
UltraLite
™
 Component Suite Foundations

Last modified: October 2002
Part Number: 37121-01-0802-01

Copyright © 1989–2002 Sybase, Inc. Portions copyright © 2001–2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive
Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), ClearConnect, Client
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, ECMAP,
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server,
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Together, EWA,
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnywhere Solutions,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intellidex,
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS (logo),
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business Interchange, Open Client,
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnect, Open Solutions,
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Format Libraries,
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,
SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server Architecture, SybaseWare,
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The Enterprise
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

Certicom, MobileTrust, and SSL Plus are trademarks and Security Builder is a registered trademark of Certicom Corp. Copyright © 1997–2000
Certicom Corp. Portions are Copyright © 1997–1998, Consensus Development Corporation, a wholly owned subsidiary of Certicom Corp. All rights
reserved. Contains an implementation of NR signatures, licensed under U.S. patent 5,600,725. Protected by U.S. patents 5,787,028; 4,745,568;
5,761,305. Patents pending.

All other trademarks are property of their respective owners.

Last modified October 2002. Part number 37121-01-0802-01.

iii

Contents

About This Manual... v
The UltraLite sample database .. vi
Finding out more and providing feedback................................vii

1 Introduction to the UltraLite Component Suite................ 1
Introduction to the UltraLite Component Suite..........................2
System requirements and supported platforms6
The UltraLite Component Suite application
development process..8
Synchronizing UltraLite applications.......................................10
User authentication ...13

2 Utility Programs... 15
Introduction to UltraLite Component Suite utilities..................16
UltraLite initialization utility..17
The UltraLite Schema Painter...19
The ULXML command line utility ..22

3 Connection Parameters... 25
Summary...26
Required connection parameters..27
Platform variations for specifying file paths29
Database identification parameters ..30
Database schema parameters..33
Other database creation parameters35
User authentication parameters..38

4 Synchronization Stream Parameters Reference............ 41
Introduction ...42
ActiveSync synchronization stream parameters.....................43
HotSync synchronization stream parameters45
TCP/IP stream parameters ...47
HTTP stream parameters ...49
HTTPS stream parameters ...52

iv

Index... 55

v

About This Manual

This manual introduces the UltraLite Component Suite. It is a companion to
the User’s Guide for your particular development platform.

This manual is intended for all UltraLite Component Suite developers who
wish to take advantage of the performance, resource efficiency, robustness,
and security of an UltraLite relational database for data storage and
synchronization.

Subject

Audience

vi

The UltraLite sample database
Some of the examples in the MobiLink and UltraLite documentation use the
UltraLite sample database.

The UltraLite sample database is held in a file named custdb.db, or
custdb.xml, and is located in the Samples\UltraLite\CustDB subdirectory of
your SQL Anywhere directory. Complete applications built on this database
are also supplied in the following directories:

Component Application sample

UltraLite for MobileVB Samples\UltraLiteForAppForge\CustDB

UltraLite for eMbedded
Visual Basic

Samples\UltraLiteActiveX\CustDB

Native UltraLite for Java Samples\NativeUltraLiteForJava\CustDB

The sample database is a sales-status database for a hardware supplier. It
holds customer, product, and sales force information for the supplier.

The following figure shows the tables in the CustDB database and how they
are related to each other.

emp_id = pool_emp_id

cust_id = cust_id

emp_id = emp_id

cust_id = cust_id

emp_id = emp_id

prod_id = prod_id
emp_id = pool_emp_id

ULIdentifyEmployee
emp_id integer

ULCustomer
cust_id integer
cust_name varchar(30)
last_modified timestamp

ULEmpCust
emp_id integer
cust_id integer
action char(1)
last_modified timestamp

ULOrder
order_id integer
cust_id integer
prod_id integer
emp_id integer
disc integer
quant integer
notes varchar(50)
status varchar(20)
last_modified timestamp

ULEmployee
emp_id integer
emp_name varchar(30)
last_download timestamp

ULCustomerIDPool
pool_cust_id integer
pool_emp_id integer
last_modified timestamp

ULOrderIDPool
pool_order_id integer
pool_emp_id integer
last_modified timestamp

ULProduct
prod_id integer
price integer
prod_name varchar(30)

vii

Finding out more and providing feedback
We would like to receive your opinions, suggestions, and feedback on this
documentation.

You can provide feedback on this documentation and on the software
through a newsgroup. The newsgroup can be found on the
forums.sybase.com news server as
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor is iAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on a regular basis to
provide solutions and information. Their ability to help is based on their
workload.

viii

1

C H A P T E R 1

Introduction to the UltraLite Component
Suite

This chapter introduces you to UltraLite Component Suite features,
platforms, architecture, and functionality.

Topic Page

Introduction to the UltraLite Component Suite 2

System requirements and supported platforms 6

The UltraLite Component Suite application development process 8

Synchronizing UltraLite applications 10

User authentication 13

About this chapter

Contents

Introduction to the UltraLite Component Suite

2

Introduction to the UltraLite Component Suite
UltraLite is a relational database and synchronization technology for small,
mobile, and embedded devices. UltraLite has been available for C/C++
developers and Java developers as part of SQL Anywhere Studio. The
UltraLite Component Suite brings this proven technology to users of rapid
application development systems.

UltraLite

UltraLite Component Suite benefits

The UltraLite Component Suite provides the following benefits to
application developers:

♦ Robust data management Data held on small devices is as important
as data in enterprise databases. UltraLite brings transaction processing,
referential integrity, and other benefits of relational databases to small
devices.

$ For more information about UltraLite database features, see
"UltraLite databases" on page 3.

♦ Powerful synchronization An information system is only as robust as
its weakest link. UltraLite gives you the ability to synchronize data with
a central database-management system when used with SQL Anywhere
Studio.

The UltraLite Component Suite uses MobiLink synchronization
technology, included in SQL Anywhere Studio, to synchronize with
industry-standard database-management systems. MobiLink
synchronization works with ODBC-compliant data sources such as
Sybase Adaptive Server Anywhere, Sybase Adaptive Server Enterprise,
IBM DB2, Microsoft SQL Server, and Oracle. It provides flexible,
programmable, and scalable synchronization that can manage thousands
of UltraLite databases.

Chapter 1 Introduction to the UltraLite Component Suite

3

♦ Straightforward development An object-based programming
interface provides straightforward access to data. Integration into
popular development tools such as eMbedded Visual Basic, AppForge
MobileVB, and Borland JBuilder makes developers productive. A
graphical tool enables you to design and modify schemas for UltraLite
databases rapidly.

♦ Multi-platform availability You can develop and deploy UltraLite
database applications for Windows CE, Palm OS, and Java-based
devices.

UltraLite databases

UltraLite databases are transaction-processing relational databases, and
provide you with the following features:

♦ Tables A single UltraLite database can hold many tables. The number
and type of columns in a relational database table is fixed at design time,
but each table can have any number of rows (up to 64K). Each row has a
single entry for each column. The special NULL entry is used when
there is no value for the entry.

When designing your database, each table should represent a separate
type of item, such as Customers, Employees, and so on.

♦ Indexes The rows in a relational database table are not ordered. You
can create indexes to access the rows in order. Indexes are commonly
associated with a single column, but UltraLite also provides multi-
column indexes.

♦ Keys Each table has a special index called the primary key. Entries in
the primary key column or columns must be unique.

Foreign keys relate the data in one table to that in another. Each entry in
the foreign key column must correspond to an entry in the primary key
of another table.

Between them, primary keys and foreign keys ensure that the database
has referential integrity. Referential integrity is enforced in UltraLite
databases, so that you cannot (for example) enter an order for a customer
unless that customer exists in the database.

