
UltraLite
™
 User’s Guide for

PenRight! MobileBuilder

Last modified: October 2002
Part Number: 38175-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 38175-01-0802-01.

iii

Contents

About This Manual... v
SQL Anywhere Studio documentation..................................... vi
Documentation conventions... ix
The UltraLite sample database ..xii
Finding out more and providing feedback...............................xiii

1 Providing Solutions with UltraLite and MobileBuilder 1
Combining UltraLite and MobileBuilder.....................................2
Installing the UltraLite component...4

2 Tutorial: Build an UltraLite Application Using
MobileBuilder... 7

Introduction ...8
Lesson 1: Getting started..9
Lesson 2: Create a MobileBuilder project...............................10
Lesson 3: Add the UltraLite Component to your
project ...11
Lesson 4: Define your UltraLite database schema.................13
Lesson 5: Configure synchronization......................................15
Lesson 6: Design a MobileBuilder form17
Lesson 7: Build and run your application................................20
Restore the sample database ...22

3 Tutorial: Build an UltraLite Palm Application Using
MobileBuilder... 23

Introduction ...24
Lesson 1: Getting started..25
Lesson 2: Create a MobileBuilder project...............................27
Lesson 3: Add the UltraLite Component to your
project ...28
Lesson 4: Define your UltraLite database schema.................30
Lesson 5: Configure synchronization......................................32
Lesson 6: Design a MobileBuilder form34

iv

Lesson 7: Build and run your application................................ 38
Lesson 8: Complete the application.. 40
Restore the sample database... 43

4 Developing UltraLite MobileBuilder Applications 45
Introduction ... 46
UltraLite MobileBuilder application architecture...................... 47
Working with the UltraLite component 50
Using the MobileBuilder controls .. 57
Writing UltraLite code for MobileBuilder
applications ... 60
Developing Palm applications in MobileBuilder 63

5 UltraLite API Reference... 65
Introduction to the UltraLite API .. 66
Language elements .. 68
ULBoundObject functions ... 69
ULConnection functions.. 84
ULDatabase functions... 92

Index... 95

v

About This Manual

Sybase UltraLite technology provides a relational database system for mobile
devices, including built-in synchronization with enterprise data. This book
describes how to build UltraLite applications using PenRight! MobileBuilder
2.0, the integrated development environment (IDE) for mobile computing
platforms.

This manual is intended for anyone building UltraLite applications using
MobileBuilder. It is a supplement to the MobileBuilder documentation and to
the UltraLite User’s Guide, included in the SQL Anywhere Studio
documentation set. The UltraLite User’s Guide describes UltraLite
applications and databases in detail.

This book assumes an elementary familiarity with the following:

♦ MobileBuilder and the C programming language.

♦ The basic architecture of UltraLite applications and MobiLink
synchronization, as described in "Introduction to UltraLite" on page 3 of
the book UltraLite User’s Guide.

♦ Relational databases and SQL, as described in Adaptive Server
Anywhere Getting Started.

Subject

Audience

Before you begin

vi

SQL Anywhere Studio documentation
This book is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

♦ Introducing SQL Anywhere Studio This book provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

♦ What’s New in SQL Anywhere Studio This book is for users of
previous versions of the software. It lists new features in this and
previous releases of the product and describes upgrade procedures.

 ♦ Adaptive Server Anywhere Getting Started This book is for people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

♦ Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

♦ Adaptive Server Anywhere SQL User’s Guide This book describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

♦ Adaptive Server Anywhere SQL Reference Manual This book
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

♦ Adaptive Server Anywhere Programming Guide This book
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

vii

♦ Adaptive Server Anywhere Error Messages This book provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

♦ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner equivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

♦ MobiLink Synchronization User’s Guide This book describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or UltraLite databases.

♦ SQL Remote User’s Guide This book describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

♦ UltraLite User’s Guide This book describes how to build database
applications for small devices such as handheld organizers using the
UltraLite deployment technology for Adaptive Server Anywhere
databases.

♦ UltraLite User’s Guide for PenRight! MobileBuilder This book is for
users of the PenRight! MobileBuilder development tool. It describes
how to use UltraLite technology in the MobileBuilder programming
environment.

♦ SQL Anywhere Studio Help This book is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

viii

♦ Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Start➤Programs➤Sybase SQL Anywhere 8➤Online Books. You can
navigate the online books using the HTML Help table of contents,
index, and search facility in the left pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

♦ Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf_docs directory.
You can choose to install them when running the setup program.

♦ Printed books The following books are included in the
SQL Anywhere Studio box:

♦ Introducing SQL Anywhere Studio.

♦ Adaptive Server Anywhere Getting Started.

♦ SQL Anywhere Studio Quick Reference. This book is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

ix

Documentation conventions
This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by
square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The
square brackets should not be typed.

♦ Options When none or only one of a list of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

x

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

♦ One or more options If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

xi

Icon Meaning

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
UltraLite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

API
A programming interface.

xii

The UltraLite sample database
Many of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database is held in a file named custdb.db, and is
located in the Samples\UltraLite\CustDB subdirectory of your
SQL Anywhere directory. A complete application built on this database is
also supplied.

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

xiii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

♦ sybase.public.sqlanywhere.general.

♦ sybase.public.sqlanywhere.linux.

♦ sybase.public.sqlanywhere.mobilink.

♦ sybase.public.sqlanywhere.product_futures_discussion.

♦ sybase.public.sqlanywhere.replication.

♦ sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

xiv

1

C H A P T E R 1

Providing Solutions with UltraLite and
MobileBuilder

Together, UltraLite and MobileBuilder provide solutions to the problem of
developing data-centric applications for mobile devices. This chapter
provides an overview of the benefits of using these two technologies
together.

Topic Page

Combining UltraLite and MobileBuilder 2

Installing the UltraLite component 4

About this chapter

Contents

Combining UltraLite and MobileBuilder

2

Combining UltraLite and MobileBuilder
MobileBuilder and UltraLite together provide a complete solution for
building data-centric applications for small devices. MobileBuilder provides
a cross-platform rapid application development environment for small
devices, and UltraLite provides the relational database and synchronization
technologies to manage and synchronize data.

PenRight! MobileBuilder is a separate product, not included with
SQL Anywhere Studio.

UltraLite overview

UltraLite is a deployment technology for Adaptive Server Anywhere
databases, aimed at small, mobile, and embedded devices. Target platforms
include cell phones, pagers, and personal organizers.

UltraLite provides the following benefits for users of small devices:

♦ The functionality and reliability of a transaction-processing SQL
database.

♦ The ability to synchronize data with a central database-management
system.

♦ An extremely small memory footprint.

UltraLite allows applications on small devices to use full-featured SQL to
accomplish data storage, retrieval, and manipulation. UltraLite supports
referential integrity, transaction processing, and multi-table joins of all
varieties. In fact, UltraLite supports most of the same data types, runtime
functions, and SQL data manipulation features as Sybase Adaptive Server
Anywhere.

UltraLite uses Sybase MobiLink synchronization technology to synchronize
with industry-standard database-management systems. MobiLink
synchronization works with ODBC-compliant data sources such as Sybase
Adaptive Server Anywhere, Sybase Adaptive Server Enterprise, IBM DB2,
Microsoft SQL Server, and Oracle.

C/C++ UltraLite custom database engines for your application can be as
small as 50 kb, depending on your deployment platform and the number of
SQL statements in the application and the SQL features used.

Full-featured SQL

Synchronization to
industry-standard
RDBMS

Chapter 1 Providing Solutions with UltraLite and MobileBuilder

3

MobileBuilder overview

MobileBuilder is a rapid application development tool for small devices. It
uses the C programming language to provide the small executables needed
on target platforms with very limited resources. MobileBuilder provides a
development environment that makes cross platform development easy. The
MobileBuilder form designer, built-in controls, and Code Assistant ease the
path to developing full C applications.

PenRight! MobileBuilder is a separate product, not included with
SQL Anywhere Studio.

The benefits of using UltraLite and MobileBuilder

Using UltraLite and MobileBuilder together, you can develop powerful
database-hosted applications for small devices, complete with enterprise
synchronization, in a productive and convenient development environment.

MobileBuilder assists you with form design, compiling, cross-platform
development. UltraLite provides the underlying database technology, and an
UltraLite component within MobileBuilder provides easy access to UltraLite
features from within the MobileBuilder environment.

Installing the UltraLite component

4

Installing the UltraLite component
The installation process consists of the following steps:

1 Confirm that you have the system requirements for using UltraLite and
MobileBuilder.

$ For information, see "System requirements" on page 4.

2 Install the files into their proper locations. The UltraLite component for
MobileBuilder is installed as part of your SQL Anywhere Studio
installation.

3 Add the UltraLite component group to your MobileBuilder interface.

$ For information, see "Adding the UltraLite component group to
MobileBuilder" on page 5.

System requirements

This section describes the system requirements for using the UltraLite
component group for MobileBuilder. It describes requirements for the
development or host machine. The UltraLite component is included in
SQL Anywhere Studio.

$ For information on requirements for the target platforms to which you
can deploy your applications, see "Supported target platforms" on page 5.

To install and use the UltraLite component group for MobileBuilder, you
must have the following software on your computer:

♦ PenRight! MobileBuilder 2.0 build 889 or later.

♦ Sybase SQL Anywhere Studio.

You must have installed Adaptive Server Anywhere and UltraLite from
the SQL Anywhere Studio setup program, and you must install
MobiLink synchronization if you wish to add synchronization to your
applications.

♦ A compiler for your target platform.

You must be running on one of the following operating systems:

♦ Windows 95/98/Me.

♦ Windows NT, Windows 2000, or Windows XP.

Required software

Operating system
requirements

Chapter 1 Providing Solutions with UltraLite and MobileBuilder

5

Supported target platforms

You can develop applications for the following target platforms:

♦ Windows operating systems (Windows 95/98/Me,
Windows NT/2000/XP).

♦ The Palm Computing Platform using the GNU compiler.

You must have a MobileBuilder-supported compiler installed in order to
develop applications for a particular target platform.

Adding the UltraLite component group to MobileBuilder

Once you have run the SQL Anywhere Studio setup program to install the
UltraLite component group, you still need to make MobileBuilder aware of
the new component.

v To add the UltraLite component group to MobileBuilder:

1 Start MobileBuilder.

PenRight! MobileBuilder is a separate product, not included with
SQL Anywhere Studio.

2 From the Tools menu, choose Options.

The Options dialog appears.

3 Click the Component Groups tab, and click Install.

4 Locate the file DBComp.mbg in the Comps\UltraLite subdirectory of
your MobileBuilder directory, and click Open.

An entry for UltraLite appears in the list of component groups.

A copy of DBComp.mbg is also installed into the UltraLite\MobileBuilder
subdirectory of your SQL Anywhere directory.

5 In the Options dialog, click OK to complete the process.

An UltraLite tab appears in the Component groups toolbar at the top of
your MobileBuilder window.

The UltraLite component group contains a single component, named
ULDatabase.

Installing the UltraLite component

6

7

C H A P T E R 2

Tutorial: Build an UltraLite Application
Using MobileBuilder

This chapter provides a tutorial that guides you through the process of
developing an UltraLite application using MobileBuilder. It describes how to
build a very simple application, and how to add synchronization to your
application.

Topic Page

Introduction 8

Lesson 1: Getting started 9

Lesson 2: Create a MobileBuilder project 10

Lesson 3: Add the UltraLite Component to your project 11

Lesson 4: Define your UltraLite database schema 13

Lesson 5: Configure synchronization 15

Lesson 6: Design a MobileBuilder form 17

Lesson 7: Build and run your application 20

Restore the sample database 22

About this chapter

Contents

Introduction

8

Introduction
This tutorial describes how to create a simple UltraLite application using
MobileBuilder. It includes the following topics:

♦ How to create an UltraLite database.

♦ How to add the UltraLite database control to your MobileBuilder
project.

♦ How to configure the UltraLite database control for your application.

♦ How to bind a user interface component to a column of an UltraLite
table.

♦ How to use the MobileBuilder Code Assistant to add functionality to
your application.

♦ How to build and preview your application.

For the simple application you build in this tutorial, you do not need to write
any C code directly. The application carries out the following tasks.

1 Connects to an UltraLite database, consisting of a single table. The table
is the ULProduct table of the UltraLite Sample database.

2 Synchronizes with the consolidated database.

3 Displays some of the data in a list box.

The lessons in this tutorial carry out the following steps:

1 Create a directory to hold the tutorial files.

2 Create a MobileBuilder project.

3 Add the UltraLite component to your MobileBuilder project.

4 Design the UltraLite database for the application in an Adaptive Server
Anywhere reference database.

5 Configure the UltraLite component.

6 Design a form and bind controls to the UltraLite database.

7 Compile, link, and run the application.

Lessons

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

9

Lesson 1: Getting started
In this lesson you prepare for the remainder of the tutorial. You make a
directory to hold the files you will be using during the tutorial. In addition,
you should make a copy of the UltraLite sample database as a backup copy
so that you can easily restore it to its original state for future use.

During the tutorial, we use the original UltraLite Sample database. At the
end of the tutorial, you can copy the untouched version from the Tutorial
directory back into place.

v Prepare a tutorial directory:

♦ From a command prompt, enter the following command:

mkdir c:\Tutorial

This creates a directory to hold the tutorial files. You can choose your
own name for the directory, but in the remainder of the tutorial, we
assume that this directory is c:\Tutorial.

v Copy the sample database:

♦ From a command prompt, change to the Samples\UltraLite \CustDB
subdirectory of your SQL Anywhere directory. This directory holds the
UltraLite Sample database.

Enter the following command:

copy CustDB.db c:\Tutorial

This makes a copy of the UltraLite Sample database in the tutorial
directory.

Lesson 2: Create a MobileBuilder project

10

Lesson 2: Create a MobileBuilder project
In this lesson, you start building your MobileBuilder application. Here, you
create a new MobileBuilder project and add the UltraLite database
component to it.

v Create a MobileBuilder project:

1 Start MobileBuilder.

2 Create the project:

♦ From the File menu, choose New Project. The New Project dialog
appears.

