Anywhere.

SOLUTIONS
A SYBASE COMPANY

SQL Remote”
User’s Guide

Last modified: October 2002
Part Number: 38133-01-0802-01

Copyright © 1989-2002 Sybase, Inc. Portions copyright © 2001-2002 iAnywhere Solutions, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, nreehanicalptical, or
otherwise, without the prior written permission of iAnywhere Solutions, Inc. iAnywhere Solutions, Inc. is a subsidiary @f IBgbas

Sybase, SYBASE (logo), AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Aataptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise iz éylaatiice

Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager, AppModeler,

APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Library, APT-Translator, ASEP, Backup Server, BayCam, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional (logo), CleayCtianect
Services, Client-Library, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Dafaakapeline
Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Worgbench, Di
Connect Anywhere, DirectConnect, Distribution Director, Dynamo, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAAR ,EC
ECRTP, eFulfillment Accelerator, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterg8sevElien
Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Archéegtises \¥ork
Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works Vaééether, E
Financial Fusion, Financial Fusion Server, First Impression, Formula One, Gateway Manager, GeoPoint, iAnywhere, iAnyvibiese Solut
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, Instizielgx,!
InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Logical Memory Manager, MainframeContetankiain
Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MethodSet, ML Query, MobiCATS, MySupport,
Net-Gateway, Net-Library, New Era of Networks, Next Generation Learning, Next Generation Learning Studio, O DEVICE, OASSl09&)Si
ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Business InterchangenOpen Clie
Open Client/Server, Open Client/Server Interfaces, Open ClientConnect, Open Gateway, Open Server, Open ServerConnetipr@pen Solu
Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PhysicalArchitect, Pocket PowerBuilder,
PocketBuilder, Power Through Knowledge, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library,
PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft,
Powersoft Portfolio, Powersoft Professional, PowerStage, PowerStudio, PowerTips, PowerWare Desktop, PowerWare Entegsfselipsgce
Rapport, Relational Beans, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, RepbdiatioReport
Workbench, Report-Execute, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, S.W.I.F.T. Message Foresat Libra
SAFE, SAFE/PRO, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script

SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere,

SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL Server SNMP SubAgent, SQL Server/CFT, SQL Server/DBM, SQL SMART,
SQL Station, SQL Toolset, SQLJ, Stage Il Engineering, Startup.Com, STEP, SupportNow, Sybase Central, Sybase ClientfaepsgrSpbmse
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQlaBesktop, Sy
SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase User Workbench, Sybase Virtual Server ArchitectusreSybaseW
Syber Financial, SyberAssist, SybMD, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data StreanpriSke Ent
Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model$envElient
Solutions, The Online Information Center, The Power of One, TradeForce, Transact-SQL, Translation Toolkit, Turning ImiaginBeatity,
UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeiber|Writer,

VQL, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, WarehouseArchitect, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, and XP Server are
trademarks of Sybase, Inc. or its subsidiaries.

All other trademarks are property of their respective owners.
Last modified October 2002. Part number 38133-01-0802-01.

Contents

PART ONE

About This Manual........ccccccceeiiiiiiiie e iX
SQL Anywhere Studio documentationccccoeceeeeriiieeenne X
Documentation CONVENLIONS...........ueeiiiiiiiiiiiiiieeee e Xiii
The Adaptive Server Anywhere sample database.................. XVi
Finding out more and providing feedback...............cccccevvuneen. XVii

Introduction to SQL RemMoteooovvvvviiiiiiieeeeeeee e 1

Welcome to SQL REMOLEcoovvvviiiiiiiieeeecie e 3
AbOUt SOQL REMOLE .. .cciiiiieieeeee et 4
ADOUL thisS MAaNUALccoiiiiiiiiiiii e 5

SQL Remote CONCEPLS .oovviiiiiieii e 7
SQL Remote COMPONENTS.......ccuveeiiiiiiiiiiiiee e 8
Publications and SUDSCHPLIONS.........cceeiiiiiiiiiiiec e 11
SQL Remote featuresccuvvievieeiiiiiiiieeeee e 13
Some sample installations ... 15

Setting Up SQL REMOLE ... 19
SELUP OVEIVIEW.....uuiiiiiieeeeeeiiieieee e e e e s s sttere e e e e e s s s snnaneeeeaeessannnes 20
Preparing your Adaptive Server Enterprise server 21
Upgrading SQL Remote for Adaptive Server
0] (=] o] 11T R 25
Uninstalling SQL REMOLE..........ccuiiiiiiiieiiiiee e 26

Tutorials for Adaptive Server Anywhere Users 27
INEFOAUCTION ... 28
Tutorial: Adaptive Server Anywhere replication
using Sybase Central.........cccccceeiiciiiieiie e 31

PART TWO

Tutorial: Adaptive Server Anywhere replication

using Interactive SQL and dbxtract...........cccccceveeeiiiiiiieeeeenn. 39
Start replicating data...........cccce i 46
A sample publiCation ... 50
A Tutorial for Adaptive Server Enterprise Users........... 51
INEFOAUCTION .eeeiieiiieee e 52
Tutorial: Adaptive Server Enterprise replication 55
Start replicating data.........ccccceeeveiiiiiieee e 64
Replication Design for SQL Remoteccccccceeiveeeeeeenns 69
Principles of SQL Remote Designccoeevvvviiiieeeeeennnn, 71
DESIGN OVEIVIEW.....uuviiieieeeeiiitiiieee e e e e e s ssiitee e e e e e s s ssnnnreeeeaeeeeanns 72
How statements are replicatedcccccvvveeeeeeiiiiinieenieeee e, 76
How data types are replicatedcoccvveeeeeeeiiiiiiniiieee e, 81
WHhO gets What?coveeiiiiiiieeee e 84
Replication errors and conflictS...........ccccvcveeeiiicciiieee e, 86
SQL Remote Design for Adaptive Server Anywhere..... 89
DESIgN OVEIVIEW.......eeiiiiiiiiice ittt 90
Publishing datacoooiiiiiiiii e 91
Publication design for Adaptive Server Anywhere................ 100
Partitioning tables that do not contain the
SUDSCIIPLION EXPreSSIONuviviieei i e e e e e e 103
Sharing rows among several subscriptionscccvueee.. 111
Managing CoONfliCtSuuvvveeeiiiiiiece e 120
Ensuring unique primary Keys........ccccccvvvvvvveeeeeeciiiciiieeeeeenn, 129
Creating SUDSCIHPLIONSoocvviiiiiiiiee e 139

SQL Remote Design for Adaptive Server Enterprise.. 141

DESIgN OVEIVIEW.......eeeiiiiiiiee ettt 142
Creating publicationscccccee i, 143
Publication design for Adaptive Server Enterprise 148
Partitioning tables that do not contain the

SUBSCIIPLIoN COIUMN ... 150
Sharing rows among several subscriptionscccvueee.. 158
Managing CoNfliCtSuuvvveeeiiiiiiieec e 166
Ensuring unique primary KeYS.........cccveeviieieiniieee e 176
Creating SUDSCHPLIONScoocvviiiiiiieeeriiee e 182

PART THREE

SQL Remote Administrationcccccceevveeeviiiiiiiiiineeeeen, 185
9 Deploying and Synchronizing Databases.................... 187
DeployMENt OVEIVIEW......uuiiiieeeiiciiiieeee et e e e 188
Test before deploymentcccvvveeeeei e 189
Synchronizing databases........ccccceevvcciiiiiee e 191
Using the extraction Utilitycccocvereeeei i, 193
Synchronizing data over a message Systemcccoceeeenee 201
10 SQL Remote Administrationcccccceevveeevvieiiiiiinneee, 203
Management OVEIVIEWccooiurieeiiieee et e e 204
Managing SQL Remote permissions...........ccccvvveeeeeeeiicvnnnen, 205
USING MESSAJE LYPES...uuiiiiiiieeiiiiiiiieeee e e s e sritrre e e e e e s sneanee s 215
Running the Message Agent.........ccccvveeeeviciivieeeee e, 229
Tuning Message Agent performance..........ccccoccvveeeeeeveinnnn, 234
Encoding and compressing Messages........ccccvveveeeeeeicnvvnnnnn. 241
The message tracking SYStemcccceevvvcvviiieeeecvviciieeeeeeen 243
11 Administering SQL Remote for Adaptive Server Anywhere
.. 247
Running the Message Agent.........cccovveeeeiicciiiieeeee e 248
Error reporting and handlingcccccceeeeiiiicieeee e, 251
Transaction log and backup management...............c............ 255
Using passthrough modeccccvviveeeeeiiiccciieeee e, 267
12 Administering SQL Remote for Adaptive Server Enterprise
.. 271
How the Message Agent for Adaptive Server
ENterprise WOrksScccvvvvvvieee e 272
Running the Message Agent.........cccocvveeeeviicciiieeeee e 277
Error reporting and handlingcccccceeeeiiiiciieeeee e, 279
Adaptive Server Enterprise transaction log and
backup management ... 281
Making schema changes ... 284
Using passthrough modeccccoovieiiiiiiiicinicceee e, 285
13 Using SQL Remote with Replication Server 287
When you need to use the SQL Remote Open
ST AT TR 288

Architecture for Replication Server/SQL Remote
INSLAlALIONS ...eeiiiiiiie e 289

PART FOUR

14

15

16

17

Vi

Setting up SQL Remote Open SErvercccovveeeeevecivvenennn. 292

Configuring Replication Server.........cccoccevvveeeiiiiieee e 295
(011 1= G TS U1 SRR 297
REfEreNCe ..o 299
Utilities and Options Reference.........cccccccvvviiiieeeeeeenn, 301
The MeSSage AQENL......ccoiiiiiiiiiiee e e e e e 302
The Database Extraction Utilityccccccveiiiiiiniiieiiiieen, 311
The SQL Remote Open SErVer........cccoveeiiiiieeeeiiiieeeesiieeens 319
SQL REMOLE OPLIONS.....eeeeiiiiiiieiiiiie et 322
SQL Remote event-hook proceduresccccevveeeeiiiineeenns 327
System Objects for Adaptive Server Anywhere.......... 331
SQL Remote system tablescccoveeeeeiiiiiiiec e, 332
SQL Remote SYStEM VIEWS.......cccocuiviiieeee e eciiiiee e e e e 338
System Objects for Adaptive Server Enterprise.......... 341
SQL Remote system tablescccovvieiiiiiiiiiiiieieeeee 342
SQL ReMOte SYSIEM VIEWSccoiiuiiiiiiiiiie et 350
Stable Queue tables ..., 354

Command Reference for Adaptive Server Anywhere . 359

ALTER REMOTE MESSAGE TYPE statement.................... 361
CREATE PUBLICATION statementccoevevevveeeeiivneeeeennnnn. 362
CREATE REMOTE MESSAGE TYPE statement................. 363
CREATE SUBSCRIPTION statementcoooevveviiniivnnnnnn. 364
CREATE TRIGGER statementccccovviieviiiiiiiincieeeveee, 365
DROP PUBLICATION statement........ccccoevviveiiiiniiiiciiceiines 367
DROP REMOTE MESSAGE TYPE statement..................... 368
DROP SUBSCRIPTION statement.........ccoccoeeviiiiieiiieiniinns 369
GRANT CONSOLIDATE statement.........ccoeeevvieivieiiiiieieneeenn, 370
GRANT PUBLISH statementcooevvviiiiieiiiicieeceeeieeenn, 371
GRANT REMOTE statementcccccoeveeviiiiiieiiiiceieceeeieeeen, 372
GRANT REMOTE DBA statement.........cccceeveveevneieiieneeeeennnn. 373
PASSTHROUGH statementccooevviiiiiiiiiieccieeiceeeeiies 374
REMOTE RESET statement........ccoocvvveiiiiiiiieiieeeceeeeeiies 375
REVOKE CONSOLIDATE statementccooeeevvvevevevnnneennn. 376
REVOKE PUBLISH statement..........ccoooeevviiiiiiiiiiiincieeeiee 377
REVOKE REMOTE statement........c.cooveeeviiiiiiiiiiinceieceie 378
REVOKE REMOTE DBA statementcccoeeeveieieiiiiineinnnnns 379

SET REMOTE OPTION statement..............cccooecviviiineennnnnns 380

START SUBSCRIPTION statementccoeveeeeviviieieieinnnns 381
STOP SUBSCRIPTION statementcoooeeeeiiiiiiiieiieeiinnns 382
SYNCHRONIZE SUBSCRIPTION statement....................... 383
UPDATE Statement......ccuviiiiiiiiciciceee e 384

Command Reference for Adaptive Server Enterprise. 385

sp_add_article procedureccccceevviiiviieeie e 387
sp_add_article_col procedure..........ccccvvveveeeeesiiiciiiienee e 389
sp_add_remote_table procedure..........ccccceveeiiiiiiiiiineeenn, 390
sp_create_publication procedure.........cccccceeeeiviciiiineeeeeiinnnns 392
sp_drop_publication procedure............cccveveeeeiiiiiiiineneee e 393
Sp_drop_remote_type ProCedure........couveverieeeeeriieeeenineens 394
sp_drop_sql_remote proCedureccocuvveernieeeeiniieeesiiee 395
sp_grant_consolidate procedure............cccoevveeiniieienniineeenee, 396
Sp_grant_remote ProCeAUIE.cuveveruereeeiiieeeeriiee e e 398
SP_lINK_Option proCedure...........ccovveeieiiiiiie e 400
sp_modify_article procedure...........cccovvveeeiiiiieeeiiiiee e 402
sp_modify_remote_table procedureccccevveeeeeeeiinnnnen, 404
sp_passthrough procedureccccooeviviieeeee e 406
sp_passthrough_piece procedure..........ccccceeeevviiiiiieeeeeeninnnns 407
sp_passthrough_stop procedurecccoceveeeeiiiiiiiieeeeeeeeinns 409
sp_passthrough_subscription procedure...........cccccceeeeeenneee. 410
sp_passthrough_user procedure..........ccccceveeeeviciiiieeeeeeeennnns 411
sp_populate_sqgl_anywhere procedure.............cccvveeereeennnnns 412
SP_publisher proCedurecccoieeieiiiieieiee e 413
Sp_queue_clean procedureccevevieeieiiieee e 414
sp_queue_confirmed_delete_old procedure 415
sp_queue_confirmed_transaction procedure 416
sp_queue_delete_old procedureccccceeeeeeiiiiiiiiieneeennns 417
Sp_queue_drop ProCeAUIE........uuveeeiiiiciriieeeee e e e scierreeeeeeeannnes 418
sp_queue_dump_database procedure............cccccvveereeennnnns 419
sp_queue_dump_transaction procedureccccceeeerernnnnen. 420
Sp_queue_get_state procedureccccveeeeeeeeiiiiiiineeeee s 421
sp_queue_log_transfer_reset procedure..........ccccccveeevinnnen. 422
Sp_queue_read ProCeAUIE.........cciiueeieriieeeeiiieee e 423
SPp_queue_resSet ProCeAUIEcocueeierieeeeeiiieee e e s 424
Sp_queue_set_confirm procedurecccovceeeeiiiieeenninenn, 425
Sp_queue_set_progress ProCedurecccceeeevcevereeeeaeenannnns 426
Sp_queue_transaction procedureccccoeveeeeriineeennneens 427
SP_remote ProCEAUINEceiiiiiiie ettt 428
Sp_remote_option ProCedUreccecvvieeeeeeeeiiciiieeeee e e 429
Sp_remote_type ProCeAUIcccccvvreeeeeeeiiiiiiee e e e e e e 430
sp_remove_article procedurecccoecvvveveeeeeiiiiciinenee e 431
sp_remove_article_col procedure..........ccccceeeeeiiiiiiineneeeeninnns 432

vii

PART FIVE

viii

sp_remove_remote_table procedure...........ccooceveeeiiiciinennnnn. 433

sp_revoke_consolidate procedure........ccccceeevevviveeereeeiecnnnee, 434
Sp_revoke_remote ProCeduUre........coouvveeriieeeiiiiieee e 435
SP_SUDSCription ProCedure.........ocuveiiiieeee e 436
Sp_subscription_reset procedure.........cccceeveviiiiieeeeee e, 437
APPENIX ..o 439

SQL Remote for Adaptive Server Enterprise and Adaptive

Server Anywhere: Differences........ccccvevveevvviiiiiiiiinnnnn. 441
Types Of dIfferenCecueveeiiiiiiiiii e 442
Differences in functionality..........ccccccceeiiiiiiiiieen e, 443
Differences in approach.........cccccceeeeiiiiciiiieece e 444
Limitations for Enterprise to Enterprise replication 446

Supported Platforms and Message LinkS.................... 449
Supported Message SYSIEMSeeeeiiiieeeiiiieee e 450
Supported operating SYStEMSccoiiieieeiiiieeeiiieeeiieeee s 451

T Lo 1= SRR 453

About This Manual

Subject

Audience

Before you begin

This book describes all aspects of the SQL Remote data replication system
for mobile computing, which enables sharing of data between a single
Adaptive Server Anywhere or Adaptive Server Enterprise database and many
Adaptive Server Anywhere databases using an indirect link such as e-mail or
filetransfer.

Thisbook isfor users of Adaptive Server Anywhere and Adaptive Server
Enterprise who wish to add SQL Remote replication to their information
systems.

& For acomparison of SQL Remote with other replication technologies,
see "Replication Technologies' on page 19 of the book I ntroducing SQL
Anywhere Sudio.

SQL Anywhere Studio documentation

Thisbook is part of the SQL Anywhere documentation set. This section
describes the books in the documentation set and how you can use them.

The SQL Anywhere Studio documentation set

The SQL Anywhere Studio documentation set consists of the following
books:

¢

Introducing SQL Anywhere Studio Thisbook provides an overview
of the SQL Anywhere Studio database management and synchronization
technologies. It includes tutorials to introduce you to each of the pieces
that make up SQL Anywhere Studio.

What’'s New in SQL Anywhere Studio Thisbook isfor users of
previous versions of the software. It lists new featuresin this and
previous rel eases of the product and describes upgrade procedures.

Adaptive Server Anywhere Getting Started Thisbook isfor people
new to relational databases or new to Adaptive Server Anywhere. It
provides a quick start to using the Adaptive Server Anywhere database-
management system and introductory material on designing, building,
and working with databases.

Adaptive Server Anywhere Database Administration Guide This
book covers material related to running, managing, and configuring
databases.

Adaptive Server Anywhere SQL User’'s Guide Thisbook describes
how to design and create databases; how to import, export, and modify
data; how to retrieve data; and how to build stored procedures and
triggers.

Adaptive Server Anywhere SQL Reference Manual Thisbook
provides a complete reference for the SQL language used by Adaptive
Server Anywhere. It also describes the Adaptive Server Anywhere
system tables and procedures.

Adaptive Server Anywhere Programming Guide Thisbook
describes how to build and deploy database applications using the C,
C++, and Java programming languages. Users of tools such as Visual
Basic and PowerBuilder can use the programming interfaces provided
by those tools.

¢ Adaptive Server Anywhere Error Messages Thisbook provides a
complete listing of Adaptive Server Anywhere error messages together
with diagnostic information.

¢ Adaptive Server Anywhere C2 Security Supplement Adaptive
Server Anywhere 7.0 was awarded a TCSEC (Trusted Computer System
Evaluation Criteria) C2 security rating from the U.S. Government. This
book may be of interest to those who wish to run the current version of
Adaptive Server Anywhere in a manner eguivalent to the C2-certified
environment. The book does not include the security features added to
the product since certification.

¢ MobiLink Synchronization User’'s Guide Thisbook describes all
aspects of the MobiLink data synchronization system for mobile
computing, which enables sharing of data between a single Oracle,
Sybase, Microsoft or IBM database and many Adaptive Server
Anywhere or Ultral ite databases.

¢ SQL Remote User's Guide Thisbook describes all aspects of the
SQL Remote data replication system for mobile computing, which
enables sharing of data between a single Adaptive Server Anywhere or
Adaptive Server Enterprise database and many Adaptive Server
Anywhere databases using an indirect link such as e-mail or file transfer.

¢ UltraLite User’s Guide Thisbook describes how to build database
applications for small devices such as handheld organizers using the
UltraL ite deployment technology for Adaptive Server Anywhere
databases.

4 UltraLite User’s Guide for PenRight! MobileBuilder Thisbook isfor
users of the PenRight! MobileBuilder development tool. It describes
how to use UltralL ite technology in the MobileBuilder programming
environment.

¢ SQL Anywhere Studio Help Thisbook is provided online only. It
includes the context-sensitive help for Sybase Central, Interactive SQL,
and other graphical tools.

In addition to this documentation set, SQL Modeler and InfoMaker include
their own online documentation.

Documentation formats

SQL Anywhere Studio provides documentation in the following formats:

Xi

Xii

Online books The online books include the complete SQL Anywhere
Studio documentation, including both the printed books and the context-
sensitive help for SQL Anywhere tools. The online books are updated
with each maintenance release of the product, and are the most complete
and up-to-date source of documentation.

To access the online books on Windows operating systems, choose
Startd Programs] Sybase SQL Anywhere 800 Online Books. Y ou can
navigate the online books using the HTML Help table of contents,
index, and search facility in the |eft pane, and using the links and menus
in the right pane.

To access the online books on UNIX operating systems, run the
following command at a command prompt:

dbbooks

Printable books The SQL Anywhere books are provided as a set of
PDF files, viewable with Adobe Acrobat Reader.

The PDF files are available on the CD ROM in the pdf docs directory.
Y ou can choose to install them when running the setup program.

Printed books The following books are included in the
SQL Anywhere Studio box:

¢ Introducing SQL Anywhere Sudio.
¢ Adaptive Server Anywhere Getting Started.

¢ SQL Anywhere Studio Quick Reference. Thisbook is available only
in printed form.

The complete set of books is available as the SQL Anywhere
Documentation set from Sybase sales or from e-Shop, the Sybase online
store, at http://e-shop.sybase.com/cgi-bin/eshop.storefront/.

Documentation conventions

This section lists the typographic and graphical conventions used in this
documentation.

Syntax conventions

The following conventions are used in the SQL syntax descriptions:

¢

Keywords All SQL keywords are shown like the words ALTER
TABLE in the following example:

ALTER TABLE [owner.]table-name

Placeholders Itemsthat must be replaced with appropriate identifiers
or expressions are shown like the words owner and table-name in the
following example.

ALTER TABLE [owner.]table-name

Repeating items Lists of repeating items are shown with an element
of thelist followed by an ellipsis (three dots), like column-constraint in
the following example:

ADD column-definition [column-constraint, ...]

One or more list elements are allowed. If more than one is specified,
they must be separated by commas.

Optional portions Optional portions of a statement are enclosed by
sguare brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-nameis optional. The
sguare brackets should not be typed.

Options When none or only one of alist of items can be chosen,
vertical bars separate the items and the list is enclosed in square
brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square
brackets should not be typed.

Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces.

[QUOTES { ON | OFF }]

Xiii

If the QUOTES option is chosen, one of ON or OFF must be provided.
The brackets and braces should not be typed.

¢ Oneor more options |If you choose more than one, separate your
choices with commas.

{ CONNECT, DBA, RESOURCE }

Graphic icons

The following icons are used in this documentation:

Xiv

Icon

Meaning

9

¢ O

API

A client application.

A database server, such as Sybase Adaptive Server
Anywhere or Adaptive Server Enterprise.

An UltraLite application and database server. In
Ultral ite, the database server and the application are
part of the same process.

A database. In some high-level diagrams, the icon
may be used to represent both the database and the
database server that managesit.

Replication or synchronization middleware. These
assist in sharing data among databases. Examples are
the MobiLink Synchronization Server, SQL Remote
Message Agent, and the Replication Agent (Log
Transfer Manager) for use with Replication Server.

A Sybase Replication Server.

A programming interface.

XV

The Adaptive Server Anywhere sample database

XVi

Many of the exampl es throughout the documentation use the Adaptive
Server Anywhere sample database.

The sample database is held in afile named asademo.db, and is located in
your SQL Anywhere directory.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and finances) as
well as product information and sales information (sales orders, customers,
and contacts). All information in the database is fictional.

The following figure shows the tables in the sample database and how they

relate to each other.

id pﬂr.lju?nt(eger sales_order_items g empl<o3lfe.
name char(15) id <pk.fk> integer %er id e :z?;g
description char(30) - line_id <pk> smallint emp fnaFne char(20)
size char(18) id = prod_id | prod_id <fk> integer empilname char(20)
color char(6) quantity integer dept_id <fk> integer
quantity integer ship_date date stre(;! char(40)
unit_price numeric(15,2) city char(20)
d=id state char(4)
emp_id = sales_rep | zip_code char(9)
phone char(10)
customer status char(1)
ss_number char(11)
id <pk> integer sales_order salary numeric(20,3)
fname char(15) id <pk> integer start_date date '
Iname char(20) cust_id <fk> integer termination date date
address char(35) | g order_date date birth date date
city char(20) id=cust_id | fin_code_id <fk> char(2) bene health ins char(1)
state char(2) region char(7) bene_life_ins char(1)
zip char(10) sales_rep <fk> integer bene_day_ care char(1)
phone char(12) T sex char(1)
company_name char(35) code = fin_code_id
fin_code
<pk> 2)
contact % <ol Z:::éo) dept_id = dept_id
id <ple integer description char(50) emp_id = dept_head_id
last_name char(15)
first_name char(15)
title char(2) code = code
street char(30) !
city char(20) fin_data
state char(2) year <pk> char(4) department
zip char(5) quarter <pk> char(2) dept_id <pk> integer
phone char(10) code <pkfk> char(2) dept_name char(40)
fax char(10) amount numeric(9) dept_head_id <fk> integer

Finding out more and providing feedback

We would like to receive your opinions, suggestions, and feedback on this
documentation.

Y ou can provide feedback on this documentation and on the software
through newsgroups set up to discuss SQL Anywhere technologies. These
newsgroups can be found on the forums.sybase.com news server.

The newsgroups include the following:

¢ sybase.public.sglanywhere.general.

¢ sybase.public.sglanywhere.linux.

¢ sybase.public.sglanywhere.mobilink.

¢ sybase.public.sglanywhere.product_futures_discussion.
¢ sybase.public.sglanywhere.replication.

.

sybase.public.sglanywhere.ultralite.

Newsgroup disclaimer

iAnywhere Solutions has no obligation to provide solutions, information
or ideas on its newsgroups, nor isiAnywhere Solutions obliged to provide
anything other than a systems operator to monitor the service and insure
its operation and availability.

iAnywhere Solutions Technical Advisors as well as other staff assist on
the newsgroup service when they have time available. They offer their
help on a volunteer basis and may not be available on aregular basisto
provide solutions and information. Their ability to help is based on their
workload.

XVii

XViii

PART ONE
Introduction to SQL Remote

This part describes the concepts, architecture, and features of SQL Remote.
The material in this part refers to both SQL Remote for Adaptive Server
Anywhere and SQL Remote for Adaptive Server Enterprise.

CHAPTER 1

Welcome to SQL Remote

About this chapter This chapter introduces SQL Remote and the documentation.
ntent .
Contents Topic Page
About SQL Remote 4

About this manual 5

About SQL Remote

About SQL Remote

SQL Remoteis a data-replication technology designed for two-way
replication between a consolidated data server and large numbers of remote
databases, typically including many mobile databases.

SQL Remote replication is message based, and requires no direct
server-to-server connection. An occasional dial-up or email link is
sufficient.

Administration and resource requirements at the remote sites are minimal.
The time lag between the consolidated and remote databases is configurable,
and can range from minutes to hours or days.

Sybase SQL Remote technology is provided in two forms:

¢ SQL Remote for Adaptive Server Anywhere Enables replication
between a consolidated Adaptive Server Anywhere database and alarge
number of remote databases.

¢ SQL Remote for Adaptive Server Enterprise Enablesreplication
between a consolidated Adaptive Server Enterprise database and alarge
number of remote Adaptive Server Anywhere databases.

This book describes both of these technologies.

In a SQL Remote installation, you must have properly licensed SQL Remote
software at each participating database.

& For adetailed introduction to SQL Remote concepts and features, see
"SQL Remote Concepts' on page 7.

& For alist of supported operating systems and message links, see
"Supported Platforms and Message Links' on page 449.

Chapter 1 Welcome to SQL Remote

About this manual

This manual describes how to design, build, and maintain SQL Remote
installations.

The manual includes the following parts.

¢ Introduction to SQL Remote Replication concepts and features of
SQL Remote.

¢ Replication Design for SQL Remote Designing SQL Remote
installations.

¢ SQL Remote Administration Deploying SQL Remote databases and
administering a running SQL Remote setup.

¢ Reference SQL Remote commands, system tables, and other
reference material.

Product installation

This section describes installation of SQL Remote for Adaptive Server
Enterprise. If you obtained SQL Remote as part of another product, consult
the installation instructions for the product you purchased.

To install the SQL Remote software (Windows):
1 Insert the CD-ROM into your CD-ROM drive.

2 If theinstallation program does not start automatically, start the setup
application on the CD-ROM.

3 Follow theinstructionsin the installation program.

To install the SQL Remote software (UNIX):

¢ Consult theinstructions for your operating system in the Adaptive Server
Anywhere Read Me First booklet.

& If you are using SQL Remote for Adaptive Server Enterprise, you must
install SQL Remote into any database you wish to replicate. For information
about installing SQL Remote into a database, see " Setting Up SQL Remote"

on page 19.

About this manual

CHAPTER 2

SQL Remote Concepts

About this chapter This chapter introduces the concepts, design goals, and features of
SQL Remote.
Contents i
Topic Page
SQL Remote components 8
Publications and subscriptions 11
SQL Remote features 13

Some sample installations 15

SQL Remote components

SQL Remote components

The following components are required for SQL Remote:

¢ Dataserver An Adaptive Server Anywhere or Adaptive Server
Enterprise database-management system is required at each site to
maintain the data.

¢ Message Agent A SQL Remote Message Agent isrequired at the
consolidated site and at each remote site to send and receive
SQL Remote messages.

The Message Agent connects to the data server by aclient/server
connection. It may run on the same machine as the data server or on a
different machine.

¢ Database extraction utility The extraction utility is used to prepare
remote databases from a consolidated database, during development and
testing, and also at deployment time.

¢ Message system client software SQL Remote uses existing message
systems to transport replication messages. A file-sharing "message
system" is provided, which does not require client software. Each
computer involved in SQL Remote replication using a message system
other than file sharing must have that message system installed.

¢ Client applications The applications that work with SQL Remote
databases are standard client/server database applications.

Message
system
transport

Data server

Message Message
Agent system client

CHAPTER 2 SQL Remote Concepts

The data server

The data server may be an Adaptive Server Enterprise or an Adaptive Server
Anywhere server. At the remote site the data server is commonly an
Adaptive Server Anywhere persona server, but can also be an Adaptive
Server Enterprise or Adaptive Server Anywhere server.

Client applications

Client applications work with the data in the database. Client applications
use one of the client/server interfaces supported by the data server:

¢ For Adaptive Server Anywhere, the client application may use ODBC,
Embedded SQL, or Sybase Open Client to work with Adaptive Server
Anywhere.

¢ For Adaptive Server Enterprise, the client application may use one of the
Sybase Client Server interfaces, ODBC, or Embedded SQL.

Client applications do not have to know if they are using a consolidated or
remote database. From the client application perspective, thereisno
difference.

The Message Agent

The SQL Remote M essage Agent sends and receives replication messages.
Itisaclient application that sends and receives messages from database to
database. The Message Agent must be installed at both the consolidated and
at the remote sites.

For Adaptive Server Anywhere, the Message Agent is a program called
dbremote.exe on PC operating systems, and dbremote on UNIX.

For Adaptive Server Enterprise, the Message Agent is a program called
ssremote.exe on PC operating systems, and ssremote on UNIX.

SQL Remote components

Message
System

Message Agent Message Agent

Remote
database

Consolidated
database

Message system client

10

If you are using a shared file message system, no message system client is
needed.

If you are using an e-mail or other message system, you must have a message
system for that client in order to send and receive messages.

CHAPTER 2 SQL Remote Concepts

Publications and subscriptions

Data is organized
into publications

Messages are
always sent both
ways

The datathat is replicated by SQL Remoteis arranged in publications. Each
database that shares information in a publication must have a subscription to
the publication.

The publication is a database object describing data to be replicated. Remote
users of the database who wish to receive a publication do so by subscribing
to apublication.

A publication may include data from several database tables. Each table's
contribution to a publication is called an article. Each article may consist of
awhole table, or a subset of the rows and columnsin atable.

A two-table publication

vIivIiviIiv v
v IV IV |V |V
Vivi ivivi]v + v v
vIivIiviIiv v v v
Vi ivi v I v |V v v
Article 1: all of Article 2: some rows and
table A columns from table B

Periodically, the changes made to each publication in a database are
replicated to all subscribers to that publication. These replications are called
publication updates.

Remote databases subscribe to publications on the consolidated database so
that they can receive data from the consolidated database. To do this, a
subscription is created at the consolidated database, identifying the
subscriber by name and by the publication they are to receive.

SQL Remote always involves messages being sent two ways. The
consolidated database sends messages containing publication updates to
remote databases, and remote databases also send messages to the
consolidated database.

11

Publications and subscriptions

Both databases
subscribe

Synchronizing a
remote database

12

For example, if datain a publication at a consolidated database is updated,
those updates are sent to the remote databases. And even if the datais never
updated at the remote database, confir mation messages must still be sent
back to the consolidated database, to keep track of the status of the
replication.

M essages must be sent both ways, so not only does a remote database
subscribe to a publication created at the consolidated database, but the
consolidated database must subscribe to a corresponding publication created

at the remote database.
Data updates and
receipt confirmations

Publish Subscribe

Data updates and
receipt confirmations

Consolidated | Subscribe Publish Remote
database database

When remote database users modify their own copies of the data, their
changes are replicated to the consolidated database. When the messages
containing the changes are applied at the consolidated database the changes
become part of the consolidated database’s publication, and are included in
the next round of updates to all remote sites (except the one it came from). In
this way, replication from remote site to remote site takes place viathe
consolidated database.

When a subscription isinitially set up, the two databases must be brought to
a state where they both have the same set of information, ready to start
replication. This process of setting up a remote database to be consistent with
the consolidated database is called synchronization. Synchronization can be
carried out manually, but the database extraction utility automates the
process. Y ou can run the Extraction utility as a command-line utility or, if
you are using an Adaptive Server Anywhere consolidated database, from
Sybase Central.

The appropriate publication and subscription are created automatically at
remote databases when you use the SQL Remote database extraction utility
to create aremote database.

CHAPTER 2 SQL Remote Concepts

SQL Remote features

The following features are key to SQL Remote’s design.

Support for many subscribers SQL Remoteis designed to support
replication with many subscribers to a publication.

Thisfeature is of particular importance for mobile workforce applications,
which may require replication to the laptop computers of hundreds or
thousands of sales representatives from a single office database.

Transaction log-based replication SQL Remote replication is based on
the transaction log. This enablesit to replicate only changes to data, rather
than al data, in each update. Also, log-based replication has performance
advantages over other replication systems.

The transaction log is the repository of all changes made to a database.
SQL Remote replicates changes made to databases as recorded in the
transaction log. Periodically, all committed transactions in the consolidated
database transaction log belonging to any publication are sent to remote
databases. At remote sites, all committed transactions in the transaction log
are periodically submitted to the consolidated database.

By replicating only committed transactions, SQL Remote ensures proper
transaction atomicity throughout the replication setup and maintains a
consistency among the databases involved in the replication, albeit with
some time lag while the datais replicated.

Central administration SQL Remoteis designed to be centrally
administered, at the consolidated database. Thisis particularly important for
mobile workforce applications, where laptop users should not have to carry
out database administration tasks. It is aso important in replication involving
small offices that have servers but little in the way of administration
resources.

Administration tasks include setting up and maintaining publications, remote
users, and subscriptions, as well as correcting errors and conflicts if they
occeur.

Economical resource requirements The only software required to run
SQL Remote in addition to your Adaptive Server Anywhere or Adaptive
Server Enterprise DBMS isthe Message Agent, and a message system. If
you use the shared file link, no message system software is required aslong
as each remote user ID has access to the directory where the message files
are stored.

13

SQL Remote features

14

Memory and disk space requirements have been kept moderate for all
components of the replication system, so that you do not haveto invest in
extra hardware to run SQL Remote.

Multi-platform support SQL Remoteis provided on a number of
operating systems and message links.

& For alist of supported environments, see " Supported Platforms and
Message Links' on page 449.

CHAPTER 2 SQL Remote Concepts

Some sample installations

While SQL Remote can provide replication services in many different
environments, its features are designed with the following characteristicsin
mind:

¢ SQL Remote should be a solution even when no administration load can
be assigned to the remote databases, as in mobile workforce
applications.

¢ Data communication among the sites may be occasional and indirect: it
need not be permanent and direct.

¢ Memory and resource requirements at remote sites are assumed to be at
apremium.

The following examples show some typical SQL Remote setups.

Server-to-laptop replication for mobile workforces

SQL Remote provides two-way replication between a database on an office
network and personal databases on the laptop computers of sales
representatives. Such a setup may use an e-mail system as a message
transport.

15

Some sample installations

16

Consolidated

database

server

0O
| — I
®
Remote o
é S database Remote
Z S database

Laptop computer

Laptop computer
: :| D
:|@ o]
Remote ——— Remote
é S database é &§ database

Laptop computer Laptop computer

The office server may be running a server to manage the company database.
The Message Agent at the company database runs as a client application for
that server.

At the laptop computers each sales representative has an Adaptive Server
Anywhere personal server to manage their own data.

While away from the office, a sales representative can make a single phone
call from their laptop to carry out the following functions:

¢ Collect new e-mail.

¢ Send any e-mail messages they have written.

¢ Collect publication updates from the office server.
.

Submit any local updates, such as new orders, to the office server.

The updates may include, for example, new specials on the products the sales
representative handles, or new pricing and inventory information. These are
read by the Message Agent on the laptop and applied to the salesrep’s
database automatically, without requiring any additional action on the sales
representative’s part.

The new orders recorded by the sales representative are also automatically
submitted to the office without any extra action on the part of the sales
representative.

CHAPTER 2 SQL Remote Concepts

Server-to-server replication among offices

SQL Remote provides two-way replication between database servers at sales
offices or outlets and a central company office, without requiring database
administration experience at each sales office beyond the initial setup and
that required to maintain the server.

SQL Remoteis not designed for up-to-the-minute data availability at each
site. Instead, it is appropriate where data can be replicated at periods of an
hour or so.

Such a setup may use an e-mail system to carry the replication, if thereis
already a company-wide e-mail system. Alternatively, an occasional dial-up
system and file transfer software can be used to implement a FILE message

wstem.
1
.
- Central office
HHHHHHH database
A [0o0o0o N —
Central office
network server
More...
—J
|| office Office
HHHHHHH database database
— looooon —
Sales office server Sales office server
More...
- 1 - — "]
— —
Desktop computer Desktop computer

SQL Remoteis easy to configure to allow each office to receive their own
set of data. Tablesthat are of office interest only (staff records, perhaps, if
the office is a franchise) may be kept private in the same database as the
replicated data.

17

Some sample installations

Layers can be added to SQL Remote hierarchies: for example, each sales
office server could act as a consolidated database, supporting remote
subscribers who work from that office.

18

CHAPTER 3

Setting Up SQL Remote

About this chapter This chapter describes how to add SQL Remote capabilities to your Adaptive
Server Enterprise server.

Adaptive Server Enterprise users only

This chapter is required only for users of SQL Remote for Adaptive
Server Enterprise. SQL Remote capability is automatically installed into
Adaptive Server Anywhere databases.

This chapter assumes you have already installed the SQL Remote
software onto your machine.

Contents Topic Page
Setup overview 20
Preparing your Adaptive Server Enterprise server 21
Upgrading SQL Remote for Adaptive Server Enterprise 25
Uninstalling SQL Remote 26

19

Setup overview

Setup overview

Setup tasks

All administration is
at the consolidated
database

20

We call the collection of databases exchanging information using

SQL Remote an installation. From a physical point of view, a SQL Remote
installation may consist of hundreds or even thousands of databases sharing
information; but as SQL Remote keeps the information in each physical
database loosdly consistent at atransactional level with that in other physical
databases, you can also think of the whole installation as a single disper sed
database.

Deploying alarge-scale SQL Remote installation can involve setting up
databases on many machines. While some changes to the design and setup
configuration can be made on arunning installation, it is highly
recommended that you deploy only when you have completed a careful
analysis and test of your design.

Setup of a SQL Remote installation includes the following tasks:

¢ Preparing your server for SQL Remote Y ou must take some stepsto
configure your Adaptive Server Enterprise to act as a SQL Remote site.
Theseinclude installing the SQL Remote system objects and the stable
gueue system objects.

¢ Selecting message types Y ou must decide whether you want to
exchange information by file sharing, e-mail, some other message type,
or a combination.

¢ Ensuring proper permissions are set Each user in the installation
requires permissions on both their own database and on the consolidated
database.

¢ Extracting remote databases You must extract aninitial copy of
each remote database from the consolidated database.

This chapter describes each of these tasks.

Like all SQL Remote administrative tasks, setup is carried out by a database
administrator or system administrator at the consolidated database.

The Sybase System Administrator should perform al SQL Remote
configuration tasks. See your Adaptive Server Enterprise documentation for
more information about the Adaptive Server Enterprise environment.

Chapter 3 Setting Up SQL Remote

Preparing your Adaptive Server Enterprise

server
Before you start This section assumes the following:
¢ Youhaveinstaled an Adaptive Server Enterprise server that isto
contain the SQL Remote database.
¢ You haveinstalled the SQL Remote software on your computer. To
install the SQL Remote software, run the setup program from the
CD-ROM.
¢ You have created a database in the Adaptive Server Enterprise server
that will take part in your SQL Remote installation.
¢ You have system administrator permissions on the Adaptive Server

Enterprise server, and database owner permissions in the database.

Ensuring TEMPDB is large enough

SQL Remote uses the TEMPDB database for the following purposes:

¢

The database extraction utility used to create remote databases uses
TEMPDB to hold atemporary set of Adaptive Server Anywhere system
tables.

The Message Agent creates atemporary table called #r emote when it
connects to the server.

For these reasons, you should make TEMPDB larger than the 2 Mb default
size. The size required depends on the number of tables and columnsin your
SQL Remoteinstallation, but asize of 10 Mb is generally sufficient.

Installing the SQL Remote system objects

For a database in your Adaptive Server Enterprise server to take partin a
SQL Remote installation, you must install a number of SQL Remote system
tables, views, and stored procedures in your database.

« To install the SQL Remote system objects:

1

Locate the SQL Remote initialization script ssremote.sqgl in your
SQL Remote installation directory.

21

Preparing your Adaptive Server Enterprise server

2 Make abackup copy of the ssremote.sql script file. Then add the

following two lines to the beginning of ssremote.sql:

use dat abase_nane
go

where database_name is the name of the database to take part in
SQL Remote replication.

These two lines set the current database to database name, so that the
SQL Remote tables are created in the database name database. The
SQL Remote tables are owned by the database owner.

Run the script against your Adaptive Server Enterprise server.

Change to the directory containing the script file and enter the following
command line (which should be entered all on oneline) to run the script:

isql -S server-name -U login_id -P password -i
ssrenote.sql -o logfile

where server-name is the name of the Adaptive Server Enterprise,
login_id and password correspond to a user with system administrator
permissions on the server who owns the database, and logfile is the
name of alog file to hold the log information from the script.

& Thelogin_id must correspond to the name used by the Message
Agent. For more information, see "The Message Agent and replication
security" on page 277.

Inspect the log file to confirm that the tables and procedures were
created without error.

The script creates a set of SQL Remote system objects in the database.

The SQL Remote system objects

22

The script creates the following objects in the database:

¢

SQL Remote system tables A set of tables used to maintain
SQL Remote information. These tables have names beginning with sr_.

SQL Remote system views A set of views that hold the SQL Remote
information in a more understandable form. These views have names
beginning with sr_, and ending in s.

SQL Remote system procedures A set of stored procedures used to
carry out SQL Remote configuration and administration tasks. These
procedures have names beginning with sp_, indicating their system
management roles.

Chapter 3 Setting Up SQL Remote

Caution: Do not edit the SQL Remote system tables

Do not, under any circumstances, alter the SQL Remote system tables
directly. Doing so may corrupt the table and make it impossible for

L Remote to function properly. Use the SQL Remote system procedures
to carry out all system administration tasks.

Command-line installation of the stable queue

The stable queueis apair of database tables that hold transactions until they
are no longer needed by the replication system. Every Adaptive Server
Enterprise database participating in a SQL Remote installation needs a stable
queue.

& For detailed information about the stable queue, see "The stable queue’
on page 273.

The stable queue can exist in the same database as the database taking part in
SQL Remote, or in a separate database. Keeping the stable queuein a
separate database complicates the backup and recovery plan, but can improve
performance by putting the stable queue workload on separate devices and/or
a separate Adaptive Server Enterprise server.

< To install the stable queue:

1 Locatethe stable queueinitialization script stableg.sqgl in your
SQL Remote installation directory.

2 Make abackup copy of the stableq.sql script file. Then add the
following two lines to the beginning of stableq.sql:

use dat abase_nane

go
where database_name is the name of the database that will hold the
stable queue.

These two lines set the current database to database _name, so that the
stable queue is created in the database_name database. The stable queue
tables are owned by the database owner.

3 Runthe script against your Adaptive Server Enterprise server.

Change to the directory holding the stable queue script, and enter the
following command line (which should be entered all on oneline) to run
the script:

isql -S server-name -U login_id -P password -i
STABLEQ SQL -0 /ogfile

23

Preparing your Adaptive Server Enterprise server

24

where server-name is the name of the Adaptive Server Enterprise,
login_id and password correspond to a user with system administrator
permissions on the server who owns the database, and logfile isthe
name of alog file to hold the log information from the script.

& Thelogin_id must correspond to the name used by the Message
Agent. For more information, see "The Message Agent and replication
security” on page 277.

Inspect the log file to confirm that the tables and procedures were
created without error.

Chapter 3 Setting Up SQL Remote

Upgrading SQL Remote for Adaptive Server

Enterprise

This section describes the procedure for upgrading SQL Remote for
Adaptive Server Enterprise.

AsaSQL Remote installation may consist of alarge number of databases, it
isgenerally not practical to upgrade software on all machines at the same
time. SQL Remote is designed so that upgrades can be carried out
incrementally. It is not important what order SQL Remote machines are
upgraded, as the message format is compatible with previous rel eases.

To upgrade SQL Remote:

1 Back up both the consolidated database and, if it is separate, the stable
gueue database.

Install the new SQL Remote for Adaptive Server Enterprise software.

3 Runthe script ssupdate.sql at the consolidated database to upgrade the
SQL Remote system tables and procedures.

The ssupdate.sql script is held in your Sybase directory.

4 Runthe script squpdate.sql at the stable queue database to upgrade the
SQL Remote stable queue tables and procedures.

The squpdate.sql script is held in your Sybase directory.

The software is now upgraded.

25

Uninstalling SQL Remote

Uninstalling SQL Remote

26

This section describes how to uninstall the SQL Remote objects from a
database, and uninstall the stable queue from a database.

+ To uninstall the SQL Remote objects from a database:

1

Connect to the database containing the SQL Remote objects, as a user
with dbo permissions.

Run the sp_drop_sqgl_remote stored procedure to remove all
SQL Remote objects apart from the procedure itself. The
sp_drop_sgl_remote procedureisinstalled along with the other
SQL Remote objects.

exec sp_drop_sql _renote

go
Drop the sp_drop_sqgl_remote procedure to complete the uninstall
procedure.

drop procedure sp_drop_sqgl _renote
go

% To uninstall the stable queue from a database:

1

Connect to the database containing the stable queue, as a user with dbo
permissions.

Run the sp_queue_drop stored procedure to remove all stable queue
objects apart from the procedure itself. The sp_queue _drop procedure
isinstalled along with the other stable queue objects.

exec sp_queue_drop

go
Drop the sp_queue _drop procedure itself, to complete the uninstall
procedure.

drop procedure sp_queue_drop
go

CHAPTER 4

Tutorials for Adaptive Server Anywhere

Users

About this chapter

Contents

This chapter guides you through setting up a simple replication system using

Adaptive Server Anywhere.

Topic Page
Introduction 28
Tutorial: Adaptive Server Anywhere replication using Sybase Central 31
Tutorial: Adaptive Server Anywhere replication using

Interactive SQL and dbxtract 39
Start replicating data 46

A sample publication 50

27

Introduction

Introduction

Goals

The database

Database schema

28

These tutorials describe how to set up a simple SQL Remote replication
system using Adaptive Server Anywhere.