By enforcing referential integrity, UltraLite ensures that the data in your
UltraLite database is correct, in the same manner that data elsewhere in
the enterprise is correct.

Introduction to the UltraLite Component Suite

4

♦ Publications If you wish to synchronize the data in your UltraLite
database with other databases you must have a valid SQL Anywhere
Studio license. SQL Anywhere Studio includes MobiLink
synchronization technology to synchronize UltraLite databases with
desktop, workgroup or enterprise databases.

Publications define sets of data to be synchronized. It is often desirable
to synchronize all the data in an UltraLite database, but publications
provide extra flexibility and control. They allow you to perform priority
synchronizations, which means you can specify that only certain tables
or groups of tables should be synchronized.

♦ Transactions and recovery UltraLite has commit and rollback
features, together with automatic recovery in the event of device failure,
to guarantee that transactions are executed completely or not at all.

♦ Data types UltraLite databases can manage a full range of data types,
as well as default values and NULL values.

♦ Security UltraLite provides user authentication and database
encryption, as well as encryption on the device and during
synchronization, to build secure applications.

♦ Performance and small footprint UltraLite target devices tend to
have relatively slow processors. UltraLite employs algorithms and data
structures that provide high performance and low memory use. For
example, UltraLite provides a caching algorithm designed specifically
for small devices.

Rapid application development

The UltraLite Component Suite extends UltraLite to application
development tools such as eMbedded Visual Basic, Java and AppForge
MobileVB. An UltraLite component is provided for each development tool.
Each component exposes a set of objects for data manipulation in the form of
an API tailored to suit the expectations of users of a particular tool or
language.

For an introduction to each component in the UltraLite Component Suite, see
the following.

Chapter 1 Introduction to the UltraLite Component Suite

5

Application language See

Java "Introduction to Native UltraLite for Java" on page 1
of the book UltraLite for Java User’s Guide

eMbedded Visual Basic "Introduction to UltraLite for eMbedded Visual
Basic" on page 1 of the book UltraLite for
eMbedded Visual Basic User’s Guide

AppForge MobileVB "Introduction to UltraLite for MobileVB" on page 1
of the book UltraLite for AppForge User’s Guide

All UltraLite components are built on the same underlying runtime.

UltraLite
database
engine

UltraLite
programming
interfaces

Application development tools

Each component consists of a programming interface that exposes the
UltraLite database functionality.

Applications that you create with an UltraLite Component will consist of the
following:

♦ Your application code

♦ The UltraLite component

♦ An UltraLite database

System requirements and supported platforms

6

System requirements and supported platforms
System requirements and supported platforms are discussed in this section.

Supported platforms

Platform support for UltraLite is of the following kinds:

♦ Target platforms The target platform is the device and operating
system on which you deploy your UltraLite application.

♦ Development platforms For each target platform, you develop your
applications using a particular development tool and operating system.
The tool and operating system comprise the development platform.

Target platforms

The supported target platforms are given in the table below.

UltraLite Component Target platforms

Native UltraLite for Java Jeode Personal Java 1.2 compatible VM on
Windows CE devices using the ARM processor,
including the Compaq iPaq and NEC MobilePro
P300.

Windows operating systems other than
Windows CE are supported for testing and
development purposes only.

UltraLite for MobileVB Windows CE 3.0 and higher, with Pocket PC on
the ARM or MIPS processor.

Palm OS version 3.1 and higher.

UltraLite for eMbedded
Visual Basic

Windows CE 3.0 and higher, with Pocket PC on
Arm or MIPS processors.

The Windows CE emulator is also supported.

Chapter 1 Introduction to the UltraLite Component Suite

7

Supported development platform

To develop applications using UltraLite, you require application software as
given in the table below.

UltraLite Component Application development software

Native UltraLite for Java JDK 1.1.8 for development.

Jeode Personal Java 1.2 for deployment to
Windows CE devices.

Borland JBuilder 7 integration is provided.

UltraLite for MobileVB AppForge MobileVB 3

Microsoft Visual Basic 6.0

UltraLite for eMbedded Visual
Basic

Microsoft eMbedded Visual Basic 3.0

SQL Anywhere Studio

The UltraLite Component Suite is available separately and as part of
SQL Anywhere Studio. You require SQL Anywhere Studio to add the
following capabilities to your UltraLite applications:

♦ Synchronization SQL Anywhere Studio users can synchronize the
data in UltraLite applications with any ODBC-compliant central
database.

$ For more information, see "MobiLink synchronization features" on
page 10.

♦ Reference database SQL Anywhere Studio users can generate an
UltraLite schema file from an Adaptive Server Anywhere database.

$ For more information, see "UltraLite initialization utility" on
page 17.

The UltraLite Component Suite application development process

8

The UltraLite Component Suite application
development process

To develop an application using the UltraLite Component Suite you follow
the following basic sequence of steps.

1 Design your database.

A database schema is the database definition, including all tables,
indexes, and so on. You create a database schema using the UltraLite
Schema Painter or writing an XML file. Users of SQL Anywhere Studio
can generate an UltraLite database schema from an Adaptive Server
Anywhere database.

UltraLite holds the database schema in a schema file. The UltraLite
components use the information in this file to create a database when an
application is first run.

$ For more information on the UltraLite Schema Painter, see "The
UltraLite Schema Painter" on page 19.

$ For more information on the UltraLite utility ulinit, see "UltraLite
initialization utility" on page 17.

2 Set up your development environment.

In each component, you are required to develop your application on a
specific development platform, and to deploy to a specific target device.
To achieve this end, you need to set up your development environment
in tandem with the target environment. Tutorials in the companion
books show you how you can accomplish this setup.

$ For more information on creating a project architecture for
UltraLite for eMbedded Visual Basic, see "Adding the UltraLite
component to the design environment" on page 28 of the book UltraLite
for eMbedded Visual Basic User’s Guide.

$ For more information on creating a project architecture for
UltraLite for MobileVB, see the tutorial "Lesson 2: Create a project
architecture" on page 11 of the book UltraLite for AppForge User’s
Guide.

$ For more information on creating a project architecture for Native
UltraLite for Java, see "Understanding UltraLite Development" on
page 33 of the book UltraLite for Java User’s Guide.

3 Write your application code.

Create forms for your application and write code that includes:

Chapter 1 Introduction to the UltraLite Component Suite

9

♦ Code to create, open and connect to a database

♦ Code to access database tables using table objects

♦ Code to make use of insert, update and delete operations, and can
take advantage of navigation procedures

♦ Code for synchronization, if required for your application.

4 Deploy your application to the device.

You can run the application in the development environment to confirm
functionality, and you can configure application settings or synchronize
your data to an enterprise database.

Each of these processes is outlined in detail for each application in each
component book.

Synchronizing UltraLite applications

10

Synchronizing UltraLite applications
Users of SQL Anywhere Studio can synchronize UltraLite applications with
a central database. This database may be a desktop database for personal
applications, or a multi-user database for shared data, including enterprise
data. Synchronization requires the MobiLink synchronization software
included with SQL Anywhere Studio.

Synchronization details can be found in the MobiLink Synchronization User’s
Guide and the UltraLite User’s Guide included with SQL Anywhere Studio
documentation. This section provides a brief introduction to synchronization
and describes some features of particular interest to users of the UltraLite
Component Suite.

You can also find a working example of synchronization in the CustDB
sample application.

MobiLink synchronization features

Many mobile and embedded computing applications are integrated into an
information infrastructure. They require data to be uploaded to and
downloaded from a consolidated database. This bi-directional sharing of
information is synchronization.

MobiLink synchronization technology, included in SQL Anywhere Studio
along with UltraLite, is designed to work with industry standard SQL
database-management systems from Sybase and other vendors. UltraLite
automatically keeps track of changes made to the UltraLite database between
each synchronization with the consolidated database. When the UltraLite
database is synchronized, all changes since the previous synchronization are
uploaded.