♦ Enter Tutorial as your project name

♦ Enter your tutorial directory (c:\Tutorial) as the location.

♦ Choose C as the language.

♦ Choose a target for which you have a compiler installed. This
tutorial uses Win32 as the target (Visual C++ 6.0 for Windows 32),
but you can use any other compiler for a supported MobileBuilder
target platform.

♦ Click OK to create the project. A Project Manager Pane appears on
the left side of your MobileBuilder window.

You have created a standard MobileBuilder project. The next lesson
describes how to add UltraLite features to this project.

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

11

Lesson 3: Add the UltraLite Component to your
project

The UltraLite database component manages all the UltraLite-specific tasks
within your MobileBuilder project. This lesson describes how to add the
component to your project and configure it for use with your reference
database.

The UltraLite database component is a global component. It is not visible,
and you do not need to add it to any form in your project. You need only one
instance of the component in any application, and the component holds
application-wide properties.

v Add the UltraLite database component to your project:

1 Add the UltraLite database component to your project:

♦ On the Component Palette at the top of your MobileBuilder
window, click the UltraLite tab.

♦ Double-click the ULDatabase component. An UltraLite database
component appears in the Global Components folder of your
project. It has the name ULDatabase1.

2 Set the data source to be your reference database.

♦ In the Project Management Pane, open the Global Components
folder and double-click ULDatabase1. The Properties tab for this
component appears.

♦ Click the button next to the DataSource property. The UltraLite
database setup dialog appears, open at the Data Source tab.

Lesson 3: Add the UltraLite Component to your project

12

♦ From the Data Source dropdown list, choose UltraLite 8.0 Sample.
This identifies the UltraLite sample database as your reference
database.

♦ Enter DBA as user ID, and SQL as password. These entries are used
during connection, and are also used by other pieces of the UltraLite
database component.

♦ Click Connect to establish a connection to the reference database.
An Adaptive Server Anywhere personal database server starts, and
the UltraLite component connects to it.

♦ Leave the UltraLite database properties at their default settings.
Ensure that Auto Connect is selected.

♦ Click OK to save the settings.

You must save the Data Source settings the first time you add them,
before setting other UltraLite properties.

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

13

Lesson 4: Define your UltraLite database
schema

Any UltraLite application requires a database. You design your UltraLite
database in a reference database: an Adaptive Server Anywhere database
that holds the tables your UltraLite application needs.

In this tutorial, you create an object called a publication in your reference
database. The publication is a convenient device for assembling tables and
column-based subsets of tables.

You can also define your UltraLite database by adding SQL statements to the
reference database. SQL statements allow you to include joins and more
advanced features in your UltraLite application.

v Create your UltraLite database schema:

1 Prepare to define the schema.

♦ In the Properties tab for the ULDatabase1 component, click the
button by the Schema property. The UltraLite database setup dialog
appears, open at the Schema tab.

2 Create a publication that reflects the data you wish to include in your
UltraLite database.

♦ Click the Edit button. The Create Publication dialog appears.

Lesson 4: Define your UltraLite database schema

14

The Table.Column list displays all columns of tables owned by the
user ID you used in your connection.

♦ In the Publication Name field, enter the name ProductPub.

♦ Double-click the following columns to include them in the
publication:

♦ ULProduct.prod_id

♦ ULProduct.prod_name

♦ ULProduct.price

♦ Click OK to create the publication.

♦ In the UltraLite Database Setup dialog, ensure that Product Pub is
selected in the Publication list, and click OK to complete the
definition.

You have now finished designing your UltraLite database; in this case, just a
single table. In the next lesson, you set up synchronization.

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

15

Lesson 5: Configure synchronization
There are several parameters that need to be selected in order to synchronize
successfully. The meaning of the individual parameters is not described here.
Instead, the section says which settings to use, and gives cross references for
more information.

v Configure the synchronization parameters:

1 On the ULDatabase1 property tab, click the button next to the
Synchronization property. The UltraLite Database Setup dialog appears,
open at the Synchronization tab.

2 In the User name field, enter 50. This value identifies the user for
synchronization.

$ For more information, see "The MobiLink user" on page 22 of the
book MobiLink Synchronization User’s Guide.

3 In the version field, choose custdb. This identifies the particular
instructions (already stored in the UltraLite Sample database) to be used
for synchronization.

$ For more information, see "Script versions" on page 61 of the book
MobiLink Synchronization User’s Guide.

4 Leave the Stream setting at TCP/IP, and the Host setting at localhost,
and the Port setting ad 2439. Leave the Security option unchecked.

Lesson 5: Configure synchronization

16

5 Click OK to complete the settings.

You have now configured the UltraLite database component. In this tutorial,
you use default synchronization options. You set the Mappings properties in
the next lesson.

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

17

Lesson 6: Design a MobileBuilder form
In this lesson you design a MobileBuilder form, and bind a list control on the
form to the UltraLite database component.

v Design the MobileBuilder form:

1 Open the Project tab of the Project Manager Pane, and open the Forms
folder.

2 Add a list box to the form.

♦ In the Project Management pane, double-click Form1 to display it in
the right pane.

♦ On the Component Palette, click Standard.

♦ Click the Listbox icon (TList component), and draw a list box on
the form. The list box can take up most of the space on the form. By
default, the listbox is named ListBox1.

3 Bind the listbox to a column of the UltraLite database.

You bind controls to UltraLite objects from the UltraLite database
component.

♦ In the Project Management pane, double-click the ULDatabase1
control.

♦ Click the button beside the Mappings item. The UltraLite database
Setup dialog appears, open at the Mappings tab.

Lesson 6: Design a MobileBuilder form

18

♦ Ensure that Form1 is selected in the Forms list, and that ListBox1 is
selected in the Controls list.

♦ In the Fields From Publication list, click ULProduct.prod_name.
Click Map to add this field to the mappings list.

♦ Click OK to complete the mapping.

4 Use the MobileBuilder Code Assistant to add code that opens the
ULProduct table to the Form initialization event.

♦ In the MobileBuilder right-hand pane, right-click the form (not the
list box) and choose Code Assistant from the popup menu. Make
the following settings:

Field Value

When this component Form1

Dropdown box next to Form1 Empty

fires this event FrmInit

then, with this component Application

Dropdown box next to Application ULDatabase1

do the following Open a table or result set

♦ Click Add Code, and in the dialog that appears, choose ULProduct.

5 Use the MobileBuilder Code Assistant to add code that synchronizes
data to the Form initialization event.

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

19

♦ In the Code Assistant, make the following settings:

Field Value

When This Component Form1

Dropdown box next to Form1 Empty

fires This Event FrmInit

then, with this component Application

Dropdown box next to Application ULDatabase1

Do the following Synchronize the
connection

♦ Click Add Code to finish.

The code is added after the existing code for the FrmInit event.

6 Use the MobileBuilder Code Assistant to add code that sets the current
item to be the first item in the table. Add this code to the Form
initialization event.

♦ In the Code Assistant, make the following settings:

Field Value

When This Component Form1

Dropdown box next to Form1 Empty

fires This Event FrmInit

then, with this component Application

Dropdown box next to Application ULDatabase1

Do the following Move to first record

♦ Click Add Code, and in the dialog that appears, choose ULProduct.

♦ Click OK to finish.

♦ Click Close to close the Code Assistant.

You have now completed the application, which displays the product names
in the database. You can look at the generated code in the code tab of the
MobileBuilder right pane. Next, you compile and run your application.

Lesson 7: Build and run your application

20

Lesson 7: Build and run your application
You can compile and link your application in the development tool of your
choice. In this section, we describe how to compile and link using Visual
C++; if you are using one of the other supported development tools, modify
the instructions to fit your tool.

v Build and run your application:

1 Save the application.

From the File menu, choose Save. Accept the default name and click
Save.

2 From the MobileBuilder Project menu, choose Build.

When compiling is complete, the Output Pane at the bottom of the
MobileBuilder workspace should display a line stating the following:

Tutorial.exe – 0 error(s), 0 warning(s)

Compiler failure
This tutorial assumes that you have a working installation of Visual
C++. If the build fails, you should check that your Visual C++
installation is correct. If problems persist, consult your MobileBuilder
documentation.

3 As you have configured the application to synchronize on startup, you
must start the MobiLink synchronization server so that a connection can
be established.

From the Windows Start button, choose
Programs➤Sybase SQL Anywhere 8➤MobiLink➤Synchronization
Server Sample.

The MobiLink synchronization server starts, and displays that it is ready
to handle requests.

4 Run the application.

From the MobileBuilder Project menu, choose Run.

A MobileBuilder window appears and displays the form you designed,
holding the product names from the product table.

If you look at the MobiLink synchronization server window, you will
see a set of messages, finishing with Synchronization complete.

Chapter 2 Tutorial: Build an UltraLite Application Using MobileBuilder

21

You have now built and run a simple UltraLite application using
MobileBuilder. You can close MobileBuilder and the MobiLink
synchronization server.

Restore the sample database

22

Restore the sample database
Now that you have completed the tutorial, you should restore the sample
database so that it can be used again. You created a backup copy of the
UltraLite Sample database in "Lesson 1: Getting started" on page 9. You can
now replace the modified version of custdb.db with the backup copy,
overwriting any changes.

v Restore the sample database:

1 Delete the database file custdb.db, and the transaction log file custdb.log
in the Samples\UltraLite\CustDB subdirectory of your SQL Anywhere
directory.

From a command prompt, change to the Samples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory and enter the following
command:

dberase -y custdb.db

2 Copy the custdb.db file from your tutorial directory to the
Samples\UltraLite\CustDB subdirectory of your SQL Anywhere
directory.

Your sample database is now restored to its original state.

23

C H A P T E R 3

Tutorial: Build an UltraLite Palm
Application Using MobileBuilder

This chapter provides a tutorial that guides you through the process of
developing an UltraLite application for the Palm Computing Platform using
MobileBuilder. It describes how to build a very simple application, and how
to add synchronization to your application.

Topic Page

Introduction 24

Lesson 1: Getting started 25

Lesson 2: Create a MobileBuilder project 27

Lesson 3: Add the UltraLite Component to your project 28

Lesson 4: Define your UltraLite database schema 30

Lesson 5: Configure synchronization 32

Lesson 6: Design a MobileBuilder form 34

Lesson 7: Build and run your application 38

Lesson 8: Complete the application 40

Restore the sample database 43

About this chapter

Contents

Introduction

24

Introduction
This tutorial describes how to create a simple UltraLite application for the
Palm Computing Platform using MobileBuilder. It includes the following
topics:

♦ How to create an UltraLite database.

♦ How to add the UltraLite database control to your MobileBuilder
project.

♦ How to configure the UltraLite database control for your application.

♦ How to bind a user interface component to a column of an UltraLite
table.

♦ How to use the MobileBuilder Code Assistant to add functionality to
your application.

♦ How to build and preview your application.

The application carries out the following tasks.

1 Connects to an UltraLite database, consisting of a single table. The table
is the ULProduct table of the UltraLite Sample database.

2 Synchronizes with the consolidated database.

3 Displays some of the data in text fields.

The lessons in this tutorial carry out the following steps:

1 Create a directory to hold the tutorial files.

2 Create a MobileBuilder project.

3 Add the UltraLite component to your MobileBuilder project.

4 Design the UltraLite database for the application in an Adaptive Server
Anywhere reference database.

5 Configure the UltraLite component.

6 Design a form and bind controls to the UltraLite database.

7 Compile, link, and run the application.

Lessons

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

25

Lesson 1: Getting started
In this lesson you prepare for the remainder of the tutorial. You make a
directory to hold the files you will be using during the tutorial. In addition,
you should make a copy of the UltraLite sample database as a backup copy
so that you can easily restore it to its original state for future use.

During the tutorial, we use the original UltraLite Sample database. At the
end of the tutorial you can copy the untouched version from the Tutorial
directory back into place.

v Ensure you have the required software installed:

♦ To carry out this tutorial, you need the following software:

♦ SQL Anywhere Studio.

♦ PenRight! MobileBuilder 2.0 or later. Build 889 or higher is
required.

♦ Palm OS SDK version 3.1 or version 3.5.

♦ Palm emulator (included with MobileBuilder).

♦ The PRC Tools development suite for the Palm Computing
Platform.

You need only the cygwin user tools, not the full PRC Tools install.
You do not need to install PilRC as stated, because MobileBuilder
includes a version of PilRC.

When you have installed PRC Tools, you can confirm that
MobileBuilder has detected the tools. In MobileBuilder, choose
Tools➤Options➤Build Tools. Highlight PRC-Tools (do not check
the check box) and click Detect.

If the check box becomes checked, MobileBuilder has successfully
detected PRC-Tools.

$ For more information on PRC Tools and the Palm emulator, see
the Palm developer zone at http://www.palmos.com/dev/.

v Prepare a tutorial directory:

♦ From a command prompt, enter the following command:

mkdir c:\Tutorial

This creates a directory to hold the tutorial files. You can choose your
own name for the directory, but in the remainder of the tutorial, we
assume that this directory is c:\Tutorial.

Lesson 1: Getting started

26

v Copy the sample database:

♦ From a command prompt, change to the Samples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory. This directory holds the
UltraLite Sample database.

Enter the following command:

copy CustDB.db c:\Tutorial

This makes a copy of the UltraLite Sample database in the tutorial
directory.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

27

Lesson 2: Create a MobileBuilder project
In this lesson, you start building your MobileBuilder application. Here, you
create a new MobileBuilder project and add the UltraLite database
component to it.

v Create a MobileBuilder project:

1 Start MobileBuilder.

2 Create the project.

♦ From the File menu, choose New Project. The New Project dialog is
displayed.

♦ Enter Tutorial as your project name

♦ Enter your tutorial directory (c:\Tutorial) as the location.

♦ Choose C as the language.

♦ Choose Palm as the target.

♦ Click OK to create the project. A Project Manager Panel is
displayed on the left side of your MobileBuilder window and a
Palm menu is added to the MobileBuilder interface.

