cleared. If it is not set, there is no change.

If you wish the backup bit to remain set to true, you can set the store
parameter palm_allow_backup in UL_STORE_PARMS.

$ For more information, see "UL_STORE_PARMS macro" on page 428.

293

C H A P T E R 1 2

Developing Applications for Windows CE

This chapter describes details of development, deployment and
synchronization that are specific to Windows CE. These instructions assume
familiarity with the general development process. They assist in building the
CustDB sample application, included with your UltraLite software, on each
of these platforms.

Topic Page

Introduction 294

Building the CustDB sample application 296

Storing persistent data 298

Deploying Windows CE applications 299

Synchronization on Windows CE 305

About this chapter

Contents

Introduction

294

Introduction
This section contains instructions pertaining to building UltraLite
applications for use under Microsoft Windows CE.

$ For a list of supported host platforms and development tools for
Windows CE development, and for a list of supported target Windows CE
platforms, see "Supported platforms for C/C++ applications" on page 6.

You can test your applications under an emulator on most Windows CE
target platforms.

The recommended development environment for Windows CE at the time of
writing is Microsoft eMbedded Visual C++ 3.0. This development
environment is available from Microsoft as part of eMbedded Visual Tools.

$ You can download eMbedded Visual C++ from the Microsoft
Developer Network at
http://www.microsoft.com/mobile/downloads/emvt30.asp.

A sample eMbedded Visual C++ 3.0 project is provided in the
Samples\UltraLite\CEStarter directory under your SQL Anywhere directory.
The workspace file is Samples\UltraLite\CEStarter\ul_wceapplication.vcw.

When preparing to use eMbedded Visual C++ for UltraLite applications, you
should make the following changes to the project settings. The CEStarter
application has these changes made.

♦ Compiler settings:

♦ Add $(ASANY8)\h to the include path.

♦ Define appropriate compiler directives. For example, the
UNDER_CE macro should be defined for eMbedded Visual C++
projects.

♦ Linker settings:

♦ Add "$(ASANY8)\ultralite\ce\processor\lib\ulrt.lib"

where processor is the target processor for your application.

♦ Add winsock.lib.

♦ The .sqc file (embedded SQL applications):

♦ Add ul_database.sqc and ul_database.cpp to the project

♦ Add the following custom build step for the .sqc file:

"$(ASANY8)\win32\sqlpp" -q -c "dsn=UltraLite 8.0
Sample" $(InputPath) ul_database.cpp

Preparing for
Windows CE
development

A first application

Chapter 12 Developing Applications for Windows CE

295

♦ Set the output file to ul_database.cpp.

♦ Disable the use of precompiled headers for ul_database.cpp.

Choosing how to link the runtime library

Windows CE supports dynamic link libraries. At link time, you have the
option of linking your UltraLite application to the runtime DLL using an
imports library, or statically linking your application using the UltraLite
runtime library.

If you have a single UltraLite application on your target device, a statically
linked library uses less memory. If you have multiple UltraLite applications
on your target device, using the DLL may be more economical in memory
use.

If you are repeatedly downloading UltraLite applications to a device, over a
slow link, then you may want to use the DLL in order to minimize the size of
the downloaded executable, after the initial download.

v To build and deploy an application using the UltraLite runtime DLL

1 Preprocess your code, then compile the output with UL_USE_DLL.

2 Link your application using the UltraLite imports library.

3 Copy both your application executable and the UltraLite runtime DLL to
your target device.

Building the CustDB sample application

296

Building the CustDB sample application
CustDB is a simple sales-status application. It is located in the UltraLite
samples directory of your Adaptive Server Anywhere installation. Generic
files are located in the CustDB directory. Files specific to Windows CE are
located in the ce subdirectory of CustDB.

The CustDB application is provided as an eMbedded Visual C++ 3.0 project.

$ For a diagram of the sample database schema, see "The UltraLite
sample database" on page xvi.

v To build the CustDB sample application

1 Start eMbedded Visual C++.

2 Open the project file Samples\UltraLite\CustDB\EVC\EVCCustDB.vcp
(eVC 3.0) or Open the project file
Samples\UltraLite\CustDB\EVC40\EVCCustDB.vcp..

3 Choose Build➤Set Active Platform to set the target platform.

♦ Set a platform of your choice.

4 Choose Build->Set Active Configuration to select the configuration.

♦ Set an active configuration of your choice.

5 If you are building CustDB for the Pocket PC x86em emulator platform
only:

♦ Choose Project➤Settings. The Project Settings dialog appears.

♦ On the Link tab, in the Object/library modules box, change the
UltraLite runtime library entry to the emulator30 directory rather
than the emulator directory.

6 Build the application:

♦ Press F7 or select Build➤Build EVCCustDB.exe to build CustDB.

When eMbedded Visual C++ has finished building the application,
it automatically attempts to upload it to the remote device.

7 Start the synchronization server:

♦ To start the MobiLink synchronization server, select
Programs➤Sybase SQL Anywhere 8➤MobiLink➤Synchronization
Server Sample.

8 Run the CustDB application:

Press CTRL+F5 or select Build➤Execute CustDB.exe

Chapter 12 Developing Applications for Windows CE

297

Folder locations and environment variables
The sample project uses environment variables wherever possible. It may
be necessary to adjust the project in order for the application to build
properly. If you experience problems, try searching for missing files in the
MS VC++ folder and adding the appropriate directory settings.

The build process uses the SQL preprocessor, sqlpp, to preprocess the file
CustDB.sqc into the file CustDB.c. This one-step process is useful in smaller
UltraLite applications where all the embedded SQL can be confined to one
source module. In larger UltraLite applications, you need to use multiple
sqlpp invocations followed by one ulgen command to create the customized
remote database.

$ For more information, see "Preprocessing your embedded SQL files"
on page 201.

Storing persistent data

298

Storing persistent data
The UltraLite database is stored in the Windows CE file system. The default
file is \UltraLiteDB\ul_<project>.udb, with project being truncated to eight
characters. You can override this choice using the file_name parameter
which specifies the full pathname of the file-based persistent store.

The UltraLite runtime carries out no substitutions on the file_name
parameter. If a directory has to be created in order for the file name to be
valid, the application must ensure that any directories are created before
calling db_init.

As an example, you could make use of a flash memory storage card by
scanning for storage cards and prefixing a name by the appropriate directory
name for the storage card. For example,

file_name = "\\Storage Card\\My Documents\\flash.udb"

The following sample embedded SQL code sets the file_name parameter:

#undef UL_STORE_PARMS
#define UL_STORE_PARMS UL_TEXT(

"file_name=\\uldb\\my own name.udb;cache_size=128k")
...
db_init(&sqlca);

Example

Chapter 12 Developing Applications for Windows CE

299

Deploying Windows CE applications
When compiling UltraLite applications for Windows CE, you can link the
UltraLite runtime library either statically or dynamically. If you link it
dynamically, you must copy the UltraLite runtime library for your platform
to the target device.

v To build and deploy an application using the UltraLite runtime DLL

1 Preprocess your code, then compile the output with UL_USE_DLL.

2 Link your application using the UltraLite imports library.

3 Copy both your application executable and the UltraLite runtime DLL to
your target device.

The UltraLite runtime DLL is in chip-specific directories under the
UltraLite\ce subdirectory of your SQL Anywhere directory.

To deploy the UltraLite runtime DLL for the Windows CE emulator, place
the DLL in the appropriate subdirectory of your Windows CE tools
directory. The following directory is the default setting for the Pocket PC
emulator:

C:\Program Files\Windows CE Tools\wce300\MS Pocket
PC\emulation\palm300\windows

Deploying applications that use ActiveSync

Applications that use ActiveSync synchronization must be registered with
ActiveSync as well as copied onto the device. Also, each desktop machine
must have the MobiLink provider for ActiveSync installed. The architecture
for ActiveSync is illustrated in the following diagram.

Deploying Windows CE applications

300

ActiveSync
software

ActiveSync
software

MobiLink
provider for
ActiveSync MobiLink

synchronization
server

UltraLite or
ASA MobiLink

client

Windows CE
device

Desktop
computer

Server
computer

v To deploy ActiveSync applications:

1 Install the MobiLink provider for ActiveSync on each end user’s
machine.

An ActiveSync provider install utility is provided with SQL Anywhere.
This is the dbasinst.exe command-line utility.

$ For information, see "Installing the MobiLink provider for
ActiveSync" on page 301, and "ActiveSync provider installation utility"
on page 610 of the book MobiLink Synchronization User’s Guide.

2 Register the application for use with ActiveSync.

You can register the application either by using ActiveSync, or by using
the ActiveSync provider installation utility dbasinst.exe.

$ For information see "Registering applications for use with
ActiveSync" on page 302.

3 Copy the application onto the device.

If your application is a single executable, statically linked with the
runtime library, you can use the ActiveSync provider installation utility
dbasinst.exe to copy the application to the device.

If the application includes multiple files (for example, if you use the
UltraLite runtime DLL rather than the static runtime library), you must
copy the files onto the device in some other way.

Chapter 12 Developing Applications for Windows CE

301

Installing the MobiLink provider for ActiveSync

Before you register your application for use with ActiveSync, you must
install the MobiLink provider for ActiveSync using the installation utility
(dbasinst.exe).

The MobiLink provider for ActiveSync includes a desktop component and a
device component. You must install the provider for each device that
synchronizes through your desktop machine.

When you have installed the MobiLink provider for ActiveSync you must
register each application separately. For instructions, see "Registering
applications for use with ActiveSync" on page 302.

v To install the MobiLink provider for ActiveSync:

1 Ensure that you have the ActiveSync software on your machine, and that
the Windows CE device is connected.

2 Enter the following command to install the MobiLink provider:

dbasinst -k desk-path -v dev-path

where desk-path is the location of the desktop component of the
provider (dbasdesk.dll) and dev-path is the location of the device
component (dbasdev.dll).

If you have SQL Anywhere installed on your machine, dbasdesk.dll is in
the win32 subdirectory of your SQL Anywhere directory and dbasdev.dll
is in a platform-specific directory in the CE subdirectory. These
directories are default search locations, and you can omit both -k and -v
command-line switches.

$ For more information, see "ActiveSync provider installation
utility" on page 610 of the book MobiLink Synchronization User’s
Guide.

3 Restart your machine.

ActiveSync does not recognize new providers until the machine is
restarted.

4 Enable the MobiLink provider.

♦ From the ActiveSync window, click Options.

♦ Check the MobiLink item in the list and click OK to activate the
provider.

♦ To see a list of registered applications, click Options again, choose
the MobiLink provider, and click Settings.

Deploying Windows CE applications

302

$ For more information on registering applications, see "Registering
applications for use with ActiveSync" on page 302.

Registering applications for use with ActiveSync

You can register you application for use with ActiveSync either by using the
ActiveSync provider install utility or using the ActiveSync software itself.
This section describes how to use the ActiveSync software.

$ For information on the alternative approach, see "ActiveSync provider
installation utility" on page 610 of the book MobiLink Synchronization
User’s Guide.

v To register an application for use with ActiveSync:

1 Ensure that the MobiLink provider for ActiveSync is installed.

$ For information, see "Installing the MobiLink provider for
ActiveSync" on page 301.

2 Start the ActiveSync software on your desktop machine.

3 From the ActiveSync window, choose Options.

4 From the list of information types, choose MobiLink and click Settings.

5 In the MobiLink Synchronization dialog, click New. The Properties
dialog appears.

6 Enter the following information for your application:

♦ Application name A name identifying the application to be
displayed in the ActiveSync user interface.

♦ Class name The registered class name for the application.

$ See "Assigning class names for applications" on page 303

♦ Path The location of the application on the device.

♦ Arguments Any command-line arguments to be used when
ActiveSync starts the application.

7 Click OK to register the application.

Chapter 12 Developing Applications for Windows CE

303

Assigning class names for applications

When registering applications for use with ActiveSync you must supply a
window class name. Assigning class names is carried out at development
time and your application development tool documentation is the primary
source of information on the topic.

Microsoft Foundation Classes (MFC) dialog boxes are given a generic class
name of Dialog, which is shared by all dialogs in the system. This section
describes how to assign a distinct class name for your application if you are
using MFC and eMbedded Visual C++.

v To assign a window class name for MFC applications using
eMbedded Visual C++:

1 Create and register a custom window class for dialog boxes, based on
the default class.

Add the following code to your application’s startup code. The code
must be executed before any dialogs get created:

WNDCLASS wc;
if(! GetClassInfo(NULL, L"Dialog", &wc)) {

AfxMessageBox(L"Error getting class info");
}
wc.lpszClassName = L"MY_APP_CLASS";
if(! AfxRegisterClass(&wc)) {

AfxMessageBox(L"Error registering class");
}

where MY_APP_CLASS is the unique class name for your application.

2 Determine which dialog is the main dialog for your application.

If your project was created with the MFC Application Wizard, this is
likely to be a dialog named CMyAppDlg.

3 Find and record the resource ID for the main dialog.

The resource ID is a constant of the same general form as
IDD_MYAPP_DIALOG.

4 Ensure that the main dialog remains open any time your application is
running.

Add the following line to your application’s InitInstance function. The
line ensures that if the main dialog dlg is closed, the application also
closes.

m_pMainWnd = &dlg;

For more information see the Microsoft documentation for
CWinThread::m_pMainWnd.

Deploying Windows CE applications

304

If the dialog does not remain open for the duration of your application,
you must change the window class of other dialogs as well.

5 Save your changes.

If Embedded Visual C++ is open, save your changes and close your
project and workspace.

6 Modify the resource file for your project.

♦ Open your resource file (which has an extension of .rc) in a text
editor such as notepad.

♦ Locate the resource ID of your main dialog.

♦ Change the main dialog’s definition to use the new window class as
in the following example. The only change that you should make is
the addition of the CLASS line:

IDD_MYAPP_DIALOG DIALOG DISCARDABLE 0, 0, 139, 103
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION
EXSTYLE WS_EX_APPWINDOW | WS_EX_CAPTIONOKBTN
CAPTION "MyApp"
FONT 8, "System"
CLASS "MY_APP_CLASS"
BEGIN
 LTEXT "TODO: Place dialog controls
here.",IDC_STATIC,13,33,112,17
END

where MY_APP_CLASS is the name of the window class you used
earlier.

♦ Save the .rc file.

7 Reopen eMbedded Visual C++ and load your project.

8 Add code to catch the synchronization message.

$ For information, see "Adding ActiveSync synchronization (MFC)"
on page 306.

Chapter 12 Developing Applications for Windows CE

305

Synchronization on Windows CE
UltraLite applications on Windows CE can synchronize through the
following streams:

♦ ActiveSync See "Adding ActiveSync synchronization to your
application" on page 305

♦ TCP/IP See "TCP/IP, HTTP, or HTTPS synchronization from
Windows CE" on page 308.

♦ HTTP See "TCP/IP, HTTP, or HTTPS synchronization from
Windows CE" on page 308.

The user_name and stream_parms parameters must be surrounded by the
UL_TEXT() macro for Windows CE when initializing, since the
compilation environment is Unicode wide characters.

$ For information on adding synchronization to your application, see
"Adding synchronization" on page 71. For detailed information on
synchronization parameters, see "Synchronization stream parameters" on
page 399.

Adding ActiveSync synchronization to your application

ActiveSync is synchronization software for Microsoft Windows CE
handheld devices. UltraLite supports ActiveSync versions 3.1 and 3.5.

This section describes how to add ActiveSync to your application, and how
to register your application for use with ActiveSync on your end users’
machines.

If you use ActiveSync, synchronization can be initiated only by ActiveSync
itself. ActiveSync automatically initiates a synchronization when the device
is placed in the cradle or when the Synchronization command is selected
from the ActiveSync window. The MobiLink provider starts the application,
if it is not already running, and sends a message to the application.

$ For information on setting up ActiveSync synchronization, see
"Deploying applications that use ActiveSync" on page 299.

The ActiveSync provider uses the wParam parameter. A wParam value of 1
indicates that the MobiLink provider for ActiveSync launched the
application. The application must then shut itself down after it has finished
synchronizing. If the application was already running when called by the
MobiLink provider for ActiveSync, wParam is 0. The application can ignore
the wParam parameter if it wants to keep running.

Synchronization on Windows CE

306

Adding synchronization depends on whether you are addressing the
Windows API directly or whether you are using the Microsoft Foundation
Classes. Both development models are described here.

Adding ActiveSync synchronization (Windows API)

If you are programming directly to the Windows API, you must handle the
message from the MobiLink provider in your application’s WindowProc
function, using the ULIsSynchronizeMessage function to determine if it has
received the message.

Here is an example of how to handle the message:

LRESULT CALLBACK WindowProc(HWND hwnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(ULIsSynchronizeMessage(uMsg)) {
 DoSync();
 if(wParam == 1) DestroyWindow(hWnd);
 return 0;
 }

 switch(uMsg) {

 // code to handle other windows messages

 default:
 return DefWindowProc(hwnd, uMsg, wParam, lParam);
 }
 return 0;
}

where DoSync is the function that actually calls ULSynchronize.

$ For more information, see "ULIsSynchronizeMessage function" on
page 243.

Adding ActiveSync synchronization (MFC)

If you are using Microsoft Foundation Classes to develop your application,
you can catch the synchronization message in the main dialog class or in
your application class. Both methods are described here.

$ Your application must create and register a custom window class name
for notification. See "Assigning class names for applications" on page 303.

Chapter 12 Developing Applications for Windows CE

307

v To add ActiveSync synchronization in the main dialog class:

♦ Add a registered message and declare a message handler.

Find the message map in the source file for your main dialog (the name
is of the same form as CMyAppDlg.cpp). Add a registered message using
the static and declare a message handler using
ON_REGISTERED_MESSAGE as in the following example:

static UINT WM_ULTRALITE_SYNC_MESSAGE =
::RegisterWindowMessage(UL_AS_SYNCHRONIZE);

BEGIN_MESSAGE_MAP(CMyAppDlg, CDialog)
//{{AFX_MSG_MAP(CMyAppDlg)
//}}AFX_MSG_MAP

ON_REGISTERED_MESSAGE(WM_ULTRALITE_SYNC_MESSAGE,
OnDoUltraLiteSync)

END_MESSAGE_MAP()

♦ Implement the message handler.

Add a method to the main dialog class with the following signature. This
method is automatically executed any time the MobiLink provider for
ActiveSync requests that your application synchronize. The method
should call ULSynchronize.

LRESULT CMyAppDlg::OnDoUltraLiteSync(
WPARAM wParam,
LPARAM lParam

);

The return value of this function should be 0.

$ For information on handling the synchronization message, see
"ULIsSynchronizeMessage function" on page 243.

v To add ActiveSync synchronization in the Application class:

1 Open up the Class Wizard for the application class.

2 In the Messages list, highlight PreTranslateMessage and then click the
Add Function button.

3 Click the Edit Code button. The PreTranslateMessage function appears.
Change it to read as follows:

Synchronization on Windows CE

308

BOOL CMyApp::PreTranslateMessage(MSG* pMsg)
{

if(ULIsSynchronizeMessage(pMsg->message)) {
DoSync();
// close application if launched by provider
if(pMsg->wParam == 1) {

ASSERT(AfxGetMainWnd() != NULL);
AfxGetMainWnd()->SendMessage(WM_CLOSE);

}
return TRUE; // message has been processed

}
return CWinApp::PreTranslateMessage(pMsg);

}

where DoSync is the function that actually calls ULSynchronize.

$ For information on handling the synchronization message, see
"ULIsSynchronizeMessage function" on page 243.

TCP/IP, HTTP, or HTTPS synchronization from Windows CE

For TCP/IP, HTTP, or HTTPS synchronization, the application controls
when synchronization occurs. Your application will usually provide a menu
item or user interface control so that the user can request synchronization.

309

C H A P T E R 1 3

Developing Applications for VxWorks

This chapter describes details of development, deployment and
synchronization that are specific to the VxWorks operating system. These
instructions assume familiarity with the general development process. They
assist in building the CustDB sample application, included with your
UltraLite software, on each of these platforms.

Topic Page

Introduction 310

Building the CustDB sample application 312

Downloading the sample application to the device 313

Running the sample application 314

Building UltraLite VxWorks applications 316

Storing persistent data 318

Synchronization on the VxWorks platform 319

About this chapter

Contents

Introduction

310

Introduction
The following instructions pertain to writing and building UltraLite
applications for use with the VxWorks platform.

$ For a list of supported host platforms and development tools for
VxWorks development, and for a list of supported target VxWorks
platforms, see "Supported platforms for C/C++ applications" on page 6.

Installation directory
Tornado/VxWorks development tools may not support the use of
directories with spaces in the name. As UltraLite header and include files
are installed under the Adaptive Server Anywhere installation directory,
which by default has spaces, you may wish to reinstall. An alternative is
to reset your ASANY8 environment variable to use the short form of the
directory name (c:\progra~1\...)

Features and limitations

Follow the VxWorks Programmer’s Guide, Tornado User’s Guide as well as
BSP-specific documentation for instructions on setting up your system and
troubleshooting.

You should also note the following when developing UltraLite applications
for the VxWorks platform.

You may use TCP/IP or HTTP for UltraLite synchronization. The TCP/IP
components are typically included and initialized by default in VxWorks.

The default VxWorks configuration does not include resolving of host names
via DNS. Therefore, if you use a host name to specify the location of the
MobiLink synchronization server for synchronization, you must define
INCLUDE_DNS_RESOLVER and associated macros when building
VxWorks. However, if you use only the IP number to specify your host
machine, you do not need to include DNS support. Without DNS support,
you may get a warning regarding an undefined _resolvGetHostByName
symbol, but this warning will not affect the running or synchronization of
your application as long as only an IP number is used.

Synchronization

Resolving host
names

Chapter 13 Developing Applications for VxWorks

311

UltraLite requires a dosFs (MS-DOS-compatible file system) device or a
functionally equivalent device to store the persistent data file. UltraLite
defaults to using a device named ULDEV:. You can configure a storage
device with this name and it will be used to store persistent data for the
application, or you can override the default filename and specify a different
device.

If a ULDEV: device does not exist when you run the CustDB sample, the
application creates a ULDEV: device using a RAM disk and dosFs file
system. The VxWorks RAM disk driver component is required, and you can
include the component by defining INCLUDE_RAMDRV when building
VxWorks.

$ For more information on persistent data storage, see "Storing persistent
data" on page 318.

Persistent storage

Persistent storage
for CustDB sample

Building the CustDB sample application

312

Building the CustDB sample application
The following are general guidelines for building the sample application
included in your Adaptive Server Anywhere installation.

$ For instructions on how to build your own UltraLite application, see
"Building UltraLite VxWorks applications" on page 316.

CustDB is a simple sales-status application. It has already been built into an
executable custdb.out that is located in the UltraLite\vxw\platform
subdirectory, where platform indicates the chip for which the sample is
compiled. Other files specific to the VxWorks platform are located in the
Samples\UltraLite\CustDB\vxw directory. The gnuvxw.bat file in this
subdirectory is a batch file used to build the sample application in embedded
SQL or C++ API form, and the custio.c file contains the source code for the
user interface of the sample application. The sample application uses
standard I/O via printf() and getchar().

$ For a diagram of the sample database schema, see "The UltraLite
sample database" on page xvi.

Although the sample application has already been built into an executable,
you can build it yourself by doing the following:

v To build the sample application

1 Open a Command Prompt window.

2 Run torvars.bat (included with Tornado) to set up the environment to
include the Tornado compiler and environment variables. Minimally,
you must set your WIND_BASE environment variable.

3 Change to the subdirectory CustDB\vxw, located in the Adaptive Server
Anywhere Samples\UltraLite\CustDB directory.

cd "%ASANY8%\Samples\UltraLite\CustDB\vxw"

4 Run gnuvxw.bat to generate an embedded SQL executable with name
custdb.out, or a C++ API executable with the name custdbapi.out.

This command runs the SQL preprocessor (sqlpp.exe) to preprocess the
embedded SQL source file custdb.sqc and to generate source code that
implements the SQL in the application.

Chapter 13 Developing Applications for VxWorks

313

Downloading the sample application to the
device

Download the sample application module using the Tornado shell.

The CustDB sample application has been built into an executable custdb.out,
located in the UltraLite\vxw\386 subdirectory. You can download this file to
VxWorks using the following Tornado shell command:

ld(0,0,"c:/sybase/asa8/ultralite/vxw/386/custdb.out");

Downloading the
sample application

Running the sample application

314

Running the sample application
To run the CustDB sample application after downloading, call the custDB
function by typing custDB() at the Tornado Shell prompt.

Viewing the data in the sample application

When you start the CustDB sample application, the application prompts you
for a method of synchronization. Press T if you wish to synchronize via
TCP/IP and D if you wish to use the default method. The default method of
synchronization for the sample application is TCP/IP to localhost. Note that
the default VxWorks configuration does not automatically map localhost to
your host machine and you may have to specify the name or IP address of
your machine directly, after typing T.

The application subsequently prompts you for an employee ID. Enter a value
of 50. The application also allows values of 51, 52, or 53. After
synchronization, a set of customers, products, and orders are downloaded to
your target machine.

$ For a diagram of the sample database schema, see "The UltraLite
sample database" on page xvi.

$ For information about synchronization, see "Synchronization on the
VxWorks platform" on page 319.

Here are some actions you can perform with the sample application:

♦ Scroll through the outstanding orders The application holds
information about a set of orders. Scroll forward through the orders by
pressing F and scroll backward by pressing B. For each order, this
includes the ID number, the customer, the product, the quantity, and
other information. Also included are a status column and a notes
column, which you can modify from the application. You can approve,
deny, add as well as delete an order.

Only unapproved orders for the customers that you list in the ulEmpCust
table are downloaded to the application. The sample application does not
receive all the orders listed in the ULOrder table in the consolidated
database. You control which information is sent to your application
using synchronization scripts.

♦ Display a list of customers The UltraLite application holds the
complete list of customers from the consolidated database. To see this
list, press C.

Chapter 13 Developing Applications for VxWorks

315

♦ Display a list of products The UltraLite application holds the
complete list of products from the consolidated database. To see this list,
press P.

♦ Synchronize with the consolidated database Press S to synchronize
with the consolidated database.

♦ Display help Press ? to display a list that indicates which key to press
for each task.

Enter keys in lower case
Enter keys in lower case when you perform actions with the sample
application.

Building UltraLite VxWorks applications

316

Building UltraLite VxWorks applications
The following are general guidelines for building your own UltraLite
application.

$ For instructions on how to build the sample application included in
your Adaptive Server Anywhere installation, see "Building the CustDB
sample application" on page 312.

v To build an UltraLite VxWorks application:

1 Start the Adaptive Server Anywhere personal database server,
specifying your reference database.

2 Preprocess your embedded SQL files using the SQL preprocessor sqlpp.
When sqlpp is invoked, a C/C++ source file is generated for each .sqc
file.

If you have only one embedded SQL source file, sqlpp automatically
runs the UltraLite analyzer in addition to preprocessing the SQL file.
The analyzer generates more C/C++ code to implement your application
database. You may also skip step 3.

$ For more information, refer to "Preprocessing your embedded SQL
files" on page 201.

3 Run the UltraLite generator ulgen to perform code generation. The
generator creates a C/C++ source file.

$ For more information, see "Generating the UltraLite data access
code" on page 91.

4 Set up the environment to include the Tornado compiler and
environment variables by running torvars.bat.

5 Invoke the compiler to compile all source files. For example, cc386 is
the cross compiler for the Intel x86 BSP. This process generates a .o file
for each C/C++ file. Note that C++ files require use of the munch tool.

Code compiled for VxWorks should have the UNDER_VXW macro
defined. For more information, see "UNDER_VXW macro" on
page 433.

$ For more information, refer to cross-development in the Tornado
User’s Guide.

6 Link all the object files along with the runtime library libulrt.a as
follows:

ld386 –o myapp.out myapp.o util.o –r -lulrt –L
%ASANY8%\ultralite\vxw\386\lib

Chapter 13 Developing Applications for VxWorks

317

The runtime library libulrt.a is located in the UltraLite\vxw\platform\lib
subdirectory. myapp.out will include the .o files (generated by the
compiler) as well as the necessary modules acquired from the runtime
library.

Note
ld will look for libulrt.a when –lulrt is specified.