Mobile and embedded databases need not contain all the data that exists in
the consolidated database.

The tables in each UltraLite database can have a subset of the rows and
columns in the central database. For example, a customer table might contain
over 100 columns and 100 000 rows in the consolidated database, but the
UltraLite database may only require 4 columns and 1000 rows. MobiLink
allows you to define the exact subset to be downloaded to each remote
database.

Subset of the
central database

Chapter 1 Introduction to the UltraLite Component Suite

11

MobiLink synchronization is flexible. You define the subset of data using the
native SQL dialect of the consolidated database-management system. Tables
in the UltraLite database can correspond to tables in the consolidated
database, but you can also populate an UltraLite table from a consolidated
table with a different name, or from a join of one or more tables.

Mobile and embedded databases frequently share common data. They also
must allow updates to the same data. When two or more remote databases
simultaneously update the same row, the conflict cannot be prevented. It
must be detected and resolved when the changes are uploaded to the central
database. MobiLink synchronization automatically detects these conflicts.
The conflict resolution logic is defined in the native SQL dialect of the
central database.

An UltraLite application synchronizes with a central, consolidated database
through the MobiLink synchronization server. This server provides an
interface between the UltraLite application and the database server.

You control the synchronization process using synchronization scripts.
These scripts may be SQL statements or procedures written in the native
language of the consolidated DBMS, or they may be Java classes. For
example, you can use a SELECT statement to identify the columns and
tables in the consolidated database that correspond to each column of a row
to be downloaded to a table in your UltraLite application. Each script
controls a particular event during the synchronization process.

Adding synchronization to your application

This section provides a brief introduction to how to add synchronization to
your application.

v To control synchronization your application must carry out the
following sequence of operations:

1 Prepare the synchronization information.

Assign values to properties of the ULSyncParms object. In Native
UltraLite for Java, use the Connection.SyncParms object.

2 Synchronize.

Call the ULConnection.Synchronize method. In Native UltraLite for
Java, use the Connection.synchronize method.

Flexibility

Conflict resolution

The MobiLink
synchronization
server

Synchronizing UltraLite applications

12

$ For information about the properties and the values that you should set,
look up synchronization parameters: about in the SQL Anywhere Studio
online books index. For information on the synchronization methods, see the
following:

♦ MobileVB See "ULSyncParms class" on page 93 of the book UltraLite
for AppForge User’s Guide and "Synchronize method" on page 72 of the
book UltraLite for AppForge User’s Guide.

♦ eMbedded Visual Basic See "ULSyncParms class" on page 84 of the
book UltraLite for eMbedded Visual Basic User’s Guide and
"Synchronize method" on page 63 of the book UltraLite for eMbedded
Visual Basic User’s Guide.

♦ Native UltraLite for Java See
ianywhere.native_ultralite.SyncParms and
ianywhere.native_ultralite.Connection.syncParms in the API
Reference.

Synchronization occurs through a synchronization stream. The available
streams are as follows.

Component TCP/IP HTTP HTTPS1 ActiveSync HotSyn
c

UltraLite for
eMbedded Visual
Basic

á á á

UltraLite for
MobileVB

á á á

Native UltraLite
for Java

á á á á

1 Requires separately licensable component

Regardless of the stream, you control the synchronization process using the
same SQL scripts defined in your consolidated database or Java methods.

To synchronize using encrypted synchronization (HTTPS) you must obtain
the separately-licensable security option. To order this option, see the card in
your SQL Anywhere Studio package or see
http://www.sybase.com/detail?id=1015780.

Secure
synchronization

Chapter 1 Introduction to the UltraLite Component Suite

13

User authentication
UltraLite provides a built-in scheme to authenticate users before allowing
them to connect to the UltraLite database.

When an UltraLite database is created, it has an initial user ID of DBA, with
a password of SQL. These are also default values on connection parameters.
You can avoid user authentication by not supplying uid or pwd connection
parameters when connecting.

UltraLite permits up to four different users to be defined at a time, with both
user ID and password being less than 16 characters long.

Each user has full access to the database once successfully authenticated.
The user authentication scheme does not provide the permissions features
implemented in multi-user database systems and in MobiLink
synchronization.

The case sensitivity of UltraLite databases is set when the database schema is
created. If the database is case insensitive (the default) then the user ID and
password are case insensitive. If the database is case sensitive, then the
password is case sensitive.

v To user authentication to your application:

1 Connect to the database using the default uid and pwd parameters.

New users have to be added from an existing connection.

2 Prompt for a user ID and password.

3 Grant access to this user.

Use the ULConnection.GrantConnectTo method to enable user
authentication and provide access to a specific user ID and password
combination.

4 Optionally, revoke access from the original user ID.

User authentication

14

15

C H A P T E R 2

Utility Programs

This chapter provides reference information about the UltraLite Component
Suite utility programs. The following utilities are required to build
applications built with the UltraLite Component Suite.

Topic Page

Introduction to UltraLite Component Suite utilities 16

UltraLite initialization utility 17

The UltraLite Schema Painter 19

The ULXML command line utility 22

About this chapter

Contents

Introduction to UltraLite Component Suite utilities

16

Introduction to UltraLite Component Suite
utilities

The database schema is the database without the data. It is the collection of
tables, indexes, and so on within the database, and all the relationships
between them. The schema file stores schema information. You do not alter
the schema of an UltraLite database directly. Instead, you modify a schema
file (which typically has the extension .usm) and upgrade the database
schema from that file using a built-in UltraLite function in your application.

You can create an UltraLite schema file in the following ways:

♦ Generate the schema from an Adaptive Server Anywhere database
If you have the Adaptive Server Anywhere database management
system, you can generate an UltraLite schema file using the ulinit
command line utility.

♦ Schema Painter The UltraLite Schema Painter is a graphical utility
for creating and editing UltraLite schema files.

To start the Schema Painter, choose Start➤Programs➤Sybase
SQL Anywhere 8➤UltraLite Schema Painter, or double-click a schema
file (with extension usm) in Windows Explorer.

♦ The ulxml command line utility The ulxml command line utility
allows you to open usm files and save them to xml format, open xml
files and save them as usm files, and to export XML files to a format
suitable for Palm. For more information, see "The ULXML command
line utility" on page 22.

Chapter 2 Utility Programs

17

UltraLite initialization utility
The ulinit utility lets you create a.usm file for use with any UltraLite
component. The utility connects to an Adaptive Server Anywhere database.
Consequently, SQL Anywhere Studio (version 8.0.2) is required in order to
use it.

ulinit -f schema_file -n pub_name [options]

Option Description

-c "connection_string" Supply database connection parameters in the
form keyword=value, separated by semi-colons.
You supply these so you may connect to an
Adaptive Server Anywhere database.

-f <schema_file > Specify the name of the output file. This option
is required.

-m <version> Specify the version string for generated
MobiLink scripts.

-n <pubname> Generate schema for the named publication.
Specify the switch multiple times for multiple
publications. Use * to generate schema for all
tables in the database. For example, -n*. This
option is required.

-o "keyword=value;..." Supply schema creation options.

-palm <id> Create a schema file compatible with PalmOS.
Id is the four digit Palm creator id that identifies
the database.

-q Quiet operation — only report errors and
warnings.

-s <pubname> Specify a publication name for synchronization.
This option can be used multiple times.

-t <file> Specify the file containing the trusted root
certificates.

-w Do not display warnings.

-z <ordering> Specify table ordering (for example, -z
table1,table2).