You have created a standard MobileBuilder project. The next lesson
describes how to add UltraLite features to this project.

Lesson 3: Add the UltraLite Component to your project

28

Lesson 3: Add the UltraLite Component to your
project

The UltraLite database component manages all the UltraLite-specific tasks
within your MobileBuilder project. This lesson describes how to add the
component to your project and configure it for use with your reference
database.

The UltraLite database component is a global component. It is not visible,
and you do not need to add it to any form in your project. You need only one
instance of the component in any application, and the component holds
application-wide properties.

v Add the UltraLite database component to your project:

1 Add the UltraLite database component to your project.

♦ On the Component Palette at the top of your MobileBuilder
window, click the UltraLite tab.

♦ Double-click the ULDatabase component. An UltraLite database
component appears in the Global Components folder of your
project. It has the name ULDatabase1.

2 Set the data source to be your reference database.

♦ In the Project Management Panel, open the Global Components
folder and double-click ULDatabase1. The Properties tab for this
component appears.

♦ Click the button next to the DataSource property. The UltraLite
database setup dialog appears, open at the Data Source tab.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

29

♦ From the Data Source drop-down list, choose UltraLite 8.0 Sample.
This identifies the UltraLite sample database as your reference
database.

♦ Enter DBA as user ID, and SQL as password. These entries are used
during connection, and are also used by other pieces of the UltraLite
database component.

♦ Click Connect to establish a connection to the reference database.
An Adaptive Server Anywhere personal database server starts, and
the UltraLite component connects to it.

♦ Leave the UltraLite database properties at their default settings.
Ensure that Auto Connect is selected.

♦ Click OK to save the settings.

You must save the Data Source settings the first time you add them,
before setting other UltraLite properties.

Lesson 4: Define your UltraLite database schema

30

Lesson 4: Define your UltraLite database
schema

Any UltraLite application requires a database. You design your UltraLite
database in a reference database: an Adaptive Server Anywhere database
that holds the tables your UltraLite application needs.

In this tutorial, you create an object called a publication in your reference
database. The publication is a convenient device for assembling tables and
column-based subsets of tables.

You can also define your UltraLite database by adding SQL statements to the
reference database. SQL statements allow you to include joins and more
advanced features in your UltraLite application.

v Create your UltraLite database schema:

1 Prepare to define the schema.

♦ In the Properties tab for the ULDatabase1 component, click the
button by the Schema property. The UltraLite database setup dialog
appears, open at the Schema tab.

2 Create a publication that reflects the data you wish to include in your
UltraLite database.

♦ Click the Edit button. The Create Publication dialog appears.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

31

The Table.Column list displays all columns of tables owned by the
user ID you used in your connection.

♦ In the Publication Name field, enter the name ProductPub.

♦ Double-click the following columns to include them in the
publication:

♦ ULProduct.prod_id

♦ ULProduct.prod_name

♦ ULProduct.price

♦ Click OK to create the publication.

♦ In the UltraLite Database Setup dialog, ensure that Product Pub is
selected in the Publication list, and click OK to complete the
definition. Save your work.

You have now finished designing your UltraLite database; in this case, just a
single table. In the next lesson, you set up synchronization.

Lesson 5: Configure synchronization

32

Lesson 5: Configure synchronization
There are several parameters that need to be selected in order to synchronize
successfully. The meaning of the individual parameters is not described here.
Instead, the section says which settings to use, and gives cross references for
more information.

v Configure the synchronization parameters:

1 In the ULDatabase1 property tab, click the button next to the
Synchronization property. The UltraLite Database Setup dialog appears,
open at the Synchronization tab.

2 In the User name field, enter 50. This value identifies the user for
synchronization.

$ For more information, see "Authenticating MobiLink Users" on
page 251 of the book MobiLink Synchronization User’s Guide.

3 In the version field, choose custdb. This identifies the particular
instructions (already stored in the UltraLite Sample database) to be used
for synchronization.

$ For more information, see "Script versions" on page 61 of the book
MobiLink Synchronization User’s Guide.

4 Leave the Stream setting at TCP/IP, the Host setting at localhost, and
the Port setting at 2439. Leave the Security option unchecked.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

33

It is more common to use HotSync or ScoutSync synchronization than
TCP/IP for Palm devices, but here we use TCP/IP so that the application
can be tested from the emulator without requiring a serial cable, which is
needed for HotSync synchronization from the emulator.

At the end of the tutorial, settings are given for HotSync
synchronization.

5 Click OK to complete the settings. Save your work.

You have now configured the UltraLite database component. In this tutorial,
you use default synchronization options. You set the Mappings properties in
the next lesson.

Lesson 6: Design a MobileBuilder form

34

Lesson 6: Design a MobileBuilder form
In this lesson you design a MobileBuilder form, and bind a list control on the
form to the UltraLite database component.

v Design the MobileBuilder form:

1 Open the Project tab of the Project Manager Panel, and open the Forms
folder.

2 Add a text field to the form. This field is used to display the Product
name of the current product as you scroll through a list of products.

♦ In the Project Management pane, double-click Form1 to display it in
the right pane.

♦ On the Component Palette, click Standard.

♦ Click the text field icon (TField component), and draw a text field
on the form. The text field can take up most of the space on the top
half of the form. By default, the text field is named Field1.

The following figure shows the complete form. At the moment, just
the top text field is in place.

3 Add a Previous button to the form. This button is used to scroll
backwards through a list of products.

♦ With Form1 displayed, and the Standard toolbar displayed, click the
button icon (TButton component), and draw a button underneath the
text field on the left side of the form. This will be the back scrolling
button.This button is called Button1

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

35

♦ Right-click the button and select Properties from the drop down list.
The Property sheet for the button is displayed in the left pane.

♦ Set the caption of the button to Previous.

4 Add a Next button to the form. This button is used to scroll forward
through a list of products.

♦ Repeat the previous step. This time, draw the button on the right
side of the form, underneath the text field. This will be the forward
scrolling button. This button is called Button2

♦ Set the caption to Next.

5 Add a Synchronize button to the form. This button is used to
synchronize the application with the MobiLink synchronization server.

♦ Draw a button underneath the Previous and Next buttons. This
button is called Button3

♦ Set the caption to Synchronize.

6 Bind the Text field to a column of the UltraLite database.

You bind controls to UltraLite objects from the UltraLite database
component.

♦ In the Project Management pane, double-click the UltraLite
database control.

♦ Click the button beside the Mappings item. The UltraLite database
Setup dialog appears, open at the Mappings tab.

Lesson 6: Design a MobileBuilder form

36

♦ Ensure that Form1 is selected in the Forms list, and that Field1 is
selected in the Controls list.

♦ In the Fields From Publication list, click ULProduct.prod_name.
Click Map to add this field to the mappings list.

♦ Click OK to complete the mapping.

7 Use the MobileBuilder Code Assistant to add code that synchronizes
data to the Synchronize button.

♦ In the MobileBuilder right-hand pane, right-click the form and
choose Code Assistant from the popup menu.

♦ In the Code Assistant, make the following settings:

Field Value

When This Component Form1

Drop down box next to Form1 Button3

fires This Event CtlSelect

then, with this component Application

Drop down box next to Application ULDatabase1

Do the following Synchronize the
connection

♦ Click Add Code.

♦ Leave the Code Assistant open.

8 Use the MobileBuilder Code Assistant to add code that opens the table
for use after synchronizing.

♦ In the Code Assistant, make the following settings:

Field Value

When this component Form1

Drop down box next to Form1 Empty

fires this event FrmInit

then, with this component Application

Drop down box next to Application ULDatabase1

do the following Open a table or result set

♦ Click Add Code, and in the dialog that appears, choose ULProduct.

♦ Click OK to finish. Leave the Code Assistant open.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

37

9 Use the MobileBuilder Code Assistant to add code that scrolls through
the data to the Previous and Next buttons.

♦ In the Code Assistant, make the following settings:

Field Value

When This Component Form1

Drop down box next to Form1 Button1

fires This Event CtlSelect

then, with this component Application

Drop down box next to Application ULDatabase1

Do the following Move to previous record

♦ Click Add Code, and in the dialog that appears, choose ULProduct.

♦ Click OK to finish. Leave the Code Assistant open.

♦ In the Code Assistant, make the following settings:

Field Value

When This Component Form1

Drop down box next to Form1 Button2

fires This Event CtlSelect

then, with this component Application

Drop down box next to Application ULDatabase1

Do the following Move to next record

♦ Click Add Code, and in the dialog that appears, choose ULProduct.

♦ Click OK to finish. Leave the Code Assistant open.

10 Click Close to close the Code Assistant.

You have now completed the application, which displays the product names
in the database. You can look at the generated code in the code tab of the
MobileBuilder right pane. Next, you compile and run your application.

Lesson 7: Build and run your application

38

Lesson 7: Build and run your application
This section describes how to compile and link using the PRC Tools.

v Build and run your application:

1 Save the application.

From the File menu, choose Save. Accept the default name and click
Save.

2 From the MobileBuilder Project menu, choose Build.

When compiling is complete, the Output Panel at the bottom of the
MobileBuilder workspace should display a line stating the following:

Tutorial.exe – 0 error(s), 0 warning(s)

Compiler failure
This tutorial assumes that you have a working installation of the PRC
Tool chain for Palm development. If the build fails, you should check
that your PRC Tools installation is correct. If problems persist,
consult your MobileBuilder documentation.

3 Start the MobiLink synchronization server so that a connection can be
established.

From the Windows Start button, choose Programs➤
Sybase SQL Anywhere 8 ➤MobiLink➤ Synchronization Server
Sample.

The MobiLink synchronization server starts, and displays that it is ready
to handle requests. In this case we are synchronizing with the UltraLite
Sample database, which is serving as both reference and consolidated
databases. In general, the reference and consolidated database are
separate objects.

4 Start the application.

From the MobileBuilder Project menu, choose Run.

The Palm OS Emulator appears and displays the form you designed.

5 Prepare the emulator for TCP/IP synchronization.

♦ Right click the emulator, and choose Settings➤Properties from the
popup menu.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

39

♦ Check Redirect NetLib calls to host TCP/IP. This option sets the
Emulator to use TCP/IP communications with applications on the
current device.

♦ Leave other items in the dialog unchanged and click OK.

6 Synchronize your application.

♦ Click the Synchronize button.

Inspect the MobiLink synchronization server window. It should
display a set of messages confirming that Synchronization is
complete. You can scroll back through the messages to see that a set
of rows were added to the UltraLite database running in the
Emulator.

The current position is left before the first item of the result set, and
so no item is yet displayed in the text field.

♦ Click the Next button.

The first product name from the database appears in the text field.

You have now built and run a simple UltraLite application using
MobileBuilder. The application is still incomplete, however. To see this,
click Applications in the Emulator to switch away from your application, and
then click App to switch back to it. Although the user interface displays, you
will see that the application no longer functions. The next lesson describes
how to fix that problem.

You can close MobileBuilder and the MobiLink synchronization server.

Lesson 8: Complete the application

40

Lesson 8: Complete the application
In this lesson you add the application-switching features needed to handle
switching away from and back to your application.

To add these features, which are specific to the Palm Computing Platform,
you need to write code for both the AppExit and AppEnter events.

Each time the user switches away from an application, the MobileBuilder
AppExit event is invoked. You need to add code for this event to close the
table. The current position is lost during the switch away from and back to
the application, but the data is kept.

v To close tables when the user exits the application:

1 Open the Code Assistant.

In the MobileBuilder right-hand pane, right-click the form and choose
Code Assistant from the popup menu.

2 In the Code Assistant, make the following settings:

Field Value

When This Component Application

Drop down box next to Form1 Empty

fires This Event AppExit

then, with this component Application

Drop down box next to Application ULDatabase1

Do the following Close a table or result set

3 Click Add Code, and in the dialog that is displayed, choose ULProduct.

4 Click OK to add the code. Leave the Code Assistant open.

Each time the user switches back to an application, the MobileBuilder
AppEnter event is invoked. You need to add code for this event to open the
table. The operation is the same whether or not the user is switching to the
application for the first time or at a subsequent time.

v To open tables when the user enters the application:

1 In the Code Assistant, make the following settings:

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

41

Field Value

When This Component Application

Drop down box next to Form1 Empty

fires This Event AppEnter

then, with this component Application

Drop down box next to Application ULDatabase1

Do the following Open a table or result set

2 Click Add Code, and in the dialog that is displayed, choose ULProduct.

3 Click OK to add the code. Leave the Code Assistant open.

4 Compile and run your application to test it.

This tutorial used a table object to hold the data. You can also use result set
objects to hold more complex query result sets. The two objects have
different behavior for application switching.

♦ Tables must be closed using ULBClose before exiting the application,
and opened using ULBOpen when the user enters the application.

♦ Result sets must not be closed before exiting the application. You do not
need to take any specific action for result sets when exiting the
application. When the user enters the application for the first time, the
result set must be opened using ULBOpen. When the user enters the
application in subsequent times, the result set must be reopened using
ULBReopen.

The following code provides an example handler for the AppEnter
event. The ULDatabase1LaunchCode function tests whether the
application is being entered for the first time or not. The result set is
opened on first entry, but is reopened on subsequent entries.

Result sets and
tables

Lesson 8: Complete the application

42

static BOOLEAN OnAppEnter(EVENTTYPE *pEvent, WORD
*pError)
{
 // perform default processing
 DefaultHandler(pEvent, pError);
 switch(ULDatabase1LaunchCode()){
 case LAUNCH_SUCCESS_FIRST:
 if(!ULBOpen(ResultSet1,
 ULDatabase1connection)){
 // initialization failed
 DisplayNotice ("LAUNCH_SUCCESS_FIRST error",
 "OK", "Cancel");
 break;
 }
 break;
 case LAUNCH_SUCCESS:
 if(!ULBReopen(ResultSet1,
 ULDatabase1connection)){
 DisplayNotice ("LAUNCH_SUCCESS error",
 "OK", "Cancel");
 break;
 }
 break;
 case LAUNCH_FAIL:
 // error
 break;
 }
 // return TRUE to continue event routing {{MB1}}
 return(TRUE);
}

The above code illustrates how to use a DisplayNotice function for
rudimentary debugging.