In the tutorials you act as the system administrator of a consolidated
Adaptive Server Anywhere database, and set up a simple replication system.
The replication system consists of a simple sales database, with two tables.

The consolidated database holds all of the database, while the remote
database has all of one table, but only some of the rowsin the other table.

The tutorials take you through the following steps:

¢ Creating a consolidated database on your Adaptive Server Anywhere
server.

¢ Creating afile-sharing replication system with a single Adaptive Server
Anywhere remote database.

¢ Replicating data between the two databases.

Thetutorials use a simple two-table database. One table holds information
about sales representatives, and the other about customers. The tables are
much simpler than you would usein areal database; this alows us to focus
just on those issues important for replication.

The database schema for the tutorialsisillustrated in the figure.

Customer SalesRep
cust_key char(10) rep_key = rep_key char(5)
name char(40) rep_key name char(40)
rep_key char(5)

Features to note include the following:

¢ Each sales representative is represented by one row in the SalesRep
table.

¢ Each customer is represented by one row in the Customer table.

Chapter 4 Tutorials for Adaptive Server Anywhere Users

¢ Each customer is assigned to a single sales representative, and this
assignment is built in to the database as a foreign key from the Customer
table to the SalesRep table. The relationship between the Customer table
and the SalesRep table is many-to-one.

The tables in the The tables are described in more detail as follows:
database
Table Description
SalesRep One row for each sales representative that works for the

company. The SalesRep table has the following columns:

¢ rep_key Anidentifier for each sales representative. Thisis
the primary key.

4 name The name of each sales representative.

The SQL statement creating thistableis as follows:

CREATE TABLE Sal esRep (
rep_key CHAR(12) NOT NULL,
nane CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

Customer

Replication goals

One row for each customer that does business with the
company. The Customer table includes the following columns:

4 cust_key Anidentifier for each customer. Thisisthe
primary key.
4 name The name of each customer.

4 rep_key An identifier for the sales representativein asales
relationship. Thisisaforeign key to the SalesRep table.

The SQL statement creating thistableis as follows:

CREATE TABLE Custoner (
cust _key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
rep_key CHAR(12) NOT NULL,
FOREI GN KEY (rep_key)
REFERENCES Sal esRep (rep_key),
PRI MARY KEY (cust _key)

The goals of the replication design are to provide each sales representative
with the following information:

¢ Thecomplete SalesRep table.

¢ Those customers assigned to them.

29

Introduction

The tutorials describe how to meet this goal using SQL Remote.

Sybase Central or command-line utilities

Use Sybase The tutorial materia is presented twice. One tutorial describes how to set up
Central or the theinstallation using the Sybase Central management utility. The second
command line tutorial describes how to set up the installation using command-line utilities:
this requires typing commands individually.
Where next? ¢ Towork through the tutorial using Sybase Central, go to "Tutorial:
Adaptive Server Anywhere replication using Sybase Central" on
page 31.

¢+ Towork through the tutoria entering commands explicitly, go to
"Tutorial: Adaptive Server Anywhere replication using Interactive SQL
and dbxtract" on page 39.

30

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Tutorial: Adaptive Server Anywhere replication
using Sybase Central

The following sections are atutorial describing how to set up asimple
SQL Remote replication system in Adaptive Server Anywhere using Sybase
Central.

Y ou do not need to enter SQL statementsif you are using Sybase Central to
administer SQL Remote. A tutorial for those who do not have access to
Sybase Central, or who prefer to work with command-line utilities, is
presented in "Tutorial: Adaptive Server Anywhere replication using
Interactive SQL and dbxtract" on page 39. Thistutorial contains the SQL
statements executed behind the scenes by Sybase Central.

In thistutorial you act as the DBA of the consolidated database, and set up a
simple replication system using the file-sharing message link. The simple
example is aprimitive model for a sales-force automation system, with two
tables. One contains alist of sales representatives, and another alist of
customers. The tables are replicated in a setup with one consolidated
database and one remote database. Y ou can install this example on one
compulter.

& Thistutorial assumes that you have some familiarity with Sybase
Central. For an introduction to Sybase Central, see "Tutorial: Managing
Databases with Sybase Central" on page 49 of the book Introducing SQL
Anywhere Sudio.

Preparing for the Sybase Central replication tutorial

This section describes the steps you need to take to prepare for the tutorial.
These steps include the following:

¢ Create the directories and databases required for the tutorial.
¢ Add the tables to the consolidated database.

% To prepare for the tutorial:

1 Create adirectory to hold the files you make during this tutorial; for
example c:ltutorial.

nkdir c:\tutorial

2 Create asubdirectory for each of the two user IDs in the replication
system, to hold their messages. Create these subdirectories using the
following statements at a system command line;

31

Tutorial: Adaptive Server Anywhere replication using Sybase Central

32

nkdir c:\tutorial\HQ
nkdir c:\tutorial\field
Create the HQ database:
¢ Start Sybase Central.

¢ Intheleft panel, open the Adaptive Server Anywhere Utilities
folder.

¢ Double-click Create Database in the right panel. The Create
Database wizard is displayed.

¢ Create a database with filename c:l\tutorial\HQ.db.
¢ Usethe default settings for this database.

An Adaptive Server Anywhere database is simply afile, which can be
copied to other locations and computers when necessary.

The next step isto add a pair of tables to the consolidated database.

< To add tables to the consolidated database:

1

Connect to the HQ database from Sybase Central, with a user ID of
DBA and a password of SQL.

Click the Tables folder of the HQ database.

Double-click Add Table, and create a table named SalesRep with the
following columns:

Key | Column | Data Type | Size/Prec
Primary key ‘ Rep_key | Char ‘ 5
‘ Name | Char ‘ 40

Y ou do not need to use the Column property sheet or the Advanced
Table Properties dialog.

Save the table and close the dialog.

Double-click Add Table again, and create a table named Customer with
the following columns:

Key | Column | DataType | Size/Prec
Primary key ‘ Cust_key | Char ‘ 10
Name Char 40
Rep_key Char 5

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Again, you do not need to use the property sheets.
6 Savethetable and close the dialog.

In the Tables folder, open the Customer table container and then open
the Foreign Keys folder within this table.

8 Double-click Add Foreign Key. Using the wizard, add a foreign key to
the Rep_key column of the SalesRep table. Y ou can use the default
settings for this foreign key.

Y ou are now ready for the rest of the tutorial.

Setting up a consolidated database

This section of the tutorial describes how to prepare the consolidated
database of a simple replication system.

Preparing a consolidated database for replication involves the following
steps:

1 Create a message type to use for replication.

2 Grant. PUBLISH permissions to auser ID to identify the source of
outgoing messages.

3 Grant REMOTE permissionsto al user IDs that are to receive messages.

4 Create a publication describing the data to be replicated.

5 Create subscriptions describing who is to receive the publication.

You require DBA authority to carry out these tasks.

Add a SQL Remote message type

All messages sent as part of replication use a message type. A message type
description has two parts:

¢ A message link supported by SQL Remote. In this tutorial, we use the
FILE link.

¢ Anaddress for this message link, to identify the source of outgoing
messages.

Adaptive Server Anywhere databases already have message types created,
but you need to supply an address for the message type you will use.

*,

+ To add an address to a message type:
1 From Sybase Central, connect to the HQ database.

33

Tutorial: Adaptive Server Anywhere replication using Sybase Central

2 Open the SQL Remote folder for the HQ database.
Within the SQL Remote folder, open the Message Types folder.

In the right pane, right-click the FILE message type and choose
Properties from the popup menu.

5 Enter apublisher address to provide areturn address for remote users.
Enter the directory you have created to hold messages for the
consolidated database (hq).

The address is taken rel ative to the SQL Remote environment variable or
registry entry. As you have not set this value, the addressis taken
relative to the directory from which the Message Agent is run. You
should run the Message Agent from your tutorial directory for the
addresses to be interpreted properly.

& For information about setting the SQL Remote val ue, see " Setting
message type control parameters' on page 219.

6 Click OK to save the message type.

Add the publisher and remote user to the database

In SQL Remote's hierarchical replication system, each database may have
zero or one database immediately above it (the consolidated database) and
zero or more databases immediately below it (remote databases).

In this tutorial, the current database is the consolidated database of a
two-level system. It has no database above it, and only one remote database
below it.

The following diagram illustrates the two databases:
Database: hq

Publisher: hq_user
Remote user: field_user

Database: field
Publisher: field_user
Consolidated user:
hqg_user

For any database in a SQL Remote replication setup, there are three
permissions that may be granted to identify databases on the hierarchy:

34

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Add a database
publisher user ID

Add a remote user

®,
o

¢ PUBLISH permission Identifiesthe current database in all outgoing
messages

¢ REMOTE permission Identifies each database receiving messages
from the current database that is below it on the hierarchy

¢ CONSOLIDATE permission Identifies a database receiving messages
from the current database that is directly above it on the hierarchy.

Permissions can only be granted by a user with DBA authority. To carry out
these examples you should connect from Sybase Central to the hq database
as user ID DBA, with password SQL.

Any database, consolidated or remote, that distributes changes to other
databases in the replication system is a publisher database. Each database in
the replication systemisidentified by asingle user ID. Y ou set that ID for
your database by adding a publisher to the database. This section describes
setting permissions for the consolidated hq database.

First create a user ID named hq_user, who will be the publisher user ID.

To create a new user as the publisher:

1 Openthe Users & Groupsfolder.

2 Double-click Add User. The User Creation wizard is displayed.

3 Enter the name hqg_user, with password hq_pwd, and click Finish.
4

Right-click the hg_user icon and choose Change to Publisher from the
popup menu.

A database can have only one publisher. Y ou can find out who the
publisher is at any time by opening the SQL Remote folder.

Each remote database is identified in the consolidated database by a user ID
with REMOTE permissions. Whether the remote database is a personal
database server or anetwork server with many users, it needs a single user
ID to represent it to the consolidated database.

In a mobile workgroup setting, remote users may already be users of the
consolidated database, and so no new users would need to be added;
although they would need to be set as remote users.

When aremote user is added to a database, the message system they use and
their address under that message system need to be stored along with their
database user ID.

To add a remote user:
1 Open the Remote Users folder (located within the SQL Remote folder).

35

Tutorial: Adaptive Server Anywhere replication using Sybase Central

2 Double-click Add Remote User.

3 Createaremote user with user ID field_user. Click Next.
4 Enter the password field_pwd, and click Next.

5 Select the message type file, and enter the address field.

Aswith the publisher address, the address of the remote user istaken
relative to the SQLREMOTE environment variable or registry entry. As
you have not set this value, the addressis taken relative to the directory
from which the Message Agent is run. Y ou should run the Message
Agent from your tutorial directory for the addresses to be interpreted

properly.

& For information about setting the SQLREMOTE value, see
" Setting message type control parameters’ on page 219.

6 Onthe next page, ensure that the Send Then Close option is checked. (In
many production environments you would not choose Send Then Close,
but it is convenient for thistutorial.)

7 Onthe next page ensure that Remote DBA authority is selected, so that
the user can run the Message Agent.

8 When you have finished all the entries, click Finish to create the remote
user.

Y ou have now created the users who will use this system.

Add publications and subscriptions

This section describes how to add a publication to a database, and how to add
a subscription to that publication for a user. The publication replicates all
rows of the table SalesRep and some of the rows of the Customer table.

% To add a publication:

1 Click the Publications folder in the SQL Remote folder.

2 Double-click Add Publication. The Publication Creation wizard appears.
3 Namethe publication SalesRepData on the first page of the wizard.
4

On the Tables tab of the next page, select SalesRep from the list of
Matching Tables. Click Add.

Thetable appearsin the list of Selected Tables on the right.
Select Customer from thelist of Matching Tables. Click Add.

Select the Subscribe By tab. On this tab, select the Customer table and
enter the expression rep_key. Click Finish to create the publication.

36

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Add a subscription

Each user ID that isto receive changes to a publication must have a
subscription to that publication. Subscriptions can only be created for a
valid remote user. Y ou need to add a subscription to the SalesRepData
publication for the remote database user field_user.

To add a subscription:
1 Openthe Publications folder (located within the SQL Remote folder).

2 Right-click the SalesRepData publication and choose Properties from
the popup menu.

Click the SQL Remote Subscriptions tab.

Click Subscribe and choose to subscribe field_user. Enter a
Subscription value of repl and click OK.

The subscription value is an expression that matches the Subscribe By
expression in the publication. In alater step, thefield _user user ID is
assigned arep_key value of repl.

Y ou have now set up the consolidated database.

Set up the remote database in Sybase Central

The remote database needs to be created and configured in order to send and
receive messages and participate in a SQL Remote setup.

Like the consolidated database, the remote database needs a publisher (in this
case, thefield _user user ID) to identify the source of outgoing messages,

and it needs to have hg_user identified as a user with consolidated
permissions. It needs the SalesRepData publication to be created and needs
a subscription created for the hg_user user ID.

The remote database also needs to be synchronized with the consolidated
database; that is, it needs to have a current copy of the datain order for the
replication to start. In this case, there is no datain the publication as yet.

The database extraction utility enables you to carry out all the steps needed
to create a remote database complete with subscriptions and required user
IDs.

Y ou need to extract a database from the consolidated database for remote
user field_user.

<+ To extract a database:

1 Connect to the HQ database.

37

Tutorial: Adaptive Server Anywhere replication using Sybase Central

2 Right-click the database and choose Extract Database from the popup
menu.

Click Next on the introductory page of the wizard.
Choose to extract the HQ database.
Choose to extract at isolation level 3.

Choose to Start Subscriptions Automatically, for user field_user.

N o o0 b~ W

Leave thereload file location at its default setting and choose to extract
both structure and data.

Choose to extract all parts of the schema.
9 Leavethelocation to save the data at its default value.
10 Choose not to extract fully-qualified publication definitions.

11 Create the database as file c:\tutoriallfield.db, and click Finish to create
the remote database.

In aproper SQL Remote setup, the remote database field would need to be
loaded on to the computer using it, together with an Adaptive Server
Anywhere server and any client applications required. For thistutorial, we
leave the database where it is and use Interactive SQL to input and replicate
data.

Y ou should connect to the field database as DBA and confirm that al the
database objects are created. These include the SalesRep and Customer
tables, the SalesRepData publication, and the subscription for the
consolidated database.

What next? The system is now ready for replication.

& For the next step, inserting and replicating data, see the section " Start
replicating data" on page 46.

38

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Tutorial: Adaptive Server Anywhere replication
using Interactive SQL and dbxtract

The following sections are a tutorial describing how to set up asimple
SQL Remote replication system for users who prefer to use command-line
tools or who want to know what Sybase Central is doing behind the scenes.

Thistutorial describes the SQL statements for managing SQL Remote, which
can be run from Interactive SQL. It also describes how to run the dbxtract
command-line utility to extract remote databases from a consolidated
database.

In thistutorial you act asthe DBA of the consolidated database, and set up a
simple replication system using the file-sharing message link. The simple
example isaprimitive model for a sales-force automation system, with two
tables. One contains alist of sales representatives, and another alist of
customers. The tables are replicated in a setup with one consolidated
database and one remote database. Y ou can install this example on one
computer.

Preparing for the replication tutorial
This section describes the steps you need to take to prepare for the tutorial.
These steps include the following:
¢ Create the directories and databases required for the tutorial.
¢ Add atableto the consolidated database.

< To create the databases and directories for the tutorial:

1 Create adirectory to hold the files you make during thistutorial; for
example c:ltutorial.

nkdir c:\tutorial

2 Thetutorial usestwo databases; a consolidated database named hq.db
and a remote database named field.db. Change to the tutorial directory
and create these databases using the following statements at a command
prompt:

dbi nit hq. db
dbinit field. db

39

Tutorial: Adaptive Server Anywhere replication using Interactive SQL and dbxtract

3 Create asubdirectory for each of the two user IDs in the replication
system. Create these subdirectories using the following statements at a
command prompt:

nkdir c:\tutorial\hq
nkdir c:\tutorial\field

The next step isto add a pair of tables to the consolidated database.

< To add the tables to the consolidated database:

1 Connect to hg.db from Interactive SQL with a user ID of DBA and a
password of SQL.

2 Execute the following CREATE TABLE statement to create the
SalesRep table:

CREATE TABLE Sal esRep (
rep_key CHAR(12) NOT NULL,
nanme CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

3 Execute the following CREATE TABLE statement to create the
Customer table:

CREATE TABLE Custoner (
cust _key CHAR(12) NOT NULL,
nanme CHAR(40) NOT NULL,
rep_key CHAR(12) NOT NULL,
FORElI GN KEY REFERENCES Sal esRep,
PRI MARY KEY (cust_key)

)
Y ou are now ready for the rest of the tutorial.

Set up the consolidated database

This section of the tutorial describes how to set up the consolidated database
of asimple replication system.

You require DBA authority to carry out this task.

Create a SQL Remote message type

All messages sent as part of replication use a message type. A message type
description has two parts:

¢ A message link supported by SQL Remote. In this tutorial, we use the
FILE link.

40

Chapter 4 Tutorials for Adaptive Server Anywhere Users

¢ Anaddress for this message link, to identify the source of outgoing
messages.

+ To create the message type:

¢ InInteractive SQL, create the file message type using the following
statement:

CREATE REMOTE MESSACGE

TYPE file

ADDRESS ' hq'

The address (hq) for afilelink is adirectory in which files containing
the message are placed. It is taken relative to the SQLRemote
environment variable or registry entry. As you have not set this value,
the address is taken relative to the directory from which the Message
Agent isrun. You should run the Message Agent from your tutorial
directory for the addresses to be interpreted properly.

& For information about setting the SQL Remote val ue, see " Setting
message type control parameters' on page 219.

Grant PUBLISH and REMOTE at the consolidated database

GRANT PUBLISH
to identify outgoing
messages

In the hierarchical replication system supported by SQL Remote, each
database may have one consolidated database immediately above it in the
hierarchy and many databases immediately below it on the hierarchy (remote
databases).

PUBLISH permission identifies the current database for outgoing messages,
and the REM OTE permission identifies each database receiving messages
from the current database.

Permissions can only be granted by a user with DBA authority. To carry out
these examples you should connect using the Interactive SQL utility to hg as
user ID DBA, with password SQL.

Each database that distributesits changes to other databases in the replication
system is a publisher database. Each database in the replication system that
publishes changes to a database is identified by asingle user ID. Y ou set that
ID for your database using the GRANT PUBLISH statement. This section
describes setting permissions for the consolidated database (hg.db).

+ To create a publisher for the database:

¢ Connect to the database using Interactive SQL, and type the following
statement:

GRANT CONNECT
TO hq_user

41

Tutorial: Adaptive Server Anywhere replication using Interactive SQL and dbxtract

GRANT REMOTE
for each database
to which you send
messages

| DENTI FI ED BY hg_pwd ;
GRANT PUBLI SH TO hqg_user ;

Y ou can check the publishing user ID of a database at any time using the
CURRENT PUBLISHER special constant:

SELECT CURRENT PUBLI SHER

Each remote database isidentified using the GRANT REMOTE statement.
Whether the remote database is a personal server or a network server with
many users, it needs asingle user 1D to represent it to the consolidated
database.

In a mobile workgroup setting, remote users may already be users of the
consolidated database, and so this would require no extra action on the part
of the DBA.

The GRANT REMOTE statement identifies the message system to be used
when sending messages to the recipient, as well as the address.

<+ To add a remote user:

¢ Connect to the database using Interactive SQL, and execute the
following statements:

GRANT CONNECT TO fi el d_user
| DENTI FI ED BY field_pwd ;

GRANT REMOTE TO fi el d_user
TYPE file ADDRESS 'field

The address string is the directory used to hold messages for field_user,
enclosed in single quotes. It is taken relative to the SQL Remote
environment variable or registry entry. Asyou have not set this value,
the address is taken relative to the directory from which the Message
Agent isrun. You should run the Message Agent from your tutorial
directory for the addresses to be interpreted properly.

& For information about setting the SQL Remote val ue, see " Setting
message type control parameters' on page 219.

Create publications and subscriptions

42

A publication is created using a CREATE PUBLICATION statement. Thisis
a data definition language statement, and requires DBA authority. For the
tutorial, you should connect to the hq database as user ID DBA, password
SQL, to create a publication.

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Setup a
publication at the
consolidated
database

Setup a
subscription

Create a publication named SalesRepData, which replicates all rows of the
table SalesRep, and some of the rows of the table Customer.

To create the publication:

¢ Connect to the database from Interactive SQL, and execute the
following statement:

CREATE PUBLI CATI ON Sal esRepDat a (
TABLE Sal esRep,
TABLE Cust oner SUBSCRI BE BY rep_key

)

Each user ID that is to receive changes to the publication must have a
subscription. The subscription can only be created for a user who has
REMOTE permissions. The GRANT REMOTE statement contains the
address to use when sending the messages.

To create the subscription:

¢ Connect to the database from I nteractive SQL, and execute the
following statement:

CREATE SUBSCRI PTI ON

TO Sal esRepData ('repl’)
FOR field_user ;

Thevaluerepl istherep_key value we will give to the user field_user
in the SalesRep table.

The full CREATE SUBSCRIPTION statement allows control over the data
in subscriptions; alowing users to receive only some of the rowsin the
publication. For more information, see "CREATE SUBSCRIPTION
statement" on page 364.

The CREATE SUBSCRIPTION statement identifies the subscriber and
defines what they receive. However, it does not synchronize data, or start the
sending of messages.

43

Tutorial: Adaptive Server Anywhere replication using Interactive SQL and dbxtract

Set up the remote database

The remote database needs to be configured in order to send and receive
messages and participate in a SQL Remote setup. Like the consolidated
database, the remote database needs a CURRENT PUBLISHER to identify
the source of outgoing messages, and it needs to have the consolidated
database identified as a subscriber. The remote database also needs the
publication to be created and needs a subscription created for the
consolidated database. The remote database al so needs to be synchronized
with the consolidated database; that is, it needs to have a current copy of the
datain order for the replication to start.

The dbxtract utility enables you to carry out all the steps needed to create a
remote database complete with subscriptions and required user 1Ds.

Extract the remote database information

44

Leave the hq database running, and change to the tutorial directory.

Type the following command at the system command line (all on oneline) to
extract a database for the user field_user from the consolidated database:

dbxtract -v -c "dbn=hg; ui d=dba; pwd=sqgl " c:\tutorial
field_ user

The - v option produces more verbose output. Thisis useful during
development.

This command assumes the hqg database is currently running on the default
server. If the database is not running, you should enter a database file
parameter in the connection string:

dbf =hgq. db
instead of the dbn database name parameter.

& For details of the dbxtract utility and its options, see " The extraction
utility" on page 312.

The dbxtract command creates a SQL command file named reload.sql in the
current directory and adatafilein the c:\tutorial directory. It also starts the
subscriptions to the remote user.

The next step isto load these files into the remote database.

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Load the remote database information

< To load the database information:

1 Fromthetutoria directory, connect to the remote database field.db from
Interactive SQL with auser ID of DBA and a password of SQL.

2 Runthe reload.sq/ command file;

READ C:\tutorial\rel oad. sql
The reload.sql command file carries out the following tasks:
¢ Creates amessage type at the remote database.

¢ Grants PUBLISH and REMOTE permissions to the remote and
consolidated database, respectively.

¢+ Createsthetable in the database. If the table had contained any data
before extraction, the command file would fill the replicated table with a
copy of the data.

¢ Createsapublication to identify the data being replicated.

¢ Creates the subscription for the consolidated database, and starts the
subscription.

While connected to the field database as DBA, confirm that the tables are
created by executing the following statements:

SELECT * FROM Sal esRep ;

SELECT * FROM Cust orrer
What next? The system is now ready for replication.

& For the next step, inserting and replicating data, see the section " Start
replicating data" on page 46 .

45

Start replicating data

Start replicating data

Y ou now have areplication systemin place. In this section, datais replicated
from the consolidated database to the remote database, and from the remote
to the consolidated database.

Enter data at the consolidated database

First, enter some datainto the consolidated database.

<+ To enter data at the consolidated database:

1 Connect to the consolidated database hq from the Interactive SQL utility
with auser ID of DBA and a password of SQL.

2 Insert two rows into the SalesRep table and commit the insertion by
executing the following statement:

I NSERT | NTO Sal esRep (rep_key, nane)
VALUES ('repl’, 'Field User’) ;

I NSERT | NTO Sal esRep (rep_key, nane)
VALUES ('rep2’, 'Another User’) ;
COWM T ;

3 Insert two rows into the Customer table and commit the insertion by
executing the following statement:

| NSERT | NTO Cust orer (cust _key, name, rep_key)
VALUES ('custl, 'Qcean Sports’, 'repl)

| NSERT | NTO Cust orer (cust _key, name, rep_key)
VALUES ('cust2', 'Sports Plus’, 'rep2) ;
COWM T ;

4 Confirm that the data has been entered by executing the following
statements:

SELECT *
FROM Sal esRep;

SELECT *
FROM Cust omer ;

The next step isto send the relevant rows to the remote database.

46

Chapter 4 Tutorials for Adaptive Server Anywhere Users

Send data from the consolidated database

To send the rows to the remote database, you must run the Message Agent at
the consolidated database. The dbremote program is the Message Agent for
Adaptive Server Anywhere.

<+ To send the data to the remote database:

1 Fromacommand prompt, change to your tutorial directory. For
example,

> C:
> cd c:\tutorial

2 Enter the following statement at the command line to run the Message
Agent against the consolidated database:

dbrenot e -c¢ "dbn=hq; ui d=dba; pwd=sql "

This command line assumes that the hq database is currently running on
the default server. If the database is not running, you must supply a dbf
parameter with the database file name instead of the dbn parameter.

& For moreinformation on dbremote options, see " The Message
Agent" on page 302.

3 Click Shutdown on the Message Agent window to stop the Message
Agent when the messages have been sent. The Message Agent window
displays the message Execution completed when all processing is
complete.

Receive data at the remote database

To receive the insert statement at the remote database, you must run the
Message Agent, dbremote, at the remote database.

< To receive data at the remote database:

1 Fromacommand prompt, change to your tutorial directory. For
example,

> C:
> cd c:\tutorial

2 Enter the following statement at the command line to run the Message
Agent against the field database:

dbrenmote -c "dbn=fi el d; ui d=dba; pwd=sql "

This command line assumes that the field database is currently running
on the default server.

47

Start replicating data

Verify that the data
has arrived

& For moreinformation on dbremote options, see " The Message
Agent" on page 302.

Click Shutdown on the Message Agent window to stop the Message
Agent when the messages have been processed. The Message Agent
window displays the message Execution completed when all processing
is complete.

The Message Agent window displays status information while running. This
information can be output to alog file for record keeping in areal setup. You
will see that the Message Agent first receives a message from hq, and then
sends a message. This return message contains confirmation of successful
receipt of the replication update; such confirmations are part of the

SQL Remote message tracking system that ensures message delivery evenin
the event of message system errors.

Y ou should now connect to the remote field database using Interactive SQL,
and inspect the SalesRep and Customer tables, to see which rows have been
received.

% To verify that the data has arrived:

1
2

Connect to the field database using I nteractive SQL.
Inspect the SalesRep table by executing the following statement:
SELECT * FROM Sal esRep

Y ou will seethat the SalesRep table contains both rows entered at the
consolidated database. Thisis because the SalesRepData publication
included all the data from the SalesRep table.

Inspect the Customer table by executing the following statement:
SELECT * FROM Cust orer

You will also see that the Customer table contains only row (Ocean
Sports) entered at the consolidated database. Thisis because the
SalesRepData publication included only those customers assigned to
the subscribed Sales Rep.

Replicate from the remote database to the consolidated database

48

Y ou should now try entering data at the remote database and sending it to the
consolidated database. Only the outlines are presented here.

Chapter 4 Tutorials for Adaptive Server Anywhere Users

% Toreplicate data from the remote database to the consolidated

database:
1 Connect to the field database from Interactive SQL.
2 Insert arow at the remote database by executing the following
statement:
I NSERT | NTO Custoner (cust_key, nane, rep_key)
VALUES (’'cust3', "North Land Trading', 'repl’)
3 Commit the insertion by executing the following statement::
COW T;
4 With the field.db database running, run the dbremote utility from a
command line to send the message to the consolidated database.
dbremote -c¢ "dbn=fi el d; ui d=dba; pwd=sql "
5 With the hqg.db database running, run the dbremote utility from a
command line to receive the message at the consolidated database:
dbrenot e -c¢ "dbn=hq; ui d=dba; pwd=sql "
6 Connect to the consolidated database. Display the Customer table by

executing the following statement:

SELECT *

FROM Cust oner
cust_key | name | rep_key
custl Ocean Sports repl
cust2 Sports Plus rep2
cust3 ‘ North Land Trading ‘ repl

In this simple example, there is no protection against duplicate entries of
primary key values. SQL Remote does provide for such protection. For
information, see the chapters on SQL Remote Design.

49

A sample publication

A sample publication

50

The command file salespub.sql contains a set of statements that creates a
publication on the sample database. This publication illustrates several of the
points of the tutorials, in more detail.

+ To add the publication to the sample database:

1
2

Connect to the sample database from Interactive SQL.

In the SQL Statements pane, execute the following statement:
READ pat h\ scri pt s\ sal espub. sql

where path is your SQL Anywhere directory.

The salespub.sql publication adds columns to some of the tablesin the
sample database, creates a publication and subscriptions, and also adds
triggers to resolve update conflicts that may occur.

CHAPTER 5

A Tutorial for Adaptive Server Enterprise
Users

About this chapter This chapter presents a tutorial in which you set up asimple SQL Remote
replication system between an Adaptive Server Enterprise database and an
Adaptive Server Anywhere database, from scratch.

Contents Topic Page
Introduction 52
Tutorial: Adaptive Server Enterprise replication 55
Start replicating data 64

51

Introduction

Introduction

Goals

The database

Database schema

52

This chapter presents atutorial to lead you through setting up a SQL Remote
installation. The installation replicates data between an Adaptive Server
Enterprise database (the consolidated database) and an Adaptive Server
Anywhere database (the remote database).

In the tutorial you act as the system administrator of a consolidated Adaptive
Server Enterprise database, and set up asimple replication system. The
replication system consists of a simple sales database, with two tables.

The consolidated database holds al of the database, while the remote
database has all of one table, but only some of the rowsin the other table.

Thetutoria takes you through the following steps:

¢ Creating a consolidated database on your Adaptive Server Enterprise
server.

¢ Creating afile-sharing replication system with a single Adaptive Server
Anywhere remote database.

¢ Replicating data between the two databases.

Thetutorial uses a simple two-table database. One table holds information
about sales representatives, and the other about customers. The tables are
much simpler than you would usein areal database; this allows us to focus
just on those issues important for replication.

The database schema for the tutorial isillustrated in the figure.

Customer SalesRep
cust_key char(10) rep_key = | [ED key char(5)
name char(40) rep_key name char(40)
rep_key char(5)

Features to note include the following:

¢ Each salesrepresentative is represented by one row in the SalesRep
table.

¢ Each customer is represented by one row in the customer table.

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

¢ Each customer is assigned to a single Sales representative, and this
assignment is built in to the database as a foreign key from the Customer
table to the SalesRep table. The relationship between the Customer table
and the SalesRep table is many-to-one.

The tables in the The tables are described in more detail as follows:
database
Table Description
SalesRep One row for each sales representative that works for the

company. The SalesRep table has the following columns:

¢ rep_key Anidentifier for each sales representative. Thisis
the primary key.

¢ name The name of each sales representative.

The SQL statement creating thistableis as follows:

CREATE TABLE Sal esRep (
rep_key CHAR(12) NOT NULL,
nane CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

Customer

Replication goals

One row for each customer that does business with the
company. The Customer table includes the following columns:

¢ cust_key Anidentifier for each customer. Thisisthe
primary key.
¢ name Thename of each customer.

¢ rep_key Anidentifier for the sales representative in asales
relationship. Thisisaforeign key to the SalesRep table.

The SQL statement creating this tableis as follows:

CREATE TABLE Custoner (
cust _key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
rep_key CHAR(12) NOT NULL,
FOREI GN KEY (rep_key)
REFERENCES Sal esRep (rep_key),
PRI MARY KEY (cust _key)

The goals of the replication design are to provide each sales representative
with the following information:

¢ The complete SalesRep table.

¢ Those customers assigned to them.

53

Introduction

54

Thetutorial describes how to meet this goal using SQL Remote.

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

Tutorial: Adaptive Server Enterprise replication

First steps
Create a login

name and
password

Create a database

The following sections are atutorial describing how to set up asimple
SQL Remote replication system.

Thistutorial describes the stored procedures used to configure and manage
SQL Remote. It also describes how to run the ssxtract utility to extract
remote databases from a consolidated database and the Message Agents to
send information between the databases in the replication system.

In thistutorial you act as the administrator of the consolidated database, and
set up a simple replication system using the file-sharing message link. The
simple example is a primitive model for a sales-force automation system,
with two tables. One contains alist of sales representatives, and another alist
of customers. The tables are replicated in a setup with one consolidated
database and one remote database. Y ou can install this example on one
computer.

To work through the tutorial, you must have system administrator privileges
on an Adaptive Server Enterprise server. The tutorial assumes that your login
name is the two-letter word sa and that your password is sysadmin.

The tutorial uses the Adaptive Server Enterprise isq/ utility. With the login
name and password as given above, you can connect to your Adaptive Server
Enterprise server using the following command line;

isql -S server-nane -U sa -P sysadmn

where server-name is the name of the Adaptive Server Enterprise server to
which you connect.

Ensure that you have an appropriate login ID and can connect to your server
before starting this tutorial.

Create a database named hq on your Adaptive Server Enterprise server with
sufficient space to hold the tables and data required by the tutorial database.
A space of 4 Mb is sufficient.

< To create a database:

1 Using isgl, connect to the server as a user with system administrator
privileges:

isql -S server-nane -U sa -P sysadmn

2 Usethe master database:

55

Tutorial: Adaptive Server Enterprise replication

Install
SQL Remote

Create directories
for messages

56

3

use naster
go

Create a database named hg. In this example, we use a5 Mb database
with a5 Mb log, on two different devices:

create database hq

on database device = 5
log on /og device =5
go

& For more information on how to create databases and assign spaceto
them, see your Adaptive Server Enterprise documentation.

You need to install SQL Remote into the hq database.

To install SQL Remote into the hq database:

1

If the system administrator login name you are using does not have the
hq database as the default database, make a backup copy of the
ssremote.sql script from your installation directory, and add the
following two lines to the beginning of the script:

use hqg
go

Change to the tutorial directory. Then, using isqgl, connect to the server
using the hqg database, and run the ssremote.sql script from your
SQL Remote installation directory. The following command should be
entered all on oneline:

isql -S server-nane -U sa -P sysadnin -i

ssrenot e. sql

If the system administrator login name you are using does not have the
hq database as the default database, make a backup copy of the
stableq.sql script from your installation directory, and add the following
two lines to the beginning of the script:

use hqg
go

Using isql, connect to the server using the hq database, and run the
stableq.sql script from your SQL Remote installation directory. The
following command should be entered al on oneline:

isql -S server-nane -U sa -P sysadmn -i stabl eq. sql

Create adirectory to hold the files from this tutorial. For example:

nkdir c:\tutorial

Y ou should create a directory for each of the two users of the replication
system under your parent directory for this tutorial:

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

nkdir c:\tutorial\hq
nkdir c:\tutorial\field
The next step isto add a pair of tables to the consolidated database.

To add tables to the consolidated database:
1 Connect to the hq database from isqgl, as a system administrator.
2 Usethe hq database:

use hqg
go

3 Create the SalesRep table with the following statement:

create table Sal esRep (
rep_key char(12) not null,
nane char (40) not null,
primary key (rep_key))
go

4 Create the Customer table with the following statement:

create table CQustoner (
cust _key char(12) not null,
nanme char (40) not null,
rep_key char(12) not null,
primary key (cust_key))
go

5 Alter the Customer table to add aforeign key to the SalesRep table:

alter table Custoner

add foreign key

(rep_key) references Sal esRep
go

Y ou are now ready for the rest of the tutorial.

Setting up the consolidated database

This section of the tutorial describes how to prepare the consolidated
database of a simple replication system.

Preparing a consolidated database for replication involves the following
steps:

1 Create a message type to use for replication.

2 Grant PUBLISH permissionsto auser ID to identify the source of
outgoing messages.

57

Tutorial: Adaptive Server Enterprise replication

3 Grant REMOTE permissionsto all user IDsthat are to receive messages.
4 Create a publication describing the data to be replicated.

5 Create subscriptions describing who is to receive the publication.

Y ou should have system administrator authority to carry out these tasks.

Create the message links and addresses

In thistutorial, messages are exchanged using the shared file link. Y ou must
create a FILE message type supplying the address of the consolidated
database publisher.

% To create the message type:

¢+ Executethe sp_remote type stored procedure, using HQ as the address
of the consolidated database publisher:

sp_renote_type file, hq
go

The address (hq) for afilelink is adirectory in which files containing
the message are placed. It is taken relative to the SQLRemote
environment variable or registry entry. As you have not set this value,
the address is taken relative to the directory from which the Message
Agent isrun. Y ou should run the Message Agent from your tutorial
directory for the addresses to be interpreted properly.

& For information about setting the SQL Remote val ue, see " Setting
message type control parameters' on page 219.

With the message type defined, you can now make the necessary users.

Create the necessary users and permissions

58

A set of users and permissions are required for SQL Remote installations. In
this tutorial, the following are required:

¢ A remote user or subscriber, with name field_user.
¢ A publisher user name, called hg_user.
This section describes the steps you need to take to create each user and
assign them the necessary permissions.
< To create the publisher:

1 Addalogincaled hg_user, with hq as the default database and with
system administrator access:

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

Add a remote user

exec sp_addl ogi n hg_user, hq_pwd, hq

go
exec sp_role 'grant’, sa role, hqg_user
go

2 Add thelogin name as a user to the HQ database:
use hqg
go
exec sp_adduser hqg_user
go

3

Make this user the publisher of the HQ database:

exec sp_publisher hg_user
go

Each remote database is identified in the consolidated database by a user ID
with REMOTE permissions. Whether the remote database is a single-user
server or adatabase server with many users, it needs a single user ID to
represent it to the consolidated database.

In a mobile workgroup setting, remote users may aready be users of the
consolidated database, and so no new users would need to be added;
although they would need to be set as remote users.

When aremote user is added to a database, the message system they use and
their address under that message system need to be stored along with their
database user ID.

< To create the subscriber:

1

If you do not have a login name that you can use for the remote user,
add alogin:

exec sp_addlogin field user, field pwd, hq
go

Add a user to the hq database:

exec sp_adduser field_ user
go

Grant the user remote permissions. Execute the sp_grant_remote stored
procedure, using field_user as the user name, file as the message type,
and the appropriate directory as the address:

exec sp_grant _renote field_user, file, field
go

59

Tutorial: Adaptive Server Enterprise replication

As with the publisher address, the address of the remote user (field) isa
directory relative to the SQL Remote environment variable or registry
entry. Asyou have not set this value, the addressis taken relative to the
directory from which the Message Agent is run. Y ou should run the
Message Agent from your tutorial directory for the addresses to be
interpreted properly.

& For information about setting the SQL Remote val ue, see " Setting
message type control parameters' on page 219.

Create the publication and subscription

60

The remaining task is to define the data to be replicated. To do this, you must
first create a publication, which defines the available data, and then create a
subscription for field_user, which defines the data that user is sharing.

In Adaptive Server Enterprise, they are created with the

sp_create _publication procedure, which creates an empty publication, and
the sp_add_article procedure, which adds articles to the procedure. Also,
each table must be marked for replication before it can beincluded in a
publication.

To create the publication:
1 Create an empty publication:
exec sp_create_publication Sal esRepDat a
go
2 Mark both the SalesRep table and the Customer table for publication:

exec sp_add_renote_table Sal esRep
go
exec sp_add_renote_tabl e Customer
go

3 Add the whole SalesRep table to the SalesRepData publication:
exec sp_add_article Sal esRepData, Sal esRep
go

4 Add the Customer table to the SalesRepData publication, using the
rep_key column to partition the table. The following statement should
be typed all on oneline, except for the go:

exec sp_add_article Sal esRepData, CQustomer, NULL,
"rep_key’
go

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

Add a subscription Each user ID that is to receive changes to a publication must have a
subscription to that publication. Subscriptions can only be created for a
valid remote user. Y ou need to add a subscription to the SalesRepData
publication for the remote database user field_user.

% To create a subscription:

1 Create asubscription to SalesRepData for field_user, with a
subscription value of repl:

exec sp_subscription 'create’, Sal esRepDat a,
field user, 'repl
go

At this stage, the subscription is not started—that is, no data will be
exchanged. The subscription is started by the database extraction utility.

Extract the remote database

There are three stages to producing a remote Adaptive Server Anywhere
database:

¢+ Extract the schema and data into a set of files. You do this using the
ssxtract utility.

¢ Create an Adaptive Server Anywhere database.

¢ Load the schema and data into the database.

Extracting the With all the information included, the next step is to extract an Adaptive

schema and data Server Anywhere database for uiefd_user. The following command line
(entered all on one line, from the tutorial directory) carries out this
procedure:

ssxtract -v -c "eng=server-naneg,
dbn=hq; ui d=sa; pwd=sysadnmi n" C\tutorial\field field_ user

The options have the following meaning.

¢ -v Verbose mode. For development work, this provides additional
output.

¢ -¢ Connection string option. The connection string is supplied in
double quotes following thec.

¢ eng=server-name Specifies the server to which the extraction utility
is to connect.

¢ dbn=hg Specifies the database on the server to use; in thigase

¢ uid=sa The login ID to use to log on to the database.

61

Tutorial: Adaptive Server Enterprise replication

Creating an
Adaptive Server
Anywhere
database

Loading the data
into the database

62

*,
EX4

¢ pwd=sysadmin The password to useto log on to the database.

¢ C:\tutorial\field Thedirectory in which to place files holding the data.
¢ field_user Theuser ID for which to extract the database.

& For more information on extraction utility options, see " The extraction
utility" on page 312.

Running this command produces the following files:

¢ Reload script Thereload script is named reload.sql, and is placed in
the current directory.

¢ Datafiles Filescontaining datato load into the database. In this case,
these files are empty.

Y ou can create an Adaptive Server Anywhere database using the dbinit
utility. A simple Adaptive Server Anywhere databaseis afile, unlike
Adaptive Server Enterprise databases.

Y ou should create the Adaptive Server Anywhere database so that it is
compatible with Adaptive Server Enterprise database behavior, unless you
have set optionsin your Adaptive Server Enterprise server that are different
from the default.

To create a database file named field.db:
¢ Enter the following command from the c:\tutorial\field directory:
dbinit -b -c -k field.db
The - b option forces use of blank padding in string comparisons. The - ¢
option enforces case sensitivity for string comparisons. The - k option

makes the system catalog more compatible with Adaptive Server
Enterprise.

Y ou can load the data into the database using the Adaptive Server Anywhere
Interactive SQL utility or the rtsql utility. rtsglis an alternative to

Interactive SQL for batch processes only, and is provided for the runtime
database.

To load the data into the database using Interactive SQL:

1 Start an Adaptive Server Anywhere server running on the field database:
dbeng8 field.db

2 Connect to the server using the Interactive SQL utility:
dbisgl -c¢ "eng=fiel d; dbn=fi el d; ui d=DBA; pwd=SQ."

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

The user ID and password must be entered in upper case, as the
Adaptive Server Anywhere database was created as case-sensitive.

3 Load the data using the READ command:
READ C:\ TUTCRI AL\ RELOAD. SQL

% To load the data into the database as a batch process:
1 Start an Adaptive Server Anywhere server running on thefield database:
dbeng8 field.db
2 Runthe script from Interactive SQL:

dbisgl -c¢ "eng=fiel d; dbn=fi el d; ui d=DBA; pwd=SQ."
rel oad. sql

The user ID and password must be entered in upper case, as the
Adaptive Server Anywhere database was created as case-sensitive.

What next? The system is now ready for replication.

& For the next step, inserting and replicating data, see the section " Start
replicating data" on page 64.

63

Start replicating data

Start replicating data

Y ou now have areplication systemin place. In this section, datais replicated
from the consolidated database to the remote database, and from the remote
to the consolidated database.

Enter data at the consolidated database

In this section we enter datainto the SalesRep and Customer tables at the
consolidated (Adaptive Server Enterprise) database, and replicate this datato
the Adaptive Server Anywhere database.

% To enter data at the Adaptive Server Enterprise database:
1 Connect to the Adaptive Server Enterprise server from isqgl:
isql -S server-nane -U sa -P sysadnin
2 Ensureyou are using the hq database, and enter a series of rows:

use hqg

go

insert into Sal esRep (rep_key, name)

values ('repl’, 'Field User’)

go

insert into Sal esRep (rep_key, nane)

val ues ('rep2’, 'Another User’)

go

insert into Custoner (cust_key, name, rep_key)

values ('custl, 'Qcean Sports’, 'repl’)

go

insert into Custoner (cust_key, name, rep_key)

values ('cust2', 'Sports Plus’', 'rep2)

go

comm t

go
Ocean Sportsisassigned to Field User, and Sports Plusis assigned to
Another User. You must commit the changes, as SQL Remote
replicates only committed changes.

Having entered the data at the consolidated database, you now need to send
the relevant rows to the remote Adaptive Server Anywhere database.

64

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

Send data from the consolidated database

®,
o

To send the rows to the remote database, you must run the Message Agent at
the consolidated database. The ssremote program is the Message Agent for
Adaptive Server Enterprise.

To replicate the data from Adaptive Server Enterprise:

¢ Enter the following statement (on asingle line) at the command line to
run the Message Agent against the consolidated database:

ssrenote -c
"eng=server - nane; dbn=hq; ui d=sa; pwd=sysadm n"

3 Click Shutdown on the Message Agent window to stop the Message
Agent when the messages have been sent.

Receive data at the remote database

Verify that the data
has arrived

To receive the insert statement at the remote database, you must run the
Message Agent, dbremote, at the remote database.

To receive the data at Adaptive Server Anywhere:

1 With the database server running, receive the data using the Message
Agent for Adaptive Server Anywhere:

dbremote -c¢ "eng=fi el d; dbn=fi el d; ui d=DBA; pwd=SQ_"

& For more information on dbremote options, see " The Message
Agent" on page 302.

2 Click Shutdown on the Message Agent window to stop the Message
Agent when the messages have been processed.

The Message Agent window displays status information while running. This
information can be output to alog file for record keeping in a production
setup.

The Message Agent first receives a message from hq, and then sends a
message. This return message contains confirmation of successful receipt of
the replication update; such confirmations are part of the SQL Remote
message tracking system that ensures message delivery even in the event of
message system errors.

Y ou should now connect to the remote field database using Interactive SQL,
and inspect the SalesRep and Customer tables, to see which rows have been
received.

65

Start replicating data

®,
o

To verify that the data has arrived:

1 Connect to the field database using Interactive SQL.

2 Inspect the SalesRep table by typing the following statement:
SELECT * FROM Sal esRep

Y ou will seethat the SalesRep table contains both rows entered at the
consolidated database. Thisis because the SalesRepData publication
included all the data from the SalesRep table.

3 Inspect the Customer table by typing the following statement:
SELECT * FROM Cust oner

You will seethat the Customer table contains only one row (Ocean
Sports) entered at the consolidated database. Thisis because the
SalesRepData publication included only those customers assigned to
the subscribed Sales Rep.

Replicate from the remote database to the consolidated database

66

Y ou should now try entering data at the remote database and sending it to the
consolidated database. Only the outlines are presented here.

To replicate data from the remote database to the consolidated
database:

1 Connect to the field database from Interactive SQL.

2 INSERT arow at the remote database. For example

| NSERT | NTO Cust orrer (cust _key, name, rep_key)
VALUES (’'cust3', "North Land Trading , 'repl’)

3 COMMIT the row.
COW T;

4 With the field.db database running, run dbremote to send the message to
the consolidated database.

dbremote -c¢ "eng=fi el d; dbn=fi el d; ui d=DBA; pwd=SQ."
5 Run ssremote to receive the message at the consolidated database:

ssrenmote -c
"eng=ser ver - nane; dbn=hq; ui d=sa; pwd=sysadmi n"

6 Connect to the consolidated database and display the Customer table.
This now has three rows:

SELECT *

Chapter 5 A Tutorial for Adaptive Server Enterprise Users

FROM Cust orer

cust_key | name | rep_key
custl Ocean Sports repl
cust2 Sports Plus rep2
cust3 ‘ North Land Trading ‘ repl

In this simple example, there is no protection against duplicate entries of
primary key values. SQL Remote does provide for such protection. For
information, see the chapters on SQL Remote Design.