The following example creates a file called customer.usm that contains the
tables in TestPublication:

ulinit -c "uid=dba;pwd=sql" -f customer.usm -n
TestPublication

Function

Syntax

Examples

UltraLite initialization utility

18

When creating an UltraLite schema for Palm with ulinit, use the -palm
switch. This generates a .pdb file.

ulinit -c "uid=dba;pwd=sql;dsn=ASA 8.0 Sample"
-f tutcustomer.usm -n TutCustomersPub -palm Syb3

Note
Syb3 is the four digit Palm registered creator ID that matches the creator
ID of your application. For AppForge developers, this must be set in your
MobileVB project settings.

The PDB file generated by ulinit must be loaded to the Palm device. When an
UltraLite application needs to connect to the database, it should include the
creator ID in the parameters of the call to Open. For example:

DatabaseManager.OpenConnection("palm_db=Syb3")

Chapter 2 Utility Programs

19

The UltraLite Schema Painter
The UltraLite Schema Painter allows you to create a new UltraLite schema
file or edit an existing one. Thus, even if you do not have Adaptive Server
Anywhere installed, or if you are unfamiliar with Adaptive Server
Anywhere, you can:

♦ Create a new schema, or edit an existing schema

♦ Add, edit, or delete a new table by double-clicking Add Table

♦ Add, edit, and delete publications, columns, foreign keys, and indexes

♦ Export the schema as a .pdb file suitable for Palm OS devices

♦ Save as a .usm file or Open a .usm file for PocketPC devices

Starting the UltraLite Schema Painter

v To start the UltraLite Schema Painter:

1 Start the UltraLite Schema Painter:

Choose Start➤Programs➤SQL Anywhere 8➤UltraLite Schema
Painter.

Create, save and export schema files

v To create a new schema file:

1 Open the Tools folder and double-click Create UltraLite Schema.

2 In the New Schema dialog, type in a file name.

3 Click OK to create the schema.

v To save a file:

1 Choose File➤Save to save the file.

2 You can select to Save in .xml, or .usm format.

v To export a Palm schema file:

1 Right-click the schema icon and choose Export Schema for Palm from
the popup menu.

The UltraLite Schema Painter

20

2 Enter a Creator ID.

3 Click OK.

Managing schema files

UltraLite stores the original name, the old name, of table and column objects
when you rename a table or column in your schema. This is done on the first
rename. For example, if you create a table named cust, and later rename it to
customer, cust is saved as the old name. If you then renamed the table a
second time, to customer_info, the old name remains cust. This is done so
that your schema file can be used to upgrade an existing database. For
example, assume that version one of your application shipped with a table
named cust. As part of the changes for version two, you modify your version
one schema file by renaming the table to customer. This automatically saves
cust as the old name. If you now apply this schema file to a version one
database file, UltraLite will look for a table named cust, the old name, and
rename it customer. The same applies to columns in a table.

You can see how it is therefore important to clear this upgrade information,
the old names, after a schema file is deployed.

v To clear all of the old names in the schema file after deployment:

1 Open the schema file in the UltraLite Schema Painter

2 Right-click on the database

3 Select Clear Upgrade Information

This sets all of the old names for tables and columns to empty values. You
can then safely edit your schema file for the next version of your application.

Sometimes it may be desirable to manually alter the old names of tables and
columns. For example, you may have versions one and two of your
application deployed and wish to create a single UltraLite schema file that
can upgrade both versions one and two of this database to version three.

v To manually change old names:

1 Open your schema in the UltraLite Schema Painter

2 Right-click on the database

3 Choose "Prepare Schema for Deployment

Chapter 2 Utility Programs

21

You can use this feature to inspect the current old names in your schema.
And if you are using ulxml, you can explicity set the old name of tables and
columns in the <table> and <column> XML elements.

The ULXML command line utility

22

The ULXML command line utility
The ulxml utility lets you convert data file formats. For example, you can
create a .usm file based on an XML file. It can be used with any UltraLite
component.

ulxml [options] input_file output_file

Option Description

-y Overwrite output file if it already exists.

-to<type> where
type=xml|usm|pdb

Note: pdb files require a
CreatorID.

Converts the file to one of these standard
formats.

Use toxml to convert an UltraLite schema to
XML.

Use tousm to convert an XML file to an
UltraLite schema

Use topdb to convert an XML file to an
UltraLite schema for Palm.

The return code from ULXML is set to 0 on success and less than 0 on
failure.

You can export your UltraLite schema so that you can work in XML format:

Function

Syntax

Chapter 2 Utility Programs

23

You can view and use the documented sample located in
Samples\NativeUltraLiteForJava\sample.xml,
Samples\UltraLiteActiveX\sample.xml, and
Samples\UltraLiteForMobileVB\sample.xml.

Note
The UltraLite Schema Painter by default creates, opens and saves
UltraLite schema files in their native .usm file format. However, you are
given the option to create, open and save XML files as well by choosing
UltraLite XML Schema Files in any file type dropdown box.

The ULXML command line utility

24

25

C H A P T E R 3

Connection Parameters

This chapter provides a reference for the parameters that establish and
describe connections from client applications to a database.

Topic Page

Summary 26

Required connection parameters 27

Platform variations for specifying file paths 29

Database identification parameters 30

Database schema parameters 33

Other database creation parameters 35

User authentication parameters 38

About this chapter

Contents

Summary

26

Summary
Connection parameters are needed for your applications to work with a
specific schema file, to create or connect to a database with a specified name
and location, to adjust cache size, and to tune connection characteristics.

Connection parameters are case insensitive.

The following table lists the available connection parameters.

Parameter Description

cache_size Defines the size of the cache. See "cache_size connection
parameter " on page 35

ce_file The path and filename of the UltraLite database file to which
you want to connect on Windows CE. See "ce_file
connection parameter" on page 30.

ce_schema The path and filename of the UltraLite schema on Windows
CE. See "ce_schema connection parameter " on page 33

file_name The path and filename of the UltraLite database file to which
you want to connect. See "file_name connection parameter
[DBF]" on page 30.

key An encryption key for the database. See "key connection
parameter " on page 35

page_size The database page size. See "page_size connection parameter
" on page 36

palm_fs Identifies the Palm card as using the virtual file system. See
"palm_fs parameter " on page 31.

palm_schema The UltraLite schema for the Palm OS. See "palm_schema
connection parameter " on page 34.

password A password for the user. See "Password connection
parameter [PWD]" on page 38.

reserve_size Defines the reserve size. See "reserve_size connection
parameter " on page 36

schema_file The path and filename of the UltraLite schema. See
"schema_file connection parameter " on page 33

userid The user ID with which you connect to the database. See
"Userid connection parameter [UID]" on page 38.

Chapter 3 Connection Parameters

27

Required connection parameters
The required connection parameters for any UltraLite component depend on
what methods you are using in your code. Only a schema file is required for
creating a database. For opening a connection, there are no required
connection parameters, although in almost all cases you need to supply the
parameters for naming your database.

CreateDatabase method

The following are the basic parameters when using CreateDatabase.
Required parameters are highlighted.

OS Parameters

Windows CE (CE_FILE or FILE_NAME or DBF) and
CE_SCHEMA or SCHEMA_FILE

Windows (FILE_NAME or DBF) and SCHEMA_FILE

Palm PALM_DB and PALM_SCHEMA

PALM_FS=VFS is required when using a database stored on
the virtual file system.

OpenConnection method

The following are basic parameters when using OpenConnection.

OS Parameters

Windows CE CE_FILE or FILE_NAME or DBF

Windows FILE_NAME or DBF

Palm PALM_DB

PALM_FS=VFS is required when using the virtual file system
if you want the database saved on the card device.