Chapter 3 Tutorial: Build an UltraLite Palm Application Using MobileBuilder

43

Restore the sample database
Now that you have completed the tutorial, you should restore the sample
database so that it can be used again. You created a backup copy of the
UltraLite Sample database at the beginning of this tutorial. You can now
replace the modified version of custdb.db with the backup copy, overwriting
any changes.

v Restore the sample database:

1 Delete the database file custdb.db, and the transaction log file custdb.log
in the Samples\UltraLite\CustDB subdirectory of your SQL Anywhere
directory.

From a command prompt, change to the Samples\UltraLite\CustDB
subdirectory of your SQL Anywhere directory and enter the following
command:

dberase -y custdb.db

2 Copy the custdb.db file from your tutorial directory to the
Samples\UltraLite\CustDB subdirectory of your SQL Anywhere
directory.

Your sample database is now restored to its original state.

Restore the sample database

44

45

C H A P T E R 4

Developing UltraLite MobileBuilder
Applications

This chapter describes how to carry out tasks needed to build UltraLite
applications in MobileBuilder. It describes how to use the UltraLite
component, how to bind MobileBuilder controls to your data, and provides
usage notes on how to use the MobileBuilder controls when building an
UltraLite application.

Topic Page

Introduction 46

UltraLite MobileBuilder application architecture 47

Working with the UltraLite component 50

Using the MobileBuilder controls 57

Writing UltraLite code for MobileBuilder applications 60

Developing Palm applications in MobileBuilder 63

About this chapter

Contents

Introduction

46

Introduction
This chapter provides guidelines and notes for developers writing UltraLite
applications with MobileBuilder.

The chapter includes the following information:

♦ An overview of UltraLite application architecture which describes the
major pieces that make up an UltraLite MobileBuilder application, and
describes some essential functions any application must carry out.

$ For information, see "UltraLite MobileBuilder application
architecture" on page 47.

♦ How to use the UltraLite component, which makes an UltraLite database
and SQL statements available to your application.

$ For information, see "Working with the UltraLite component" on
page 50.

♦ How to bind MobileBuilder controls to the UltraLite component, and
how to work with those controls. For example, you may want to bind a
list box or a text field to a column of a query result set.

$ For information, see "Using the MobileBuilder controls" on
page 57.

♦ How to use the MobileBuilder Code Assistant. The Code Assistant
provides an easy way of adding common functionality to your
application. For example, you can use the Code Assistant to implement
the code for buttons to scroll through the data in your database, or to
synchronize your data.

$ For information, see "Using the MobileBuilder Code Assistant" on
page 60.

♦ How to write UltraLite code for MobileBuilder. Although the Code
Assistant makes many tasks easier, you will still need to write C code
for most UltraLite applications. This section describes some
considerations specific to UltraLite applications.

$ For information, see "Writing UltraLite code for MobileBuilder
applications" on page 60.

Some important concepts are introduced in "Tutorial: Build an UltraLite
Application Using MobileBuilder" on page 7. This chapter assumes that you
have worked through that tutorial.

This chapter also assumes the knowledge described in "About This Manual"
on page v.

What’s in this
chapter?

Before you begin

Chapter 4 Developing UltraLite MobileBuilder Applications

47

UltraLite MobileBuilder application architecture
This section describes tasks that must be carried out by any UltraLite
MobileBuilder application, and also describes some tasks that are not
universally essential, but which are very common.

The pieces of an UltraLite application

Any UltraLite application includes the following kinds of code:

♦ At the lowest level, an UltraLite runtime library contains platform-
specific implementations of functions needed to execute queries and
manipulate the data in the database. The library may be a static library
that you have to link in to your application, or a DLL that you distribute
with your application, depending on the target platform.

MobileBuilder automatically ensures that the UltraLite runtime library
functions are imported into your application.

♦ An API to manage the database and the data. This set of functions,
which calls the runtime library as required, is generated from the
UltraLite reference database as needed by MobileBuilder.

Portions of the API are application-specific, tuned to the queries and
data defined in your UltraLite database.

♦ The application-specific code that you write. The UltraLite-specific
parts of your code make calls into the generated API.

MobileBuilder makes the integration of UltraLite functions into your
code easier, by enabling you to bind visual controls to database objects
such as result set columns, and by providing the Code Assistant to walk
you through adding commonly-used functionality to your application.

The UltraLite features of a MobileBuilder application are implemented by
calling functions in an API. These functions in turn call functions in an
UltraLite runtime library that must be compiled into your application or
distributed with your application as a DLL.

The UltraLite runtime library contains the low-level code for working with
the data in your application.

UltraLite MobileBuilder application architecture

48

The UltraLite database objects

Any UltraLite application works with a database. The database itself is held
in a file that is created automatically by the UltraLite runtime library the first
time the application is run.

Before your application views or carries out any manipulation of data, you
must open a set of database objects.

1 The first object to open is the database itself. Opening a database
prepares the application to connect to the database.

The functions provided for working with the database all start with
ULDatabase. You open a database by calling the ULDatabaseOpen
function. This function takes a single argument, which is a variable that
represents the database in the rest of your application.

If you select AutoConnect on the UltraLite component dialog, the
ULDatabase object is opened for you.

2 The next object to open is a connection between the application and the
database. All work done on a database must be done in the context of a
connection. Transaction control and synchronization are also handled at
the connection level.

The functions provided for working with connections all start with
ULConnection. You open a connection by calling the
ULConnectionOpen function. This function takes two arguments: the
database variable and a variable that represents the connection to the rest
of your application.

If you select AutoConnect on the UltraLite component dialog, the
ULConnection object is opened for you.

3 Once you have opened a connection, you can open and then use any of
the database objects within the database. A database object may
represent a query result set or a base table, and is represented within the
MobileBuilder application by an UltraLite Bound Object.

The functions provided for working with database objects all begin with
ULB. You open a table or result set by calling the ULBOpen function.
This function takes two arguments: the connection variable and a
variable that represents the table or result set.

$ For more information, see "ULBOpen function" on page 77.

Chapter 4 Developing UltraLite MobileBuilder Applications

49

The UltraLite component

The UltraLite component provides MobileBuilder with access to UltraLite
functionality. All UltraLite features are accessed through the UltraLite
component.

The component provides you with access to the UltraLite database objects,
enables you to bind these objects to controls on your MobileBuilder forms,
and enables you to control synchronization and UltraLite database features.

$ For more information, see "Working with the UltraLite component" on
page 50.

Opening UltraLite database objects

Before you can work with data in an UltraLite database, your application
must open the following objects:

1 The UltraLite database To open a database, use the
ULDatabaseOpen function.

2 A connection to the database To open a connection, use the
ULConnectionOpen function.

3 The table or result set holding the data To open a table or result set,
use the ULBOpen function.

If you select Auto Connect in the UltraLite database options of the UltraLite
database Data Source properties, the code to open the database and to open
the connection is automatically added to your application. If you do not
select this option, you must add the code yourself.

You can use the Code Assistant to open the table or result set.

$ For more information, see "ULBOpen function" on page 77.

Building UltraLite MobileBuilder applications

You compile your UltraLite application from MobileBuilder by choosing
Build from the Project menu. MobileBuilder invokes the compiler for the
project’s target platform, and displays any compilation messages in the
Output Pane at the bottom of the MobileBuilder window.

Compilers used with MobileBuilder use a dependency model for compilation
so that they only compile those files that have changed since the last
compilation.

Working with the UltraLite component

50

Working with the UltraLite component
You need to add the UltraLite component to your MobileBuilder project in
order to add UltraLite features to your application.

This section describes how to add the UltraLite component to a project. It
also describes how to configure the component to work with your UltraLite
project and your reference database.

Adding the UltraLite component to your MobileBuilder project

The UltraLite component is a global component. You add it to your project,
but unlike buttons and other user interface components, you do not place the
control on a form.

v To add the UltraLite component to a MobileBuilder project:

1 Open a MobileBuilder project.

2 Double-click the ULDatabase component on the UltraLite tab of the
Component Palette.

A ULDatabase component named ULDatabase1 appears under the
Global Components folder. The Global Components folder is on the
Project tab of the Project Manager Pane.

Before you can use the UltraLite component, you must configure it to work
with your reference database.

Configuring the UltraLite component

The UltraLite component has a number of properties that you must configure
to suit your project.

v To display the UltraLite component properties:

1 On the Project tab of the Project Manager Pane, select the ULDatabase
global component.

2 Click the Properties tab of the Project Manager Pane.

The UltraLite component properties appear.

The properties fall into the following categories:

Chapter 4 Developing UltraLite MobileBuilder Applications

51

♦ Filename The file that is to hold the generated UltraLite database
code.

♦ Name The name of the control.

♦ ASAVersion The Adaptive Server Anywhere version that is being
used for your reference database.

♦ DataSource Your reference database and also the filename and other
characteristics of the UltraLite database.

♦ Schema Specifies a set of columns from tables in the reference
database to include in your UltraLite application.

♦ ResultSets Specifies a query. The result set of the query is included in
your UltraLite application.

♦ Mappings Maps fields from publications and result sets onto visual
controls on your MobileBuilder forms.

♦ Synchronization Specifies how your UltraLite application is to
synchronize with a consolidated database.

Configuring the UltraLite component DataSource property

The UltraLite component DataSource property sets the Adaptive Server
Anywhere reference database used for your MobileBuilder project, and sets
some characteristics of the UltraLite database that is to be generated.

Before you configure the DataSource property, you must have constructed a
reference database that holds the tables you wish to include in your UltraLite
database.

The Data Source tab uses the following items to define your reference
database:

♦ Data Source An ODBC data source name for the reference database.
You can use Adaptive Server Anywhere ODBC data sources to define
connections to a database on your own machine or on other machines,
over a client/server connection.

♦ User ID The user ID as which you wish to connect. Some ODBC data
source definitions include the user ID, but you need to enter a value in
this field anyway, as it is used by the control itself.

♦ Password The password for the user ID. Some ODBC data source
definitions include the user ID, but you need to enter a value in this field
anyway, as it is used by the control itself.

Reference
database

Working with the UltraLite component

52

Once you have chosen values for the required parameters, click Connect to
test the connection to the reference database.

Once you have confirmed that the parameters are correct, click OK to save
them in the UltraLite component.

You may need to save the connection information before you can configure
the Schema, Result Sets, or Control Mappings.

The Data Source tab uses the following items to define your UltraLite
database:

♦ Filename UltraLite databases are stored in a persistent store. The
filename for this store depends on the target platform. If you wish to use
a name other than the default, enter a value here. If you wish to use the
default name, you can leave this field blank.

The default filename is ul.udb on Windows CE, and
ul_<projectname>.udb on other target systems.

♦ Cache Size When your UltraLite application is working with its
database, it uses a cache to hold some data and speed up repeated access
to that data. You can configure the size of the cache in this entry. If you
wish to use the default, leave this field blank.

The default cache size for 16-bit architectures is 8 K. The default cache
size for 32-bit architectures is 64 K. The minimum cache size is 4 K.

♦ Reserve Size Choose an amount of space to reserve on your target
machine for the UltraLite database. If you wish to use the default, leave
this field blank.

By default, no space is reserved for the database (a default value of
zero).

♦ Auto Connect If you leave this option checked, then your UltraLite
application will connect to the database immediately upon starting.

The UltraLite component adds code to open and connect to the UltraLite
database.

Configuring the UltraLite component Schema property

The Schema tab provides you with a dropdown list of publication names in
the reference database. You can select one of these publications to define
tables in your UltraLite database, and to define bound objects for mapping to
controls.

You can click Edit to change the definition of a publication in the reference
database, or to define a new publication.

UltraLite database

Chapter 4 Developing UltraLite MobileBuilder Applications

53

You must have saved reference database connection information to change
some of these values.

$ For more information, see "Configuring the UltraLite component
DataSource property" on page 51.

You can choose a set of tables from your reference database to include in
your UltraLite database. For each table in the set, you can include all or some
of the columns. This collection of columns is called a publication.

$ For more information on publications, see "Defining UltraLite tables"
on page 123 of the book UltraLite User’s Guide.

You can use an UltraLite bound object to access the rows of any table
included in your UltraLite database. A set of bound object functions allows
you to move backwards and forwards through the rows of the table, insert
new rows, update rows, and delete rows.

$ For a full listing of bound object functions, see "ULBoundObject
functions" on page 69.

v To create a publication:

1 In the MobileBuilder Project Manager Pane, open the Properties tab for
the UltraLite component.

2 Click the button next to the Schema property. The UltraLite database
Setup window appears, open at the Schema tab.

3 Click Edit. The Create Publication dialog appears.

4 Enter a name for the publication, and select the columns you wish to use
for the publication.

5 Click OK to dismiss the dialogs and complete the operation.

$ As an alternative to using publications, you can define your database by
creating an UltraLite project with a set of SQL statements. For more
information, see "Configuring UltraLite component ResultSets" on page 53.

Configuring UltraLite component ResultSets

Instead of choosing tables from the reference database, you can define
queries on your reference database, and the UltraLite generator produces a
database containing all the tables needed to support the queries you define.

You must assign a name to each query or other SQL statement that you wish
to use in an UltraLite application, and include it in an UltraLite project. A
project is simply a collection of related statements.

Publications

Working with the UltraLite component

54

$ For more information on UltraLite projects, see "Creating an UltraLite
project" on page 80 of the book UltraLite User’s Guide, and "Defining SQL
statements for your application" on page 80 of the book UltraLite User’s
Guide.

The Result Sets tab provides you with a dropdown list of existing UltraLite
projects in the reference database. You can add projects, change the set of
statements in a project, or edit individual statements, by clicking Edit.

If you have problems displaying information in the dialog, make sure that
you have saved connection information for the reference database.