67

Start replicating data

68

PART TWO

Replication Design for SQL Remote

This part describes replication design issues for SQL Remote

69

70

CHAPTER 6

Principles of SQL Remote Design

About this chapter

Contents

This chapter describes general issues and principles for designing a
SQL Remote installation.

& For system-specific details, see the chapters " SQL Remote Design for
Adaptive Server Enterprise”’ on page 141 and "SQL Remote Design for
Adaptive Server Anywhere" on page 89.

Topic

Page
Design overview 72
How statements are replicated 76
How data types are replicated 81
Who gets what? 84
Replication errors and conflicts 86

71

Design overview

Design overview

This chapter describes general publication design issues that you must
address when designing a SQL Remote installation. It also describes how
SQL Remote replicates data.

Design at the Like all SQL Remote administrative tasks, designis carried out by a database
consolidated administrator or system administrator at the consolidated database.
database

The Adaptive Server Enterprise System Administrator or database
administrator should perform all SQL Remote configuration tasks.

Ensuring compatible databases

Y ou should ensure that all databases participating in a SQL Remote
installation are compatible in terms of sort orders, character sets, and
database option settings.

If your installation includes both Adaptive Server Enterprise and Adaptive
Server Anywhere databases, you should ensure your Adaptive Server
Anywhere databases are created in an Adaptive Server Enterprise-compatible
fashion.

& For afull description of how to create Enterprise-compatible Adaptive
Server Anywhere databases, see " Creating a Transact-SQL -compatible
database" on page 393 of the book ASA SQL User’s Guide. This section
provides a brief description only.

+ To create an Enterprise-compatible Adaptive Server Anywhere
database (Sybase Central):

¢ The Create Database wizard provides a button that sets each of the
available choices to emulate Adaptive Server Enterprise. Thisisthe
simplest way to create a Transact-SQL -compatibl e database.

+ To create an Enterprise-compatible Adaptive Server Anywhere
database (Command line):

1 Ensure trailing blanks are ignored Y ou can do this using the dbinit
- b option.

2 Ensurethe dbo user ID is set If you have a database that already has
auser |ID named dbo, then you can transfer the ownership of the
Adaptive Server Anywhere Transact-SQL system views to another user
ID. You can do this using the dbinit - g option.

72

Chapter 6 Principles of SQL Remote Design

3 Remove historical system views You can do this with the dbinit - k
option.

4 Make the database case sensitive You can do this with the dbinit - ¢
option.

The following command creates a case-sensitive database named test.db in
the current directory, using the current dbo user, ignoring trailing blanks, and
removing historical system views:

dbinit -b -c -k test.db

Using compatible sort orders and character sets

Character sets in
Adaptive Server
Anywhere
installations

Character sets in
Adaptive Server
Enterprise
installations

Character sets in
mixed installations

The SQL Remote Message Agent does not perform any character set
conversions.

For an Adaptive Server Anywhere installation, the character set and collation
used by the consolidated database must be the same as the remote databases.
For information about supported character sets, see "International Languages
and Character Sets' on page 249 of the book ASA Database Administration
Guide.

The Open Client/Open Server libraries perform character set conversions
between SSREMOTE and Adaptive Server Enterprise whenever the
LOCALES.DAT character set is different from the Adaptive Server
Enterprise character set. Both character sets must be installed on the
Adaptive Server Enterprise server and conversion must be supported.

The locales.dat settings (which are used by all Open Client applications)
must match the remote Adaptive Server Anywhere settings.

The following table provides recommended matches between Adaptive
Server Enterprise and Adaptive Server Anywhere character sets. The
matches are not all complete.

Adaptive Open Client/ | Open Client/ Open Client /
Server Open Server Open Server case- | Open Server
Anywhere name sensitive sort case-
collation order insensitive
name sort order
default cp850 dictionary_cp850 nocase_cp850
437LATIN1 cp437 dictionary_cp437 nocase cp437
437ESP cp437 espdict_cp437 espnocs_cp437
437SVE cp437 bin_cp437 bin_cp437
819CYR iso 1 bin iso 1 bin_ iso 1

73

Design overview

74

Adaptive Open Client/ | Open Client/ Open Client /
Server Open Server Open Server case- | Open Server
Anywhere name sensitive sort case-
collation order insensitive
name sort order
819DAN iso 1 bin iso 1 bin_iso 1
819ELL iso_1 bin_iso 1 bin_iso 1
819ESP iso_1 espdict_iso_1 espnocs_iso_1
8191SL iso_1 bin_iso 1 bin_iso 1
819LATIN1 iso_1 dictionary_iso_1 nocase_iso_1
819LATIN2 iso 1 bin iso 1 bin_ iso 1
819NOR iso 1 bin iso 1 bin_iso 1
819RUS iso 1 bin iso 1 bin_iso 1
819SVE iso 1 bin iso 1 bin_iso 1
819TRK iso_1 bin_iso 1 bin_iso 1
850CYR cp850 bin_cp850 bin_cp850
850DAN cp850 scandict_cp850 gcannocp_cp85
850ELL cp850 bin_cp850 bin_cp850
850ESP cp850 espdict_cp850 espnocs_cp850
8501SL cp850 scandict_cp850 gcannocp_cp85
850LATIN1 cp850 dictionary_cp850 nocase_cp850
850LATIN2 cp850 bin_cp850 bin_cp850
850NOR cp850 scandict_cp850 gcannocp_cp85
850RUS cp850 bin_cp850 bin_cp850
850SVE cp850 scandict_cp850 gcannocp_cp85
850TRK cp850 bin_cp850 bin_cp850
852LATIN2 cp852 bin_cp852 bin_cp852
852CYR cp852 bin_cp852 bin_cp852
855CYR cp855 cyrdict_cp855 cynocs_cp855
857TRK cp857 bin_cp857 bin_cp857
860LATIN1 cp860 bin_cp860 bin_cp860

Chapter 6 Principles of SQL Remote Design

Adaptive Open Client/ | Open Client / Open Client /
Server Open Server Open Server case- | Open Server
Anywhere name sensitive sort case-
collation order insensitive
name sort order
866RUS cp866 rusdict_cp866 rusnocs_cp866
869EL L cp869 bin_cp869 bin_cp869
932JPN gis bin_sis bin_sis
EUC_JAPAN eucjis bin_eucjis bin_eucjis
EUC_CHINA eucgb bin_eucgb bin_eucgb
EUC_TAIWAN | euch5 bin_bigs bin_bigs
EUC_KOREA eucksc bin_eucksc bin_eucksc
UTF8 utf8 bin_utf8 bin_utf8

75

How statements are replicated

How statements are replicated

Only committed
transactions are
replicated

Primary keys

An UPDATE is not
always an
UPDATE

SQL Remote replication is based on the transaction log, enabling it to
replicate only changes to data, rather than all data, in each update. When we
say that SQL Remote replicates data, we really mean that SQL Remote
replicates SQL statements that modify data.

SQL Remote replicates only statementsin committed transactions, to ensure
proper transaction atomicity throughout the replication setup and maintain a
consistency among the databases involved in the replication, albeit with
some time lag while the datais replicated.

When an UPDATE or aDELETE isreplicated, SQL Remote uses the
primary key columns to uniquely identify the row being updated or deleted.
All tables being replicated must have a declared primary key or uniqueness
constraint. A unique index is not sufficient. The columns of the primary key
are used in the WHERE clause of replicated updates and deletes. If atable
has no primary key, the WHERE clause refersto all columnsin the table.

When asimple INSERT statement is entered at one database, it is sent to
other databases in the SQL Remote setup as an INSERT statement. However,
not all statements are replicated exactly as they are entered by the client
application. This section describes how SQL Remote replicates SQL
statements. It isimportant to understand this material if you are to design a
robust SQL Remote installation.

The Message Agent is the component that carries out the replication of
statements.

Replication of inserts and deletes

76

INSERT and DELETE statements are the simplest replication case.

SQL Remote takes each INSERT or DELETE operation from the transaction
log, and sendsit to all sites that subscribe to the row being inserted or
deleted.

If only a subset of the columns in the table is subscribed to, the INSERT
statements sent to subscribers contains only those columns.

The Message Agent ensures that statements are not replicated to the user that
initially entered them.

Chapter 6 Principles of SQL Remote Design

Replication of updates

UPDATE
statements
replicated as
INSERTS or
DELETES

UPDATE conflict
detection

UPDATE statements are not replicated exactly as the client application
enters them. This section describes two ways in which the replicated
UPDATE statement may differ from the entered UPDATE statement.

If an UPDATE statement has the effect of removing a row from a given
remote user’s subscription, it is sent to that user as a DELETE statement. If
an UPDATE statement has the effect of adding arow to a given remote
user’'s subscription, it is sent to that user as an INSERT statement.

Thefigureillustrates a publication, where each subscriber subscribes by their
name:

Consolidated Ann Marc
ID | Rep | Dept ID Rep ID | Rep
1 | Ann | 101 1 | Ann 2 Marc
2 |Marc| 101 3 Marc
3 | Marc| 101
Consolidated Ann Marc
ID | Rep | Dept ID | Rep ID | Rep
1 Ann | 101 1 Ann 2 Marc
2 |Marc| 101 | >| 3 Ann —3— |-Mare-
3 | Ann| 101

An UPDATE that changes the Rep value of arow from Marc to Annis
replicated to Marc as a DELETE statement, and to Ann as an INSERT
statement.

This reassignment of rows among subscribers is sometimes called territory
realignment, because it is acommon feature of sales force automation
applications, where customers are periodically reassigned among
representatives.

An UPDATE statement changes the value of one or more rows from some
existing value to a new value. The rows altered depend on the WHERE
clause of the UPDATE statement.

When SQL Remote replicates an UPDATE statement, it does so as a set of
single-row updates. These single-row statements can fail for one of the
following reasons:

e

How statements are replicated

The row to be updated does not exist Each row isidentified by its
primary key values, and if a primary key has been altered by some other
user, the row to be updated is not found.

In this case, the UPDATE does not update anything.

The row to be updated differs in one or more of its columns If one
of the values expected to be present has been changed by some other
user, an update conflict occurs.

At remote databases, the update takes place regardless of the valuesin
the row.

At the consolidated database, SQL Remote allows conflict resolution
operations to take place. Conflict resolution operationsare held in a
trigger or stored procedure, and run automatically when aconflictis
detected.

In Adaptive Server Anywhere, the conflict resolution trigger runs before
the update, and the update proceeds when the trigger is finished. In
Adaptive Server Enterprise, the conflict resolution procedure runs after
the update has been applied.

A table without a primary key or uniqueness constraint refers to all
columns in the WHERE clause of replicated updates When two
users update the same row, replicated updates will not update anything
and databases will become inconsistent. All replicated tables should
have a primary key or uniqueness constraint and the columnsin the
constraint should never be updated.

Replication of procedures

78

Any replication system is faced with a choice between two options when
replicating a stored procedure call:

¢

Replicate the procedure call A corresponding procedure is executed
at the replicate site, or

Replicate the procedure actions Theindividual actions (INSERTS,
UPDATES, DELETEs and so on) of the procedure are replicated.

QL Remote replicates procedures by replicating the actions of a procedure.
The procedure call is not replicated.

Chapter 6 Principles of SQL Remote Design

Replication of triggers

Trigger replication
from Adaptive
Server Enterprise

Trigger replication
from Adaptive
Server Anywhere

Trigger replication in SQL Remote is different for the Adaptive Server
Enterprise Message Agent and the Adaptive Server Anywhere Message
Agent.

From Adaptive Server Enterprise, trigger actions are replicated. Y ou must
ensure that triggers are not fired in the remote Adaptive Server Anywhere
databases. If the trigger were fired, its actions would be executed twice.

The Adaptive Server Anywhere FIRE_TRIGGERS database option prevents
triggers from being fired. If you set this option for the user ID used by the
Message Agent, be careful to not use this user ID for other purposes.

An alternative approach to preventing trigger execution, available only for
Adaptive Server Anywhere, isto use the following condition around the
body of your triggers:

I F CURRENT REMOTE USER | S NULL

This make execution conditional on whether the current user is the Message
Agent.

By default, the Message Agent for Adaptive Server Anywhere does not
replicate actions performed by triggers; it is assumed that the trigger is
defined remotely. This avoids permissions issues and the possibility of each
action occurring twice. There are some exceptionsto thisrule;

¢ Conflict resolution trigger actions The actions carried out by conflict
resolution, or RESOLVE UPDATE, triggers are replicated from a
consolidated database to all remote databases, including the one that sent
the message causing the conflict.

¢ Replication of BEFORE triggers Some BEFORE triggers can
produce undesirable results when using SQL Remote, and so BEFORE
trigger actions that modify the row being updated are replicated, before
UPDATE actions.

Y ou must be aware of this behavior when designing your installation.
For example, a BEFORE UPDATE that bumps a counter column in the
row to keep track of the number of times arow is updated would double
count if replicated, as the BEFORE UPDATE trigger will fire when the
UPDATE isreplicated. To prevent this problem, you must ensure that, at
the subscriber database, the trigger is not present or does not carry out
the replicated action. Also, a BEFORE UPDATE that sets a column to
the time of the last update will get the time the UPDATE is replicated as
well.

79

How statements are replicated

An option to The Adaptive Server Anywhere Message Agent has an option that causes it
replicate trigger to replicate al trigger actions when sending messages. Thisis the dbremote
actions -t option.

If you use this option, you must ensure that the trigger actions are not carried
out twice at remote databases, once by the trigger being fired at the remote
site, and once by the explicit application of the replicated actions from the
consolidated database.

To ensure that trigger actions are not carried out twice, you can wrap an |F
CURRENT REMOTE USER ISNULL ... END IF statement around the
body of the triggers or you can set the Adaptive Server Anywhere
Fire_triggers option to OFF for the Message Agent user ID.

Replication of data definition statements

Data definition statements (CREATE, ALTER, DROP, and others that
modify database objects) are not replicated by SQL Remote unless they are
entered while in passthrough mode.

& For information about passthrough mode for Adaptive Server
Anywhere, see "Using passthrough mode" on page 267.

80

Chapter 6 Principles of SQL Remote Design

How data types are replicated

Long binary or character data, and datetime data, need special consideration.

Replication of blobs

Adaptive Server
Anywhere
replication

Adaptive Server
Enterprise
replication

Using the
Verify_threshold
option to minimize
message size

Blobsare LONG VARCHAR, LONG BINARY, TEXT, and IMAGE data
types. values that are longer than 256 characters.

SQL Remote includes a special method for replicating blobs between
Adaptive Server Anywhere databases.

The Message Agent uses avariable in place of the value in the INSERT or
UPDATE statement that is being replicated. The value of the variableis built
up by a sequence of statements of the form

SET vble = vble || 'nore_stuff’

This makes the size of the SQL statements involving long values smaller, so
that they fit within a single message. The SET statements are separate SQL
statements, so that the blob is effectively split over several SQL Remote

messages.

Blobs can be replicated to and from Adaptive Server Enterprise aslong as
they fit into the Message Agent memory.

Sybase Open Client CTLIB applications that manipulate the CS_|ODESC
structure must not set thelog_on_update member to FALSE.

The Verify_threshold database option can prevent long values from being
verified (inthe VERIFY clause of areplicated UPDATE). The default value
for the option is 1000. If the data type of a column islonger than the
threshold, old values for the column are not verified when an UPDATE is
replicated. This keeps the size of SQL Remote messages down, but has the
disadvantage that conflicting updates of long values are not detected.

There is atechnique allowing detection of conflicts when Verify_threshold
is being used to reduce the size of messages. Whenever a"blob" is updated, a
last_modified column in the same table should also be updated. Conflicts
can then be detected because the old value of the last_modified column is
verified.

81

How data types are replicated

Using a work table
to avoid redundant
updates

Controlling
replication of blobs

Repeated updates to a blob should be done in a"work" table, and the final
version should be assigned to the replicated table. For example, if a
document in progress is updated 20 times throughout the day and the
Message Agent is run once at the end of the day, all 20 updates are
replicated. If the document is 200 kb in length, this causes 4 Mb of messages
to be sent.

The better solution is to have adocument_in_progr ess table. When the user
is done revising a document, the application movesit from the
document_in_progress table to the replicated table. Theresultsin asingle
update (200 kb of messages).

The Adaptive Server Anywhere BLOB_THRESHOLD option allows further
control over the replication of long values. Any value longer than the
BLOB_THRESHOLD option isreplicated asablob. That is, it is broken into
pieces and replicated in chunks, before being reconstituted by using a SQL
variable and concatenating the pieces at the recipient site.

By setting BLOB_THRESHOLD to a high value in remote Adaptive Server
Anywhere databases, blobs are not broken into pieces, and operations can be
applied to Adaptive Server Enterprise by the Message Agent. Each SQL
statement must fit within a message, so this only allows replication of small
blobs.

Replication of dates and times

82

When date or time columns are replicated, the Message Agent uses the
setting of the SR_Date Format, SR_Time_Format, and
SR_Timestamp_Format database options to format the date.

For example, the following option setting instructs the Message Agent to
send a date of May 2, 1987 as 1987-05-02.

SET CPTION SR Date_Format = 'yyyy- nmdd’
& For more information, see "SQL Remote options' on page 322.
The following points may be useful when replicating dates and times:

¢ Thetime, date, and timestamp formats must be consistent throughout the
installation.

+ |f the consolidated database is an Adaptive Server Anywhere database,
ensure that the order of year, month, and day used for the date and
timestamp formats matches the setting of the DATE_ORDER database
option.

Y ou can change the DATE_ORDER option for the duration of each
connection.

Chapter 6 Principles of SQL Remote Design

If the consolidated database is an Adaptive Server Enterprise database,
ensure that the order of year, month, and day in the SQL Remote
settingsis consistent with the dateformat setting in the Adaptive Server
Enterprise database.

« To find the dateformat settings on an Adaptive Server Enterprise
database:

1

Login to the Adaptive Server Enterprise database from isq/ using the
login ID used by ssremote. In this example, we use ss for thislogin ID.

I ssue the following command:

sel ect *
frommaster..syslogins
where nanme = 'ssr’

go

Adaptive Server Enterprise returns the default language for the ssr user.

If ssr uses the default language (us_english) then the default dateformat
isYMD. If the language is different from the default, enter the following
command:

sp_hel pl anguage [/ anguage- nane

where language-name is the language in use by the ssruser. The
information displayed includes the default date format for the language.

83

Who gets what?

Who gets what?

Adaptive Server
Anywhere actions

84

Each time arow in atable isinserted, deleted, or updated, a message has to
be sent to those subscribed to the row. In addition, an update may cause the
subscription expression to change, so that the statement is sent to some
subscribers as a del ete, some as an update, and some as an insert.

& For details of what statements get sent to which subscribers, see "How
statements are replicated” on page 76. For details on subscriptions, see the
following two chapters.

This section describes how SQL Remote sends the right operations to the
right recipients.

The task of determining who gets what is divided between the database
server and the Message Agent. The engine handles those aspects that are to
do with publications, while the Message Agent handles aspects to do with
subscriptions.

Adaptive Server Anywhere eval uates the subscription expression for each
update made to atable that is part of a publication. It adds the value of the
expression to the log, both before and after the update.

Not the subscriber list

Adaptive Server Enterprise does not evaluate or enter into the log alist of
subscribers. The subscription expression (a property of the publication) is
evaluated and entered. All handling of subscribersisleft to the Message
Agent.

For atable that is part of more than one publication, the subscription
expression is evaluated before and after the update for each publication.

The addition of information to the log can affect performancein the
following cases:

¢ Expensive expressions When a subscription expression is expensive
to evaluate, it can affect performance.

¢ Many publications When atable belongs to many publications, many
expressions must be evaluated. In contrast, the number of subscriptions
isirrelevant.

¢ Many-valued expressions Some expressions are many-valued. This
can lead to much additional in formation in the transaction log, with a
corresponding effect on performance.

Chapter 6 Principles of SQL Remote Design

Adaptive Server
Enterprise actions

Message Agent
actions

In a SQL Remote for Adaptive Server Enterprise publication, the
subscription expression must be a column. The subscription column contains
either asingle value or a comma-separated list of values.

Not the subscriber list
Adaptive Server Enterprise does not enter into the log alist of subscribers.
The column value is entered. All handling of subscribersis left to the

Message Agent.

When atable is marked for replication using sp_add_remote_table (which
calls sp_setreplicate), Adaptive Server Enterprise places an entire before
image of the row in the transaction log for deletes, and entire after image for
inserts, and both images for updates. This means that the before and after
values of the subscription column are available.

The Message Agent reads the evaluated subscription expressions or
subscription column entries from the transaction log, and matches the before
and after values against the subscription value for each subscriber to the
publication. In this way, the Message Agent can send the correct operations
to each subscriber.

While large numbers of subscribers do not have any impact on server
performance, they can impact Message Agent performance. Both the work in
matching subscription values against large numbers of subscription values,
and the work in sending the messages, can be demanding.

85

Replication errors and conflicts

Replication errors and conflicts

SQL Remoteis designed to allow databases to be updated at many different
sites. Careful design isrequired to avoid replication errors, especiadly if the
database has a complicated structure. This section describes the kinds of
errors and conflict that can occur in areplication setup; subsequent sections
describe how you can design your publications to avoid errors and manage
conflicts.

Delivery errors not discussed here

This section does not discuss issues related to message delivery failures.
For information on delivery errors and how they are handled, see "The
message tracking system” on page 243

Replication errors

86

Replication errors fall into the following categories:

¢

Duplicate primary key errors Two users INSERT arow using the
same primary key values, or one user updates a primary key and a
second user inserts a primary key of the new value. The second
operation to reach a given database in the replication system fails
because it would produce a duplicate primary key.

Row not found errors A user DELETES arow (that is, the row with a
given primary key value). A second user UPDATES or DELETES the
same row at another site.

In this case, the second statement fails, as the row is not found.

Referential integrity errors If acolumn containing aforeign key is
included in a publication, but the associated primary key is not included,
the extraction utility leaves the foreign key definition out of the remote
database so that INSERTS at the remote database will not fail.

This can be solved by including proper defaults into the table
definitions.

Also, referential integrity errors can occur when a primary table has a
SUBSCRIBE BY expression and the associated foreign table does not:
rows from the foreign table may be replicated, but the rows from the
primary table may be excluded from the publication.

Chapter 6 Principles of SQL Remote Design

Replication conflicts

Replication conflicts are different from errors. Properly handled, conflicts are
not a problem in SQL Remote.

¢ Conflicts A user updatesarow. A second user updates the same row
at another site. The second user’s operation succeeds, and SQL Remote
allows atrigger to be fired (Adaptive Server Anywhere) or a procedure
to be called (Adaptive Server Enterprise) to resolve these conflictsin a
way that makes sense for the data being changed.

Conflicts will occur in many installations. SQL Remote allows
appropriate resolution of conflicts as part of the regular operation of a
SQL Remote setup, using triggers and procedures.

& For information about how SQL Remote handles conflicts as they
occur, see the following chapters.

Tracking SQL errors

SQL errorsin replication must be designed out of your setup. SQL Remote
includes an option to help you track errorsin SQL statements, but this option
is not intended to resolve such errors.

By setting the Replication_error option, you can specify a stored procedure
to be called by the Message Agent when a SQL error occurs. By default no
procedureis called.

+ To set the Replication_error option in Adaptive Server Anywhere:
¢ Issuethe following statement:

SET OPTI ON
renot e-user. Replication_error
= ' procedur e- nange’

where remote-user isthe user ID on the Message Agent command line,
and procedure-name is the procedure called when a SQL error is
detected.

% To set the Replication_error option in Adaptive Server Enterprise:
¢ Issuethe following statement:

exec sp_renote_option Replication_error, procedure-
nane

go

87

Replication errors and conflicts

where procedure-name is the procedure called when a SQL error is

detected.
Replication error The replication error procedure must have a single argument of type CHAR,
procedure VARCHAR, or LONG VARCHAR. The procedure is called once with the
requirements SQL error message and once with the SQL statement that causes the error.

88

CHAPTER 7

SQL Remote Design for Adaptive Server
Anywhere

About this chapter This chapter describes how to design a SQL Remote installation when the
consolidated database is an Adaptive Server Anywhere database.

Similar material for Adaptive Server Enterprise

Many of the principles of publication design are the same for Adaptive
Server Anywhere and Adaptive Server Enterprise, but there are
differences in commands and capabilities. Thereisalarge overlap
between this chapter and the corresponding chapter for Adaptive Server
Enterprise users, "SQL Remote Design for Adaptive Server Enterprise” on

page 141.
Contents Topic Page

Design overview 90
Publishing data 91
Publication design for Adaptive Server Anywhere 100
Partitioning tables that do not contain the subscription expression 103
Sharing rows among several subscriptions 111
Managing conflicts 120
Ensuring unique primary keys 129
Creating subscriptions 139

89

Design overview

Design overview

Designing a SQL Remote installation includes the following tasks:

¢ Designing publications The publications determine what information
is shared among which databases.

¢ Designing subscriptions The subscriptions determine what
information each user receives.

¢ Implementing the design Creating publications and subscriptions for
all usersin the system.

All administration is Like all SQL Remote administrative tasks, design is carried out by a database
at the consolidated administrator or system administrator at the consolidated database.

database The Adaptive Server Anywhere Database Administrator should perform all

SQL Remote configuration tasks.

90

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Publishing data

This section describes how to create simple publications consisting of whole
tables, or of column-wise subsets of tables; these tables are aso called
articles. You can perform these tasks using Sybase Central or with the
CREATE PUBLICATION statement in Interactive SQL.

All publications in Sybase Central appear in the Publications folder. Any
articles you create for that publication appear within the publication
container.

Each publication can contain one or more entire tables, but partial tables are
also permitted. A table can be subdivided by columns, rows, or both.

Publishing whole tables

Example

The simplest publication you can make consists of asingle article, which
consists of all rows and columns of one or more tables. These tables must

already exist.

« To publish one or more entire tables (Sybase Central):

1 Connect to the database as a user with DBA authority.

2 Open the Publications folder and double-click Add Publication.
3 Typeaname for the new publication. Click Next.
4

On the Tables tab, select atable from the list of Matching tables.
Click Add. Thetable appearsin the list of Selected Tables on the right.

5 Optionaly, you may add additional tables. The order of the tablesis not
important.

6 Click Finish.

% To publish one or more entire tables (SQL):
1 Connect to the database as a user with DBA authority.

2 Execute a CREATE PUBLICATION statement that specifies the name
of the new publication and the table you want to publish.

¢+ Thefollowing statement creates a publication that publishes the whole
customer table;

CREATE PUBLI CATI ON pub_cust orrer (
TABLE cust oner

)
91

Publishing data

The following statement creates a publication including all columns and
rows in each of a set of tables from the Adaptive Server Anywhere
sample database:

CREATE PUBLI CATI ON sal es (
TABLE cust oner,
TABLE sal es_order,
TABLE sal es_order _itens,
TABLE pr oduct

)

&~ For more information, see the"CREATE PUBLICATION statement”
on page 314 of the book ASA SQL Reference Manual.

Publishing only some columns in atable

Example

92

Y ou can create a publication that contains all the rows, but only some of the
columns, of atable from Sybase Central or by listing the columnsin the
CREATE PUBLICATION statement.

< To publish only some columns in a table (Sybase Central):

1

2
3
4

Connect to the database as a user with DBA authority.
Open the Publications folder and double-click Add Publication.
Type aname for the new publication. Click Next.

On the Tables tab, select atable from the list of Matching tables. Click
Add. The table is added to the list of Selected Tables on theright.

On the Columns tab, double-click the table’s icon to expand the list of
available columns. Select each column you want to publish and
click Add. The selected columns appear on the right.

Click Finish.

+ To publish only some columns in a table (SQL):

1
2

Connect to the database as a user with DBA authority.

Execute a CREATE PUBLICATION statement that specifies the
publication name and the table name. List the published columnsin
parenthesis following the table name.

The following statement creates a publication that publishes all rows of
the id, company_name, and city columns of the customer table:

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

CREATE PUBLI CATI ON pub_cust orrer (
TABLE cust orer (
id,
conpany_nane,
city)
)

&>~ For more information, see the "CREATE PUBLICATION statement"
on page 314 of the book ASA SQL Reference Manual.

Publishing only some rows in a table

Y ou can create a publication that contains all the columns, but only some of
the rows, of atable from Sybase Central. In either case, you do so by writing
a search condition that matches only the rows you want to publish.

Sybase Central and the SQL language provide two ways of publishing only
some of the rows in atable; however, only one way is compatible with
MobiLink.

¢ WHERE clause You can usea WHERE clause to include a subset of
rowsin an article. All subscribers to the publication containing this
article receive the rows that satisfy the WHERE clause.

¢ Subscription expression Y ou can use a subscription expression to
include a different set of rows in different subscriptions to publications
containing the article.

Y ou can combine a WHERE clause and a subscription expression in an
article. You can specify them in Sybase Central or ina CREATE
PUBLICATION statement.

Use the Subscription expression when different subscribers to a publication
are to receive different rows from atable. The Subscription expression isthe
most powerful method of partitioning tables.

Use the WHERE clause to exclude the same set of rows from all
subscriptions to a publication.

Publishing only some rows using a WHERE clause

Y ou can specify a WHERE clause to include in the publication only the rows
that satisfy the WHERE conditions.

+ To create a publication using a WHERE clause (Sybase Central):

1 Connect to the database as a user with DBA authority.

93

Publishing data

Open the Publications folder and launch the Add Publication wizard.
Type aname for the new publication. Click Next.

On the Tables tab, select atable from the list of Matching tables. Click
Add. The table is added to the list of Selected Tables on the right.

On the Where tab, select the table then type the search condition in the
lower box. Optionally, you can use the Insert dialog to assist you in
formatting the search condition.

Click Finish.

% To create a publication using a WHERE clause (SQL):

1
2

Examples ¢

Connect to the database as a user with DBA authority.

Execute a CREATE PUBLICATION statement that includes the rows
you wish to include in the publication and a WHERE condition.

The following statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, for the
customers marked as active in the status column.

CREATE PUBLI CATI ON pub_cust orrer (
TABLE cust oner (
id,
conpany_nane,
city,
state)
WHERE status = 'active’

)

In this case, the status column is not published. All unpublished rows
must have a default value. Otherwise, an error occurs when rows are
downloaded for insert from the consolidated database.

Thefollowing is asingle-article publication sending relevant order
information to Samuel Singer, a sales rep:

CREATE PUBLI CATI ON pub_orders_sanuel _si nger (
TABLE sal es_order WHERE sal es_rep = 856
)

&~ For more information, see the"CREATE PUBLICATION statement”
on page 314 of the book ASA SQL Reference Manual.

SUBSCRIBE BY

The create publication statement also allows a SUBSCRIBE BY clause.
This clause can also be used to selectively publish rowsin SQL Remote.
However, it isignored during MobiLink synchronization.

94

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Publishing only some rows using a subscription expression

Benefits of
subscription
expressions

Y ou can specify a subscription expression to include a different set of rows
in different subscriptions to publications containing the article.

For example, in a mobile workforce situation, a sales publication may be
wanted where each sales rep subscribes to their own sales orders, enabling
them to update their sales orders locally and replicate the sales to the
consolidated database.

Using the WHERE clause model, a separate publication for each sales rep
would be needed: the following publication is for sales rep Samuel Singer:
each of the other sales reps would need a similar publication.

CREATE PUBLI CATI ON pub_orders_sanuel _si nger (
TABLE sal es_order
WHERE sal es_rep = 856
)

To address the needs of setups requiring large numbers of different
subscriptions, SQL Remote allows a subscription expression to be
associated with an article. Subscriptions receive rows depending on the value
of asupplied expression.

Publications using a subscription expression are more compact, easier to
understand, and provide better performance than maintaining several
WHERE clause publications. The database server must add information to
the transaction log, and scan the transaction log to send messages, in direct
proportion to the number of publications. The subscription expression allows
many different subscriptions to be associated with a single publication,
whereas the WHERE clause does not.

To create an article using a subscription expression (Sybase
Central):

1 Connect to the database as a user with DBA authority.

2 Open the Publications folder (located within the SQL Remote folder).
3 Double-click Add Publication.
4

On thefirst page of the Publication Creation wizard, type a name for the
publication and click Next.

On the Table tab, configure the desired values for that table.

On the Subscribe By tab, use the controlsto create the subscription
expression.

7 Follow the remaining instructions in the wizard.

95

Publishing data

% To create an article using a subscription expression (SQL):
1 Connect to the database as a user with DBA authority.

2 Executea CREATE PUBLICATION statement that includes the
expression you wish to use as a match in the subscription expression.

Examples ¢ Thefollowing statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, and
which matches the rows with subscribers according to the value of the
state column:

CREATE PUBLI CATI ON pub_cust orrer (
TABLE cust oner (
id,
conpany_nane,
city,
state)
SUBSCRI BE BY state

)

¢ Thefollowing statements subscribe two employees to the publication:
Ann Taylor receives the customersin Georgia (GA), and Sam Singer
receives the customers in Massachusetts (MA).

CREATE SUBSCRI PTI ON
TO pub_custoner (' &)
FOR Ann_Tayl or ;

CREATE SUBSCRI PTI ON
TO pub_custoner (' MA)
FOR Sam Si nger

Users can subscribe to more than one publication, and can have more than
one subscription to a single publication.

& Seealso

¢ "CREATE PUBLICATION statement" on page 314 of the book ASA
QL Reference Manual

¢ "Partitioning tables that do not contain the subscription expression” on
page 103

¢ "Creating subscriptions' on page 139
¢ "Publishing only some rows using a WHERE clause" on page 93
¢ "Altering existing publications" on page 97

96

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Altering existing publications

After you have created a publication, you can alter it by adding, modifying,
or deleting articles, or by renaming the publication. If an article is modified,
the entire specification of the modified article must be entered.

Y ou can perform these tasks using Sybase Central or with the ALTER
PUBLICATION statement in Interactive SQL.

« To modify the properties of existing publications or articles (Sybase

Central):

1 Connect to the database as a user who owns the publication or as a user
with DBA authority.

2 Right-click the publication or article and choose Properties from the
popup menu.

3 Configure the desired properties.

< To add articles (Sybase Central):

1

ga b~ W N

Connect to the database as a user who owns the publication or as a user
with DBA authority.

Open the Publications folder (located within the SQL Remote folder).
Open the publication container.

Double-click Add Article.

In the Create a New Article wizard, do the following:

¢ Choose atable and click Next.

¢ Choose the number of columns. Click Next.

¢ Enter aWHERE clause (if desired). Click Next.

¢ Create asubscription expression (if desired).

Click OK to create the article.

% To remove articles (Sybase Central):

1

Connect to the database as a user who owns the publication or as a user
with DBA authority.

Open the Publications folder (located within the SQL Remote folder).
Open the publication container.

Right-click the article you want to delete and choose Delete from the
popup menu.

97

Publishing data

+ To modify an existing publication (SQL):

1 Connect to the database as a user who owns the publication or as a user
with DBA authority.

2 Connect to adatabase with DBA authority.

3 Executean ALTER PUBLICATION statement.
Example ¢ Thefollowing statement adds the customer table to the pub_contact
publication.

ALTER PUBLI CATI ON pub_contact (
ADD TABLE cust oner

)
& Seedso
¢ "ALTER PUBLICATION statement" on page 216 of the book ASA SQL
Reference Manual

¢ "Publishing only some rows using a WHERE clause" on page 93

¢ "Publishing only some rows using a subscription expression” on page 95

Dropping publications

Y ou can drop a publication using either Sybase Central or the DROP
PUBLICATION statement. If you drop a publication, all subscriptions to that
publication are automatically deleted as well.

Y ou must have DBA authority to drop a publication.

% To delete a publication (Sybase Central):
1 Connect to the database as a user with DBA authority.
2 Open the Publications folder.

3 Right-click the desired publications and choose Delete from the popup
menu.

< To delete a publication (SQL):
1 Connect to the database as a user with DBA authority.
2 ExecuteaDROP PUBLICATION statement.
Example The following statement drops the publication named pub_orders.
DROP PUBLI CATI ON pub_orders
98

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

& Seedso the"DROP PUBLICATION statement" on page 402 of the
book ASA SQL Reference Manual.

Notes on publications

¢

The different publication types described above can be combined. A
single publication can publish a subset of columns from a set of tables
and use a WHERE clause to select a set of rows to be replicated.

DBA authority is required to create and drop publications.
Publications can be altered only by the DBA or the publication’s owner.

Altering publications in arunning SQL Remote setup islikely to cause
replication errors and can lead to loss of datain the replication system
unless carried out with care.

Views cannot be included in publications.

Stored procedures cannot be included in publications. For a discussion
of how SQL Remote replicates procedures and triggers, see "Replication
of procedures' on page 78.

99

Publication design for Adaptive Server Anywhere

Publication design for Adaptive Server
Anywhere

Once you understand how to create simple publications, you must think
about proper publication design. Sound design is an important part of
building a successful SQL Remote installation. This section helps set out the
principles of sound design as they apply to SQL Remote for Adaptive Server
Anywhere.

Similar material for Adaptive Server Enterprise

Many of the principles of publication design are the same for Adaptive
Server Anywhere and Adaptive Server Enterprise, but there are
differences in commands and capabilities. Thereisalarge overlap
between this section and the corresponding section for Adaptive Server
Enterprise users, "Publication design for Adaptive Server Enterprise” on
page 148.

Design issues overview

Each subscription A remote database shares with the consolidated database the information in
must be a their subscriptions. The subscription is both a subset of the relationa
complete relational database held at the consolidated site, and also a complete relational database
database at the remote site. The information in the subscription is therefore subject to

the same rules as any other relational database:

¢ Foreign key relationships must be valid For every entry in aforeign
key, a corresponding primary key entry must exist in the database.

The database extraction utility ensures that the CREATE TABLE
statements for remote databases do not have foreign keys defined to
tables that do not exist remotely.

¢ Primary key uniqueness must be maintained Thereis no way of
checking what new rows have been entered at other sites, but not yet
replicated. The design must prevent users at different sites adding rows
with identical primary key values, as this would lead to conflicts when
the rows are replicated to the consolidated database.

Transaction The data in the dispersed database (which consists of the consolidated
integrity must be database and all remote databases) must maintain its integrity in the face of
maintained in the updates at al sites, even though there is no system-wide locking mechanism
absence of locking for any particular row.

100

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

¢ Locking conflicts must be prevented or resolved InaSQL Remote
installation, there is no method for locking rows across all databasesto
prevent different users from altering the rows at the same time. Such
conflicts must be prevented by designing them out of the system or must
be resolved in an appropriate manner at the consolidated database.

These key features of relational databases must be incorporated into the
design of your publications and subscriptions. This section describes
principles and techniques for sound design.

Conditions for valid articles

Supporting
INSERTS at
remote databases

All columns in the primary key must be included in the article.

For INSERT statements at a remote database to replicate correctly to the
consolidated database, you can exclude from an article only columns that can
be left out of avalid INSERT statement. These are:

¢ Columnsthat allow NULL.

¢ Columnsthat have defaults.

If you exclude any column that does not satisfy one of these requirements,
INSERT statements carried out at a remote database will fail when replicated
to the consolidated database.

Consolidated| ID | Rep | Dept
INSERT 1 | Ann | 101 _
INTO SalesRep (ID, Rep) Insert fails
VALUES (3, 'Shih’) 2 |Marc| 101
Shih| X

Remote | ID | Rep
INSERT L | Amn
INTO SalesRep (ID, Rep) |nsertd
VALUES (3, 'shih’) 2 | Marc succeeds
3 | Shih

101

Publication design for Adaptive Server Anywhere

Using BEFORE triggers as an alternative

An exception to this case is when the consolidated database is an
Adaptive Server Anywhere database, and a BEFORE trigger has been
written to maintain the columns that are not included in the INSERT
statement.

Design tips for performance

102

This section presents a checklist for designing high performance
SQL Remoteinstallations.

¢

Keep the number of publications small In particular, try not to
reference the same table in many different publications.

The work the database server needs to do is proportional to the number
of publications. Keeping the number low and making effective use of
subscriptions lightens the load on the database server.

When operations occur on atable, the database server and the Message
Agent must do some work for each publication that contains the table.
Having one publication for each remote user will drastically increase the
load on the database server. It is much better to have a few publications
that use SUBSCRIBE BY and have subscriptions for each remote user.
The database server does no additional work when more subscriptions
are added for a publication. The Message Agent is designed to work
efficiently with alarge number of subscriptions.

Group publications logically For example, if thereis atable that
every remote user requires, such as a price list table, make a separate
publication for that table. Make one publication for each table where the
data can be partitioned by a column value.

Use subscriptions effectively When remote users receive similar
subsets of the consolidated database, always use publications that
incorporate SUBSCRIBE BY expressions. Do not create a separate
publication for each remote user.

Pay attention to Update Publication Triggers In particular:
¢ Usethe NEW /OLD SUBSCRIBE BY syntax.

¢ Tunethe SELECT statementsto ensure they are accessing the
database efficiently.

Monitor the transaction log size Thelarger the transaction log, the
longer it takes the Message Agent to scan it. Rename the log regularly
and usethe DELETE_OLD_L OGS option.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Partitioning tables that do not contain the
subscription expression

In many cases, the rows of atable need to be partitioned even when the
subscription expression does not exist in the table.

The Contact example

The Contact database illustrates why and how to partition tables that do not
contain the subscription expression.

Example Hereis asimple database that illustrates the problem.

Contact
contact_key char(10)
name char(40)
cust_key char(12)

cust_key = cust_key

Customer

t ki har(12) k SalesRep
cust key char rep_key =

—» rep_key char(5
name char(40) rep_key n_apae_\[HEZ%))
rep_key char(5)

Each sales representative sells to several customers. At some customers there
isasingle contact, while other customers have several contacts.

The tables in the The three tables are described in more detail as follows:
database

103

Partitioning tables that do not contain the subscription expression

104

Table

Description

All sales representatives that work for the company. The
SalesRep table has the following columns:

¢ rep_key Anidentifier for each sales representative. Thisis
the primary key.

¢ name Thename of each sales representative.

The SQL statement creating this tableis as follows:

CREATE TABLE Sal esRep (
Rep_key CHAR(12) NOT NULL,
Name CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

Customer

All customers that do business with the company. The Customer
table includes the following columns:

¢ cust_key Anidentifier for each customer. Thisisthe
primary key.
¢ name Thename of each customer.

¢ rep_key Anidentifier for the sales representative in a sales
relationship. Thisisaforeign key to the SalesRep table.

The SQL statement creating this tableis as follows:

CREATE TABLE Custoner (
Cust _key CHAR(12) NOT NULL,
Name CHAR(40) NOT NULL,
Rep_key CHAR(12) NOT NULL,
FOREI GN KEY REFERENCES Sal esRep,
PRI MARY KEY (cust_key)

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Table Description

Contact All individual contacts that do business with the company. Each
contact belongs to a single customer. The Contact table includes
the following columns:

¢ contact_key Anidentifier for each contact. Thisisthe
primary key.
¢ name Thename of each contact.

¢ cust_key Anidentifier for the customer to which the
contact belongs. Thisis aforeign key to the Customer table.

The SQL statement creating thistableis:

CREATE TABLE Contact (
Contact _key CHAR(12) NOT NULL,
Name CHAR(40) NOT NULL,
Cust_key CHAR(12) NOT NULL,
FOREI GN KEY REFERENCES Cust oner,
PRI MARY KEY (contact_key)

Replication goals The goals of the design are to provide each sales representative with the
following information;

¢ Thecomplete SalesRep table.
¢ Those customers assigned to them, from the Customer table.

¢ Those contacts belonging to the relevant customers, from the Contact
table.

Partitioning the Customer table in the Contact example

The Customer table can be partitioned using therep_key valueas a
subscription expression. A publication that includes the SalesRep and
Customer tables would be asfollows:

CREATE PUBLI CATI ON Sal esRepDat a (
TABLE Sal esRep
TABLE Cust oner SUBSCRI BE BY rep_key

105

Partitioning tables that do not contain the subscription expression

Partitioning the Contact table in the Contact example

The Contact table must aso be partitioned among the sales representatives,
but contains no reference to the sales representative rep_key value. How can
the Message Agent match a subscription value against rows of thistable,
when rep_key isnot present in the table?

To solve this problem, you can use a subquery in the Contact article that
evaluates to therep_key column of the Customer table. The publication
then looks like this:

CREATE PUBLI CATI ON Sal esRepDat a (
TABLE Sal esRep
TABLE Cust oner
SUBSCRI BE BY rep_key
TABLE Cont act
SUBSCRI BE BY (SELECT rep_key
FROM Cust orrer
WHERE Cont act . cust _key = Customer. cust_key)
)

The WHERE clause in the subscription expression ensures that the subquery
returns only a single value, as only one row in the Customer table has the
cust_key value in the current row of the Contact table.

& For an Adaptive Server Enterprise consolidated database, the solution
is different. For more information, see " Partitioning tables that do not contain
the subscription column on page 150.

Territory realignment in the Contact example

106

Interritory realignment, rows are reassigned among subscribers. In the
present case, territory realignment is the reassignment of rowsin the
Customer table, and by implication also the Contact table, among the Sales
Reps.

When a customer is reassigned to a new salesrep, the Customer tableis
updated. The UPDATE isreplicated as an INSERT or aor aDELETE to the
old and new sales representatives, respectively, so that the customer row is
properly transferred to the new sales representative.

& For information on the way in which Adaptive Server Anywhere and
SQL Remote work together to handle this situation, see "Who gets what?"' on

page 84.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Use triggers to
maintain Contacts

Trigger definition

A special UPDATE

statement for
publications

When a customer is reassigned, the Contact table is unaffected. There are no
changes to the Contact table, and consequently no entriesin the transaction
log pertaining to the Contact table. In the absence of thisinformation,

SQL Remote cannot reassign the rows of the Contact table along with the
Customer.

Thisfailure will cause referential integrity problems: the Contact table at the
remote database of the old sales representative contains acust_key value for
which there is no longer a Customer .

The solution isto use atrigger containing a special form of UPDATE
statement, which does not make any change to the database tables, but which
does make an entry in the transaction log. Thislog entry contains the before
and after values of the subscription expression, and so is of the proper form
for the Message Agent to replicate the rows properly.

Thetrigger must be fired BEFORE operations on the row. In this way, the
BEFORE value can be evaluated and placed in the log. Also, the trigger must
be fired FOR EACH ROW rather than for each statement, and the
information provided by the trigger must be the new subscription expression.
The Message Agent can use thisinformation to determine which subscribers
receive which rows.

The trigger definition is as follows:

CREATE TRI GGER Updat eCust oner

BEFORE UPDATE ON Cust omer

REFERENCI NG NEW AS NewRow
OLD as d dRow

FOR EACH ROWN

BEG N
/1 determ ne the new subscription expression
/] for the Customer table
UPDATE Cont act
PUBLI CATI ON Sal esRepDat a
OLD SUBSCRI BE BY (A dRow. rep_key)
NEW SUBSCRI BE BY (NewRow. rep_key)
WHERE cust _key = NewRow. cust _key;

END,

The UPDATE statement in thistrigger is of the following special form:

UPDATE table-name
PUBLICATION publication-name
{ SUBSCRIBE BY subscription-expression |
OLD SUBSCRIBE BY old-subscription-expression
NEW SUBSCRIBE BY new-subscription-expression }
WHERE search-condition

Here is what the UPDATE statement clauses mean:

107

Partitioning tables that do not contain the subscription expression

¢+ Thetable-name indicates the table that must be modified at the remote
databases.

¢ The publication-name indicates the publication for which subscriptions
must be changed.

¢ Thevalue of subscription-expression is used by the Message Agent to
determine both new and existing recipients of the rows. Alternatively,
you can provide both OLD and NEW subscription expressions.

¢ The WHERE clause specifies which rows are to be transferred between
subscribed databases.

Notes on the ¢ If thetrigger uses the following syntax:

trigger UPDATE t abl e- nane
PUBLI CATI ON pub- nane
SUBSCRI BE BY sub- expressi on
WHERE sear ch-condition

the trigger must be a BEFORE trigger. In this case, a BEFORE
UPDATE trigger. In other contexts, BEFORE DEL ETE and BEFORE
INSERT are necessary.