Required connection parameters

28

Schema files and database files defined

Files such as CE_SCHEMA, SCHEMA_FILE, and PALM_SCHEMA are
schema files. Schema files are created using either ULINIT or the Schema
Painter. These files contain the database schema, or structure, that you want
for your application. Database files such as ce_file, FILE_NAME, DBF or
PALM_DB are the files you will use to store your data.

Chapter 3 Connection Parameters

29

Platform variations for specifying file paths
File names and paths in connection parameters are subject to the following
requirements, depending on the UltraLite Component you are using:

Component Requirement

Java All backslashes must be escaped. For example,
"file_name=\\UltraLite\\MyFile.udb".

Windows CE Paths are absolute.

Windows Paths may be absolute or relative.

Database identification parameters

30

Database identification parameters
The following are used to identify the UltraLite database.

ce_file connection parameter

The path and filename of the UltraLite database file to which you want to
connect on Windows CE. Overrides the generic platform parameter
file_name.

String

The default extension for CE files is .udb. ce_file is required to use a
database with any name other than the default.

$ For more information on ce_file for the CreateDatabase method, see
"CreateDatabase method" on page 27.

$ For more information on ce_filefor the OpenDatabase method, see
"OpenConnection method" on page 27.

To create and connect to a specific database file.

♦ If the filename does not include an extension, the file of extension .udb
is presumed.

♦ The path of the file is relative to the root directory.

♦ The schema file is not required if a .udb file already exists.

♦ To create and connect to the sample database, udemo.udb:

"schema_file=MyOrders.usm;CE_FILE=udemo.udb"

file_name connection parameter [DBF]

The database file to which you want to connect. Another alias for file_name
is DBF.

String

Platform Default file name

Windows: ulstore.udb

Windows CE: \UltraLiteDB\ulstore.udb

Palm OS The default creator ID is the creator ID of the application.

Function

Values

Default

Description

Example

Function

Values

Default

Chapter 3 Connection Parameters

31

To create and connect to a specific database file.

♦ If a database is loaded with a name that is the same as the file_name
DBF connection parameter, the connection is made to that database.

♦ If the filename does not include an extension, the file of extension .udb
is presumed.

♦ The path of the file is relative to the working directory of the database
server. If you start the server from a command prompt, the working
directory is the directory that you are in when entering the command. If
you start the server from an icon or shortcut, it is the working directory
that the icon or shortcut specifies.

$ For more information on file_name for the CreateDatabase
method, see "CreateDatabase method" on page 27.

$ For more information on file_name for the OpenDatabase method,
see "OpenConnection method" on page 27.

♦ To create and connect to the sample database, udemo.udb, installed in
the directory c:\Program Files\Sybase\SQL Anywhere 8, use the
following DBF connection parameter:

"schema_file=MyOrders.usm;DBF=udemo.udb"

palm_fs parameter

Identifies the Palm card as using the virtual file system.

PALM_FS=VFS

The palm_fs=vfs parameter needs to be specified both for CreateDatabase
and OpenConnection if you are using the VFS card for Palm devices and you
want the database stored on the card.

The following discussion refers to “connection parameters” but these
parameters are applicable to the DropDatabase and CreateDatabase methods
as well as OpenConnection.

 To create, drop or connect to a database on a memory card, the following
connection parameter must be specified in the parameter string:

Palm_fs=vfs

Description

Example

Function

Description

Database identification parameters

32

It is still possible to control the filename of the UltraLite database when it is
on the card. If the file_name parameter is specified, then the database is
created (or dropped or a connection attempted) on the card with the filename
specified. If the file_name parameter is not specified but the palm_db
parameter is, then the database created (or dropped or to which a connection
is attempted) resides on the card with a filename ul_udb_XXXX.udb (where
XXXX is the creator ID specified by the palm_db parameter). If neither
parameter is specified, the filename for the database is ul_udb_YYYY.udb
where YYYY is the creator ID of the application.

 If the Palm_fs parameter is not specified, the database is created (or dropped
from or to which you are connecting) on the device and not the card.

$ For more information on palm_fs for the CreateDatabase method, see
"CreateDatabase method" on page 27.

$ For more information on palm_fs for the OpenDatabase method, see
"OpenConnection method" on page 27.

Chapter 3 Connection Parameters

33

Database schema parameters
The following keywords are used to specify a schema for an UltraLite
database. Thus, schema parameters are vital database creation parameters, as
your schema determines which tables and columns exist in your database.
Only one file value is used with the platform specific keyword taking
precedence over the generic keyword.

ce_schema connection parameter

To identify the schema on Windows CE.

String

The recommended file extension is .usm.

The path and filename of the UltraLite schema on Windows CE. The default
extension for UltraLite schema files is .usm. ce_schema is a required
parameter when using CreateDatabase for CE.

♦ The following connection string fragment supplies the ce_schema and
schema_file parameters.

"CE_SCHEMA=orders.usm;SCHEMA_FILE=MyOrders.usm"

$ For more information on ce_schema for the CreateDatabase method,
see "CreateDatabase method" on page 27.

$ For more information on ce_schema for the OpenDatabase method, see
"OpenConnection method" on page 27.

schema_file connection parameter

To identify the schema.

String

The recommended file extension is .usm.

The path and filename of the UltraLite schema.

$ For more information on schema_file for the CreateDatabase method,
see "CreateDatabase method" on page 27.

$ For more information on schema_file for the OpenDatabase method,
see "OpenConnection method" on page 27.

Function

Values

Default

Description

Example

Function

Values

Default

Description

Database schema parameters

34

♦ The following connection string fragment supplies the ce_schema and
schema_file parameters.

"CE_SCHEMA=orders.usm;SCHEMA_FILE=MyOrders.usm"

palm_schema connection parameter

To identify the schema for Palm.

String

The Palm file extension on the desktop is .pdb.

The filename of the UltraLite schema for Palm. The palm_schema parameter
is a required parameter when using CreateDatabase on Palm devices.

Although .pdb is the extension on the desktop, do not supply .pdb in your
connection parameter string.

$ For more information on palm_schema for the CreateDatabase method,
see "CreateDatabase method" on page 27.

$ For more information on palm_schema for the OpenDatabase method,
see "OpenConnection method" on page 27.

♦ The following connection string fragment supplies the palm_schema and
schema_file parameters.

"PALM_SCHEMA=orders;SCHEMA_FILE=MyOrders.usm"

Example

Function

Values

Default

Description

Example

Chapter 3 Connection Parameters

35

Other database creation parameters
Database creation parameters are optional parameters to configure a database
when it is created. Some of these parameters can influence performance, so it
is suggested that you test these parameters to find the optimal performance
for your application.

cache_size connection parameter

Defines the size of the cache.

Used when you configure a database. Use k or K, m or M to denote kilobytes
or megabytes, respectively.

The minimum cache size is 4K.

The default is 16 x page_size. Actual value used is rounded down to the
nearest multiple of page_size.

Defines the size of the cache. You can specify the size in units of bytes. Use
the suffix k or K to indicate units of kilobytes and use the suffix M or m to
indicate megabytes

The default cache size is sixteen pages. Using the default page size of 4 K,
the default cache size is therefore 64 K. The minimum cache size is platform
dependent.

The default cache size is conservative. If your testing shows the need for
better performance, you should increase the cache size.

Increasing the cache size beyond the size of the database itself provides no
performance improvement. Also, large cache sizes may interfere with the
number of other applications you can use.

On the Palm Computing Platform, the parameter applies only to virtual file
system (VFS) databases. The cache itself resides in record storage, not VFS
storage.

For example, the following string sets the cache size to 128 K.

"cache_size=128k"

key connection parameter

An encryption key for the database. You can define an encryption key for
your UltraLite database when CreateDatabase is called.

Function

Usage

Values

Default

Description

Example

Function

Other database creation parameters

36

String

No key is provided.