To avoid the possibility of losing data stored in your UltraLite database, it is
recommended that you synchronize your existing UltraLite application with
the consolidated database before upgrading your application.

If your new application introduces obfuscation or encryption of the database,
or if the new schame is incompatible with the older version, data in the
database is lost on upgrading.

Preserving data
when upgrading

Storing persistent data

318

Storing persistent data
UltraLite requires a dosFs (MS-DOS-compatible file system) device or a
functionally equivalent device to store the persistent data. UltraLite defaults
to using a device named ULDEV:. Unless you override the default persistent
storage filename, this device must exist before db_init is called.

The following lines illustrate how to create such a device using a RAM disk
and dosFs file system:

pBlkDev = ramDevCreate(0, 512, 2048, 2048, 0);
pVolDesc = dosFsMkfs("ULDEV:", pBlkDev);

By default, the UltraLite runtime saves persistent data to the file
ULDEV:/ul_<project_name>.udb, where the filename ul_<project_name> is
truncated to 8 characters.

$ You can configure various aspects of the database store using the
UL_STORE_PARMS macro. For information on persistent-storage
parameters, see "Configuring and managing database storage" on page 45.

Chapter 13 Developing Applications for VxWorks

319

Synchronization on the VxWorks platform
The VxWorks UltraLite applications can synchronize via TCP/IP or HTTP.

$ For information on synchronization architecture for TCP/IP see "Parts
of the synchronization system" on page 10 of the book MobiLink
Synchronization User’s Guide.

To synchronize a VxWorks UltraLite application using a TCP/IP socket
connection, call ULSynchronize with the ULSocketStream() stream. The
following embedded SQL example illustrates the arguments:

ul_synch_info synch_info;
ULInitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("custdb");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =

UL_TEXT("host=localhost");
ULSynchronize(&synch_info);

When using TCP/IP sockets, the MobiLink synchronization server can be
any machine on the network that is accessible via TCP/IP. Before
ULSynchronize is called, the MobiLink synchronization server must be
started as follows:

dbmlsrv8 -c "DSN=UltraLite 8.0 Sample" ...

By default, the MobiLink synchronization server listens on port 2439.

TCP/IP is the default method of synchronization for the CustDB sample
application. In addition, UltraLite specifies localhost as the hostname by
default. Note that the default VxWorks configuration does not automatically
map localhost to your host machine and you may need to specify the name or
IP address of your machine explicitly.

You can use transport-layer security on VxWorks on Intel x86 chips and on
the Windows VxSim emulator.

$ For information on transport-layer security, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s Guide.
For information on synchronization parameters, see "Synchronization stream
parameters" on page 399.

You must ensure that the time is set properly on the client VxWorks device,
as certificate dates are checked during synchronization. The time is not set
automatically on VxWorks devices. You can set the time on the device by
using the clock_settime() function. When the time is incorrect, MobiLink
returns an error.

Synchronization for
CustDB sample
application

Transport-layer
security on
VxWorks

Synchronization on the VxWorks platform

320

321

P A R T T H R E E

Developing UltraLite Java
Applications

This part focuses on details of the development process that are specific to
Java. It explains how to write and build Java applications and provides a

tutorial that guides you through the development process.

322

323

C H A P T E R 1 4

Tutorial: Build an Application Using Java

This chapter provides a tutorial that guides you through the process of
developing a Java UltraLite application. The first section describes how to
build a very simple Java UltraLite application. The second section describes
how to add synchronization to your application.

$ For an overview of the development process and background
information on the UltraLite database, see "Designing UltraLite
Applications" on page 41.

$ For information on developing Java UltraLite Applications, see
"Developing UltraLite Java Applications" on page 337.

Topic Page

Introduction 324

Lesson 1: Add SQL statements to your reference database 326

Lesson 2: Run the UltraLite generator 328

Lesson 3: Write the application code 329

Lesson 4: Build and run the application 333

Lesson 5: Add synchronization to your application 334

Lesson 6: Undo the changes you have made 336

About this chapter

Contents

Introduction

324

Introduction
This tutorial describes how to construct a very simple application using
UltraLite Java. The application is a command-line application, developed
using the Sun JDK, which queries data in the ULProduct table of the UltraLite
8.0 Sample database.

In this tutorial, you create a Java source file, create a project in a reference
database, and use these sources to build and run your application. The early
lessons describe a version of the application without synchronization.
Synchronization is added in a later lesson.

To follow the tutorial, you should have a Java Development Kit installed.

Overview

In the first lesson, you write and build an application that carries out the
following tasks.

1 Connects to an UltraLite database, consisting of a single table. The table
is a subset of the ULProduct table of the UltraLite Sample database.

2 Inserts rows into the table. Initial data is usually added to an UltraLite
application by synchronizing with a consolidated database.
Synchronization is added later in the chapter.

3 Writes the rows of the table to standard output.

In order to build the application, you must carry out the following steps:

1 Create an Adaptive Server Anywhere reference database.

Here we use the UltraLite sample database (CustDB).

2 Add the SQL statements to be used in your application to the reference
database.

3 Run the UltraLite generator to generate the Java code and also an
additional source file for this UltraLite database.

The generator writes out a .java file holding the SQL statements, in a
form you can use in your application, and a .java file holding the code
that executes the queries.

4 Write source code that implements the logic of the application.

Here, the source code is a single file, named Sample.java.

5 Compile and run the application.

Chapter 14 Tutorial: Build an Application Using Java

325

In the second lesson you add synchronization to your application.

Create a directory to hold your files

In this tutorial, you will be creating a set of files, including source files and
executable files. You should make a directory to hold these files. In addition,
you should make a copy of the UltraLite sample database so that you can
work on it, and be sure you still have the original sample database for other
projects.

Copies of the files used in this tutorial can be found in the
Samples\UltraLite\JavaTutorial subdirectory of your SQL Anywhere
directory.

v To prepare a tutorial directory:

♦ Create a directory to hold the files you will create. In the remainder of
the tutorial, we assume that this directory is c:\JavaTutorial.

♦ Make a backup copy of the UltraLite 8.0 Sample database into the
tutorial directory. The UltraLite 8.0 Sample database is the file
custdb.db, in the UltraLite\Samples\CustDB subdirectory of your
SQL Anywhere installation directory. In this tutorial, we use the original
UltraLite 8.0 Sample database, and at the end of the tutorial you can
copy the untouched version from the APITutorial directory back into
place.

Lesson 1: Add SQL statements to your reference database

326

Lesson 1: Add SQL statements to your reference
database

The reference database for this tutorial is the UltraLite 8.0 Sample database.
In a later step, you use this same directory as a consolidated database for
synchronization. These two uses are separate, and in your work you may use
different databases for the two roles.

Add the SQL statements to the reference database using the
ul_add_statement stored procedure. In this simple application, use the
following statements:

♦ Insert An INSERT statement adds an initial copy of the data into the
ULProduct table. This statement is not needed when synchronization is
added to the application.

♦ Select A SELECT statement queries the ULProduct table.

When you add a SQL statement, you must associate it with an UltraLite
project. Here, we use a project name of Product. You must also add a name
for the statement, which by convention is in upper case.

v To add the SQL statements to the reference database:

1 Start Sybase Central, and connect to the UltraLite 8.0 Sample data
source using the Adaptive Server Anywhere plug-in.

2 Add a project to the database:

♦ In Sybase Central, open the custdb database.

♦ Open the UltraLite projects folder.

The folder contains one project already: the custapi project used for
the sample application. You must create a new project.

♦ Double-click Add UltraLite Project.

♦ Enter Product as the project name, and click Finish.

3 Add the INSERT statement to the Product project.

♦ Double-click Product to open the project.

♦ Double-click Add UltraLite Statement.

♦ Enter InsertProduct as the statement name. Click Next.

♦ Enter the statement text:

INSERT INTO ULProduct (prod_id, price, prod_name)
VALUES (?,?,?)

Chapter 14 Tutorial: Build an Application Using Java

327

The first argument is the project name, the second is the statement
name, and the third is the SQL statement itself. The question marks
in the SQL statement are placeholders, and you can supply values at
runtime.

♦ Click Finish to complete the operation.

This operation in Sybase Central is equivalent to executing the following
stored procedure call:

call ul_add_statement(’Product’, ’InsertProduct’,
 ’INSERT INTO ULProduct(prod_id, price, prod_name)
 VALUES (?,?,?) ’)

4 Add the SELECT statement to the Product project.

♦ From the Product project, double-click Add UltraLite Statement.

♦ Enter SelectProduct as the statement name. Click Next.

♦ Enter the statement text:

SELECT prod_id, prod_name, price FROM ULProduct

♦ Click Finish to complete the operation.

This operation in Sybase Central is equivalent to executing the following
stored procedure call:

call ul_add_statement(’Product’, ’SelectProduct’,
 ’SELECT prod_id, prod_name, price FROM ULProduct’)

5 Close Sybase Central.

You have now added the SQL statements to the database, and you are ready
to generate the UltraLite database.

$ For more information, see "ul_add_project system procedure" on
page 412, and "ul_add_statement system procedure" on page 411.

Lesson 2: Run the UltraLite generator

328

Lesson 2: Run the UltraLite generator
The UltraLite generator writes out two Java files. One contains the SQL
statements, as an interface definition, which is here named ISampleSQL.java.
You can use this interface definition in your main application code. The
second file holds the code that implements the queries and the database, and
is here named SampleDB.java.

v To generate the UltraLite database code:

1 Open a command prompt, and go to your JavaTutorial directory.

2 Run the UltraLite generator with the following arguments (all on one
line):

ulgen –a -t java -c "dsn=UltraLite 8.0 Sample"
-j Product -s ISampleSQL -f SampleDB

The arguments have the following meanings:

♦ -a Generate SQL string names in upper case. The InsertProduct
and SelectProduct statements come to INSERT_PRODUCT and
SELECT_PRODUCT.

♦ -t The language of the generated code. Generate Java code instead
of C code.

♦ -c The connection string to connect to the database.

♦ -j The UltraLite project name. This name corresponds to the
project name you provided when you added the SQL statement to
the database. The generator produces code only for those statements
associated with this project.

♦ -s The name of the interface that contains the SQL statements as
strings.

♦ -f The name of the file that holds the generated database code and
query execution code.

Chapter 14 Tutorial: Build an Application Using Java

329

Lesson 3: Write the application code
The following code listing holds a very simple UltraLite application.

You can copy the code into a new file and save it as Sample.java in your
c:\JavaTutorial directory, or open a new file and type the content. You can
find this source code in Samples\UltraLite\JavaTutorial\Sample.java.

// (1) Import required packages
import java.sql.*;
import ISampleSQL.*;
import ianywhere.ultralite.jdbc.*;
import ianywhere.ultralite.support.*;

// (2) Class implements the interface containing SQL
statements
public class Sample implements ISampleSQL
{
 public static void main(String[] args)
 {
 try{
 // (3) Connect to the database
 java.util.Properties p = new
 java.util.Properties();
 p.put("persist", "file");
 SampleDB db = new SampleDB(p);
 Connection conn = db.connect();

 // (4) Initialize the database with data
 PreparedStatement pstmt1 =
 conn.prepareStatement(INSERT_PRODUCT);
 pstmt1.setInt(1, 1);
 pstmt1.setInt(2, 400);
 pstmt1.setString(3, "4x8 Drywall x100");
 int rows1=pstmt1.executeUpdate();
 pstmt1.setInt(1, 2);
 pstmt1.setInt(2, 3000);
 pstmt1.setString(3, "8’ 2x4 Studs x1000");
 int rows2=pstmt1.executeUpdate();

 // (5) Query the data and write out the results
 Statement stmt = conn.createStatement();
 ResultSet result = stmt.executeQuery(
 SELECT_PRODUCT);
 while(result.next()) {
 int id = result.getInt(1);
 String name = result.getString(2);
 int price = result.getInt(3);
 System.out.println (name +
 " \tId=" + id +
 " \tPrice=" + price);
 }

Lesson 3: Write the application code

330

 // (6) Close the connection to end
 conn.close();
 } catch (SQLException e) {
 Support.printException(e);
 }
 }
}

Although too simple to be useful, this example contains elements that must
be present in all Java programs used for database access. The following
describes the key elements in the sample program. Use these steps as a guide
when creating your own Java UltraLite application.

The numbered steps correspond to the numbered comments in the source
code.

1 Import required packages.

The sample program utilizes JDBC interfaces and classes and therefore
must import this package. It also requires the UltraLite runtime classes,
and the generated interface that contains the SQL statement strings.

2 Define the class.

The SQL statements used in the application are stored in a separate file,
as an interface. The class must declare that it implements the interface to
be able to use the SQL statements for the project. The class names are
based on the statement names you provided when adding the statements
to the database.

3 Connect to the database.

The connection is established using an instance of the database class.
The database name must match the name of the generated Java class (in
this case SampleDB). The file value of the persist Properties object
states that the database should be persistent.

4 Insert sample data.

In a production application, you would generally not insert sample data.
Instead, you would obtain an initial copy of data by synchronization. In
the early stages of development, it can simplify your work to directly
insert data.

♦ Create a PreparedStatement object using the prepareStatement()
method.

Explanation of the
sample program

Chapter 14 Tutorial: Build an Application Using Java

331

♦ To execute SQL commands, you must create a Statement or
PreparedStatement object. Use a Statement object to execute
simple SQL commands without any parameters and a
PreparedStatement object to execute SQL commands with
parameters. The sample program first creates a PreparedStatement
object to execute an insert command:

PreparedStatement pstmt1 =
conn.prepareStatement(INSERT_PRODUCT);

The prepareStatement method takes a SQL string as an argument;
this SQL string is included from the generated interface.

5 Execute a select SQL command using a Statement object

♦ Create a Statement object using the createStatement() method.

Unlike the PreparedStatement object, you do not need to supply a
SQL statement when you create a Statement object. Therefore, a
single Statement object can be used to execute more than one SQL
statement.

Statement stmt = conn.createStatement();

♦ Execute your SQL query.

Use the executeQuery() method to execute a select query. A select
statement returns a ResultSet object.

♦ Implement a loop to sequentially obtain query results.

The ResultSet object maintains a cursor that initially points just
before the first row. The cursor is incremented by one row each
time the next() method is called. The next() method returns a true
value when the cursor moves to a row with data and returns a false
value when it has moved beyond the last row.

while(result.next()) {
…
}

♦ Retrieve query results using the getxxx() methods.

Supply the column number as an argument to these methods. The
sample program uses the getInt() method to retrieve the product ID
and price from the first and second columns respectively, and the
getString() method to retrieve the product name from the third.

int id = result.getInt(1);
int price = result.getInt(2);
String name = result.getString(3);

6 End your Java UltraLite program

Lesson 3: Write the application code

332

♦ Close the connection to the database, using the Connection.close()
method:

conn.close();

Chapter 14 Tutorial: Build an Application Using Java

333

Lesson 4: Build and run the application
After you have created a source file Sample.java using the sample code in
the previous section, you are ready to build your UltraLite application.

v To build your application:

1 Start the Adaptive Server Anywhere personal database server.

By starting the database server, the UltraLite generator has access to
your reference database. Start the database server from the Start menu:

Start➤Programs➤Sybase SQL Anywhere 8➤UltraLite➤Personal
Server Sample for UltraLite.

2 Compile your Java source files.

Include the following locations in your classpath:

♦ The current directory (use a dot in your classpath).

♦ The Java runtime classes. For JDK 1.2, include the jre\lib\rt.jar file in
your classpath. For JDK 1.1, include the classes.zip file from your
Java installation.

♦ The UltraLite runtime classes. These classes are in the following
location

%ASANY8%\UltraLite\java\lib\ulrt.jar

where %ASANY8% represents your SQL Anywhere directory.

Use the javac function of the Java development kit as follows:

javac *.java

You are now ready to run your application.

v To run your application:

1 Go to a command prompt in the Javatutorial directory.

2 Include the same classes in the classpath as in the earlier step.

3 Enter the following command to run the application

java Sample

The list of two items is written out to the screen, and the application
terminates.

You have now built and run your first UltraLite Java application. The next
step is to add synchronization to the application.

Lesson 5: Add synchronization to your application

334

Lesson 5: Add synchronization to your
application

Once you have tested that your program is functioning properly, you can
remove the lines of code that manually insert data into the ULProduct table.
Replace these statements with a call to the JdbcConnection.synchronize()
function to synchronize the remote database with the consolidated database.
This process will fill the tables with data and you can subsequently execute a
select query.

Adding synchronization actually simplifies the code. Your initial version of
Sample.java uses the following lines to insert data into your UltraLite
database.

PreparedStatement pstmt1 = conn.prepareStatement(
ADD_PRODUCT_1);

pstmt1.setInt(1, 1);
pstmt1.setInt(2, 400);
pstmt1.setString(3, "4x8 Drywall x100");
int rows1=pstmt1.executeUpdate();
pstmt1.setInt(1, 2);
pstmt1.setInt(2, 3000);
pstmt1.setString(3, "8’ 2x4 Studs x1000");
int rows2=pstmt1.executeUpdate();

This code is included to provide an initial set of data for your application. In
a production application, you would not insert an initial copy of your data
from source code, but would carry out a synchronization.

v To add synchronization to your application:

1 Replace the hard-coded inserts with a synchronization call.

♦ Delete the instructions listed above, which insert code.

♦ Add the following line in their place:

UlSynchOptions synch_opts = new UlSynchOptions();
synch_opts.setUserName("50");
synch_opts.setPassword("pwd50");
synch_opts.setScriptVersion("custdb");
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=localhost");
((JdbcConnection)conn).synchronize(synch_opts);

The ULSocketStream argument instructs the application to
synchronize over TCP/IP, to a MobiLink synchronization server on
the current machine (localhost), using a MobiLink user name of 50.

2 Compile and link your application.

Chapter 14 Tutorial: Build an Application Using Java

335

Enter the following command, with a CLASSPATH that includes the
current directory, the UltraLite runtime classes, and the Java runtime
classes:

javac *.java

3 Start the MobiLink synchronization server running against the sample
database.

From a command prompt in your JavaTutorial directory, enter the
following command:

start dbmlsrv8 -c "dsn=UltraLite 8.0 Sample"

4 Run your application.

From a command prompt in your JavaTutorial directory, enter the
following command:

java Sample

The application connects, synchronizes to receive data, and writes out
information to the command line. The output is as follows:

Connecting to server:port = localhost(a.b.c.d):2439
4x8 Drywall x100 Id=1 Price=400
8’ 2x4 Studs x1000 Id=2 Price=3000
Drywall Screws 10lb Id=3 Price=40
Joint Compound 100lb Id=4 Price=75
Joint Tape x25x500 Id=5 Price=100
Putty Knife x25 Id=6 Price=400
8’ 2x10 Supports x 200 Id=7 Price=3000
400 Grit Sandpaper Id=8 Price=75
Screwmaster Drill Id=9 Price=40
200 Grit Sandpaper Id=10 Price=100

In this lesson, you have added synchronization to a simple UltraLite
application.

$ For more information on the JdbcConnection.synchronize() function,
see "Adding synchronization to your application" on page 352.

Lesson 6: Undo the changes you have made

336

Lesson 6: Undo the changes you have made
To complete the tutorial, you should shut down the MobiLink
synchronization server and restore the UltraLite 8.0 Sample database.

v To finish the tutorial:

1 Close down the MobiLink synchronization server.

2 Restore the UltraLite 8.0 Sample database.

♦ Delete the custdb.db and custdb.log files in the
Samples\UltraLite\custdb subdirectory of your SQL Anywhere
directory.

♦ Copy the custdb.db file from your Javatutorial directory to the
Samples\UltraLite\custdb directory.

3 Delete the UltraLite database.

♦ The UltraLite database is in the same directory as the jar file, and
has a .udb extension. The application will initialize a new database
next time the application is run.

337

C H A P T E R 1 5

Developing UltraLite Java Applications

This chapter provides details of the UltraLite development process that are
specific to Java. It explains how to write UltraLite applications using Java
and provides instructions on building and deploying a Java UltraLite
application.

Topic Page

Introduction 338

The UltraLite Java sample application 339

Connecting to and configuring your UltraLite database 344

Including SQL statements in UltraLite Java applications 351

Adding synchronization to your application 352

Monitoring and canceling synchronization 356

UltraLite Java development notes 361

Building UltraLite Java applications 362

UltraLite API reference 365

This chapter assumes that you are familiar with Java programming and
JDBC at an elementary level. You can learn about Java from the book
Thinking in Java, included with SQL Anywhere Studio in PDF format.

About this chapter

Contents

Before you begin

Introduction

338

Introduction
UltraLite applications can be written in the Java language using JDBC for
database access.

The UltraLite development process for Java is similar to that for other
development models. For a description, see "Developing UltraLite
Applications" on page 67.

This chapter describes only those aspects of application development that are
specific to UltraLite Java applications. It assumes an elementary familiarity
with Java and JDBC.

Chapter 15 Developing UltraLite Java Applications

339

The UltraLite Java sample application
This section describes how to compile and run the UltraLite Java version of
the CustDB sample application.

The sample application is provided in the Samples\UltraLite\CustDB\java
subdirectory of your SQL Anywhere directory.

The applet version of the sample uses the Sun appletviewer to view the file
custdb.html, which contains a simple <APPLET> tag.

The appletviewer security restrictions require the applet to be downloaded
from a Web server, rather than to be run from the file system, for socket
connections to be permitted and synchronization to succeed.

The application version of CustDB persists its data to a file, while the applet
version does not use persistence.

$ For a walkthrough of the C/C++ version of the application, which has
very similar features, see "Tutorial: A Sample UltraLite Application" on
page 15.

The UltraLite Java sample files

The code for the UltraLite Java sample application is held in the
Samples\UltraLite\CustDB\java subdirectory of your SQL Anywhere
directory.

The directory holds the following files:

♦ Data access code The file CustDB.java holds the UltraLite-specific
data access logic. The SQL statements are stored in SQL.sql.

♦ User interface code The files DialogDelOrder.java, Dialogs.java,
DialogNewOrder.java, and DialogUserID.java all hold user interface
features.

♦ readme.txt A text file containing detailed, release-dependent
information about the sample.

♦ Subdirectories There are two subdirectories in which you can run the
sample. These are java11 (for Java 1) and java13 (for Java 2). You
should make the former your current directory if you are using a 1.1.x
version of the JDK, and the latter if you are using 1.2.x or later. These
subdirectories contain batch files to run the samples. In each directory,
the batch files depend on the JAVA_HOME environment variable,
which should be set to the directory containing the JDK. For example:

The UltraLite Java sample application

340

SET JAVA_HOME=c:\jdk1.3.1

♦ Batch files to build the application The files build.bat and clean.bat
compile the application and delete all files except the source files,
respectively.

♦ Files to run the sample as an application The Application.java file
contains instructions necessary for running the example as a Java
application, and run.bat runs the sample application.

♦ Files to run the sample as an applet The Applet.java file contains
instructions necessary for running the example as a Java applet, and
avapplet.bat runs the sample applet using the appletviewer, with
custdb.html as the Web page.

You must install and start a Web server to run the sample as an applet. The
applet can be run using the appletviewer utility or by using a Web browser.
For more information, see the Samples\UltraLite\CustDB\Java\readme.txt
file.

Building the UltraLite Java sample

This section describes how to build the UltraLite Java sample application for
the Sun Java 1 or 2 environment.

v To build the UltraLite Java sample:

1 Ensure you have the right JDK.

You must have JDK 1.1 or JDK 1.3 to build the sample application, and
the JDK tools must be in your path.

2 Open a command prompt.

3 Change to the Samples\UltraLite\CustDB\java\java13 subdirectory of
your SQL Anywhere directory, or the java11 directory if you are using
Java 1.

4 Build the sample:

♦ Set the JAVA_HOME environment variable. For example:

SET JAVA_HOME=c:\jdk1.3.1

 ♦ From the command prompt, enter the following command:

build

The build procedure carries out the following operations:

♦ Loads the SQL statements into the UltraLite sample database.

Chapter 15 Developing UltraLite Java Applications

341

This step uses Interactive SQL, the SQL.sql file, and relies on the
UltraLite 8.0 Sample data source.

♦ Generates the Java database class custdb.Database.

This step uses the UltraLite generator and the UltraLite 8.0 Sample
data source.

♦ Compiles the Java files.

This step uses the JDK compiler (javac) and jar utility.

Running the UltraLite Java sample

You can run the sample application as a Java application or as an applet. In
either case, you need to prepare to run the sample by starting the MobiLink
synchronization server running on the same machine that the application is
running on.

v To prepare to run the sample:

♦ Start the MobiLink synchronization server running on the UltraLite
sample database:

From the Start menu, choose Programs➤Sybase
SQL Anywhere 8➤MobiLink➤Synchronization Server Sample.

v To run the sample as an application:

1 Open a command prompt in the Samples\UltraLite\CustDB\java\java13
directory (or the java11 directory if you are using Java 1).

2 Run the sample:

♦ Set the JAVA_HOME environment variable. For example:

SET JAVA_HOME=c:\jdk1.3.1

♦ Enter the following command:

run

The application starts and the Enter ID dialog is displayed.

3 Enter the employee ID.

Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. If you have
run the sample as either an application or applet before, there is data in
the database.

The UltraLite Java sample application

342

4 If there is no data in the database, synchronize.

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

You can now carry out operations on the data in the database.

$ For more information on the sample database and the UltraLite features
it demonstrates, see "Tutorial: A Sample UltraLite Application" on page 15.

v To run the sample as an applet using appletviewer:

1 Start a Web server and ensure that the appropriate subdirectory is
configured as the default directory for the server, or as one of the virtual
directories.

2 Open a command prompt in the UltraLite\samples\CustDB\java\java13
directory, or java11 if you are using Java 1.

3 Enter the following command:

avapplet

The applet starts and a field to enter an employee ID is displayed.

4 Enter the employee ID.

Enter an employee ID of 50, and click OK.

The UltraLite Customer Demonstration window is displayed. The first
time you run the sample, there is no data in the database. If you have run
the sample as either an application or applet before, there is data in the
database.

5 Synchronize the application:

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

You can now carry out operations on the data in the database.

v To run the sample as an applet using A Web browser:

1 Start a Web server and ensure that the appropriate subdirectory is
configured as the default directory for the server, or as one of the virtual
directories.

2 Start a Web browser and enter the URL for the
Samples\UltraLite\CustDB\java\custdb.htm file into the browser.

The applet starts and a field to enter an employee ID is displayed.

3 Enter the employee ID.

Enter an employee ID of 50, and click OK.

Chapter 15 Developing UltraLite Java Applications

343

The UltraLite Customer Demonstration window is displayed. The first
time you run the sample, there is no data in the database. If you have run
the sample as either an application or applet before, there is data in the
database.

4 Synchronize the application:

From the Actions menu, choose Synchronize. The application
synchronizes, and the window displays an order.

$ For more information on the sample database and the UltraLite features
it demonstrates, see "Tutorial: A Sample UltraLite Application" on page 15.

You can delete all compiled files, the sample database, and the generated
code by running the clean.bat file.

Resetting the
sample

Connecting to and configuring your UltraLite database

344

Connecting to and configuring your UltraLite
database

This section describes how to connect to an UltraLite database. It describes
the recommended UltraLite method for connecting to your database, and also
how you can use the standard JDBC connection model to connect.

Connections to UltraLite databases have no user IDs or passwords. For more
information, see "User authentication for UltraLite databases" on page 442.

In multi-threaded applications, connections cannot be shared among threads.

UltraLite Java databases can be persistent (stored in a file when the
application closes) or transient (the database vanishes when the application
is closed). By default, they are transient.

You configure the persistence of your UltraLite database when connecting to
it. This section describes how to configure your UltraLite database.

Using the UltraLite JdbcDatabase.connect method

The generated UltraLite database code is in the form of a class that extends
JdbcDatabase, which has a connect method that establishes a connection.

The following example illustrates typical code, for a generated database class
called SampleDB:

try {
SampleDB db = new SampleDB();
java.sql.Connection conn = db.connect();

} catch(SQLException e){
// error processing here
}

The generated database class is supplied on the UltraLite generator command
line, using the -f option.