$ For information on saving connection information, see "Configuring
the UltraLite component DataSource property" on page 51.

v To create an UltraLite project:

1 In the MobileBuilder Project Manager Pane, open the Properties tab for
the UltraLite component.

2 Click the button next to the ResultSets property. The UltraLite database
Setup window appears, open at the Result Sets tab.

3 Click Edit. The Create Project dialog appears.

4 Enter a name for your new project. You can add SQL statements to the
project now or at a later time.

5 Click OK to dismiss the dialogs and complete the operation.

v To add a SQL statement to an UltraLite project:

1 In the MobileBuilder Project Manager Pane, open the Properties tab for
the UltraLite component.

2 Click the button next to the ResultSets property. The UltraLite database
Setup window appears, open at the Result Sets tab.

3 Choose the project you wish to add SQL statements to, and click Edit.
The Create Project dialog appears.

4 Assign a name and add a SQL statement to the project. You should first
test your SQL statements using Interactive SQL or another application.

5 Click OK to dismiss the dialogs and complete the operation.

Chapter 4 Developing UltraLite MobileBuilder Applications

55

Configuring the UltraLite component Mappings property

On the Mappings tab, you can bind visual controls on the forms that make up
your application to sets of values from the result sets or publications in your
UltraLite database.

If you have problems displaying information in the dialog, make sure that
you have saved connection information for the reference database.

$ For information on saving connection information, see "Configuring
the UltraLite component DataSource property" on page 51.

Configuring the UltraLite component Synchronization property

On the Synchronization tab, you can set values that control the details of the
synchronization process.

$ For more information on the synchronization in UltraLite, see "Adding
synchronization" on page 71 of the book UltraLite User’s Guide.

If you have problems displaying information in the dialog, make sure that
you have saved connection information for the reference database.

$ For more information, see "Configuring the UltraLite component
DataSource property" on page 51.

The values on the tab are as follows:

♦ User name The user name used by MobiLink synchronization. It is
not a user ID for the database: user IDs are not used for UltraLite
databases.

♦ Version The script version for the set of scripts to use to synchronize.
You can choose which version to use from a dropdown list.

For this to work, the synchronization scripts must be present in your
reference database. In production, the scripts must be available in your
consolidated database. If you have not added scripts to your reference
database, you will not get a set of values to choose from, and you must
enter a value yourself.

♦ Stream Choose whether you wish to synchronize using
communication over a Serial, TCP/IP, or HTTP link. The available
options that control the details of the communication depend on the
stream you choose.

♦ Serial options If you choose to synchronize over a serial stream, you
can set options to control the synchronization in these fields.

Working with the UltraLite component

56

♦ TCP/IP or HTTP options If you choose to synchronize over a TCP/IP
or HTTP stream, you can set options to control the synchronization in
these fields.

♦ Security If you wish to use Certicom transport-layer security, you can
do so by checking the Secure option, and entering values in the Options
dialog.

Chapter 4 Developing UltraLite MobileBuilder Applications

57

Using the MobileBuilder controls
This section describes a number of aspects of working with MobileBuilder
controls while developing UltraLite applications. It is not a general guide to
using MobileBuilder controls.

Binding controls to UltraLite objects

You can use the Mapping properties of the UltraLite component to associate
controls on your forms with columns in UltraLite tables or result sets.

By binding a control to a column in a table or result set, the control displays
the values in that column. If the control is a text field or other single-entry
field, it displays the value for the current row, and if the control is a list box,
it displays the entire column, but with the current row selected.

You can navigate backwards and forwards among the items of the result set
using ULBNext, ULBPrevious, and other UltraLite MobileBuilder
functions. MobileBuilder bound controls get updated as you move through
the result set. For example, you may place one button on your form that
moves forward through the result set, and one that moves backwards.

Using MobileBuilder list boxes

In order to display the contents of a list box, you must carry out an action on
the object to which it is bound. For example, if you open a table that has a
column bound to a list box, the contents of the column do not automatically
appear. Once you move the current position of the cursor to the next row (or
any other location) the data appear in the list box.

MobileBuilder list boxes are intended for the display of lists with unique
items. If you have duplicate items in a list box, you may find that scrolling
behavior is inconsistent.

Configuring data entry controls

When you retrieve information from a data entry control such as a text field,
you do so into a C variable in your MobileBuilder program. You can do this
in either of the following ways:

♦ Get the information as a string, and cast it to the appropriate type
explicitly.

Using the MobileBuilder controls

58

♦ Set the Type property of the control to the correct data type, and get the
information directly into a variable of that type.

v To set the data type of a MobileBuilder control:

1 Right-click the control and select Properties.

2 In the Project Manager Pane, click the Type entry, and select the
appropriate type from the dropdown list.

Getting data from a control

MobileBuilder provides functions for obtaining data from a control. Here is
sample code that uses the FldGetIntegerValue function into a variable
named prod_id, and uses this value to set the current record value.

The constant ULProduct_prod_id is defined in the file PRMaps.h, which is
generated during the build process and is held in the MobileBuilder project
directory. It identifies the column number for the prod_id column of the
ULProduct table.

long prod_id ;
WORD error_value;
FIELDTYPE * pField;
WindowHandle hWin;

// get form’s window handle
hWin = WinGetActiveWindow();
if((pField = FrmGetFieldPtr(hWin, 1)) != NULL){
 prod_id = FldGetIntegerValue(
 pField, &error_value);
 if(!ULBSetSLong(ULDatabase1ULProduct,
 ULProduct_prod_id, prod_id)) {
 DisplayNotice ("Error on ULBSetString",
 "OK", "");
 }
}

This step prepares a set of values ready for inserting or updating, but it does
not actually update or insert any data into the table or result set.

Updating tables and result sets

Once you have set the values for each of the columns in your result set or
table, as described above, you can call a function to insert those rows at the
current position, or update the current row.

Chapter 4 Developing UltraLite MobileBuilder Applications

59

If you are working with a result set, it must be a single-table result set if you
wish to insert or update data.

Here is some sample code that inserts a new row into the
ULDatabase1ULProduct table, and commits the change:

if(!ULBInsert(ULDatabase1ULProduct, 0)){
 // Error
 DisplayNotice ("Error on Insert", "OK", "");
 }
 if(!ULConnectionCommit(ULDatabase1connection)){
 // Error
 DisplayNotice ("Error on Commit", "OK", "");
 }

The ULBInsert function takes two arguments: the database object to be
updated, and the form that holds the control from which to get values. As
you have already set values into the current position using the ULBSet
function, you can use a value of 0 to indicate that the data does not come
from a form.

$ For more information, see "ULBInsert function" on page 75 and
"ULBUpdate function" on page 82.

Writing UltraLite code for MobileBuilder applications

60

Writing UltraLite code for MobileBuilder
applications

This section covers a variety of situations and tasks that you will come across
during the development of UltraLite applications in MobileBuilder.

Using the MobileBuilder Code Assistant

The MobileBuilder Code Assistant provides an easy way to write code that
handles some common events. In particular, you can use the MobileBuilder
Code Assistant to add code for the following tasks:

♦ Synchronizing data.

♦ Scrolling through result sets and tables.

♦ Inserting, updating, and deleting rows from tables and result sets.

♦ Carrying out commits and rollbacks.

♦ Opening and closing UltraLite database, connection, and tables or result
sets.

The Code Assistant provides an easy way of adding simple functionality, but
it does not provide ways of carrying out other tasks.

Referencing database objects in the UltraLite API for MobileBuilder

To work on data in an UltraLite database from a MobileBuilder application,
you must first open the database, open the connection, and then open the
table or result set that you wish to work with.

If you choose the option to autoconnect when configuring the UltraLite
component DataSource properties, the database and connection objects are
automatically opened for you. You still have to open the table or result set
explicitly. You can do this in a straightforward way using the MobileBuilder
Code Assistant.

Working with databases and connections

The ULDatabase functions make the data in the database object available to
your application. You need to call ULDatabaseOpen before you can
connect to the UltraLite database or carry out any operations on the data.

Chapter 4 Developing UltraLite MobileBuilder Applications

61

The ULDatabaseOpen function can be called with parameters that define
the storage and access parameters for the database (file name, cache size,
reserved size).

Once the database is opened, you can open a connection on the database.
You do that using the ULConnectionOpen function, supplying a reference
to the database object, and a set of connection parameters to establish the
connection.

Once the connection is established, you can open the result set or table, and
use these objects to manipulate the data.

If you are developing an application for the Palm Computing Platform, there
are some extra considerations for how to use these objects.

$ For more information, see "Developing Palm applications in
MobileBuilder" on page 63.

Working with tables and result sets

Each table or result set is represented by a variable in your application which
you supply as an argument when you open the object. The API for accessing
and modifying the rows in the table or query is based on a SQL cursor: a
pointer to a position in the table or query.

The cursor can have the following positions:

♦ Before the first row This position has value 0. This is the position of
the cursor when the table or query opens.

♦ On a row If a table or query has n rows, positions 1 to n for the cursor
correspond to the rows.

♦ After the last row This position has value (n+ 1)

You can move through the rows of the object using methods of the object,
including ULBNext and ULBPrevious functions.

If you are developing an application for the Palm Computing Platform, there
are some extra considerations for how to use these objects.

$ For more information, see "Developing Palm applications in
MobileBuilder" on page 63.

Palm Computing
Platform
developers

Palm Computing
Platform
developers

Writing UltraLite code for MobileBuilder applications

62

Writing platform-specific code in MobileBuilder

MobileBuilder provides a way to write applications for multiple platforms.
However, you may need to make some features of your application specific
to one platform or another. For example, there are differences in architecture
between the Palm Computing Platform and Windows CE that require
different code to handle, as described in "Developing Palm applications in
MobileBuilder" on page 63.

MobileBuilder provides a set of macros to identify platform-specific code.
These macros are as follows:

♦ PRWINDOWS Code for Windows operating systems and
Windows CE.

♦ PRPALM Code for the Palm Computing Platform.

The following routine shows how to use platform-specific code to handle the
startup process in a cross-platform application.

static BOOLEAN OnAppEnter(EVENTTYPE *pEvent,
 WORD *pError)
{
 // perform default processing
 DefaultHandler(pEvent, pError);
#if defined(PRPALM)
 switch (ULDatabase1LaunchCode()) {
 case LAUNCH_SUCCESS_FIRST:
 ULBOpen(ULDatabase1ULProduct,
 ULDatabase1connection);
 break;
 case LAUNCH_SUCCESS:
 ULBReopen(ULDatabase1ULProduct,
 ULDatabase1connection);
 break;
 default:
 //
 break;
 }
#elif defined(PRWINDOWS)
 ULBOpen(ULDatabase1ULProduct,
 ULDatabase1connection);
#endif

 // return TRUE to continue event routing {{MB1}}
 return(TRUE);
}

Example

Chapter 4 Developing UltraLite MobileBuilder Applications

63

Developing Palm applications in MobileBuilder
To develop MobileBuilder applications for the Palm Computing Platform,
you must have the GCC PRC-Tools as compiler.

$ For information on writing Palm-specific code in your application, see
"Writing platform-specific code in MobileBuilder" on page 62.

Applications for the Palm Computing Platform must have their code
compiled in segments. You must manually enter code section names in the
MobileBuilder Palm/Settings dialog. At minimum you must enter the names
ULRT1 ... ULRT12, the section names for the UltraLite runtime.

$ For more information about HotSync, see "Adding TCP/IP, HTTP, or
HTTPS synchronization to Palm applications" on page 283 of the book
UltraLite User’s Guide.

MobileBuilder expects the Palm SDK to be installed at c:\PalmDev. If you
have the Palm SDK installed elsewhere, you must add the include paths in
Project/Settings/Folders/Include Folders. For example, if you have installed
the Palm SDK in d:\PalmDev:

♦ d:\PalmDev\sdk-3.1\include

♦ d:\PalmDev\sdk-3.1\include\core

♦ d:\PalmDev\sdk-3.1\include\core\ui

♦ d:\PalmDev\sdk-3.1\include\core\system

♦ d:\PalmDev\sdk-3.1\include\core\hardware

When compiling source files that hold more than 32K of code partitioned
into multiple segments, the compiler may generate jsr instructions
unacceptable to the assembler. This happens when a function defined at the
bottom of the source file makes an inter-segment call to a function defined at
the top of the source file, with at least 32K of code in between. Normally, the
offset of the jsr instruction is replaced during the relocation stage of the
linker, but in this case, the error prevents the compilation from going any
further.

The generated file for UltraLite is usually bigger than 32K, and almost every
function is in a separate segment.

You can avoid this issue using the -Wa,-J switch when compiling. This
instructs the assembler to ignore any signed overflow errors.

Compiler issues

Developing Palm applications in MobileBuilder

64

65

C H A P T E R 5

UltraLite API Reference

This chapter describes the UltraLite API for MobileBuilder.

Topic Page

Introduction to the UltraLite API 66

Language elements 68

ULBoundObject functions 69

ULConnection functions 84

ULDatabase functions 92

About this chapter

Contents

Introduction to the UltraLite API

66

Introduction to the UltraLite API
The UltraLite API for MobileBuilder is a set of C functions, including the
following:

♦ Database functions These functions are available for all UltraLite
applications. These functions are called to initiate and terminate work
with a database. Database functions are based on the ULData class of
the C++ API, and their names start with the string ULDatabase.

♦ Connection functions These functions handle connecting to a
database and disconnecting, as well as setting some properties of the
connection. Synchronization is also initiated using a connection
function. Connection functions are based on the ULConnection class of
the C++ API, and their names start with the string ULConnection.

♦ ULBoundObject functions These are generated for each UltraLite
application. The names of the functions are based on the names of the
queries and tables included in your UltraLite database. Each query or
table has a set of functions associated with it, which allows you to move
through the rows of the table or query result set, make changes to the
data, and so on.

The functions described here are described in the file ulbindc.h, in the h
subdirectory of your SQL Anywhere directory.

C++ API class hierarchy

The UltraLite API for MobileBuilder is a C wrapper around an underlying
C++ interface. Although you can use the UltraLite API without
understanding the underlying interface, doing so may help to orient you
while working with MobileBuilder. You do not need to know C++ to
understand the structure of the C++ API.