If a database is created using key, UltraLite database files are strongly
encrypted using the AES 128-bit algorithm, which is the same algorithm
used to encrypt Adaptive Server Anywhere databases. Use of strong
encryption does provide security against skilled and determined attempts to
gain access to the data, and has a significant performance impact.

"schema_file=MyOrders.usm;KEY=MyKey"

page_size connection parameter

Defines the paging size.

Used when you configure a database. Use k or K to denote kilobytes.

The default page size for UltraLite databases is 4 K. The range of size is 2 K
to 4 K.

UltraLite databases are stored in pages. I/O operations are carried out a page
at a time. It can be used on any target platform. Setting a page size of 2 K
reduces the maximum number of tables to approximately 500.

You can specify 2 kb pages using the following storage parameters string:

"schema_file=MyOrders.usm;PAGE_SIZE=2K"

reserve_size connection parameter

Defines the reserve size.

Used when you configure a database. Use k or K, m or M to denote kilobytes
or megabytes, respectively.

Values can be expressed in kb or mb.

The reserve_size parameter allows you to pre-allocate the file system space
required for your UltraLite database without actually inserting any data.
Reserving file system space can improve performance slightly and also
prevent out of memory failures. By default, the persistent storage file only
grows when required as the application updates the database.

Values

Default

Description

Example

Function

Usage

Default

Description

Example

Function

Usage

Values

Description

Chapter 3 Connection Parameters

37

Reserve_size reserves file system space, which includes the metadata in the
persistent store file, and not just the raw data. The metadata overhead as well
as data compression must be considered when deriving the required file
system space from the amount of database data. Running the database with
test data and observing the persistent store file size is recommended.

The reserve_size parameter reserves space by growing the persistent store
file to the given reserve size on startup, regardless of whether the file
previously existed. The file is never truncated.

Use the reserve_size parameter to pre-allocate space as follows:

"CE_SCHEMA=orders;RESERVE_SIZE=128K"

This example ensures that the persistent store file is at least 128 K upon
startup.

Example

User authentication parameters

38

User authentication parameters
User authentication parameters are used to identify the user as authorized to
use the database.

Password connection parameter [PWD]

A password for the user. Passwords are case insensitive if the database is
case insensitive and case sensitive if the database is case sensitive.

Anywhere

String

SQL

Every user of a database has a password. The password must be supplied for
the user to be allowed to connect to the database.

The Password (PWD) connection parameter is not encrypted.

♦ The following connection string fragment supplies the user ID DBA and
password SQL.

"UID=DBA;PWD=SQL;schema_file=MyOrders.usm"

Userid connection parameter [UID]

The user ID with which you log on to the database. An authenticated user for
the database. User ID’s are case-insensitive if the database is case-insensitive
and case sensitive if the database is case sensitive.

Databases are created with a single authenticated user DBA whose initial
password is SQL. By default, connections are opened using the UID=DBA
and the PWD=SQL. To disable the default user, use

connection.revokeConnectionFrom.

To add a user or change a user’s password, use

 connection.grantConnectTo.

Anywhere

String

DBA

Function

Usage

Values

Default

Description

Example

Function

Usage

Values

Default

Chapter 3 Connection Parameters

39

You must always supply a userID when connecting to a database, unless you
leave the database using the default user ID and password of DBA and SQL.

♦ The following connection string fragment supplies the user ID DBA and
password SQL:

"schema_file=MyOrders.usm;uid=DBA;pwd=SQL"

Description

Example

User authentication parameters

40

41

C H A P T E R 4

Synchronization Stream Parameters
Reference

This chapter lists the stream parameters for each synchronization stream.
This chapter is intended for users who have SQL Anywhere Studio.

Topic Page

Introduction 42

ActiveSync synchronization stream parameters 43

HotSync synchronization stream parameters 45

TCP/IP stream parameters 47

HTTP stream parameters 49

HTTPS stream parameters 52

About this chapter

Contents

Introduction

42

Introduction
UltraLite databases can synchronize with a MobiLink synchronization server
over one of a set of synchronization streams, including TCP/IP, HTTP, and
HotSync for Palm OS applications. Each synchronization stream has a set of
appropriate stream parameters. These parameters set required values for the
stream, such as the location of the MobiLink synchronization server, and
network-specific control parameters. This chapter lists the stream parameter
values for each stream.

Meaning differs for HotSync and ActiveSync
For HotSync and ActiveSync synchronization, the meaning of the
synchronization stream parameters is different than for other streams. For
information, see "HotSync synchronization stream parameters" on
page 45 and "ActiveSync synchronization stream parameters" on page 43.

The way to select a synchronization stream depends on the component you
are using.

♦ For MobileVB and eMbedded Visual Basic applications, the
synchronization stream is one of the synchonization parameters set in
the Stream property of the ULSyncParms object. The stream parameters
are provided as a set of keyword-value pairs in the StreamParms
property.

$ For more information, see "ULSyncParms class" on page 93 of the
book UltraLite for AppForge User’s Guide, and "ULSyncParms class"
on page 84 of the book UltraLite for eMbedded Visual Basic User’s
Guide.

♦ For Native UltraLite for Java applications, the synchronization stream is
set by the setStream method of the SyncParms object.

$ For more information, see
ianywhere.native_ultralite.SyncParms in the API Reference.

Setting a stream

Chapter 4 Synchronization Stream Parameters Reference

43

ActiveSync synchronization stream parameters
The ActiveSync synchronization stream is accessible only from Native
UltraLite for Java applications running on Windows CE.

To choose ActiveSync synchronization, supply
StreamType.ACTIVE_SYNC as the argument to the syncParms.setStream
method.

$ For more information, see ianywhere.native_ultralite.StreamType
and ianywhere.native_ultralite.SyncParms in the Native UltraLite for Java
API Reference.

The following line sets ActiveSync as the synchronization stream:

_conn.syncParms.setStream(StreamType.ACTIVE_SYNC);

The stream parameters control the connection from the MobiLink
ActiveSync provider, running on the desktop machine, to the MobiLink
synchronization server.

The stream parameters take the following form:

{stream=stream_name;provider_stream_parameters}

where stream_name indicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

♦ https

and where provider_stream_parameters is a set of stream parameters for use
by the ActiveSync provider, and has the same form as the stream parameters
for the protocol in use. For the given stream, the
provider_stream_parameters adopts the same defaults as the stream
parameters for the protocol. The default value for the stream_name is tcpip.

$ For more information on provider_stream_parameters, see "TCP/IP
stream parameters" on page 47, and "HTTP stream parameters" on page 49.

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in the security
synchronization parameter.

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients . The
format is:

Example

Meaning of
synchronization
stream parameters

Adding encryption
to ActiveSync
synchronization

ActiveSync synchronization stream parameters

44

security=cipher{ keyword=value;... }

where cipher must be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

Chapter 4 Synchronization Stream Parameters Reference

45

HotSync synchronization stream parameters
The HotSync synchronization stream is accessible only from UltraLite for
MobileVB applications running on the Palm Computing Platform.

To choose HotSync synchronization, choose ulPalmConduit from the
ULStreamType enumeration as the ULSyncParms.Stream.

$ For more information, see "ULSyncParms class" on page 93 of the
book UltraLite for AppForge User’s Guide.

For HotSync synchronization, the stream parameters do not control the
connection from the device to the HotSync Manager or HotSync Server.
Instead, they specify the connection from the MobiLink conduit, running at
the HotSync manager or server, to the MobiLink synchronization server.