If you wish to use a persistent database, the characteristics are specified on
the connection as a Properties object. The following example illustrates
typical code:

java.util.Properties p = new java.utils.Properties();
p.put("persist", "file");
p.put("persistfile", "c:\\dbdir\\database.udb");
SampleDB db = new SampleDB(p);
java.sql.Connection conn = db.connect();

The Properties are used on the database constructor. You cannot change the
persistence model of the database between connections.

Chapter 15 Developing UltraLite Java Applications

345

The two properties specify that the database is persistent, and is stored in the
file c:\dbdir\database.udb.

$ For more information on the properties you can specify in the URL, see
"UltraLite JDBC URLs" on page 346.

$ For more information see "Configuring the UltraLite Java database" on
page 348, and "The generated database class" on page 373.

Loading and registering the JDBC driver

The UltraLite JdbcDatabase.connect() method discussed in the previous
section provides the simplest method of connecting to an UltraLite database.
However, you can also establish a connection in the standard JDBC manner,
and this section describes how to do so.

UltraLite applications connect to their database using a JDBC driver, which
is included in the UltraLite runtime classes (ulrt.jar). You must load and
register the JDBC driver in your application before connecting to the
database. Use the Class.forName() method to load the driver. This method
takes the driver package name as its argument:

Class.forName("ianywhere.ultralite.jdbc.JdbcDriver");

The JDBC driver automatically registers itself when it is loaded.

Although there is typically only one driver registered in each application,
you can load multiple drivers in one application. Load each driver using the
same methods as above. The DriverManager decides which driver to use
when connecting to the database.

The DriverManager.getDriver(url) method returns the Driver for the
specified URL.

To handle the case where the driver cannot be found, catch
ClassNotFoundException as follows:

try{
Class.forName(

"ianywhere.ultralite.jdbc.JdbcDriver");
} catch(ClassNotFoundException e){

System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}

Connecting to the database using JDBC

Once the driver is declared, you can connect to the database using the
standard JDBC DriverManager.getConnection method.

Loading multiple
drivers

getDriver method

Error handling

Connecting to and configuring your UltraLite database

346

The JDBC DriverManager.getConnection method has several prototypes.
These take the following arguments:

DriverManager.getConnection(String url, Properties info)

DriverManager.getConnection(String url)

The UltraLite driver supports each of these prototypes. The arguments are
discussed in the following sections.

The DriverManager class maintains a list of the Driver classes that are
currently loaded. It asks each driver in the list if it is capable of connecting to
the URL. Once such a driver is found, the DriverManager attempts to use it
to connect to the database.

To handle the case where a connection cannot be made, catch the
SQLException as follows:

try{
Class.forName(

"ianywhere.ultralite.jdbc.JdbcDriver");
Connection conn = DriverManager.getConnection(

"jdbc:ultralite:asademo");
} catch(SQLException e){
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();
}

UltraLite JDBC URLs

The URL is a required argument to the DriverManager.getConnection
method used to connect to UltraLite databases.

$ For an overview of connection methods, see "Connecting to the
database using JDBC" on page 345.

The syntax for UltraLite JDBC URLs is as follows:

jdbc:ultralite:[database:persist:persistfile][;option=va
lue...]

The components are all case sensitive, and have the following meanings:

♦ jdbc Identifies the driver as a JDBC driver. This is mandatory.

♦ ultralite Identifies the driver as the UltraLite driver. This is mandatory.

♦ database The class name for the database. It is required and must be a
fully-qualified name: if the database class is in a package, you must
include the package name.

getConnection
prototypes

Driver Manager

Error handling

Chapter 15 Developing UltraLite Java Applications

347

For example, the URL jdbc:ultralite:MyProject causes a class
named MyProject to be loaded.

As Java classes share their name with the .java file in which they are
defined, this component is the same as the output file parameter from the
UltraLite generator.

$ For more information, see "The UltraLite generator" on page 419.

♦ persist Specifies whether or not the database should be persistent. By
default, it is transient.

$ For more information, see "Configuring the UltraLite Java
database" on page 348.

♦ persistfile For persistent databases, specifies the filename.

$ For more information, see "Configuring the UltraLite Java
database" on page 348. The UltraLite Java properties are very similar to
those for C/C++ applications. Their names differ only in the absence of
underscore characters., except that persistfile is analogous to file_name.
See "UL_STORE_PARMS macro" on page 428.

♦ options The following options are provided:

♦ uid A user ID.

♦ pwd A password for the user ID.

Alternatively, you can connect using a Properties object. The following
properties may be specified. Each have the same meaning as in the explicit
URL syntax above:

♦ database

♦ persist

♦ persistfile

♦ user

♦ password

Using a Properties object to store connection information

You can use a Properties object to store connection information, and supply
this object as an argument to getConnection along with the URL.

$ For an overview of connection methods, see "Connecting to the
database using JDBC" on page 345.

Connecting to and configuring your UltraLite database

348

The following components of the URL, described in "UltraLite JDBC URLs"
on page 346, can be supplied either as part of the URL or as a member of a
Properties object.

♦ persist

♦ persistfile

The jdbc:ultralite components must be supplied in the URL.

If you wish to encrypt your database, you can do so by supplying a key
property. For more information, see "Encrypting UltraLite databases" on
page 45.

Connecting to multiple databases

UltraLite Java applications can connect to more than one database, unlike
UltraLite C/C++ applications.

To connect to more than one database, simply create more than one
connection object.

$ For more information see "Connecting to the database using JDBC" on
page 345.

Configuring the UltraLite Java database

You can configure the following aspects of the UltraLite Java database:

♦ Whether the database is transient or persistent.

♦ If the database is persistent, you can supply a filename.

♦ If the database is transient, you can supply a URL for an initializing
database.

♦ You can set an encryption key.

These aspects can be configured by supplying special values in the database
URL, or by supplying a Properties object when creating the database. The
encryption key cannot be set on the URL, but must be set in a Properties
object.

$ For more information, see "Using the UltraLite JdbcDatabase.connect
method" on page 344, and "Using a Properties object to store connection
information" on page 347.

Chapter 15 Developing UltraLite Java Applications

349

By default, UltraLite Java databases are transient: they are initialized when
the database object is instantiated, and vanish when the application closes
down. The next time the application starts, it must reinitialize a database.

You can make UltraLite Java databases persistent by storing them in a file.
You do this by specifying the persist and persistfile elements of the JDBC
URL, or by supplying persist and persistfile Properties to the database
connect method.

The database for C/C++ UltraLite applications is initialized on the first
synchronization call. For UltraLite Java applications that use a transient
database, there is an alternative method of initializing the database. The URL
for an UltraLite database that is used as the initial database is supplied in the
persistfile component to the URL.

The database configuration components of the URL are as follows:

♦ persist This can take one of the following values:

♦ none In this case, the database is transient. It is stored in memory
while the application runs, but vanishes once the application
terminates.

♦ file In this case, the database is stored as a file. The default
filename is database.udb, where database is the database class
name.

The default setting is none.

♦ persistfile The meaning of this component depends on the setting for
persist.

♦ If the persist component has a value of none, the persistfile
component is a URL for an UltraLite database file that is used to
initialize the database.

Both the schema and the data from the URL are used to initialize
the application database, but there is no further connection between
the two. Any changes made by your application apply only to the
transient database, not to the initializing database.

The following JDBC URL is an example:

jdbc:ultralite:transient:none:http://www.address.com/transient.udb

You can prepare the initializing database with an application that
uses the persistent form of the URL to create the database,
synchronize, and exit.

Transient and
persistent
databases

Initializing transient
databases

Configuring the
database

Connecting to and configuring your UltraLite database

350

♦ If the persist component has a value of file, the persistfile
component is a filename for the persistent UltraLite database. The
filename should include any extension (such as .udb) that you wish
to use.

Chapter 15 Developing UltraLite Java Applications

351

Including SQL statements in UltraLite Java
applications

This section describes how to add SQL statements to your UltraLite
application.

$ For information on SQL features that can and cannot be used in
UltraLite application, see "SQL features and limitations of UltraLite
applications" on page 437.

The SQL statements to be used in your application must be added to the
reference database. The UltraLite generator writes out an interface that
defines these SQL statements as public static final strings. You invoke the
statements in your application by implementing the interface and referencing
the SQL statement by its identifier, or by referencing it directly from the
interface.

The SQL statements to be included in the UltraLite application, and the
structure of the UltraLite database itself, are defined by adding the SQL
statements to the reference database for your application.

$ For information on reference databases, see "Preparing a reference
database" on page 72.

Each SQL statement stored in the reference database is associated with a
project. A project is a name, defined in the reference database, which groups
the SQL statements for one application. You can store SQL statements for
multiple applications in a single reference database by defining multiple
projects.

$ For information on creating projects, see "Creating an UltraLite
project" on page 80.

The data access statements you are going to use in your UltraLite application
must be added to your project.

$ For information on adding SQL statements to your database, see
"Adding SQL statements to an UltraLite project" on page 81.

Defining the SQL
statements for your
application

Defining projects

Adding statements
to your project

Adding synchronization to your application

352

Adding synchronization to your application
This section describes how to initiate synchronization from an UltraLite Java
application.

The synchronization logic that keeps UltraLite applications up to date with
the consolidated database is not held in the application itself.
Synchronization scripts stored in the consolidated database, together with the
MobiLink synchronization server and the UltraLite runtime library, control
how changes are processed when they are uploaded and determines which
changes are to be downloaded.

Call the JdbcConnection.synchronize() method to initiate synchronization
in an UltraLite application. The synchronization process can only work if the
device running the UltraLite application is able to communicate with the
synchronization server. For some platforms, this means that the device needs
to be physically connected by placing it in its cradle or by attaching it to a
server computer using a cable. You need to add error handling code to your
application in case the synchronization cannot be carried out.

$ UltraLite Java applications synchronize in a very similar fashion to
other UltraLite applications. For general information about synchronization,
see "Adding synchronization to your application" on page 94.

Initializing the synchronization options

The details of any synchronization, including the URL of the MobiLink
synchronization server, the script version to use, the MobiLink user ID, and
so on, are all held in a UlSynchOptions object.

Before synchronizing, initialize the synchronization parameters as follows:

UlSynchOptions opts = new UlSynchOptions();

The UlSynchOptions() object has a set of methods to set and get its fields.
For a list, see "Synchronization parameters" on page 380. Use these methods
to set the required synchronization parameters before synchronizing. For
example:

opts.setUserName("50");
opts.setScriptVersion("default");
opts.setStream(new UlSocketStream());

The synchronization streams for UltraLite Java applications are objects, and
are set by their constructors. The available streams are as follows:

♦ UlSocketStream TCP/IP synchronization

Notes

Chapter 15 Developing UltraLite Java Applications

353

♦ UlSecureSocketStream TCP/IP synchronization with Certicom
elliptic-curve transport-layer security.

♦ UlSecureRSASocketStream TCP/IP synchronization with Certicom
RSA transport-layer security.

♦ UlHTTPStream HTTP synchronization.

♦ UlHTTPSStream HTTPS synchronization.

The following line sets the stream to TCP/IP:

synch_opts.setStream(new UlSocketStream());

$ For more information, see "Synchronization parameters" on page 380.

Separately-licensable option required
Use of UlHTTPSStream, UlSecureSocketStream and
UlSecureRSASocketStream require Certicom technology, which in turn
requires that you obtain the separately-licensable SQL Anywhere Studio
security option and is subject to export regulations. For more information
on this option, see "Welcome to SQL Anywhere Studio" on page 4 of the
book Introducing SQL Anywhere Studio.

Initiating synchronization

Once you have initialized the synchronization parameters, and set them to
the values needed for your application, you can initiate synchronization using
the JdbcConnection.synchronize() method.

The method takes a UlSynchOptions object as argument. The set of calls
needed to synchronize is as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setScriptVersion("default");
opts.setStream(new UlSocketStream());
opts.setStreamParms("host=123.45.678.90");
conn.synchronize(opts);

Using transport-layer security from UltraLite Java applications

For additional security during synchronization, you can use transport-layer
security encrypt messages as they pass between UltraLite application and the
consolidated database.

Adding synchronization to your application

354

$ For information about encryption technology, see "Transport-Layer
Security" on page 283 of the book MobiLink Synchronization User’s Guide.

Transport-layer security from UltraLite Java client applications uses a
separate synchronization stream. You must set up your MobiLink
synchronization server as well as your UltraLite client to use this
synchronization stream.

At the client, you need to choose the UlSecureSocketStream or
UlSecureRSASocketStream synchronization stream, and supply a set of
stream parameters. The stream parameters include parameters that control
security.

Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setStream(new UlSecureSocketStream());
opts.setStreamParms("host=myserver;"

+ "port=2439;"
+ "certificate_company=Sybase Inc.;"
+ "certificate_unit="MEC;"
+ "certificate_name=Mobilink");

// set other options here
conn.synchronize(opts);

$ For details on the stream parameters, see "UlSecureSocketStream
synchronization parameters" on page 409.

As the secure synchronization streams for Java applications are separate
streams, you must ensure that the MobiLink synchronization server is
listening for it. To do this, you must supply the java_certicom_tls or
java_rsa_tls synchronization streams, to match your choice on the client.

The following command line is an example:

dbmlsrv8 -x java_certicom_tls(certificate=mycertificate.crt;port=1234)

The security parameters for the java_certicom_tls and java_rsa_tls streams
are as follows:

♦ certificate The name of the certificate file that contains the server’s
identity. This file needs to include the server’s certificate, the
certificates of all the certificate authorities in the certificate signing
chain, and the server’s private key.

The certificate parameter defaults to sample.crt for java_certicom_tls
and rsaserver.crt for java_rsa_tls, which is the default identity for
MobiLink. These files are distributed with SQL Anywhere Studio, in the
same directory as the MobiLink server.

♦ certificate_password The password used to encrypt the private key in
the certificate file.

Client changes

Setting up the
MobiLink server

Chapter 15 Developing UltraLite Java Applications

355

The default is the password for the private key in sample.crt and
rsaserver.crt, which is test.

Monitoring and canceling synchronization

356

Monitoring and canceling synchronization
UltraLite provides the following features for monitoring synchronization:

♦ The UlSynchObserver interface for monitoring synchronization
progress and for canceling synchronization.

♦ A progress indicator component that implements the interface, which
you can add to your application.

To monitor synchronization from an UltraLite Java application, you write a
class that implements the UlSynchObserver interface. This interface
contains a single method:

void updateSynchronizationStatus(UlSynchStatus status)

The overall process for monitoring synchronization is as follows:

♦ Register your UlSynchObserver object using the UlSynchOptions
class.

♦ Call the synchronize() method to synchronize.

♦ The updateSynchronizationStatus method of your observer class is
called whenever the synchronization state changes. The following
section describes the synchronization state.

Here is a typical sequence of instructions for synchronization. In this
example, the class MyObserver implements the UlSynchObserver
interface:

UlSynchObserver observer = new MyObserver ();
UlSynchOptions opts = new UlSynchOptions();
// set options
opts.setUserName("mluser");
opts.setPassword("mlpwd");
opts.setStream(new UlSocketStream());
opts.setStreamParms("localhost");
opts.setObserver(observer);
opts.setUserData(myDataObject);
// synchronize
conn.synchronize(opts);

Implementing the UlSynchObserver interface

In the class that implements UlSynchObserver, the UlSynchStatus object
holds synchronization information. This object is filled by UltraLite with
synchronization status information each time your
updateSynchronizationStatus method is called.

Monitoring
synchronization

Example

Chapter 15 Developing UltraLite Java Applications

357

The UlSynchStatus object has the following methods:

int getState()
int getTableCount()
int getTableIndex()
Object getUserData()
UlSynchOptions getSynchOptions()
UlSqlStmt getStatement()
int getErrorCode()
boolean isOKToContinue()
void cancelSynchronization()

These methods have the following meanings:

♦ getState Returns a constant indicating the state of the synchronization.
The constant is one of the following values:

♦ STARTING No synchronization actions have yet been taken.

♦ CONNECTING The synchronization stream has been built, but not
yet opened.

♦ SENDING_HEADER The synchronization stream has been
opened, and the header is about to be sent.

♦ SENDING_TABLE A table is being sent.

♦ RECEIVING_UPLOAD_ACK An acknowledgement that the
upload is complete is being received.

♦ RECEIVING_TABLE A table is being received.

♦ SENDING_DOWNLOAD_ACK An acknowledgement that
download is complete is being sent.

♦ DISCONNECTING The synchronization stream is about to be
closed.

♦ DONE Synchronization has completed successfully.

♦ ERROR Synchronization has completed, but with an error.

$ For a description of the synchronization process, see "The
synchronization process" on page 24 of the book MobiLink
Synchronization User’s Guide.

♦ getTableCount Returns the number of tables being synchronized. For
each table there is a sending and receiving phase.

♦ getTableIndex Returns the current table index for sending and
receiving, starting at 0.

♦ getUserData Returns the user data object.

♦ getSynchOptions Returns the UlSynchOptions object.

UlSynchStatus
methods

Monitoring and canceling synchronization

358

♦ getStatement Returns the statement that called the synchronization.
The statement is an internal UltraLite statement, and this method is
unlikely to be of practical use, but is included for completion.

♦ getErrorCode When the synchronization state is set to ERROR, this
method returns a diagnostic error code.

♦ isOKToContinue This is set to false when cancelSynchronization is
called. Otherwise, it is true.

♦ cancelSynchronization The SQL exception SQLE_INTERRUPTED
is set, and the synchronization stops as if a communications error had
occurred. The observer is always called with either the DONE or
ERROR state so that it can do proper cleanup.

The following code snippet illustrates a very simple observer:

void updateSynchronizationStatus(UlSynchStatus status)
{
 int state = status.getState();
 System.out.println("Sync status: " + state);
 if(state == UlSynchStatus.SENDING_TABLE ||
 state == UlSynchStatus.RECEIVING_TABLE){
 System.out.println("send/receive table " +
 (status.getTableIndex() + 1) +
 " of " + status.getTableCount());
 }
}

Using the progress viewer

The UltraLite runtime library includes two progress viewer classes, which
provide an implementation of synchronization monitoring, together with the
ability for end users to cancel synchronization. The progress viewer classes
are as follows:

♦ ianywhere.ultralite.ui.SynchProgressViewer A heavyweight AWT
version.

♦ ianywhere.ultralite.ui.SynchProgressViewer A Swing version of the
viewer that respects the Swing threading model.

The two classes are used identically. The viewer displays a modal or
modeless dialog, which shows a series of messages and a progress bar. Both
the messages and the bar are updated during synchronization. The viewer
also provides a Cancel button. If the user clicks the Cancel button,
synchronization stops and the SQL exception SQLE_INTERRUPTED is
thrown.

Example

Chapter 15 Developing UltraLite Java Applications

359

In a Java application, all events occur on a single thread called the event
thread. Also, all user interface objects are created on the event thread, even
if the application is on a different thread at the time. There is only one event
thread in an application.

The event thread must never block. Consequently, you should not perform
long operations on the event thread, as this leads to painting aberrations.
Even calling the show() method on a modal dialog suspends execution of the
event thread. You must therefore avoid calling the synchronize() method on
the event thread.

The following code snippet illustrates how to invoke a modal instance of the
viewer. The import statement uses the AWT version:

import ianywhere.ultralite.ui.SynchProgressViewer;
// create a frame to display a dialog
java.awt.Frame frame = ...;
// get UltraLite connection
Connection conn = ...;
// set synchronization options
UlSynchOptions options = new UlSynchOptions();
options.setUserName("my_user");
…
// create the viewer
SynchProgressViewer viewer = new SynchProgressViewer(frame);
viewer.synchronize(frame, options);
// execution stops here until synchronization is complete

When invoked in this manner, the viewer carries out the following
operations:

1 registers itself as a synchronization observer,

2 spawns a thread to do the synchronization,

3 displays itself, blocking the current thread.

4 When synchronization finishes, the observer callback disposes of the
dialog, which lets the thread continue.

The following code snippet illustrates how to invoke a modeless instance of
the viewer:

Threading issues

Displaying a modal
viewer

Displaying a
modeless viewer

Monitoring and canceling synchronization

360

SynchProgressViewer viewer = new SynchProgressViewer(frame, false);
options.setObserver(viewer);
conn.synchronize(options);

In this case, you must ensure that the synchronization occurs on a thread
other than the event thread, so that the viewer is not blocked.

♦ All messages come from the SynchProgressViewerResources resource
bundle.

♦ The viewer implements the UlSynchObserver interface so it can hook
into the synchronization process.

♦ The CustDB sample application includes a progress viewer. The CustDB
sample code is in the UltraLite\samples\CustDB\java subdirectory of
your SQL Anywhere directory.

Notes

Chapter 15 Developing UltraLite Java Applications

361

UltraLite Java development notes
This section provides notes for development of UltraLite Java applications.

Creating UltraLite Java applets

If you create your JDBC program as an applet, your application can only
synchronize with the machine from which the applet is loaded, which is
usually the same as the HTML.

The following is a sample HTML page used to create an UltraLite applet:

<html>
<head>
</head>
<body bgcolor="FFFF00">

<applet code="CustDbApplet.class" width=440
height=188 archive="custdb.zip,ulrt.jar" >

</applet>
</body>

</html>

The applet tag specifies the following:

♦ The class that the applet starts:

code="CustDbApplet.class"

♦ The size of the window in the web browser to display the applet to.

width=440 height=188

♦ The zip files that are necessary in order to run the applet.

archive="custdb.zip,ulrt.jar"

In this case, the custdb.zip file and the UltraLite runtime zip file are
necessary in order to run the UltraLite CustDB sample application.

Including an applet
in an HTML page

Building UltraLite Java applications

362

Building UltraLite Java applications
This section covers the following subjects:

♦ "Generating UltraLite Java classes" on page 362

♦ "Compiling UltraLite Java applications" on page 363

Generating UltraLite Java classes

When you have prepared a reference database, defined an UltraLite project
for your application, and added SQL statements to define your data access
features, all the information the generator needs is inside your reference
database.

$ For general information on the UltraLite generator, see "Generating the
UltraLite data access code" on page 91. For command-line options, see "The
UltraLite generator" on page 419.

The generator output is a Java source file with a filename of your choice.
Depending on the design of your database and the sophistication of the
database functionality your application requires, this file can vary greatly in
both size and content.

There are several ways to customize the UltraLite generator output,
depending on the nature of your application.

You generate the classes by running the UltraLite generator against the
reference database.

v To run the UltraLite generator:

♦ Enter the following command at a command-prompt:

ulgen –c " connection-string" options

where options depend on the specifics of your project.

When you are generating Java code, there are several options you may want
to specify:

♦ -t java Generate Java code. The generator is the same tool used for
C/C++ development, so this option is required for all Java use.

♦ -i Some Java compilers do not support inner classes correctly, and so
the default behavior of the generator is not to generate Java code that
includes inner classes. If you wish to take advantage of a compiler that
does support inner classes, use this option.

Overview

Common
command-line
combinations

Chapter 15 Developing UltraLite Java Applications

363

♦ -p It is common to include your generated classes in a package, which
may include other classes from your application. You can use this switch
to instruct the generator to include a package name for the classes in the
generated files

♦ -s In addition to the code for executing the SQL statements, generate
the SQL statements themselves as an interface. Without this option, the
strings are written out as members of the database class itself.

♦ -a Make SQL string names upper case. If you choose the –a option,
the identifier used in the generated file to represent each SQL statement
is derived from the name you gave the statement when you added it to
the database. It is a common convention in Java to use upper case letters
to represent constants. As the SQL string names are constants in your
Java code, you should use this option to generate string identifiers that
conform to the common convention.

♦ The following command (which should be all on one line) generates
code that represents the SQL statements in the CustDemo project, and
the required database schema, with output in the file uldemo.java.

ulgen -c "dsn=Ultralite 8.0 Sample;uid=DBA;pwd=SQL"
–a -t java -s IStatements CustDemo uldemo.java

Compiling UltraLite Java applications

v To compile the generated file:

1 Set your classpath

When you compile your UltraLite Java application, the Java compiler
must have access to the following classes:

♦ The Java runtime classes.

♦ The UltraLite runtime classes

♦ The target classes (usually in the current directory).

The following classpath gives access to these classes.

%JAVA_HOME%\jre\lib\rt.jar;%ASANY8%\ultralite\java\l
ib\ulrt.jar;.

where JAVA_HOME represents your Java installation directory, and
ASANY8 represents your SQL Anywhere installation directory.

For JDK 1.1 development, ulrt.jar is in a jdk11\lib subdirectory of the
UltraLite\java directory.

2 Compile the classes.

Example

Building UltraLite Java applications

364

With the classpath set as in step one, use javac and enter the following
command (on a single line):

javac file.java

The compiler creates the class files for file.java.

The compilation step produces a number of class files. You must include all
the generated .class files in your deployment.

Deploying Java applications

Your UltraLite application consists of the following:

♦ Class files you created to implement your application.

♦ Generated class files.

♦ The Java core classes (rt.jar).

♦ UltraLite runtime JAR file (ulrt.jar).

Your UltraLite application can be deployed in whatever manner is
appropriate. You may wish to package together these class files in a JAR file,
for ease of deployment.

Your UltraLite application automatically initializes its own database the first
time it is invoked. At first, your database will contain no data. You can add
data explicitly using INSERT statements in your application, or you can
import data from a consolidated database through synchronization. Explicit
INSERT statements are especially useful when developing prototypes.

$ For more information, see "Adding synchronization to your
application" on page 352.

Chapter 15 Developing UltraLite Java Applications

365

UltraLite API reference
This section describes extensions to the JDBC interface provided by
UltraLite, and also describes JDBC features unsupported in UltraLite.

JDBC features in UltraLite

The following are features and limitations specific to the development of
JDBC UltraLite applications.

The UltraLite API is modeled on JDBC 1.2, with the addition of the
following ResultSet methods from JDBC 2.0:

♦ absolute(),

♦ afterLast(),

♦ beforeFirst(),

♦ first(),

♦ isAfterLast(),

♦ isBeforeFirst(),

♦ isFirst(),

♦ isLast(),

♦ last(),

♦ previous(),

♦ relative()

The following features are incompatible with the UltraLite development
model and are not supported by UltraLite.

♦ There is only limited support for metadata access (system table access).
Therefore, you cannot use the DatabaseMetaData Interface. Metadata
access is limited to the number and type of columns.

♦ Java objects cannot be stored in the database

♦ There is no support for stored procedures or stored functions.

♦ Only static SQL statements are supported and they must be added to the
database so that the UltraLite generator can generate them.

UltraLite API reference

366

Unsupported JDBC methods

UltraLite does not support the following JDBC 1.2 methods. An attempt to
use any of the following methods results in a SQLException with a vendor
code indicating that the feature is not supported in UltraLite.

♦ getCatalog

♦ getMetaData

♦ getTransactionIsolation

♦ setCatalog

♦ setTransactionIsolation

ResultSet interface

♦ getMetaData

♦ cancel

♦ getMaxFieldSize

♦ getMaxRows

♦ setMaxFieldSize

♦ setMaxRows

Class JdbcConnection

ianywhere.ultralite.jdbc

Represents an UltraLite database connection. Most methods are inherited
from the JDBC Connection class. Unsupported methods throw an
unsupported feature exception.

In a multi-threaded application, each thread must obtain a separate
connection. For more information, see "Developing multi-threaded
applications" on page 93.

getDefragIterator method

JdbcDefragIterator getDefragIterator()

Initializes and returns a defragmentation iterator.

user_name The MobiLink user name. See "user_name synchronization
parameter" on page 397.

Connection
interface

Statement
interface

Package

Description

Prototype

Description

Parameters

Chapter 15 Developing UltraLite Java Applications

367

password The password associated with user_name. See "password
synchronization parameter" on page 384.

script_version The script version. See "version synchronization
parameter" on page 397.

stream_defn The stream to use for synchronization. See "stream
synchronization parameter" on page 389.

parms Any user-supplied parameters used for the synchronization.

$ See "stream_parms synchronization parameter" on page 394, and
"Synchronization stream parameters" on page 399.

The defragmentation iterator.

java.sql.SQLException

"Defragmenting UltraLite databases" on page 51

getLastIdentity method

long getLastIdentity()

Returns the most recent identity value used. This function is equivalent to the
following SQL statement:

SELECT @@identity

The function is particularly useful in the context of global autoincrement
columns.