The C++ interface contains classes, and methods on those classes. The
names of the C functions in the UltraLite API for MobileBuilder are based
on the underlying class and method name. For example, the C++ API has a
class named ULConnection, with a method named Open. The equivalent
call in the UltraLite API for MobileBuilder is a function named
ULConnectionOpen.

The classes in the underlying C++ API appear in the following diagram:

Chapter 5 UltraLite API Reference

67

ULTable

ULCursor

ULResultSet

ULDataULConnection

table-name query-name

Defined in
ulapi.h

Generated
classes

statement-
name

ULStatement

The classes are described in the following header files:

♦ generated-name.hpp The interface generated for a particular set of
statements or tables is defined in the generated .hpp file.

♦ ulapi.h The base classes are defined in ulapi.h, in the h subdirectory of
your SQL Anywhere directory.

♦ ulglobal.h You may want to look at ulglobal.h, in the h subdirectory of
your SQL Anywhere installation directory, for some of the data types
and other definitions used in ulapi.h.

Language elements

68

Language elements
The UltraLite API functions and variables are described in terms of a set of
UltraLite data types. These data types are described in this section.

♦ an_SQL_code A data type for holding SQL error codes.

♦ ul_bool A data type for holding boolean values.

♦ ul_char A data type representing a character. If the operating system
uses Unicode, ul_char uses two bytes per character. For single-byte
character sets, ul_char uses a single byte per character.

♦ ul_column_num A data type for holding a number indicating a
column of a table or query. The first column in the table or query is
number one.

♦ ul_fetch_offset A data type for holding a relative number in a
ULCursor object.

♦ ul_length A data type for holding the length of a data type.

♦ DECL_DATETIME A type for holding date and time information in a
SQLDATETIME structure, which is defined as follows:

typedef struct sqldatetime {
unsigned short year; /* e.g. 1999 */
unsigned char month; /* 0-11 */
unsigned char day_of_week; /* 0-6 0=Sunday */
unsigned short day_of_year; /* 0-365 */
unsigned char day; /* 1-31 */
unsigned char hour; /* 0-23 */
unsigned char minute; /* 0-59 */
unsigned char second; /* 0-59 */
unsigned long microsecond; /* 0-999999 */

} SQLDATETIME;

DECL_DATETIME is also used in embedded SQL programming. Other
embedded SQL data types with named DECL_type are not needed in
C++ API programming.

♦ UL_NULL A constant representing a SQL NULL.

UltraLite data types

Chapter 5 UltraLite API Reference

69

ULBoundObject functions
The ULBoundObject functions manipulate data in the UltraLite database.

ULBAfterLast function

ul_bool ULBAfterLast(void *tablePtr, WORD formToDraw)

Changes a cursor position to after the last row in a table or result set.

tablePtr The table or result set on which the cursor is defined.

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if successful.

false (0) if unsuccessful.

"ULBBeforeFirst function" on page 69
"ULBLast function" on page 75

ULBBeforeFirst function

ul_bool ULBBeforeFirst(void *tablePtr, WORD formToDraw)

Changes a cursor position to before the first row in a table or result set.

tablePtr The table or result set on which the cursor is defined.

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if successful.

false (0) if unsuccessful.

"ULBAfterLast function" on page 69
"ULBFirst function" on page 73

ULBClose function

ul_bool ULBClose(void *tablePtr)

Syntax

Description

Return

See also

Syntax

Description

Return

See also

Syntax

ULBoundObject functions

70

Frees resources associated with the table or result set in your application.
This function must be called after all processing involving the table or result
set is complete, and before the ULConnection and ULData objects are
closed.

Any uncommitted operations are rolled back when the ULBClose function is
called.

tablePtr The table or result set on which the cursor is defined.

true (1) if successful.

false (0) if unsuccessful.

ULBDelete function

ul_bool ULBDelete(void *tablePtr)

Deletes the current row from a table or result set.

tablePtr The table or result set on which the cursor is defined.

true (1) if successful.

false (0) if unsuccessful. For example, if you attempt to use the function on a
SQL statement that represents more than one table.

"ULBInsert function" on page 75
"ULBUpdate function" on page 82

ULBDeleteAllRows function

ul_ret_void DeleteAllRows(void *tablePtr)

The function deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before
downloading a new set of data into the table. Rows can be deleted from the
UltraLite database without being deleted from the consolidated database
using the ULConnection::StartSynchronizationDelete method.

tablePtr The table or result set on which the cursor is defined.

ULBFind function

Equivalent to the ULBFindNext function.

Description

Return

Syntax

Description

Return

See also

Prototype

Description

Chapter 5 UltraLite API Reference

71

$ See "ULBFindNext function" on page 72.

ULBFindFirst function

ul_bool ULBFindFirst(void * tablePtr, ul_column_num ncols)

Move forwards through the table from the beginning, looking for a row that
exactly matches a value or set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that exactly matches the index
value. On failure the cursor position is ULBAfterLast.

tablePtr The table or result set on which the cursor is defined.

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"ULBLookupBackward function" on page 76
"ULBLookupForward function" on page 76

ULBFindLast function

bool ULBFindLast(void * tablePtr, ul_column_num ncols)

Move backwards through the table from the end, looking for a row that
matches a value or set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is ULBBeforeFirst.

tablePtr The table or result set on which the cursor is defined.

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

Prototype

Description

Parameters

Returns

See also

Prototype

Description

Parameters

Returns

ULBoundObject functions

72

"ULBLookupBackward function" on page 76
"ULBLookupForward function" on page 76

ULBFindNext function

bool ULBFindNext(void * tablePtr, ul_column_num ncols)

Move forwards through the table from the current position, looking for a row
that exactly matches a value or set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure, the cursor position is ULBAfterLast.

tablePtr The table or result set on which the cursor is defined.

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"ULBLookupBackward function" on page 76
"ULBLookupForward function" on page 76

ULBFindPrevious function

bool ULBFindPrevious(void * tablePtr, ul_column_num ncols)

Move backwards through the table from the current position, looking for a
row that exactly matches a value or set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row found that exactly matches the
index value. On failure the cursor position is ULBBeforeFirst.

tablePtr The table or result set on which the cursor is defined.

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should Set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

See also

Prototype

Description

Parameters

Returns

See also

Prototype

Description

Parameters

Returns

Chapter 5 UltraLite API Reference

73

false (0) if unsuccessful.

"ULBLookupBackward function" on page 76
"ULBLookupForward function" on page 76

ULBFirst function

ul_bool ULBFirst(void *tablePtr, WORD formToDraw)

Changes a cursor position to be on the first row in a table or result set.

tablePtr The table or result set on which the cursor is defined.

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if successful.

false (0) if unsuccessful. For example, the function fails if there are no rows.

"ULBBeforeFirst function" on page 69
"ULBLast function" on page 75

ULBGet functions

ul_bool function-name(void * tablePtr, ul_column_num column-index,
value-declaration, ul_bool isNULL)

Function-name value-declaration

ULBGetString ul_char * ptr, ul_length length

ULBGetBinary p_ul_binary name , ul_length length

ULBGetDateTime DECL_DATETIME &date-value

ULBGetSBig DECL_BIGINT &bigint-value

ULBGetUBig DECL_UNSIGNED_BIGINT &bigint-value

ULBGetSLong long &integer-value

ULBGetULong unsigned long &integer-value

ULBGetBit unsigned char &char-value

ULBGetDouble double & double-value

ULBGetReal float & float-value

ULBGetSShort short &short-value

ULBGetUShort unsigned short &short-value

See also

Syntax

Description

Return

See also

Syntax

ULBoundObject functions

74

Gets a value from the specified column.

tablePtr The table or result set on which the cursor is defined.

column-index A 2-byte integer. The first column is column 1. The file
PRMaps.h, which is generated during the build process and is held in the
MobileBuilder project directory, defines a set of constants that you can use to
make your code more readable. For example:

// column identifiers
#define ULProduct_prod_id 1
#define ULProduct_price 2
#define ULProduct_prod_name 3

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to a variable of the proper type is needed.

isNULL If a value in a column is NULL, isNull is set to true. In this case,
the value argument is not meaningful.

true (1) if successful.

false (0) if unsuccessful.

"ULBSet functions" on page 79

ULBGetEmptyFieldIsNull function

ul_bool ULBGetEmptyFieldIsNull(void *tablePtr)

This function returns the value of the EmptyFieldIsNull property of the
table or result set. If the value is true, then empty text controls are interpreted
as NULL when mapping text controls to or from database columns.
Otherwise, they are interpreted as empty strings.

tablePtr The table or result set on which the cursor is defined.

true (1) if successful.

false (0) if unsuccessful.

"ULBSetEmptyFieldIsNull function" on page 81

Description

Return

See also

Syntax

Description

Return

See also

Chapter 5 UltraLite API Reference

75

ULBGetOffset function

ul_fetch_offset ULBGetOffset(void *tablePtr)

Returns the current offset in the table or result set.

tablePtr The table or result set on which the cursor is defined.

true (1) if successful.

false (0) if unsuccessful.

ULBGetRowCount function

ul_ul_long ULBGetRowCount(void * tablePtr)

The function returns the number of rows in the table.

tablePtr The table or result set on which the cursor is defined.

The number of rows in the table.

ULBInsert function

ul_bool ULBInsert(void *tablePtr , WORD formToGetFrom)

Inserts a row in a table or single-table result set.

tablePtr The table or result set on which the cursor is defined.

formToGetFrom The form that holds the data you are inserting. If your
new values have been set using ULBSet functions, supply a value of 0.

true (1) if successful.

false (0) if unsuccessful.

"ULBDelete function" on page 70
"ULBUpdate function" on page 82

ULBLast function

ul_bool ULBLast(void *tablePtr, WORD formToDraw)

Changes a cursor position to be on the last row in a table or result set.

tablePtr The table or result set on which the cursor is defined.

Syntax

Description

Return

Prototype

Description

Returns

Syntax

Description

Return

See also

Syntax

Description

ULBoundObject functions

76

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if successful.

false (0) if unsuccessful.

"ULBAfterLast function" on page 69
"ULBFirst function" on page 73

ULBLookupBackward function

ul_bool ULBLookupBackward(void * tablePtr, ul_column_num ncols)

Move backward through a table or result set, looking for the first row that
matches a value or set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches the index value. On
failure, the cursor position is before the first row.

tablePtr The table or result set on which the cursor is defined.

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.

"ULBLookupForward function" on page 76

ULBLookupForward function

ul_bool ULBLookupForward(void * tablePtr, ul_column_num ncols)

Move forward through a table or result set, looking for the first row that
matches a value or set of values in the current index.

To specify the value to search for, set the column value for each column in
the index. The cursor is left on the first row that matches the index value. On
failure, the cursor position is after the last row.

tablePtr The table or result set on which the cursor is defined.

Return

See also

Syntax

Description

Return

See also

Syntax

Description

Chapter 5 UltraLite API Reference

77

ncols For composite indexes, the number of columns to use in the lookup.
For example, if there is a three column index, and you want to lookup a value
that matches based on the first column only, you should set the value for the
first column, and then supply an ncols value of 1.

true (1) if successful.

false (0) if unsuccessful.
"ULBLookupBackward function" on page 76

ULBNext function

ul_bool ULBNext(void *tablePtr, WORD formToDraw)

Moves a cursor one position forward in a table or result set.

tablePtr The table or result set on which the cursor is defined.

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if successful.

false (0) if unsuccessful.

"ULBPrevious function" on page 78
"ULBRelative function" on page 78

ULBOpen function

ul_bool ULBOpen(void * tablePtr, void * connPtr)

Opens a cursor on the specified connection. If the object is a result set with
parameters, you must set the parameters before opening the result set using
the ULBSetParameter functions.

tablePtr The table or result set on which the cursor is defined.

connPtr The connection.

true (1) if successful.

false (0) if unsuccessful.

"ULBClose function" on page 69

Return

See also

Syntax

Description

Return

See also

Syntax

Description

Return

See also

ULBoundObject functions

78

ULBPrevious function

ul_bool ULBPrevious(void *tablePtr, WORD formToDraw)

Moves a cursor one position backward in a table or result set.

tablePtr The table or result set on which the cursor is defined.

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if successful.

false (0) if unsuccessful.

"ULBNext function" on page 77
"ULBRelative function" on page 78

ULBRefresh function

ul_bool ULBRefresh(void *tablePtr, WORD formToDraw)

This function forces a form to be redrawn, and changes in a bound object to
be reflected in the display.

tablePtr The table or result set.

formToDraw The form to be refreshed.

true (1) if successful.

false (0) if unsuccessful.

ULBRelative function

ul_bool ULBRelative(void *tablePtr,
ul_fetch_offset offset , WORD formToDraw)

Moves the cursor position relative to the current position. If the row does not
exist, the method returns false, and the cursor is left at AfterLast() if offset is
positive, and BeforeFirst() if offset is negative.

tablePtr The table or result set on which the cursor is defined.

offset The number of rows to move. Negative values correspond to
moving backwards.

Syntax

Description

Return

See also

Syntax

Description

Return

Syntax

Description

Chapter 5 UltraLite API Reference

79

formToDraw Redraw the named form, so that any controls on that form
reflect the cursor movement.

true (1) if the row exists.

false (0) if the row does not exist.

"ULBNext function" on page 77
"ULBPrevious function" on page 78

ULBReopen function

ul_bool ULBReopen(void *tablePtr, void * connPtr)

This method is available for the Palm Computing Platform only. The
database must be reopened for this call to succeed.