¢ If thetrigger usesthe aternate syntax:

UPDATE t abl e- nane
PUBLI CATI ON publ i cati on- nane
QLD SUBSCRI BE BY ol d- subscri pti on-expression
NEW SUBSCRI BE BY new- subscri pti on-expression }
WHERE sear ch- condi tion

The trigger can be aBEFORE or AFTER trigger.

¢ The UPDATE statement lists the publication and table that is affected.
The WHERE clause in the statement describes the rows that are
affected. No changes are made to the data in the table itself by this
UPDATE, it makes entries in the transaction log.

¢ The subscription expression in this example returns a single value.
Subqueries returning multiple values can also be used. The value of the
subscription expression must the val ue after the UPDATE.

In this case, the only subscriber to the row isthe new sales
representative. In " Sharing rows among several subscriptions' on
page 111, we see cases where there are existing as well as new

subscribers.
Information in the Here we describe the information placed in the transaction log.
transaction log Understanding this helps in designing efficient publications.

¢ Assumethe following data:
¢ SdesReptable

108

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

rep_key | Name
repl ‘ Ann
rep2 ‘ Marc

¢ Customer table

cust_key | name | rep_key
custl ‘ Sybase ‘ repl
cust2 ‘ ASA ‘ rep2

¢+ Contact table

contact_key | name | cust_key
contactl David custl
contact2 Stefanie cust2

Now apply the following territory realignment Update statement

UPDATE Cust orrer
SET rep_key = 'rep2’
WHERE cust _key = ’'custl’

The transaction log would contain two entries arising from this
statement: one for the BEFORE trigger on the Contact table, and one for
the actual UPDATE to the Customer table.

SalesRepData — Publication Name

repl — BEFORE list

rep2 — AFTER list

UPDATE Contact

SET contact_key = 'contactl’,
name = 'David,
cust_key = 'custl'

WHERE contact_key = 'contactl'

SalesRepData — Publication Name
repl — BEFORE list

rep2 — AFTER list

UPDATE Customer

SET rep_key = 'rep2'

WHERE cust_key = "custl'

The Message Agent scans the log for these tags. Based on this
information it can determine which remote users get an INSERT,
UPDATE or DELETE.

109

Partitioning tables that do not contain the subscription expression

110

In this case, the BEFORE list wasrepl and the AFTER listisrep2. If
the before and after list values are different, the rows affected by the
UPDATE statement have "moved" from one subscriber value to another.
This means the Message Agent will send aDELETE to al remote users
who subscribed by the value repl for the Customer record cust1 and
send an INSERT to all remote users who subscribed by the value rep2.

If the BEFORE and AFTER lists are identical, the remote user already
has the row and an UPDATE will be sent.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Sharing rows among several subscriptions

There are cases where arow may need to be included in severa
subscriptions. For example, we may have a many-to-many relationship. In
this section, we use a case study to illustrate how to handle this situation.

The Policy example

The Policy database illustrates why and how to partition tables when there is
a many-to-many relationship in the database.

Example database Here is asimple database that illustrates the problem.
Customer Policy SalesRep
cust_key v\ policy_key rep_key
name cust_key name
rep_key

Each sales representative sellsto several customers, and some customers deal
with more than one sales representative. In this case, the relationship
between Customer and SalesRep is thus a many-to-many relationship.

The tables in the The three tables are described in more detail as follows:
database

111

Sharing rows among several subscriptions

Table Description

SalesRep All sales representatives that work for the company. The
SalesRep table has the following columns:

¢ rep_key Anidentifier for each sales representative. Thisis
the primary key.

¢ name Thename of each sales representative.

The SQL statement creating this tableis as follows:

CREATE TABLE Sal esRep (
Rep_key CHAR(12) NOT NULL,
Name CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

Customer All customers that do business with the company. The
Customer table includes the following columns:

¢ cust_key A primary key column containing an identifier
for each customer

4 name A column containing the name of each customer

The SQL statement creating this tableis as follows:

CREATE TABLE Custoner (
Cust _key CHAR(12) NOT NULL,
Name CHAR(40) NOT NULL,
PRI MARY KEY (cust_key)

112

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Replication goals

New problems

Table Description

Policy A three-column table that maintains the many-to-many
relationship between customers and sales representatives. The
Palicy table has the following columns:

¢ policy_key A primary key column containing an identifier
for the sales relationship.

¢ cust_key A column containing an identifier for the
customer representative in a sales relationship.

¢ rep_key A column containing an identifier for the sales
representative in a sales relationship.

The SQL statement creating this tableis as follows.

CREATE TABLE Policy (
policy_key CHAR(12) NOT NULL,
cust _key CHAR(12) NOT NULL,
rep_key CHAR(12) NOT NULL,
FOREI GN KEY (cust_key)
REFERENCES Cust ormer (cust_key)
FOREI GN KEY (rep_key)
REFERENCES Sal esRep (rep_key),
PRI MARY KEY (policy_key)

The goals of the replication design are to provide each sales representative
with the following information:

¢ Theentire SalesRep table.

¢ Those rows from the Policy table that include sales relationships
involving the sales rep subscribed to the data.

¢ Those rows from the Customer table listing customers that deal with the
sales rep subscribed to the data.

The many-to-many relationship between customers and sales representatives
introduces new challenges in maintaining a proper sharing of information:

¢ Wehave atable (in this case the Customer table) that has no reference to
the sales representative value that is used in the subscriptions to partition
the data.

Again, this problem is addressed by using a subquery in the publication.

¢ Eachrow inthe Customer table may be related to many rows in the
SalesRep table, and shared with many sales representatives databases.

113

Sharing rows among several subscriptions

The publication

How the
publication works

114

Put another way, the rows of the Contact table in "Partitioning tables
that do not contain the subscription expression” on page 103 were
partitioned into digoint sets by the publication. In the present example
there are overlapping subscriptions.

To meet the replication goals we again need one publication and a set of
subscriptions. In this case, we use two triggers to handle the transfer of
customers from one sales representative to another.

A single publication provides the basis for the data sharing:

CREATE PUBLI CATI ON Sal esRepDat a (
TABLE Sal esRep,
TABLE Pol i cy SUBSCRI BE BY rep_key,
TABLE Cust oner SUBSCRI BE BY (
SELECT rep_key FROM Pol i cy
WHERE Pol i cy. cust_key =
Cust oner. cust _key
),
)

The subscription statements are exactly asin the previous example.

The publication includes part or all of each of the three tables. To understand
how the publication works, it helpsto look at each article in turn:

¢ SalesRep table Thereare no qualifiersto this article, so the entire
SalesRep table isincluded in the publication.

TABLE SalesRep,

¢ Policy table Thisarticle uses a subscription expression to specify a
column used to partition the data among the sales reps:

TABLE Policy
SUBSCRIBE BY rep_key,

The subscription expression ensures that each sales rep receives only
those rows of the table for which the value of the rep_key column
matches the value provided in the subscription.

The Policy table partitioning is digjoint: there are no rows that are
shared with more than one subscriber.

¢ Customer table A subscription expression with a subquery is
used to define the partition. The article is defined as follows:

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Multiple-valued
subqueries in
publications

TABLE Customer SUBSCRIBE BY (
SELECT rep_key
FROM Policy
WHERE Policy.cust _key =
Customer.cust_key

The Customer partitioning is non-disj oint: some rows are shared with
more than one subscriber.

The subquery in the Customer article returns asingle column (rep_key) in
its result set, but may return multiple rows, corresponding to all those sales
representatives that deal with the particular customer. When a subscription
expression has multiple values, the row is replicated to all subscribers whose
subscription matches any of the values. It is this ability to have multiple-
valued subscription expressions that allows non-disjoint partitionings of a
table.

Territory realignment with a many-to-many relationship

How customers are
transferred

Using Triggers to
solve the problem

The problem of territory realignment (reassigning rows among subscribers)
requires specia attention, just asin the section "Territory realignment in the
Contact example" on page 106.

Y ou need to write triggers to maintain proper data throughout the installation
when territory realignment (reassignment of rows among subscribers) is
allowed.

In this example, we require that a customer transfer be achieved by deleting
and inserting rows in the Palicy table.

To cancel asalesrelationship between a customer and a sal es representative,
arow in the Policy table is deleted. In this case, the Policy table change is
properly replicated to the sales representative, and the row no longer appears
in their database. However, no change has been made to the Customer table,
and so no changes to the Customer table are replicated to the subscriber.

In the absence of triggers, this would leave the subscriber with incorrect data
in their Customer table. The same kind of problem arises when anew row is
added to the Policy table.

The solution isto write triggers that are fired by changes to the Palicy table,
which include a specia syntax of the UPDATE statement. The special
UPDATE statement makes no changes to the database tables, but does make
an entry in the transaction log that SQL Remote usesto maintain datain
subscriber databases.

115

Sharing rows among several subscriptions

A BEFORE Hereisatrigger that tracks INSERTS into the Policy table, and ensures that
INSERT trigger remote databases contain the proper data.

CREATE TRI GGER I nsPol i cy
BEFORE | NSERT ON Pol i cy
REFERENCI NG NEW AS NewRow
FOR EACH ROW
BEG N
UPDATE Cust ornrer
PUBLI CATI ON Sal esRepDat a
SUBSCRI BE BY (
SELECT rep_key
FROM Pol i cy
WHERE cust _key = NewRow. cust _key
UNI ON ALL
SELECT NewRow. r ep_key
)
WHERE cust _key = NewRow. cust _key;
END,

A BEFORE Hereis a corresponding trigger that tracks DELETES from the Policy table:

DELETE trigger CREATE TR GGER Del Pol i cy
BEFORE DELETE ON Pol i cy
REFERENCI NG OLD AS d dRow
FOR EACH ROW
BEG N
UPDATE Cust ornrer
PUBLI CATI ON Sal esRepDat a
SUBSCRI BE BY (
SELECT rep_key
FROM Pol i cy
WHERE cust _key = O dRow. cust _key
AND Pol i cy_key <> O dRow. Pol i cy_key
)
WHERE cust _key = O dRow. cust _key;
END,

Some of the features of the trigger are the same asin the previous section.
The mgjor new features are that the INSERT trigger contains a subquery, and
that this subquery can be multi-valued.

Multiple-valued The subquery in the BEFORE INSERT trigger isa UNION expression, and
subqueries can be multi-valued:

SELECT rep_key

FROM Policy

WHERE cust_key = NewRow.cust_key
UNION ALL

SELECT NewRow.rep_key

116

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Notes

The second part of the UNION istherep_key value for the new sales
representative dealing with the customer, taken from the INSERT
statement.

Thefirst part of the UNION isthe set of existing sales representatives
dealing with the customer, taken from the Policy table.

Thisillustrates the point that the result set of the subscription query must
be all those sales representatives receiving the row, not just the new
sales representatives.

The subquery in the BEFORE DELETE trigger is multi-valued:

SELECT rep_key

FROM Policy

WHERE cust_key = OldRow.cust_key
AND rep_key <> OldRow.rep_key

The subquery takesrep_key values from the Policy table. The values
include the primary key values of all those sales reps who deal with the
customer being transferred (WHERE cust_key = OldRow.cust_key),
with the exception of the one being deleted (AND rep_key <>
OldRow.rep_key).

This again emphasizes that the result set of the subscription query must
be all those values matched by sales representatives receiving the row
following the DELETE.

Datain the Customer tableis not identified with an individual
subscriber (by a primary key value, for example) and is shared among
more than one subscriber. This allows the possibility of the data being
updated in more than one remote site between replication messages,
which could lead to replication conflicts. Y ou can address this issue
either by permissions (allowing only certain users the right to update the
Customer table, for example) or by adding RESOLVE UPDATE
triggers to the database to handle the conflicts programmatically.

UPDATES on the Policy table have not been described here. They
should either be prevented, or a BEFORE UPDATE trigger is required
that combines features of the BEFORE INSERT and BEFORE DELETE
triggers shown in the example.

117

Sharing rows among several subscriptions

Using the Subscribe_by remote option with many-to-many

relationships

118

When the Subscribe by remote option is ON, operations from remote
databases on rows with a subscribe by value of NULL or an empty string
will assume the remote user is subscribed to the row. By default, the
Subscribe by remote option is set to ON. In most cases, this setting isthe
desired setting.

The Subscribe_by_remote option solves a problem that otherwise would
arise with some publications, including the Policy example. This section
describes the problem, and how the option automatically avoidsit.

The publication uses a subquery for the Customer table subscription
expression, because each Customer may belong to several Sales Reps:

CREATE PUBLI CATI ON Sal esRepDat a (
TABLE Sal esRep,
TABLE Pol i cy SUBSCRI BE BY rep_key,
TABLE Cust oner SUBSCRI BE BY (
SELECT rep_key FROM Pol i cy
WHERE Pol i cy. cust _key =
Cust orrer. cust _key
)
)

Marc Dill isa Sales Rep who has just arranged a policy with a new customer.
Heinserts anew Customer row and aso insertsarow in the Policy tableto
assign the new Customer to himself.

Customer Policy SalesRep
cust1010 v\ pol2345 195
cust_name cust1010 Marc Dill

195

Asthe INSERT of the Customer row is carried out by the Message Agent at
the consolidated database, Adaptive Server Anywhere records the
subscription value in the transaction log, at the time of the INSERT.

Later, when the Message Agent scans the log, it builds alist of subscribers
from the subscription expression, and Marc Dill is not on the list, as the row
in the Policy table assigning the customer to him has not yet been applied. If
Subscribe by remote were set to OFF, the result would be that the new
Customer is sent back to Marc Dill asa DELETE operation.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Aslong as Subscribe by remoteis set to ON, the Message Agent assumes
the row belongs to the Sales Rep that inserted it, the INSERT is not
replicated back to Marc Dill, and the replication system is intact.

If Subscribe_by remoteis set to OFF, you must ensure that the Policy row is
inserted before the Customer row, with the referential integrity violation
avoided by postponing checking to the end of the transaction.

119

Managing conflicts

Managing conflicts

An UPDATE conflict occurs when the following sequence of events takes

place:

1 User 1updatesarow at remote site 1.

2 User 2 updates the same row at remote site 2.

3 Theupdate from User 1isreplicated to the consolidated database.
4 The update from User 2 isreplicated to the consolidated database.

When the SQL Remote Message Agent replicates UPDATE statements, it
does so as a separate UPDATE for each row. Also, the message contains the
old row values for comparison. When the update from user 2 arrives at the
consolidated database, the values in the row are not those recorded in the

message.

First UPDATE
succeeds

ID | Rep | Dept
1 Ann | 101
2 |Marc| 101
3 | Shih | 104

UPDATE SalesRep
SET Dept=103

Second UPDATE
overwrites the
first

UPDATE SalesRep
SET Dept=104

WHERE ID =3 WHERE ID =3
ID | Rep | Dept ID | Rep | Dept
1 Ann | 101 1 Ann | 101
2 |Marc| 101 2 |Marc| 101
3 Shih 102>103 3 Shih [102>104
Default conflict By default, the UPDATE still proceeds, so that the User 2 update (the last to
resolution reach the consolidated database) becomes the value in the consolidated

database, and isreplicated to all other databases subscribed to that row.

120

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

In general, the default method of conflict resolution is that the most recent
operation (in this case that from User 2) succeeds, and no report is made of
the conflict. The update from User 1 islost. SQL Remote also allows custom
conflict resolution, using atrigger to resolve conflictsin away that makes
sense for the data being changed.

Conflict resolution does not apply to primary key updates
UPDATE conflicts do not apply to primary key updates. Y ou should not
update primary keysin a SQL Remote installation. Primary key conflicts
must be excluded from the installation by proper design.

This section describes how you can build conflict resolution into your
SQL Remote installation at the consolidated database.

How SQL Remote handles conflicts

When a conflict is
detected

SQL Remote replication messages include UPDATE statements as a set of
single row updates, each with aVERIFY clause that includes values prior to
updating.

An UPDATE conflict is detected by the database server as afailure of the
VERIFY clause values to match the rows in the database.

Conflicts are detected and resolved by the Message Agent, but only at a
consolidated database. When an UPDATE conflict is detected in a message
from aremote database, the Message Agent causes the database server to
take two actions:

1 Any conflict resolution (RESOLVE UPDATE) triggers are fired.
2 TheUPDATE isapplied.

UPDATE statements are applied even if the VERIFY clause values do not
match, whether or not thereisa RESOLVE UPDATE trigger.

Conflict resolution can take several forms. For example,

¢ Insome applications, resolution could mean reporting the conflict into a
table.

¢ You may wish to keep updates made at the consolidated database in
preference to those made at remote sites.

¢ Conflict resolution can be more sophisticated, for example in resolving
inventory numbersin the face of goods deliveries and orders.

121

Managing conflicts

&~ The method of conflict resolution is different at an Adaptive Server
Enterprise consolidated database. For more information, see "How
SQL Remote handles conflicts' on page 167.

Implementing conflict resolution

This section describes what you need to do to implement custom conflict
resolution in SQL Remote for Adaptive Server Anywhere. The concepts are
the same in SQL Remote for Adaptive Server Enterprise, but the
implementation is different.

SQL Remote allows you to define conflict resolution triggersto handle
UPDATE conflicts. Conflict resolution triggers are fired only at a
consolidated database, when messages are applied by a remote user. When
an UPDATE conflict is detected at a consolidated database, the following
sequence of events takes place.

1 Any conflict resolution triggers defined for the operation are fired.
2 The UPDATE takes place.

3 Any actions of the trigger, as well asthe UPDATE, are replicated to all
remote databases, including the sender of the message that triggered the
conflict.

In general, SQL Remote for Adaptive Server Anywhere does not
replicate the actions of triggers: the trigger is assumed to be present at
the remote database. Conflict resolution triggers are fired only at
consolidated databases, and so their actions are replicated to remote
databases.

4 At remote databases, no RESOLVE UPDATE triggers are fired when a
message from a consolidated database contains an UPDATE conflict.

5 TheUPDATE iscarried out at the remote databases.
At the end of the process, the data is consistent throughout the setup.

UPDATE conflicts cannot happen where data is shared for reading, but each
row (asidentified by its primary key) is updated at only one site. They only
occur when datais being updated at more than one site.

Using conflict resolution triggers

This section describes how to use RESOLVE UPDATE, or conflict
resolution triggers.

122

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

UPDATE
statements with a
VERIFY clause

Conflict resolution
trigger syntax

Using the
VERIFY_ALL_
COLUMNS option

Conflict resolution triggers are fired by the failure of valuesin the VERIFY
clause of an UPDATE statement to match the values in the database before
the update. An UPDATE statement with aVERIFY clause takes the
following form:;

UPDATE table-list

SET column-name = expression, ...

[FROM table-list]

[VERIFY (column-name, ...)
VALUES (expression, ...)]

[WHERE search-condition]

The VERIFY clause compares the values of specified columnsto a set of
expected values, which are the values that were present in the publisher
database when the UPDATE statement was applied there.

The verify clause is useful only for single-row updates. However, multi-row
update statements entered at a database are replicated as a set of single-row
updates by the Message Agent, so thisimposes no constraints on client
applications.

The syntax for a RESOLVE UPDATE trigger isasfollows:

CREATE TRIGGER trigger-name
RESOLVE UPDATE
OF column-name ON table-name
[REFERENCING [OLD AS old val]
[NEW AS new _val]
[REMOTE AS remote_val]]
FOR EACH ROW
BEGIN

END

RESOLVE UPDATE triggers fire before each row is updated. The
REFERENCING clause allows access to the values in the row of the table to
be updated (OLD), to the values the row is to be updated to (NEW) and to
the rows that should be present according to the VERIFY clause (REMOTE).
Only columns present in the VERIFY clause can be referenced in the
REMOTE AS clausg; other columns produce a " column not found" error.

The database option VERIFY_ALL_COLUMNS is OFF by default. If itis
set to ON, al columns are verified on replicated updates, and a RESOLVE
UPDATE trigger is fired whenever any column is different. If itis set to
OFF, only those columns that are updated are checked.

Setting this option to ON makes messages bigger, because more information
is sent for each UPDATE.

If this option is set at the consolidated database before remote databases are
extracted, it will be set at the remote databases al so.

123

Managing conflicts

Using the
CURRENT
REMOTE USER
special constant

You can set the VERIFY_ALL_COLUMNS option either for the PUBLIC
group or just for the user contained in the Message Agent connection string.

The CURRENT REMOTE USER special constant holds the user ID of the
remote user sending the message. This can be used in RESOLVE UPDATE
triggers that place reports of conflictsinto atable, to identify the user
producing a conflict.

Conflict resolution examples

This section describes some ways of using RESOLVE UPDATE triggers to
handle conflicts.

Resolving date conflicts

Implementing the
solution

124

Suppose atable in a contact management system has a column holding the
most recent contact with each customer.

One representative talks with a customer on a Friday, but does not upload his
changes to the consolidated database until the next Monday. Meanwhile, a
second representative meets the customer on the Saturday, and updates the
changes that evening.

Thereis no conflict when the Saturday UPDATE isreplicated to the
consolidated database, but when the Monday UPDATE arrivesit finds the
row already changed.

By default, the Monday UPDATE would proceed, leaving the column with
the incorrect information that the most recent contact occurred on Friday.

Update conflicts on this column should be resolved by inserting the most
recent date in the row.

The following RESOLVE UPDATE trigger chooses the most recent of the
two new values and entersit in the database.

CREATE TRI GGER cont act _dat e RESOLVE UPDATE
ON cont act
REFERENCI NG OLD AS ol d_nane
NEW AS new_nane
FOR EACH ROW
BEG N
| F new_nane. contact_date <
ol d_nare. cont act _date THEN
SET new_nare. cont act _dat e
= ol d_nane. cont act _date
END | F
END

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

If the value being updated is later than the value that would replace it, the
new value is reset to leave the entry unchanged.

Resolving inventory conflicts

Consider a warehouse system for a manufacturer of sporting goods. Thereis
atable of product information, with a quantity column holding the number
of each product left in stock. An update to this column will typically deplete
the quantity in stock or, if anew shipment is brought in, add to it.

A sales representative at a remote database enters an order, depleting the
stock of small tank top tee shirts by five, from 28 to 23, and entersthisin on
her database. Meanwhile, before this update is replicated to the consolidated
database, a new shipment of tee shirts comesin, and the warehouse enters the
shipment, adding 40 to the quantity column to make it 68.

28 > 68

made at

remote

databases 28 > 68

The warehouse entry gets added to the database: the quantity column now

shows there are 68 small tank-top tee shirtsin stock. When the update from

the sales representative arrives, it causes a conflict—Adaptive Server
Anywhere detects that the update is from 28 to 23, but that the current value
of the column is 68.

By default, the most recent UPDATE succeeds, and the inventory level is set
to the incorrect value of 23.

125

Managing conflicts

Implementing the
solution

126

Default
conflict
resolution:
wrong result,

In this case the conflict should be resolved by summing the changes to the
inventory column to produce the final result, so that afinal value of 63 is
placed into the database.

Conflict
resolution
trigger:
correct
result

A suitable RESOLVE UPDATE trigger for this situation would add the
increments from the two updates. For example,

CREATE TR GGER resol ve_quantity
RESCLVE UPDATE CF quantity

ON "DBA". product

REFERENCI NG OLD AS ol d_nane
NEW AS new_narne

REMOTE AS renot e_nane

FOR EACH ROW

BEG N
SET new nane. quantity = new nane.quantity
+ ol d_nare. quantity
- renote_nane. quantity
END

Thistrigger adds the difference between the old value in the consolidated
database (68) and the old value in the remote database when the original
UPDATE was executed (28) to the new value being sent, before the
UPDATE isimplemented. Thus, new_val.quantity becomes 63 (= 23 + 68 -
28), and this value is entered into the quantity column.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Reporting conflicts

Consistency is maintained at the remote database as follows;
1 Theorigina remote UPDATE changed the value from 28 to 23.

2 Thewarehouse's entry is replicated to the remote database, but fails as
the old value is not what was expected.

3 Thechanges made by the RESOLVE UPDATE trigger are replicated to
the remote database.

In some cases, you may hot want to ater the default way in which

SQL Remote resolves conflicts; you may just want to report the conflicts by
storing them in atable. In thisway, you can look at the conflict table to see

what, if any, conflicts have occurred, and if necessary take action to resolve
the conflicts.

Designing to avoid referential integrity errors

Unreplicated
referenced table
errors

Thetablesin arelational database are related through foreign key references.
Thereferential integrity constraints applied as a consequence of these
references ensure that the database remains consistent. If you wish to
replicate only a part of a database, there are potential problems with the
referential integrity of the replicated database.

By paying attention to referential integrity issues while designing
publications you can avoid these problems. This section describes some of
the more common integrity problems and suggests ways to avoid them.

The sales publication described in " Publishing whole tables' on page 91
includes the sales _order table:

CREATE PUBLI CATI ON pub_sal es (
TABLE cust oner,
TABLE sal es_order,
TABLE sal es_order _itens,
TABLE product

)

The sales order table has aforeign key to the employee table. The id of the
salesrep isaforeign key in the sales order table referencing the primary
key of the employee table. However, the employee table is not included in
the publication.

If the publication is created in this manner, new sales orders would fail to
replicate unless the remote database has the foreign key reference removed
from the sales order table.

127

Managing conflicts

If you use the extraction utility to create the remote databases, the foreign
key reference is automatically excluded from the remote database, and this
problem is avoided. However, there is no constraint in the database to
prevent an invalid value from being inserted into the sales rep_id column of
thesales order table, and if this happensthe INSERT will fail at the
consolidated database. To avoid this problem, you can include the employee
table (or at least its primary key) in the publication.

Designing triggers to avoid errors

128

Actions performed by triggers are not replicated: triggers that exist at one
database in a SQL Remote setup are assumed by the replication procedure to
exist at other databases in the setup. When an action that fires atrigger at the
consolidated database is replicated at the replicate site, the trigger is
automatically fired. By default, the database extraction utility extracts the
trigger definitions, so that they arein place at the remote database also.

If a publication includes only a subset of a database, atrigger at the
consolidated database may refer to tables or rows that are present at the
consolidated database, but not at the remote databases. Y ou can design your
triggersto avoid such errors by making actions of the trigger conditional
using an |F statement. The following list suggests some waysin which
triggers can be designed to work on consolidated and remote databases.

¢ Have actions of the trigger be conditional on the value of CURRENT
PUBLISHER. In this case, the trigger would not execute certain actions
at the remote database.

¢ Have actions of the trigger be conditional on the object_id function not
returning NULL. The object_id function takes a table or other object as
argument, and returns the ID number of that object or NULL if the
object does not exist.

¢ Haveactions of the trigger be conditional on a SELECT statement
which determines if rows exist.

The RESOLVE UPDATE trigger is a special trigger type for the resolution
of UPDATE conflicts, and is discussed in the section " Conflict resolution
examples' on page 124. The actions of RESOLVE UPDATE triggers are
replicated to remote databases, including the database that caused the
conflict.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Ensuring unique primary keys

Primary key values must be unique. When all users are connected to the
same database, there is no problem keeping unique values. If a user triesto
re-use avalue, the INSERT statement fails.

The situation is different in areplication system because users are connected
to many databases. A potential problem arises when two users, connected to
different databases, insert arow using the same primary key value. Each of
their statements succeeds because the value is unique in each database.

However, problems arise in a replication system when two users, connected
to separate databases, INSERT arow using the same primary key value. The
second INSERT to reach a given database in the replication system fails. As
SQL Remoteis areplication system for occasionally connected users, there
can be no locking mechanism across all databasesin the installation. It is
necessary to design your SQL Remote installation so that primary key
duplication errors do not occur.

For primary key errorsto be designed out of SQL Remote installations, the
primary keys of tables that may be modified at more than one site must be
guaranteed unique. There are several ways of achieving thisgoal. This
chapter describes two general, economical, and reliable methods.

1 Using the default global autoincrement feature of Adaptive Server
Anywhere.

2 Using the primary key poolsto maintain alist of unused, unique primary
key values at each site.

Y ou can use these techniques either separately or together to avoid duplicate
values.

Using global autoincrement default column values

In Adaptive Server Anywhere, you can set the default column value to be
GLOBAL AUTOINCREMENT. Y ou can use this default for any column in
which you want to maintain unique values, but it is particularly useful for
primary keys. This feature isintended to simplify the task of generating
unique values in setups where data is being replicated among multiple
databases, typically by MaobiLink synchronization.

When you specify default global autoincrement, the domain of values for
that column is partitioned. Each partition contai ns the same number of
values. For example, if you set the partition size for an integer columnin a
database to 1000, one partition extends from 1001 to 2000, the next from
2001 to 3000, and so on.

129

Ensuring unique primary keys

Y ou assign each copy of the database a unique global database identification
number. Adaptive Server Anywhere supplies default valuesin a database

only from the partition uniquely identified by that database's number.

For example, if you assigned the database in the above exampl e the identity
number 10, the default valuesin that database would be chosen in the range
10001-11000. Another copy of the database, assigned the identification
number 11, would supply default value for the same column in the range
11001-12000.

Declaring default global autoincrement

130

You can set default values in your database by selecting the column
properties in Sybase Central, or by including the DEFAULT GLOBAL
AUTOINCREMENT phrase in a TABLE or ALTER TABLE statement.

Optionally, the partition size can be specified in parentheses immediately
following the AUTOINCREMENT keyword. The partition size may be any
positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

For columns of type INT or UNSIGNED INT, the default partition size'$s 2
= 65536; for columns of other types the default partition siz&s 2
4294967296. Since these defaults may be inappropriate, especially if our
column is not of type INT or BIGINT, it is best to specify the partition size
explicitly.

For example, the following statement creates a simple table with two
columns: an integer that holds a customer identification number and a
character string that holds the customer's name.

CREATE TABLE custoner (
id INT DEFAULT GLCBAL AUTO NCREMENT (5000)
nanme VARCHAR(128) NOT NULL
PRI MARY KEY (id)

)

In the above example, the chosen partition size is 5000.

&~ For more information on GLOBAL AUTOINCREMENT, see
"CREATE TABLE statement" on page 350 of the bé@&& SQL Reference
Manual.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Setting the Global_database_id value

When deploying an application, you must assign a different identification
number to each database. Y ou can accomplish the task of creating and
distributing the identification numbers by a variety of means. One method is
to place the values in a table and download the correct row to each database
based on some other unique property, such as user name.

% To set the global database identification number:

¢ You set the identification number of a database by setting the value of
the public option Global_database id. The identification number must
be a non-negative integer.

For example, the following statement sets the database identification number
to 20.
SET OPTI ON PUBLI C. G obal _dat abase_id = 20

If the partition size for a particular column is 5000, default values for this
database are selected from the range 100001-105000.

Setting unique database identification numbers when extracting databases

If you use the extraction utility to create your remote databases, you can
write a stored procedure to automate the task. If you create a stored
procedure namesp_hook_dbxtract_begin, it is called automatically by the
extraction utility. Before the procedure is called, the extraction utility creates
a temporary table namethook _dict, with the following contents:

name | value

extracted_db_global_id | user 1D being extracted

If you write yoursp_hook_dbxtract_begin procedure to modify thealue
column of the row, that value is used as the GLOBAL_DATABASE_ID
option of the extracted database, and marks the beginning of the range of
primary key values for GLOBAL DEFAULT AUTOINCREMENT values.

Example Consider extracting a database for remote us&?2 with auser_id of 101.
If you do not define asp_hook_dbxtract_begin procedure, the extracted
database will hav&lobal _database id set tol01.

If you define asp_hook_dbxtract_begin procedure, but it does not modify
any rows in thethook_dict then the option will still be set tD1.

If you set up the database as follows:
set option "PUBLIC'."d obal _database_id" ="1";

131

Ensuring unique primary keys

create table extract _id (next_id integer not null) ;
insert into extract_id values(1);

create procedure sp_hook_dbxtract begin
as
declare @ext _id integer
update extract _id set next_id = next_id + 1000
select @ext_id = (next_id)
fromextract _id
commi t
updat e #hook_di ct
set value = @ext _id
where nane = ’'extracted_db_gl obal _i d’

Then each extracted or re-extracted database will get a different
Global_database id. Thefirst starts at 1001, the next at 2001, and so on.

To assist in debugging procedure hooks, dbxtract outputs the following when
it is set to operate in verbose mode:

¢ the procedure hooks found
¢ thecontents of #hook _dict before the procedure hook is called
¢ thecontents of #hook _dict after the procedure hook is called.

How default values are chosen

132

The public option Global_database id in each database must be set to a
unique, non-negative integer. The range of default values for a particular
databaseis pn + 1 to p(n + 1), where p is the partition size and n isthe value
of the public option Global _database id. For example, if the partition size
is1000 and Global_database id is set to 3, then the range is from 3001

to 4000.

If Global_database id is set to a non-negative integer, Adaptive Server
Anywhere chooses default values by applying the following rules:

¢ I the column contains no valuesin the current partition, the first default
valueispn + 1.

¢ If the column contains values in the current partition, but all are less than
p(n + 1), the next default value will be one greater than the previous
maximum value in this range.

¢ Default column values are not affect by values in the column outside of
the current partition; that is, by numbersless than pn + 1 or greater than
p(n + 1). Such values may be present if they have been replicated from
another database via MobiLink synchronization.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

If the public option Global_database id is set to the default value of
2147483647, anull valueisinserted into the column. Should null values not
be permitted, the attempt to insert the row causes an error. This situation
arises, for example, if the column is contained in the table’s primary key.

Because the public option Global_database id cannot be set to negative
values, the values chosen are always positive. The maximum identification
number isrestricted only by the column data type and the partition size.

Null default values are also generated when the supply of values within the
partition has been exhausted. In this case, a new value of
Global_database id should be assigned to the database to allow default
values to be chosen from another partition. Attempting to insert the null
value causes an error if the column does not permit nulls. To detect that the
supply of unused valuesislow and handle this condition, create an event of
type Global Autoincrement.

Should the valuesin a particular partition become exhausted, you can assign
anew database id to that database. Y ou can assign new database id numbers
in any convenient manner. However, one possible technique isto maintain a
pool of unused database id values. This pool is maintained in the same
manner as a pool of primary keys.

Y ou can set an event handler to automatically notify the database
administrator (or carry out some other action) when the partition is nearly
exhausted. For more information, see "Defining trigger conditions for
events' on page 237 of the book ASA Database Administration Guide.

& For moreinformation, see "GLOBAL_DATABASE _|D option" on
page 569 of the book ASA Database Administration Guide.

& For further information on pools, see "Using primary key pools' on
page 133.

Using primary key pools

The primary key pool isatable that holds a set of primary key values for
each database in the SQL Remote installation. Each remote user receives
their own set of primary key values. When aremote user inserts a new row
into atable, they use a stored procedure to select avalid primary key from
the pool. The pool is maintained by periodically running a procedure at the
consolidated database that replenishes the supply.

The method is described using a simple example database consisting of sales
representatives and their customers. The tables are much simpler than you
would usein areal database; this allows usto focus just on those issues
important for replication.

133

Ensuring unique primary keys

The primary key pool table

The pool of primary keysis held in a separate table. The following CREATE
TABLE statement creates a primary key pool table:

CREATE TABLE KeyPool (
t abl e_nane VARCHAR(40) NOT NULL,
val ue | NTEGER NOT NULL,
| ocati on CHAR(12) NOT NULL,
PRI MARY KEY (tabl e_nane, val ue),
)

The columns of this table have the following meanings:

Column Description

table name | Holds the names of tables for which primary key pools must be
maintained. In our simple example, if new sales representatives
were to be added only at the consolidated database, only the
Customer table needs a primary key pool and this columniis
redundant. It isincluded to show ageneral solution.

value Holds alist of primary key values. Each value is unique for each
tablelisted in table_name.

location Anidentifier for the recipient. In some setups, this could be the
same asthe rep_key value of the SalesRep table. In other setups,
there will be users other than sales representatives and the two
identifiers should be distinct.

For performance reasons, you may wish to create an index on the table;

CREATE | NDEX KeyPool Locati on
ON KeyPool (table_name, |ocation, value);

Replicating the primary key pool

Y ou can either incorporate the key pool into an existing publication, or share
it as a separate publication. In this example, we create a separate publication
for the primary key pool.

% To replicate the primary key pool (SQL):

1 Create apublication for the primary key pool data.

CREATE PUBLI CATI ON KeyPool Data (
TABLE KeyPool SUBSCRI BE BY | ocation
)

2 Create subscriptions for each remote database to the KeyPool Data
publication.

134

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

CREATE SUBSCRI PTI ON
TO KeyPool Dat a("userl’)
FOR user 1;

CREATE SUBSCRI PTI ON
TO KeyPool Data("user2’)
FOR user 2;

The subscription argument is the location identifier.

In some circumstances it makes sense to add the KeyPool table to an existing
publication and use the same argument to subscribe to each publication. Here
we keep the location and rep_key values distinct to provide amore general
solution.

& Seealso

¢ "CREATE PUBLICATION statement" on page 314 of the book ASA
L Reference Manual

¢ "CREATE SUBSCRIPTION statement" on page 364

Filling and replenishing the key pool

Every time a user adds a new customer, their pool of available primary keys
is depleted by one. The primary key pool table needs to be periodically
replenished at the consolidated database using a procedure such as the
following:

CREATE PROCEDURE ReplenishPool()
BEGIN
FOR EachTable AS TableCursor
CURSOR FOR
SELECT table_name
AS CurrTable, max(value) as MaxValue
FROM KeyPool
GROUP BY table_name
DO
FOR EachRep AS RepCursor
CURSOR FOR
SELECT location
AS CurrRep, count(*) as NumValues
FROM KeyPool
WHERE table_name = CurrTable
GROUP BY location
DO
/I make sure there are 100 values.
/I Fit the top-up value to your
Il requirements

135

Ensuring unique primary keys

WA LE NunVal ues < 100 LOCP
SET MaxVal ue = MaxVal ue + 1;
SET NunVal ues = NunVal ues + 1;
| NSERT | NTO KeyPool
(tabl e_nane, |ocation, value)
VALUES
(CQurrTable, CurrRep, MaxVal ue);

END LQOOP;

END FOR;
END FOR;
END;

This procedure fills the pool for each user up to 100 values. The value you
need depends on how often users are inserting rows into the tablesin the
database.

The ReplenishPool procedure must be run periodically at the consolidated
database to refill the pool of primary key valuesin the K eyPool table.

The ReplenishPool procedure requires at least one primary key valueto
exist for each subscriber, so that it can find the maximum value and add one
to generate the next set. To initialy fill the pool you can insert asingle value
for each user, and then call ReplenishPool to fill up the rest. The following
example illustrates this for three remote users and a single consolidated user
named Office:

| NSERT | NTO KeyPool VALUES('Customer’, 40, 'userl’)
| NSERT | NTO KeyPool VALUES('Custoner’, 41, 'user2’);
| NSERT | NTO KeyPool VALUES('Customer’, 42, 'user3’);
| NSERT | NTO KeyPool VALUES('Customer’, 43, 'Ofice’);
CALL Repl eni shPool ();

Cannot use atrigger to replenish the key pool
Y ou cannot use atrigger to replenish the key pool, as trigger actions are
not replicated.

Adding new customers

136

When a sales representative wants to add a new customer to the Customer
table, the primary key value to be inserted is obtained using a stored
procedure. This example shows a stored procedure to supply the primary key
value, and also illustrates a stored procedure to carry out the INSERT.

The procedures takes advantage of the fact that the Sales Rep identifier isthe
CURRENT PUBLISHER of the remote database.

¢ NewKey procedure The NewK ey procedure supplies an integer value
from the key pool and deletes the value from the pool.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

CREATE PROCEDURE NewkKey(
IN @abl e_nanme VARCHAR(40),
QUT @al ue | NTEGER)
BEA N
DECLARE NunVal ues | NTEGER,

SELECT count (*), min(val ue)
I NTO Nunval ues, @al ue
FROM KeyPool
WHERE t abl e_nanme = @ abl e_nane
AND | ocati on = CURRENT PUBLI SHER;
I F NunVal ues > 1 THEN
DELETE FROM KeyPool
WHERE t abl e_nane = @abl e_nane
AND val ue = @al ue;
ELSE
/1 Never take the |ast value, because
/1 Repl eni shPool will not work.
/1 The key pool shoul d be kept |arge enough
/1 that this never happens.
SET @al ue = NULL;
END | F;
END;

NewCustomer procedure The NewCustomer procedure inserts a
new customer into the table, using the value obtained by NewK ey to
construct the primary key.

CREATE PROCEDURE NewCust oner (
I N cust oner _nanme CHAR(40))
BEA N
DECLARE new cust _key | NTEGER ;
CALL NewKey('Customer’, new cust_key);
| NSERT
I NTO Cust omer (
cust _key,
nane,
| ocation

)
VALUES (
"Qustomer ' ||
CONVERT (CHAR(3), new_cust_key),
cust oner _nane,
CURRENT PUBLI SHER
)
)
END
Y ou may want to enhance this procedure by testing the new_cust_key
value obtained from NewK ey to check that it isnot NULL, and
preventing theinsert if itisNULL.

137

Ensuring unique primary keys

Primary key pool summary

138

The primary key pool technique requires the following components:

¢

Key pool table A tableto hold valid primary key values for each
database in the installation.

Replenishment procedure A stored procedure keeps the key pool
tablefilled.

Sharing of key pools Each database in the installation must subscribe
to itsown set of valid values from the key pool table.

Data entry procedures New rows are entered using a stored
procedure that picks the next valid primary key value from the pool and
delete that value from the key pool.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Creating subscriptions

Working with
subscriptions in
Sybase Central

Subscriptions with

no subscription
expression

To subscribe to a publication, each subscriber must be granted REMOTE
permissions and a subscription must also be created for that user. The details
of the subscription are different depending on whether or not the publication
uses a subscription expression.

% To create and manage subscriptions in Sybase Central

1 Openthe Publications folder (located within the SQL Remote folder).
2 Right-click a publication and choose Properties from the popup menu.
3 Click the SQL Remote Subscriptions tab and configure the appropriate
settings:
¢ To subscribe aremote user to the publication, click Subscribe and
enter the desired values in the resulting dial og.
¢ Tounsubscribe aremote user, select the user in the list and click
Unsubscribe.
¢ Tomanualy start, stop, or synchronize subscriptions, select the user
inthe list and click Advanced to open the Advanced SQL Remote
Subscription Actions dialog. In thisdialog, click Start Now to start
subscriptions, Stop Now to stop subscriptions, or Synchronize Now
to synchronize subscriptions.
The subscriptions are affected as soon as you click the button.
Subsequently clicking Cancel on the property sheet does not cancel
your start/stop/synchronize action.
Tip

Y ou can also manage subscriptions on the Subscriptions tab of aremote
user’s property sheet. Remote users appear in two locations; in the Users
& Groups folder and in the Remote Users folder (located within the
SQL Remote folder).

To subscribe a user to apublication, if that publication has no subscription
expression, you need the following information:

¢

User ID The user who is being subscribed to the publication. This user
must have been granted remote permissions.

Publication name The name of the publication to which the user is
being subscribed.

139

Creating subscriptions

Subscriptions with
a subscription
expression

Starting a
subscription

140

The following statement creates a subscription for auser ID SamS to the
pub_orders samuel_singer publication, which was created using a
WHERE clause:

CREATE SUBSCRI PTI ON
TO pub_orders_sanuel _si nger
FOR SanS

To subscribe a user to a publication, if that publication does have a
subscription expression, you need the following information:

¢ UserID Theuser who isbeing subscribed to the publication. This user
must have been granted remote permissions.

¢ Publication name The name of the publication to which the user is
being subscribed.

¢ Subscription value The value that isto be tested against the
subscription expression of the publication. For example, if a publication
has the name of a column containing an employee D as a subscription
expression, the value of the employee ID of the subscribing user must be
provided in the subscription. The subscription value is always a string.

The following statement creates a subscription for Samuel Singer (user ID
SamS, employee ID 856) to the pub_orders publication, defined with a
subscription expression sales rep, requesting the rows for Samuel Singer's
own sales:

CREATE SUBSCRI PTI ON
TO pub_orders ('856")
FOR SanS

In order to receive and apply updates properly, each subscriber needs to have
aninitial copy of the data. The synchronization processis discussed in
"Synchronizing databases’ on page 191.

& Seealso
¢ "CREATE SUBSCRIPTION statement" on page 364

CHAPTER 8

SQL Remote Design for Adaptive Server
Enterprise

About this chapter This chapter describes how to design a SQL Remote installation when the
consolidated database is at an Adaptive Server Enterprise server.

Similar material for Adaptive Server Anywhere

Many of the principles of publication design are the same for Adaptive
Server Anywhere and Adaptive Server Enterprise, but there are
differences in commands and capabilities. Thereisalarge overlap
between this chapter and the corresponding chapter for Adaptive Server
Anywhere users, "SQL Remote Design for Adaptive Server Anywhere"

on page 89.
Contents Topic Page

Design overview 142
Creating publications 143
Publication design for Adaptive Server Enterprise 148
Partitioning tables that do not contain the subscription column 150
Sharing rows among several subscriptions 158
Managing conflicts 166
Ensuring unique primary keys 176
Creating subscriptions 182

141

Design overview

Design overview

Designing a SQL Remote installation includes the following tasks:

¢ Designing publications The publications determine what information
is shared among which databases.

¢ Designing subscriptions The subscriptions determine what
information each user receives.

¢ Implementing the design Creating publications and subscriptions for
all usersin the system.

All administration is Like all SQL Remote administrative tasks, design is carried out by a database

at the consolidated administrator or system administrator at the consolidated database. The

database Sybase System Administrator should perform all SQL Remote configuration
tasks.

& For more information about the Adaptive Server Enterprise
environment, see your Adaptive Server Enterprise documentation.

142

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Creating publications

In this section This section describes how to create simple publications consisting of whole
tables, or of column-wise subsets of tables.

& Simple publications are also discussed in the chapter "A Tutorial for
Adaptive Server Enterprise Users' on page 51.

Creating whole-table articles

The simplest type of articleis one that includes al the rows and columns of a
database table.

< To create an article that includes all the rows and columns of a
table:

1 Mark thetable for replication. Y ou do this by executing the
sp_add_remote _table procedure:

sp_add_renote_tabl e tabl e-nane

2 Add thetable to the publication. Y ou do this by executing the
sp_add_article procedure:

sp_add_article publication-name, table-nane
Example ¢ Thefollowing commands add the table SalesRep to the SalesRepData
publication:

sp_add_renote_t abl e ' Sal esRep’
sp_add_article ' Sal esRepbData’, ' Sal esRep’
go

Creating articles containing some of the columns in a table

To create an article that includes only some of the columns from atable, you
need to list the columns that you wish to include, using sp_add_article _col.
If no columns are listed, the article includes all columns of the table.

<+ To create an article that includes some of the columns and all the
rows of a table:

1 Mark thetable for replication. You do this by executing the
sp_add_remote _table procedure:

sp_add_renote_tabl e tabl e-nane

143

Creating publications

Example

¢

go

Add the table to the publication. Y ou do this by executing the
sp_add_article procedure:

sp_add_article publication-name, table-nane
go

The sp_add_article procedure adds a table to a publication. By default,
all columns of the table are added to the publication. If you wish to add
only some of the columns, you must use the sp_add_article col
procedure to specify which columns you wish to include.

Add individual columns to the publication. Y ou do this by executing the
sp_add_article col procedure for each column:

sp_add_articl e_col publication-naneg,
t abl e- nane,
col urm- nane

go

The following commands add only the rep_key column of the table
SalesRep to the SalesRepData publication;

sp_add_renote_tabl e ' Sal esRep’
sp_add_article ' Sal esRepbata’,
' Sal esRep’
sp_add_article_col ’'Sal esRepData’,
' Sal esRep’,
'rep_key’
go

Creating articles containing some of the rows in atable

Allowed clauses

144

There are two ways of including only some of the rows from atablein an
article:

¢

WHERE clause You can use a WHERE clause to include a subset of
rowsin an article. All subscribers to the publication containing this
article receive the rows that satisfy the WHERE clause.

subscription column Y ou can use a subscription column to include a
different set of rowsin different subscriptions to publications containing
the article.

In SQL Remote for Adaptive Server Enterprise, the following limitations
apply to each of these cases:

¢

WHERE clause limitations The only form of WHERE clause
supported is the following:

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

VWHERE col unm-nanme 1S NOT NULL.

¢ Subscription column SQL Remote for Adaptive Server Anywhere
supports expressions other than column names. For Adaptive Server
Enterprise, the subscription expression must be a column name.

When to use Y ou should use a subscription expression when different subscribersto a
WHERE and publication are to receive different rows from a table. The subscription
SUBSCRIBE BY expression is the most powerful method of partitioning tables.