The last identity value.

"Determining the most recently assigned value" on page 61
"Global autoincrement default column values" on page 58

globalAutoincUsage method

short globalAutoincUsage()

Returns the maximum global autoincrement counter percentage of all tables
in the database. The value is useful when deciding whether to set a database
ID.

The percentage of global autoincrement values that have been used.

java.sql.SQLException

"Global autoincrement default column values" on page 58
"setDatabaseID method" on page 368

Returns

Throws

See also

Prototype

Description

Returns

See also

Prototype

Description

Returns

Throws

See also

UltraLite API reference

368

setDatabaseID method

void setDatabaseID(int value)

Sets the

value The integer value to use as the global database identifier.

java.sql.SQLException

"Global autoincrement default column values" on page 58
"globalAutoincUsage method" on page 367

synchronize method

void synchronize(
java.lang.String user_name,
java.lang.String password,
java.lang.String script_version,
UlStream stream_defn,
java.lang.String parms)

Synchronizes data with a MobiLink synchronization server.

user_name The MobiLink user name. See "user_name synchronization
parameter" on page 397.

password The password associated with user_name. See "password
synchronization parameter" on page 384.

script_version The script version. See "version synchronization
parameter" on page 397.

stream_defn The stream to use for synchronization. See "stream
synchronization parameter" on page 389.

parms Any user-supplied parameters used for the synchronization.

$ See "stream_parms synchronization parameter" on page 394, and
"Synchronization stream parameters" on page 399.

java.sql.SQLException

startSynchronizationDelete method

void startSynchronizationDelete()

Restart logging of deletes for MobiLink synchronization

java.sql.SQLException

Prototype

Description

Parameters

Throws

See also

Prototype

Description

Parameters

Throws

Prototype

Description

Throws

Chapter 15 Developing UltraLite Java Applications

369

"START SYNCHRONIZATION DELETE statement [MobiLink]" on
page 556 of the book ASA SQL Reference Manual

stopSynchronizationDelete method

void stopSynchronizationDelete()

Prevent logging of deletes for MobiLink synchronization.

java.sql.SQLException

"STOP SYNCHRONIZATION DELETE statement [MobiLink]" on
page 563 of the book ASA SQL Reference Manual

Class JdbcDatabase

ianywhere.ultralite.jdbc

The JdbcDatabase is used directly only for obfuscating databases. The
generated database class extends JdbcDatabase and provides an object that
represents the UltraLite database. Most JdbcDatabase methods are used from
the generated database class.

$ For more information, see "The generated database class" on page 373.

changeEncryptionKey method

Connection changeEncryptionKey()

Changes the encryption key for an UltraLite database.

A JDBC Connection object.

java.sql.SQLException

"Encrypting UltraLite databases" on page 45

close method

void close()

Closes all connections to an UltraLite database. This method must be
executed before an UltraLite database can be deleted.

void

java.sql.SQLException

See also

Prototype

Description

Throws

See also

Package

Description

Prototype

Description

Returns

Throws

See also

Prototype

Description

Returns

Throws

UltraLite API reference

370

connect method

Connection connect()

Connection connect(String user, String password)

Connection connect(String user, String password, Properties info)

Connects to an UltraLite database. The user name and password are checked
only when user authentication has been enabled with
JdbcSupport.enableUserAuthentication.

user A user name that can connect to the database.

password A string that must be entered as a password when connecting.

info A Properties object holding the user name and password.

A JDBC Connection object.

java.sql.SQLException

countUploadRows method

long countUploadRows(UlSqlStmt stmt, int mask, long threshold)

Returns the number of rows that need to be uploaded when the next
synchronization takes place.

You can use this function to determine if a synchronization is needed.

stmt The statement for which the upload rows are to be counted.

mask A set of publications to check. A value of 0 corresponds to the entire
database. The set is supplied as a mask. For example, the following mask
corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

The number of rows to be uploaded.

java.sql.SQLException

Prototype

Description

Parameters

Returns

Throws

Prototype

Description

Parameters

Returns

Throws

Chapter 15 Developing UltraLite Java Applications

371

drop method

void drop()

Deletes an UltraLite database file. This method should be used with care, and
can be executed only after the JdbcDatabase.close() method has been called.

void

java.sql.SQLException

"close method" on page 369

getLastDownloadTimeCalendar method

java.util.Calendar getLastDownloadTimeCalendar(UlSqlStmtint stmt, int
mask)

Returns the last time changes to the result set of a given statement were
downloaded.

stmt The statement for which the download time is to be checked.

mask A set of publications for which the last download time is retrieved.
A value of 0 corresponds to the entire database. The set is supplied as a
mask. For example, the following mask corresponds to publications PUB1
and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

The last time the statement was downloaded.

getLastDownloadTimeDate method

java.util.Date getLastDownloadTimeDate(UlSqlStmtint stmt, int mask)

Returns the last time changes to the result set of a given statement were
downloaded.

stmt The statement for which the download time is to be checked.

mask A set of publications for which the last download time is retrieved.
A value of 0 corresponds to the entire database. The set is supplied as a
mask. For example, the following mask corresponds to publications PUB1
and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

Prototype

Description

Returns

Throws

See also

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

UltraLite API reference

372

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

The last time the statement was downloaded.

getLastDownloadTimeLong method

long getLastDownloadTimeLong(UlSqlStmt stmt, int mask)

Returns the last time changes to the result set of a given statement were
downloaded.

stmt The statement for which the download time is to be checked.

mask A set of publications for which the last download time is retrieved.
A value of 0 corresponds to the entire database. The set is supplied as a
mask. For example, the following mask corresponds to publications PUB1
and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386.

The last time the statement was downloaded.

grant method

void grant(String user, String password)

Grants a user name and password permission to connect to an UltraLite
database. To take effect, this method requires that user authentication has
been enabled with JdbcSupport.enableUserAuthentication.

user A string that must be entered as a user name when connecting.

password A string that must be entered as a password when connecting.

void.

java.sql.SQLException

revoke method

void revoke(String user)

Revokes permission to connect to an UltraLite database from a user name.
To take effect, this method requires that user authentication has been enabled
with JdbcSupport.enableUserAuthentication.

Returns

Prototype

Description

Parameters

Returns

Prototype

Description

Parameters

Returns

Throws

Prototype

Description

Chapter 15 Developing UltraLite Java Applications

373

user The user name that can no longer connect to the database.

void.

java.sql.SQLException

setDefaultObfuscation method

setDefaultObfuscation (true | false)

Obfuscates the database

"Obfuscating an UltraLite database" on page 46

The generated database class

The generated database class extends JdbcDatabase. It provides an object
that represents the UltraLite database. JdbcDatabase methods are typically
used on the generated database class.

new database-name(Properties props)

where database-name is the name of the generated database class. You can
specify the class name using the UltraLite generator -f command-line
option.

$ For more information, see "The UltraLite generator" on page 419.

props A Properties object containing some or all of the following items:

♦ persist

♦ persistfile

♦ key

$ For more information, see "Using a Properties object to store
connection information" on page 347.

Class JdbcDefragIterator

ianywhere.ultralite.jdbc

Provides an object used for explicit defragmentation of the database store.

Parameters

Returns

Throws

Prototype

Description

See also

Description

Constructor

Parameters

Package

Description

UltraLite API reference

374

ulStoreDefragStep method

boolean ulStoreDefragStep(UlConnection conn)

Defragments a portion of an UltraLite database.

conn The current connection, as a JdbcConnection object.

true if successful.

false in unsuccessful.

java.sql.SQLException

"STOP SYNCHRONIZATION DELETE statement [MobiLink]" on
page 563 of the book ASA SQL Reference Manual

Class JdbcSupport

ianywhere.ultralite.jdbc

A static class that provides methods to enable UltraLite features.

enableUserAuthentication method

void enableUserAuthentication()

Sets the UltraLite database so that user authentication is required to connect
to it. Must be called before the database object is created.

None.

Void.

java.sql.SQLException

"Java user authentication example" on page 89

disableUserAuthentication method

void disableUserAuthentication()

Sets the UltraLite database so that user authentication is not required to
connect to it. Must be called before the database object is created.

None.

Void.

Prototype

Description

Parameters

Returns

Throws

See also

Package

Description

Prototype

Description

Parameters

Returns

Throws

See also

Prototype

Description

Parameters

Returns

Chapter 15 Developing UltraLite Java Applications

375

java.sql.SQLException

"enableUserAuthentication method" on page 374

Throws

See also

UltraLite API reference

376

377

P A R T F O U R

Reference

This part provides reference material that applies to more than one of the
UltraLite development models.

378

379

C H A P T E R 1 6

UltraLite Reference

This chapter provides reference information about the UltraLite utility
programs and synchronization parameters.

Topic Page

Synchronization parameters 380

Synchronization stream parameters 399

Reference database stored procedures 411

The HotSync conduit installation utility 414

The SQL preprocessor 415

The UltraLite generator 419

The UltraLite segment utility 425

The UltraLite utility 426

Macros and compiler directives for UltraLite C/C++ applications 427

About this chapter

Contents

Synchronization parameters

380

Synchronization parameters
The synchronization parameters are grouped into a structure (C/C++) or
object (Java) that is provided as an argument in the call to synchronize. The
C/C++ structure has the following members, and the Java UlSynchOptions
object has equivalent access methods.

String parameters are null-terminated strings in C/C++, and String objects in
Java.

Use UL_TEXT around constant strings in C/C++ applications
The UL_TEXT macro allows constant strings to be compiled as single-
byte strings or wide-character strings. In embedded SQL and C++ API
applications, use this macro to enclose all constant strings supplied as
members of the ul_synch_info structure so that the compiler handles
these parameters correctly.

For C/C++ users, the ul_synch_info structure that holds the synchronization
parameters is defined in ulglobal.h as follows:

struct ul_synch_info {
 ul_char * user_name;
 ul_char * password;
 ul_char * new_password;
 ul_char * version;
 p_ul_stream_defn stream;
 ul_stream_error stream_error;
 ul_char * stream_parms;
 p_ul_stream_defn security;
 ul_char * security_parms;
 ul_synch_observer_fn observer;
 ul_void * user_data;
 ul_bool upload_only;
 ul_bool download_only;
 ul_bool upload_ok;
 ul_bool ignored_rows;
 ul_auth_status auth_status;
 ul_bool send_download_ack;
 ul_publication_mask publication;
 ul_bool send_column_names;
 ul_s_long auth_value;
 ul_bool checkpoint_store;
 ul_bool ping;
 p_ul_synch_info init_verify;
};

The init_verify field is reserved for internal use.

Chapter 16 UltraLite Reference

381

auth_status synchronization parameter

Reports the status of MobiLink user authentication. The MobiLink
synchronization server provides this information to the client.

If you are implementing a custom authentication scheme, the
authenticate_user or authenticate_user_hashed synchronization script must
return one of the allowed values of this parameter.

The parameter is read-only.

After synchronization, the auth_status member of ul_synch_info holds one
of the following values:

Constant Value Description

UL_AUTH_STATUS_UNKNOWN 0 Authorization status is unknown,
possibly because the connection
has not yet synchronized.

UL_AUTH_STATUS_VALID 1000 User ID and password were
valid at the time of
synchronization.

UL_AUTH_STATUS_VALID_BU
T_EXPIRES_SOON

2000 User ID and password were
valid at thetime of
synchronization but will expire
soon.

UL_AUTH_STATUS_EXPIRED 3000 Authorization failed: user ID or
password have expired.

UL_AUTH_STATUS_INVALID 4000 Authorization failed: bad user ID
or password.

UL_AUTH_STATUS_IN_USE 5000 Authorization failed: user ID is
already in use.

If a custom authenticate_user synchronization script at the consolidated
database returns a different value, the value is interpreted according to the
rules given in "authenticate_user connection event" on page 446 of the book
MobiLink Synchronization User’s Guide.

Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_status;

Retrieve the authorization status using UlSynchOptions.getAuthStatus().

Function

C/C++ usage

Java usage

Synchronization parameters

382

UlSynchOptions opts = new UlSynchOptions;
// set options here
conn.synchronize(opts);
returncode = opts.getAuthStatus();

The constants are the same as for C/C++, but prefixed with UlDefn.

"Authenticating MobiLink Users" on page 251 of the book MobiLink
Synchronization User’s Guide.

auth_value synchronization parameter

Provides a place to hold return values from custom user authentication
synchronization scripts.

The values set by the default MobiLink user authentication mechanism are
described in "auth_status synchronization parameter" on page 381

Get the parameter as follows:

ul_synch_info info;
// ...
returncode = info.auth_value;

The Java access method is getAuthValue.

Get the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
// set other options here
conn.synchronize(opts);
returncode = opts.getAuthValue();

"authenticate_user connection event" on page 446 of the book MobiLink
Synchronization User’s Guide

"authenticate_user_hashed connection event" on page 450 of the book
MobiLink Synchronization User’s Guide

"auth_status synchronization parameter" on page 381

checkpoint_store synchronization parameter

Adds additional checkpoints of the database during synchronization to limit
database growth during the synchronization process.

The checkpoint operation adds I/O operations for the application and for the
Palm conduit and so slows synchronization. The option is most useful for
large downloads with many updates. Devices with slow flash memory may
not want to pay the performance penalty.

See also

Function

Default

C/C++ usage

Java usage

See also

Function

Chapter 16 UltraLite Reference

383

By default, limited checkpointing is done.

Set the parameter as follows:

ul_synch_info info;
// ...
info.checkpoint_store = ul_true ;

Not used by Java applications.

download_only synchronization parameter

Do not upload any changes from the UltraLite database during this
synchronization.

The parameter is an optional Boolean value, and by default is false.

Set the parameter as follows:

ul_synch_info info;
// ...
info.download_only = ul_true;

The Java access methods are getDownloadOnly and setDownloadOnly.

Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setDownloadOnly(true);
 // set other options here
conn.synchronize(opts);

"Including read-only tables in an UltraLite database" on page 78.
"upload_only synchronization parameter" on page 396

ignored_rows synchronization parameter

This boolean parameter is set to true if any rows were ignored by the
MobiLink synchronization server during synchronization because of absent
scripts.

The parameter is read-only.

new_password synchronization parameter

Sets a new MobiLink password associated with the user_name.

The parameter is optional, and is a string.

Default

C/C++ usage

Java usage

Function

Default

C/C++ usage

Java usage

See also

Function

Function

Default

Synchronization parameters

384

Set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("myoldpassword");
info.new_password = UL_TEXT("mynewpassword");

The Java access methods are getNewPassword and setNewPassword.

Set the parameter as follows:

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setPassword("mypassword");
opts.setNewPassword("mynewpassword");
// set other options here
conn.synchronize(opts);

"Authenticating MobiLink Users" on page 251 of the book MobiLink
Synchronization User’s Guide.

observer synchronization parameter

A pointer to a callback function that monitors synchronization.

The Java access method is setObserver, which takes a UlSynchObserver
object as argument.

"Monitoring and canceling synchronization" on page 98
"user_data synchronization parameter" on page 396

password synchronization parameter

A string specifying the MobiLink password associated with the user_name.
This user name and password are separate from any database user ID and
password, and serves to identify and authenticate the application to the
MobiLink synchronization server.

The parameter is optional, and is a string.

Set the parameter as follows:

ul_synch_info info;
// ...
info.password = UL_TEXT("mypassword");

The Java access methods are getPassword and setPassword.

Set the parameter as follows:

C/C++ usage

Java usage

See also

Function

See also

Function

Default

C/C++ usage

Java usage

Chapter 16 UltraLite Reference

385

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setPassword("mypassword");
// set other options here
conn.synchronize(opts);

"Authenticating MobiLink Users" on page 251 of the book MobiLink
Synchronization User’s Guide.

ping synchronization parameter

Confirm communications between the UltraLite client and the MobiLink
synchronization server. When this parameter is set to true, no
synchronization takes place.

When the MobiLink synchronization server receives a ping request, it
connects to the consolidated database, authenticates the user, and then sends
the authenticating user status and value back to the client.

If the ping succeeds, the MobiLink server issues an information message. If
the ping does not succeed, it issues an error message.

If the MobiLink user name cannot be found in the ml_user system table and
the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to ml_user.

The MobiLink synchronization server may execute the following scripts, if
they exist, for a ping request:

♦ begin_connection

♦ authenticate_user

♦ authenticate_user_hashed

♦ end_connection

The parameter is optional, and is a boolean.

Set the parameter as follows:

ul_synch_info info;
// ...
info.ping = ul_true;

The Java access method is setPing.

Set the parameter as follows:

See also

Function

Default

C/C++ usage

Java usage

Synchronization parameters

386

UlSynchOptions opts = new UlSynchOptions;
opts.setUserName("50");
opts.setPing(true);
// set other options here
conn.synchronize(opts);

"-pi option" on page 427 of the book MobiLink Synchronization User’s
Guide

publication synchronization parameter

Specifies the publications to be synchronized.

If you do not specify a publication, all data is synchronized.

The UltraLite generator identifies the publications specified on the ulgen -v
command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option. For
example, the following command line generates a publication identified by
the constant UL_PUB_SALES

ulgen -v sales ...

When synchronizing, set the publication parameter to a publication mask:
an OR’d list of publication constants. For example:

ul_synch_info info;
// ...
info.publication = UL_PUB_MYPUB1 | UL_PUB_MYPUB2 ;

The special publication mask UL_SYNC_ALL describes all the tables in the
database, whether in a publication or not. The mask
UL_SYNC_ALL_PUBS describes all tables in publications in the database.

The UltraLite generator identifies the publications specified on the ulgen -v
command line option as upper case constants with the name
UL_PUB_pubname, where pubname is the name given to the -v option.
These constants are fields of the generated project class. For example, the
following command line generates a publication identified by the constant
salesproject.UL_PUB_SALES.

ulgen -j salesproject -v sales ...

When synchronizing, use the setSynchPublication method to set the
parameter to an OR’d list .

Set the parameter as follows:

See also

Function

Default

C/C++ usage

Java usage

Chapter 16 UltraLite Reference

387

UlSynchOptions opts = new UlSynchOptions;
opts.setSynchPublication(
 projectname.UL_PUB_MYPUB1 |
 projectname.UL_PUB_MYPUB2);
// set other options here
conn.synchronize(opts);

where projectname is the name of the main project class generated by the
analyzer.

"The UltraLite generator" on page 419
"Designing sets of data to synchronize separately" on page 76

security synchronization parameter

Set the UltraLite client to use Certicom encryption technology when
exchanging messages with the MobiLink synchronization server.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to
SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere
Studio.

The security parameter is null by default, corresponding to no transport-
layer security.

The following security streams are supported:

♦ ULSecureCerticomTLSStream() Elliptic-curve transport-layer
security provided by Certicom.

♦ ULSecureRSATLSStream() RSA transport-layer security provided by
Certicom.

For C/C++ applications, the security stream is specified in addition to the
synchronization stream. For example, in embedded SQL:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULRSATLSStream();

To use secure synchronization from UltraLite Java applications, choose a
separate stream. For more information, see "Initializing the synchronization
options" on page 352.

See also

Function

Default

C/C++ usage

Java usage

Synchronization parameters

388

"Transport-Layer Security" on page 283 of the book MobiLink
Synchronization User’s Guide.

security_parms synchronization parameter

Sets the parameters required when using transport-layer security. This
parameter must be used together with the security parameter.

$ For more information, see "security synchronization parameter" on
page 387.

The ULSecureCerticomTLSStream() and ULSecureRSATLSStream()
security parameters take a string composed of the following optional
parameters, supplied in an semicolon-separated string.

♦ certificate_company The UltraLite application only accepts server
certificates when the organization field on the certificate matches this
value. By default, this field is not checked.

♦ certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the certificate matches
this value. By default, this field is not checked.

♦ certificate_name The UltraLite application only accepts server
certificates when the common name field on the certificate matches this
value. By default, this field is not checked.

For example, in embedded SQL:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.security = ULSecureCerticomTLSStream();
info.security_parms =
 UL_TEXT("certificate_company=Sybase")
 UL_TEXT(";")
 UL_TEXT("certificate_unit=Sales");

The security_parms parameter is a string, and by default is null.

If you use secure synchronization, you must also use the –r command-line
option on the UltraLite generator. For more information, see "The UltraLite
generator" on page 419.

To use secure synchronization from UltraLite Java applications, choose a
separate stream. For more information, see "Initializing the synchronization
options" on page 352.

See also

Function

C/C++ usage

Java usage

Chapter 16 UltraLite Reference

389

send_column_names synchronization parameter

When send_column_names is set to ul_true UltraLite sends each column
name to the MobiLink synchronization server. By default UltraLite does not
send column names.

This parameter is typically used together with the -za or -ze switch on the
MobiLink synchronization server for automatically generating
synchronization scripts.

This parameter is not available for UltraLite Java applications.

"-za option" on page 402 of the book MobiLink Synchronization User’s
Guide

send_download_ack synchronization parameter

Set this boolean parameter to false to instruct the MobiLink synchronization
server that the client will not provide a download acknowledgement.

If the client does send download acknowledgement, the MobiLink
synchronization server worker thread must wait for the client to apply the
download. If the client does not sent a download acknowledgement, the
MobiLink synchronization server is freed up sooner for its next
synchronization.

stream synchronization parameter

Set the MobiLink synchronization stream to use for synchronization.

Most synchronization streams require parameters to identify the MobiLink
synchronization server address and other behavior. These parameters are
supplied in the stream_parms parameter.

$ For more information, see "stream_parms synchronization parameter"
on page 394.

The parameter has no default value, and must be explicitly set.

For embedded SQL, set the parameter as in the following example:

ul_synch_info info;
...
info.stream = ULSocketStream();

C++ API usage is as follows:

Function

Java usage

See also

Function

Function

Default

C/C++ usage

Synchronization parameters

390

Connection conn;
auto ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream = ULSocketStream();

When the type of stream requires a parameter, pass that parameter using the
stream_parms parameter; otherwise, set the stream_parms parameter to
null.

The following C/C++ stream functions are available, but may not be
supported on all target platforms:

Chapter 16 UltraLite Reference

391

Stream Description

ULActiveSyncStream() ActiveSync synchronization (Windows CE only).

$ For a list of stream parameters, see
"ActiveSync parameters" on page 399.

ULConduitStream() Synchronize via HotSync or ScoutSync stream
(C/C++ only, Palm Computing Platform only).

This function is deprecated. You can supply
UL_NULL to synchronize via HotSync or
ScoutSync.

$ For a list of stream parameters, see "HotSync
and ScoutSync parameters" on page 401.

ULHTTPStream() Synchronize via HTTP.

The HTTP stream uses TCP/IP as its underlying
transport. UltraLite applications act as Web
browsers and the MobiLink synchronization server
acts as a Web server. UltraLite applications send
POST requests to send data to the server and GET
requests to read data from the server.

$ For a list of stream parameters, see "HTTP
stream parameters" on page 403.

ULHTTPSStream() Synchronize via the HTTPS synchronization
stream.

The HTTPS stream uses SSL or TLS as its
underlying protocol. It operates over Internet
protocols (HTTP and TCP/IP).

The HTTPS stream requires the use of technology
supplied by Certicom. Use of Certicom technology
requires that you obtain the separately-licensable
SQL Anywhere Studio security option and is
subject to export regulations. For more information
on this option, see "Welcome to SQL Anywhere
Studio" on page 4 of the book Introducing SQL
Anywhere Studio.

$ For a list of stream parameters, see "HTTPS
stream parameters" on page 406.

Synchronization parameters

392

Stream Description

ULPalmDBStream() Synchronize via HotSync or ScoutSync stream
(C/C++ only, Palm Computing Platform only).

This function is deprecated. You can supply
UL_NULL to synchronize via HotSync or
ScoutSync.

$ For a list of stream parameters, see "HotSync
and ScoutSync parameters" on page 401.

ULSocketStream() Synchronize via TCP/IP.

$ For a list of stream parameters, see "TCP/IP
stream parameters" on page 402.

The Java access methods are getStream and setStream. The stream itself is
an object, and the stream names differ slightly from the C/C++ versions.

Stream Description

UlHTTPStream() HTTP synchronization.

$ For a list of stream parameters, see "HTTP
stream parameters" on page 403.

UlHTTPSStream() HTTPS synchronization.

$ For a list of stream parameters, see
"HTTPS stream parameters" on page 406.

UlSecureSocketStream() TCP/IP or HTTP synchronization with
transport-layer security using elliptic curve
encryption.

$ For a list of stream parameters, see
"UlSecureSocketStream synchronization
parameters" on page 409.

UlSecureRSASocketStream() TCP/IP or HTTP synchronization with
transport-layer security using RSA encryption.

$ For a list of stream parameters, see
"UlSecureRSASocketStream synchronization
parameters" on page 408..

UlSocketStream() TCP/IP synchronization.

$ For a list of stream parameters, see
"TCP/IP stream parameters" on page 402.

Set the parameter as follows:

Java usage

Chapter 16 UltraLite Reference

393

UlSynchOptions opts = new UlSynchOptions;
opts.setStream(new UlSocketStream());
opts.setStreamParms("host=myserver;port=2439");
// set other options here
conn.synchronize(opts);

$ For information on Java synchronization streams, see "Initializing the
synchronization options" on page 352.

stream_error synchronization parameter

Set a structure to hold communications error reporting information.

The parameter has no default value, and must be explicitly set.

The stream_error field is a structure of type ul_stream_error.

typedef struct ss_error {
 ss_stream_id stream_id;
 ss_stream_context stream_context;
 ss_error_code stream_error_code;
 asa_uint32 system_error_code;
 rp_char *error_string;
 asa_uint32 error_string_length;
} ss_error, *p_ss_error;

The structure is defined in sserror.h, in the h subdirectory of your
SQL Anywhere directory.

The ul_stream_error fields are as follows:

♦ stream_id The network layer reporting the error. This enumeration
has the following constants:

STREAM_ID_TCPIP
STREAM_ID_HTTP
STREAM_ID_CERTICOM_TLS
STREAM_ID_PALM_CONDUIT
STREAM_ID_ACTIVESYNC

♦ stream_context The basic network operation being performed, such
as open, read, or write. For details, see sserror.h.

♦ stream_error_code The error reported by the stream itself. The
stream_error_code is of type ss_error_code. The stream error codes
are all prefixed with STREAM_ERROR_. A write error, for example, is
STREAM_ERROR_WRITE.

$ For a listing of error numbers, see "MobiLink Communication
Error Messages" on page 631 of the book MobiLink Synchronization
User’s Guide. For the error code suffixes, see sserror.h.

Function

Default

Description

Synchronization parameters

394

In this version, to find the constant associated with each number you
must count down the number of lines prefixed by DO_STREAM_Error
in sserror.h. For example, to find the constant for error number 10, you
use the tenth DO_STREAM_ERROR entry in sserror.h, which is as
follows:

DO_STREAM_ERROR(WRITE)

Th constant associated with this error is therefore
STREAM_ERROR_WRITE.

♦ stream_error The network operation being performed (the context)
and the error itself as an enumeration constant.

♦ stream_error_code A system-specific error code.

♦ error_string An application-provided error message

For embedded SQL, check for SQLE_COMMUNICATIONS_ERROR as
follows:

ul_char error_buff[100];
ul_synch_info info;
...
ULInitSynchInfo(&info);
info.stream_error.error_string = error_buff;
info.stream_string_error.error_length = sizeof(
error_buff);
...
ULSynchronize(&sqlca, &info)
if(SQLCODE == SQLE_COMMUNICATIONS_ERROR){
 printf(error_buff);
...// more error handling here

C++ API usage is as follows:

Connection conn;
auto ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream_error.error_string = error_buff;
info.stream_error.error_length = sizeof(error_buff);
if(!conn.Synchronize(&synch_info)){
 if(SQLCODE == SQLE_COMMUNICATIONS_ERROR){
 printf(error_buff);
 // more error handline here

This feature is not available for Java applications.

stream_parms synchronization parameter

Sets parameters to configure the synchronization stream.

C/C++ usage

Java usage

Function

Chapter 16 UltraLite Reference

395

A semi-colon separated list of parameter assignments. Each assignment is of
the form keyword=value, where the allowed sets of keywords depends on the
communications protocol.