When developing Palm applications, you should never close the connection
object. Instead, you should call Reopen when the user switches to the
UltraLite application. The method prepares the data in use by the database
object for use by the application.

tablePtr The table or result set on which the cursor is defined.

connPtr The connection on which the cursor is defined.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionOpen function" on page 89

ULBSet functions

ul_bool function-name(void * tablePtr, ul_column_num column-index,
value-declaration)

function-name Value-declaration

ULBSetString Ul_char * ptr, ul_length length

ULBSetBinary P_ul_binary name , ul_length length

ULBSetDateTime DECL_DATETIME date-value

ULBSetSBig DECL_BIGINT bigint-value

ULBSetUBig DECL_UNSIGNED_BIGINT bigint-value

ULBSetSLong Long &integer-value

ULBSetULong Unsigned long &integer-value

Return

See also

Syntax

Description

Return

See also

Syntax

ULBoundObject functions

80

function-name Value-declaration

ULBSetBit Unsigned char &char-value

ULBSetDouble Double double-value

ULBSetReal Float float-value

ULBSetSShort Short short-value

ULBSetUShort Unsigned short short-value

Gets a value from the specified column.

tablePtr The table or result set on which the cursor is defined.

column-index A 2-byte integer. The first column is column 1. The file
PRMaps.h, which is generated during the build process and is held in the
MobileBuilder project directory, defines a set of constants that you can use to
make your code more readable. For example:

// column identifiers
#define ULProduct_prod_id 1
#define ULProduct_price 2
#define ULProduct_prod_name 3

value declaration The arguments required to specify the value depend on
the data type. Character and binary data must be mapped into buffers, with
the buffer name and length specified in the call. For other data types, a
pointer to a variable of the proper type is needed.

The BIGINT data type is not supported on DOS

true (1) if successful.

false (0) if unsuccessful.

"ULBGet functions" on page 73

ULBSetColumnNull function

int ULBSetColumNull(void *tablePtr, ul_column_num column-index)

Sets a column to the SQL NULL. The data is not actually changed until you
execute an Insert or Update, and that change is not permanent until it is
committed.

tablePtr The table or result set on which the cursor is defined.

column-index The number of the column. The first column in the table
has a value of one.

Description

Return

See also

Syntax

Description

Chapter 5 UltraLite API Reference

81

true (1) if successful.

false (0) if unsuccessful.

ULBSetEmptyFieldIsNull function

void ULBGetEmptyFieldIsNull(void *tablePtr , ul_bool value)

This function sets the value of the EmptyFieldIsNull property of the table or
result set. If the value is true, then empty text controls are interpreted as
NULL when mapping text controls to or from database columns. Otherwise,
they are interpreted as empty strings.

tablePtr The table or result set on which the cursor is defined.

value True or false.

true (1) if successful.

false (0) if unsuccessful.

"ULBGetEmptyFieldIsNull function" on page 74

ULBSetParameter functions

ul_bool function-name(void * tablePtr, int argnum,
type * value-reference)

function-name Type

ULBSetParameterSLong Long

ULBSetParameterBinary ul_binary

ULBSetParameterBit Unsigned char

ULBSetParameterString ul_char

ULBSetParameterDouble Double

ULBSetParameterReal Float

ULBSetParameterSShort Short

Return

Syntax

Description

Return

See also

Syntax

ULBoundObject functions

82

function-name Type

ULBSetParameterULong Unsigned long

ULBSetParameterUShort Unsigned short

ULBSetParameterDateTime DECL_DATETIME

ULBSetParameterSBig DECL_BIGINT

ULBSetParameterUBig DECL_UNSIGNED_BIGINT

A separate function is provided for each data type, with names as listed in the
table.

Some result sets are defined by queries that have parameters. You must set
the value of the parameter before opening the generated result set object.

tablePtr The table or result set for which the parameter is to be set.

argnum An identifier for the argument to be set. The first argument is 1,
the second 2, and so on.

value-reference A pointer to the parameter value.

true (1) if successful.

false (0) if unsuccessful. If you supply a parameter of the wrong data type,
the method fails.

The following query has a parameter, indicated by a question mark:

SELECT * FROM ULProduct WHERE price > ?

If this query is opened as a bound object named query1, you can set the
value of this parameter before opening it as follows:

min_price = 23;
ULBSetParameterSLong(&query1, 1, &min_price);

ULBUpdate function

ul_bool ULBUpdate(void *tablePtr, WORD formToGetFrom)

Updates a row in a table or single-table result set.

tablePtr The table or result set on which the cursor is defined.

formToGetFrom The form that holds the data you are inserting. If your
new values have been set using ULBSet functions, supply a value of 0.

true (1) if successful.

Description

Return

Example

Syntax

Description

Return

Chapter 5 UltraLite API Reference

83

false (0) if unsuccessful.

"ULBDelete function" on page 70
"ULBInsert function" on page 75

See also

ULConnection functions

84

ULConnection functions
The ULConnection functions handle tasks associated with an individual
connection to the database. This includes transaction and synchronization
control.

ULConnectionClose function

ul_bool ULConnectionClose (void * connPtr)

Disconnects your application from the database, and frees resources
associated with the connection. Once you have closed the connection, your
application can no longer manipulate data.

Closing a connection rolls back any outstanding changes.

If you select the AutoConnect option when setting up your UltraLite
database DataSource property, you do not need to explicitly close your
connection.

true (1) if successful.

false (0) if unsuccessful.

The following example closes a ULConnection object:

ULConnectionClose(&conn);

"ULConnectionOpen function" on page 89

ULConnectionCommit function

ul_bool ULConnectionCommit(void * connPtr)

Commits outstanding changes to the database.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionRollback function" on page 90

Function

Syntax

Description

Return

Example

See also

Syntax

Description

Return

See also

Chapter 5 UltraLite API Reference

85

ULConnectionCountUploadRows function

ul_u_long ULConnectionCountUploadRows(
void * connPtr ,
ul_publication_mask mask,
ul_u_long threshold)

Returns the number of rows that need to be uploaded when the next
synchronization takes place.

You can use this function to determine if a synchronization is needed.

publication-mask A set of publications to check. A value of 0
corresponds to the entire database. The set is supplied as a mask. For
example, the following mask corresponds to publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386 of the book UltraLite User’s Guide.

threshold A value that determines the maximum number of rows to count,
and so limits the amount of time taken by the call. A value of 0 corresponds
to no limit. A value of 1 determines if any rows need to be synchronized.

The number of rows to be uploaded.

ULConnectionGetLastIdentity function

ul_u_big ULConnectionGetLastIdentity(void * connPtr)

Returns the most recent identity value used. This function is equivalent to the
following SQL statement:

SELECT @@identity

The function is particularly useful in the context of global autoincrement
columns.

The last identity value.

ULConnectionGetSQLCode function

an_SQL_code ULConnectionGetSQLCode(void * connPtr)

Obtains the SQLCODE value for the most recent statement on the named
connection

Prototype

Description

Parameters

Returns

Prototype

Description

Returns

Syntax

Description

ULConnection functions

86

A SQLCODE value. For more information, see "Error messages indexed by
Adaptive Server Anywhere SQLCODE" on page 2 of the book ASA Errors
Manual.

The following code illustrates how to use ULConnectionGetSQLCode.

ULConnectionInitSynchInfo(
ULDatabase1Connection, &synch_info);

ULConnectionSynchronize(
ULDatabase1Connection, &synch_info);

"ULConnectionLastCodeOK function" on page 87
"ULConnectionLastFetchOK function" on page 88

ULConnectionGlobalAutoincUsage function

ul_u_short ULConnectionGlobalAutoIncUsage(void * connPtr)

Returns the percentage of available global autoincrement values that have
been used.

If the percentage approaches 100, your application should set a new value for
the global database ID, using the SetDatabaseID.

The percent usage of the available global autoincrement values.

ULConnectionGrantConnectTo function

ul_bool ULConnectionGrantConnectTo(
void * connPtr, ul_char * userid, ul_char * password)

userid Character array holding the user ID. The maximum length is 16
characters.

password Character array holding the password for userid. The maximum
length is 16 characters.

Grant access to an UltraLite database for a user ID with a specified
password. If an existing user ID is specified, this function updates the
password for the user.

ULConnectionInitSynchInfo function

ul_bool ULConnectionInitSynchInfo(void * connPtr, ul_synch_info *
synch_info)

Return

Example

See also

Prototype

Description

Returns

Prototype

Parameters

Description

Syntax

Chapter 5 UltraLite API Reference

87

Initializes the synch_info structure used for synchronization.

true (1) if successful.

false (0) if unsuccessful.

The following code illustrates where ULConnectionInitSynchInfo function
is used in the sequence of calls that synchronize data in a UltraLite
application.

ULConnectionInitSynchInfo(
ULDatabase1Connection, &synch_info);

ULConnectionSynchronize(
ULDatabase1Connection, &synch_info);

"ULConnectionSynchronize function" on page 91

ULConnectionIsOpen function

ul_bool ULConnectionIsOpen (void * connPtr)

Checks whether the database connection is currently open.

true (1) if the connection is open.

false (0) if the connection is not open.

"ULConnectionOpen function" on page 89

ULConnectionLastCodeOK function

ul_bool ULConnectionLastCodeOK (void * connPtr)

Checks whether the most recent SQLCODE returned was zero (true) or non-
zero (false).

This method provides a convenient way of checking for the success
(SQLCODE zero) or potential failure (non-zero) of operations. You can use
ULConnectionGetSQLCode to obtain the numerical value.

true (1) if the previous SQLCode was zero.

false (0) if the previous SQLCode was non-zero.

"ULConnectionGetSQLCode function" on page 85

Description

Return

Example

See also

Syntax

Description

Return

See also

Syntax

Description

Return

See also

ULConnection functions

88

ULConnectionGetLastDownloadTime function

bool ULConnectionGetLastDownloadTime(
void * connPtr
ul_publication_mask mask,
DECL_DATETIME *value)

Provides error checking capabilities by checking the SQLCODE value for
the success or failure of a database operation. The SQLCODE is the standard
Adaptive Server Anywhere code.

publication-mask A set of publications for which the last download time
is retrieved. A value of 0 corresponds to the entire database. The set is
supplied as a mask. For example, the following mask corresponds to
publications PUB1 and PUB2.:

UL_PUB_PUB1 | UL_PUB_PUB2

$ For more information on publication masks, see "publication
synchronization parameter" on page 386 of the book UltraLite User’s Guide.

value A pointer to the DECL_DATETIME structure to be populated.

A value of January 1, 1990 indicates that the publication has yet to be
synchronized.

♦ true Indicates that value is successfully populated by the last
download time of the publication specified by publication-mask.

♦ false Indicates that publication-mask specifies more than one
publication or that the publication is undefined. If the return value is
false, the contents of value are not meaningful.

ULConnectionLastFetchOK function

ul_bool ULConnectionLastFetchOK(void * connPtr)

Provides a convenient way of checking that the most recent fetch of a row
succeeded (true) or failed (false).

true (1) if successful.

false (0) if unsuccessful.

"ULBAfterLast function" on page 69
"ULBFirst function" on page 73
"ULConnectionGetSQLCode function" on page 85

Prototype

Description

Parameters

Returns

Syntax

Description

Return

See also

Chapter 5 UltraLite API Reference

89

ULConnectionOpen function

ul_bool ULConnectionOpen (void * connPtr, void * dbPtr,
ul_char * userid, ul_char * password, ul_char * name)

Open a connection to a database. The database referenced by dbPtr must be
open for this call to succeed.

connPtr An identifier for the current connection. The default name for this
variable if you use the UltraLite database control to open your connection is
ULDatabase1connection, where ULDatabase1 is the default name of the
UltraLite database component.

dbPtr A pointer to the database on which the connection is made. This
argument is set when calling ULDatabaseOpen.

userid The user ID argument is a placeholder reserved for possible future
use. It is ignored.

password The password argument is a placeholder reserved for possible
future use. It is ignored.

name An optional name for the connection. This is needed only if you
have multiple connections from a single application to the same database.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionClose function" on page 84

ULConnectionReopen function

ul_bool ULConnectionReopen (void * connPtr, void * dbPtr,
ul_char *name)

This method is available for the Palm Computing Platform only. The
database must be reopened for this call to succeed.

When developing Palm applications, you should never close the connection
object. Instead, you should call ULConnectionReopen when the user
switches to the UltraLite application. The method prepares the data in use by
the database for use by the application.

connPtr A pointer to the connection.

db A pointer to the ULData object on which the connection is made. This
argument is usually the address of the ULData object opened prior to
reopening the connection.

Syntax

Description

Return

See also

Syntax

Description

ULConnection functions

90

name An optional name for the connection. This is needed only if you
have multiple connections from a single application to the same database.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionOpen function" on page 89

ULConnectionRevokeConnectFrom function

bool ULConnectionRevokeConnectFrom(ul_char * userid)

Revoke access from an UltraLite database for a user ID.

userid Character array holding the user ID to be excluded from database
access. The maximum length is 16 characters.

ULConnectionRollback function

ul_bool ULConnectionRollback(void * connPtr)

Rolls back outstanding changes to the database.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionCommit function" on page 84

ULConnectionSetDatabaseID function

bool ULConnectionSetDatabaseID(void * connPtr, ul_u_long value)

Sets the database ID value to be used for global autoincrement columns

value The value to use for generating global autoincrement values.

true (1) if successful.

false (0) if unsuccessful.

ULConnectionStartSynchronizationDelete function

ul_bool ULConnectionStartSynchronizationDelete(void * connPtr)

Return

See also

Prototype

Description

Parameters

Syntax

Description

Return

See also

Prototype

Description

Parameters

Returns

Prototype

Chapter 5 UltraLite API Reference

91

Once this function is called, all delete operations are again synchronized.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionStopSynchronizationDelete function" on page 91
"ULBDeleteAllRows function" on page 70

ULConnectionStopSynchronizationDelete function

ul_bool ULConnectionStopSynchronizationDelete(void * connPtr)

Prevents delete operations from being synchronized. This is useful for
deleting old information from an UltraLite database to save space, while not
deleting this information on the consolidated database.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionStartSynchronizationDelete function" on page 90
"ULBDeleteAllRows function" on page 70

ULConnectionSynchronize function

ul_bool ULConnectionSynchronize (void * connPtr,
ul_synch_info * info)

Synchronizes an UltraLite connection.

connPtr The identifier used when the connection was opened.

synch_info The structure holding the synchronization information. This
structure is set by calling ULConnectionInitSynchInfo.

true (1) if successful.

false (0) if unsuccessful.