Creating an article using a WHERE clause

The WHERE clause is used to exclude a set of rows from all subscriptionsto
apublication.

+ To create an article using a WHERE clause:

1 If you have not already done so, mark the table for replication. Y ou do
this by executing the sp_add_remote_table procedure:

sp_add_renote_tabl e tabl e_nanme

2 Add thetableto the publication. Y ou do this by executing the
sp_add_article procedure: Specify the column name corresponding to
the WHERE column ISNOT NULL clause in the third argument to
the procedure:

sp_add_article publication_nane,
tabl e_nane,
col unm_nane

Do not specify ISNOT NULL; it isimplicit. Specify the column name
only.

3 If youwishtoinclude only a subset of the columnsin the table, specify
the columns using the sp_add_article col procedure. Y ou must include
the column specified in your WHERE clausein the article.

Example ¢ Thefollowing set of statements create a publication containing asingle
article, which includes only those rows of test_table for which column
col_1lisnot null:

sp_create_publication test_pub
sp_add_renote_table test_table
sp_add_article test_pub, test _table, col 1
go

145

Creating publications

Creating an article using a subscription column

The subscription column is used when rows are to be shared among many
remote databases.

+ To create an article using a subscription column:

Example

Notes on articles

146

1

If you have not already done so, mark the table for replication. Y ou do
this by executing the sp_add_remote_table procedure:

sp_add_remote_table table_name

Add the table to the publication. Y ou do this by executing the
sp_add_article procedure: Specify the column name you wish to use as
a subscription expression in the fourth argument to the procedure:

sp_add_article publication_name, table_name, NULL,
column_name

Y ou must include the NULL entry to avoid adding a WHERE clause.

If you wish to include only a subset of the columns in the table, specify
the columns using the sp_add_article_col procedure. Y ou must include
the column specified in your subscription expression in the article.

The following set of statements create a publication containing asingle
article, which supports subscriptions based on the value of column
col_1:

sp_create_publication test_pub
sp_add_renote_table test_table
sp_add_article test_pub,

test _table,

NULL,

col 1
go

Y ou can combine a WHERE clause and a subscription expression in an
article.

All columnsin the primary key must be included in any article.
Y ou must not include a subset of columnsin an article unless either:
¢ Theremaining columns have default values or allow NULLSs.

¢ Noinsertsare carried out at remote databases. Updates would not
cause problems as long as they do not change primary key values.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

If you include a subset of columnsin an article in situations other than
these, INSERT statements at the consolidated database will fail.

147

Publication design for Adaptive Server Enterprise

Publication design for Adaptive Server

Enterprise

Once you understand how to create simple publications, you must think
about proper design of publications. This section describes the issues
involved in designing publications, and how to take steps towards sound
design.

Design issues overview

Each subscription
must be a
complete relational
database

Transaction
integrity must be
maintained in the
absence of locking

148

A remote database shares with the consolidated database the information in
their subscriptions. The subscription is both a subset of the relational
database held at the consolidated site, and also a complete relational database
at the remote site. The information in the subscription is therefore subject to
the same rules as any other relational database:

¢ Foreign key relationships must be valid For every entry in aforeign
key, a corresponding primary key entry must exist in the database.

The database extraction utility ensures that the CREATE TABLE
statements for remote databases do not have foreign keys defined to
tables that do not exist remotely.

¢ Primary key uniqueness must be maintained Thereis no way of
checking what new rows have been entered at other sites, but not yet
replicated. The design must prevent users at different sites adding rows
with identical primary key values, as this would lead to conflicts when
the rows are replicated to the consolidated database.

The datain the dispersed database (which consists of the consolidated
database and all remote databases) must maintain its integrity in the face of
updates at al sites, even though there is no system-wide locking mechanism
for any particular row.

¢ Locking conflicts must be prevented or resolved InaSQL Remote
installation, there is no method for locking rows across all databasesto
prevent different users from altering the rows at the same time. Such
conflicts must be prevented by designing them out of the system or must
be resolved in an appropriate manner at the consolidated database.

These key features of relational databases must be incorporated into the
design of your publications and subscriptions. This section describes
principles and techniques for sound design.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Conditions for valid articles

Supporting
INSERTS at
remote databases

Conditions on rows

All columns in the primary key must be included in the article.

For INSERT statements at a remote database to replicate correctly to the
consolidated database, you can exclude from an article only columns that can
be left out of avalid INSERT statement. These are:

¢ Columnsthat alow NULL.

¢ Columnsthat have defaults.

If you exclude any column that does not satisfy one of these requirements,
INSERT statements carried out at a remote database will fail when replicated
to the consolidated database.

Consolidated| ID | Rep | Dept
INSERT 1 | Ann | 101 _
INTO SalesRep (ID, Rep) Insert fails
VALUES (3, 'Shih’) 2 |Marc| 101
Shih| X

Remote | ID | Rep
INSERT L | Amn
INTO SalesRep (ID, Rep) |nsertd
VALUES (3, 'shih’) 2 |Marc succeeds
3 | Shih

There are two ways of including only some of the rows in a publication:

¢ WHERE clause You can use a WHERE clause to include a subset of
rowsin an article. All subscribers to the publication containing this
article receive the rows that satisfy the WHERE clause.

In SQL Remote for Adaptive Server Enterprise, the only supported
WHERE clauseis

WHERE col urm-nane 1S NOT NULL

¢ Subscription columns You can use a subscription column to include
adifferent set of rows in different subscriptions to publications
containing the article.

& For more information on restrictions on rows, see "Creating articles
containing some of therowsin atable" on page 144.

149

Partitioning tables that do not contain the subscription column

Partitioning tables that do not contain the
subscription column

In many cases, the rows of atable need to be partitioned even when the
subscription column does not exist in the table. This section describes how to
handle this case, using an example.

The Contact example

The Contact database illustrates why and how to partition tables that do not
contain the subscription column.

Example Hereis asimple database that illustrates the problem. We call this database
the Contact database, because it contains a Contact table in addition to the
two tables described earlier in this chapter.

Contact
contact key char(10)
name char(40)
cust_key char(12)

cust_key = cust_key

Customer SalesRep
cust_key char(12) rep_key = plrep key ch ar(5)
name char(40) rep_key _un ame char(40)
rep_key char(5)

Each sales representative sells to several customers. At some customers there
isasingle contact, while other customers have several contacts.

The tables in the The three tables are described in more detail as follows:
database

150

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Table

Description

All sales representatives that work for the company. The
SalesRep table has the following columns:

¢ rep_key Anidentifier for each sales representative. Thisis
the primary key.

4 name The name of each sales representative.

The SQL statement creating thistableis as follows:

CREATE TABLE Sal esRep (
rep_key CHAR(12) NOT NULL,
nane CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

go

Customer

All customers that do business with the company. The Customer
table includes the following columns:

¢ cust_key Anidentifier for each customer. Thisisthe primary
key.

¢ name The name of each customer.

4 rep_key An identifier for the sales representativein asales
relationship. Thisisaforeign key to the SalesRep table.

The SQL statement creating this tableis as follows:

CREATE TABLE Custoner (
cust _key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
rep_key CHAR(12) NOT NULL,
FOREI GN KEY (rep_key)
REFERENCES Sal esRep,
PRI MARY KEY (cust _key)

151

Partitioning tables that do not contain the subscription column

Replication goals

Table Description

Contact All individual contacts that do business with the company. Each

contact belongs to a single customer. The Contact table includes
the following columns:

¢ contact_key Anidentifier for each contact. Thisisthe
primary key.
¢ name The name of each contact.

4 cust_key Anidentifier for the customer to which the contact
belongs. Thisisaforeign key to the Customer table.

The SQL statement creating thistableis:

CREATE TABLE Contact (
contact_key CHAR(12) NOT NULL,
nane CHAR(40) NOT NULL,
cust _key CHAR(12) NOT NULL,
FOREI GN KEY (cust _key)
REFERENCES Cust omer ,
PRI MARY KEY (contact_key)

)

go

The goals of the design are to provide each sales representative with the
following information:

¢
¢

¢

The complete SalesRep table.
Those customers assigned to them, from the Customer table.

Those contacts belonging to the relevant customers, from the Contact
table.

Maintenance of proper information when Sales Representative territories
are realigned.

Territory realignment in the Contact example

152

Interritory realignment, rows are reassigned among subscribers. In the
current example, territory realignment invol ves reassigning customers among
the sales representatives. It is carried out by updating therep_key column of
the Customer table.

The UPDATE isreplicated as an INSERT or a DELETE to the old and new
sales representatives, respectively, so that the customer row is properly
transferred to the new sales representative.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

No log entries for
the Contact table
when territories
realigned

When a customer is reassigned, the Contact table is unaffected. There are no
changes to the Contact table, and consequently no entries in the transaction
log pertaining to the Contact table. In the absence of thisinformation,

SQL Remote cannot reassign the rows of the Contact table along with the
Customer. Thisfailure would cause referential integrity problems: the
Contact table at the remote database of the old sales representative contains
acust_key value for which thereis no longer a Customer.

In this section, we describe how to reassign the rows of the Contact table.

Partitioning the Customer table in the Contact example

The Customer table can be partitioned using therep_key valueas a
subscription column. A publication that includes the SalesRep and
Customer tables would be asfollows:

exec sp_add renote_table ' Sal esRep’
exec sp_add_renote_table ' Custoner’
go
exec sp_create_publication ’Sal esRepDat a’
go
exec sp_add_article ' Sal esRepbata’, ' Sal esRep’
exec sp_add_article Sal esRepDat a,
Cust oner, NULL,
"rep_key’
go

Adding a subscription-list column to the Contact table

Add a subscription-
list column

The Contact table must aso be partitioned among the sales representatives,
but contains no reference to the sales representative rep_key value.

To solve this problem in Adaptive Server Enterprise, you must add a column
to the Contact table containing a comma-separated list of subscription
valuesto the row. (In the present case, there can only be asingle
subscription value.) The column can be maintained using triggers, so that
applications against the database are unaffected by the presence of the
column. We call this column asubscription-list column.

When arow in the Customer tableisinserted, updated or deleted, atrigger
updates rows in the Contact table. In particular, the trigger updates the
subscription-list column. Asthe Contact table is marked for replication, the
before and after image of the row is recorded in the log.

153

Partitioning tables that do not contain the subscription column

Contact table
definition

154

Log entries are values, not subscribers

Although in this case the values entered correspond to subscribers, it is
not alist of subscribersthat is entered in the log. The server handles only
information about publications, and the Message Agent handles all
information about subscribers. The values entered in the log are for
comparison to the subscription value in each subscription. For example, if
rows of atable were divided among sales representatives by state or
province, the state or province value would be entered in the transaction
log.

A subscription-list column is acolumn added to atable for the sole purpose
of holding acomma-separated list of subscribers. In the present case, there
can only be a single subscriber to each row of the Contact table, and so the
subscription-list column holds only a single value.

& For adiscussion of the case where the subscription-list column can hold
many values, see " Sharing rows among several subscriptions' on page 158.

In the case of the Contact table, the table definition would be changed to the
following:

CREATE TABLE Contact (
contact _key CHAR(12) NOT NULL,
nane CHAR(40) NOT NULL,
cust _key CHAR(12) NOT NULL,
subscription_list CHAR(12) NULL,
FOREI GN KEY (cust_key)
REFERENCES Cust oner (cust_key),
PRI MARY KEY (contact _key)

)

go

The additional column is created allowing NULL, so that existing
applications can continue to work against the database without change.

The subscription_list column holds therep_key value corresponding to the
row with primary key value cust_key in the Customer table. A set of triggers
handles maintenance of the subscription_list column.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Contact Customer

subscription
_list

contact
key

conl | custl01 repl

cust_key cust_key| rep_key

custl0l | repl

con2 | custl0l| repl custl02 | repl

con3 | custl02 repl cust103 rep2

cond | custlO3 | rep2

custl04 | rep3

con5 | custl04 | rep3

& For an Adaptive Server Anywhere consolidated database, the solution
is different. For more information, see " Partitioning tables that do not contain
the subscription expression” on page 103.

Maintaining the subscription-list column

An INSERT trigger
for the Contact
table

In order to keep the subscription_list column up to date, triggers are needed
for the following operations:

¢ INSERT on the Contact table.
¢ UPDATE on the Contact table.
¢ UPDATE on the Customer table.

The UPDATE of the Customer table addresses the territory realignment
problem, where customers are assigned to different Sales Reps.

Thetrigger for an INSERT on the Contact table sets the subscription_list
value to the corresponding rep_key value from the Customer table:

CREATE TR GGER set _contact _sub_li st
ON Cont act
FOR | NSERT
AS
BEG N
UPDATE Cont act
SET Cont act. subscription_list = (
SELECT rep_key
FROM Cust orrer
WHERE Cont act. cust_key = CQustoner. cust_key)
WHERE Cont act . cont act _key I N (
SELECT cont act _key
FROM i nserted

END

155

Partitioning tables that do not contain the subscription column

Thetrigger updates the subscription_list column for those rows being
inserted; these rows being identified by the subquery

SELECT contact _key
FROM i nsert ed

An UPDATE The trigger for an UPDATE on the Contact table checks to see if the
trigger for the cust_key column is changed, and if it has updates the subscription_list
Contact table column.

CREATE TR GGER updat e_cont act _sub_Ii st

ON Cont act

FOR UPDATE

AS

| F UPDATE (cust_key)

BEG N

UPDATE Cont act

SET subscription_list = Custoner.rep_key

FROM Cont act, Cust oner

WHERE Cont act . cust _key=Cust oner . cust _key
END

Thetrigger is written using ajoin; a subquery could also have been used.

An UPDATE The following trigger handles UPDATES of customers, transferring them to
trigger for the anew Sales Rep:

Customer table CREATE TRI GGER transfer_contact_with_custoner
ON Cust oner
FOR UPDATE
AS
| F UPDATE (rep_key)
BEGA N
UPDATE Cont act
SET Contact.subscription_list = (
SELECT rep_key
FROM Cust orrer
WHERE Cont act . cust _key = CQustomer. cust_key)
WHERE Cont act. contact_key IN (
SELECT cust _key
FROM i nserted

END

Tuning extraction performance

When extracting or synchronizing a user, the subscription-list column can
cause performance problems as it necessitates a full table scan.

156

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

If you are extracting databases for many users, and performance is a problem
for you, you can use a subscription view to improve performance. The view
must contain a subquery, which is used for extraction and synchronization
only, and isignored during log scanning. The tablesinvolved still need to
have triggers defined to maintain the subscription-list column.

% To create a subscription view:

1 Designaquery that uses a subquery to select the proper rows for a
subscription from atable.

For example, continuing the example from the preceding sections, the
following query selects the rows of the Contact table for a user
subscribed by rep_key value rep5:

SELECT *
FROM Cont act
WHERE ' rep5’ = (SELECT rep_key
FROM CQust oner
WHERE cust _key = Contact.cust_key)

2 Create aview that contains this subquery. For example:

CREATE VI EW Cont act _sub_vi ew AS
SELECT *
FROM dbo. Cont act
WHERE ' repxx’ = (SELECT rep_key
FROM dbo. Cust oner
WHERE cust _key = dbo. Cont act. cust _key)

In thisview definition, it does not matter what value you use on the | eft-
hand side of the WHERE clause (repxx in the example above). The
replication tools use the subquery for extraction and synchronization
only. Rows for which the SUBSCRIBE BY valueis equal to the
subquery result set are extracted or synchronized.

3 Givethe name of the view as a parameter to sp_add_article or
sp_modify_article:

exec sp_add _renote_table ' Contact’

go

exec sp_add_articl e Sal esRepDat a,
" Cont act’
NULL,

"subscription_list’,
" Cont act _sub_vi ew

The subscription_list column is used for log scanning and the subquery is
used for extraction and synchronization.

& For more information, see "Tuning extraction performance for
shared rows' on page 163, "sp_add _article procedure” on page 387, and
"sp_modify_article procedure” on page 402.

157

Sharing rows among several subscriptions

Sharing rows among several subscriptions

There are cases where arow may need to be included in several
subscriptions. For example, if instead of the many-to-one relationship
between customers and sales representatives that we had above, we may
have a many-to-many relationship.

The Policy example

The Policy database illustrates why and how to partition tables when there is
a many-to-many relationship in the database.

Example database Here is asimple database that illustrates the problem.
Customer Policy SalesRep
cust_key v\ policy_key rep_key
name cust_key name
rep_key

The Policy table has arow for each of a set of policies. Each policy is drawn
up for a customer by a particular sales representative. There is a many-to-
many relationship between customers and sales representatives, and there
may be several policies drawn up between a particular rep/customer pair.

Any row in the Customer table may need to be shared with none, one, or
several sales representatives.

Solving the problem

To support this case, you need to write triggers to build a comma-delimited
list of valuesto store in aredundant subscription-list column of the Customer
table, and include this column as the subscription column when adding the
Customer table to the publication. The row is shared with any subscription
for which the subscription value matches any of the valuesin the
subscription-list column.

The database, with the subscription-list column included, is as follows:

158

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Customer Policy SalesRep
cust_key v\ policy_key rep_key
name cust_key name
subscription_list rep_key

Adaptive Server Enterprise VARCHAR columns are limited to 255
characters, and this limits the number of values that can be stored in the
comma-delimited list.

Table definitions The table definitions are as follows:

CREATE TABLE Sal esRep (
rep_key CHAR(12) NOT NULL,
nanme CHAR(40) NOT NULL,
PRI MARY KEY (rep_key)

)

go

CREATE TABLE Custoner (
cust _key CHAR(12) NOT NULL,
nane CHAR(40) NOT NULL,
subscription_list VARCHAR(255) NULL,
PRI MARY KEY (cust_key)

)

go

CREATE TABLE Policy (
policy_key |INTEGER NOT NULL,
cust _key CHAR(12) NOT NULL,
rep_key CHAR(12) NOT NULL,
FOREI GN KEY (cust_key)
REFERENCES Cust oner (cust_key),
FOREI GN KEY (rep_key)
REFERENCES Sal esRep (rep_key),
PRI MARY KEY (policy_key)

)

The subscription_list column in the Customer table allows NULLSs so
that customers can be added who do not have any sales representatives
in the subscription_list column.

Notes: ¢

The publication

The publication for this database can be created by the following set of
statements:

/I Mark the tables for replication
exec sp_add_renote_table ' Sal esRep’
exec sp_add renote_table 'Policy’
exec sp_add_renote_table ' Custoner’

159

Sharing rows among several subscriptions

go

/Il Create an enpty publication
exec sp_create_publication ’Sal esRepDat a’

/1 Add the Sales Rep table to the publication
exec sp_add_article ' Sal esRepbata’, ' Sal esRep’

//Add the Policy table to the publication
exec sp_add_article ' Sal esRepbata’, 'Policy’, NULL,
"rep_key’

/1 Add the Custoner table to the publication.

/1 Subscribe by the subscription_|list colum

/'l Exclude the subscription_list colum

exec sp_add_article ' Sal esRepbata’, ’'CQustomer’, NULL,
"subscription_|ist’

exec sp_add_article_col ’'Sal esRepData’, ’'Custoner’,
" cust _key’

exec sp_add_article_col ’'Sal esRepData’, ’'Custoner’,
" nane’

go

Subscriptions to this publication take the following form:

exec sp_subscription 'create’,
' Sal esRepDat a’ ,
"userl D,
"rep_key

go

where user| D identifies the subscriber, and rep_key is the subscription
column, which isthe value of the rep_key column in the SalesRep table.

Maintaining the subscription-list column

Y ou need to write a procedure and a set of triggers to maintain the
subscription-list column added to the Customer table. This section describes
these objects.

Stored procedure The following procedureis used to build the subscription-list column, and is
called from the triggers that maintain the subscription_list column.

CREATE PROCEDURE Subscri beCust omer @ust_key CHAR(12)
AS
BEG N
-- Rep returns the rep list for custoner @ust_key
DECLARE Rep CURSCR FOR
SELECT DI STINCT RTRIM rep_key)
FROM Pol i cy

160

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

WHERE cust _key = @ust_key
DECLARE @ep_key CHAR(12)
DECLARE @ubscription_list VARCHAR(255)

-- build commma-separated |ist of rep_key
-- values for this Customner
OPEN Rep
FETCH Rep | NTO @ep_key
|F @®ql status = 0 BEG N
SELECT @ubscription_list = @ep_key
VWH LE 1=1 BEG N
FETCH Rep | NTO @ep_key
| F @®ql status ! = 0 BREAK
SELECT @ubscription_list =

@ubscription_list + ', + @ep_key
END
END
ELSE BEG N
SELECT @ubscription_list ="’
END

-- update the subscription_list in the
-- Custoner table
UPDATE Cust orrer
SET subscription_|list = @ubscription_|ist
WHERE cust _key = @ust _key
END

Notes: ¢ The procedure takes a Customer key as input argument.

¢ Repisacursor for aquery that lists each of the Sales Representatives
with which the customer has a contract.

¢ The WHILE loop builds aVARCHAR(255) variable holding the
comma-separated list of Sales Representatives.

Triggers The following trigger updates the subscription_list column of the Customer
table when arow isinserted into the Policy table.

CREATE TRI GGER I nsPol i cy
ON Policy
FOR | NSERT
AS
BEG N
-- CQust returns those custoners inserted
DECLARE Cust CURSCR FCR
SELECT DI STI NCT cust _key
FROM i nsert ed
DECLARE @ust _key CHAR(12)

OPEN Cust
-- Update the rep list for each Custoner
-- with a newrep

161

Sharing rows among several subscriptions

Excluding the
subscription-list
column from the
publication

Triggers at the
consolidated
database only

162

VWH LE 1=1 BEG@ N
FETCH Cust | NTO @ust _key
| F @®qgl status ! = 0 BREAK
EXEC Subscri beCust oner @ust_key
END
END

The following trigger updates the subscription_list column of the Customer
table when arow is deleted from the Policy table.

CREATE TRI GGER Del Pol i cy
ON Pol i cy
FOR DELETE
AS
BEGA N
-- CQust returns those custoners del eted
DECLARE Cust CURSCR FCR
SELECT DI STI NCT cust _key
FROM del et ed
DECLARE @ust _key CHAR(12)

OPEN Cust
-- Update the rep list for each Custoner
-- losing arep
VWH LE 1=1 BEG N
FETCH Cust | NTO @ust _key
| F @®ql status ! = 0 BREAK
EXEC Subscri beCust oner @ust_key
END
END

The subscription-list column should be excluded from the publication, as
inclusion of the column leads to excessive updates being replicated.

For example, consider what happens if there are many policies per customer.
If anew Sales Representative is assigned to a customer, atrigger firesto
update the subscription-list column in the Customer table. If the subscription-
list column is part of the publication, then one update for each policy will be
replicated to all sales repsthat are assigned to this customer.

The values in the subscription-list column are maintained by triggers. These
triggersfire at the consolidated database when the triggering inserts or
updates are applied by the Message Agent. The triggers must be excluded
from the remote databases, as they maintain a column that does not exist.

You can use the sp_user_extraction_hook procedure to exclude only certain
triggers from aremote database on extraction. The procedure is called as the
final part of an extraction. By default, it is empty.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

% To customize the extraction procedure to omit certain triggers:
1 Ensurethe quoted_identifier option is set to ON:

set quoted_identifier on
go

2 Any temporary tables referenced in the procedure must exist, or the
CREATE PROCEDURE statement will fail. The temporary tables
referenced in the following procedure are available in the ssremote.sql
script. Copy any required table definitions from the script and execute
the CREATE TABLE statements, so they exist on the current
connection, before creating the procedure.

3 Create the following procedure:

CREATE PROCEDURE sp_user _extracti on_hook
AS
BEA N
-- W do not want to extract the | NSERT and
-- DELETE triggers created on the Policy table
-- that nmintain the subscription_|list
-- colum, since we do not include that
-- colum in the publication.
-- |If these objects were extracted the
-- INSERTs would fail on the renote database
-- since they reference a colum
-- (subscription_list) that does not exist.
DELETE FROM #systri gger
WHERE table_id = object_id('Policy)
-- Do not create any procedures
DELETE FROM #syspr ocedur e
WHERE proc_nanme = ' Subscri beCust omer’
END

go

Tuning extraction performance for shared rows

When extracting or synchronizing a user, the subscription-list column can
cause performance problems as it necessitates a full table scan.

If you are extracting databases for many users, and performance is a problem
for you, you can use a subscription view to improve performance. The view
must contain a subquery, which is used for extraction and synchronization
only, and isignored during log scanning. The tables involved still need to
have triggers defined to maintain the subscription-list column.

163

Sharing rows among several subscriptions

164

« To create a subscription view:

1

Design a query that uses a subquery to select the proper rows for a
subscription from atable.

For example, continuing the example from the preceding sections, the
following query selects the rows of the Contact table for a user
subscribed by rep_key value rep5:

SELECT *
FROM Cont act
WHERE ' rep5’ = (SELECT rep_key
FROM CQust oner
WHERE cust _key = Contact. cust_key)

Create aview that contains this subquery. For example:

CREATE VI EW Cust oner _sub_vi ew AS
SELECT *
FROM dbo. Cust oner
WHERE ' repxx’ I N (SELECT rep_key
FROM dbo. Pol i cy
WHERE dbo. Pol i cy. cust _key = dbo. Cust oner. cust _key

)

In thisview definition, it does not matter what value you use on the | eft-
hand side of the WHERE clause (repxx in the example above). The
replication tools use the subquery for extraction and synchronization
only. Rows for which the SUBSCRIBE BY value isin the subquery
result set are extracted or synchronized.

Give the name of the view as a parameter to sp_add_article or
sp_modify_article:

exec sp_add_articl e Sal esRepDat a,
" Qust oner ',
NULL,
"subscription_list’,
" Qust orer _sub_vi ew

The subscription_list column is used for log scanning and the subquery is
used for extraction and synchronization.

& For more information, see "Tuning extraction performance" on
page 156, "sp_add_article procedure” on page 387, and
"sp_modify_article procedure" on page 402.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Using the Subscribe_by remote option with many-to-many

relationships

When the SUBSCRIBE_BY_REMOTE option is ON, operations that arrive
from remote databases on rows with a subscribe by value of NULL or ” will
assume the remote user is subscribed to the row. By default, the
SUBSCRIBE_BY_REMOTE option is set to ON. In most cases, this setting
isthe desired setting.

The SUBSCRIBE_BY_REMOTE option solves a problem that otherwise
would arise with publications including the Policy example. This section
describes how the option automatically avoids the problem.

The database uses a subscription-list column for the Customer table, because
each Customer may belong to several Sales Reps:

Marc Dill isa Sales Rep who has just arranged a policy with a new customer.
He inserts a new Customer row and also inserts arow in the Policy table to
assign the new Customer to himself. Assuming that the subscription-list
column is not included in the publication, the operation at Marc’s remote
database is as follows:

Customer Policy SalesRep
cust1010 v\ pol2345 195
cust_name cust1010 Marc Dill

195

Asthe INSERT of the Customer row is carried out by the Message Agent at
the consolidated database, Adaptive Server Enterprise records the
subscription value in the transaction log, at the time of the INSERT.

Later, when the Message Agent scans the log, it builds alist of subscribers to
the new row, using the subscription value stored in the log, and Marc Dill is
not on that list. If SUBSCRIBE_BY_REMOTE were set to OFF, the result
would be that the new Customer is sent back to Marc Dill asaDELETE
operation.

Aslong as SUBSCRIBE_BY_REMOTE is set to ON, the Message Agent
assumes that, as the subscription-list column is NULL, the row belongsto
the Sales Rep that inserted it. As aresult, the INSERT is not replicated back
to Marc Dill, and the replication system isintact.

Y ou can use atrigger, which executes after the INSERT, to maintain the
subscription-list column.

165

Managing conflicts

Managing conflicts

Default conflict
resolution

166

An UPDATE conflict occurs when the following sequence of events takes
place:

1 User 1updatesarow at remote site 1.

2 User 2 updates the same row at remote site 2.

3 Theupdate from User 1isreplicated to the consolidated database.
4 The update from User 2 isreplicated to the consolidated database.

When the SQL Remote Message Agent replicates UPDATE statements, it
does so as a separate UPDATE for each row. Also, the message contains the
old row values for comparison. When the update from user 2 arrives at the
consolidated database, the values in the row are not those recorded in the

message.

ID | Rep | Dept
First UPDATE 1 Ann | 101 | Second UPDATE
succeeds 2> | Marc | 101 ﬁ;/stirwrites the
3 | Shih | 104

UPDATE SalesRep UPDATE SalesRep

SET Dept=103 SET Dept=104
WHERE ID =3 WHERE ID =3
ID | Rep | Dept ID | Rep | Dept
1 Ann | 101 1 Ann | 101
2 | Marc| 101 2 | Marc| 101
3 | Shinh 102>103 3 Shih 102>104

By default, the UPDATE still proceeds, so that the User 2 update (the last to
reach the consolidated database) becomes the value in the consolidated
database, and is replicated to all other databases subscribed to that row. In
general, the default method of conflict resolution is that the most recent
operation (in this case that from User 2) succeeds, and no report is made of
the conflict. The update from User 1 islost.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Conflicts do not
apply to primary
keys

SQL Remote also allows custom conflict resolution, using a stored procedure
to resolve conflicts in away that makes sense for the data being changed.

UPDATE conflicts do not apply to primary key updates. If the column being
updated is a primary key, then when the update from User 2 arrives at the
consolidated database, no row will be updated.

This section describes how you can build conflict resolution into your
SQL Remote installation at the consolidated database.

How SQL Remote handles conflicts

When a conflict is
detected

SQL Remote replication messages include UPDATE statements as a set of
single row updates, each including the values prior to updating.

An UPDATE conflict is detected by the database server as afailure of the
values to match the rowsin the database.

Conflicts are detected and resolved by the Message Agent, but only at a
consolidated database. When an UPDATE conflict is detected in a message
from aremote database, the Message Agent causes the database server to
take two actions:

1 TheUPDATE isapplied.

2 Any conflict resolution procedures are called.

UPDATE statements are applied even if the VERIFY clause values do not
match, whether or not there is aresolve update procedure.

&~ The method of conflict resolution is different at an Adaptive Server
Anywhere consolidated database. For more information, see "How
SQL Remote handles conflicts' on page 121.

Implementing conflict resolution

Required objects

This section describes what you need to do to implement custom conflict
resolution in SQL Remote.

For each table on which you wish to resolve conflicts, you must create three
database objects to handle the resol ution:

¢ Anold value table To hold the values that were stored in the table
when the conflicting message arrived.

¢ Aremote value table To hold the values stored in the table at the
remote database when the conflicting update was applied, as determined
from the message.

167

Managing conflicts

Naming the objects

168

¢ Astored procedure To carry out actions to resolve the conflict.

These objects need to exist only in the consolidated database, as that is where
conflict resolution occurs. They should not be included in any publications.

When atable is marked for replication, using the sp_add_remote_table or
sp_modify_remote_table stored procedure, optional parameters specify the
names of the conflict resolution objects.

Thesp_add_remote tableand sp_modify_remote table procedures take
one compul sory argument, which is the name of the table being marked for
replication. It takes three additiona arguments, which are the names of the
objects used to resolve conflicts. For example, the syntax for
sp_add_remote _tableis:

exec sp_add_remote_table table_name
[, resolve_procedure]
[, old _row table]
[, remote_row _table]

Y ou must create each of the three objectsresolve procedure, old row_table,
and remote_row_table. These three are discussed in turn.

¢ old_row_table Thistable must have the same column names and data
types as the table table_name, but should not have any foreign keys.
When a conflict occurs, arow isinserted into old_row_table containing
the values of the row in table_name being updated before the UPDATE
was applied. Once resolve_procedure has been run, the row is deleted.

Asthe Message Agent applies updates as a set of single-row updates, the
table only ever contains a single row.

¢ remote_row_table Thistable must have the same column names and
data types as the table table_name, but should not have any foreign keys.
When a conflict occurs, arow isinserted into remote row_table
containing the values of the row in table_name from the remote database
before the UPDATE was applied. Once resolve_procedure has been run,
the row is deleted.

Asthe Message Agent applies updates as a set of single-row updates, the
table only ever contains asingle row.

¢ resolve_procedure This procedure carries out whatever actions are
required to resolve a conflict, which may include altering the value in
the row or reporting values into a separate table.

Once these objects are created, you must run the sp_add_remote_table or
sp_modify_remote_table procedure to flag them as conflict resolution
objectsfor atable.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Limitations

¢ At an Adaptive Server Enterprise database, conflict resolution will not
work on atable with more than 128 columns while the
VERIFY_ALL_COLUMNS option is set to ON. Even if
VERIFY_ALL_COLUMNS s set to OFF, if an UPDATE statement
updates more than 128 columns, conflict resolution will not work.

A first conflict resolution example

The database

Goals of the
conflict resolution

The conflict
resolution objects

In this example, conflictsin the Customer table in the two-table example
used in the tutorial s are reported into a table for later review.

The two-table database is as follows:

Customer SalesRep
cust key char(12) rep_key = | [ED key char(5)
name char(40) rep_key name char(40)
rep_key char(5)

The conflict resolution will report conflicts on updates to the name column
in the Customer table into a separate table named ConflictL og.

The conflict resolution tables are defined as follows:

CREATE TABLE d dCust orrer (
cust _key CHAR(12) NOT NULL,
nanme CHAR(40) NOT NULL,
rep_key CHAR(5) NOT NULL,
PRI MARY KEY (cust_key)

)

CREATE TABLE Renot eCust orrer (
cust _key CHAR(12) NOT NULL,
nanme CHAR(40) NOT NULL,
rep_key CHAR(5) NOT NULL,
PRI MARY KEY (cust_key)

)

Each of these tables has exactly the same columns and data types as the
Customer tableitself. The only differencein their definition is that they do
not have aforeign key to the SalesRep table.

The conflict resolution procedure reports conflicts into a table named
ConflictL og, which has the following definition:;

CREATE TABLE ConflictLog (
conflict_key nuneric(5, 0) identity not null,
| ost _nane char(40) not null
won_nane char (40) not null
primary key (conflict_key)

169

Managing conflicts

How the conflict
resolution works

170

)

The conflict resolution procedure is as follows:

CREATE PROCEDURE Resol veCust oner

AS

BEA N
DECLARE @ust_key CHAR(12)
DECLARE @ ost _nane CHAR(40)
DECLARE @wn_nane CHAR(40)

// Get the name that was | ost
/1 from A dCust oner
SELECT @ ost _nane=nane,
@ust _key=cust _key
FROM d dCust orrer

[/l Get the name that won
/1 from CQust omner

SELECT @wn_nane=narre
FROM Cust orner

WHERE cust _key = @ust_key

I NSERT I NTO ConflictLog (|ost_name, won_narne)
VALUES (@ost_nane, @wn_nane)
END

This resolution procedure does not use the RemoteCustomer table.

The stored procedure is the key to the conflict resolution. It works as
follows:

1

Obtains the @lost_name value from the OldCustomer table, and also
obtains aprimary key value so that the real table can be accessed.

The @lost_name value is the value that was overridden by the conflict-
causing UPDATE.

Obtains the @won_name value from the Customer tableitself. Thisis
the value that overrode @lost_name. The stored procedure runs after
the update has taken place, which is why the valueis present in the
Customer table. This behavior is different from SQL Remote for
Adaptive Server Anywhere, where conflict resolution isimplemented in
a BEFORE trigger.

Adds arow into the ConflictL og table containing the @lost_name and
@won_name values.

After the procedure is run, the rows in the OldCustomer and
RemoteCustomer tables are deleted by the Message Agent. In this
simple example, the RemoteCustomer row was not used.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Testing the

example
1
2
3
4
5

+ To test the example:

Create the tables and the procedure in the consolidated database, and add
them as conflict resolution objects to the Customer table.

Insert and commit a change at the consolidated database. For example;

UPDATE Cust orrer
SET nane = ' Sea Sports’
WHERE cust _key='"cust 1’

go
aow T

go

Insert and commit a different change to the same line at the remote
database. For example:

UPDATE Cust orrer
SET nane = ' C Sports’
WHERE cust _key='cust 1’

go
aow T

go

Replicate the change from the remote to the consolidated database, by
running the Message Agent at the remote database to send the message,
and then at the consolidated database to receive and apply the message.

At the consolidated database, view the Customer table and the
ConflictL og table. The Customer table contains the value from the
remote database:

cust_key | name

| C Sports

| rep_key
| repl

custl

The ConflictL og table has a single row, showing the conflict:

conflict_key | lost_name

1 | Sea Sports

| won_name
| C Sports

A second conflict resolution example

This example shows a slightly more elaborate example of resolving a
conflict, based on the same situation as the previous example, discussed in
"A first conflict resolution example" on page 169.

171

Managing conflicts

Goals of the
conflict resolution

The conflict
resolution objects

172

In this case, the conflict resolution has the following goals:

¢ Disallow the update from a remote database. The previous example
allowed the update.

¢ Report the name of the remote user whose update failed, along with the
lost and won names.

In this case, the ConflictL og table has an additional column to record the
user 1D of the remote user. The table is as follows:

CREATE TABLE ConflictLog (
conflict_key nuneric(5, 0) identity not null,
| ost _nane char(40) not null
won_nane char (40) not null
renote_user char(40) not null
primary key (conflict_key)
)

The stored procedure is more elaborate. As the update will be disallowed,
rather than allowed, the lost_name value now refers to the value arriving in
the message. It isfirst applied, but then the conflict resolution procedure
replaces it with the value that was previously present.

The stored procedure uses data from the temporary table #remote. In order
to create a procedure that references a temporary table you first need to
create that temporary table. The statement is as follows:

CREATE TABLE #renote (
current _renot e_user varchar (128),
current _publi sher varchar(128)

)

Thistableis created in TEMPDB, and exists only for the current session. The
Message Agent creates its own #remote table when it connects, and uses it
when the procedure is executed.

CREATE PROCEDURE Resol veCust oner

AS

BEA N
DECLARE @ust_key CHAR(12)
DECLARE @ ost _nane CHAR(40)
DECLARE @wn_nane CHAR(40)
DECLARE @ enot e_user varchar (128)

-- Get the nane that was present before
-- the nmessage was applied, from Q dCustoner
-- This will "win" in the enx
SELECT @won_nane=narne,
@ust _key=cust _key
FROM A dCust orrer

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Notes

Testing the

example

-- Get the nane that was applied by the
-- Message Agent from Customer. This will
-- "lose" in the end

SELECT @ ost _nane=nane

FROM Cust orrer

WHERE cust _key = @ust _key

-- Get the renote user val ue from #renote
SELECT @enote_user = current_renote_user
FROM #r enot e

-- Report the problem
I NSERT | NTO ConflictLog (|ost_nane,
won_nane, renote_user)
VALUES (@ost_nanme, @won_nane, @ enote_user)

-- Disallow the update fromthe Message Agent
-- by resetting the rowin the Qustoner table
UPDATE Cust ornrer

SET nanme = @wn_nane

WHERE cust _key = @ust_key

END

There are several points of note here;

¢

The user 1D of the remote user is stored by the Message Agent in the
current_remote_user column of the temporary table #remote.

The UPDATE from the Message Agent is applied before the procedure
runs, so the procedure has to explicitly replace the values. Thisis
different from the case in SQL Remote for Adaptive Server Anywhere,
where conflict resolution is carried out by BEFORE triggers.

+ To test the example:

1

Create the tables and the procedure in the consolidated database, and add
them as conflict resolution objects to the Customer table.

Insert and commit a change at the consolidated database. For example:

UPDATE Cust ornrer
SET nane = ' Consol i dated Sports’
WHERE cust _key=' cust 1’

go
caOWw T

go

Insert and commit a different change to the same line at the remote
database. For example:

UPDATE Cust ornrer
SET nane = 'Field Sports’

173

Managing conflicts

WHERE cust _key='cust 1’

go
aw T

go
Replicate the change from the remote to the consolidated database, by

running the Message Agent at the remote database to send the message,
and then at the consolidated database to receive and apply the message.

At the consolidated database, view the Customer table and the
ConflictL og table. The Customer table contains the value from the
consolidated database:

cust_key name rep_key

custl Consolidated Sports repl

The ConflictL og table has a single row, showing the conflict and
recording the value entered at the remote database:

conflict_key | lost_name | won_name | remote_user

1 | Field Sports | Consolidated Sports | field_user

Run the Message Agent again at the remote database. This receives the
corrected update from the consolidated database, so that the name of the
customer is set to Consolidated Sports here as well.

Designing to avoid referential integrity errors

174

Thetablesin arelational database are related through foreign key references.
The referential integrity constraints applied as a consequence of these
references ensure that the database remains consistent. If you wish to
replicate only a part of adatabase, there are potential problems with the
referential integrity of the replicated database.

Referential integrity errors stop replication

If aremote database receives a message that includes a statement that
cannot be executed because of referential integrity constraints, no further
messages can be applied to the database (because they come after a
message that has not yet been applied), including passthrough statements,
which would sit in the message queue.

By paying attention to referential integrity issues while designing
publications you can avoid these problems. This section describes some of
the more common integrity problems and suggests ways to avoid them.

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Unreplicated
referenced table
errors

Consider the following SalesRepData publication:;

exec sp_add _renote_table ' Sal esRep’
exec sp_create_publication ’Sal esRepDat a’
exec sp_add_article ' Sal esRepbata’, ' Sal esRep’

go

If the SalesRep table had aforeign key to another table (say, Employee) that
was hot included in the publication, inserts or updates to SalesRep would fail
to replicate unless the remote database had the foreign key reference
removed.

If you use the extraction utility to create the remote databases, the foreign
key reference is automatically excluded from the remote database, and this
problem is avoided. However, there is no constraint in the database to
prevent an invalid value from being inserted into therep_id column of the
SalesRep table, and if this happens the INSERT will fail at the consolidated
database. To avoid this problem, you could include the Employee table (or at
least its primary key) in the publication.

175

Ensuring unique primary keys

Ensuring unique primary keys

Overview of
primary key pools

Users at physically distinct sites can each INSERT new rows to atable, so
there is an obvious problem ensuring that primary key values are kept
unique.

If two users INSERT arow using the same primary key values, the second
INSERT to reach a given database in the replication system will fail. As
SQL Remoteis areplication system for occasionally-connected users, there
can be no locking mechanism across all databases in the installation. It is
necessary to design your SQL Remote installation so that primary key errors
do not occur.

For primary key errors to be designed out of SQL Remote installations; the
primary keys of tables that may be modified at more than one site must be
guaranteed unique. There are several ways of achieving thisgoal. This
chapter describes a general, economical and reliable method that uses a pool
of primary key values for each sitein the installation.

The primary key pool isatable that holds a set of primary key values for
each database in the SQL Remote installation. Each remote user receives
their own set of primary key values. When aremote user inserts a new row
into atable, they use a stored procedure to select avalid primary key from
the pool. The pool is maintained by periodically running a procedure at the
consolidated database that replenishes the supply.

The method is described using a simple example database consisting of sales
representatives and their customers. The tables are much simpler than you
would usein areal database; this allows usto focus just on those issues
important for replication.

The primary key pool

176

The pool of primary keysis held in a separate table. The following CREATE
TABLE statement creates a primary key pool table:

CREATE TABLE KeyPool (
tabl e_nane VARCHAR(40) NOT NULL,
val ue | NTEGER NOT NULL,
| ocation VARCHAR(6) NOT NULL,
PRI MARY KEY (tabl e_nane, val ue),
)
go

The columns of this table have the following meanings:

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Column

Description

table_name

value

location

Holds the names of tables for which primary key pools must be
maintained. In our simple example, if new sales representatives
were to be added only at the consolidated database, only the
Customer table needs a primary key pool and this column is
redundant. It isincluded to show a genera solution.

Holds alist of primary key values. Each value is unique for each
tablelisted in table_name.

In some setups, this could be the same astherep_key value of the
SalesRep table. In other setups, there will be users other than sales
representatives and the two identifiers should be distinct.

For performance reasons, you may wish to create an index on the table:

CREATE | NDEX KeyPool Locat i on
ON KeyPool (table_name, |ocation, value)

go

Replicating the primary key pool

Y ou can either incorporate the key pool into an existing publication, or share
it as a separate publication. In this example, we create a separate publication
for the primary key pool.

% To replicate the primary key pool:

1 Create apublication for the primary key pool data.

sp_create_publication ' KeyPool Dat a’

go

sp_add_renote_t abl e ' KeyPool’

go

sp_add_article 'KeyPool Data’, 'KeyPool ',

go

NULL, 'l ocation’

2 Create subscriptions for each remote database to the K eyPoolData
publication.

sp_subscription 'create’,

go

KeyPool Dat a,

field_user,

repl

The subscription argument is the location identifier.

177

Ensuring unique primary keys

In some circumstances it makes sense to add the K eyPool table to an existing
publication and use the same argument to subscribe to each publication. Here
we keep the location and rep_key values distinct to provide a more general
solution.

Filling and replenishing the key pool

Every time a user adds a new customer, their pool of available primary keys
is depleted by one. The primary key pool table needs to be periodically
replenished at the consolidated database using a procedure such as the
following:

CREATE PROCEDURE Repl eni shPool AS
BEA N
DECLARE @curr Table VARCHAR(40)
DECLARE @MbxVal ue | NTEGER
DECLARE EachTable CURSOR FOR
SELECT tabl e_name, max(val ue)
FROM KeyPool
GROUP BY tabl e_nane
DECLARE @curr Loc VARCHAR(6)
DECLARE @WwunVal ues | NTEGER

DECLARE EachlLoc CURSOR FOR
SELECT | ocati on, count(*)
FROM KeyPool

WHERE t abl e_name = @urr Tabl e
GROUP BY | ocation
CPEN EachTabl e
VWH LE 1=1 BEG@ N
FETCH EachTabl e | NTO @urr Tabl e, @hxVal ue
| F @®ql status ! = 0 BREAK
CPEN EachlLoc
VWH LE 1=1 BEG@ N
FETCH EachLoc | NTO @CurrLoc, @WunVal ues
| F @®qgl status ! = 0 BREAK
-- nmake sure there are 10 val ues
VWH LE @\WunVal ues < 10 BEG N
SELECT @axVal ue = @bxVal ue + 1
SELECT @WwunVal ues = @unVal ues + 1
| NSERT | NTO KeyPool
(tabl e_name, |ocation, val ue)
VALUES (@ourrTable, @urrlLoc, @hxVal ue)
END
END
CLCSE EachlLoc
END
CLCSE EachTabl e
END

go

178

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

This procedure fills the pool for each user up to ten values. Y ou may wish to
use alarger value in a production environment. The value you need depends
on how often users are inserting rows into the tables in the database.

The ReplenishPool procedure must be run periodically at the consolidated
database to refill the pool of primary key valuesin the K eyPool table.

The ReplenishPool procedure requires at least one primary key valueto
exist for each subscriber, so that it can find the maximum value and add one
to generate the next set. To initialy fill the pool you caninsert asingle value
for each user, and then call ReplenishPoal to fill up the rest. The following
example illustrates this for three remote users and a single consolidated user
named Office:

| NSERT | NTO KeyPool VALUES(' Custoner’, 40, 'repl)
| NSERT | NTO KeyPool VALUES(' Customer’, 41, 'rep2’)
| NSERT | NTO KeyPool VALUES(' Custoner’, 42, 'rep3’)
| NSERT | NTO KeyPool VALUES('Customer’, 43, 'O fice’)
EXEC Repl eni shPool

go

Cannot use a trigger to replenish the key pool

Y ou cannot use a trigger to replenish the key pool, as no actions are
replicated to the remote database performing the original operation,
including trigger actions.

Adding new customers

When a sales representative wants to add a new customer to the Customer
table, the primary key value to be inserted is obtained using a stored
procedure. This example shows a stored procedure to supply the primary key
value, and also illustrates a stored procedure to carry out the INSERT.

The procedures takes advantage of the fact that the Sales Rep identifier isthe
CURRENT PUBLISHER of the remote database.

¢ NewKey procedure The NewK ey procedure supplies an integer value
from the key pool and deletes the value from the pool.

CREATE PROCEDURE NewKey
@abl eNanme VARCHAR(40),
@ocati on VARCHAR(6),
@/al ue | NTEGER QUTPUT AS
BEA N
DECLARE @unVal ues | NTEGER
SELECT @WwunVal ues = count (*),
@/al ue = m n(val ue)
FROM KeyPool

179

Ensuring unique primary keys

WHERE t abl e_name = @abl eNane

AND | ocati on = @uocation

| F @unVal ues > 1
DELETE FROM KeyPool
WHERE t abl e_name = @abl eNane
AND val ue = @al ue

ELSE
-- Never take the |ast value,
-- because RestorePool will not work.
-- The key pool shoul d be kept |arge
-- enough so this never happens.
SELECT @/al ue = NULL

END

¢ NewCustomer procedure The NewCustomer procedure inserts a
new customer into the table, using the value obtained by NewK ey to
construct the primary key.