For more information, see the following sections:

♦ "HotSync and ScoutSync parameters" on page 401

♦ "HTTP stream parameters" on page 403

♦ "ActiveSync parameters" on page 399

♦ "TCP/IP stream parameters" on page 402

The parameter is optional, is a string, and by default is null.

For embedded SQL, set the parameter as follows:

ul_synch_info info;
// ...
info.stream_parms= UL_TEXT("host=myserver;port=2439");

For the C++ API, set the parameter as follows:

Connection conn;
auto ul_synch_info info;
...
conn.InitSynchInfo(&info);
info.stream+parms = UL_TEXT("host=myserver;port=2439")

Set the parameter as follows:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=myserver;port=2439");

"Synchronization stream parameters" on page 399.

upload_ok synchronization parameter

Reports the status of MobiLink uploads. The MobiLink synchronization
server provides this information to the client.

The parameter is read-only.

After synchronization, the upload_ok member of ul_synch_info holds true
if the upload was successful, and false otherwise.

Access the parameter as follows:

ul_synch_info info;
// ...
returncode = info.upload_ok;

Default

C/C++ usage

Java usage

See also

Function

C/C++ usage

Synchronization parameters

396

Retrieve the authorization status using UlSynchOptions.getAuthStatus().

UlSynchOptions opts = new UlSynchOptions;
// set options here
conn.synchronize(opts);
returncode = opts.getUploadOK();

upload_only synchronization parameter

Indicates that there should be no downloads in the current synchronization,
which can save communication time, especially over slow communication
links. When set to true, the client waits for the upload acknowledgement
from the MobiLink synchronization server, after which it terminates the
synchronization session successfully.

The parameter is an optional Boolean value, and by default is false.

Set the parameter to true as follows:

ul_synch_info info;
// ...
info.upload_only = ul_true;

The Java access methods are setUploadOnly and getUploadOnly.

"Synchronizing high-priority changes" on page 78
"download_only synchronization parameter" on page 383

user_data synchronization parameter

Make application-specific information available to the synchronization
observer class (Java) or the synchronization observer callback function
(C++ API).

When implementing the synchronization observer callback function
observer, you may wish to make application-specific information available.
You do this by providing information using user_data.

When implementing the synchronization observer interface
UlSynchObserver, you may wish to make application-specific information
to the synchronization observer class. You do this by providing an object in
the setUserData method.

"observer synchronization parameter" on page 384
"Monitoring and canceling synchronization" on page 356

Java usage

Function

Default

C/C++ usage

Java usage

See also

Function

C/C++ usage

Java usage

See also

Chapter 16 UltraLite Reference

397

user_name synchronization parameter

A string specifying the user name that uniquely identifies the MobiLink
client to the MobiLink synchronization server. MobiLink uses this value to
determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization.

The parameter is required, and is a string.

Set the parameter as follows:

ul_synch_info info;
// ...
info.user_name= UL_TEXT("uluser");

The Java access methods are getUserName and setUserName.

Set the parameter as follows:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setUserName("myname");

"Authenticating MobiLink Users" on page 251 of the book MobiLink
Synchronization User’s Guide.

"The MobiLink user" on page 22 of the book MobiLink Synchronization
User’s Guide.

version synchronization parameter

Each synchronization script in the consolidated database is marked with a
version string. For example, there may be two different download_cursor
scripts, identified by different version strings. The version string allows an
UltraLite application to choose from a set of synchronization scripts.

The parameter is a string, and by default is the MobiLink default version
string.

Set the parameter as follows:

ul_synch_info info;
// ...
info.version = UL_TEXT("default");

The Java access methods are getScriptVersion and setScriptVersion.

Set the parameter as follows:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setVersion("default");

Function

Default

C/C++ usage

Java usage

See also

Function

Default

C/C++ usage

Java usage

Synchronization parameters

398

"Script versions" on page 61 of the book MobiLink Synchronization User’s
Guide.

See also

Chapter 16 UltraLite Reference

399

Synchronization stream parameters
Each synchronization stream has a set of appropriate stream parameters.
These parameters set required values for the stream, such as the location of
the MobiLink synchronization server, and network-specific control
parameters. This section lists the stream parameter values for each stream.

Meaning differs for HotSync and ActiveSync
For HotSync and ScoutSync synchronization, the meaning of the
synchronization stream parameters is different than for other streams. For
information, see "HotSync and ScoutSync parameters" on page 401 and
"ActiveSync parameters" on page 399.

For C/C++ applications, the synchronization stream parameters are supplied
in the stream_parms member of the ul_synch_info structure, as a string.
The following embedded SQL code is an example for TCP/IP
synchronization:

ul_synch_info info;
...
info.stream = ULSocketStream();
info.stream_parms = UL_TEXT("host=myserver");

For Java applications, the synchronization stream parameters are supplied
using the setStreamParms method. The following example illustrates how
to call the method:

UlSynchOptions synch_options = new UlSynchOptions();
synch_opts.setStream(new UlSocketStream());
synch_opts.setStreamParms("host=myserver;port=2439");

$ For a list of synchronization streams and how to set a synchronization
stream, see "stream synchronization parameter" on page 389. For syntax
information, see "stream_parms synchronization parameter" on page 394.

ActiveSync parameters

The ActiveSync synchronization stream is accessible from C/C++
applications running on Windows CE.

The stream_parms values control the connection from the MobiLink
ActiveSync provider, running on the desktop machine, to the MobiLink
synchronization server.

The stream_parms argument has the following form:

{stream=stream_name;provider_stream_parameters}

Setting a stream

Meaning of
synchronization
stream parameters

Synchronization stream parameters

400

where stream_name indicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

and where provider_stream_parameters is a set of stream parameters for use
by the ActiveSync provider, and has the same form as the stream_parms
argument for the protocol in use. For the given stream, the
provider_stream_parameters adopts the same defaults as the stream_parms
argument for the protocol. The default value for the stream_name is tcpip.

For example, the following snippet uses an HTTP synchronization stream:

ULInitSynchInfo(&info);
info.stream = ULActiveSyncStream();
info.stream_parms = "stream=http";
ULSynchronize(&sqlca, &info);

$ For more information on provider_stream_parameters, see "TCP/IP
stream parameters" on page 402, and "HTTP stream parameters" on
page 403.

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in the security
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients . The
format is:

security=cipher{ keyword=value;... }

where cipher must be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

For example:

info.stream_parms =
"stream=tcpip;security=certicom_tls{trusted_certificates
=trusted.crt}";

$ For more information, see "CREATE SYNCHRONIZATION USER
statement [MobiLink]" on page 335 of the book ASA SQL Reference Manual.

Adding encryption
to ActiveSync
synchronization

Chapter 16 UltraLite Reference

401

HotSync and ScoutSync parameters

To choose HotSync synchronization, supply the ul_synch_info structure to
the ULPalmExit or ULData::PalmExit method of your application. The
stream parameter is ignored, and may be set to UL_NULL.

$ For more information on choosing a HotSync synchronization stream,
see "Understanding HotSync and ScoutSync synchronization" on page 269.

For HotSync and ScoutSync synchronization, the stream_parms values do
not control the connection from the device to the HotSync Manager or
HotSync Server. Instead, they specify the connection from the MobiLink
conduit, running at the HotSync manager or server, to the MobiLink
synchronization server.

The stream_parms argument has the following form:

{stream=stream_name;conduit_stream_parameters}

where stream_name indicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

and where conduit_stream_parameters is a set of stream parameters for use
by the conduit, and has the same form as the stream_parms argument for
the protocol in use. For the given stream, the conduit_stream_parameters
adopts the same defaults as the stream_parms argument for the protocol.
The default value for the stream_name is tcpip.

For example, the following snippet uses an HTTP synchronization stream:

ULInitSynchInfo(&info);
info.stream_parms = "stream=http";

$ For more information on conduit_stream_parameters, see "TCP/IP
stream parameters" on page 402, and "HTTP stream parameters" on
page 403.

If you use HotSync or ScoutSync synchronization, and supply a null value to
stream_parms, the conduit searches in the registry for the stream name and
stream parameters. If it finds no valid stream, the default stream and stream
parameters is used. This default stream_parms parameter is:

{stream=tcpip;host=localhost}

$ For information on registry locations, see "Configuring conduit
synchronization" on page 277.

Meaning of
synchronization
stream parameters

Null value and
default settings

Synchronization stream parameters

402

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in the security
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients . The
format is:

security=cipher{ keyword=value;... }

where cipher must be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

For example:

info.stream_parms =
"stream=tcpip;security=certicom_tls{trusted_certificates
=trusted.crt}";

$ For more information, see "CREATE SYNCHRONIZATION USER
statement [MobiLink]" on page 335 of the book ASA SQL Reference Manual.

TCP/IP stream parameters

The TCP/IP synchronization stream is accessible from C/C++ applications
by using the ULSocketStream() function , or from Java applications by
using the UlSocketStream object.

Synchronization stream parameters for the TCP/IP stream are chosen from
the following table:

Adding encryption
to HotSync and
ScoutSync
synchronization

Chapter 16 UltraLite Reference

403

Parameter Description

client_port=nnnnn

client_port=nnnnn-
mmmmm

A range of client ports for communication. If only one
value is specified, the end of the range is 100 greater
than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall
communicating with a MobiLink synchronization server
outside the firewall.

host=hostname The host name or IP number for the machine on which
the MobiLink synchronization server is running. The
default value is localhost, except on Windows CE.

For Windows CE, the default setting corresponds to the
desktop machine where the CE device’s cradle is
connected, which is stored as the ipaddr entry in the
registry folder Comm\Tcpip\Hosts\ppp_peer. Do not
use localhost, which refers to the device itself, on
Windows CE.

For the Palm Computing Platform, the default value of
localhost refers to the device itself. You should supply
an explicit host name or IP address to connect to a
desktop machine.

keep_alive In some circumstances, MobiLink worker threads
become unavailable when connections disappear during
synchronization. These blocked worker threads are
waiting for replies from the MobiLink client. If all
worker threads reach this state, MobiLink cannot
process synchronizations. Similarly, MobiLink clients
can become blocked if the connection disappears.

The keep_alive parameter manages liveness. The default
is 1 (On). Set the parameter to 0 (Off) to disable liveness
checking for this connection.

port=portnumber The socket port number on the host machine. The port
number must be a decimal number that matches the port
the MobiLink synchronization server is setup to monitor.
The default value for the port parameter is 2439, which
is the IANA registered port number for the MobiLink
synchronization server.

HTTP stream parameters

The HTTP synchronization stream is accessible from C/C++ applications by
using the ULHTTPStream() function , or from Java applications by using
the UlHTTPStream object.

Synchronization stream parameters

404

Synchronization stream parameters for the HTTP stream are chosen from the
following table:

Chapter 16 UltraLite Reference

405

Parameter Description

client_port=nnnnn

client_port=nnnnn-mmmmm

A range of client ports for communication. If only
one value is specified, the end of the range is 100
greater than the initial value, for a total of 101
ports.

The option can be useful for clients inside a
firewall communicating with a MobiLink
synchronization server outside the firewall.

version=
versionnumber

A string specifying the version of HTTP to use.
You have a choice of 1.0 or 1.1. The default value
is 1.1.

host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is
running. The default value is localhost.

For Windows CE, the default value is the value of
ipaddr in the registry folder
Comm\Tcpip\Hosts\ppp_peer. This allows a
CE device to connect to a MobiLink
synchronization server executing on the desktop
machine where the CE device’s cradle is
connected.

For the Palm Computing Platform, the default
value of localhost refers to the device. It is
recommended that an explicit host name or IP
address be specified.

keep_alive In some circumstances, MobiLink worker threads
become unavailable when connections disappear
during synchronization. These blocked worker
threads are waiting for replies from the MobiLink
client. If all worker threads reach this state,
MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked
if the connection disappears.

The keep_alive parameter manages liveness. The
default is 1 (On). Set the parameter to 0 (Off) to
disable liveness checking for this connection.

port=portnumber The socket port number. The port number must be
a decimal number that matches the port the
MobiLink synchronization server is setup to
monitor. The default value for the port parameter
is 80.

proxy_host=
proxy_hostname

The host name of the proxy server.

proxy_port= The port number of the proxy server. The default

Synchronization stream parameters

406

Parameter Description
proxy_portnumber value is 80.

url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through
a proxy server, the suffix may be necessary in
order to find the MobiLink synchronization server.
The default value is MobiLink.

HTTPS stream parameters

The HTTPS synchronization stream is accessible from C/C++ applications
by using the ULHTTPStream() function , or from Java applications by
using the UlHTTPStream object.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to
SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere
Studio.

Synchronization stream parameters for the HTTPS stream are chosen from
the following table:

Chapter 16 UltraLite Reference

407

Parameter Description

client_port=nnnnn

client_port=nnnnn-mmmmm

A range of client ports for communication. If only
one value is specified, the end of the range is 100
greater than the initial value, for a total of 101
ports.

The option can be useful for clients inside a
firewall communicating with a MobiLink
synchronization server outside the firewall.

host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is
running. The default value is localhost.

For Windows CE, the default value is the value of
ipaddr in the registry folder
Comm\Tcpip\Hosts\ppp_peer. This allows a
CE device to connect to a MobiLink
synchronization server executing on the desktop
machine where the CE device’s cradle is
connected.

For the Palm Computing Platform, the default
value of localhost refers to the device. It is
recommended that an explicit host name or IP
address be specified.

keep_alive In some circumstances, MobiLink worker threads
become unavailable when connections disappear
during synchronization. These blocked worker
threads are waiting for replies from the MobiLink
client. If all worker threads reach this state,
MobiLink cannot process synchronizations.
Similarly, MobiLink clients can become blocked
if the connection disappears.

The keep_alive parameter manages liveness. The
default is 1 (On). Set the parameter to 0 (Off) to
disable liveness checking for this connection.

port=portnumber The socket port number. The port number must be
a decimal number that matches the port the
MobiLink synchronization server is setup to
monitor. The default value for the port parameter
is 2439, which is the IANA registered port number
for the MobiLink synchronization server.

proxy_host=
proxy_hostname

The host name of the proxy server.

proxy_port=
proxy_portnumber

The port number of the proxy server. The default
value is 80.

Synchronization stream parameters

408

Parameter Description

certificate_company The UltraLite application only accepts server
certificates when the organization field on the
certificate matches this value. By default, this field
is not checked.

certificate_name The UltraLite application only accepts server
certificates when the common name field on the
certificate matches this value. By default, this field
is not checked.

certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the
certificate matches this value. By default, this field
is not checked.

url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through
a proxy server, the suffix may be necessary in
order to find the MobiLink synchronization server.
The default value is MobiLink.

version=
versionnumber

A string specifying the version of HTTP to use.
You have a choice of 1.0 or 1.1. The default value
is 1.1.

UlSecureRSASocketStream synchronization parameters

Transport-layer security using RSA encryption is accessed from Java
applications as a separate stream, accessed using the
UlSecureRSASocketStream object. This is different behavior from C/C++
applications, where a separate parameter is supplied to the synchronization
structure.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to
SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere
Studio.

The synchronization parameters for UlSecureRSASocketStream are
identical to those for UlSecureSocketStream. For a complete listing, see
"UlSecureSocketStream synchronization parameters" on page 409.

Chapter 16 UltraLite Reference

409

$ For more information, see "stream synchronization parameter" on
page 389, and "Using transport-layer security from UltraLite Java
applications" on page 353.

UlSecureSocketStream synchronization parameters

Transport-layer security using elliptic curve encryption is accessed from Java
applications as a separate stream, accessed using the UlSecureSocketStream
object. This is different behavior from C/C++ applications, where a separate
parameter is supplied to the synchronization structure.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to
SQL Anywhere Studio" on page 4 of the book Introducing SQL Anywhere
Studio.

$ For more information, see "stream synchronization parameter" on
page 389, and "Using transport-layer security from UltraLite Java
applications" on page 353.

The parameters for the UlSecureSocketStream are supplied in an
semicolon-separated string. These parameters are chosen from the following
table:

Synchronization stream parameters

410

Parameter Description

certificate_company The UltraLite application only accepts server certificates
when the organization field on the certificate matches
this value. By default, this field is not checked.

certificate_unit The UltraLite application only accepts server certificates
when the organization unit field on the certificate
matches this value. By default, this field is not checked.

certificate_name The UltraLite application only accepts server certificates
when the common name field on the certificate matches
this value. By default, this field is not checked.

client_port=nnnnn

client_port=nnnnn-
mmmmm

A range of client ports for communication. If only one
value is specified, the end of the range is 100 greater
than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall
communicating with a MobiLink synchronization server
outside the firewall.

host=hostname The host name or IP number for the machine on which
the MobiLink synchronization server is running. The
default value is localhost, except on Windows CE.

For Windows CE, the default setting corresponds to the
desktop machine where the CE device’s cradle is
connected, which is stored as the ipaddr entry in the
registry folder Comm\Tcpip\Hosts\ppp_peer. Do not
use localhost, which refers to the device itself, on
Windows CE.

For the Palm Computing Platform, the default value of
localhost refers to the device itself. You should supply
an explicit host name or IP address to connect to a
desktop machine.

port=portnumber The socket port number on the host machine. The port
number must be a decimal number that matches the port
the MobiLink synchronization server is setup to monitor.
The default value for the port parameter is 2439, which
is the IANA registered port number for the MobiLink
synchronization server.

Chapter 16 UltraLite Reference

411

Reference database stored procedures
This section describes system stored procedures in the Adaptive Server
Anywhere reference database, which can be used to add SQL statements to a
project.

For each SQL statement added in this way, the UltraLite generator defines a
C++ or Java class.

These system procedures are owned by the built-in user ID dbo.

ul_add_statement system procedure

Adds a SQL statement to an UltraLite project.

ul_add_statement (in @project char(128),
in @name char(128),
in @statement text)

DBA authority required

None

"ul_add_project system procedure" on page 412
"ul_delete_statement system procedure" on page 412

Adds or modifies a statement to an UltraLite project.

project The UltraLite project to which the statement should be added. The
UltraLite generator defines classes for all statements in a project at one time.

name The name of the statement. This name is used in the generated
classes.

statement A string containing the SQL statement.

If a statement of the same name in the same project exists, it is updated with
the new syntax. If project does not exist, it is created.

The following call adds a statement to the TestSQL project:

call ul_add_statement(
’TestSQL’, ’TestQuery’,
’select prod_id, price, prod_name from ulproduct where
price < ?’)

Function

Syntax

Permissions

Side effects

See also

Description

Examples

Reference database stored procedures

412

ul_add_project system procedure

Creates an UltraLite project.

ul_add_project (in @project char(128))

DBA authority required

None

"ul_delete_statement system procedure" on page 412

Adds an UltraLite project to the database. The project acts as a container for
the SQL statements in an application, and the project name is supplied on the
UltraLite generator command line so that it can define classes for all
statements in the project.

project The UltraLite project name.

The following call adds a project named Product to the database:

call ul_add_project(’Product’)

ul_delete_project system procedure

Removes an UltraLite project from a database.

ul_delete_project (in @project char(128))

DBA authority required

None

"ul_add_project system procedure" on page 412
"ul_delete_statement system procedure" on page 412

Removes an UltraLite project from the database.

project The UltraLite project to be deleted from the database.

The following call deletes the Product project:

call ul_delete_project(’Product’)

ul_delete_statement system procedure

Removes a SQL statement from an UltraLite project.

ul_delete_statement (in @project char(128),
in @name char(128))

Function

Syntax

Permissions

Side effects

See also

Description

Examples

Function

Syntax

Permissions

Side effects

See also

Description

Examples

Function

Syntax

Chapter 16 UltraLite Reference

413

DBA authority required

None

"ul_add_project system procedure" on page 412
"ul_add_statement system procedure" on page 411

Removes a statement from an UltraLite project.

project The UltraLite project from which the statement should be
removed.

name The name of the statement. This name is used in the generated
classes.

The following call removes a statement from the Product project:

call ul_delete_statement(’Product’, ’AddProd’)

ul_set_codesegment system procedure

For Palm Computing Platform development using the C++ API, assigns a
SQL statement from an UltraLite project to a particular segment.

ul_set_codesegment(in @project char(128),
in @name char(128), in @segment_name char(8))

None

"ul_add_statement system procedure" on page 411
"Explicitly assigning segments" on page 265

Explicitly assigns the generated code for a C++ API SQL statement to a
named Palm segment.

project The UltraLite project to which the statement applies.

name The name of the statement as defined in "ul_add_statement system
procedure" on page 411..

segment_name The name of the segment to which the statement is
assigned.

The following call assigns the statement mystmt in project myproject to
segment MYSEG1.

call ul_set_codesegment(
 ’myproject’, ’mystmt’, ’MYSEG1’)

Permissions

Side effects

See also

Description

Examples

Function

Syntax

Side effects

See also

Description

Examples

The HotSync conduit installation utility

414

The HotSync conduit installation utility
The utility installs or removes a HotSync conduit onto the current machine.

dbcond8 [switches] id

Switch Description

id The creator ID of the application to use the conduit

-n name The name displayed by the HotSync manager.

-x Remove the conduit for the specified creator ID

Install a HotSync conduit onto the current machine. The HotSync manager
must be installed in order for this to be run.

id The application user ID who is to use the conduit. If a conduit already
exists for the specified creatorID, it is replaced by the new conduit. This is a
required option.

-n name The name displayed by the HotSync manager. This is also the
name of the subdirectory where the conduit stores data. Do not use this
option together with –x . The default value is MobiLink conduit.

-x Remove the conduit for the named creatorID. If –x is not specified, a
conduit is installed.

The following command line installs the conduit for the CustDB sample
application, which has a creator ID of Syb2:

dbcond8 -n CustDB Syb2

Function

Syntax

Description

Switches

Examples

Chapter 16 UltraLite Reference

415

The SQL preprocessor
The SQL preprocessor processes a C or C++ program containing embedded
SQL, before the compiler is run.

sqlpp [switches] SQL-filename [output-filename]

Switch Description

–c "keyword=value;.…" Supply database connection parameters for your
reference database

-d Generate code that favors small data size

–e level Flag non-conforming SQL syntax as an error

-g Do not display UltraLite warnings

–h line-width Limit the maximum line length of output

-k Include user

-m version Specify the version name for generated synchronization
scripts

–n Line numbers

-o operating-sys Target operating system: WIN32, WINNT, NETWARE,
or UNIX

–p project-name UltraLite project name

–q Quiet mode—do not print banner

–s string-len Maximum string length for the compiler

–w level Flag non-conforming SQL syntax as a warning

–x Change multi-byte SQL strings to escape sequences.

–z sequence Specify collation sequence

"Introduction" on page 164 of the book ASA Programming Guide

The SQL preprocessor processes a C or C++ source file that contains
embedded SQL, before the compiler is run. This preprocessor translates the
SQL statements in the input-file into C/C++. It writes the result to the output-
file. The normal extension for source files containing embedded SQL is sqc.
The default output filename is the SQL-filename base name with an
extension of c. However, if the SQL-filename already has the .c extension,
the default output extension is .cc.

Function

Syntax

See also

Description

The SQL preprocessor

416

When preprocessing files that are part of an UltraLite application, the SQL
preprocessor requires access to an Adaptive Server Anywhere reference
database. You must supply the connection parameters for the reference
database using the –c option.

If you specify no project name, the SQL preprocessor also runs the UltraLite
generator and appends additional code to the generated C/C++ source file.
This code contains a C/C++ language description of your database schema as
well as the implementation of the SQL statements in the application.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraLite analyzer invokes them before and
after the analysis process:

♦ sp_hook_ulgen_begin()

♦ sp_hook_ulgen_end()

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ulgen_begin ()
BEGIN
// actions here
END

CREATE PROCEDURE sp_hook_ulgen_end ()
BEGIN
// actions here
END

–c Required when preprocessing files that are part of an UltraLite
application. The connection string must give the SQL preprocessor access to
read and modify your reference database.

–d Generate code that reduces data space size. Data structures are reused
and initialized at execution time before use. This increases code size.

–e This option flags any Embedded SQL that is not part of a specified set
of SQL/92 as an error.

The allowed values of level and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

Switches

Chapter 16 UltraLite Reference

417

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-g Do not display warning specific to UltraLite code generation.

–h num Limits the maximum length of lines output by sqlpp to NUM
characters. The continuation character is a backslash (\), and the minimum
value of NUM is ten.

-k Notifies the preprocessor that the program to be compiled includes a
user declaration of SQLCODE.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization.

–n Generate line number information in the C file. This consists of #line
directives in the appropriate places in the generated C code. If your compiler
supports the #line directive, this switch will make the compiler report errors
on line numbers in the SQL-filename, as opposed to reporting errors on line
numbers in the C/C++ output file. Also, the #line directives will indirectly be
used by the source-level debugger so that you can debug while viewing the
SQL-filename.

o Specify the target operating system. Note that this option must match the
operating system where you will run the program. A reference to a special
symbol will be generated in your program. This symbol is defined in the
interface library. If you use the wrong operating system specification or the
wrong library, an error will be detected by the linker. The supported
operating systems are:

♦ WIN32 Microsoft Windows 95/98/Me and Windows CE

♦ WINNT Microsoft Windows NT/2000/XP

♦ NETWARE Novell NetWare

♦ UNIX UNIX

–p project-name Identifies the UltraLite project to which the embedded
SQL files belong. Applies only when processing files that are part of an
UltraLite application.

–q Operate quietly. Do not print the banner.

The SQL preprocessor

418

–s string-len Set the maximum size string that the preprocessor will put
into the C file. Strings longer than this value will be initialized using a list of
characters (’a’,’b’,’c’, etc). Most C compilers have a limit on the size of string
literal they can handle. This option is used to set that upper limit. The default
value is 500.

–w level This option flags any Embedded SQL that is not part of a
specified set of SQL/92 as a warning.

The allowed values of level and their meanings are as follows:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ i flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

–x Change multi-byte strings to escape sequences so that they can pass
through compilers.

–z sequence This option specifies the collation sequence or filename. For
a listing of recommended collation sequences, type dbinit –l at the command
prompt.

Chapter 16 UltraLite Reference

419

The UltraLite generator
The UltraLite generator, using the Analyzer classes, implements your
application database and generates additional C/C++ or Java source files,
which must be compiled and linked into your application.

ulgen [switches] [project [output-filename]]

Switch Description

-a Uppercase SQL string names [Java]

-c "keyword=value;…" Supply database connection parameters for your
reference database

-e Replace SQL strings with generated constants [Java]

-f filename Specify output file name

-g Do not display warnings

-i Generate inner classes [Java]

-j project-name Project name

-l type Log the execution plan for each statement to a file. The
type must be one of the following:

♦ xml

♦ short

♦ long

-m version Specify the version name for generated synchronization
scripts

-o table-name,... Specify the order in which tables are uploaded during
synchronization

-p package-name Package name for generated classes [Java]

-q Do not print the banner

-r filename The file containing the trusted root certificates

Function

Syntax

The UltraLite generator

420

Switch Description

-s filename Generate a list of SQL strings in an interface definition
[Java]

-t target Target language. Must be one of the following:

♦ c

♦ c++

♦ java

-u pub-name The publication to use (C++ API only)

-v pub-name The publication to use for synchronization

-x Generate more and smaller C/C++ files.

The UltraLite generator creates code that you compile and make part of an
UltraLite application. Its output is based on the schema of the Adaptive
Server Anywhere reference database and the specific SQL statements or
tables that you use in your embedded SQL source files.

You must ensure that all your statements and tables are defined in the
dbo.ul_statement table before running the generator. You do this as follows:

♦ In embedded SQL, run the SQL preprocessor on each file.

♦ In the C/C++ API and Java, add statements to the database using
ul_add_statement, and/or define SQL Remote publications in the
database.

In this table, statements are associated with projects. By specifying a project
name on the generator command line, you determine which statements are
included in your generated database.

You can include multiple projects, and also mix projects with a publication,
on the generator command line. You must run the generator only once for
each generated database.

If you do not specify an output file name, the generated code is written to a
file with a name of project. It is recommended that you specify an output file
name using the –f command-line switch.