The argument has the following form:

{stream=stream_name;conduit_stream_parameters}

where stream_name indicates the protocol for the conduit to use when
communicating from the conduit to the MobiLink synchronization server. It
must be one of the following:

♦ tcpip

♦ http

and where conduit_stream_parameters is a set of stream parameters for use
by the conduit, and has the same form as the stream_parms argument for
the protocol in use. For the given stream, the conduit_stream_parameters
adopts the same defaults as the stream_parms argument for the protocol.
The default value for the stream_name is tcpip.

$ For more information on conduit_stream_parameters, see "TCP/IP
stream parameters" on page 47, and "HTTP stream parameters" on page 49.

If you use HotSync synchronization, and do not supply stream parameters,
the conduit searches in the registry for the stream name and stream
parameters. If it finds no valid stream, the default stream and stream
parameters is used. This default stream parameter setting is:

{stream=tcpip;host=localhost}

To add Certicom encryption to the stream, the root certificates must be in a
file on the desktop machine. This is different from other UltraLite
applications, where the encryption information is embedded in the security
synchronization parameter.

Meaning of
synchronization
stream parameters

Null value and
default settings

Adding encryption
to HotSync
synchronization

HotSync synchronization stream parameters

46

The stream parameters need to be specified in the stream parameters in much
the same way as for Adaptive Server Anywhere MobiLink clients . The
format is:

security=cipher{ keyword=value;... }

where cipher must be certicom_tls and the keywords are taken from the
following list:

♦ certificate_company The organization field on the certificate.

♦ certificate_unit The organization unit field on the certificate.

♦ certificate_name The common name field on the certificate.

♦ trusted_certificates The location of the trusted certificates.

Chapter 4 Synchronization Stream Parameters Reference

47

TCP/IP stream parameters
The TCP/IP synchronization stream is accessible from all UltraLite
components. To select TCP/IP as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for eMbedded Visual Basic,
choose ulTCPIP from the ULStreamType enumeration as the
ULSyncParms.Stream.

$ For more information, see "ULSyncParms class" on page 93 of the
book UltraLite for AppForge User’s Guide.

♦ In Native UltraLite for Java, supply StreamType.TCPIP as the argument
for SyncParms.setStream().

$ For more information, see
ianywhere.native_ultralite.StreamType and
ianywhere.native_ultralite.SyncParms in the Native UltraLite for Java
API Reference.

Synchronization stream parameters for the TCP/IP stream are chosen from
the following table:

Parameter Description

client_port=nnnnn

client_port=nnnnn-
mmmmm

A range of client ports for communication. If only one
value is specified, the end of the range is 100 greater
than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall
communicating with a MobiLink synchronization server
outside the firewall.

host=hostname The host name or IP number for the machine on which
the MobiLink synchronization server is running. The
default value is localhost, except on Windows CE.

For Windows CE, the default setting corresponds to the
desktop machine where the CE device’s cradle is
connected, which is stored as the ipaddr entry in the
registry folder Comm\Tcpip\Hosts\ppp_peer. Do not
use localhost, which refers to the device itself, on
Windows CE.

For the Palm Computing Platform, the default value of
localhost refers to the device itself. You should supply
an explicit host name or IP address to connect to a
desktop machine.

port=portnumber The socket port number on the host machine. The port
number must be a decimal number that matches the port
the MobiLink synchronization server is setup to monitor.

TCP/IP stream parameters

48

Parameter Description
The default value for the port parameter is 2439, which
is the IANA registered port number for the MobiLink
synchronization server.

Chapter 4 Synchronization Stream Parameters Reference

49

HTTP stream parameters
The HTTP synchronization stream is accessible from all UltraLite
componetns. To select HTTP as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for eMbedded Visual Basic,
choose ulHTTP from the ULStreamType enumeration as the
ULSyncParms.Stream.

$ For more information, see "ULSyncParms class" on page 93 of the
book UltraLite for AppForge User’s Guide.

♦ In Native UltraLite for Java, supply StreamType.HTTP as the argument
for SyncParms.setStream().

$ For more information, see
ianywhere.native_ultralite.StreamType and
ianywhere.native_ultralite.SyncParms in the Native UltraLite for Java
API Reference.

Synchronization stream parameters for the HTTP stream are chosen from the
following table:

HTTP stream parameters

50

Parameter Description

client_port=nnnnn

client_port=nnnnn-mmmmm

A range of client ports for communication. If only
one value is specified, the end of the range is 100
greater than the initial value, for a total of 101
ports.

The option can be useful for clients inside a
firewall communicating with a MobiLink
synchronization server outside the firewall.

version=
versionnumber

A string specifying the version of HTTP to use.
You have a choice of 1.0 or 1.1. The default value
is 1.1.

host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is
running. The default value is localhost.

For Windows CE, the default value is the value of
ipaddr in the registry folder
Comm\Tcpip\Hosts\ppp_peer. This allows a
CE device to connect to a MobiLink
synchronization server executing on the desktop
machine where the CE device’s cradle is
connected.

For the Palm Computing Platform, the default
value of localhost refers to the device. It is
recommended that an explicit host name or IP
address be specified.

port=portnumber The socket port number. The port number must be
a decimal number that matches the port the
MobiLink synchronization server is setup to
monitor. The default value for the port parameter
is 2439, which is the IANA registered port number
for the MobiLink synchronization server.

proxy_host=
proxy_hostname

The host name of the proxy server.

proxy_port=
proxy_portnumber

The port number of the proxy server. The default
value is 80.

url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through
a proxy server, the suffix may be necessary in
order to find the MobiLink synchronization server.
The default value is MobiLink.

use_cookies Control sessions when synchronizing through
a Web server using HTTP.

Set this parameter to ul_true when

Chapter 4 Synchronization Stream Parameters Reference

51

Parameter Description

synchronizing through a Web server. The
default value is ul_false (0).

HTTPS stream parameters

52

HTTPS stream parameters
The HTTPS synchronization stream is accessible from all UltraLite
components.

v To select HTTPS as the synchronization stream:

♦ In UltraLite for MobileVB and UltraLite for eMbedded Visual Basic,
choose ulHTTPS from the ULStreamType enumeration as the
ULSyncParms.Stream.

$ For more information, see "ULSyncParms class" on page 93 of the
book UltraLite for AppForge User’s Guide.

♦ In Native UltraLite for Java, supply StreamType.HTTPS as the
argument for SyncParms.setStream().

$ For more information, see
ianywhere.native_ultralite.StreamType and
ianywhere.native_ultralite.SyncParms in the Native UltraLite for Java
API Reference.

Separately-licensable option required
Use of Certicom technology requires that you obtain the separately-
licensable SQL Anywhere Studio security option and is subject to export
regulations. For more information on this option, see "Welcome to
SQL Anywhere Studio" in the book Introducing SQL Anywhere Studio.

Synchronization stream parameters for the HTTPS stream are chosen from
the following table:

Chapter 4 Synchronization Stream Parameters Reference

53

Parameter Description

client_port=nnnnn

client_port=nnnnn-mmmmm

A range of client ports for communication. If only
one value is specified, the end of the range is 100
greater than the initial value, for a total of 101
ports.

The option can be useful for clients inside a
firewall communicating with a MobiLink
synchronization server outside the firewall.

host=hostname The host name or IP number for the machine on
which the MobiLink synchronization server is
running. The default value is localhost.

For Windows CE, the default value is the value of
ipaddr in the registry folder
Comm\Tcpip\Hosts\ppp_peer. This allows a
CE device to connect to a MobiLink
synchronization server executing on the desktop
machine where the CE device’s cradle is
connected.