CREATE PROCEDURE NewCust orer @ane VARCHAR(40),
@oc VARCHAR(6) AS
BEG N

DECLARE @ust | NTEGER
DECLARE @ust_key VARCHAR(12)

EXEC NewKey ' Qustoner’, @oc, @ust output
SELECT @ust_key = 'cust’ +

convert(VARCHAR(12), @ust)
| NSERT | NTO Custoner (cust_key, name, rep_key)

VALUES (@ust_key, @ane, @oc)
END

Y ou may want to enhance this procedure by testing the @cust value
obtained from NewK ey to check that it isnot NULL, and preventing the
insert if itisNULL.

Testing the key pool

% To test the primary key pool:
1 Re-extract aremote database using the field_user user ID.

2 Trythissample INSERT at the remote and consolidated sites:
EXEC NewCustoner 'Geat Wiite North', repl

Primary key pool summary

The primary key pool technique requires the following components:

180

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Key pool table A tableto hold valid primary key values for each
database in the installation.

Replenishment procedure A stored procedure keeps the key pool
tablefilled.

Sharing of key pools Each database in the installation must subscribe
to itsown set of valid values from the key pool table.

Data entry procedures New rows are entered using a stored
procedure that picks the next valid primary key value from the pool and
delete that value from the key pool.

181

Creating subscriptions

Creating subscriptions

Subscriptions with
no subscription
column

Subscriptions with
a subscription
column

182

To subscribe to a publication, each subscriber must be granted REMOTE
permissions and a subscription must also be created for that user. The details
of the subscription are different depending on whether or not the publication
uses a subscription column.

To subscribe a user to apublication, if that publication has no subscription
column, you need the following information:

¢ UserID Theuser who isbeing subscribed to the publication. This user
must have been granted remote permissions.

¢ Publication name The name of the publication to which the user is
being subscribed.

The following statement creates a subscription for auser ID SamSto the
pub_orders samuel_singer publication, which was created without using a
subscription column:

sp_subscription 'create’,
" pub_or ders_sanuel _si nger’,
' sang
To subscribe a user to apublication, if that publication does have a
subscription column, you need the following information:

¢ UserID Theuser who isbeing subscribed to the publication. This user
must have been granted remote permissions.

¢ Publication name The name of the publication to which the user is
being subscribed.

¢ Subscription value The value that isto be tested against the
subscription column of the publication. For example, if a publication has
the name of a column containing an employee 1D as a subscription
column, the value of the employee ID of the subscribing user must be
provided in the subscription. The subscription value is always a string.

The following statement creates a subscription for Samuel Singer (user ID
SamS, employee ID 856) to the pub_orders publication, defined with a
subscription column sales_rep, requesting the rows for Samuel Singer's own
sales:

sp_subscri ption create,
pub_orders,
Sans,
' 856’

Chapter 8 SQL Remote Design for Adaptive Server Enterprise

Starting a In order to receive and apply updates properly, each subscriber needs to have
subscription aninitial copy of the data. The synchronization process is discussed in
" Synchronizing databases' on page 191.

183

Creating subscriptions

184

PART THREE
SQL Remote Administration

This part describes deployment and administration issues for SQL Remote

185

186

CHAPTER 9

Deploying and Synchronizing Databases

About this chapter

Contents

This chapter describes the steps you need to take to deploy and synchronize a

SQL Remote replication installation.

Topic Page
Deployment overview 188
Test before deployment 189
Synchronizing databases 191
Using the extraction utility 193
Synchronizing data over a message system 201

187

Deployment overview

Deployment overview

Deployment tasks

Topics covered

188

When you have completed the design phase of a SQL Remote system, the
next step is to create and deploy the remote databases and applications.

In some cases, deployment is a major undertaking. For example, if you have
alarge number of remote usersin a sales force automation system,
deployment involves the following steps:

1

Building an Adaptive Server Anywhere database for each remote user,
with their own initial copy of the data.

Installing the database, together with the Adaptive Server Anywhere
database server, the SQL Remote Message Agent, and client application,
on each user’'s machine.

Ensuring that the system is properly configured, with correct user
names, Message Agent connection strings, permissions, and so on.

In the case of large-scale deployments, remote sites are most commonly
Adaptive Server Anywhere databases, and this chapter focuses on this case.

This chapter covers the following topics:

¢

Creating remote databases Before you can deploy a SQL Remote
system, you must create a remote database for each remote site.

Most of the description focuses on creating remote Adaptive Server
Anywhere databases.

Synchronizing data Synchronization of a database is the setting up of
theinitial copy of datain the remote database.

Chapter 9 Deploying and Synchronizing Databases

Test before deployment

Upgrading and
resynchronization

Thorough testing of your SQL Remote system should be carried out before
deployment, especially if you have alarge number of remote sites.

When you are in the design and setup phase, you can alter many facets of the
SQL Remote setup. Altering publications, message types, writing triggersto
resolve update conflicts are all easy to do.

Once you have deployed a SQL Remote application, the situation is
different. A SQL Remote setup can be seen as a single disper sed database,
spread out over many sites, maintaining aloose form of consistency. The
data may never bein exactly the same state in all databases in the setup at
once, but al data changes are replicated as complete transactions around the
system over time. Consistency is built in to a SQL Remote setup through
careful publication design, and through the reconciliation of UPDATE
conflicts as they occur.

Once a SQL Remote setup is deployed and is running, it is not easy to tinker
with. An upgrade to a SQL Remote installation needs to be carried out with
the same care as an initial deployment. This applies also to upgrading
maintenance rel eases of the Adaptive Server Enterprise or Adaptive Server
Anywhere database software. Any such software upgrade needs to be tested
for compatibility before deployment.

Making changes to a database schema at one database within the system can
cause failures because of incompatible database objects. The passthrough
mode does allow schema changes to be sent to some or all databasesin a
SQL Remote setup, but must still be used with care and planning.

The loose consistency in the dispersed database means that updates are
always in progress: you cannot generally stop changes being made to all
databases, make some changes to the database schema, and restart.

Without careful planning, changes to a database schemawill produce errors
throughout the installation, and will require all subscriptions to be stopped
and resynchronized. Resynchronization involves |oading new copies of the
data in each remote database, and for more than afew subscribersis atime-
consuming process involving work interruptions and possible loss of data.

Changes to avoid on arunning system

The following are examples of changes that should not be made to a
deployed and running SQL Remote setup. From the list, you will see that
there is a class of changes that are per missive, and these are generally
permissible, while other changes arerestrictive, and must be avoided.

189

Test before deployment

The following changes must be avoided, except under the conditions stated:
¢ Change the publisher for the consolidated database.

¢ Make redtrictive changes to tables, such as dropping a column or altering
acolumn to not allow NULL values. Changes that include the column or
including NULL entries may already be being sent in messages around
the SQL Remote setup, and will fail.

¢ Alter apublication. Publication definitions must be maintained at both
local and remote sites, and changes that rely on the old publication
definition may already be being sent in messages around the
SQL Remote setup.

Y ou can make permissive changes, such as adding a new table or
column, as long as you use passthrough to ensure that the new table or
column exists in the remote database and in the publication at the remote
database.

¢ Drop asubscription. This can be done only if you use passthrough
deletes to remove the data at the remote site.

¢ Unload and reload an Adaptive Server Anywhere database.

If an Adaptive Server Anywhere database is participating in replication,
it cannot be unloaded and rel oaded without re-synchronizing the
database. Replication is based on the transaction log, and when a
database is unloaded and reloaded, the old transaction log is no longer
available. For this reason, good backup practices are especially
important when participating in replication.

An Adaptive Server Enterprise database can be unloaded and rel oaded
as long asthe system is quiet and the transaction log is fully scanned.
The page id and row_id rowsinthe sr_queue_statetable of the stable
gueue must be reset.

190

Chapter 9 Deploying and Synchronizing Databases

Synchronizing databases

What is
synchronization?

When to
synchronize

How to
synchronize

SQL Remote replication is carried out using the information in the
transaction log, but there are two circumstances where SQL Remote deletes
all existing rows from those tables of a remote database that form part of a
publication, and copies the publication’s entire contents from the
consolidated database to the remote site. This processiscalled
synchronization.

Synchronization is used under the following circumstances:

¢

When a subscription is created at a consolidated database a
synchronization is carried out, so that the remote database starts off with
a database in the same state as the consolidated database.

If aremote database gets corrupt or gets out of step with the
consolidated database, and cannot be repaired using SQL passthrough
mode, synchronization forces the remote site database back in step with
the consolidated site.

Synchronizing a remote database can be done in the following ways:

¢

Use the database extraction utility This utility creates a schemafor a
remote Adaptive Server Anywhere database, and synchronizes the
remote database. Thisis generally the recommended procedure.

Manual synchronization Synchronize the remote database manually
by loading from files, using the PowerBuilder pipeline, or some other
tool.

Synchronize over the message system Synchronize the remote
database via the message system using the SYNCHRONIZE
SUBSCRIPTION statement (Adaptive Server Anywhere) or
sp_subscription 'synchronize’ procedure (Adaptive Server Enterprise).

Caution
Do not execute SYNCHRONIZE SUBSCRIPTION or
sp_subscription 'synchronize’ at a remote database.

Mixed operating systems and database extraction

In many installations, the consolidated server will be running on a different
operating system than the remote databases.

191

Synchronizing databases

Example

Adaptive Server Anywhere databases can be copied from onefile or
operating system to another. This allows you flexibility in how you carry out
your initial synchronization of databases.

For example, you may be running an Adaptive Server Enterprise server on a
UNIX system that holds the consolidated database, but wish to deploy
remote databases on laptop computers running some flavor of Windows.

In this circumstance, you have several options for the platforms on which
you extract the database, including the following, assuming you have the
requisite software:

¢ Runthe extraction utility on UNIX to create the reload script and data
files. Copy the script and data files to a Windows machine. Create the
Adaptive Server Anywhere databases and load them up with the schema
and data on Windows.

¢ Runthe extraction utility on UNIX to create the reload script and data
files. Create the Adaptive Server Anywhere databases and load them up
with the schema and data on the same UNI X platform, and then copy the
database files onto Windows machines for deployment.

¢ Runthe extraction utility on Windows, and carry out all database
creation and other tasks on the Windows operating system.

Notes on synchronization and extraction

192

¢ Extracting large numbers of subscriptions, or synchronizing
subscriptions to large, frequently-used tables, can slow down database
access for other users. Y ou may wish to extract such subscriptions when
the database is not in heavy use. This happens automatically if you use a
SEND AT clause with aquiet time specified.

¢ Synchronization applies to an entire subscription. Thereis currently no
straightforward way of synchronizing a single table.

& For performance tips for Adaptive Server Enterprise users using a
subscription-list column, see "Tuning extraction performance" on page 156
and "Tuning extraction performance for shared rows" on page 163.

Chapter 9 Deploying and Synchronizing Databases

Using the extraction utility

Running the
extraction utility

The extraction utility isan aid to creating remote Adaptive Server Anywhere
databases. It cannot be used to create remote Adaptive Server Enterprise
databases.

The extraction utility can be accessed in the following ways:

¢ From Sybase Central, if your consolidated database is Adaptive Server
Anywhere.

¢ Asacommand-line utility. Thisisthe dbxtract utility (Adaptive Server
Anywhere), or the ssxtract utility (Adaptive Server Enterprise).

Caution
Do not run the Message Agent while running the extraction utility. The
results are unpredictable.

Creating a database from the reload files

The command-line utility unloads a database schema and data suitable for
building aremote Adaptive Server Anywhere database for a named
subscriber. It produces a SQL command file with default name reload.sql and
aset of datafiles. You can use these files to create aremote Adaptive Server
Anywhere database.

Editing of reload.sql may be needed

The database extraction utility isintended to assist in preparing remote
databases, but is not intended as a black box solution for all
circumstances. Y ou should edit the reload.sql command file as needed
when creating remote databases.

To create aremote database from the reload file:

1 Create an Adaptive Server Anywhere database using one of the

following:
¢ the Sybase Central Create Database wizard (located in the Utilities
folder)

¢ the dbinit utility

193

Using the extraction utility

2 Connect to the database from the Interactive SQL utility, and run the
reload.sql command file. The following statement entered in the SQL
Statements pane runs the reload.sg/ command file:

read pat h\ reload.sql
where path is the path of the reload command file.

When used from Sybase Central, the extraction utility carries out the
database unloading task, in the same way that dbxtract does, and then takes
the additional step of creating the new database.

The extraction utility does not use a message system. The reload file
(ssxtract/dbxtract) or database (from Sybase Central) is created in adirectory
accessible from the current machine. Synchronizing many subscriptions over
amessage link can produce heavy message traffic and, if the message system
is not completely reliable, it may take some time for all the messagesto be
properly received at the remote sites.

Before extracting a database

Y ou must complete the following tasks before using the extraction utility at a
consolidated database.

¢+ Create message types for replication.

¢ Add apublisher user ID to the database.

¢ Add remote usersto the database.

¢ Add the publication to the database.

¢ Created a subscription for the remote users.
.

If you need to specify message link parameters, you must have set them.

& For adescription of how to carry out these steps, see the tutorial in the
chapter "Tutorials for Adaptive Server Anywhere Users" on page 27. For a
description of setting message link parameters, see " Setting message type
control parameters' on page 219.

When you use the extraction utility to create a remote database, the user for
which you are creating the database receives the same permissions they have
in the consolidated database. Further, if the user is a member of any groups
on the consolidated database, those group 1Ds are created in the remote
database with the permissions they have in the consolidated database.

194

Chapter 9 Deploying and Synchronizing Databases

Using the extraction utility from Sybase Central

This section describes how to extract a database for a remote user from the
current consolidated database. This section applies only to Adaptive Server
Anywhere consolidated databases.

When you complete the extraction wizard, it does the following on your
machine;

¢ Creates the remote database

¢ Extracts (unloads) the relevant structures and/or data from the
consolidated database to files

¢ Loadsthose filesinto the newly created remote database

+ To extract a database for a remote user
1 Openthe Utilities folder (located within the server folder).
2 Intheright pane, double-click Extract Database.

3 Follow theinstructionsin the wizard.

Notes ¢ You can also access this wizard by clicking ToolsJ Adaptive Server
Anywherel] Extract Database.

¢ If you use the wizard to extract a non-running database, it is only able to
unload the structure and data for you. It cannot create the remote
database and reload it. For this reason, we recommend that you always
extract from a consolidated database that you are connected to in Sybase
Central.

¢ You can aso invoke the extraction wizard for a particular database or
for a particular remote user — Sybase Central automatically fills in the
appropriate entries in the wizard.

¢ The extraction wizard always extracts (synchronizes) the remote
database using the WITH SYNCHRONIZATION option. In those rare
cases where you don't want to use this option, you must ugéxinact
utility instead.

For more For information about the extraction utility options, available as command-
information line options or as choices presented by the extraction wizard, see "Extraction
utility options" on page 314.

195

Using the extraction utility

Designing an efficient extraction procedure

It isvery inefficient to create alarge number of remote databases by running
the extraction utility for each one. Y ou can make the process much more
efficient. This section describes one way of making the process more
efficient.

& For performance tips for Adaptive Server Enterprise users using a
subscription-list column, see "Tuning extraction performance" on page 156
and "Tuning extraction performance for shared rows" on page 163.

There are several potential causes of inefficiency in alarge-scale extraction
process:

¢ Theextraction utility extracts one database at atime, including the
schema and data for each user. Commonly, many users share a common
schema, and only the data differs. The brute force method of running the
extraction utility for each user repeats large amounts of work
unnecessarily. Extracting schema and data separately can help with this
problem.

¢ Running from Sybase Central, the extraction utility creates a new
database for each user. If subscribers share a common schema, you
could create a single database, with schema but no data, and copy the
file.

¢ By default, the extraction utility runs at isolation level zero. If you are
extracting a database from an active server, you should run it at isolation
level 3 (see "Extraction utility options' on page 314) to ensure that data
in the extracted database is consistent with data on the server.

Running at isolation level 3 may hamper others’ turnaround time on the
server because of the large number of locks required. It is recommended
that you run the extraction utility when the server is not busy, or run it
against a copy of the database.

An efficient One approach that avoids these problemsiis as follows:
approach to
extracting many
databases

1 Makeacopy of the consolidated database, and at the same time start the
subscriptions from the live database. Messages will now start being sent
to subscribers, even though they have no database and will not receive
them yet.

To start several subscriptions within a single transaction, use the
REMOTE RESET statement (Adaptive Server Anywhere) or
Sp_remote procedure (Adaptive Server Enterprise).

2 Extract the remote databases from the copy of the database. Asthe
database is a copy, there are no locking and concurrency problems. For a
large number of remote databases, this process may take several days.

196

Chapter 9 Deploying and Synchronizing Databases

3 Aseach remote database is created, it is out of date, but its user can
receive and apply messages that have been being sent from the live
consolidated database, to bring themsel ves up to date.

This solution interferes with the production database only during the first
step. The copy must be made at isolation level threeif the databaseisin use,
and uses large numbers of locks. Also, the subscriptions must be started at
the same time that the copy is made. Any operations that take place between
the copy and the starting of the subscriptions would be lost, and could lead to
errors at remote databases.

Extracting groups

If the remote user isa group user ID, the extraction utility extracts all the
user |Ds of members of that group. Y ou can use this feature to all multiple
users on each remote database, using different user IDs, without requiring a
custom extraction process.

When a database is extracted for a user, all message link parameters for that
user and the groups of which the user is a member are extracted.

Limits to using the extraction utility

While the extraction utility is the recommended way of creating and
synchronizing remote databases from a consolidated databases, there are
some circumstances where it cannot be used, and you must synchronize
remote databases manually. This section describes some of those cases.

4 Cannot create Adaptive Server Enterprise remote databases The
extraction utility can only be used for Adaptive Server Anywhere remote
databases.

¢ Additional tables at the remote database Remote databases can
have tables not present at their consolidated database as long as these
tables do not take part in replication. Of course, the extraction utility
cannot extract such tables from a consolidated database.

¢ Adaptive Server Enterprise/Adaptive Server Anywhere differences
Some features in Adaptive Server Enterprise are not present in Adaptive
Server Anywhere. The extraction utility carries out a mapping onto
similar features, but the mapping is not complete.

& For more information on Adaptive Server Enterprise/Adaptive
Server Anywhere issues, see "Using the extraction utility for Adaptive
Server Enterprise” on page 199.

197

Using the extraction utility

198

Extracting procedures and views By default, the extraction utility

extracts all stored procedures and views from the database. While some

of these views and procedures are likely to be required at the remote site,

others may not be required—they may refer only to parts of the database
that are not included in the remote site.

After running the extraction utility, you should edit the reload script and
remove unnecessary views and procedures.

Using the extraction utility in multi-tiered setups To understand the
role of the extraction utility in multi-tiered arrangements, consider a
three-tiered SQL Remote setup.

This setup is illustrated in the following diagram.

Region 1 Region 2

From the consolidated database at the top level, you can use the
extraction utility to create the second-level databases. You can then add
remote users to these second-level databases, and use the extraction
utility from each second-level database to create the remote databases.
However, if you have to re-extract the second-level databases from the
top-level consolidated database, you will delete the remote users that
were created, along with their subscriptions and permissions, and will
have to rebuild those users. The exception is if you resynchronize data
only, in which case you can use the extraction utility to replace the data
in the database, without replacing the schema.

Chapter 9 Deploying and Synchronizing Databases

Using the extraction utility for Adaptive Server Enterprise

The extraction utility for Adaptive Server Enterprise takes an Adaptive
Server Enterprise database schema, and produces an Adaptive Server
Anywhere database. There are several limitations and techniques specific to
thistool.

Adaptive Server Enterprise features unsupported in Adaptive Server Anywhere

There are some features in Adaptive Server Enterprise that are either not
supported or are only partially supported in Adaptive Server Anywhere. The
extraction utility handles some of these features partially, and some not at al.

& For afull description of Adaptive Server Enterprise/Adaptive Server
Anywhere compatibility, see the part Transact-SQL Compatibility, in the
Adaptive Server Anywhere User’s Guide.

Features not supported in ssxtract include the following:

¢ Grouped procedures Adaptive Server Anywhere does not support
procedure groups, and they are not extracted by ssxtract.

¢ Named constraints and defaults Adaptive Server Anywhere does not
support named constraints and named defaults. Any such objects are
extracted directly as constraints and defaults that apply to asingle
object, and the nameislost.

¢ Roles ssxtract extracts roles using the Adaptive Server Anywhere
concept of groups. It creates a group with the named role, and assigns
userstoit.

¢ Passwords If the user for whom a database is being extracted does
not have an entry in SY SLOGINS, no password is extracted. If the user
does have alogin ID, adummy password is extracted.

¢ NCHAR, NVARCHAR These datatypes are extracted as CHAR and
VARCHAR, with NULLS allowed.

¢ timestamp columns Although Adaptive Server Anywhere does
provide atimestamp column, it is a different data type from that of
Adaptive Server Enterprise. Timestamp columns are not extracted.

199

Using the extraction utility

Customizing the system tables

200

The objects that are to be loaded into an Adaptive Server Anywhere database
are described in the system catalog. The extraction utility for Adaptive
Server Enterprise first creates a set of Adaptive Server Anywhere system
tablesin TEMPDB, and fills them with data from the Adaptive Server
Enterprise catalog. It then unloads this set of tables to provide the reload
script that in turn builds an Adaptive Server Anywhere database.

There may be cases where you wish to change the content of the Adaptive
Server Anywhere system tables held in TEMPDB. SQL Remote provides a
place for you to do that.

The stored procedure that creates and fills the Adaptive Server Anywhere
system objectsin TEMPDB is called sp_populate sgl_anywhere. Asits
final operation, this procedure calls a procedure called
sp_user_extraction_hook. This procedure, by default, does nothing. If you
wish to customize the extraction procedure, you can do so by writing a
suitable sp_user_extraction_hook procedure.

Chapter 9 Deploying and Synchronizing Databases

Synchronizing data over a message system

Creating
subscriptions

Synchronizing
subscriptions

Synchronizing
subscriptions
during operation

A subscription is created at a consolidated Adaptive Server Enterprise
database using the sp_subscription procedure with afirst argument of
create.

Creating a subscription defines the data to be received. It does not
synchronize a subscription (provide an initial copy of the data) or start
(exchange messages) a subscription.

Synchronizing a subscription causes the Message Agent to send a copy of all
rows in the subscription to the subscriber. It assumes that an appropriate
database schemaisin place. At an Adaptive Server Anywhere consolidated
database, subscriptions are synchronized using the SYNCHRONIZE
SUBSCRIPTION statement. At an Adaptive Server Enterprise consolidated
database, subscriptions are synchronized using the sp_subscription
procedure with afirst argument of synchronize.

When synchronization messages are received at a subscriber database, the
Message Agent replaces the current contents of the database with the new
copy. Any data at the subscriber that is part of the subscription, and which
has not been replicated to the consolidated database, islost. Once
synchronization is complete, the subscription is started by the Message
Agent using the START SUBSCRIPTION statement or sp_subscription
procedure with afirst argument of start.

Large volume of messages may result

Synchronizing databases over a message system may lead to large
volumes of messages. In many cases, it is preferable to use the extraction
process to synchronize a database locally without placing this burden on
the message system.

If aremote database becomes out of step with the consolidated database, and
cannot be brought back in step using the SQL passthrough capabilities of
SQL Remote, synchronizing the subscription forces the remote database into
step with the consolidated database by copying the rows of the subscription
from the consolidated database over the contents at the remote database.

Data loss on synchronization

Any datain the remote database that is part of the subscription, but which
has not been replicated to the consolidated database, is lost when the
subscription is synchronized. Y ou may wish to unload or back up the
remote database using Sybase Central or, for Adaptive Server Anywhere,
the dbunload utility before synchronizing the database.

201

Synchronizing data over a message system

202

CHAPTER 10
SQL Remote Administration

About this chapter

Contents

This chapter describes general issues and principles for administering a

running SQL Remote installation.

& For system-specific details, see the chapters " Administering
SQL Remote for Adaptive Server Enterprise” on page 271 and

"Administering SQL Remote for Adaptive Server Anywhere" on page 247.

Topic Page
Management overview 204
Managing SQL Remote permissions 205
Using message types 215
Running the Message Agent 229
Tuning Message Agent performance 234
Encoding and compressing messages 241
The message tracking system 243

203

Management overview

Management overview

204

This chapter describes administration issues for SQL Remote installations.

Administration of a deployed and running SQL Remote setup is carried out
at a consolidated database.

¢

Permissions AsaSQL Remote installation includes many different
physical databases, a consistent scheme for users having permissions on
remote and consolidated databases is necessary. A section of this chapter
describes the considerations you need to make when assigning users
permissions.

Configuring message systems Each message system that isused in a
SQL Remote installation has control parameters and other settings that
must be set up. These settings are discussed in this chapter.

The Message Agent The Message Agent is responsible for sending
and receiving messages. While some details of how the Message Agent
operates and the configuration options for it, are different for Adaptive
Server Anywhere and Adaptive Server Enterprise, some concepts and
methods are common to both. These common features are discussed
here.

Message tracking Administering a SQL Remote installation means
managing large numbers of messages being handed back and forth
among many databases. A section on the SQL Remote message tracking
system isincluded to help you understand what the messages contain,
when they are sent, how they are applied, and so on.

Log management SQL Remote obtains the datato send from the
transaction log. Consequently, proper management of the transaction
log, and proper backup procedures, are essential for a smoothly running
SQL Remote installation. While many details depend on the server you
are running, the generic issues are discussed in this chapter.

Passthrough mode Thisisamethod for directly intervening at a
remote site from a consolidated database. This method is discussed in
this chapter.

Chapter 10 SQL Remote Administration

Managing SQL Remote permissions

Users of a database involved in SQL Remote replication are identified by
one of the following sets of permissions:

¢

PUBLISH A singleuser ID in adatabase isidentified as the publisher
for that database. All outgoing SQL Remote messages, including both
publication updates and receipt confirmations, are identified by the
publisher user ID. Every database in a SQL Remote setup must have a
single publisher user 1D, as every database in a SQL Remote setup sends
messages.

REMOTE All recipients of messages from the current database, or
senders of messages to the current database, who are immediately lower
on the SQL Remote hierarchy than the current database must be granted
REMOTE permissions.

CONSOLIDATE At most one user ID may be granted
CONSOLIDATE permissionsin a database. CONSOLIDATE
permissions identifies a database immediately above the current
database in a SQL Remote setup. Each database can have only one
consolidated database directly above it.

Information about these permissions are held in the SQL Remote system
tables, and are independent of other database permissions.

Granting and revoking PUBLISH permissions

When a database sends a message, a user |D representing that database is
included with the message to identify its source to the recipient. This user ID
isthe publisher user ID of the database. A database can have only one
publisher. Y ou can find out who the publisher of an Adaptive Server
Anywhere database is at any time in Sybase Central by opening the

SQL Remote folder.

205

Managing SQL Remote permissions

Granting and
revoking PUBLISH
permissions from
Sybase Central

206

®,
o

A publisher isrequired even for read-only remote databases within a
replication system, as even these databases send confirmations to the
consolidated database to maintain information about the status of the
replication. The GRANT PUBLISH statement for remote Adaptive Server
Anywhere databases is carried out automatically by the database extraction
utility.

Y ou can grant PUBLISH permissions on an Adaptive Server Anywhere
database from Sybase Central. Y ou must connect to the database as a user
with full system or database administrator permissions.

To create a new user as the publisher (Sybase Central):

1 Openthe Users & Groupsfolder.

Double-click Add User.

On thefirst page of the wizard, enter aname and click Next.

On the next page, enter a password and click Next.

ga A WO N

On the next page, ensure that the user is granted Remote DBA authority;
this enables the user 1D to run the Message Agent. Click Finish to create
the user.

To make an existing user the publisher (Sybase Central):
1 Do oneof thefollowing:

¢ IntheUsers & Groupsfolder, right-click a user and choose Change
to Publisher from the popup menu.

¢+ Inthe SQL Remote folder, double-click Set Publisher. Choose a
user in the resulting dialog and click OK to set that user as the
database publisher.

Y ou can also revoke PUBLISH permissions from Sybase Central.

To revoke PUBLISH permissions (Sybase Central):

1 Do oneof the following:

Chapter 10 SQL Remote Administration

Granting and
revoking PUBLISH
permissions
[Adaptive Server
Anywhere]

Granting and
revoking PUBLISH
permissions
[Adaptive Server
Enterprise]

Notes on PUBLISH
permissions

¢ Inthe Users & Groupsfolder, right-click the user who has granted
PUBLISH permissions and choose Revoke Publisher from the
popup menu.

¢+ Inthe SQL Remote folder, right-click the user who has granted
PUBLISH permissions and choose Revoke Publisher from the
popup menu.

For Adaptive Server Anywhere, PUBLISH permissions are granted using the
GRANT PUBLISH statement:
GRANT PUBLI SH TO userid ;

The userid isauser with CONNECT permissions on the current database.
For example, the following statement grants PUBLISH permissions to user
S Beaulieu:

GRANT PUBLI SH TO S Beaul i eu

The REVOKE PUBLISH statement revokes the PUBLISH permissions from
the current publisher:

REVOKE PUBLI SH FROM userid

For Adaptive Server Enterprise, PUBLISH permissions are granted using the
sp_publisher procedure:

sp_publisher userid

The userid isauser with CONNECT permissions on the current database.
For example, the following statement grants PUBLISH permissions to user
S Beaulieu:

exec sp_publisher 'S Beaulieu

go
The database is set to have no publisher by executing the sp_publisher
procedure with no argument:

exec sp_publi sher
go

¢ Toseethe publisher user ID for an Adaptive Server Anywhere database
outside Sybase Central, use the CURRENT PUBLISHER special
constant. The following statement retrieves the publisher user ID:

207

Managing SQL Remote permissions

208

SELECT CURRENT PUBLI SHER

To see the publisher user ID for an Adaptive Server Enterprise database,
use the following statement:

SELECT nane
FROM sysusers
WHERE uid = (SELECT user_id
FROM sr_publ i sher)

go

If PUBLISH permissionsis granted to a user ID with GROUP
permissions, it is not inherited by members of the group.

PUBLISH permissions carry no authority except to identify the
publisher in outgoing messages.

For messages sent from the current database to be received and
processed by arecipient, the publisher user ID must have REMOTE or
CONSOLIDATE permissions on the receiving database.

The publisher user ID for a database cannot also have REMOTE or
CONSOLIDATE permissions on that database. This would identify
them as both the sender of outgoing messages and a recipient of such

messages.

Changing the user ID of apublisher at aremote database will cause
serious problems for any subscriptions that database isinvolved in,
including loss of information. Y ou should not change a remote database
publisher user ID unless you are prepared to resynchronize the remote
user from scratch.

Changing the user ID of a publisher at a consolidated database while a
SQL Remote setup is operating will cause serious problems, including
loss of information. Y ou should not change the consolidated database

publisher user ID unless you are prepared to close down the

SQL Remote setup and resynchronize all remote users.

Chapter 10 SQL Remote Administration

Granting and revoking REMOTE and CONSOLIDATE permissions

Setting REMOTE
and
CONSOLIDATE
permissions

REMOTE and CONSOLIDATE permissions are very similar. Each database
receiving messages from the current database must have an associated user
ID on the current database that is granted one of REMOTE or
CONSOLIDATE permissions. This user ID represents the receiving database
in the current database.

Databases directly below the current database on a SQL Remote hierarchy
are granted REMOTE permissions, and the at most one database above the
current database in the hierarchy is granted CONSOLIDATE permissions.

For Adaptive Server Anywhere, the GRANT REMOTE and GRANT
CONSOLIDATE statements identify the message system and address to
which replication messages must be sent.

For Adaptive Server Enterprise, the sp_grant_remote procedure sets
REMOTE permissions, and the sp_grant_consolidate procedure sets
CONSOLIDATE permissions.

CONSOLIDATE permissions must be granted even from read-only remote
databases to the consolidated database, as receipt confirmations are sent back
from the remote databases to the consolidated database. The GRANT
CONSOLIDATE statement at remote Adaptive Server Anywhere databases
is executed automatically by the database extraction utility.

Granting REMOTE permissions

Each remote database must be represented by asingle user 1D inthe
consolidated database. This user ID must be granted REMOTE permissions
to identify their user ID and address as a subscriber to publications.

Granting REMOTE permissions accomplishes several tasks:

¢ ltidentifiesauser ID as aremote user.

209

Managing SQL Remote permissions

Sybase Central
example

Adaptive Server
Anywhere example

210

+ |t specifies a message type to use for exchanging messages with this user
ID.

¢ It provides an address to where messages are to be sent.

¢ Itindicates how often messages should be sent to the remote user.

Granting REMOTE permissionsis a so referred to as adding aremote user to
the database.

Y ou can add aremote user to a database using Sybase Central. Remote users
and groups appear in two locations in Sybase Central: in the Users & Groups
folder, and in the Remote Users folder (located within the SQL Remote
folder). This section applies only to Adaptive Server Anywhere databases.

By default, remote users are created with remote DBA authority. Since the
message agent for access to the remote database requires this authority, you
shouldn’t revoke it.

Y ou cannot create a new remote user until at least one message typeis
defined in the database.

While you can grant remote permissions to a group, those remote
permissions do not automatically apply to users in the group (unlike table
permissions, for example). To do this, you must explicitly grant remote
permissions to each user in the group. Otherwise, remote groups behave
exactly like remote users (and are categorized as remote users).

To add a new user to the database as a remote user (Sybase
Central):
1 Openthe Remote Usersfolder (Iocated within the SQL Remote folder).

2 Double-click Add Remote User and follow the instructionsin the
wizard.

To make an existing user remote (Sybase Central):
1 Openthe Users & Groupsfolder.

2 Right-click the user you want to make remote and choose Change to
Remote User from the popup menu.

3 Intheresulting diaog, select the message type from the list, enter an
address, choose the frequency of sending messages, and click OK to
make the user aremote user.

The following statement grants remote permissions to user S _Beaulieu, with
the following options:

¢ Usean SMTP e-mail system

Chapter 10 SQL Remote Administration

Send messages to e-mail address s_beaulieu@acme.com:
Send message daily, at 10 p.m.

GRANT REMOTE TO S Beaul i eu
TYPE sntp

ADDRESS ' s_beaul i eu@cne. coni
SEND AT ' 22: 00’

Adaptive Server The following statement grants remote permissionsto user S _Beaulieu with
Enterprise example the following options:

¢

¢

Use the file-sharing system to exchange messages.

Place messages in the directory beaulieu under the address root
directory.

The address root directory (for both Adaptive Server Anywhere and
Adaptive Server Enterprise) isindicated by the SQLREMOTE
environment variable, if it isset. Alternatively, it isindicated by the
Directory setting in the FILE message control parameters (held in the
registry or INI file).

Send messages every twelve hours:

exec sp_grant_renote 'S Beaulieu',
"file,
"beaul i eu’,
" SEND EVERY,
'12: 00’
go

Selecting a send frequency

There are three alternatives for the setting the frequency with which
messages are sent. The three alternatives are:

¢

SEND EVERY A frequency can be specified in hours, minutes, and
secondsin the format 'HH:MM:SS.

When any user with SEND EVERY set is sent messages, all users with
the same freguency are sent messages also. For example, all remote
users who receive updates every twelve hours are sent updates at the
same times, rather than being staggered. This reduces the number of
times the Adaptive Server Anywhere transaction log or Adaptive Server
Enterprise stable queue has to be processed. Y ou should use as few
unique frequencies as possible.

SEND AT A time of day, in hours and minutes.

211

Managing SQL Remote permissions

Setting the send
frequency in
Sybase Central

Updates are started daily at the specified time. It is more efficient to use
as few distinct times as possible than to stagger the sending times. Also,
choosing times when the database is not busy minimizes interference
with other users.

¢ Default setting (no SEND clause) If any user hasno SEND AT or
SEND EVERY clause, the Message Agent sends messages every time it
isrun, and then stops: it runsin batch mode.

In Sybase Central, you can specify the send frequency in the following ways:

¢ When you make an existing user or group remote. For more information,
see "Granting REMOTE permissions’ on page 2009.

¢ Onthe Subscriptions tab of the property sheet of a remote user or group.
Y ou can access the property sheet by right-clicking the remote user or
group and choosing Properties from the popup menu.

Granting CONSOLIDATE permissions

Adaptive Server
Anywhere example

Adaptive Server
Enterprise example

212

In the remote database, the publish and subscribe user |Ds are inverted
compared to the consolidated database. The subscriber (remote user) in the
consolidated database becomes the publisher in the remote database. The
publisher of the consolidated database becomes a subscriber to publications
from the remote database, and is granted CONSOLIDATE permissions.

At each remote database, the consolidated database must be granted
CONSOLIDATE permissions. When you produce a remote database by
running the database extraction utility, the GRANT CONSOLIDATE
statement is executed automatically at the remote database.

The following Adaptive Server Anywhere statement grants CONSOLIDATE
permissions to the hg_user user ID, using the VIM e-mail system:
GRANT CONSCLI DATE TO hq_user

TYPE vim
ADDRESS ' hq_address’

Thereisno SEND clause in this statement, so the default is used and
messages will be sent to the consolidated database every time the Message
Agentisrun.

The following Adaptive Server Enterprise statement grants CONSOLIDATE
permissions to user hq_user, using the file message link:

exec sp_grant_consolidate 'hg_user’, 'file', address
go

Chapter 10 SQL Remote Administration

Revoking REMOTE and CONSOLIDATE permissions

Revoking
permissions from
Sybase Central

Revoking
permissions in
Adaptive Server
Anywhere

Revoking
permissions in
Adaptive Server
Enterprise

A user can be removed from a SQL Remote installation by revoking their
REMOTE permissions. When you revoke remote permissions from a user or
group, you revert that user or group to a normal user/group. Y ou a so
automatically unsubscribe that user or group from all publications.

Y ou can revoke REMOTE permissions on Adaptive Server Anywhere
databases from Sybase Central.

To revoke REMOTE permissions (Sybase Central):

1 Open either the Users & Groups folder or the Remote Users folder
(located within the SQL Remote folder).

2 Right-click the remote user or group and choose Revoke Remote from
the popup menu.

REMOTE and CONSOLIDATE permissions can be revoked from a user
using the REV OKE statement. The following statement revokes REMOTE
permission from user S Beaulieu.

REVOKE REMOTE FROM S _Beaul i eu
DBA authority isrequired to revoke REMOTE or CONSOLIDATE access.

REMOTE permissions can be revoked from a user using the

sp_revoke remote procedure. This procedure takes a single argument,
which isthe user 1D of the user. The following statement revokes REMOTE
permission from user S Beaulieu.

exec sp_revoke_renote 'S Beaul i el
go

Assigning permissions in multi-tier installations

Special considerations are needed for assigning permissions in multi-tier
installations. The permissionsin athree-level SQL Remote setup are
summarized in the following diagrams. In each diagram one database is
shaded; the diagram shows the permissions that need to be granted in that
database for the user ID representing each of the other databases. The phrase
"No permissions’ means that the database is not granted any permissionsin
the shaded database.

213

Managing SQL Remote permissions

The following picture shows SQL Remote permissions, as granted at the
consolidated site of athree-tier installation.

Remote

no

permissions permissions

& (‘%

The following picture shows SQL Remote permissions, as granted at an
internal site of athree-tier installation.

Consolidate

Remote Remote

The following picture shows SQL Remote permissions, as granted at an
internal site of athree-tier installation.

no
permissions

i
¢

permissions

Granting the appropriate PUBLISH and CONSOLIDATE permissions at
remote databases is done automatically by the database extraction utility.

214

Chapter 10 SQL Remote Administration

Using message types

Operating system
availability

For more
information

SQL Remote supports several different systems for exchanging messages.
The message systems supported by SQL Remote are:

¢+ file Storageof message filesin directories on ashared file system for
reading by other databases.

¢ ftp Storage of message filesin directories accessible by afile transfer
protocol (ftp) link.

¢ mapi Microsoft's messaging APl (MAPI) link, used in Microsoft Mail
and other electronic mail systems.

¢ smtp Internet Simple Mail Transfer Protocol (SMTP/POP), used in
Internet e-mail.

¢ vim Lotus'sVendor Independent Messaging (VIM), used in Lotus
Notes and cc:Mail.

A database can exchange messages using one or more of the available
message systems.

Not all message systems are supported on all operating systems for which
SQL Remoteis available. The links are implemented as DLLs on Windows
operating systems.

& For alisting of which message systems are supported on which
operating system, see " Supported Platforms and Message Links' on
page 449.

¢ For more information on the file message system, see " The file message
system" on page 220.

¢ For more information on the ftp message system, see "The ftp message
system" on page 221.

¢ For more information on the smtp message system, see "The SMTP
message system" on page 223.

¢ For more information on the mapi message system, see "The MAPI
message system” on page 226.

¢ For more information on the vim message system, see "The VIM
message system" on page 227.

215

Using message types

Working with message types

Each message type definition includes the type name (file, ftp, smtp, mapi,
or vim) and also the address of the publisher under that message type. The
publisher address at a consolidated database is used by the database
extraction utility as areturn address when creating remote databases. It is
also used by the Message Agent to identify where to look for incoming
messages for the file system.

The address supplied with a message type definition is closely tied to the
publisher ID of the database. Valid addresses are considered in following
sections.

Before you can use a message system, you must set the publisher’s address.

Using Sybase Central to work with message types

216

®,
o

Y ou can create and alter message types in Sybase Central. Message types
appear in the Message Types folder (located within the SQL Remote folder).
This section applies only to Adaptive Server Anywhere databases.

Y ou must have DBA authority to create and alter message types.

To add a message type (Sybase Central):

1 Connect to a database.

Open the SQL Remote folder for that database.

Within the SQL Remote folder, open the Message Types folder.
Double-click Add Message Type.

ga A W N

In the Message Type Creation wizard, enter a message type name. The
name should correspond to a message-type DLL already installed in
your Adaptive Server Anywhere directory. Click Next.

6 Enter apublisher address and click Finish to save the definition in the
database.

If you wish to change the publisher’s address, you can do so by altering a
message type. Y ou cannot change the name of an existing message type;
instead, you must delete it and create a new message type with the new
name.

To alter a message type (Sybase Central):
1 Openthe SQL Remote folder for a database.
2 Within the SQL Remote folder, open the Message Types folder.

Chapter 10 SQL Remote Administration

Creating message
types for
Windows CE

3

4

In the right pane, right-click the message type you wish to alter and
select Properties from the popup menu.

On the property sheet, configure the various options.

If you wish to drop a message type from the installation, you can do so.

To drop a message type (Sybase Central):

1
2
3

Open the SQL Remote folder for a database.
Within the SQL Remote folder, open the Message Types folder.

In the right pane, right-click the message type you wish to alter and
select Delete from the popup menu.

From within the Sybase Central Utilities folder, if you have Windows CE
servicesinstalled, you have an option to set up SQL Remote for ActiveSync
synchronization. This sets your folder for FILE message link messages to be
the ActiveSync folder. When you dock your Windows CE machine to your
desktop machine, ActiveSync keeps the filesin your desktop machine’s
ActiveSync folder synchronized with those in the Windows CE ActiveSync
folder.

Using commands to work with message types

+ To create a message type (SQL):

1

2

Make sure you have decided on an address for the publisher under the
message type.
Execute a CREATE REMOTE MESSAGE TY PE command.

For Adaptive Server Anywhere, the
CREATE REMOTE MESSAGE TY PE statement has the following
syntax:

CREATE REMOTE MESSAGE TYPE type-name
ADDRESS address-string

For Adaptive Server Enterprise, use the sp_remote_type procedure.
This procedure takes the following arguments:

sp_remote_type type-name, address-string

In these statements, type-name is one of the message systems supported
by SQL Remote, and address-string is the publisher’s address under that

message system.

217

Using message types

If you wish to change the publisher’s address, you can do so by altering the
message type.

% To alter a message type (SQL):

1

Make sure you have decided on a new address for the publisher under
the message type.

Execute an ALTER REMOTE MESSAGE TY PE statement.

For Adaptive Server Anywhere, the

ALTER REMOTE MESSAGE TY PE statement has the following
syntax:

ALTER REMOTE MESSAGE TYPE type-name
ADDRESS address-string

For Adaptive Server Enterprise, use the sp_remote_type procedurein
the same way as creating a message type. This procedure takes the
following arguments:

sp_remote_type type-name, address-string

In these statements, type-name is one of the message systems supported
by SQL Remote, and address-string is the publisher’s address under that

message system.

Y ou can also drop message types if they are no longer used in your
installation. This has the effect of removing the publisher’'s address from the
definition.

« To drop a message type (SQL):

¢

Execute a DROP REMOTE MESSAGE TY PE statement.

For Adaptive Server Anywhere, the
DROP REMOTE MESSAGE TY PE statement has the following syntax:

DROP REMOTE MESSAGE TYPE type-name

For Adaptive Server Enterprise, use the sp_drop_remote _type
procedure in the same way as creating a message type. This procedure
takes the following arguments:

sp_drop_remote_type type-name

In these statements, type-name is one of the message systems supported
by SQL Remote.

& Seealso

¢

218

"CREATE REMOTE MESSAGE TY PE statement” on page 363

Chapter 10 SQL Remote Administration

¢+ "ALTER REMOTE MESSAGE TY PE statement” on page 361
¢+ "DROP REMOTE MESSAGE TY PE statement” on page 368

Setting message type control parameters

Message link
parameters stored
in the database

Holding the
message link
parameters on disk

Each message link has several parameters that govern aspects of its behavior.
The parameters differ from message system to message system, but all are
managed in the same way.

When you first use the Message Agent for a particular message link, it
displays a dialog box showing a set of parameters that control the behavior of
the link. These parameters may be a user 1D for the message system, a host
name where ftp messages are held, and so on. The parameters you enter are
saved by the Message Agent. Y ou can also set these parameters explicitly.

The message control parameters are held in the database. Y ou can set the
options as follows:

To set a message control parameter (Adaptive Server Anywhere):
¢ Execute the following statement:
SET REMOTE link-name OPTION
[username.]option-name = option-value
To set a message control parameter (Adaptive Server Enterprise):
¢ Execute the following statement:

exec sp_link_option link-name, [username],
option-name, option-value

Y ou can see the current message link parameters by querying the
sys.sysremoteoptions view (Adaptive Server Anywhere) or the
sr_remoteoptions view (Adaptive Server Enterprise).

Earlier versions of this software stored the message link parameters outside
the database. Y ou can still use this method, but storing the parametersinside
the database is recommended unless you have specific reasons to choose
otherwise.

The message link control parameters are stored in the following places:
¢ Windows Intheregistry, at the following location:
\\ HKEY_CURRENT _USER

219

Using message types

\ Sof t war e
\ Sybase
\SQ Renote

The parameters for each message link go in akey under the
SQL Remote key, with the name of the message link (4, smtp, and so
on).

¢ NetWare You should create afile named dbremote.iniin the
sys:Isystem directory to hold the FILE system directory setting. Thisfile
isnot aWindows-format INI file: it must consist of asingle line, holding
only the directory name.

For example, if the directory is user:\dbr43, then the dbremote.ini file
would contain the following:

user:\dbr43

¢ UNIX TheFILE system directory setting is held in the SQLREMOTE
environment variable.

The sqglremote environment variable holds a path that can be used as an
alternative to one of the control parameters for the file sharing system.

The parameters available for each message system are discussed in the
following sections. Each section describes a single message system.

When the Message Agent |oads a message link, the link uses the settings of
the current publisher or, of a setting is not specified, of groups to which the
publisher belongs. On Windows, the first time a version of the Message
Agent isrun that supports storing the message link parametersin the
database, it copiesthe link options from the registry to the database.

The file message system

Addresses in the
file message
system

220

SQL Remote can be used even if you do not have a message system in place,
by using the file message system.

The file message system isasimple file-sharing system. A file address for a
remote user is a subdirectory into which all their messages are written. To
retrieve messages from their "inbox", an application reads the messages from
the directory containing the user’s files. Return messages are sent to the
address (written to the directory) of the consolidated database.

When running as an NT service make sure that the account under which the
Message Agent is running has permissions to read and write all necessary
directories. Thisis often a problem when accessing network drives.