Customizing UltraLite generator operations The UltraLite analyzer
provides hooks that you can use to customize the code generation process.
These hooks are stored procedure names. If you supply stored procedures
with the following names, the UltraLite analyzer invokes them before and
after the analysis process:

♦ sp_hook_ulgen_begin()

♦ sp_hook_ulgen_end()

Description

Chapter 16 UltraLite Reference

421

These hooks are defined in the reference database and are used only during
the analyzer analysis phase. The hooks can be created as follows:

CREATE PROCEDURE sp_hook_ulgen_begin ()
BEGIN
// actions here
END

CREATE PROCEDURE sp_hook_ulgen_end ()
BEGIN
// actions here
END

project The project name determines the set of statements that are to be
included in the generated database. For a more precise specification of the
filename, use the –j option.

output-filename The name for the generated file, without extension. For a
more precise specification of the filename, use the –f option.

In Java, this name is also the database name, which you must supply on
connection.

-a If you are developing a Java application, the names of the SQL
statements in the project are used as constants in your application. By
convention, constants are upper case, with underscore characters between
words. The –a option makes the names of SQL statements fit this convention
by uppercasing the characters and inserting an underscore whenever an
uppercase character in the original name is found if not already preceded by
an underscore or an uppercase character. For example, a statement named
MyStatement becomes MY_STATEMENT, and a statement named
AStatement becomes ASTATEMENT.

The generated names have spaces and non-alphanumeric characters replaced
with an underscore, regardless of whether –a is used.

-c connection-string The connection string must give the generator
permission to read and modify your reference database. This parameter is
required.

-e The SQL strings in the generated database are replaced by smaller,
generated strings. This option is useful when you are trying to reduce the
footprint of a database with a lot of statements.

-f filename This is the recommended way to specify the output file. Do not
specify an extension.

-g Suppress the display of warning messages. Error messages are still
displayed.

Switches

The UltraLite generator

422

The UltraLite generator provides warnings to indicate that some generated
code may, under some circumstances, cause problems. For example, it
generates a warning for SQL statements that include temporary tables.

-i By default, generated classes are written as top-level non-public classes
except for the main database class. If you use –i , the generated classes are
written as inner classes. If you use this option, you must use a Java compiler
that can correctly compile inner classes.

-j project-name This is the recommended way to specify the project. You
can specify multiple projects using this switch as follows:

ulgen -j project1 -j project2 ...

-l type Log the execution plan for queries in the application. These plans
can be viewed in Interactive SQL. The types available are:

♦ xml Description in XML format. Use the Interactive SQL File➤Open
command to display the plan.

♦ short Brief description of the plan in a file named <statement>.txt.
The content is that generated by the EXPLANATION function

♦ long Detailed description of the plan in a file named <statement>.txt.
The content is that generated by the PLAN function.

-m version Specify the version name for generated synchronization
scripts. The generated synchronization scripts can be used in a MobiLink
consolidated database for simple synchronization.

-o table-name,... Specify the order in which tables are uploaded during
synchronization. This option can be used to avoid referential integrity errors
during upload. Each table to be uploaded must be specified exactly once. The
option cannot be used when there are circular foreign key relationships
among the tables.

-p package-name A package name for generated files when generating
Java output.

-q Do not display output messages.

-r filename The file containing the trusted root certificates used for secure
synchronization using Certicom security software.

The generator embeds these trusted roots into the UltraLite application.
When the application receives a certificate chain from a MobiLink
synchronization server, it checks if its root is among the trusted roots, and
only accepts a connection if it is.

Chapter 16 UltraLite Reference

423

The generator checks the expiry dates of all the certificates in the trusted root
certificate file and issues the following warning for any certificate that
expires in less than 6 months (180 days):

Warning: Certificate will expire in %1 days"

The generator issues a Certificate has expired error for any certificate that has
already expired.

$ For more information, see "Synchronization parameters" on page 380,
and "Transport-Layer Security" on page 283 of the book MobiLink
Synchronization User’s Guide.

-s filename Generate an interface that contains the SQL statements as
constants. This option is for use with Java only. The interface file has a
format similar to the following example:

package com.sybase.test;
public interface EmpTestSQL {
 String EMPLOYEE = "select emp_fname, emp_lname

from employee where emp_id = ?";
 String UPDATE_EMPLOYEE = "update employee

set emp_fname = ?, emp_lname = ?
where emp_id = ?";

}

Do not supply the .java extension in filename. The –a option controls the
case of the statement names.

-t target Specifies the kind and extension of the generated file.

♦ If you are using Java, you must use a target of java. If you are using
embedded SQL or the C++ API, you can use a target of either c or
c++. Which one you choose decides the extension of the file name,
and has nothing to do with whether you are using the C++ API or
embedded SQL.

♦ If you specify c++, the following files are generated:

♦ filename.cpp The code for the generated API.

♦ filename.h A header file. You do not need to look at this file.

♦ filename.hpp The C++ API definition for your application.

♦ If you specify a target of c, filename.c is generated.

-u pub-name If you are generating a C++ API for a publication, specify
the publication name with the -u switch.

-v pub-name Specifies a publication to synchronize. If you do not use
publications to define which changes are to be synchronized, all changes are
synchronized.

The UltraLite generator

424

If columns or tables specified in publications are not referenced by SQL
statements in your application, they are not included in the UltraLite
database.

To specify multiple publications, repeat the -v option. For example:

ulgen -v pub1 -v pub2 …

The maximum number of publications is 32.

$ For more information, see "Designing synchronization for UltraLite
applications" on page 55.

-x This option is intended for use in situations where the file containing the
generated code is too large for the C/C++ compiler to compile.

This switch causes the UltraLite generator to produce more and smaller files.
When -x is used, the UltraLite generater writes out one C/C++ file for the
database and one for each SQL statement.

This switch has no effect when generating Java code.

Chapter 16 UltraLite Reference

425

The UltraLite segment utility
The UltraLite segment utility is for use when building applications for the
Palm Computing Platform using the GCC PRC-Tools tool chain.

dbulseg generated-source-file definition-file app-name creator-id

Switch Description

generated-source-file The name of the source code file written by the
UltraLite generator.

definition-file The name of the definition file to be written out. It
should end in the extension .def.

app-name The name of the application.

creator-id The application creator ID

The GCC PRC-Tools suite requires a set of segment identifiers in a
definition file. The dbulseg utility reads the UltraLite generated code (in file
generated-source-file) and writes out the definition file definition-file.

The segment definition file also includes the Palm application name and
application creator ID. These Palm-specific identifiers must be supplied in
the command line.

The command line included in the build.bat file that compiles the UltraLite
CustDB sample application is as follows:

dbulseg custdb.c custdb.def CustDB Syb2

The resulting output file is as follows:

application { "CustDB" Syb2 }
multiple code { ULRT1 ULRT2 ULRT3 ULRT4 ULRT5 ULRT6
ULRT7 ULRT8 ULRT9 ULRT10 ULRT11 ULRT12 ULRT13 ULRT14
ULRT15 ULRT16 ULRT17 ULG512 ULG513 ULG514 ULG515 ULG516
ULG517 ULG518 ULG519 ULG520 ULG521 ULG522 ULG523 ULG524
ULG525 ULG526 ULG527 ULG528 ULG529 ULG530 ULG531 ULG532
ULG131 }

The file contents are on two lines: the second line is wrapped for display
purposes.

Function

Syntax

Description

Example

The UltraLite utility

426

The UltraLite utility
The UltraLite utility is a Palm Computing Platform application that deletes
all of the data stored in an UltraLite application’s remote database.

The UltraLite utility is installed as the following file:

%ASANY8%\UltraLite\Palm\68k\ULUtil.prc

ULUtil is useful in deployments where devices are shared between different
users. When a different user gets a device, they may want to clear out the
previous user’s data, to save storage space. Also, the previous user might
want to clear out their data because it is confidential. Without ULUtil, the
only way to clear out an application’s data would be to delete and re-install
the application.

You can set ULUtil to back up the Palm store to the PC on subsequent
synchronization. You can use this feature to perform an initial
synchronization and then backup the store which can be deployed on other
devices so they do not need to perform an initial synchronization. The
backup option is automatically turned off by the UltraLite runtime to prevent
subsequent backups. If you explicitly want to require the database to be
backed up on every synchronization, you must add the palm_allow_backup
parameter in UL_STORE_PARMS.

$ For more information, see "UL_STORE_PARMS macro" on page 428.

Once ULUtil is installed on the device, you can delete an UltraLite
application’s data as follows:

1 Switch to ULUtil.

2 Select an application from the list of UltraLite Applications.

3 Tap the Delete button.

On devices with expansion cards, ULUtil provides access to both file-based
and record-based stores.

Function

Description

Chapter 16 UltraLite Reference

427

Macros and compiler directives for UltraLite
C/C++ applications

This section describes compiler directives to supply for UltraLite C/C++
applications. Unless stated otherwise, directives apply to both embedded
SQL and C++ API applications.

Compiler directives can be supplied on your compiler command line or in
the compiler settings dialog box of your user interface. Alternatively, they
can be defined in source code.

On the compiler command line, a compiler directive is commonly set by
using the /D command-line option. For example, to compile an UltraLite
application with user authentication, a makefile for the Microsoft Visual C++
compiler may look as follows:

CompileOptions=/c /DPRWIN32 /Od /Zi /DWIN32
/D__NT__ /DUL_USE_DLL /DULB_USE_BIGINT_TYPES
/DULB_USE_FLOAT_TYPES /DUL_ENABLE_USER_AUTH

IncludeFolders= \
/I"$(VCDIR)\include" \
/I"$(ASANY8)\h"

sample.obj: sample.cpp
cl $(CompileOptions) $(IncludeFolders) sample.cpp

where VCDIR is your Visual C++ directory and ASANY8 is your
SQL Anywhere directory.

In source code, directives are supplied using the #define statement.

UL_AS_SYNCHRONIZE macro

Provides the name of the callback message used to indicate an ActiveSync
synchronization.

Windows CE applications using ActiveSync only.

"Adding ActiveSync synchronization to your application" on page 305

UL_ENABLE_OBFUSCATION macro

By default, obfuscation is disabled. To enable obfuscation, define
UL_ENABLE_OBFUSCATION when compiling the generated database.

Function

Applies to

See also

Function

Macros and compiler directives for UltraLite C/C++ applications

428

The generated database code.

"Encrypting UltraLite databases" on page 45

UL_ENABLE_USER_AUTH macro

For C++ API applications only, define this directive to enable user
authentication. Without this directive, there is no user authentication on
C++ API UltraLite applications.

The ulapi.cpp file.

"Adding user authentication to your application" on page 85

UL_ENABLE_GNU_SEGMENTS macro

Instructs the compiler to generate multi-segment code for Palm Computing
Platform applications using the PRC Tools development environment.

The UL_ENABLE_SEGMENTS macro must also be defined.

The generated database code.

"Enabling multi-segment code generation" on page 264
"UL_ENABLE_SEGMENTS macro" on page 428

UL_ENABLE_SEGMENTS macro

Instructs the compiler to generate multi-segment code for Palm Computing
Platform applications.

The generated database code.

"Enabling multi-segment code generation" on page 264

UL_STORE_PARMS macro

Supply a set of keyword-value pairs to configure database storage.

#define UL_STORE_PARMS UL_TEXT("keyword=value;…")

All spaces in the keyword-value list are significant, except spaces at the start
of the string and any spaces that immediately follow a semicolon.

Applies to

See also

Function

Applies to

See also

Function

Applies to

See also

Function

Applies to

See also

Function

Syntax

Chapter 16 UltraLite Reference

429

Define the UL_STORE_PARMS macro in the header of your application
source code so that it is visible to all db_init() calls.

Keywords are case insensitive. The case sensitivity of the values depends on
the application interpreting it. For example, the case sensitivity of the
filename depends on the operating system.

cache_size Defines the size of the cache. You can specify the size in units
of bytes. Use the suffix k or K to indicate units of kilobytes and use the
suffix M or m to indicate megabytes. For example, the following string sets
the cache size to 128 kb.

#define UL_STORE_PARMS UL_TEXT("cache_size=128k")

The default cache size for 16-bit architectures is 8 K. The default cache size
for 32-bit architectures is 64 K. The minimum cache size is 4 K.

This parameter does not apply to the Palm Computing Platform.

file_name Defines the full pathname of the file-based persistent store. No
substitutions are performed on this value. In addition, you must ensure that
this directory exists when db_init is called. The directory is not created
automatically.

#define UL_STORE_PARMS
UL_TEXT("file_name=\\uldb\\my own name.udb")

Under Windows CE, the filename must include the absolute path. Under
other Windows operating systems and VxWorks, the path may either be
absolute, or relative to the current directory.

An alias for this parameter is DBF.

You must escape any backslash characters in the path.

This parameter does not apply to the Palm Computing Platform.

key Define an encryption key for strong encryption of the database store.

An alias for this parameter is DBKey.

$ For more information, see "Encrypting UltraLite databases" on
page 45.

page_size UltraLite databases are stored in pages. I/O operations are
carried out a page at a time. The default page size for UltraLite databases is
4kb. You can specify 2 kb pages using the following storage parameters
string:

#define UL_STORE_PARMS UL_TEXT("page_size=2k")

Usage

Parameters

Macros and compiler directives for UltraLite C/C++ applications

430

This parameter is ignored when starting an existing database. It can be used
on any C/C++ target platform. Setting a page size of 2 kb reduces the
maximum number of tables to approximately 500.

palm_allow_backup If the backup bit is set on the UltraLite database,
and if this parameter is set to yes, the entire Palm database is backed up
every time the device is synchronized using HotSync. If this parameter is not
set, UltraLite ensures that the backup bit is cleared.

In most applications, data is backed up by synchronization, so there is no
need to set this parameter.

The backup bit is set when a database file is deployed by HotSync, and can
also be set by the ULUtil utility. For more information, see "The UltraLite
utility" on page 426.

The following string sets the parameter.

#define UL_STORE_PARMS
UL_TEXT("palm_allow_backup=yes")

reserve_size Reserves file system space for storage of UltraLite persistent
data.

The reserve_size parameter allows you to pre-allocate the file system space
required for your UltraLite database without actually inserting any data.
Reserving file system space can improve performance slightly and also
prevent out of memory failures. By default, the persistent storage file only
grows when required as the application updates the database.

Note that reserve_size reserves file system space, which includes the
metadata in the persistent store file, and not just the raw data. The metadata
overhead as well as data compression must be considered when deriving the
required file system space from the amount of database data. Running the
database with test data and observing the persistent store file size is
recommended.

The reserve_size parameter reserves space by growing the persistent store
file to the given reserve size on startup, regardless of whether the file
previously existed. The file is never truncated.

Use the reserve_size parameter to pre-allocate space as follows:

#define UL_STORE_PARMS UL_TEXT("reserve_size=2m")

This example ensures that the persistent store file is at least 2 Mb upon
startup.

This parameter does not apply to the Palm Computing Platform unless the
application uses the Virtual File System (VFS).

The following statements set the cache size to 128 kb.Examples

Chapter 16 UltraLite Reference

431

#undef UL_STORE_PARMS
#define UL_STORE_PARMS UL_TEXT("cache_size=128k")

. . .
db_init(&sqlca);

You can set UL_STORE_PARMS to a string, then set the value of that string
programmatically before calling db_init, as in the following example. The
UL_TEXT macro and the _stprintf function are used to achieve proper
character encoding.

char store_parms[32];

#undef UL_STORE_PARMS
#define UL_STORE_PARMS store_parms

. . .
/* Set cache_size to the correct number of bytes. */
. . .

_stprintf(store_parms, UL_TEXT("cache_size=%lu"),
cache_size);

db_init(&sqlca);

"Configuring and managing database storage" on page 45
"Encrypting UltraLite databases" on page 45

UL_SYNC_ALL macro

Provides a publication mask that refers to all tables in the database, including
those not in publications.

"publication synchronization parameter" on page 386
"ULGetLastDownloadTime function" on page 239
"ULCountUploadRows function" on page 234
"UL_SYNC_ALL_PUBS macro" on page 431

UL_SYNC_ALL_PUBS macro

Provides a publication mask that refers to all tables in the database that are in
publications.

"publication synchronization parameter" on page 386
"ULGetLastDownloadTime function" on page 239
"ULCountUploadRows function" on page 234
"UL_SYNC_ALL macro" on page 431

See also

Function

See also

Function

See also

Macros and compiler directives for UltraLite C/C++ applications

432

UL_TEXT macro

Prepares constant strings to be compiled as single-byte strings or wide-
character strings. In embedded SQL and C++ API applications, use this
macro to enclose all constant strings so that the compiler handles these
parameters correctly.

UL_USE_DLL macro

For Windows CE and Windows applications only, define this directive to use
the runtime library DLL, rather than a static runtime library.

The generated database code.

"Choosing how to link the runtime library" on page 295.

UNDER_NT macro

Use this macro when compiling UltraLite code for Windows NT/2000/XP
only.

By default, this macro is defined in all new Visual C++ projects that target
Windows NT/2000/XP.

UNDER_CE macro

Use this macro when compiling UltraLite applications for Windows CE only.

By default, this macro is defined in all new eMbedded Visual C++ projects.

"Developing Applications for Windows CE" on page 293.

UNDER_PALM_OS macro

Use this macro when compiling UltraLite applications for Palm OS only.

This macro is defined in the ulpalmXX.h header file included in UltraLite
Palm OS applications by the UltraLite plugin. For more information, see
"Using the UltraLite plug-in for CodeWarrior" on page 257.

"Developing Applications for the Palm Computing Platform" on page 253.

Function

Function

Applies to

See also

Function

Function

See also

Function

See also

Chapter 16 UltraLite Reference

433

UNDER_VXW macro

Use this directive when compiling UltraLite code for VxWorks.

"Developing Applications for VxWorks" on page 309.

Function

See also

Macros and compiler directives for UltraLite C/C++ applications

434

435

A P P E N D I X A

UltraLite Features and Limitations

This background information is provided to help you better understand the
features supported by UltraLite databases.

Topic Page

UltraLite data types 436

SQL features and limitations of UltraLite applications 437

Size and number limitations for UltraLite databases 440

UltraLite tables must have primary keys 441

User authentication for UltraLite databases 442

About this
appendix

Contents

UltraLite data types

436

UltraLite data types
UltraLite supports all Adaptive Server Anywhere data types, with the
following exceptions.

♦ Java data types.

♦ CHAR(n), VARCHAR(n), BINARY(n), VARBINARY(n) data types,
where n > 2048. You can use LONG VARCHAR and LONG BINARY
data types to hold this kind of information.

♦ The maximum size of LONG VARCHAR and LONG BINARY values
is 64 kb.

♦ Domains (user-defined data types) that include DEFAULT values or
CHECK constraints. You can use IMAGE or TEXT data types.

As you design your database, you should also confirm that MobiLink
synchronization supports the features you wish to use.

$ For a list of Adaptive Server Anywhere data types, see "SQL Data
Types" on page 51 of the book ASA SQL Reference Manual.

Appendix A UltraLite Features and Limitations

437

SQL features and limitations of UltraLite
applications

The following SQL statements can be used in UltraLite applications:

♦ Data Manipulation Language SELECT, INSERT, UPDATE, and
DELETE statements can be included. You can use placeholders in these
statements that are filled in at runtime.

$ For more information, see "Writing UltraLite SQL statements" on
page 83.

♦ TRUNCATE TABLE statement You can use this statement to rapidly
delete entire tables.

♦ Transaction control You can use COMMIT and ROLLBACK
statements to provide transaction control within your UltraLite
application.

♦ START/STOP SYNCHRONIZATION DELETE statements These
statements are used to temporarily suspend synchronization of delete
operations.

$ For more information, see "Temporarily stopping synchronization
of deletes" on page 156 of the book MobiLink Synchronization User’s
Guide.

Some features of Adaptive Server Anywhere cannot be used in UltraLite
databases. You cannot use the following Adaptive Server Anywhere SQL
features in your UltraLite applications:

♦ Dynamic SQL All SQL in UltraLite applications must be known at
compile time (static SQL), so that the analyzer can generate code to
process the statements. You can not include code in your application that
generates and executes arbitrary SQL statements. You can, however, use
parameterized SQL statements to control the behavior of your
statements at run time.

If you need the capability to execute dynamic SQL, or need other
features not present in UltraLite, consider using Adaptive Server
Anywhere. Adaptive Server Anywhere is a full-featured database that
has a footprint small enough for many mobile and embedded
applications.

♦ Cascading updates and deletes Some applications rely on
declarative referential integrity to implement business rules. These
features are not available in UltraLite databases.

Limitations

SQL features and limitations of UltraLite applications

438

♦ Check constraints You cannot include table or column check
constraints in an UltraLite database.

♦ Computed columns You cannot include computed columns in an
UltraLite database.

♦ Timestamp columns You cannot use Transact-SQL timestamp
columns in UltraLite databases. Transact-SQL timestamp columns are
created with the following default:

DEFAULT TIMESTAMP

You can use columns created as follows:

DEFAULT CURRENT TIMESTAMP

There is a behavior difference between the two: a DEFAULT
CURRENT TIMESTAMP column is not automatically updated when
the row is updated, while a DEFAULT TIMESTAMP column is
automatically updated. You must explicitly update columns created with
DEFAULT CURRENT TIMESTAMP if you wish the column to reflect
the latest update time.

♦ Schema modification To modify the schema of a UltraLite database,
you must build a new version of your application.

$ For more information, see "Schema changes in remote databases"
on page 116 of the book MobiLink Synchronization User’s Guide.

♦ Global temporary tables The temporary aspect of global temporary
tables is not recognized by UltraLite. They are treated as if they were
permanent base tables, which you should use instead.

♦ Declared temporary tables You cannot declare a temporary table
within an UltraLite application.

♦ System table access There are no system tables in an UltraLite
database.

♦ Stored procedures You cannot call stored procedures or user-defined
functions in an UltraLite application.

♦ Java in the database You cannot include Java methods in your
queries or make any other use of Java in the database.

♦ SQL variables You cannot use SQL variables in UltraLite
applications, including global variables.

The @@identity global variable is an exception, and can be used within
UltraLite applications.

♦ SAVEPOINT statement UltraLite databases support transactions, but
not savepoints within transactions.

Appendix A UltraLite Features and Limitations

439

♦ SET OPTION statement You can determine the option settings in an
UltraLite database by setting them in the reference database, but you
cannot use the SET OPTION statement in an UltraLite application to
change option settings.

♦ System functions You cannot use Adaptive Server Anywhere system
functions, including property functions, in UltraLite applications.

♦ Functions Not all SQL functions are available for use in UltraLite
applications. For example, the ISDATE and ISNUMERIC functions are
not available for use in UltraLite databases.

Use of an unsupported function gives a Feature not available in UltraLite
error.

♦ Triggers Triggers are not available in UltraLite databases.

The SQL error message Feature not available in UltraLite is reported when an
UltraLite program attempts to use a SQL statement or feature that is not
supported in UltraLite.

$ For information on other UltraLite limitations, see "UltraLite data
types" on page 436, and "Size and number limitations for UltraLite
databases" on page 440.

Size and number limitations for UltraLite databases

440

Size and number limitations for UltraLite
databases

The following table lists the absolute limitations imposed by data structures
in the software on the size and number of objects in an UltraLite database. In
most cases, the memory, CPU, and storage device of the computer impose
stricter limits.

Item Limitation

Number of connections per database 14

Number of columns per table 65535 but limited by row size *

Number of indexes 65535

Number of rows per database Limited by persistent store

Number of rows per table 65534

Number of tables per database Approximately 1000**

Number of tables referenced per transaction No limit

Row size Approximately 4 kb
(compressed). LONG
VARCHAR and LONG BINARY
values are stored separately, and
are in addition to the 4 kb limit.

File-based persistent store 2 Gb file or OS limit on file size

Palm Computing Platform database size 128 Mb (Primary storage)

2 Gb (expansion card file system)
* Row size is limited to about 4 kb, so the practical limit on the number of columns per table is
much smaller than this: much less than 4000 in most situations.
** If you set the page size to 2 kb, the maximum number of tables is reduced to approximately
500.

$ For other limitations, see "UltraLite data types" on page 436, and "SQL
features and limitations of UltraLite applications" on page 437.

Appendix A UltraLite Features and Limitations

441

UltraLite tables must have primary keys
Each table in your UltraLite application must include a primary key.

The UltraLite generator uses primary keys from your reference database to
generate primary keys in the UltraLite database. If the primary key columns
for any table are not included in the data required in the UltraLite database,
the UltraLite generator looks for a uniqueness constraint on the table, and
promotes the columns with such a constraint to a primary key in the
UltraLite database. If there are no unique columns, the generator reports an
error.

Primary keys are required not only for UltraLite applications, but also during
MobiLink synchronization, to associate rows in the UltraLite database with
rows in the consolidated database.

User authentication for UltraLite databases

442

User authentication for UltraLite databases
UltraLite provides optional database user IDs and passwords for user
authentication. Unlike Adaptive Server Anywhere and other multi-user
database systems, UltraLite user IDs are used for authentication only, not for
permission checking or object ownership within a database. By default,
UltraLite databases have no user authentication.

$ For information on implementing user IDs, see "Adding user
authentication to your application" on page 85.

UltraLite user IDs are separate from MobiLink user names and from user IDs
in any reference database or consolidated databases you use during
development and after deployment. In many cases you may wish to provide
code so that the values used for each are the same, but they do remain
distinct concepts. For example, in the CustDB sample application, you are
prompted for an employee number when starting the application. This
employee number identifies the database for the purposes of MobiLink
synchronization, and is not an UltraLite user ID for connection or data access
purposes.