"ULConnectionInitSynchInfo function" on page 86

Description

Returns

See also

Prototype

Description

Returns

See also

Syntax

Description

Return

See also

ULDatabase functions

92

ULDatabase functions
Represents an UltraLite database.

The ULDatabase functions make an UltraLite database available to your
application. They provide ways to open and close a database, and to check
whether a database is open.

You must open a database before connecting to it or carrying out any other
operation, and you must close the database after you have finished all
operations on the database, and before your application terminates.

$ For its position in the API hierarchy, see "Introduction to the UltraLite
API" on page 66.

ULDatabaseClose function

bool ULDatabaseClose (void * dbPtr)

Frees resources associated with a database, before you terminate your
application. Once you have closed the database, you cannot execute any
other operations on that database without reopening.

You should not close a database object in a Palm Computing Platform
application. Instead, use the Reopen method when the application is
reactivated.

true (1) if successful.

false (0) if unsuccessful.

"ULDatabaseOpen function" on page 93

ULDatabaseIsOpen function

bool ULDatabaseIsOpen (void * dbPtr)

Checks whether the database is currently open.

true (1) if the ULData object is open.

false (0) if the ULData object is not open.

"ULDatabaseOpen function" on page 93

Function

Description

Syntax

Description

Return

See also

Syntax

Description

Return

See also

Chapter 5 UltraLite API Reference

93

ULDatabaseOpen function

ul_bool ULDatabaseOpen (void * dbPtr)

Prepares your application to work with a database. You must open the
database before carrying out any other operations on the database.

true (1) if successful.

false (0) if unsuccessful.

"ULDatabaseClose function" on page 92

ULDatabaseOpenParms function

ul_bool ULDatabaseOpenParms (void * dbPtr , ul_char * parms)

Prepares your application to work with a database. You must open the
database before carrying out any other operations on the database.

true (1) if successful.

false (0) if unsuccessful.

"ULDatabaseClose function" on page 92

ULDatabaseReopen function

bool ULDatabaseReopen (void * dbPtr)

This method is available for the Palm Computing Platform only.

When developing Palm applications, you should never close the database
object. Instead, you should call ULDatabaseReopen when the user switches
to the UltraLite application. The method prepares the data in use by the
database object for use by the application.

true (1) if successful.

false (0) if unsuccessful.

"ULDatabaseOpen function" on page 93

Syntax

Description

Return

See also

Syntax

Description

Return

See also

Syntax

Description

Return

See also

ULDatabase functions

94

95

Index

A
an_SQL_code data type

MobileBuilder, 68

architecture
UltraLite, 47
UltraLite and MobileBuilder, 47

ASAVersion property
UltraLite component, 51

Auto Connect item
UltraLite database, 52

B
binding controls

about, 57
mapping, 55
Mapping properties, 57

C
Cache Size item

UltraLite database, 52

Code Assistant
about, 60

controls
binding, 55, 57
list boxes, 57
using, 57

conventions
documentation, ix

D
DataSource property

configuring, 51
UltraLite component, 51

DECL_DATETIME data type
MobileBuilder, 68

documentation
conventions, ix
SQL Anywhere Studio, vi

F
feedback

documentation, xiii
providing, xiii

Filename property
UltraLite component, 51
UltraLite database, 52

G
global autoincrement

MobileBuilder, 86, 90

global database identifier
MobileBuilder, 90

H
header files

MobileBuilder, 66

I–S

96

hpp file
C++ API, 67

I
icons

used in manuals, x

L
list boxes

using, 57

M
mappings

configuring, 55

Mappings property
UltraLite component, 51, 55

MobileBuilder
about, 46
Code Assistant, 60
configuring synchronization, 15, 32
connections, 60
databases, 60
defining UltraLite databases, 13, 30
development notes, 60
Palm Computing Platform, 62, 63
platform-specific code, 62
result sets, 61
tables, 61
tutorial, 7, 23
UltraLite component, 11, 28

MobileBuilder controls
using, 57

MobileBuilder projects
creating, 10, 27
UltraLite component, 50

N
Name property

UltraLite component, 51

newsgroups
technical support, xiii

P
Palm Computing Platform

MobileBuilder, 63, 79

platform-specific code
MobileBuilder, 62

projects
creating from MobileBuilder, 54
MobileBuilder, 10, 27

publications
creating from MobileBuilder, 53
MobileBuilder, 13, 30

R
reference database

DataSource property, 51
MobileBuilder User ID item, 51
Password item, 51

reference databases
MobileBuilder, 13, 30

Reserve Size item
UltraLite database, 52

result sets
creating, 53

ResultSets property
UltraLite component, 51, 53

S
Schema property

UltraLite component, 51, 52

SQL Anywhere Studio
documentation, vi

support
newsgroups, xiii

T–U

97

synchronization
configuring, 55
configuring MobileBuilder, 15, 32

Synchronization property
UltraLite component, 51, 55

T
target platforms

supported, 5

technical support
newsgroups, xiii

troubleshooting
MobileBuilder Palm applications, 63

tutorials
MobileBuilder UltraLite application, 7
MobileBuilder UltraLite application for Palm, 23
UltraLite MobileBuilder application, 7
UltraLite MobileBuilder application for Palm, 23

U
ul_bool data type

MobileBuilder, 68

ul_char data type
MobileBuilder, 68

ul_column_num data type
MobileBuilder, 68

ul_fetch_offset data type
MobileBuilder, 68

ul_length data type
MobileBuilder, 68

UL_NULL
MobileBuilder, 68

ulapi.h
C++ API, 67

ULBAfterLast function
MobileBuilder, 69

ULBBeforeFirst function
MobileBuilder, 69

ULBClose function
MobileBuilder, 69

ULBDelete function, 70

ULBDeleteAllRows function
MobileBuilder, 70

ULBFind function
MobileBuilder, 70

ULBFindFirst function
MobileBuilder, 71

ULBFindLast function
MobileBuilder, 71

ULBFindNext function
MobileBuilder, 72

ULBFindPrevious function
MobileBuilder, 72

ULBFirst function
MobileBuilder, 73

ULBGet functions
MobileBuilder, 73

ULBGetEmptyFieldIsNull function
MobileBuilder, 74

ULBGetOffset function
MobileBuilder, 75

ULBGetRowCount function
MobileBuilder, 75

ulbindc.h
MobileBuilder function definitions, 66

ULBInsert function
MobileBuilder, 75

ULBLast function
MobileBuilder, 75

ULBLookupBackward function
MobileBuilder, 76

ULBLookupForward function
MobileBuilder, 76

ULBNext function
MobileBuilder, 77

ULBOpen function
MobileBuilder, 77, 80

U–U

98

ULBoundObject functions
MobileBuilder, 69

ULBPrevious function
MobileBuilder, 78

ULBRefresh function
MobileBuilder, 78

ULBRelative function
MobileBuilder, 78

ULBReopen function
MobileBuilder, 79

ULBSet functions
MobileBuilder, 79

ULBSetEmptyFieldIsNull function
MobileBuilder, 81

ULBSetParameter functions
MobileBuilder, 81

ULBUpdate function
MobileBuilder, 82

ULConnection functions
MobileBuilder, 60, 84

ULConnection object
introducing, 48

ULConnectionClose function
MobileBuilder, 84

ULConnectionCommit function
MobileBuilder, 84

ULConnectionCountUploadRows function
MobileBuilder, 85

ULConnectionGetLastDownloadTime function
ULConnection class, 88

ULConnectionGetLastIdentity function
MobileBuilder, 85

ULConnectionGetSQLCode function
MobileBuilder, 85

ULConnectionGlobalAutoincUsage function
MobileBuilder, 86

ULConnectionGrantConnectTo function
MobileBuilder, 86

ULConnectionInitSynchInfo function
MobileBuilder, 86

ULConnectionIsOpen function
MobileBuilder, 87

ULConnectionLastCodeOK function
MobileBuilder, 87

ULConnectionLastFetchOK function
MobileBuilder, 88

ULConnectionOpen function
MobileBuilder, 89

ULConnectionReopen function
MobileBuilder, 89

ULConnectionRevokeConnectFrom function
MobileBuilder, 90

ULConnectionRollback function
MobileBuilder, 90

ULConnectionSetDatabaseID function
MobileBuilder, 90

ULConnectionStartSynchronizationDelete function
MobileBuilder, 90

ULConnectionStopSynchronizationDelete function
MobileBuilder, 91

ULConnectionSynchronize function
MobileBuilder, 91

ULDatabase functions
MobileBuilder, 60

ULDatabase object
introducing, 48

ULDatabaseClose function
MobileBuilder, 92

ULDatabaseIsOpen function
MobileBuilder, 92

ULDatabaseOpen function
MobileBuilder, 93

ULDatabaseReopen function
MobileBuilder, 93

ulglobal.h
C++ API, 67

UltraLite
about, 1
API class hierarchy, 66
MobileBuilder, 46

U–U

99

UltraLite API
introducing, 47

UltraLite component
about, 49
adding to MobileBuilder project, 50
ASAVersion property, 51
configuring, 50
DataSource property, 51
Filename property, 51
Mappings property, 51, 55
MobileBuilder, 11, 28
Name property, 51
ResultSets property, 51, 53
Schema property, 51
Synchronization property, 51, 55
using, 50

UltraLite databases
Auto Connect item, 52
Cache Size item, 52
Filename property, 52
MobileBuilder, 13, 30
Reserve Size item, 52

UltraLite objects
ULConnection, 48
ULDatabase, 48

UltraLite projects
adding SQL statements from MobileBuilder, 54
creating from MobileBuilder, 54

UltraLite runtime library
introducing, 47

user authentication
embedded SQL UltraLite applications, 86
UltraLite databases, 86, 90

U–U

100

	UltraLite User's Guide for PenRight! MobileBuilder
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The UltraLite sample database

	1. Providing Solutions with UltraLite and MobileBuilder
	Combining UltraLite and MobileBuilder
	UltraLite overview
	MobileBuilder overview
	The benefits of using UltraLite and MobileBuilder

	Installing the UltraLite component
	System requirements
	Supported target platforms
	Adding the UltraLite component group to MobileBuilder

	2. Tutorial: Build an UltraLite Application Using MobileBuilder
	Introduction
	Lesson 1: Getting started
	Lesson 2: Create a MobileBuilder project
	Lesson 3: Add the UltraLite Component to your project
	Lesson 4: Define your UltraLite database schema
	Lesson 5: Configure synchronization
	Lesson 6: Design a MobileBuilder form
	Lesson 7: Build and run your application
	Restore the sample database

	3. Tutorial: Build an UltraLite Palm Application Using MobileBuilder
	Introduction
	Lesson 1: Getting started
	Lesson 2: Create a MobileBuilder project
	Lesson 3: Add the UltraLite Component to your project
	Lesson 4: Define your UltraLite database schema
	Lesson 5: Configure synchronization
	Lesson 6: Design a MobileBuilder form
	Lesson 7: Build and run your application
	Lesson 8: Complete the application
	Restore the sample database

	4. Developing UltraLite MobileBuilder Applications
	Introduction
	UltraLite MobileBuilder application architecture
	The pieces of an UltraLite application
	The UltraLite database objects
	The UltraLite component
	Opening UltraLite database objects
	Building UltraLite MobileBuilder applications

	Working with the UltraLite component
	Adding the UltraLite component to your MobileBuilder project
	Configuring the UltraLite component
	Configuring the UltraLite component DataSource property
	Configuring the UltraLite component Schema property
	Configuring UltraLite component ResultSets
	Configuring the UltraLite component Mappings property
	Configuring the UltraLite component Synchronization property

	Using the MobileBuilder controls
	Binding controls to UltraLite objects
	Using MobileBuilder list boxes
	Configuring data entry controls
	Getting data from a control
	Updating tables and result sets

	Writing UltraLite code for MobileBuilder applications
	Using the MobileBuilder Code Assistant
	Referencing database objects in the UltraLite API for MobileBuilder
	Working with databases and connections
	Working with tables and result sets
	Writing platform-specific code in MobileBuilder

	Developing Palm applications in MobileBuilder

	5. UltraLite API Reference
	Introduction to the UltraLite API
	C++ API class hierarchy

	Language elements
	ULBoundObject functions
	ULBAfterLast function
	ULBBeforeFirst function
	ULBClose function
	ULBDelete function
	ULBDeleteAllRows function
	ULBFind function
	ULBFindFirst function
	ULBFindLast function
	ULBFindNext function
	ULBFindPrevious function
	ULBFirst function
	ULBGet functions
	ULBGetEmptyFieldIsNull function
	ULBGetOffset function
	ULBGetRowCount function
	ULBInsert function
	ULBLast function
	ULBLookupBackward function
	ULBLookupForward function
	ULBNext function
	ULBOpen function
	ULBPrevious function
	ULBRefresh function
	ULBRelative function
	ULBReopen function
	ULBSet functions
	ULBSetColumnNull function
	ULBSetEmptyFieldIsNull function
	ULBSetParameter functions
	ULBUpdate function

	ULConnection functions
	ULConnectionClose function
	ULConnectionCommit function
	ULConnectionCountUploadRows function
	ULConnectionGetLastIdentity function
	ULConnectionGetSQLCode function
	ULConnectionGlobalAutoincUsage function
	ULConnectionGrantConnectTo function
	ULConnectionInitSynchInfo function
	ULConnectionIsOpen function
	ULConnectionLastCodeOK function
	ULConnectionGetLastDownloadTime function
	ULConnectionLastFetchOK function
	ULConnectionOpen function
	ULConnectionReopen function
	ULConnectionRevokeConnectFrom function
	ULConnectionRollback function
	ULConnectionSetDatabaseID function
	ULConnectionStartSynchronizationDelete function
	ULConnectionStopSynchronizationDelete function
	ULConnectionSynchronize function

	ULDatabase functions
	ULDatabaseClose function
	ULDatabaseIsOpen function
	ULDatabaseOpen function
	ULDatabaseOpenParms function
	ULDatabaseReopen function

	Index