Chapter 10 SQL Remote Administration

Root directory for
addresses

FILE message
control parameters

The file system addresses are typically subdirectories of a shared directory
that isavailable to all SQL Remote users, whether by modem or on alocal
area network. Each user should have aregistry entry, initialization file entry,
or SQLREMOTE environment variable pointing to the shared directory.

Y ou can also use the file system to put the messages in directories on the
consolidated and remote machines. A simple file transfer mechanism can
then be used to exchange the files periodically to effect replication.

The FILE message system uses the following control parameters:

¢ Directory Thisis set to the directory under which the messages are
stored. The setting is an aternative to the SQLREMOTE environment
variable.

¢ Debug Thisissettoeither YES or NO, with the default being NO.
When set to YES, dl file system calls made by the FILE link are
displayed.

On NetWare, you should create a file named dbremote.ini in the sys:\system
directory to hold the directory setting.

The ftp message system

Addresses for ftp

FTP message
control parameters

In the ftp message system, messages are stored in directories under aroot
directory on an ftp host. The ftp host and the root directory are specified by
message system control parameters held in the registry or initialization file,
and the address of each user is the subdirectory where their messages are
held.

& For alist of operating systems for which ftp is supported, see
"Supported operating systems' on page 451.

The ftp message system uses the following control parameters:

221

Using message types

¢ host Thehost name of the computer where the messages are stored.
This can be ahost name (such as ftp.ianywher e.com) or an IP address
(such as 192.138.151.66).

¢ user Theuser name for accessing the ftp host.
¢ password The password for accessing the ftp host.

¢ root_directory Theroot directory within the ftp host site, under which
the messages are stored.

¢ port Usualy not required. Thisisthe IP port number used for the Ftp
connection.

¢ debug Thisissettoeither YES or NO, with the default being NO.
When set to Y ES, debugging output is displayed.

¢ active_mode Thisissetto either YES or NO, with the default being
NO (passive mode).

Troubleshooting ftp problems

222

Most problems with the FTP message link are network setup issues. This
section contains alist of tests you can try to troubleshoot problems.

Set the DEBUG message control parameter Looking over the debug
output should indicate whether you are connecting to the FTP server. If you
are connecting, it will indicate which FTP commands are failing.

Ping the ftp server If the FTPIlink isnot able to connect to the FTP
server, try testing your systems network configuration. If your system has the
ping command, try typing the following command:

pi ng ftp-server-nane

Y ou should see output indicating the | P address of the server and the ping
(round trip) time to the server. If you can not ping the server than you have a
network configuration problem, and you should contact you network
administrator.

Check that passive mode works If the FTP link is connecting to the
FTP server, but is unable to open a data connection, make sure that an FTP
client can use passive mode to transfer data with the server.

Chapter 10 SQL Remote Administration

Passive mode is the preferred transfer mode and the default for the FTP
message link. In passive mode all data transfer connections are initiated by
the client, in this case the message link. In Active mode the server initiates
all data connections. If your FTP server is sitting behind an incorrectly
configured firewall you may not be able to use the default passive transfer
mode. In this situation the firewall blocks socket connections to the FTP
server on ports other than the FTP control port.

Using an FTP user program that allows you to set the transfer mode between
active and passive, set the transfer mode to passive and try to
upload/download afile. If the client you are using cannot transfer the file
without using active mode than you should either reconfigure the firewall
and FTP server to allow passive mode transfers or set the active_mode
message control parameter to Y ES. Active mode transfers may not work in
all network configurations. For example: if your client is sitting behind an IP
masquerading gateway incoming connections may fail depending on you
gateway software.

Check permissions and directory structures If the FTP server is
connecting and having problems getting directory listings or manipulating
files; make sure your permissions are set up correctly and the directories that
you need exist.

Log into the FTP server using an FTP program. Change directories to the
location stored in the root_directory parameter. If the directories you need do
not show up, the root_directory control parameter may be wrong or the
directories may not exist.

Test permissions by fetching afile in your message directory and uploading
afile to the consolidated database directory. If you get errors your FTP
server permissions are set up incorrectly.

The SMTP message system

The Simple Mail Transfer Protocol (SMTP) isused in Internet e-mail
products.

With the SMTP system, SQL Remote sends messages using Internet mail.
The messages are encoded to atext format and sent in an e-mail message to
the target database. The messages are sent using an SM TP server, and
retrieved from a POP server: thisis the way that many e-mail programs send
and receive messages.

& For alist of operating systems for which SMTP is supported, see
"Supported operating systems' on page 451.

223

Using message types

SMTP addresses
and user IDs

Troubleshooting

SMTP message
control parameters

224

To use SQL Remote and an SMTP message system, each database
participating in the setup requires a SMTP address, and a POP3 user ID and
password. These are distinct identifiers: the SMTP address is the destination
of each message, and the POP3 user 1D and password are the name and
password entered by a user when they connect to their mail box.

Separate e-mail account recommended
It is recommended that a separate POP e-mail account be used for
SQL Remote messages.

If you can not get the SMTP Link to work try connecting to the SMTP/POP3
server from the same machine on which the Message Agent is running using
the same account and password. Use an Internet e-mail program that
supports SM TP/POP3 and make sure to disable the program once the SMTP
message link is working.

Before the Message Agent connects to the message system to send or receive
messages, the user must either have a set of control parameters already set on
their machine, or must fill in awindow with the needed information. This
information is needed only on the first connection. It is saved and used as the
default entries on subsequent connects.

The SMTP message system uses the following control parameters:

¢ local_host Thisisthe name of thelocal computer. It isuseful on
machines where SQL Remote is unable to determine the local host
name. The local host name is needed to initiate a session with any SMTP
server. In most network environments, the local host name can be
determined automatically and this entry is not needed.

¢ TOP_supported SQL Remote uses a POP3 command called TOP
when enumerating incoming messages. The TOP command may not be
supported by all POP servers. Setting this entry to NO will use the
RETR command, which isless efficient but will work with all POP
servers. The default isYES.

¢ smtp_authenticate Determines whether the SMTP link authenticates
the user. The default valueis YES. Set to NO for no SMTP
authentication to be carried out.

Chapter 10 SQL Remote Administration

smtp_userid Theuser ID for SMTP authentication. By default this
parameter takes the same valie as the pop3_userid parameter. The
smtp_userid only needs to be set if the user ID is different to that on the
POP server.

smtp_password The password for SMTP authentication. By default
this parameter takes the same valie as the pop3_password parameter.
The smtp_password only needsto be set if the user ID is different to
that on the POP server.

smtp_host Thisisthe name of the computer on which the SMTP
server isrunning. It corresponds to the SMTP host field in the
SMTP/POP3 login dialog.

pop3_host Thisisthe name of the computer on which the POP host is
running. It is commonly the same as the SMTP host. It corresponds to
the POP3 host field in the SMTP/POP3 login dial og.

pop3_userid Thisisused to retrieve mail. The POP user ID
corresponds to the user 1D field in the SMTP/POP3 login dialog. Y ou
must obtain a user ID from your POP host administrator.

pop3_password Thisisused to retrieve mail. It corresponds to the
password field in the SMTP/POP3 login dialog. If all of these five fields
are set, the login dialog is not displayed.

Debug When setto YES, displaysal SMTP and POP3 commands and
responses. Thisis useful for troubleshooting SMTP/POP support
problems. Default isNO.

Sharing SMTP/POP addresses

The database should have its own e-mail account for SQL Remote messages,
separate from personal e-mail messages intended for reading. Thisis because
many e-mail readers will collect e-mail in the following manner:

1
2
3
4

Connect to the POP Host and download all messages.
Delete all messages from POP Host
Disconnect from POP Host.

Read mail from the local file or from memory

This causes a problem, as the e-mail program downloads and deletes all of
the SQL Remote e-mail messages as well as personal messages. If you are
certain that your e-mail program will not delete unread messages from the
POP Host then you may share an e-mail address with the database as long as
you take care not to delete or alter the database messages.

225

Using message types

These messages are easy to recognize, asthey are filled with lines of
seemingly random text.

The MAPI message system

MAPI addresses
and user IDs

MAPI message
and the e-mail
inbox

MAPI message
control parameters

226

The Message Application Programming Interface (MAPI) isused in several
popular e-mail systems, such as Microsoft Mail and later versions of Lotus
cc:Mail.

& For alist of operating systems for which MAPI is supported, see
"Supported operating systems' on page 451.

To use SQL Remote and a MAPI message system, each database
participating in the setup requiresa MAPI user ID and address. These are
distinct identifiers: the MAPI addressis the destination of each message, and
the MAPI user ID isthe name entered by a user when they connect to their
mail box.

Although SQL Remote messages may arrive in the same mailbox as e-mail
intended for reading, they do not in general show up in your e-mail inbox.

SQL Remote sends application-defined messages, which MAPI identifies
and hides when the mailbox is opened. In this way, users can use the same e-
mail address and same connection to receive their persona e-mail and their
database updates, yet the SQL Remote messages do not interfere with the
mail intended for reading.

If amessage isrouted viathe Internet, the special message type information
islost. The message then does show up in the recipient’s mailbox.

The MAPI message system uses the following control parameters:

¢ Debug Whensetto YES, displaysall MAPI calls and the return codes.
Thisisuseful for troubleshooting MAPI support problems. Default is
NO.

¢ Force_Download (default YES) controlsif the
MAPI_FORCE_DOWNLOAD flagis set when calling MapiL ogon.
This might be useful when using remote mail software that dials when
thisflag is set.

Chapter 10 SQL Remote Administration

¢ IPM_Receive Thiscanbesetto YESor NO (default NO). If set to
YES, the MAPI link receives IPM messages, which are visiblein the
mailbox. If set to NO, the MAPI link receives |PC messages, which are
not visible in the mailbox. This may be useful if your MAPI provider
does not support |PC messages. Also, it may be useful when receiving
messages over the Internet. In this case, the sender might not be using
MAPI or the IPC attributes are have been lost.

¢ IPM_Send Thiscanbesetto YESor NO (default NO). If set to YES,
the MAPI link sends IPM messages, which are visible in the mailbox. If
set to NO, the MAPI link sends IPC messages, which are not visiblein
the mailbox. This may be useful if your MAPI provider does not support
IPC messages.

¢ Profile Usethe specified Microsoft Exchange profile. Y ou should use
thisif you are running the Message Agent as a service.

The VIM message system

VIM message
control parameters

The Vendor Independent Messaging system (VIM) is used in Lotus Notes
and in some releases of Lotus cc:Mail.

To use SQL Remote and aVIM message system, each database participating
in the setup requiresaVIM user ID and address. These are distinct
identifiers: the VIM addressis the destination of each message, and the VIM
user ID isthe name entered by a user when they connect to their mail box.

& For alist of operating systems for which VIM is supported, see
"Supported operating systems' on page 451.

The VIM message system uses the following control parameters:

¢ Path Thiscorrespondsto the Path field in the cc:Mail login dialog. It
is not applicable to and isignored under Lotus Notes.

¢ Userid Thiscorrespondsto the User ID field in the cc:Mail login
dialog.

¢ Password Thiscorresponds to the Password field in the cc:Mail login
dialog. If al of Path, Userid, and Password are set, the login dialog is
not displayed.

227

Using message types

228

Debug When setto YES, displaysall VIM calls and the return codes.
Thisisuseful for troubleshooting VIM support problems. Default isNO.

Receive_All When set to YES, the Message Agent checks all
messages to see if they are SQL Remote messages. When set to NO (the
default), the Message Agent looks only for messages of the application-
defined type SQL RemoteData. This leads to improved performancein
Notes.

Setting ReceiveAll to YES is useful in setups where the message typeis
lost, reset, or never set. Thisincludes setups including cc:Mail messages,
or over the Internet.

Send_VIM_Mail When set to YES, the Message Agent sends messages
compatible with Adaptive Server Anywhere releases before 5.5.01, and
compatible with cc:Mail. If thisis set to YES, you should ensure that
Receive All issetto YES also.

Chapter 10 SQL Remote Administration

Running the Message Agent

Executable names

The SQL Remote Message Agent is a key component in SQL Remote
replication. The Message Agent handles both the sending and receiving of
messages. It carries out the following functions:

¢ |t processes incoming messages, and applies them in the proper order to
the database.

¢ |t scansthe transaction log or stable queue at each publisher database,
and trandlates the log entries into messages for subscribers.

¢ It parcelsthe log entries up into messages no larger than afixed
maximum size (50,000 bytes by default), and sends them to subscribers.

¢ |t maintains the message tracking information in the system tables, and
manages the guaranteed transmission mechanism.

On Windows operating systems, the Message Agent for Adaptive Server
Enterprise is named ssremote.exe, and the Message Agent for Adaptive
Server Anywhere is named dbremote.exe. On UNIX operating systems, the
names are ssremote and dbremote, respectively.

&~ The Message Agent for Adaptive Server Enterprise uses a stable queue
to hold transactions until they are no longer needed. For more information on
the stable queue, see "How the Message Agent for Adaptive Server
Enterprise works' on page 272.

Message Agent batch and continuous modes

The Message Agent can be run in one of two modes:

¢ Batch mode Inbatch mode, the Message Agent starts, receives and
sends all messages that can be received and sent, and then shuts down.

Batch mode is useful at occasionally-connected remote sites, where
messages can only be exchanged with the consolidated database when
the connection is made: for example, when the remote site dials up to the
main network.

229

Running the Message Agent

Continuous mode In continuous mode, the Message Agent
periodically sends messages, at times specified in the properties of each
remote user. When it is not sending messages, it receives messages as
they arrive.

Continuous mode is useful at consolidated sites, where messages may be
coming in and going out at any time, to spread out the workload and to
ensure prompt replication.

The options available depend on the send frequency options selected for the
remote users. Sending frequency options are described in " Selecting a send
frequency" on page 211.

% To run the Message Agent in continuous mode:

1

2

Ensure that every user has a sending frequency specified. The sending
frequency is specified by a SEND AT or SEND EVERY option in the
GRANT REMOTE statement (Adaptive Server Anywhere) or
sp_grant_remote procedure (Adaptive Server Enterprise).

Start the Message Agent without using the - b option.

% To run the Message Agent in batch mode:

¢

Either:

+ Have at least one remote user who has neither a SEND AT nor a
SEND EVERY option in their remote properties, or

¢ Start the Message Agent using the - b option.

Connections used by the Message Agent

230

The Message Agent uses a number of connections to the database server.

These are:

¢ Oneglobal connection, alive all the time the Message Agent is running.

¢ One connection for scanning the log. This connection is alive during the
scan phase only.

4 One connection for executing commands from the log-scanning thread.
This connection is alive during the scan phase only.

¢ One connection for the stable queue (Adaptive Server Enterprise only).
This connection is alive during the scan and send phases.

¢ One connection for processing synchronize subscription requests. This

connection is alive during the send phase only.

Chapter 10 SQL Remote Administration

+ One connection for each worker thread. These connections are alive
during the receive phase only.

Replication system recovery procedures

Replicating only
backed-up
transactions

SQL Remote replication places new requirements on data recovery practices
at consolidated database sites. Standard backup and recovery procedures
enable recovery of datafrom system or mediafailure. In areplication
installation, even if such recovery is achieved, the recovered database can be
out of synch with remote databases. This can require a complete
resynchronization of remote databases, which can be aformidable task if the
installation involves large numbers of databases.

In short, recovery of the consolidated database from afailure at the
consolidated site isonly part of the task of recovering the entire replication
installation.

Protection of the replication system against media failures has two aspects:

¢ Backup and log management Solid backup procedures and log
management procedures for the consolidated database server are an
essential part of recovery plans. Backup procedures protect against
media failure on the database device. Using a transaction log mirror
protects against media failure on the transaction log device.

& For more information about backup and log management
procedures, see the sections " Transaction log and backup management"
on page 255 and "Adaptive Server Enterprise transaction log and backup
management" on page 281.

¢ Message Agent configuration The Message Agent command-line
options provide ways for you to tune Message Agent behavior to match
your backup and recovery regquirements.

Message Agent configuration is discussed in the following pages.

By default, the Message Agent processes all committed transactions. When
the Message Agent is run with the - u option, only transactions that have
been backed up by the database backup commands are processed.

For Adaptive Server Anywhere, transaction log backup is carried out using
Sybase Central or the dbbackup Utility, or off-line copying and renaming of
thelog file. For Adaptive Server Enterprise, transaction log backup is carried
out using the dump transaction statement.

231

Running the Message Agent

By sending only backed-up transactions, the replication installation is
protected against media failure on the transaction log. Maintaining a
mirrored transaction log also accomplishes this goal.

The - u option provides additional protection against total site failure, if
backups are carried out to another site.

Ensuring consistent Message Agent settings

Some Message Agent settings need to be the same throughout an installation,
and so should be set before deployment. This section lists the settings that
need to be the same.

¢ Maximum message length The maximum message length for
SQL Remote messages has a default value of 50K. Thisis configurable,
using the Message Agent - | option. However, the maximum message
length must be the same for each Message Agent in the installation, and
may be restricted by operating system memory allocation limits.

Received messages that are longer than the limit are deleted as corrupt
messages.

& For details of this setting, see "The Message Agent" on page 302.

The Message Agent and replication security

Messages sent by the SQL Remote Message Agent have avery simple
encryption that protects against casual snooping. However, the encryption
scheme is not intended to provide full protection against determined efforts
to decipher them.

Troubleshooting errors at remote sites

There are obvious obstacles for an administrator who has access only to the
consolidated site to troubleshoot errors that occur at remote sites. To assist
with thistask, you can set up SQL Remote so that portions of the output log
from remote sites are delivered to the consolidated site and written to afile.
This one file contains logging information from some or all sitesin the
system.

232

Chapter 10 SQL Remote Administration

To set up SQL Remote to collect log information, you must configure both
the remote and the consolidated sites.

% To configure a remote database to send log information to the
consolidated database:

1

Set alink option to send log information when an error is encountered.

Execute the following command against the remote database:

SET REMOTE /i nk-name CPTI ON
PUBLI C. QUTPUT_LOG SEND ON _ERROR = ' YES

With this option set, any message that starts with the error indicator 'E’
causes SQL Remote to send log information to the consolidated site.

& For moreinformation, see"SET REMOTE OPTION statement
[SQL Remote]" on page 543 of the book ASA SQL Reference Manual.

Set alink option to limit the amount of information sent to the
consolidated site. This step is optional.

Execute the following command against the remote database:

SET REMOTE /i nk- nane OPTI ON
PUBLI C. QUTPUT_LOG SEND LIM T = " nnnt’

The value of this option is the number of bytes at the tail of the output
log (that is, the most recent entries) which are sent to the consolidated
site. You can use nnnK to indicate kilobytes. The default setting is’ 5K .

If you supply avalue that istoo large to fit in the maximum message
size, SQL Remote overrides the option value and sends only what will
fit in the message.

Y ou can also send log information even in the absence of errors by setting
the OUTPUT _LOG_SEND_NOW option to YES. SQL Remote then sends
the output log information on the next poll and resets the option to 'NO’ after
thelog is sent.

+ To configure a consolidated site to receive log information:

¢

Use either the - r o or the - rt Message Agent option.
& For more information, see " The Message Agent" on page 302.

233

Tuning Message Agent performance

Tuning Message Agent performance

Who needs to read this section? If performanceis not a problem at
your site, you do not need to read this section.

There are several options you can use to tune the performance of the
Message Agent. This section describes those options.

Sending messages and receiving messages are two separate processes. The
major performance issues for these two processes are different.

¢ Replication throughput The major bottleneck for total throughput of
SQL Remote sites is generally receiving messages from many remote
databases and applying them to the database at the consolidated site.
Y ou can control this step by tuning the receive process of the Message
Agent at the consolidated site.

¢ Replication turnaround Thetimelag from when datais entered at
one site to when it appears at other sitesis the turnaround time for
replication. Y ou can control thistime lag.

Tuning throughput by controlling Message Agent threading

Setting the number
of worker threads

Performance
benefits from
worker threads

234

It is assumed in this section that you are tuning the performance of a
Message Agent that is running in continuous mode at a consolidated site.

Worker threads can be used by the Message Agent to apply incoming
messages from remote users. This can improve throughput by allowing
messages to be applied in parallel rather than serialy.

The number of worker threads is set on the Message Agent command line,
using the - woption. The following command line starts the M essage Agent
for Adaptive Server Enterprise with twenty worker threads applying
messages:

ssrenmote -c "eng=..." -w 20

The default is to use no worker threads, so that all messages are applied
serially. The maximum number of worker threadsis 50.

For the Message Agent for Adaptive Server Anywhere, the performance
advantage will be most significant when the server ison a system with a
striped drive array.

Chapter 10 SQL Remote Administration

What messages
are applied in
parallel

Open Client
version

For Adaptive Server Enterprise, the Message Agent will benefit even more if
the Server is used with multiple engines configured.

When worker threads are being used, messages from different remote users
are applied in parallel. Messages from a single remote user are applied
serially. For example, ten messages from a single remote user will be applied
by a single worker thread in the correct order.

Deadlock is handled by re-applying the rolled back transaction at a later
time.

Reading messages from the message system is single-threaded. Messages are
read and the header information is examined (to determine the remote user
and the correct order of application) before passing them off to worker
threads to be applied.

Building messages and sending messages is single-threaded.

To use multiple worker threads with the Adaptive Server Enterprise Message
Agent, you need to be using Open Client version 11.1 or above.

The Message Agent prints a message and then does not use worker threads
when pre-11.1 versions are being used. The Open Client version is displayed
in the first few lines of the Message Agent output.

Tuning throughput by caching messages

Specifying the
message cache
size

Example

The Message Agent caches incoming messages in a configurable area of
memory as it reads them.

The size of the message cache is specified on the Message Agent command
line, using the - moption.

The - moption specifies the maximum amount of memory to be used by the
Message Agent for building messages. The allowed size can be specified asn
(in bytes), nK, or nM. The default is 2048K (2M).

The following command line starts an Adaptive Server Anywhere Message
Agent using twelve Megabytes of memory as a message cache:

dbrenote -c "eng=..." -m 12M

235

Tuning Message Agent performance

How messages are When transactions are large, or messages arrive out of order, they are stored

cached in memory by the Message Agent until the messageisto be applied. This
caching of messages prevents rereading of out-of-order messages from the
message system , which may lower performance on large installations. It is
especially important when messages are being read over aWAN (such as
Remote Access Services or POP3 through a modem). It also avoids
contention between worker threads reading messages (a single threaded task)
because the message contents are cached.

When the memory usage specified using the - moption is exceeded, messages
are flushed in aleast-recently-used fashion.

This option is provided primarily for customers considering asingle
consolidated database for thousands of remote databases.

Tuning incoming message polling

When running a Message Agent in continuous mode, typically at a
consolidated database site, you can control how often it polls for incoming
messages, and how "patient” it isin waiting for messages that arrive out of
order before requesting that the message be resent. Tuning these aspects of
the behavior can have a significant effect on performance in some
circumstances.

Issues to consider The issues to consider when tuning the message-receiving process are similar
to those when tuning the message-sending process.

¢ Regular messages Your choices dictate how often the Message
Agent polls for incoming messages from remote databases.

¢ Resend requests You can control how many pollsto wait until an
out-of-order message arrives, before requesting that it be resent.

¢ Processing incoming messages |If your polling period for incoming
messages is too long, compared to the frequency with which messages
are arriving, you could end up with messages sitting in the queue,
waiting to be processed. If your polling period is too short, you will
waste resources polling when no messages are in the queue.

&~ For more information on the message sending process, see " Tuning the
message sending process' on page 239.

Polling interval

By default, a Message Agent running in continuous mode polls one minute
after finishing the previous poll, to see whether new messages have arrived.
Y ou can configure the polling interval using the-r d option.

236

Chapter 10 SQL Remote Administration

Requesting resends

The default polling interval from the end of one poll to the start of another is
one minute. Y ou can poll more frequently using avalue in seconds, asin the
following command line:

dbrenmote -rd 30s

Alternatively, you can poll less frequently, asin the following command line,
which polls every five minutes:

dbrenmote -rd 5

Setting avery small interval may have some detrimental impact on overall
system throughput, for the following reasons:

¢ Each poll of the mail server (if you are using e-mail) places aload on
your message system. Too-frequent polling may affect your message
system and produce no benefits.

¢ |f you do not modify the Message Agent patience before it assumes that
an out of sequence message islost, and requestsit be sent again, you can
flood your system with resend requests.

In general, you should not use avery small polling interval unless you have a
specific reason for requiring a very quick response time for messages.

Setting larger intervals may provide a better overall throughput of messages
in your system, at the cost of waiting somewhat longer for each message to
be applied. In many SQL Remote installations, optimizing turnaround timeis
not the primary concern.

If, when the Message Agent polls for incoming messages, one message is
missing from a sequence, the Message Agent does not immediately request
that the message be resent. Instead, it has a default patience of one poll.

If the next message expected is number 6 and message 7 is found, the
Message Agent takes no action until the next poll. Then, if no new message
for that user is found, it issues aresend request.

Y ou can change the number of polls for which the Message Agent waits
before sending arequest using the - r p option. This option is often used in
conjunction withthe - rd option that sets the polling interval.

For example, if you have avery small polling interval, and a message system
that does not preserver the order in which messages arrive, it may be very
common for out-of-sync messages to arrive only after two or three polls have
been completed. In such a case, you should instruct the Message Agent to be
more patient before sending a resend request, by increasing the - r p value. If
you do not do this, alarge number of unnecessary resend requests may be
sent.

237

Tuning Message Agent performance

Example

238

Suppose there are two remote users, named user 1 and user 2, and suppose
the Message Agent command lineis as follows:

dbremote -rd 30s -rp 3

In the following sequence of operations, messages are marked as userX.n so
that user 1.5 is the sixth message from userl. The Message Agent expects
messages to start at number 1 for both users.

At time 0 seconds:
1 TheMessage Agent reads userl.l, user2.4
2 The Message Agent appliesuserl.l

3 The Message Agent patience is now userl: N/A, user2: 3, as an out of
sequence message has arrived from user 2.

At time 30 seconds:

1 The Message Agent reads: no new messages

2 The Message Agent applies: none

3 The Message Agent patience is now userl: N/A, user2: 2
At time 60 seconds:

1 The Message Agent reads: userl.3

2 The Message Agent applies: no new messages
3 The Message Agent patience: userl: 3, user2: 1
At time 90 seconds:

1 The Message Agent reads: userl.4

2 The Message Agent applies: none

3 The Message Agent patience userl: 3, user2: 0
4 TheMessage Agent issues resend to user2.

When a user receives a new message, it resets the Message Agent patience
even if that message is not the one expected.

Chapter 10 SQL Remote Administration

Tuning the message sending process

Issues to consider

Polling interval

The turnaround time for replication is governed by how often each sites
sends messages and how often each site polls for incoming messages. To
achieve a small time lag between data entry and data replication, you can set
asmall value for the - sd Message Agent option, which controls the
frequency for polling to see if more data needs to be sent.

The issuesto consider when tuning the message-sending process are similar
to those when tuning the incoming-message polling frequency:

¢ Regular messages Your choices dictate how often updates are sent to
remote databases.

¢ Resend requests When aremote user requests that a message be
resent, the Message Agent needs to take special action that can interrupt
regular message sending. Y ou can control the urgency with which these
resend requests are processed.

¢ Number and size of messages |If you send messages very frequently,
there is more chance of small messages being sent. Sending messages
less frequently allows more instructions to be grouped in asingle
message. |f alarge number of small messages is a concern for your
message system, then you may have to avoid using very small polling
periods.

& For moreinformation on tuning polling for the incoming-messages, see
"Tuning incoming message polling" on page 236.

Y ou control theinterval to wait between polls for more data from the
transaction log to send using the - sd option, which has a default of one
minute. The following example sets the polling interval to 30 seconds:

dbrenote -sd 30s ...

Alternatively, you can poll less frequently, asin the following command line,
which polls every five minutes:

dbrenote -sd 5

Setting avery small interval may have some detrimental impact on overall
system throughput, for the following reasons:

¢ Too-frequent polling produces many short messages. If the message load
places a strain on your message system, throughput could be affected.

239

Tuning Message Agent performance

Resending messages

240

Setting larger intervals may provide a better overall throughput of messages
in your system, at the cost of waiting somewhat longer for each message to
be applied. In many SQL Remote installations, optimizing turnaround timeis
not the primary concern.

When a user requests that a message be resent, the message has to be
retrieved from early in the transaction log. Going back in the transaction log
to retrieve this message and send it causes the Message Agent to interrupt the
regular sending process. If you are tuning your SQL Remote installation for
optimum performance, you must balance the urgency of sending requests for
resent messages with the priority of processing regular messages.

The - r u option controls the urgency of the resend requests. The value for the
parameter is atimein minutes (or in other unitsif you add s or h to the end
of the number), with a default of zero.

To help the Message Agent delay processing resend requests until more
have arrived before interrupting the regular message sending activity, set this
option to alonger time.

The following command line waits one hour until processing aresend
request.

dbrenote -ru 1h ...

If you do not specify the - r u option, then adefault value is picked by the
Message Agent, based on the send interval of the users that have requested
that data be resent. The elapsed time between receiving aresend request for a
user and rescanning the log does not exceed half of the send interval for that
user.

Chapter 10 SQL Remote Administration

Encoding and compressing messages

SQL Remote
encoding and
compression

Settings for
compatibility

Upgrading
SQL Remote

As messages pass through e-mail and other message systems, thereisa
danger of them becoming corrupted. For example, some message systems
use certain characters or character combinations as control characters.

Message size affects the efficiency with which messages pass through a
system. Compressed messages can be processed more efficiently by a
message system than uncompressed messages. On the other hand, carrying
out compression can itself take a significant amount of time.

SQL Remote has a message encoding and compression scheme built in to the
Message Agent. The scheme provides the following features:

¢ Compatibility The system can be set up to be compatible with
previous versions of the software.

¢ Compression You can select alevel of compression for your
messages.

¢ Encoding SQL Remote encodes messages to ensure that they pass
through message systems uncorrupted. The encoding scheme can be
customized to provide extra features.

To be compatible with previous versions of the software, you should set the
database option COMPRESSION to be -1 (minus one) at each database
running the Version 6 software. This setting ensures that messages are sent
out in aformat compatible with older versions of the software.

If you upgrade the consolidated database Message Agent first, you should set
its COMPRESSION database option to -1. As each remote sitein your
replication system is upgraded to Version 6, you can change its setting of the
COMPRESSION option to a value between 0 (no compression) and 9
(maximum compression). This allows you to take advantage of compression
features on messages being sent to the consolidated database. Once all
remote sites are upgraded, you can set the consolidated site Message Agent
COMPRESSION option to avalue other than -1.

In addition, setting COMPRESSION to a value other than -1 allows you to
take advantage of the Version 6 message encoding improvements.

The encoding scheme

The default message-encoding behavior of SQL Remoteisasfollows:

¢ For message systems that can use binary message formats, no encoding
iscarried out.

241

Encoding and compressing messages

¢ Some message systems, including SMTP, VIM, and MAPI, require text-
based message formats. For these systems, an encoding DLL
(dbencod.dll for Adaptive Server Anywhere and ssencod.dll for
Adaptive Server Enterprise) translates messagesinto atext format
before sending. The message format is unencoded at the receiving end
using the same DLL.

¢ Youcaninstruct SQL Remote to use a custom encoding scheme. The
tools for building a custom encoding scheme are described in the
following section.

¢ |f the COMPRESSION database option is set to -1, thenaVersion 5
compatible encoding is carried out for all message systems.

Creating custom encoding schemes

242

Y ou can implement a custom encoding scheme by building a custom
encoding DLL. You could use this DLL to apply specia features required for
a particular messages system, or to collect statistics, such as how many
messages or how many bytes were sent to each user.

The header file dbrmt.h, installed into the h subdirectory of your installation
directory, provides an application programming interface for building such a
scheme.

Toinstruct SQL Remoteto use your DLL for a particular message system,
you must make aregistry entry for that system. The registry entry should be
made in the following location:

Sof t war e
\ Sybase
\SQL Renote
\ nessage- syst em
\ encode_dl |

where message-system is one of the SQL Remote message systems (file,
smtp, and so on). Y ou should set thisregistry entry to the name of your
encoding DLL.

Encoding and decoding must be compatible
If you implement a custom encoding, you must make sure that the DLL is
present at the receiving end, and that the DLL isin place to decode your

messages properly.

Chapter 10 SQL Remote Administration

The message tracking system

SQL Remote has a message tracking system to ensure that all replicated
operations are applied in the correct order, no operations are missed, and no
operation is applied twice.

Message system failures may lead to replication messages not reaching their
destination, or reaching it in a corrupt state. Also, messages may arrive at
their destination in a different order from that in which they were sent. This
section describes the SQL Remote system for detecting and correcting
message system errors, and for ensuring correct application of messages.

If you are using an e-mail message system, you should confirm that e-mail is
working properly between the two machinesif SQL Remote messages are
not being sent and received properly.

The SQL Remote message tracking system is based on status information
maintained in the remoteuser SQL Remote system table. Thetableis
maintained by the Message Agent. The Message Agent at a subscriber
database sends confirmation to the publisher database to ensure that
remoteuser is maintained properly at each end of the subscription.

For Adaptive Server Anywhere, the remoteuser tableisthe
sys.sysremoteuser system table. For Adaptive Server Enterprise, thisisthe
sr_remoteuser table.

243

The message tracking system

Status information in the remoteuser table

Theremoteuser SQL Remote system table contains arow for each
subscriber, with status information for messages sent to and received by that
subscriber. At the consolidated database, remoteuser contains arow for each
remote user. At each remote database, remoteuser contains a single row
maintaining information for the consolidated database. (Recall that the
consolidated database subscribes to publications from the remote database.)

The remoteuser SQL Remote system table at each end of a subscriptionis
maintained by the Message Agent.

Tracking messages by transaction log offsets

Message ordering

244

The message-tracking status information takes the form of offsetsin the
transaction logs of the publisher and subscriber databases. Each COMMIT is
marked in the transaction log by a well-defined offset. The order of
transactions can be determined by comparing their offset values.

When messages are sent, they are ordered by the offset of the last COMMIT
of the preceding message. If a transaction spans several messages, thereisa
serial number within the transaction to order the messages correctly. The
default maximum message size is 50,000 bytes, but you can use the Message
Agent - | option to change this setting.

Chapter 10 SQL Remote Administration

Sending messages

Receiving
messages

Subscriptions are
two-way

Resending
messages

Thelog_sent column holds the local transaction log offset for the latest
message sent to the subscriber. When the Message Agent sends a message, it
setsthelog_sent value to the offset of the last COMMIT in the message.
Once the message has been received and applied at the subscribed database,
confirmation is sent back to the publisher. When the publisher Message
Agent receives the confirmation, it sets the confirm_sent column for that
subscriber with the local transaction log offset. Both log_sent and
confirm_sent are offsetsin the local database transaction log, and
confirm_sent cannot be a later offset than log_sent.

When the Message Agent at a subscriber database receives and applies a
replication update, it updates the log_received column with the offset of the
last COMMIT in the message. Thelog_received column at any subscriber
database therefore contains a transaction log offset in the publisher database’s
transaction log. After the operations have been received and applied, the
Message Agent sends confirmation back to the publisher database and also
sets the confirm_received value in the local SY SREMOTEUSER table. The
confirm_received column at any subscriber database contains a transaction
log offset in the publisher database’s transaction log.

SQL Remote subscriptions are two-way operations: each remote database is
a subscriber to publications of the consolidated database and the consolidated
database subscribes to a matching publication from each remote database.
Therefore, the remoteuser SQL Remote system tables at the consolidated
and remote database hold complementary information.

The Message Agent applies transactions and updates the log_r eceived value
atomically. If a message contains several transactions, and a failure occurs
while a message is being applied, thelog_received value corresponds
exactly to what has been applied and committed.

The remoteuser SQL Remote table contains two other columns that handle
resending messages. Theresend_count and rereceive_count columns are
retry counts that are incremented when messages get lost or deleted for some
reason.

In general, thelog_send column has the same value as the log_sent column.
However, if thelog_send hasavalue that is greater than log_sent, the
Message Agent sends messages to the subscriber immediately on its next
run.

245

The message tracking system

Handling of lost or corrupt messages

Message
identification

246

When messages are received at a subscriber database, the Message Agent
applies them in the correct order (determined from the log offsets) and sends
confirmation to the publisher. If a message is missing, the Message Agent
increments the local value of rereceive_count, and requests that it be resent.
Other messages present or en route are not applied.

The request from a subscriber to resend a message increments the
resend_count value at the publisher database, and also sets the publisher’s
log_sent value to the value of confirm_sent. Thisresetting of the log_sent
value causes operations to be resent.

Users cannot reset log_sent
Thelog_sent value cannot be reset by a user, asit isin a system table.

Each message isidentified by three values:
¢ ltsresend_count.
¢ Thetransaction log offset of the last COMMIT in the previous message.

¢ A serial number within transactions, for transactions that span messages.

Messages with aresend_count value smaller than rereceive_count are not
applied; they are deleted. This ensures that operations are not applied more
than once.

CHAPTER 11

Administering SQL Remote for Adaptive

Server Anywhere

About this chapter

Contents

This chapter details set-up, and management issues for SQL Remote
administrators using Adaptive Server Anywhere as a consolidated database.

Topic Page
Running the Message Agent 248
Error reporting and handling 251
Transaction log and backup management 255
Using passthrough mode 267

247

Running the Message Agent

Running the Message Agent

This section describes how to run the Message Agent for Adaptive Server

Anywhere.

& For information on features of the Message Agent that are common to
Adaptive Server Anywhere and Adaptive Server Enterprise, see
"SQL Remote Administration” on page 203.

Starting the Message Agent

The Message Agent has a set of options that control its behavior. The only
option that is required for the Message Agent to run is the connection
parameters option (- c).

& For more information on connection parameters, see " Connection
parameters’ on page 70 of the book ASA Database Administration Guide.

Verbose keyword | Short form Argument
DatabaseFile DBF string
DatabaseName DBN string
DatabaseSwitches DBS string
EngineName ENG string
Password PWD string
Start Start string
Userid uiD string

Running the Message Agent as a service

If you are running the Message Agent in continuous mode (not batch mode)
you may wish to keep the Message Agent running all the time that the server

is running.

248

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

Y ou can do this by running the Message Agent as aWindows service. A
service can be configured to keep running even when the current user logs
out, and to start as soon as the operating system is started.

& For afull description of running programs as services, see "Running the
Database Server" on page 3 of the book ASA Database Administration
Guide.

The Message Agent and replication security

In the tutorias in the previous chapter, the Message Agent was run using a
user 1D with DBA permissions. The operations in the messages are carried
out from the user 1D specified in the Message Agent connection string; by
using the user ID DBA, you can be sure that the user has permissions to make
all the changes.

In many situations, distributing the DBA user ID and password to all remote
database users is an unacceptabl e practice for security and data privacy
reasons. SQL Remote provides a solution that enables the Message Agent to
have full access to the database in order to make any changes contained in
the messages without creating security problems.

A specia permission, REMOTE DBA, has the following properties:

¢ No distinct permissions when not connected from the Message
Agent A user ID granted REMOTE DBA authority has no extra
privileges on any connection apart from the Message Agent. Therefore,
even if the user ID and password for aREMOTE DBA user iswidely
distributed, there is no security problem. Aslong asthe user ID has no
permissions beyond CONNECT granted on the database, no one can use
this user ID to access datain the database.

¢ Full DBA permissions from the Message Agent When connecting
from the Message Agent, auser ID with REMOTE DBA authority has
full DBA permissions on the database.

249

Running the Message Agent

Using REMOTE
DBA permission

Granting REMOTE
DBA permission

250

A suggested practice isto grant REMOTE DBA authority at the consolidated
database to the publisher and to each remote user. When the remote database
is extracted, the remote user becomes the publisher of the remote database,
and is granted the same permissions they were granted on the consolidated
database, including the REMOTE DBA authority which enables them to use
this user 1D in the Message Agent connection string. Adopting this procedure
means that there are no extra user |Ds to administer, and each remote user
needs to know only one user 1D to connect to the database, whether from the
Message Agent (which then has full DBA authority) or from any other client
application (in which case the REMOTE DBA authority grants them no extra
permissions).

Y ou can grant REMOTE DBA permissions to a user ID named dbremote as
follows:

GRANT REMOTE DBA
TO dbrenot e
| DENTI FI ED BY dbrenot e

In Adaptive Server Anywhere, you can add the REMOTE DBA authority to
aremote user by checking the appropriate option on the Authorities tab of
the remote user’s property sheet.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

Error reporting and handling

This section describes how errors are reported and handled by the Message
Agent.

Default error handling

UPDATE conflicts
are not errors

Ignoring errors

The default action taken by the Message Agent when an error occursisto
record the fact in itslog output. The Message Agent sends log output to a
window or alog file recording its operation. By default, log output is sent to
the window only; the - o option sends output to alog file as well.

The Message Agent may print more information in the output log than in the
window. The Message Agent log includes the following:

¢ Listing of messages applied.
¢ Listing of failed SQL statements.

¢ Listing of other errors.

UPDATE conflicts are not errors, and so are not reported in the Message
Agent output.

& For more information on the log file, see "The Message Agent" on
page 302.

There may be exceptional cases where you wish to allow an error
encountered by the Message Agent when applying SQL statementsto go
unreported. This may arise when you know the conditions under which the
error occurs and are sure that it does not produce inconsi stent data and that
its consequences can safely be ignored.

To allow errorsto go unreported, you can create a BEFORE trigger on the
action that causes the known error. The trigger should signal the
REMOTE_STATEMENT_FAILED SQLSTATE (5RWO09) or SQLCODE (-
288) value.

251

Error reporting and handling

For example, if you wish to quietly fail INSERT statements on a table that
fail because of a missing referenced column, you could create a BEFORE
INSERT trigger that signalsthe REMOTE_STATEMENT_FAILED

SQL STATE when the referenced column does not exist. The INSERT
statement fails, but the failure is not reported in the Message Agent log.

Implementing error handling procedures

SQL Remote allows you to carry out some other process in addition to
logging a message if an error occurs. The Replication_error database option
allows you to specify a stored procedure to be called by the Message Agent
when an error occurs. By default no procedureis called.

The procedure must have a single argument of type CHAR, VARCHAR, or
LONG VARCHAR. The procedure s called twice: once with the error
message and once with the SQL statement that causes the error.

While the option allows you to track and monitor errorsin replication, you
must still design them out of your setup: this option is not intended to resolve
such errors.

For example, the procedure could insert the errors into a table with the
current time and remote user 1D, and thisinformation can then replicate back
to the consolidated database. An application at the consolidated database can
create areport or send e-mail to an administrator when errors show up.

& For information on setting the REPLICATION_ERROR option, see
"SQL Remote options’ on page 322.

Example: e-mailing notification of errors

A stored procedure

252

Y ou may wish to receive some notification at the consolidated database
when the Message Agent encounters errors. This section demonstrates a
method to send Email messages to an administrator when an error occurs.

The stored procedure for this exampleiscalled sp_L ogReplicationError,
and is owned by the user cons. To cause this procedure to be called in the
event of an error, set the Replication_error database option using
Interactive SQL or Sybase Central:

SET CPTION PUBLIC Replication_error =
' cons. sp_LogRepl i cati onError’

The following stored procedure implements this notification:

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

CREATE PROCEDURE cons. sp_LogRepl i cati onError

(IN error_text LONG VARCHAR)

BEG N

DECLARE current _renote_user CHAR(255);
SET current_renote_user = CURRENT REMOTE USER

/1 Log the error
I NSERT | NTO cons. replication_audit
(renoteuser, errornsg)
VALUES
(current_renote_user, error_text);
COW T WIRK;

//Now notify the DBA an error has occurred
Il using email. W only want this information if //

the error occurred on the consolidated dat abase

/1 W& want the enail to contain the error strings //

the Message Agent is passing to the procedure

| F CURRENT PUBLI SHER = ' cons’ THEN
CALL sp_notify DBA(error_text);

END | F
END,
The stored procedure calls another stored procedure to manage the sending
of Email:
CREATE PROCEDURE sp_notify_DBA(in nsg | ong varchar)
BEG N
DECLARE rc | NTEGER;
rc=call xp_startnmil (mail _user=davidf');
[/1f successful |ogon to nail
IF rc=0 THEN
rc=cal | xp_sendmail (
reci pi ent =" Doe, John; John, Elton’,
subj ect = SQL Renote Error’,
"message" =nsQ) ;
/11f mail sent successfully, stop
IF rc=0 THEN
call xp_stopmail ()
END | F
END | F
END;
An audit table An audit table could be defined as follows:

CREATE TABLE replication_audit (

id | NTEGER DEFAULT AUTO NCREMENT,

pub CHAR(30) DEFAULT CURRENT PUBLI SHER,

r enot euser CHAR(30),

errornsg LONG VARCHAR

ti mest anp DATETI ME DEFAULT CURRENT TI MESTAMP,
PRI MARY KEY (i d, pub)

253

Error reporting and handling

The columns have the following meaning:

Column Description

pub Current publisher of the database (lets you know at what
database it was inserted)

remoteuser Remote user applying the message (lets you know what database
it came from)

errormsg Error message passed to the Replication_error procedure

Here is asample insert into the table from the above error:
I NSERT | NTO cons. replication_audit

(id,
pub,
r enot euser,
errornsg,
"timestanp")
VALUES
(1
'cons’,
'sal es’,
"primary key for table ''reptable’’ is not unique
(-193)",

*'1997/ apr/ 21 16: 03: 13. 836")
COM T WORK

Since Adaptive Server Anywhere supports calling external DLLs from stored
procedures you can also design a paging system, instead of using Email.

An example of an For example, if arow isinserted at the consolidated using the same primary
error key as oneinserted at the remote, the Message Agent displays the following
errors.

Received message from "cons" (0-0000000000-0)

SQL statement failed: (-193) primary key for table 'reptable’ is not unique
INSERT INTO cons.reptable(id,text,last_contact)

VALUES (2,'dave’,'1997/apr/21 16:02:38.325)

COMMIT WORK

The messages that arrived in Doe, John and Elton, John’s email each had a
subject of SQL Remote Error;

primary key for table 'reptable’ is not unique (-193)

INSERT INTO cons.reptable(id,text,last_contact) VALUES
(2, dave’,’1997/apr/21 16:02:52.605")

254

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

Transaction log and backup management

The importance of Replication depends on access to operations in the transaction log, and
good backup access to old transaction logs is sometimes required. This section describes
practices how to set up backup procedures at the consolidated and remote databases to

ensure proper access to old transaction logs.

Itiscrucia to have good backup practices at SQL Remote consolidated
database sites. A lost transaction log could easily mean having to re-extract
remote users. At the consolidated database site, atransaction log mirror is
recommended.

& For information on transaction log mirrors and other backup procedure
information, see "Backup and Data Recovery" on page 299 of the book ASA
Database Administration Guide.

Ensuring access to All transaction logs must be guaranteed available until they are no longer
old transactions needed by the replication system.

In many setups, users of remote databases may receive updates from the
office server every day or so. If some messages get lost or deleted, and have
to be resent by the message-tracking system, it is possible that changes made
several days ago will be required. If aremote user takes a vacation, and
messages have been lost in the meantime, changes weeks old may be
required. If the transaction log is backed up daily, the log with the changes
will no longer be running on the server.

Because the transaction log continually grows in size, space can become a
concern. Y ou can use an event handler on transaction log size to rename the
log when it reaches a given size. Then you can use the

DELETE_OLD_L OGS option to clean up log files that are no longer needed.

& For more information about controlling transaction log size, see the
"BACKUP statement" on page 245 of the book ASA SQL Reference Manual.

255

Transaction log and backup management

Setting the transaction log directory

Example

Log names are not
important

When the Message Agent needs to scan transaction logs other than the
current log, it looks through al the transaction log files kept in a designated
transaction log directory. A setting on the Message Agent command line
tells the Message Agent which directory thisis.

For example, the following command line tells the Message Agent to look in
the directory e:larchive to find old transaction logs. The command must be
entered all on oneline.

dbrenot e -c "eng=server_nane; ui d=DBA; pwd=SQ." e:\ archi ve
The Message Agent opens all the filesin the transaction log directory to

determine which files are logs, so the actual names of the log files are not
important.

This section describes how you can set up a backup procedure to ensure that
such adirectory is kept in proper shape.

Backup utility options

The Adaptive Server Anywhere backup utility has several options, accessible
through Sybase Central wizard selections or through dbbackup options, that
control its behavior.

This section describes two approaches to using the backup utility in
SQL Remote consolidated database backups. Backups must ensure that a set
of transaction logs suitable for use by the Message Agent is always available.