443

Index

#
#define

UltraLite applications, 427

@
@@error global variable

UltraLite limitations, 438

@@identity global variable
use in UltraLite, 61

@@rowcount global variable
UltraLite limitations, 438

1
16-bit signed integer embedded SQL data type, 210

3
32-bit signed integer embedded SQL data type, 210

4
4-byte floating point embedded SQL data type, 210

8
8-byte floating point embedded SQL data type, 210

A
absolute method

UltraLite Java JDBC support, 365

ActiveSync
about, 305
adding to UltraLite applications, 305
class names, 303
configuring, 399
deploying UltraLite applications, 299
installing the MobiLink provider, 301
MFC UltraLite applications, 306
registering applications with, 302
supported versions, 305
transport-layer security, 400
ULIsSynchronizeMessage function, 243
UltraLite message, 427
WindowProc function, 306

AES encryption algorithm
UltraLite databases, 45

afterLast method
UltraLite Java JDBC support, 365

AfterLast method (ULCursor class)
about, 152

allsync tables
UltraLite databases, 79

an_SQL_code UltraLite data type
C++ API, 131

analyzer
defined, 91
error on starting, 92

B–C

444

applets
running the UltraLite Java sample, 339
UltraLite, 361

applications
building, 194, 333
building the sample embedded SQL application,

187
compiling, 194
deploying, 104, 364
deploying on Palm Computing Platform, 291
preprocessing, 194
writing, 68
writing in embedded SQL, 183, 193
writing in Java, 324, 338

ARM chip
Windows CE, 6

articles
UltraLite databases, 76
UltraLite restrictions, 76

auth_status synchronization parameter
about, 381

auth_value synchronization parameter
MobiLink synchronization, 382

automating scripts
MobiLink synchronization, 389

B
backups

UltraLite databases, 42
UltraLite databases on Palm, 426

beforeFirst method
UltraLite Java JDBC support, 365

BeforeFirst method (ULCursor class)
about, 153

binary embedded SQL data type, 212

browsing
Sybase Central, 35

build processes
single-file embedded SQL applications, 194
UltraLite embedded SQL applications, 195

building
C++ API applications, 127
embedded SQL applications, 194
Java applications, 333
sample application, 340
sample embedded SQL application, 187

C
C++ API

about, 108, 122
class hierarchy, 130
compiling applications, 128
generating classes, 127
header files, 130
linking applications, 128
Palm Computing Platform, 140, 150, 160, 261
query classes, 125
Reopen methods, 261
table classes, 125
tutorial, 109

cache_size persistent storage parameter, 45
about, 429

cascading deletes
UltraLite limitations, 437

cascading updates
UltraLite limitations, 437

case sensitivity
UltraLite user authentication, 85

Certicom
security, 422
transport-layer security, 387, 388
unavailable on Power PC, 283
unavailable using GCC tools, 259

certificate option
MobiLink synchronization server -x, 354

certificate_password option
MobiLink synchronization server -x, 354

changeEncryptionKey method, 49
JdbcDatabase class, 49, 369

character sets
synchronization, 64
UltraLite, 64

C–C

445

UltraLite Java, 65
UltraLite limitations, 437

character string embedded SQL data type
fixed length, 211
variable length, 211

character strings, 418

check constraints
UltraLite limitations, 438

checkpoint_store synchronization parameter
MobiLink synchronization, 382

class names
ActiveSync synchronization, 303

Class.forName method, 345

classes
C++ AIP, 130

ClassNotFoundException, 345

client_port stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

close method
JdbcDatabase class, 369

Close method (ULConnection class)
about, 132

Close method (ULCursor class)
about, 153

Close method (ULData class)
about, 144
do not use on Palm Computing Platform, 144

CLOSE statement
about, 223

closing
Palm applications, 261

code generation
UltraLite, 91

code pages
synchronization, 64

CodeWarrior
converting projects, 257
creating UltraLite projects, 256
installing UltraLite plug-in, 255

supported versions, 6
UltraLite development, 255
using UltraLite plug-in, 257

collation sequences
UltraLite databases, 64

Commit method (ULConnection class)
about, 132

commits
UltraLite databases, 44

compiler
GNU for Palm, 259

compiler directives
UltraLite applications, 427
UNDER_CE, 432
UNDER_NT, 432
UNDER_PALM_OS, 432
UNDER_VXW, 433

compilers
Palm Computing Platform, 254
supported, 6, 7
VxWorks, 310
Windows CE, 294

compiling
C++ API applications, 127, 128
UltraLite applications, 194
UltraLite embedded SQL applications, 195
UltraLite Java, 363
UltraLite VxWorks applications, 316

compression
UltraLite databases, 43

computed columns
UltraLite limitations, 438

conduit
dbcond8.exe, 274
deploying, 291
deploying UltraLite applications, 275
HotSync synchronization, 290
installing, 275, 414
installing for CustDB, 414
testing, 276

conduit installation utility
about, 275

configuring
development tools, 102, 198

D–D

446

connect method
JdbcDatabase class, 370

connecting
multiple UltraLite Java databases, 348
Properties object and UltraLite Java, 347
UltraLite databases, 85, 442
UltraLite Java databases, 344, 345

Connection object, 345

connections
UltraLite limitations, 440

consolidated databases
creating reference databases, 74
Sybase Central, 35

conventions
documentation, xiii

CountUploadRows method (ULConnection class)
about, 133

creating
reference databases, 72, 73
UltraLite databases, 9
UltraLite Java databases, 373
UltraLite publications, 77

CURRENT TIMESTAMP
SQL special value, 438

cursors
embedded SQL, 223

custase.sql
location, 18

CustDB application
about, 15
building for Palm Computing Platform, 258, 259
building for VxWorks, 312
building for Windows CE, 296
features, 16
file locations, 17
installing conduit, 414
introduction, 16
starting, 24
synchronization, 19

CustDB database
about, 35
location, 17

custdb.db
location, 17

custdb.sqc
location, 18

custdb.sql
location, 18

custmss.sql
location, 18

custora.sql
location, 18

D
Data Manager

UltraLite database storage, 43

data types
embedded SQL, 210
UltraLite, 436
UltraLite enumeration, 151
UltraLite SQL enumeration, 152

database files
changing the encryption key, 49
defragmenting UltraLite databases, 51
encrypting, 46, 429
obfuscating, 45, 427
setting the file name, 45
UltraLite VxWorks, 318
UltraLite Windows CE, 298

database options
reference databases, 73

databases
collation sequences, 64
connections from UltraLite Java, 344
deleting UltraLite, 426
generating UltraLite Java, 362
multiple UltraLite Java, 348
reference, 72
UltraLite database storage, 43
UltraLite Java, 348
UltraLite limitations, 440

DATE_FORMAT option
UltraLite databases, 73

DATE_ORDER option
UltraLite databases, 73

D–D

447

dates
UltraLite databases, 73

db_fini function
do not use on the Palm Computing Platform, 231
UltraLite usage, 231

db_init function
multi-threaded UltraLite applications, 93
UltraLite usage, 231

dbasinst command-line utility
installing the MobiLink provider for ActiveSync,

301

dbcond8 command-line utility
command-line arguments, 414
deploying, 275
HotSync conduit, 274

dbhsync8.dll
HotSync conduit, 275

dbhttp8.dll
deploying UltraLite applications, 275

dblgen8.dll
HotSync conduit deployment, 275

dbser8.dll
deploying UltraLite applications, 275

dbsock8.dll
deploying UltraLite applications, 275

dbtls8.dll
deploying UltraLite applications, 275

dbulseg command-line utility
command line, 425

decimal embedded SQL data type, packed, 210

DECL_BINARY macro
about, 210

DECL_DATETIME data type
UltraLite C++ API, 131

DECL_DATETIME macro
about, 210

DECL_DECIMAL macro
about, 210

DECL_FIXCHAR macro
about, 210

DECL_VARCHAR macro
about, 210

declaration section
about, 209

DECLARE statement
about, 223

declaring
host variables, 209

definitions
persistent storage parameters, 45

defragmenting
UltraLite databases, 51

Delete method (ULCursor class)
about, 154

DeleteAllRows method (ULTable class)
about, 165

deletes
UltraLite databases, 44

deleting
UltraLite utility to delete databases, 426

dependencies
embedded SQL, 198

deploying
applications on Palm Computing Platform, 291
applications that use ActiveSync, 299
MobiLink synchronization conduit for Palm, 291
Palm Computing Platform, 291
Palm Computing Platform CustDB sample

application, 21
UltraLite applications, 104
UltraLite databases, 236
UltraLite databases on Palm, 292
UltraLite Java applications, 364
Ultralite Palm applications, 274
UltraLite VxWorks applications, 313
UltraLite Windows CE applications, 299
Windows CE CustDB sample application, 22

development
UltraLite, 70

development model
UltraLite, 68

E–E

448

development tools
configuring for UltraLite, 102, 198
embedded SQL, 198
preprocessing, 102, 198

dial-up networking
about, 285
configuring, 287

directives
UltraLite applications, 427

disableUserAuthentication method
JdbcSupport class, 374

documentation
conventions, xiii
SQL Anywhere Studio, x

download acknowledgements
send_download_ack synchronization parameter,

389

download_only synchronization parameter
MobiLink synchronization, 383

download-only synchronization
UltraLite databases, 78, 383

Driver class, 345

DriverManager class, 345

DriverManager.getConnection() method, 345

drop method
JdbcDatabase class, 371

Drop method (ULData class)
about, 145

DT_BINARY embedded SQL data type, 213

DT_LONGVARCHAR embedded SQL data type,
213

dynamic SQL
UltraLite limitations, 437

E
embedded SQL

about, 183, 193, 205
authorization, 417
character strings, 418
cursors, 223

fetching data, 222
functions, 231
host variables, 209
line numbers, 417
preprocessing UltraLite, 201
preprocessor, 415
sample program, 183
UltraLite tutorial, 182

embedded SQL library functions
ULActiveSyncStream, 232
ULChangeEncryptionKey, 233
ULClearEncryptionKey, 233
ULConduitStream, 233
ULCountUploadRows, 234
ULDropDatabase, 235
ULEnableFileDB, 235
ULEnableGenericSchema, 236
ULEnablePalmRecordDB, 237
ULEnableStrongEncryption, 238
ULEnableUserAuthentication, 238
ULGetLastDownloadTime, 239
ULGetSynchResult, 240
ULGlobalAutoincUsage, 241
ULGrantConnectTo, 242
ULHTTPSStream, 242
ULHTTPStream, 242
ULPalmDBStream, 243
ULResetLastDownloadTime, 246
ULRetrieveEncryptionKey, 247
ULRevokeConnectFrom, 248
ULSaveEncryptionKey, 248
ULSetDatabaseID, 248
ULSocketStream, 249
ULStoreDefragFini, 249
ULStoreDefragInit, 249
ULStoreDefragStep, 250
ULSynchronize, 250

eMbedded Visual C++
obtaining, 294

emulator
Windows CE, 299

enableUserAuthentication method
JdbcSupport class, 374

encryption
C++ API, 124
changing UltraLite encryption keys, 49, 233
HotSync synchronization, 277
Palm Computing Platform, 50

F–G

449

storing the encryption key, 50
UltraLite databases, 45, 46, 238, 429

encryption keys
guidelines, 46

error handling
UltraLite applications, 344
UltraLite JDBC, 345

errors
codes, 228
SQLCODE, 228
sqlcode SQLCA field, 228
unable to use Java in the database, 92

EXEC SQL
embedded SQL development, 207

Execute method (generated statement class)
about, 174

F
feature not available in UltraLite

error message, 439

feedback
documentation, xvii
providing, xvii

FETCH statement
about, 222, 223

fetching
embedded SQL, 222

file_name persistent storage parameter, 45
about, 429

files
CustDB sample application, 17

Find method (ULTable class)
about, 165

FindFirst method (ULTable class)
about, 165

FindLast method (ULTable class)
about, 166

FindNext method (ULTable class)
about, 167

FindPrevious method (ULTable class)
about, 167

first method
UltraLite Java JDBC support, 365

First method (ULCursor class)
about, 154

first time
synchronization, 97

foreign key cycles
UltraLite, 56

functions
embedded SQL, 231

G
GCC tools

troubleshooting, 259
UltraLite applications, 259

generated database
naming, 257

generated database class
UltraLite Java databases, 373

generated result set class
about, 174

generating
database, 362
supplementary code, 202

generating multi-segment code
about, 264

generator
about, 362
database options, 74

Get method (generated table class)
about, 175

Get method (ULCursor class)
about, 154

GetCA method (ULConnection class)
about, 133

GetColumn method (generated result set class)
about, 171

H–H

450

GetColumn method (generated table class)
about, 176

GetColumnCount method (ULCursor class)
about, 155

GetColumnSize method (ULCursor class)
about, 155

GetColumnSQLType method (ULCursor class), 156

GetColumnType method (ULCursor class), 156

getDefragIterator method
JdbcConnection class, 366

getDriver method, 345

GetLastDownloadTime method (ULConnection
class)

about, 134

getLastDownloadTimeCalendar method
JdbcConnection class, 371

getLastDownloadTimeDate method
JdbcConnection class, 371

getLastDownloadTimeLong method
JdbcConnection class, 372

getLastIdentity method
JdbcConnection class, 367

GetLastIdentity method
using, 61

GetLastIdentity method (ULConnection class)
about, 134

getNewPassword method
MobiLink synchronization, 383

GetRowCount method (ULTable class)
about, 168

GetSizeColumn method (generated table class)
about, 177

GetSQLCode method (ULConnection class)
about, 135

GetSQLCode method (ULCursor class)
about, 157

GetSynchStatus method (ULConnection class)
about, 135

global autoincrement
C++ API, 136, 142
exhausted range, 62
setting default in UltraLite, 58
setting in UltraLite, 59
ULGlobalAutoincUsage function, 241
ULSetDatabaseID function, 248
UltraLite Java getLastIdentity method, 367
UltraLite Java globalAutoincUsage method, 367
UltraLite Java setDatabaseID method, 368
using in UltraLite, 58

global database identifier
C++ API, 142
setting, 59
UltraLite embedded SQL, 248
UltraLite Java, 368

GLOBAL_DATABASE_ID option
setting in UltraLite, 59

globalAutoincUsage method
JdbcConnection class, 367

GlobalAutoincUsage method (ULConnection class)
about, 136

GNU GCC tools
UltraLite applications, 259

grant method
JdbcDatabase class, 372

GrantConnectTo method (ULConnection class)
about, 137

H
header files

C++ API, 130

high-priority changes
synchronization, 78

hooks
sqlpp customization, 416
ulgen customization, 420

host name
ULSynchronize arguments, 394

I–I

451

host platforms
supported, 6
UltraLite, 6
UltraLite development, 68

host stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

host variables
about, 209
declaring, 209
uses, 214

HotSync conduit
configuring, 277
installing, 414
installing for CustDB, 414
testing, 276

HotSync Server
supported versions, 268

HotSync synchronization
about, 269
architecture, 269
configuring, 401
Palm Computing Platform, 272, 273, 274
supported, 12
transport-layer security, 402

hpp file
C++ API, 130

HTTP
synchronization, 403

http stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

HTTP synchronization
Palm Computing Platform, 283, 290

HTTPS
synchronization, 406

HTTPS synchronization
Palm Computing Platform, 283, 290

I
icons

used in manuals, xiv

ignored rows
synchronization, 383

ignored_rows synchronization parameter
MobiLink synchronization, 383

INCLUDE statement
SQLCA, 228

index enumeration (generated table class)
about, 178

indexes
UltraLite databases, 44

indicator variables
about, 220
NULL, 220

InitSynchInfo method
about, 95

InitSynchInfo method (ULConnection class)
about, 137

Insert method (ULCursor class)
about, 157

installing
MobiLink provider for ActiveSync, 301
Palm Computing Platform, 21, 291
UltraLite plug-in for CodeWarrior, 255
Windows CE development, 294

isAfterLast method
UltraLite Java JDBC support, 365

isBeforeFirst method
UltraLite Java JDBC support, 365

isFirst method
UltraLite Java JDBC support, 365

isLast method
UltraLite Java JDBC support, 365

IsOpen method (ULConnection class)
about, 138

IsOpen method (ULCursor class)
about, 158

J–L

452

IsOpen method (ULData class)
about, 145

J
Java

sample program, 324
supported platforms, 8
UltraLite character sets, 65
UltraLite limitations, 365
UltraLite tutorial, 324

Java applets
UltraLite, 361

java_certicom_tls stream
MobiLink synchronization server, 354

java_rsa_tls stream
MobiLink synchronization server, 354

JDBC
about, 324
database parameter in UltraLite URL, 346
loading drivers, 345
registering drivers, 345
UltraLite Java SQL statements, 351
UltraLite limitations, 365
URLs, 346

JDBC drivers
loading multiple drivers, 345
loading UltraLite, 345
registering UltraLite, 345
UltraLite, 345

JdbcConnection class
about, 366
getDefragIterator method, 366
getLastIdentity method, 367
globalAutoincUsage method, 367
setDatabaseID method, 368
startSynchronizationDelete method, 368
stopSynchronizationDelete method, 369
synchronize method, 368

JdbcConnection.synchronize method
about, 334, 352

JdbcDatabase class
about, 344, 369, 373
close method, 369
connect method, 344, 370

drop method, 371
grant method, 372
revoke method, 372

JdbcDefragIterator class
about, 373
ulStoreDefragStep method, 374

JdbcSupport class
about, 374
disableUserAuthentication method, 374
enableUserAuthentication method, 374

JDK
UltraLite supported versions, 8

JSynchProgressViewer class
about, 358

K
keep_alive stream parameter

HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

key parameter
database encryption, 429

key property
UltraLite Java databases, 347

L
large files

UltraLite generator, 424

last download timestamp
resetting in UltraLite databases, 141, 246
ULGetLastDownloadTime function, 239

last method
UltraLite Java JDBC support, 365

Last method (ULCursor class)
about, 158

LastCodeOK method (ULConnection class)
about, 138

LastCodeOK method (ULCursor class)
about, 158

M–M

453

LastFetchOK method (ULCursor class)
about, 139, 158

LAUNCH_SUCCESS_FIRST
C++ API, 149
embedded SQL, 246
UltraLite Palm applications, 261

launching
Palm applications, 261

library functions
embedded SQL, 231
ULActiveSyncStream, 232
ULChangeEncryptionKey, 233
ULClearEncryptionKey, 233
ULConduitStream, 233
ULCountUploadRows, 234
ULDropDatabase, 235
ULEnableFileDB, 235
ULEnableGenericSchema, 236
ULEnablePalmRecordDB, 237
ULEnableStrongEncryption, 238
ULEnableUserAuthentication, 238
ULGetLastDownloadTime, 239
ULGetSynchResult, 240
ULGlobalAutoincUsage, 241
ULGrantConnectTo, 242
ULHTTPSStream, 242
ULHTTPStream, 242
ULIsSynchronizeMessage, 243
ULPalmDBStream, 243
ULResetLastDownloadTime, 246
ULRetrieveEncryptionKey, 247
ULRevokeConnectFrom, 248
ULSaveEncryptionKey, 248
ULSetDatabaseID, 248
ULSocketStream, 249
ULStoreDefragFini, 249
ULStoreDefragInit, 249
ULStoreDefragStep, 250
ULSynchronize, 250

limitations
JDBC UltraLite, 366
UltraLite, 440
UltraLite data types, 436
UltraLite SQL features, 437

line length
sqlpp output, 417

line numbers, 417

linking
C++ API applications, 128
UltraLite applications, 295

loading
JDBC driver, 345

log files
synchronization, 278, 282

Lookup method (ULTable class)
about, 168

LookupBackward method (ULTable class)
about, 168

LookupForward method (ULTable class)
about, 169

M
macros

UL_ENABLE_GNU_SEGMENTS, 428
UL_ENABLE_OBFUSCATION, 427
UL_ENABLE_SEGMENTS, 428
UL_ENABLE_USER_AUTH, 428
UL_STORE_PARMS, 428
UL_SYNC_ALL, 431
UL_SYNC_ALL_PUBS, 431
UL_TEXT, 432
UL_USE_DLL, 432
UltraLite applications, 427

makefiles
embedded SQL, 198

maximum
columns per table, 440
connections per database, 440
rows per table, 440
tables per database, 440

memory usage
UltraLite database storage, 43
UltraLite indexes, 44
UltraLite row states, 44

MetroWerks CodeWarrior
supported versions, 6

MFC
ActiveSync for UltraLite, 306

N–O

454

Microsoft Visual C++
supported versions, 6, 7

MIPS chip
Windows CE, 6

MobiLink
UltraLite and, 11

MobiLink conduit
installing, 414

MobiLink synchronization server
HotSync, 274
ScoutSync, 279

modems
Palm Computing Platform, 285

multi-row queries
cursors, 223

multi-segment code
generating, 264

multi-threaded applications
embedded SQL, 229
UltraLite thread-safe, 68

N
NEAREST_CENTURY option

UltraLite databases, 73

new_password synchronization parameter
about, 383

newsgroups
technical support, xvii

Next method (ULCursor class)
about, 159

nosync suffix
non-synchronizing tables, 76

NULL
C++ API, 154
indicator variables, 220

NULL-terminated string embedded SQL data type,
210

NULL-terminated TCHAR character string SQL
data type, 211

NULL-terminated UNICODE character string SQL
data type, 211

NULL-terminated WCHAR character string SQL
data type, 211

NULL-terminated wide character string SQL data
type, 211

O
obfuscating

compiler directive, 427
UltraLite databases, 45, 427
UltraLite Java databases, 373

obfuscation
UltraLite databases, 45

Object Store
UltraLite database storage, 43

objects
generated result set, 171
generated statement, 174
generated table, 175
ULConnection, 132
ULCursor, 151
ULData, 144
ULResultSet, 163
ULTable, 165

observer
synchronization example, 100, 358

observer synchronization parameter
about, 384

Open method (generated result set class)
about, 172

Open method (generated table class)
about, 177

Open method (ULConnection class)
about, 139

Open method (ULCursor class)
about, 159, 161

Open method (ULData class)
about, 146

OPEN statement
about, 223

P–P

455

options
reference databases, 73

P
packed decimal embedded SQL data type, 210

page size
UltraLite databases, 429

page_size parameter
UltraLite databases, 429

Palm Computing Platform
C++ API, 140, 150, 160
code pages, 64
collation sequences, 64
deployment, 21
development for, 254
file-based data store, 235
HotSync synchronization, 272, 273, 274
HTTP synchronization, 283
installing UltraLite applications, 291
platform requirements, 254
publication restrictions, 76
record-based data store, 237
ScoutSync synchronization, 272, 279
security, 283
segments, 263, 264, 265
supported versions, 6
synchronization, 285
TCP/IP synchronization, 283, 285
ULData class, 125
user authentication, 86
version 4.0, 235, 237

palm_allow_backup parameter
persistent storage, 430

PalmExit method
about, 261

PalmExit method (ULData class)
about, 147

PalmLaunch method
about, 261

PalmLaunch method (ULData class)
about, 148

PalmPilot
unsupported versions, 6

password synchronization parameter
about, 384

passwords
MobiLink synchronization, 383, 384
Palm Computing Platform, 86
UltraLite case sensitivity, 85
UltraLite databases, 85, 86, 442
UltraLite Java, 347

PATH environment variable
HotSync, 254
ScoutSync, 254

performance
upload-only synchronization, 383, 396

permissions
embedded SQL, 208

persist property
UltraLite Java databases, 347

persistent memory
UltraLite database storage, 43

persistent storage
cache_size parameter, 429
file_name parameter, 429
palm_allow_backup parameter, 430
parameters, 45
reserve_size parameter, 430
UltraLite databases, 344, 348
VxWorks, 318
Windows CE, 298

persistfile property
UltraLite Java databases, 347

physical limitations
UltraLite, 440

PilotMain function
UltraLite applications, 261, 272

ping synchronization parameter
about, 385

platforms
supported, 6

Pocket PC
UltraLite supported versions, 6

port number
ULSynchronize arguments, 394

Q–R

456

port stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406
TCP/IP synchronization, 402

PRC Tools
compiling the sample application, 259

PRC-Tools chain
UltraLite applications, 259

PRECISION option
UltraLite databases, 73

prefix files
about, 257
CodeWarrior, 264

preprocessing
development tool settings, 198
UltraLite applications, 194
UltraLite embedded SQL, 201

preprocessor
database options, 74

previous method
UltraLite Java JDBC support, 365

Previous method (ULCursor class)
about, 159

primary keys
UltraLite requirements, 441

primary-key pools
generating unique values using in UltraLite, 58

procedures
UltraLite limitations, 438

program structure
embedded SQL, 207

progress viewer
synchronization, 358

projects
adding statements to, 123
Java, 362
UltraLite, 80, 81, 123

Properties object
UltraLite Java connections, 347, 348

proxy_host stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

proxy_port stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

publication creation wizard
creating UltraLite publications, 77
using, 111

publication masks
about, 386

publication synchronization parameter
about, 386

publications
MobiLink synchronization, 386
UltraLite databases, 76, 77

publishing
whole table, 77

Q
queries

single-row, 222
UltraLite, 123

R
RAS

about, 285
configuring, 287

read-only tables
UltraLite databases, 78

recovery
UltraLite databases, 42, 44

reference databases
creating, 72, 73
creating from existing databases, 74
options, 73
UltraLite development, 10
upgrading, 92

referential integrity
UltraLite limitations, 437

registering
applications with ActiveSync, 302
JDBC driver, 345

S–S

457

registry
ClientParms registry entry, 273, 280
HotSync parameters, 274
ScoutSync parameters, 279

relative method
UltraLite Java JDBC support, 365

Relative method (ULCursor class)
about, 160

Remote Access Service
about, 285
configuring, 287

remote databases
defined, 16
deleting data, 426

Reopen method
C++ API, 261

Reopen method (ULConnection class)
about, 140

Reopen method (ULCursor class)
about, 160

Reopen method (ULData class)
about, 150

reserve_size parameter
persistent storage, 430

ResetLastDownloadTime method (ULConnection
class)

about, 141

restoring
UltraLite databases, 42

RevokeConnectFrom method (ULConnection class)
about, 141

revokemethod
JdbcDatabase class, 372

Rollback method (ULConnection class)
about, 141

rollbacks
UltraLite databases, 44

running
sample application, 341

runtime library
Windows CE, 295, 432

S
sample application

about CustDB, 15
building for Palm Computing Platform, 258, 259
building for VxWorks, 312
building for Windows CE, 296
building UltraLite Java, 340
CustDB database, 35
CustDB features, 16
CustDB file locations, 17
CustDB requirements, 21
CustDB synchronization, 19
installing CustDB, 21
introduction to CustDB, 16
running UltraLite Java, 341
starting CustDB, 24
UltraLite Java, 339, 340, 341

sample database
schema for CustDB, 35

SAVEPOINT statement
UltraLite limitations, 438

SCALE option
UltraLite databases, 73

schema
UltraLite databases, 69

schema upgrades
UltraLite databases, 236

ScoutSync synchronization
about, 269
architecture, 269
configuring, 401
configuring RAS TCP/IP, 282
configuring the conduit, 279
configuring the ScoutSync client, 281
configuring the ScoutSync server, 280
Palm Computing Platform, 272, 279
setting up, 280
supported versions, 268
synchronization log files, 282
transport-layer security, 402
using for the first time, 282

scripts
browsing with Sybase Central, 35

S–S

458

security
Certicom, 387, 388, 422
changing the encryption key, 49
database encryption, 46, 429
database obfuscation, 45, 427
encryption on Palm, 50
MobiLink synchronization, 387, 388
synchronization parameters, 387, 388
UltraLite applications, 283, 319, 387, 388
UltraLite generator, 422
UltraLite Java transport-layer security, 353
unavailable on Power PC, 283
unavailable using GCC tools, 259

security synchronization parameter
about, 387

security_parms
synchronization parameters, 388

security_parms synchronization parameter
about, 388

segments
about, 263, 265
assigning statements, 413
explicitly assigning, 265
generating multi-segment code, 264
Palm Computing Platform, 263, 265, 266, 413,

428
user-defined code, 266

SELECT statement
single row, 222

send_columns_names synchronization parameter
about, 389

send_download_ack synchronization parameter
about, 389

Set method (ULCursor class)
about, 161

SET OPTION statement
UltraLite limitations, 439

SetColumn method (generated result set)
about, 172

SetColumn method (generated table class)
about, 178

setDatabaseID method
JdbcConnection class, 368

SetDatabaseID method (ULConnection class)
about, 142

setDefaultObfuscation method
JdbcDatabase class, 373
UlDatabase class, 46

setNewPassword method
MobiLink synchronization, 383

SetNullColumn method (generated result set class)
about, 173

SetNullColumn method (generated table class)
about, 178

setObserver method
MobiLink synchronization, 384

SetParameter method (ULResultSet class)
about, 163

setting
persistent storage parameters, 45

setUserData synchronization parameter
about, 396

sp_hook_ulgen_begin
sqlpp, 416
ulgen hook, 420

sp_hook_ulgen_end
sqlpp, 416
ulgen hook, 420

SQC files
multiple, 202

SQL Anywhere Studio
documentation, x

SQL Communications Area
about, 228

SQL preprocessor
about, 415
command line, 415
UltraLite embedded SQL applications, 195

SQL statements
UltraLite, 83
UltraLite Java, 351

sqlaid SQLCA field
about, 228

S–S

459

SQLCA
about, 228
fields, 228
multiple, 229

sqlcabc SQLCA field
about, 228

sqlcode SQLCA field
about, 228

sqlerrd SQLCA field
about, 229

sqlerrmc SQLCA field
about, 229

sqlerrml SQLCA field
about, 228

sqlerrp SQLCA field
about, 229

SQLException
UltraLite applications, 344

sqlpp command-line utility
command line, 415
UltraLite embedded SQL applications, 195

sqlstate SQLCA field
about, 229

sqlwarn SQLCA field
about, 229

startSynchronizationDelete method
JdbcConnection class, 368

StartSynchronizationDelete method (ULConnection
class)

about, 142

state bytes
UltraLite databases, 44

static SQL
authorization, 208

stopSynchronizationDelete method
JdbcConnection class, 369

StopSynchronizationDelete method (ULConnection
class)

about, 142

storage parameters, 45

stored procedures
UltraLite limitations, 438

stream definition functions
GetSynchStatus method, 135
ULActiveSyncStream, 232
ULConduitStream, 233
ULGetSynchResult, 240
ULGlobalAutoincUsage, 241
ULHTTPSStream, 242
ULHTTPStream, 242
ULPalmDBStream, 243
ULSetDatabaseID, 248
ULSocketStream, 249

stream parameters
ULSynchronize arguments, 394

stream synchronization parameter
about, 389

stream_error synchronization parameter
about, 393
ul_stream_error structure, 393

stream_parms synchronization parameter
about, 394, 399
configuring, 399, 401
HotSync conduit, 277
HotSync synchronization, 269
ScoutSync synchronization, 269
ULSynchronize arguments, 394

string embedded SQL data type
fixed length, 211
NULL-terminated, 210
variable length, 211

strings
UL_TEXT macro, 432

strong encryption
UltraLite databases, 45, 238

SUBSCRIBE BY clause
UltraLite restrictions, 76

supplementary code
generating, 202

support
newsgroups, xvii

supported platforms, 6
MobiLink synchronization, 56

S–S

460

Sybase Central
adding SQL statements to an UltraLite project,

81, 326
connecting, 36
creating UltraLite projects, 80
creating UltraLite publications, 77
CustDB sample application, 36
MobiLink synchronization, 35