For the Palm Computing Platform, the default
value of localhost refers to the device. It is
recommended that an explicit host name or IP
address be specified.

port=portnumber The socket port number. The port number must be
a decimal number that matches the port the
MobiLink synchronization server is setup to
monitor. The default value for the port parameter
is 2439, which is the IANA registered port number
for the MobiLink synchronization server.

proxy_host=
proxy_hostname

The host name of the proxy server.

proxy_port=
proxy_portnumber

The port number of the proxy server. The default
value is 80.

certificate_company The UltraLite application only accepts server
certificates when the organization field on the
certificate matches this value. By default, this field
is not checked.

HTTPS stream parameters

54

Parameter Description

certificate_name The UltraLite application only accepts server
certificates when the common name field on the
certificate matches this value. By default, this field
is not checked.

certificate_unit The UltraLite application only accepts server
certificates when the organization unit field on the
certificate matches this value. By default, this field
is not checked.

url_suffix=suffix The suffix to add to the URL on the first line of
each HTTP request. When synchronizing through
a proxy server, the suffix may be necessary in
order to find the MobiLink synchronization server.
The default value is MobiLink.

use_cookies Control sessions when synchronizing through
a Web server using HTTP.

Set this parameter to ul_true when
synchronizing through a Web server. The
default value is ul_false (0).

version=
versionnumber

A string specifying the version of HTTP to use.
You have a choice of 1.0 or 1.1. The default value
is 1.1.

55

Index

A
ActiveSync

configuring, 43
transport-layer security, 43

Architecture
UltraLite Component Suite, 4

C
cache_size connection parameter

about, 35

ce_file connection parameter
about, 30

ce_schema connection parameter
about, 33

client_port stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52
TCP/IP synchronization, 47

connection parameters
about, 25, 26
cache_size, 35
ce_file, 30
ce_schema, 33
file_name, 30
key, 35
page_size, 36
palm_fs, 31
palm_schema, 34
PASSWORD, 38
required, 27
required for CreateDatabase, 27
required for OpenConnection, 27

reserve_size, 36
schema_file, 33
summary, 26
userid, 38

D
database creation parameters

about, 35

database identification parameters
about, 30

databases
introduction, 3
schema, 16

DBF connection parameter
about, 30

development platforms
supported, 6

E
eMbedded Visual Basic

development platforms, 6
required application software, 7
SQL Anywhere Studio, 7
supported versions, 6

encryption
encryption keys, 35
security, 12

F–P

56

F
features

UltraLite Component Suite, 2

feedback
documentation, vii
providing, vii

file_name connection parameter
about, 30

foreign keys
about, 3

H
host stream parameter

HTTP synchronization, 49
HTTPS synchronization, 52
TCP/IP synchronization, 47

HotSync synchronization
configuring, 45
transport-layer security, 45

HTTP
synchronization, 49

http stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52

HTTPS
synchronization, 52

HTTPS synchronization
separately licensable, 12

I
indexes

about, 3

K
key connection parameter

about, 35

M
managing schemas

the UltraLite Schema Painter, 20

MobileVB
development platforms, 6
supported versions, 6

MobiLink synchronization
about, 10
UltraLite Component Suite Foundations, 10

N
Native UltraLite for Java

development platforms, 6
required application software, 7
SQL Anywhere Studio, 7
supported versions, 6

newsgroups
technical support, vii

P
page_size connection parameter

about, 36

Palm Computing Platform
supported versions, 6

palm_fs connection parameter
about, 31
UltraLite Foundations, 31

palm_schema connection parameter
about, 34
UltraLite Foundations, 34

PalmPilot
unsupported versions, 6

PASSWORD connection parameter
about, 38

passwords
PASSWORD connection parameter, 38

performance
database cache, 35

R–T

57

platforms
supported, 6

port stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52
TCP/IP synchronization, 47

primary keys
about, 3

proxy_host stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52

proxy_port stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52

PWD connection parameter
about, 38

R
renaming schemas

the UltraLite Schema Painter, 20

required application software
UltraLite Component Suite, 7

reserve_size connection parameter
about, 36

S
schema files

about, 16
creating, 16

Schema Painter
starting, 16

schema parameters
about, 33

schema_file connection parameter
about, 33

security
synchronization, 12

SQL Anywhere Studio
additional features, 7
UltraLite Component Suite, 7

stream_parms synchronization parameter
about, 42

support
newsgroups, vii

synchronization
HTTP, 11
introduction, 10
protocols, 11
TCP/IP, 11

synchronization streams
parameters, 42

synchronizing UltraLite applications
about, 10
UltraLite Component Suite Foundations, 10

System requirements and supported platforms
about, 6
UltraLite Component Suite Foundations, 6

T
tables

about, 3

target platforms
supported, 6

TCP/IP synchronization
paremeters, 47

technical support
newsgroups, vii

The UltraLite Component Suite application
development process

about, 8
UltraLite Component Suite Foundations, 8

the UltraLite Schema Painter
managing schemas, 20

The UltraLite Schema Painter
about, 19
UltraLite Component Suite Foundations, 19

U–V

58

The ULXML command line utility
about, 22
UltraLite Component Suite Foundations, 22

transport-layer security
ActiveSync synchronization, 43
HotSync synchronization, 45

U
UID connection parameter

about, 38

UltraLite
about, 1, 2, 15
database identification parameters, 30
features, 17
UltraLite Component Suite Foundations, 2

UltraLite Component Suite
about, 2
architecture, 4
features, 2

UltraLite Component Suite Foundations
MobiLink synchronization, 10
Synchronizing UltraLite applications, 10
System requirements and supported platforms, 6
The UltraLite Component Suite application

development process, 8
The UltraLite Schema Painter, 19
The ULXML command line utility, 22
UltraLite initialization utility, 17
User authentication, 13

UltraLite databases
schema, 16

UltraLite for MobileVB
required application software, 7
SQL Anywhere Studio, 7

UltraLite initialization utility
about, 17
UltraLite Component Suite Foundations, 17

ulxml command line utility
features, 22

url_suffix stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52

use_cookies stream parameter
HTTP synchronization, 49
HTTPS synchronization, 52

user authentication
PASSWORD connection parameter, 38

User authentication
about, 13
UltraLite Component Suite Foundations, 13

user authentication parameters
about, 38

userid connection parameter
about, 38

usm files
about, 16
creating, 16

V
virtual file system

Palm OS, 31

	UltraLite Component Suite Foundations
	About This Manual
	The UltraLite sample database

	1. Introduction to the UltraLite Component Suite
	Introduction to the UltraLite Component Suite
	UltraLite databases
	Rapid application development

	System requirements and supported platforms
	Supported platforms
	Target platforms
	Supported development platform
	SQL Anywhere Studio

	The UltraLite Component Suite application development process
	Synchronizing UltraLite applications
	MobiLink synchronization features
	Adding synchronization to your application

	User authentication

	2. Utility Programs
	Introduction to UltraLite Component Suite utilities
	UltraLite initialization utility
	The UltraLite Schema Painter
	Starting the UltraLite Schema Painter
	Create, save and export schema files
	Managing schema files

	The ULXML command line utility

	3. Connection Parameters
	Summary
	Required connection parameters
	CreateDatabase method
	OpenConnection method
	Schema files and database files defined

	Platform variations for specifying file paths
	Database identification parameters
	ce_file connection parameter
	file_name connection parameter [DBF]
	palm_fs parameter

	Database schema parameters
	ce_schema connection parameter
	schema_file connection parameter
	palm_schema connection parameter

	Other database creation parameters
	cache_size connection parameter
	key connection parameter
	page_size connection parameter
	reserve_size connection parameter

	User authentication parameters
	Password connection parameter [PWD]
	Userid connection parameter [UID]

	4. Synchronization Stream Parameters Reference
	Introduction
	ActiveSync synchronization stream parameters
	HotSync synchronization stream parameters
	TCP/IP stream parameters
	HTTP stream parameters
	HTTPS stream parameters

	Index