SynchProgressViewer class
about, 358

synchronization
about, 94
adding to UltraLite applications, 94
applets, 361
auth_value, 382
C++ API, 143
canceling, 98, 356, 384
character sets, 64
checkpoint_store, 382
client-specific data, 79
commit before, 97
CustDB application, 19
CustDB sample application, 19
download only, 383
embedded SQL function, 190
excluding tables, 76
high-priority changes, 78
HotSync Palm Computing Platform, 272, 273,

274
HTTP Palm Computing Platform, 283
ignored rows, 383
initial copy, 97
invoking, 96
Java application, 334
Java applications, 352
Java example, 353
JdbcConnection.synchronize method, 334, 352
monitoring, 98, 356, 384
multiple methods, 284
Palm Computing Platform, 285
progress viewer, 358
protocols, 12
publications, 76
ScoutSync Palm Computing Platform, 272, 279
stopping, 384
Sybase Central, 35
TCP/IP Palm Computing Platform, 283
troubleshooting, 135, 240
ULSynchronize function, 190
UltraLite and MobiLink, 11

UltraLite applications, 55
UltraLite C++ API, 118
UltraLite Java, 352
upload-only, 396
VxWorks, 319
Windows CE, 305

synchronization conduit
HotSync, 290

synchronization library functions
ULSynchronize, 250

synchronization parameters
about, 380
auth_status, 381
new_password, 383
password, 384
ping, 385
publication, 386
stream, 389
stream_error, 393
upload_ok, 395
user_name, 397
version, 397

synchronization scripts
browsing with Sybase Central, 35

synchronization status
GetSynchStatus method, 135
ULGetSynchResult function, 240

synchronization streams
parameters, 399
setting, 389
ULActiveSyncStream, 391
UlHTTPSStream, 352, 392
UlHTTPStream, 352, 392
ULHTTPStream, 391
UlSecureRSASocketStream, 352
UlSecureSocketStream, 352, 354, 392
UlSocketStream, 352, 392
ULSocketStream, 391
UltraLite support, 56

synchronize method
JdbcConnection class, 368
JdbcConnection object, 352

Synchronize method (ULConnection class)
about, 143

sysAppLaunchCmdNormalLaunch
UltraLite applications, 261, 272

T–T

461

system functions
UltraLite limitations, 439

system procedures
ul_add_project, 412
ul_add_statement, 411
ul_delete_project, 412
ul_delete_statement, 412
ul_set_codesegment, 413

system tables
UltraLite limitations, 438

T
tables

publishing, 77
UltraLite development, 123
UltraLite limitations, 440
UltraLite requirements, 441

target platforms
supported, 6
synchronization support, 56
UltraLite, 6
UltraLite development, 68

TCP/IP synchronization
Palm Computing Platform, 283, 285
paremeters, 402
streams, 12

technical support
newsgroups, xvii

temporary tables
synchronization using client-specific data, 79
UltraLite limitations, 438

threads
embedded SQL, 229
Java synchronization, 359
synchronization monitoring, 359
UltraLite applications, 68, 93
UltraLite Java, 93

TIME_FORMAT option
UltraLite databases, 73

times
UltraLite databases, 73

timestamp columns
UltraLite limitations, 438

timestamp structure embedded SQL data type, 212

TIMESTAMP_FORMAT option
UltraLite databases, 73

tips
UltraLite development, 97

Tornado
supported versions, 7

transactions
UltraLite databases, 42, 44

transient databases
UltraLite, 344, 348

transport-layer security
ActiveSync synchronization, 400
HotSync synchronization, 402
java_certicom_tls stream, 354
java_rsa_tls stream, 354
ScoutSync synchronization, 402
UltraLite Java applications, 353, 408, 409
UltraLite Java clients, 352
unavailable on Power PC, 283
unavailable using GCC tools, 259

triggers
UltraLite limitations, 439

troubleshooting
commit all changes before synchronizing, 97
conduit, 276
dial-up networking, 289
previous synchronization, 135, 240
RAS, 289
Remote Access Service, 289
synchronization of UltraLite applications, 393
UltraLite compilation problems, 424
UltraLite development, 97
UltraLite Palm applications, 259
VxWorks synchronization, 319

truncation
on FETCH, 221

tutorials
UltraLite C++ API, 109
UltraLite embedded SQL, 182
UltraLite Java, 324
UltraLite sample application, 15

U–U

462

U
ul_add_project system procedure

about, 412

ul_add_statement system procedure
about, 411

UL_AS_SYNCHRONIZE macro
ActiveSync UltraLite messages, 427

UL_AUTH_STATUS_EXPIRED auth_status value
about, 381

UL_AUTH_STATUS_IN_USE auth_status value
about, 381

UL_AUTH_STATUS_INVALID auth_status value
about, 381

UL_AUTH_STATUS_UNKNOWN auth_status
value

about, 381

UL_AUTH_STATUS_VALID auth_status value
about, 381

UL_AUTH_STATUS_VALID_BUT_EXPIRES_S
OON auth_status value

about, 381

ul_binary data UltraLite type
C++ API, 131

ul_char data UltraLite type
C++ API, 131

ul_column_num UltraLite data type
C++ API, 131

UL_DEBUG_CONDUIT environment variable
troubleshooting conduit, 276

ul_delete_project system procedure
about, 412

ul_delete_statement procedure
about, 412

ul_delete_statement system procedure
about, 412

UL_ENABLE_GNU_SEGMENTS macro
about, 428

UL_ENABLE_OBFUSCATION macro
about, 427

UL_ENABLE_SEGMENTS macro
about, 428

UL_ENABLE_USER_AUTH macro
about, 428

ul_fetch_offset UltraLite data type
C++ API, 131

ul_length UltraLite data type
C++ API, 131

UL_NULL, 131

ul_set_codesegment procedure
about, 413

ul_set_codesegment system procedure
about, 413

UL_STORE_PARMS macro
about, 428
using, 45

ul_stream_error structure
about, 393

UL_SYNC_ALL macro
about, 431
publication mask, 386

UL_SYNC_ALL_PUBS macro
about, 431
publication mask, 386

ul_synch_info structure
about, 95

ul_synch_status structure
about, 99

UL_TEXT macro
about, 432

UL_USE_DLL macro
about, 432

ULActiveSyncStream function
about, 232
parameters, 399
setting synchronization stream, 391
Windows CE, 305

ulapi.h
C++ API, 130

U–U

463

ULChangeEncryptionKey function
about, 233
using, 49

ULClearEncryptionKey function, 233
using, 50

ULConduitStream function, 233
setting synchronization stream, 391

ULConnection class
about, 132
ResetLastDownloadTime method, 141
RevokeConnectFrom method, 141
using, 125

ULCountUploadRows function, 234

ULCursor class
about, 151, 175

ULData class
about, 144
multi-threaded UltraLite applications, 93
Palm Computing Platform, 125
using, 125

UlDatabase class
obfuscating databases, 46

ULDropDatabase function, 235

ULEnableFileDB function
about, 235
C++ API, 124, 130

ULEnableGenericSchema function
about, 236
upgrading UltraLite applications, 104

ULEnablePalmRecordDB function
about, 237
C++ API, 124

ULEnableStrongEncryption function
about, 238
C++ API, 124, 130

ULEnableUserAuthentication function
about, 87, 88, 89, 238
C++ API, 124, 130
using, 85

ulgen command-line utility
about, 362
C++ API, 127
syntax, 419

ULGetLastDownloadTime function
about, 239

ULGetSynchResult function
about, 240

ulglobal.h
C++ API, 130
ul_synch_info structure, 380

ULGlobalAutoincUsage function
about, 241

ULGrantConnectTo function
about, 242

ULHTTPSStream function
about, 242
parameters, 406
setting synchronization stream, 391
Windows CE, 308

UlHTTPSStream object
Java synchronization stream, 352, 392
parameters, 406

ULHTTPStream function
about, 242
parameters, 403
setting synchronization stream, 391
Windows CE, 308

UlHTTPStream object
Java synchronization stream, 352, 392
parameters, 403

ULInitSynchInfo function
about, 95

ULIsSynchronizeMessage function
about, 243
ActiveSync, 305

ULPalmDBStream function, 243

ULPalmExit function
about, 244, 261, 283
using, 272, 273, 274, 279

ULPalmLaunch function
about, 245, 261, 283
using, 272, 273

ULResetLastDownloadTime function
about, 246

U–U

464

ULResultSet class
about, 163

ULRetrieveEncryptionKey function, 247
using, 50

ULRevokeConnectFrom function
about, 248

ULSaveEncryptionKey function, 248
using, 50

ULSecureCerticomTLSStream
about, 387

ULSecureCerticomTLSStream function
security, 388

UlSecureRSASocketStream object
about, 354
Java synchronization stream, 352
parameters, 408

ULSecureRSATLSStream
about, 387

ULSecureRSATLSStream function
security, 388

UlSecureSocketStream object
about, 354
Java synchronization stream, 352, 392
parameters, 409

ULSetDatabaseID function
about, 248

ULSocketStream function
about, 249
parameters, 402
setting synchronization stream, 391
Windows CE, 308

UlSocketStream object
Java synchronization stream, 352, 392
parameters, 402

ULStoreDefragFini function
about, 249

ULStoreDefragInit function
about, 249

ULStoreDefragStep function
about, 250

ulStoreDefragStep method
JdbcDefragIterator class, 374

UlSynchObserver interface
implementing, 99, 356

UlSynchOptions object
members, 380

ULSynchronize function
about, 250
serial port on Palm Computing Platform, 283

ULSynchronize library function
about, 190

ULTable class
about, 165

ULTable objects
reopening, 262

UltraLite
about, 3
architecture, 9
C++ API, 122
C++ API class hierarchy, 130
code generation, 91
defining tables, 123
development overview, 70
directory, 17
features, 4
JDBC driver, 345

UltraLite databases
deploying on Palm Computing Platform, 292
encrypting, 45
multiple Java, 348
storage, 43
user IDs, 85, 86, 442
VxWorks, 318
Windows CE, 298

UltraLite directory
defined, 17

UltraLite generator
command line, 91
defined, 91
syntax, 419
UltraLite development, 10
using, 91

UltraLite Java
threads, 93

UltraLite passwords
about, 85, 442
maximum length, 85

U–U

465

UltraLite plug-in for CodeWarrior
converting projects, 257
installing, 255
using, 257

UltraLite project creation wizard
using, 80, 326

UltraLite projects
about, 80
adding statements to, 81, 123
CodeWarrior, 256
defining, 123

UltraLite runtime library
deploying, 299

UltraLite segment utility
syntax, 425

UltraLite statement creation wizard
using, 81, 326

UltraLite user IDs
about, 85, 442
limit, 85
maximum length, 85

ULUtil
about, 426

unable to use Java in the database
error message, 92

UNDER_CE compiler directive
about, 432

UNDER_NT compiler directive
about, 432

UNDER_PALM_OS compiler directive
about, 432

UNDER_VXW compiler directive
about, 433

unique values
using default global autoincrement in UltraLite,

58

Universal Serial Bus
HotSync support for, 268

unsupported features
UltraLite limitations, 365, 437

unsupported JDBC methods
UltraLite limitations, 366

Update method (ULCursor class)
about, 162

updates
UltraLite databases, 44

upgrading
UltraLite applications, 104
UltraLite databases, 236

upgrading databases
creating reference databases, 74

upload_ok synchronization parameter
about, 395

upload_only synchronization parameter
MobiLink synchronization, 396

upload-only synchronization
UltraLite databases, 78, 396

URL
UltraLite Java database, 345, 346

url_suffix stream parameter
HTTP synchronization, 403
HTTPS synchronization, 406

USB
HotSync support for, 268

user authentication
auth_status synchronization parameter, 381
C++ API, 124
C++ API UltraLite applications, 88
compiler directive, 428
embedded SQL UltraLite applications, 87, 89,

137, 238, 242, 248
MobiLink and UltraLite, 90
reporting, 381
status, 381
UltraLite case sensitivity, 85
UltraLite databases, 85, 86, 137, 141, 238, 242,

248, 442

user IDs
Palm Computing Platform, 86
UltraLite case sensitivity, 85
UltraLite databases, 85, 86, 442
UltraLite Java, 347

user_data synchronization parameter
about, 396

V–Z

466

user_name synchronization parameter
about, 397

user-defined data types
unsupported, 436

utilities
SQL preprocessor, 415
UltraLite, 426
UltraLite generator, 419
UltraLite segment utility, 425

V
variables

UltraLite limitations, 438

version synchronization parameter
about, 397

versions
synchronization scripts, 250

Visual C++
supported versions, 6, 7
Windows CE development, 294

VxWorks
compiling UltraLite applications, 316
deployment, 313
development for, 310
downloading, 313
persistent storage, 318
platform requirements, 310
security, 319
setting time, 319
supported versions, 7
synchronization, 319

W
warnings

UltraLite generator, 421

whole tables
publishing in UltraLite, 77

WindowProc function
ActiveSync, 243, 306

Windows CE
collation sequences, 64
deployment, 22
development for, 294
platform requirements, 294
supported versions, 6
synchronization on, 305
UltraLite supported versions, 6

WindRiver Tornado
supported versions, 7

WindRiver VxWorks
supported versions, 7

winsock.lib
Windows CE applications, 294

wizards
publication creation, 77, 111
UltraLite project creation, 80, 326
UltraLite statement creation, 81, 326

writing applications, 68

writing applications in embedded SQL, 183, 193

writing applications in Java, 324, 338

X
x86 chip

Windows CE, 6

Y
year 2000

NEAREST_CENTURY option, 73

Z
-za command-line option

dbmlsrv8, 389

-ze command-line option
dbmlsrv8, 389

	UltraLite User's Guide
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The UltraLite sample database

	1. Introduction to UltraLite
	UltraLite features
	Supported platforms
	Supported platforms for C/C++ applications
	Supported platforms for Java applications

	UltraLite architecture
	UltraLite development tools

	MobiLink synchronization
	Enterprise productivity

	2. Tutorial: A Sample UltraLite Application
	Introduction
	The CustDB sample application
	File locations for the sample application
	Synchronization techniques in the sample application

	Lesson 1: Start the MobiLink synchronization server
	Lesson 2: Install the sample application to your target platform
	Install the sample application (Palm Computing Platform)
	Install the sample application (Windows CE)

	Lesson 3: Start the sample application and synchronize
	Start the application (Windows)
	Start the sample application (Palm Computing Platform)
	 Start the application (Windows CE)

	Lesson 4: Add an order
	Add an order (Windows or Windows CE)
	Add an order (Palm Computing Platform)

	Lesson 5: Act on some existing orders
	Lesson 6: Synchronize your changes
	Synchronize your changes (Windows, Windows CE)
	Synchronize your changes (Palm Computing Platform)

	Lesson 7: Confirm the synchronization at the consolidated database
	Lesson 8: Browse the consolidated database
	The CustDB database
	Connect to the CustDB database from Sybase Central
	Browse the synchronization scripts

	Summary

	3. Designing UltraLite Applications
	Backup, recovery, and transaction processing
	UltraLite database internals
	Database storage mechanism
	The information in an UltraLite database
	How UltraLite tracks row states
	Indexes in UltraLite databases

	Configuring and managing database storage
	Encrypting UltraLite databases
	Defragmenting UltraLite databases

	Choosing an UltraLite development model
	Designing synchronization for UltraLite applications
	Supported synchronization streams
	Foreign key cycles

	Global autoincrement default column values
	Declaring default global autoincrement columns
	Setting the global database identifier
	How default values are chosen
	Determining the most recently assigned value
	Detecting the number of available default values

	Character sets in UltraLite

	4. Developing UltraLite Applications
	Introduction
	The UltraLite development environment
	The UltraLite development process
	Adding synchronization

	Preparing a reference database
	Creating a reference database
	Setting database options in the reference database
	Using an existing database as a reference database

	Designing your UltraLite database
	Including non-synchronizing tables in UltraLite databases
	Designing sets of data to synchronize separately
	Synchronizing high-priority changes
	Including read-only tables in an UltraLite database
	Using client-specific data to control synchronization

	Defining SQL statements for your application
	Creating an UltraLite project
	Adding SQL statements to an UltraLite project
	Writing UltraLite SQL statements

	Adding user authentication to your application
	Enabling user authentication
	Managing user IDs and passwords
	Sharing MobiLink and UltraLite user IDs

	Generating the UltraLite data access code
	Using the UltraLite generator
	Error on starting the analyzer

	Developing multi-threaded applications
	Adding synchronization to your application
	Initializing the synchronization parameters
	Setting synchronization parameters: C/C++ examples
	Invoking synchronization
	Commit all changes before synchronizing
	Adding initial data to your application
	Monitoring and canceling synchronization
	Writing a synchronization callback function

	Configuring development tools for UltraLite development
	Deploying UltraLite applications

	5. Tutorial: Build an Application Using the C++ API
	Introduction to the UltraLite C++ API
	Overview

	Lesson 1: Getting started
	Lesson 2: Create an UltraLite database template
	Lesson 3: Run the UltraLite generator
	Lesson 4: Write the application source code
	Lesson 5: Build and run your application
	Lesson 6: Add synchronization to your application
	Restore the sample database

	6. Developing C++ API Applications
	Introduction
	Defining features for your application
	Defining projects
	Adding statements to a project
	Defining UltraLite tables
	Tables or queries?
	Defining database features for C++ API applications

	Working with the C++ API classes
	Working with the ULData and ULConnection objects
	Using table and query classes

	Building your UltraLite C++ application
	Generating UltraLite C++ classes
	Compiling and linking your application

	7. C++ API Reference
	C++ API class hierarchy
	C++ API language elements
	UltraLite data types

	ULConnection class
	Close method
	Commit method
	CountUploadRows method
	GetCA method
	GetLastIdentity method
	GetLastDownloadTime method
	GetSQLCode method
	GetSynchResult method
	GlobalAutoincUsage method
	GrantConnectTo method
	InitSynchInfo method
	IsOpen method
	LastCodeOK method
	LastFetchOK method
	Open method
	Reopen method
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	SetDatabaseID method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	Synchronize method

	ULData class
	Close method
	Drop method
	IsOpen method
	Open method
	PalmExit method
	PalmLaunch method
	Reopen method

	ULCursor class
	Data types enumeration
	SQL data types enumeration
	AfterLast method
	BeforeFirst method
	Close method
	Delete method
	First method
	Get method
	GetColumnCount method
	GetColumnSize method
	GetColumnType method
	GetColumnSQLType method
	GetSQLCode method
	Insert method
	IsOpen method
	Last method
	LastCodeOK method
	LastFetchOK method
	Next method
	Open method
	Previous method
	Relative method
	Reopen method
	Set method
	SetColumnNull method
	Update method

	ULResultSet class
	SetParameter method

	ULTable class
	DeleteAllRows method
	Find method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Lookup method
	GetRowCount method
	LookupBackward method
	LookupForward method

	Generated result set class
	Get<Column> generated method
	Open method
	Set<Column> generated method
	SetNull<Column> generated method

	Generated statement class
	Execute method

	Generated table class
	Get generated method
	Get<Column> generated method
	GetSize<Column> generated method
	Open method
	Set<Column> generated method
	SetNull<Column> generated method
	Index enumeration

	8. Tutorial: Build an Application Using Embedded SQL
	Introduction
	Writing source files in embedded SQL
	Explanation of the sample program

	Building the sample embedded SQL UltraLite application
	Adding synchronization to your application

	9. Developing Embedded SQL Applications
	Building embedded SQL applications
	Single-file build process
	Configuring development tools for embedded SQL development

	Preprocessing your embedded SQL files
	Preprocessing projects with a single embedded SQL source file
	Preprocessing projects with more than one embedded SQL file

	10. The Embedded SQL Interface
	Introduction
	Structure of embedded SQL programs
	Declaring host variables
	Data types in embedded SQL
	Host variable usage
	The scope of host variables
	Using expressions as host variables
	Using host variables in C++

	Indicator variables
	Using indicator variables to handle NULL

	Fetching data
	Fetching one row
	Fetching multiple rows
	Optimizing query operation

	The SQL Communication Area
	SQLCA fields
	SQLCA management for multi-threaded or reentrant code
	Using multiple SQLCAs

	Library function reference
	db_fini function
	db_init function
	ULActiveSyncStream function
	ULChangeEncryptionKey function
	ULClearEncryptionKey function
	ULConduitStream function (deprecated)
	ULCountUploadRows function
	ULDropDatabase function
	ULEnableFileDB function
	ULEnableGenericSchema function
	ULEnablePalmRecordDB function
	ULEnableStrongEncryption function
	ULEnableUserAuthentication function
	ULGetLastDownloadTime function
	ULGetSynchResult function
	ULGlobalAutoincUsage function
	ULGrantConnectTo function
	ULHTTPSStream function
	ULHTTPStream function
	ULIsSynchronizeMessage function
	ULPalmDBStream function (deprecated)
	ULPalmExit function
	ULPalmLaunch function
	ULResetLastDownloadTime function
	ULRetrieveEncryptionKey function
	ULRevokeConnectFrom function
	ULSaveEncryptionKey function
	ULSetDatabaseID function
	ULSocketStream function
	ULStoreDefragFini function
	ULStoreDefragInit function
	ULStoreDefragStep function
	ULSynchronize function

	11. Developing Applications for the Palm Computing Platform
	Introduction
	Developing UltraLite applications with Metrowerks CodeWarrior
	Installing the UltraLite plug-in for CodeWarrior
	Creating UltraLite projects in CodeWarrior
	Converting an existing CodeWarrior project to an UltraLite application
	Using the UltraLite plug-in for CodeWarrior
	Building the CustDB sample application from CodeWarrior

	Developing UltraLite applications with GCC PRC-Tools
	Building the CustDB sample application with PRC Tools

	Launching and closing UltraLite applications
	Launching an UltraLite Palm application
	Closing an UltraLite Palm application

	Building multi-segment applications
	Enabling multi-segment code generation
	Explicitly assigning segments
	Assigning user-defined code to segments

	Palm synchronization overview
	Choosing a synchronization method
	Understanding HotSync and ScoutSync synchronization
	HotSync and ScoutSync architecture

	Adding HotSync or ScoutSync synchronization to Palm applications
	Adding HotSync or ScoutSync synchronization to your application

	Configuring HotSync synchronization
	HotSync configuration overview
	HotSync conduit files
	Adding the MobiLink conduit into HotSync manager
	Checking that conduit installation is correct
	Configuring conduit synchronization

	Configuring ScoutSync synchronization
	Configuring the MobiLink ScoutSync conduit
	Setting up for ScoutSync synchronization
	Configuring the ScoutSync Application Server
	Configuring the ScoutSync Client on the Palm device
	Configuring RAS TCP/IP synchronization
	Using ScoutSync for the first time
	Location of synchronization log files for ScoutSync

	Adding TCP/IP, HTTP, or HTTPS synchronization to Palm applications
	Using multiple synchronization methods

	Configuring TCP/IP, HTTP, or HTTPS synchronization
	Configuring TCP/IP synchronization for the Palm Computing Platform
	Configuring HTTP or HTTPS synchronization for the Palm Computing platform

	Deploying Palm applications
	Deploying applications on the Palm Computing Platform
	Deploying the MobiLink synchronization conduit
	Deploying UltraLite databases on the Palm Computing Platform

	12. Developing Applications for Windows CE
	Introduction
	Choosing how to link the runtime library

	Building the CustDB sample application
	Storing persistent data
	Deploying Windows CE applications
	Deploying applications that use ActiveSync
	Installing the MobiLink provider for ActiveSync
	Registering applications for use with ActiveSync
	Assigning class names for applications

	Synchronization on Windows CE
	Adding ActiveSync synchronization to your application
	TCP/IP, HTTP, or HTTPS synchronization from Windows CE

	13. Developing Applications for VxWorks
	Introduction
	Features and limitations

	Building the CustDB sample application
	Downloading the sample application to the device
	Running the sample application
	Viewing the data in the sample application

	Building UltraLite VxWorks applications
	Storing persistent data
	Synchronization on the VxWorks platform

	14. Tutorial: Build an Application Using Java
	Introduction
	Overview
	Create a directory to hold your files

	Lesson 1: Add SQL statements to your reference database
	Lesson 2: Run the UltraLite generator
	Lesson 3: Write the application code
	Lesson 4: Build and run the application
	Lesson 5: Add synchronization to your application
	Lesson 6: Undo the changes you have made

	15. Developing UltraLite Java Applications
	Introduction
	The UltraLite Java sample application
	The UltraLite Java sample files
	Building the UltraLite Java sample
	Running the UltraLite Java sample

	Connecting to and configuring your UltraLite database
	Using the UltraLite JdbcDatabase.connect method
	Loading and registering the JDBC driver
	Connecting to the database using JDBC
	UltraLite JDBC URLs
	Using a Properties object to store connection information
	Connecting to multiple databases
	Configuring the UltraLite Java database

	Including SQL statements in UltraLite Java applications
	Adding synchronization to your application
	Initializing the synchronization options
	Initiating synchronization
	Using transport-layer security from UltraLite Java applications

	Monitoring and canceling synchronization
	Implementing the UlSynchObserver interface
	Using the progress viewer

	UltraLite Java development notes
	Creating UltraLite Java applets

	Building UltraLite Java applications
	Generating UltraLite Java classes
	Compiling UltraLite Java applications
	Deploying Java applications

	UltraLite API reference
	JDBC features in UltraLite
	Unsupported JDBC methods
	Class JdbcConnection
	Class JdbcDatabase
	The generated database class
	Class JdbcDefragIterator
	Class JdbcSupport

	16. UltraLite Reference
	Synchronization parameters
	auth_status synchronization parameter
	auth_value synchronization parameter
	checkpoint_store synchronization parameter
	download_only synchronization parameter
	ignored_rows synchronization parameter
	new_password synchronization parameter
	observer synchronization parameter
	password synchronization parameter
	ping synchronization parameter
	publication synchronization parameter
	security synchronization parameter
	security_parms synchronization parameter
	send_column_names synchronization parameter
	send_download_ack synchronization parameter
	stream synchronization parameter
	stream_error synchronization parameter
	stream_parms synchronization parameter
	upload_ok synchronization parameter
	upload_only synchronization parameter
	user_data synchronization parameter
	user_name synchronization parameter
	version synchronization parameter

	Synchronization stream parameters
	ActiveSync parameters
	HotSync and ScoutSync parameters
	TCP/IP stream parameters
	HTTP stream parameters
	HTTPS stream parameters
	UlSecureRSASocketStream synchronization parameters
	UlSecureSocketStream synchronization parameters

	Reference database stored procedures
	ul_add_statement system procedure
	ul_add_project system procedure
	ul_delete_project system procedure
	ul_delete_statement system procedure
	ul_set_codesegment system procedure

	The HotSync conduit installation utility
	The SQL preprocessor
	The UltraLite generator
	The UltraLite segment utility
	The UltraLite utility
	Macros and compiler directives for UltraLite C/C++ applications
	UL_AS_SYNCHRONIZE macro
	UL_ENABLE_OBFUSCATION macro
	UL_ENABLE_USER_AUTH macro
	UL_ENABLE_GNU_SEGMENTS macro
	UL_ENABLE_SEGMENTS macro
	UL_STORE_PARMS macro
	UL_SYNC_ALL macro
	UL_SYNC_ALL_PUBS macro
	UL_TEXT macro
	UL_USE_DLL macro
	UNDER_NT macro
	UNDER_CE macro
	UNDER_PALM_OS macro
	UNDER_VXW macro

	APPENDIX A: UltraLite Features and Limitations
	UltraLite data types
	SQL features and limitations of UltraLite applications
	Size and number limitations for UltraLite databases
	UltraLite tables must have primary keys
	User authentication for UltraLite databases

	Index