Using the live directory as the transaction log directory

256

It is recommended that you use the option to rename and restart the
transaction log when backing up the consolidated database and remote
database transaction logs. For the dbbackup utility, thisisthe-r option.

The figure below illustrates a database named consol.db, with atransaction
log named consol.log in the same directory. For the sake of simplicity, we
consider the log to be in the same directory as the database, although this
would not be generally safe practice in a production environment. The
directory is named c:llive.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

A backup
command line

Effects of the
backup

consol.db

971201AA.log
971201AB.log

consol.log

C:\Live

The following command line backs up the database using the rename and
restart option:

dbbackup -r -c "ui d=DBA; pwd=SQ." c:\archive
The connection string options would be different for each database.

If you back up the transaction log to a directory c:larchive using the rename
and restart option, the Backup utility carries out the following tasks:

1 Backsup thetransaction log file, creating a backup file
c:larchivelconsol.log.

2 Renamesthe existing transaction log file to 971201xx.log, where xx are
sequential characters ranging from AA to ZZ.

3 Startsanew transaction log, as consol.log.

After several backups, the live directory contains a set of sequential

transaction logs.

consol.db

971201AA.log
971201AB.log
971201AC.log

consol.log

consol.log

C:\Live

C:\Archive

257

Transaction log and backup management

A Message Agent

command line

Y ou can run the Message Agent with access to these log files using the
following command line;

dbremote -c¢ "dbn=hqg;..." c:\live

Using the backup directory as the transaction log directory

A backup
command line

Effects of the
backup

258

An alternative procedure is to use the backup directory as the transaction log
directory.

Again, the figure below illustrates a database named consol.db, with a
transaction log named consol.log in the same directory. For the sake of
simplicity, we consider the log to be in the same directory as the database,
although this would not be generally safe practice in a production
environment. The directory is named c:llive.

consol.db

971201AA.log
971201AB.log

consol.log

C:\Live

The following command line backs up the database using the rename and
restart option, and also uses an option to rename the transaction log backup
file:

dbbackup -r -k -c "ui d=DBA; pwd=SQ." c:\archive
The connection string options would be different for each database.

If you back up the transaction log to a directory c:larchive using the rename
and restart option and the log renaming option, the Backup utility carries out
the following tasks:

1 Renamesthe existing transaction log file to 971201xx.log, where xx are
sequential characters ranging from AA to zz.

2 Backsup the transaction log file to the backup directory, creating a
backup file named 971201xx.log

3 Startsanew transaction log, as consol.log.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

A Message Agent
command line

After several backups, the live directory and also the archive directory
contain a set of sequential transaction logs.

i
consol.db

consol.db

971201AA.log
971201AB.log
971201AC.log

consol.log

971201AA.log
971201AB.log
971201AC.log

C:\Live C:\Archive

Y ou can run the Message Agent with access to these log files using the
following command line;

dbremote -c¢ "dbn=hqg;..." c:\archive

Old log names different before 8.01

Prior to release 8.01 of Adaptive Server Anywhere, the old log files were
named yymmdd01.log, yymmdd02.log, and so on. The name change was
introduced to allow more old logs to be stored. As the Message Agent
scans all the filesin the specified directory, regardiess of their names, the
name change should not affect existing applications.

Managing old transaction logs

All transaction logs must be guaranteed available until they are no longer
needed by the replication system: at that point, they can be discarded.

The replication system no longer needs the logs when all remote databases
have received and successfully applied the messages contained in the log
files. Remote databases confirm the successful receipt of messages from the
consolidated database, and the confirmation sets a value in the consolidated
database SQL Remote tables (see "The message tracking system” on

page 243). The old transaction logs at the consolidated database are no
longer needed by SQL Remote when this receipt confirmation has been
received from al remote databases.

259

Transaction log and backup management

Using the
Delete_old_logs
option

Example

Y ou can use the Delete_old_|logs database option at the consolidated
database to manage old transaction logs automatically.

The DELETE_OLD_L OGS database option is set by default to OFF. If itis
set to ON, then the old transaction logs are deleted automatically by the
Message Agent when they are no longer needed. A log is ho longer needed
when all subscribers have confirmed receiving al changes recorded in that
log file.

You can set the DELETE_OLD_L OGS option either for the PUBLIC group
or just for the user contained in the Message Agent connection string.

¢ Thefollowing statement sets the public DELETE_OLD_LOGS:
SET CPTION PUBLI C. DELETE QLD LOGS = ' ON

Recovery from database media failure for consolidated databases

This section describes how to recover from a media failure on the database
device at the consolidated database.

The proceduresto follow are easiest to describe if thereis only one
transaction log file. While this might not be common for consolidated
databases, it is described first, followed by a more common but complicated
situation with a set of transaction log files.

Recovery with a single transaction log

260

In this case, we assume that there is a single transaction log file, which has
existed since the database was created. Also, we assume previous backups of
the database file have been made and are available, for example on tape.

To recover the database:
1 Makeacopy of the database and log file.

2 Restore the database (.db) file, not the log file, from tape into a
temporary directory.

3 Start the database using the existing transaction log and the - a option, to
apply the transactions and bring the database file up to date.

4 Start the database in your normal way. Any new activity will be
appended to the current transaction log.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

Example

Media failure
on the
database file

Transaction log

Restore
backed up
database file

(intact)

Transaction log

Start
database
with
transaction
log

(intact)

Transaction log

(intact)

N
\
\

Database file
(corrupt)

Old database
file (intact)

Database file
(restored)

This example illustrates recovery using a mirrored transaction log.

Suppose you have a consolidated database file named consol.dbin a
directory c:\dbdir, and atransaction log file c:llogdirlconsol.log which is
mirrored to d:\mirdirlconsol.mlg.

To recover from media failure on the C drive:

1 Backup the mirrored transaction log d:\mirdiriconsol.mig.

2 Replace thefailed hardware and re-install all affected software.

3 Create atemporary directory to perform the recovery in (for example,

c:\recover)

4 Restore the most recent backup of the database file, consol.db, to
c:lrecovericonsol.db.

5 Copy the mirror transaction log, d:imirdirlconsol.mig, to the recovery
directory with a.log extension, giving c:lrecovericonsol.log.

261

Transaction log and backup management

6 Start the database using the following command line:
dbeng8 -a C \ RECOVER CONSCL. DB

Shutdown the database server.

8 Backup the recovered database and transaction log from c:lrecover.
Copy thefiles from c:lrecover to the appropriate production directories:
¢ Copy c:lrecovericonsol.db to c:\dbdirlconsol.db

¢ Copy c:lrecovericonsol.log to c:\dbdirlconsol./OG, and to
d:\mirdir\consol.mig.

10 Restart your system normally.

Recovery with multiple transaction logs

Example

262

If you have a set of transaction logs, the procedure is different. We assume
previous backups of the database file have been made and are available, for
example on tape.

To recover the database:
1 Makeacopy of the database and log file.

2 Restore the database (.db) file, not the log file, from tape into a
temporary directory.

3 Inthetemporary directory, start the database, applying the old logs
using the - a option, applying the named transaction logs in the correct
order.

4 Start the database using the current transaction log and the - a option, to
apply the transactions and bring the database file up to date.

5 Start the database in your normal way. Any new activity will be
appended to the current transaction log.

Suppose you have a consolidated database file named c:\dbdirlcons.db. The
transaction log file c:\dbdirlcons.log is mirrored to d:imirdirlcons.mig.

Assume that you perform full backups weekly, and you perform incremental
backups daily using the following command:

dbbackup -c¢ "ui d=DBA, pwd=SQ." -r -t E\BACKD R

This command backs up the transaction log cons.log to the directory
e:lbackdir. The transaction log file is then renamed to datexx./og, where date
isthe current date and xx is the next set of lettersin sequence, and a new
transaction log is started. The directory e:\backdir is then backed up using a
third-party utility.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

In this scenario you would be running the Message Agent with the optional
directory to point to the renamed transaction log files. The Message Agent
command line would be

dbrenote -c "ui d=DBA; pwd=SQ." C:\ DBDI R

On the third day following the weekly backup the database file gets
corrupted because of abad disk block.

To recover from media failure on the C: drive:
1 Backup the mirrored transaction log d:\mirdiricons.mig.

2 Create atemporary directory to perform the recovery in. We will call it
c:lrecover.

3 Restore the most recent backup of the database file, cons.db to
c:\recovericons.db.

4 Apply the renamed transaction logs in order, as follows
dbeng8 -a C \DBD R\ dat e00. LOG C. \ RECOVER CONS. DB
dbeng8 -a C \DBD R date0l. LOG C \ RECOVER CONS. DB

5 Copy the current transaction log, c:ldbdirlcons.log to the recovery
directory, giving c:\recovericons.log.

6 Start the database using the following command:
dbeng8 C.\ RECOVER CONS. DB

Shutdown the database server.

Backup the recovered database and transaction log from c:lrecover.
Copy the filesfrom c:lrecover to the appropriate production directories.
¢ Copy c:lrecoverlcons.db to c:\dbdirlcons.db.

¢ Copy c:lrecovericons.log to c:\dbdirlcons.log, and to
d:\mirdirlcons.mig.

10 Restart your system as normal.

263

Transaction log and backup management

Backup procedures at remote databases

Automatic
transaction log
renaming

Backup procedures are not as crucia at remote databases as at the
consolidated database. Y ou may choose to rely on replication to the
consolidated database as a data backup method. In the event of a media
failure, the remote database would have to be re-extracted from the
consolidated database, and any operations that have not been replicated
would be lost. (You could use the log translation utility to attempt to recover
lost operations.)

Even if you do choose to rely on replication to protect remote database data,
backups still need to be done periodically at remote databases to prevent the
transaction log from growing too large. Y ou should use the same option
(rename and restart the log) as at the consolidated database, running the
Message Agent so that it has access to the renamed log files. If you set the
DELETE_OLD_L OGS option to ON at the remote database, the old log files
will be deleted automatically by the Message Agent when they are no longer
needed.

Y ou can use the - x Message Agent option to eliminate the need to rename
the transaction log on the remote computer when the database server is shut
down. The - x option renames transaction log after it has been scanned for

outgoing messages.

Upgrading consolidated databases

264

This section describes issues in upgrading a consolidated database in a
SQL Remote environment. The same considerations apply to Adaptive
Server Anywhere databases that are primary sitesin a Sybase Replication
Server installation.

Installing new software does not always make new features available. In
many cases, new features require the Upgrade utility to be run on databases.
The Upgrade utility adds any information to the system catalog required for
new features to be available. When you run the Upgrade utility, it tellsyou to
archive the transaction log. The reason for thisisthat a new transaction log is
created by the Upgrade utility, with anew file format.

When using SQL Remote or Replication Server, the transaction log must be
kept for the Message Agent and the Replication Agent, respectively. After
running the Upgrade utility, you should shut down the engine, rename the
log, and leave it for the Message Agent to delete. The log should also be
archived for backup purposes.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

&~ For information on the Upgrade utility, see "The Upgrade utility” on
page 521 of the book ASA Database Administration Guide.

Unloading and reloading a database participating in replication

If adatabase is participating in replication, particular care needs to be taken
if you wish to unload and rel oad the databases.

& For instructions for unloading and reloading a database in "Upgrading
the database file format" on page 144 of the book What's New in SQL
Anywhere Studio. The instructions in that section apply to databases involved
in SQL Remote replication.

This section describes a manual way of unloading and rel oading a database,
and is provided in case there are special circumstances that make the use of
the more automated procedure referenced above impossible, such asa
schema or other significant database change.

Replication is based on the transaction log. When a database is unloaded and
reloaded, the old transaction log is no longer available. For this reason, good
backup practices are especially important when participating in replication.
To unload and reload a consolidated database (manual):

1 Shut down the existing database.

2 Perform afull off-line backup by copying the database and transaction
log files to a secure location.

3 Runthe dbtran utility to display the starting offset and ending offset of
the database’s current transaction log file. Note the ending offset for later
use.

4 Renamethe current transaction log file so that it is not modified during
the unload process, and place this file in the off-line directory.

Start the existing database.
Unload the database.

Shut down the existing database. This database and any log file created
in this and the previous step is no longer needed.

8 Initialize anew database.
9 Reload the datainto the new database.
10 Shut down the new database.

265

Transaction log and backup management

266

11
12

13

Erase the current transaction log file for the new database.

Use dblog on the new database with the ending offset noted in step 3 as
the - z option, and a so set the relative offset to zero.

dblog -x 0 -z 137829 dat abase- nane. db

When you run the Message Agent, provide it with the location of the
original off-line directory on its command line.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

Using passthrough mode

The publisher of the consolidated database can directly intervene at remote
sites using a passthrough mode, which enables standard SQL statements to
be passed through to aremote site. By default, passthrough mode statements
are executed at the local (consolidated) database as well, but an optional
keyword prevents the statements from being executed locally.

Caution

Always test your passthrough operations on a test database with a remote
database subscribed. Never run untested passthrough scripts against a
production database.

Starting and Passthrough mode is started and stopped using the PASSTHROUGH
stopping statement. Any statement entered between the starting PASSTHROUGH
passthrough statement and the PASSTHROUGH ST OP statement which terminates

passthrough mode is checked for syntax errors, executed at the current
database, and also passed to the identified subscriber and executed at the
subscriber database. We can call the statements between a starting and
stopping passthrough statement a passthrough session.

The following statement starts a passthrough session which passes the
statementsto alist of two named subscribers, without being executed at the
local database:

PASSTHRQUGH ON\LY
FOR userid_1, userid_2;

Directing The following statement starts a passthrough session that passes the
passthrough statementsto all subscribers to the specified publication:
statements PASSTHROUGH ONLY

FOR SUBSCRI PTI ON TO [owner] . pubnanme [(string)]

Passthrough mode is additive. In the following example, statement_1 is sent
touser_1, and statement_2 is sent to both user_1 and user_2.

PASSTHROUGH ONLY FOR user_1 ;
statenent _1 ;
PASSTHROUGH ONLY FOR user_2 ;
statement _2 ;

The following statement terminates a passthrough session:
PASSTHROUGH STCP ;
PASSTHROUGH STOP terminates passthrough mode for all remote users.

267

Using passthrough mode

Order of
application of
passthrough
statements

Notes on using
passthrough mode

Passthrough statements are replicated in sequence with normal replication
messages, in the order in which the statements are recorded in the log.

Passthrough is commonly used to send data definition language statements.
Inthis case, replicated DML statements use the before schema before the
passthrough and the after schema following the passthrough.

¢ You should always test your passthrough operations on a test database
with a remote database subscribed. Y ou should never run untested
passthrough scripts against a production database.

¢ You should always qualify object names with the owner name.
PASSTHROUGH statements are not executed at remote databases from
the same user 1D. Consequently, object names without the owner name
qualifier may not be resolved correctly.

Uses and limitations of passthrough mode

268

Passthrough mode is a powerful tool, and should be used with care. Some
statements, especially data definition statements, could cause a running

SQL Remote setup to come tumbling down. SQL Remote relies on each
database in a setup having the same objects: if atableis altered at some sites
but not at others, attempts to replicate data changes will fail.

Also, it isimportant to remember that in the default setting passthrough
mode al so executes statements at the local database. To send statementsto a
remote database without executing them locally you must supply the ONLY
keyword. The following set of statements drops a table not only at a remote
database, but also at the consolidated database.

-- Drop a table at the renote dat abase
-- and at the local database
PASSTHRQUGH TO Joe_Renot e ;

DRCP TABLE Cruci al Dat a ;

PASSTHROUGH STCP ;

The syntax to drop atable at the remote database only is as follows:

-- Drop a table at the renote database only
PASSTHROUGH ONLY TO Joe_Renvote ;

DRCP TABLE Cruci al Dat a ;

PASSTHROUGH STCP ;

The following are tasks that can be carried out on arunning SQL Remote
setup:

¢ Add new users.

¢ Resynchronize users.

CHAPTER 11 Administering SQL Remote for Adaptive Server Anywhere

¢ Drop users from the setup.
¢ Change the address, message type, or frequency for aremote user.

¢ Addacolumnto atable.

Many other schema changes are likely to cause serious problems if executed
on arunning SQL Remote setup.

Passthrough works

on only one level of

a hierarchy Inamulti-tier SQL Remote installation, it becomes important that
passthrough statements work on the level of databases immediately beneath
the current level. In amulti-tier installation, passthrough statements must be
entered at each consolidated database, for the level beneath it.

Operations not replicated in passthrough mode

There are special considerations for some statementsin passthrough mode.

Calling procedures

When a stored procedure is called in passthrough mode using a CALL or
EXEC statement, the CALL statement itself is replicated and none of the
statements inside the procedure are replicated. It is assumed that the
procedure on the replicate side has the correct effect.

Control of flow
statements and
cursor operations

Control-flow statements such as |F and LOOP, as well as any cursor
operations, are not replicated in passthrough mode. Any statements within
the loop or control structure are replicated.

Operations on cursors are not replicated. I nserting rows through a cursor,
updating rows in a cursor, or deleting rows through a cursor are not
replicated in passthrough mode.

Static embedded SQL SET OPTION statements are not replicated. The
following statement is not replicated in passthrough mode:

EXEC SQL SET CPTION .

However, the following dynamic SQL statement is replicated:
EXEC SQ. EXECUTE | MVEDI ATE " SET OPTI ON .

269

Using passthrough mode

Batches Batch statements (a group of statements surrounded with a BEGIN and
END) are not replicated in passthrough mode. Y ou receive an error message
if you try to use batch statements in passthrough mode.

270

CHAPTER 12

Administering SQL Remote for Adaptive

Server Enterprise

About this chapter

Contents

This chapter details setup and management issues for SQL Remote

administrators using Adaptive Server Enterprise as the server for the

consolidated database.

Topic Page
How the Message Agent for Adaptive Server Enterprise works 272
Running the Message Agent 277
Error reporting and handling 279
Adaptive Server Enterprise transaction log and backup management 281
Making schema changes 284
Using passthrough mode 285

271

How the Message Agent for Adaptive Server Enterprise works

How the Message Agent for Adaptive Server
Enterprise works

Message Agent is
ssremote

This section describes how the Message Agent for Adaptive Server
Enterprise works. There are some significant differences between how the
Message Agent for Adaptive Server Enterprise and the Message Agent for
Adaptive Server Anywhere operate, which accommodate the different roles
of the two servers.

& For information on features of the Message Agent that are common to
Adaptive Server Anywhere and Adaptive Server Enterprise, see "Running
the Message Agent" on page 229.

The Message Agent for Adaptive Server Enterpriseis the following
executable:

¢ On Windows operating systems, the Message Agent is ssremote.exe
¢ OnUNIX operating systems, the Message Agent is ssremote.

Scanning the transaction log

272

The Message Agent scans the Adaptive Server Enterprise transaction log in
order to collect transactions to be sent to remote databases. It stores these
transactions in a stable queue.

& For more information about the stable queue, see " The stable queue” on
page 273. For more information about how the Message Agent uses the
stable queue, see "Message Agent operation phases' on page 274.

The SQL Remote Message Agent uses the same transaction log scanning
interface as the Adaptive Server Enterprise Log Transfer manager (LTM).
Adaptive Server Enterprise maintains atruncation point, whichisan
identifier for the oldest page in the transaction log needed by the replication
system.

The SQL Remote Message Agent sets the truncation point as soon as
transactions are scanned from the transaction log and committed in the stable
gueue. This allows the dump transaction command to reclaim space in the
transaction log as soon as possible. The Message Agent does not wait until
confirmation is received from remote databases before setting the truncation
point.

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Replication Server
and SQL Remote

Message Agent must be run to reclaim log space

The Message Agent must be run frequently enough to prevent the
transaction log from running out of space. The dump transaction
command does not reclaim space from pages after the truncation point.

Using SQL Remote on an Adaptive Server Enterprise database participating
in a Replication Server setup may involve other considerations. If your
database has a replication agent (LTM) running against it, then you need to
use the SQL Remote Open Server as an additional component. Adaptive
Server Enterprise databases have replication agents running against themin
the following circumstances:

¢ Thedatabaseis participating in a Replication Server setup as a primary
database, or

¢ Thedatabaseis participating in a Replication Server setup and is using
asynchronous procedure calls.

If the database is participating in a Replication Server setup as areplicate
site, and no asynchronous procedure calls are being used, there is no need for
the SQL Remote Open Server.

& For more information about the SQL Remote Open Server, see "Using
SQL Remote with Replication Server" on page 287.

The stable queue

Stable queue
location

The Message Agent for Adaptive Server Enterprise uses astable queueto
hold transactions until they can be deleted. A stable queueis a pair of
database tables that hold messages that may still be needed by the replication
system.

SQL Remote for Adaptive Server Anywhere does not use a stable queue.

Stable queue not identical to Replication Server stable queue
Sybase Replication Server also uses stable queues as storage areas for
replication messages. The Replication Server and SQL Remote stable
gueues perform similar functions, but are not the same thing.

The stable queue may be kept in the same database as the tables being
replicated, or in adifferent database. Keeping the stable queue in a separate
database complicates the backup and recovery plan, but can improve
performance by putting the stable queue workload on separate devices and/or
a separate Adaptive Server Enterprise server.

273

How the Message Agent for Adaptive Server Enterprise works

Do not modify the stable queue directly
The stable queue is maintained by and for the Message Agent. Y ou should
not modify the stable queue directly.

The stable queue consists of a set of tables that contain information on all
transactions scanned from the transaction log,

& For adescription of each of the columns of these tables, see " Stable
Queue tables' on page 354.

Message Agent operation phases

The Message Agent has the following phases of execution:

¢ Receiving messages During this phase, the Message Agent receives
incoming messages and applies them to the Adaptive Server Enterprise
server.

Message system

Message
Agent
¢ Populating the stable queue During this phase the Message Agent

scans the Adaptive Server Enterprise transaction log into the stable
queue.

274

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Transaction Stable
log queue
Message
Agent

¢ Sending messages During this phase, the Message Agent builds
outgoing messages from the stable queue.

Message system

Stable
gueue

Message
Agent

275

How the Message Agent for Adaptive Server Enterprise works

276

The transactions remain in the stable queue until confirmation has been
received from al remote databases. When confirmation is received, the
transactions are automatically removed from the stable queue by the
Message Agent.

The Message Agent does not scan the transaction log of the databasein
which the stable queue residesiif it is different from the database with
SQL Remote system tables.

&~ For information on running multiple copies of the Message Agent to
carry out these tasks, see "Running multiple Message Agents' on page 277.

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Running the Message Agent

& This section describes how to run the Message Agent for Adaptive
Server Enterprise. For information on features of the Message Agent that are
common to Adaptive Server Anywhere and Adaptive Server Enterprise, see
"Running the Message Agent" on page 229.

The Message Agent and replication security

In thetutorials earlier in this book, the Message Agent was run using a user
ID with system administrator permissions. The operations in the messages
are carried out from the user 1D specified in the Message Agent connection
string; by using a system administrator user ID, you can be sure that the user
has permissions to make all the changes.

In practice, you will not use such auser ID, but the Message Agent needs to
run using a user 1D with replication role. Y ou can grant replication role with
the following statement:

sp_role 'grant’, replication_role, user_name

The user for the Message Agent must have insert, update and delete
permissions on all replicated tables, in order to apply the changes. Also, the
replication error procedure must be created under the Message Agent user
ID.

When you setup your Adaptive Server Enterprise database, the scripts
ssremote.sql and squeue.sql must be run under the same user name you use
for the Message Agent.

& For setup instructions, see " Setting Up SQL Remote" on page 19.

To hide the user password for the Message Agent user ID, you can store the
ssremote command-line options in afile, and use ssremote with the
@filename parameter. Y ou can use file system security to prevent
unauthorized access to thefile.

Running multiple Message Agents

The three phases of Message Agent operation are described in the section
"Message Agent operation phases' on page 274. To summarize, these phases
are:

¢ Receiving messages.
¢ Scanning the transaction log.
277

Running the Message Agent

Specifying which
phases to execute

How Message
Agents are
synchronized

278

¢ Sending messages.

Y ou may wish to run separate copies of the Message Agent to carry out these
different phases. Y ou can specify which phases a given Message Agent isto
execute on the Message Agent command line.

The command-line options are as follows:

¢ Receive The-r command-line option instructs the Message Agent to
receive messages whileit is running. To cause the Message Agent to
shut down after receiving available messages, use the- b optionin
additionto-r.

¢ Scanlog The-i command-line option instructs the Message Agent to
scan the transaction log into the stable queue while it is running.

¢ Send The-scommand-line option instructs the Message Agent to send
messages while it is running.

¢ Multiple phases If noneof-r,-i,or-s isspecified, the Message
Agent executes all three phases. Otherwise, only the indicated phases are
executed.

There are several circumstances where you may wish to run multiple
Message Agents.

4 Ensuring the transaction log does not run out of space Itis
important that the transaction log not be allowed to become full. For this
reason, you must scan the transaction log frequently enough to ensure
that all entries required by SQL Remote are placed in the stable queue.
Therefore, you may want to run a Message Agent that scans the
transaction log continuously, even if you are only receiving and sending
messages in batch mode.

¢ Mixing operating systems If you wish to use a message link
supported under one operating system, you must use a Message Agent
on that platform to send and receive messages. Y ou can do this, while
running the log scanning on a UNIX machine, by running two copies of
the Message Agent.

The operations of two or more Message Agents are synchronized by atable
called sr_marker. Thistable has a single column called marker, of data
type datetime.

When the Message Agent wants to wait for transactions to be scanned into
the stable queue, it updates sr_marker and waits for it to work its way
through the system. The columnin sr_queue_state is also called marker, and
contains the most recent marker to be scanned from the transaction log.

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Error reporting and handling

This section describes how errors are reported and handled by the Message
Agent.

Default error handling

UPDATE conflicts
are not errors

The default action taken by the Message Agent when an error occursisto
record the fact in its log output. The Message Agent sends log output to a
window or alog file recording its operation. By default, log output is sent to
the window only; the - o command-line option sends output to alog file as
well.

The Message Agent may print more information in the output log than in the
window. The Message Agent log includes the following:

¢ Listing of messages applied.
¢ Listing of failed SQL statements.

¢ Listing of other errors.

UPDATE conflicts are not errors, and so are not reported in the Message
Agent output.

Implementing error handling procedures

SQL Remote allows you to carry out some other process in addition to
logging a message if an error occurs. The REPLICATION_ERROR database
option allows you to specify a stored procedure to be executed by the
Message Agent when an error occurs. By default no procedure is executed .

The procedure must have a single argument of type CHAR or VARCHAR.
The procedureis called with any error messages and with the SQL statement
that causes the error.

While the option allows you to track and monitor errorsin replication, you
must still design them out of your setup: this option is not intended to resolve
such errors.

For example, the procedure could insert the errors into a table with the
current time and remote user 1D, and thisinformation can then replicate back
to the consolidated database. An application at the consolidated database can
create areport or send e-mail to an administrator when errors show up.

279

Error reporting and handling

& For information on setting the REPLICATION_ERROR option, see
"SQL Remote options’ on page 322.

280

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Adaptive Server Enterprise transaction log and
backup management

Y ou must protect against losing transactions that have been replicated to
remote databases. If transactions are lost that have already been replicated to
remote databases, the remote databases will be inconsistent with the
consolidated database. In this situation, you may have to re-extract all remote
databases.

Protecting against media failure on the transaction log

Media failure on the transaction log can cause committed transactions to be
lost. If the transaction log has been scanned and these transactions have
already been sent to subscriber databases, then the subscribing databases
contain transactions that are lost from the publishing database, and the
databases are in an inconsistent state.

Why the The transaction log is needed, even after the entries have been scanned into
transaction log is the stable queue, to guard against media failure on the database file. If the
needed databaseis lost, it must be recovered to a point that includes every

transaction that may have been sent to remote databases.

Thisrecovery is done by restoring a database dump and loading transaction
dumps to bring the database up to date. The last transaction dump restored is
the dump of the active transaction log at the time of the failure.

Protecting against There are two ways of protecting against inconsistency arising from media
transaction log loss failure on the transaction log:

4 Mirror the transaction log When adevice is mirrored, al writesto the
device are copied to a separate physical device.

¢ Only replicate backed-up transactions Thereisacommand-line
option for the Message Agent that preventsit from sending transactions
until they are backed up.

Mirroring the The only way to protect against media failure on the transaction log is by
transaction log mirroring the transaction log.

Disk mirroring can provide nonstop recovery in the event of mediafailure.

Thedisk mirror command causes an Adaptive Server Enterprise database

device to be duplicated—that is, all writes to the device are copied to a
separate physical device. If one of the devices fails, the other contains an up-
to-date copy of all transactions.

281

Adaptive Server Enterprise transaction log and backup management

& For information on disk mirroring in Adaptive Server Enterprise, see
the chapter "Mirroring Database Devices', in the Adaptive Server Enterprise

System Administration Guide.

Replicating only The Message Agent also provides a command-line option (- u) that only

backed-up sends transactions that have been backup up. In Adaptive Server Enterprise,

transactions this means transactions complete before the latest dump database command
or dump transaction command.

Choosing an The goal of the strategy isto reduce the possibility of requiring re-extraction

approach of remote databases to an acceptable level. In large setups, the possibility

must be as close to zero as possible, as the cost of re-extraction (in terms of

down time) is very high.

¢ TheMessage Agent - u command-line option can be used instead of
transaction log mirroring when recovery of al transactionsin a
consolidated database is not needed and mirroring is considered too
expensive. This may be true in small setups or setups where there are no

local users on the consolidated database.

¢ The Message Agent - u command-line option can also be used in
addition to mirroring to provide additional protection against total site

failure or double mediafailure.

Stable queue recovery issues

K eeping the stable queue in a separate database complicates backup and
recovery, as consistent versions of the two databases have to be recovered.

Normal recovery automatically restores the two databases to a consistent
state, but recovery from mediafailure takes some care. When restoring
database dumps and transaction dumps, it isimportant to recover the stable

gueue to a consistent point.

Two procedures in the stable store database are provided to help with

recovery from mediafailure:

¢ sp_queue_dump_database Thisprocedureiscalled whenever a
dump database is scanned from the transaction log.

¢ sp_queue_dump_transaction Thisprocedureis called whenever a
dump transaction is scanned from the transaction log.

Y ou can modify these stored procedures to issue dump database and dump

transaction commands in the stable store database.

282

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Transaction log management

The Adaptive Server Enterprise log transfer interface allows the Message
Agent to scan the Adaptive Server Enterprise transaction log. When this
interface is being used, it setsatruncation point in the transaction log. The
truncation point prevents Adaptive Server Enterprise from re-using pagesin
the transaction log before they have been scanned by SSREMOTE. For this
reason, DUMP TRANSACTION will not necessarily release transaction log
pages that are before the oldest open transaction. DUMP TRANSACTION
will not release transaction log pages beyond the "truncation point".

Initializing the The SQL Remote setup script (ssremote.sql) initializes the truncation point
truncation point with the following command

dbcc settrunc('Itm, "valid).

The truncation point can be reset with the following command

dbcc settrunc('Itm, 'ignore’).

This command tells Adaptive Server Enterprise to ignore the truncation
point, allowing transaction log pages beyond the truncation point to be
released for reuse. Y ou should only use this command when you are no
longer interested in SQL Remote replication with the database and you want
to be able to reclaim space in the transaction device with DUMP
TRANSACTION commands. Continuing to run SQL Remote after ignoring
the truncation point will fail to replicate any transactions that were in
transaction log pages that were not scanned by the Message Agent and were
freed by DUMP TRANSACTION.

283

Making schema changes

Making schema changes

284

Schema changes to tables being replicated by SQL Remote must be made on
aquiet system. A quiet system means the following:

¢ No transactions being replicated There can be no transactions being
replicated that modify the tables that are to be altered. All transactions
that modify tables being altered must be scanned from the transaction
log into the stable queue before the schemais altered. Thisis performed
by running the Message Agent normally, or using the-i -b options.
After the Message Agent completes, you can make the schema change.

¢ Message Agent The Message Agent must be shut down when the
schema change is being made.

¢ SQL Remote Open Server If you are using the SQL Remote Open
Server, it must be shut down when the schema change is being made.

Schema changes include changes to publications, such as adding articles or
modifying articles. However, creating or dropping subscriptions, and adding
or removing remote users do not need to be done on a quiet system.

In the Adaptive Server Enterprise transaction log, there is no information
recording table structure changes: the SQL Remote log scanning process gets
the table structure from the Adaptive Server Enterprise system tables.
Consequently, the Message Agent cannot scan an operation from the
transaction log that happened against the old table structure.

Information stored in the stable queue before the schema change uses the old
table definitions and information stored after the schema change uses the
new table definitions.

Passthrough mode can be used at the same time as the schema change to
make sure that schema changes at remote databases occur in the correct
sequence.

Chapter 12 Administering SQL Remote for Adaptive Server Enterprise

Using passthrough mode

The publisher of the consolidated database can directly intervene at remote
sites using a passthrough mode, which enables standard SQL statements to
be passed through to aremote site.

Determining Passthrough destinations are determined by sp_passthrough_user and
recipients of sp_passthrough_subscription. Executing either of these procedures
passthrough determines a set of recipients for any subsequent passthrough statements.
statements

Executing either sp_passthrough_user and sp_passthr ough_subscription
adds to the current list of recipients. The sp_passthrough_stop procedure
resets passthrough (that is, resetsthe list of recipientsto be empty).

In Adaptive Server Enterprise, sp_passthr ough never executes statementsin
the consolidated database. Passthrough SQL statements are applied only to
remote databases.

Passthrough To cause passthrough SQL statements to replicate, you call sp_passthrough.

statements Due to the VARCHAR(255) limitation in Adaptive Server Enterprise, you
should build along SQL statement up in pieces. Callsto
sp_passthrough_piece will build up asingle SQL statement. Calling
sp_passthrough with the last piece will cause the built up statement to
replicate.

Notes on using ¢ Youshould aways test your passthrough operations on a test database
passthrough mode with a remote database subscribed. Y ou should never run untested
passthrough scripts against a production database.

¢ You should always qualify object names with the owner name.
PASSTHROUGH statements are not executed at remote databases from
the same user 1D. Consequently, object names without the owner name
qualifier may not be resolved correctly.

Schema modifications

The Adaptive Server Enterprise log transfer interface does not contain
information about the number of columns and data types of the columnsin a
table. SSREMOTE gets this information directly from the Adaptive Server
Enterprise system tables. For this reason, altering atable and then scanning
operations that happened before the ALTER TABLE will lead to errors.
SSREMOTE must set the "truncation point" beyond all operations on
replicated tables before schema changes can be made. Operations on
replicated tables need to be prevented between SSREMOTE running and the
schema changes being made.

285

Using passthrough mode

286

CHAPTER 13
Using SQL Remote with Replication Server

About this chapter This chapter describes the additional components needed to use SQL Remote
on an Adaptive Server Enterprise database that also participatesin a
Replication Server installation.

Contents Topic Page
When you need to use the SQL Remote Open Server 288
Architecture for Replication Server/SQL Remote installations 289
Setting up SQL Remote Open Server 292
Configuring Replication Server 295
Other issues 297

287

When you need to use the SQL Remote Open Server

When you need to use the SQL Remote Open

Server

288

The Message Agent for Adaptive Server Enterprise scans the Adaptive
Server Enterprise transaction log to populate the stable queue, as described in
the section "The stable queue” on page 273). SQL Remote messages are built
from the transactions in the stable queue.

The Message Agent uses the same interface to scan the transaction log as the
Replication Agent for Adaptive Server Enterprise. This means the Message
Agent cannot scan the transaction log of an Enterprise database that is a
primary sitein a Replication Server setup (or areplicate site that allows
asynchronous updates to primary data).

If thereis a Replication Agent running against your Adaptive Server
Enterprise database, you must use the SQL Remote Open Server as an
additional component. In this case, SQL Remote is set up so that Replication
Server populates the stable queue. The SQL Remote Message Agent does not
scan the transaction log. Instead, the SQL Remote Open Server receives
transactions from Replication Server. The transactions are parsed by the

SQL Remote Open Server and stored in the SQL Remote stable queue.

& This chapter assumes knowledge of Replication Server. For
information, see your Replication Server documentation.

Open Server runtime components required

The Open Server runtime components are not included with SQL Remote.
Y ou must obtain them separately from Sybase in order to use the

SQL Remote Open Server.

Chapter 13 Using SQL Remote with Replication Server

Architecture for Replication Server/SQL Remote
installations

The arrangement for using a database as a Replication Server primary site
and as a SQL Remote database isillustrated in the following diagram. The
diagram illustrates a case where the stable queue is held in a different
database from the data being replicated. The stable queue may alternatively
be held in the same database as the data being replicated. All connections are
client/server connections, and so the components may be running on the
same or different machines.

Replication
Server
Replication Stable
Agent Queue
Adaptive S%L Remote
Server Kssa?e
Enterprise gen
To remote
databases

How the pieces fit together

The SQL Remote Open Server acts as a replicate database in the Replication
Server setup, and so replication definitions and subscriptions are required in
the Adaptive Server Enterprise database on all tables participating in

SQL Remote replication and on several of the SQL Remote system tables.

289

Architecture for Replication Server/SQL Remote installations

Contents of the All operations are replicated to the SQL Remote Open Server, which stores

stable queue them in the stable queue. The stable queue does not have copies of the tables
being replicated. It parses the inserts, updates, and deletes to build
transactions. All transactions are stored in an image column of asingle table.
These transactions are used by the Message Agent to build SQL Remote

messages.
Message system
Stable
queue
Message
Agent

Incoming The Message Agent always applies incoming SQL Remote messages directly
messages to Adaptive Server Enterprise. It does not send operations to Replication

Server. Incoming messages are applied directly to the consolidated database
regardless of how the stable queue is populated. Conflict resolution is also
performed in the same way.

290

Chapter 13 Using SQL Remote with Replication Server

Replication Server
and SQL Remote

SQL Remote
system tables

The SQL Remote
Open Server
executable

Message system

Message
Agent

SQL Remote allows two-way replication between the consolidated database
and remote databases. Replication Server is performing one-way replication
from the consolidated database to the SQL Remote Open Server. From
Replication Server’s perspective, transactions that originate in remote

SQL Remote databases appear as transactions originating in the consolidated
SQL Remote database.

The SQL Remote Open Server requires information from the SQL Remote
system tables concerning publications and subscriptions. The Open Server
uses a connection to the Adaptive Server Enterprise database holding that
information to retrieve it when it starts.

If the SQL Remote system tables are updated while the Open Server is
running, the SQL Remote Open Server needs to receive thisinformation at
the correct time. For this reason, some of the SQL Remote system tables
need to be marked for replication. Thisis described in " Setting up

SQL Remote Open Server" on page 292.

The SQL Remote Open Server is the following executable:

¢ On Windows operating systems, the SQL Remote Open Server is
ssqueue.exe.

¢ On UNIX operating systems, the SQL Remote Open Server is ssqueue.

201

Setting up SQL Remote Open Server

Setting up SQL Remote Open Server

Initial copies of the
data

292

®,
o

This section describes how to set up a SQL Remote installation using the
SQL Remote Open Server. The procedure depends on whether the

SQL Remote stable queue is being kept in a separate Adaptive Server
Enterprise database from the tables being replicated or in the same Adaptive
Server Enterprise database.

& For moreinformation about stable queue location, see "The stable
queue" on page 273.

The setup procedure assumes you are using the extraction utility to produce
aninitial copy of the datain each remote database. Y ou must be sure not to
use the Replication Server materialization feature for this purpose.

The procedure for setting up SQL Remote Open Server has two stages:

¢ Prepare a SQL Remote setup This stage depends on whether you
have an existing SQL Remote installation or not.

¢ Add the SQL Remote Open Server to the setup This stage isthe
same regardless of previousinstallations.

To prepare your SQL Remote setup, if you have an existing
SQL Remote installation:

1 Onagquiet primary database, use the Message Agent to scan any
remaining transactions into the stable queue.

A quiet database is one where neither the Message Agent nor the
SQL Remote Open Server is running, and where no transactions are
being replicated.

2 Follow the stepsin the section "Upgrading SQL Remote for Adaptive
Server Enterprise” on page 25 to upgrade your SQL Remote software at
the consolidated site.

3 Invalidate the Message Agent truncation point at the consolidated
database using the following command:

dbcc settrunc(’Itm, 'ignore’)

4 At the stable queue database, execute the stored procedure
sp_queue_log_transfer_reset.

To prepare your SQL Remote setup, with no existing installation:

1 Setup SQL Remote as described in " Setting Up SQL Remote" on
page 19.

Chapter 13 Using SQL Remote with Replication Server

Set up your SQL Remote publications and subscriptions at this point.
For information on this procedure, see " SQL Remote Design for
Adaptive Server Enterprise” on page 141.

Extract the remote databases. For information on this procedure, see
"Using the extraction utility" on page 193.

Y ou are now ready to set up the SQL Remote Open Server.

% To set up the SQL Remote Open Server:

1

If the SQL Remote stable queue isin a separate database:

¢ Set up the stable queue database as a replicate database in a
Replication Server setup. Thiswill create the tables and procedures
needed by Replication Server, such asrs lastcommit.

¢ Drop the Replication Server connection to the stable queue
database.

Add an entry to your interfaces file for the SQL Remote Open Server.
The default name used on the SQL Remote Open Server command line

is SSQueue.
Start the SQL Remote Open Server.

Create a Replication Server connection to the SQL Remote Open Server.
The user 1D and password for this connection must match the user 1D
and password specified on the SQL Remote Open Server command line
for the stable queue connection (that is, the - cq option, or - c if -cq is
not specified).

Configure Replication Server now

Y ou should configure Replication Server for this connection at this
point. For a description, see " Configuring Replication Server" on
page 295.

Defing, activate, and validate Replication Server replication definitions
and subscriptions for the SQL Remote tablessr_marker,
sr_remoteuser, sr_subscription, and sr_passthr ough. The script
ssremote.rsisasample script to perform this task. You will need to edit
the server and database names in the script to match your names.

If the SQL Remote system tables have any datain them, create the
replication definitions so that no materialization happens.

293

Setting up SQL Remote Open Server

294

&~ For information on creating replication definitions with no
meaterialization, see the Replication Server Administration Guide. The
section in Chapter 10, Managing Subscriptions entitled Bulk
Materialization describes how to set up Replication Server for the case
where data exists at a remote database.

Defing, activate, and validate replication definitions and subscriptions
for the tablesin your database that need to be replicated by
SQL Remote. These must be created without materialization.

Chapter 13 Using SQL Remote with Replication Server

Configuring Replication Server

This section describes how to configure Replication Server for use with the
SQL Remote Open Server

The Replication Server connection to the SQL Remote Open Server must
have several configuration parameters set.

Set the dsi_xact_group_size parameter

How to set the
parameter

By default, Replication Server groups multiple transactionsinto larger
transactions. The dsi_xact_group_size parameter controls the maximum size
of agrouped transaction.

Thedsi_xact_group_size parameter must be set to —1 to disable transaction
grouping. Transactions that originate from different remote databases in a
SQL Remote setup must not be grouped together.

You can set the parameter using the following statement;

CONFI GURE CONNECTI ON TO " ssqueue_server"
SET dsi _xact_group_size TO ' -1’

Set the dsi_num_threads parameter

The SQL Remote Open Server does not support multiple DSI threads.
Replication Server should not be configured to use multiple DSI threads on
SQL Remote connections.

Create replication definitions for SQL Remote data

Replication definitions for tables being replicated by SQL Remote must have
certain characteristics. This section describes those characteristics.

In some circumstances SQL Remote replicates an UPDATE operation as an
INSERT or a DELETE (see "Replication of updates" on page 77). This is
referred to asubscription migration in the Replication Server

documentation. In order to replicate an UPDATE as an INSERT,

SQL Remote requires the full pre-image of the row. This means that
Replication Server must specify the values of every column in the WHERE
clause of any UPDATE to a table that might need to be replicated as an
INSERT.

295

Configuring Replication Server

Text and image
columns

Using the
dsi_sql_data_style
data style

The simplest way to achieve thisisto list all columnsin the PRIMARY KEY
of the replication definition. This forces Replication Server to include every
column in the WHERE clause of every update. REPLICATE MINIMAL
COLUMNS can be used on these replication definitions to prevent every
column from being listed in the SET clause of the update.

Replication Server does not accept TEXT or IMAGE columns in the primary
key of areplication definition. Y ou should include all the columns except for
the TEXT and IMAGE columns in the PRIMARY KEY list of your
replication definition, and specify all the TEXT and IMAGE columnsin the
ALWAYS REPLICATE clause. Y ou should use REPLICATE ALL
COLUMNS, instead of REPLICATE MINIMAL COLUMNS in your
replication definition. This forces Replication Server to send the pre-image
of the TEXT and IMAGE columns to the SQL Remote Open Server
whenever an update occurs.

Replication Server 11.5 hasanew dsi_sgl_data_style for SQL Remote. This
data style automatically includes all columns in the WHERE clause of every
UPDATE. It isnot necessary to list all columnsin the PRIMARY KEY of
the replication definition. A replication definition using REPLICATE
MINIMAL COLUMNS prevents Replication Server from keeping the full
pre-image of rows being updated, so the SQL Remotedsi_sql_data_style
will not work with REPLICATE MINIMAL COLUMNS.

Suspend and restart the connection

296

After configuring the Replication Server connection to the SQL Remote
Open Server, you should suspend and resume the connection so that the
parameter settings can take effect. The following commands accomplish this
task:

suspend connection to ssqueue_server
go

resume connection to ssqueue_server
go

Chapter 13 Using SQL Remote with Replication Server

Other issues

This section lists other issues regarding using SQL Remote with Replication
Server.

Running the Message Agent The Message Agent should be run with
command-line options to receive and send (-r and -s). Thiswill prevent the
Message Agent from attempting to scan the transaction log. If the Message
Agent attempts to scan the transaction log while the Replication Agent is
running, it will get an error attempting to reserve the "log transfer context".

Procedure calls in SQL Remote Open Server The SQL Remote Open
Server passes all procedure calls it receives from Replication Server through
to the stable queue database. For example, rs_get_lastcommit and

rs update lastcommit are executed in the stable queue database.

Coordinated dumps Replication Server provides a mechanism to
coordinate database dumps and transaction log dumps between the main
database and the stable queue database. Thers dumpdb and rs_ dumptran
function strings can be used to perform coordinated dumps of the stable
gueue database. Please see the Replication Server documentation for more
information.

Schema changes If you make any schema changesto a SQL Remote
installation, you must do so on a quiet system. This includes shutting down
the SQL Remote Open Server.

297

Other issues

298

PART FOUR
Reference

This part presents reference material for SQL Remote.

299

300

CHAPTER 14

Utilities and Options Reference

About this chapter

Contents

This chapter provides reference material for the SQL Remote utilities and

SQL Remote database options.

It also describes client event-hook stored procedures, which can be used to

customize the replication process.

Topic Page
The Message Agent 302
The Database Extraction utility 311
The SQL Remote Open Server 319
SQL Remote options 322
SQL Remote event-hook procedures 327

301

The Message Agent

The Message Agent

Purpose To send and apply SQL Remote messages, and to maintain the message
tracking system to ensure message delivery.
Syntax {dbremote | ssremote } [options] [directory]
Options Option Description
@filename Read in options from configuration file
@enwar Read in options from environment variable
-a Do not apply received transactions
-b Run in batch mode
—C"keyword=value; ..." Supply database connection parameters
—cq"keyword=value; ..." | Supply database connection parameters for the stable
queue (Adaptive Server Enterprise only)
—dl Display log messages on screen
—ekkey Specify encryption key
—ep Prompt for encryption key
—elocale-string Locale setting (Adaptive Server Enterprise only)
—fq Full scan of the stable queue when sending messages
(Adaptive Server Enterprise only)
—-gn Group_tranaactions consisting of lessthan n
operations.

—i Scan transactions from the transaction log into the
stable queue (Adaptive Server Enterprise only).

-k Close window on completion

-l length Maximum message length

—-msize Maximum amount of memory used for building
messages.

—ofile Output messagesto file

—o0ssize Maximum file size for logging output messages

—otfile Truncate file and log output messages

—-p Do not purge messages

—q Run with minimized window

-r Receive messages

—rd minutes Polling frequency for incoming messages

302

Chapter 14 Utilities and Options Reference

Description

Option Description

-ro filename Log remote output to file

—rp number Number of receive polls before message is assumed
lost

-t filename Truncate, and log remote output to file.

—ru time Waiting period to re-scan log on receipt of aresend.

-S Send messages

—sdtime Send polling period

—t Replicate all triggers (Adaptive Server Anywhere
only)

-u Process only backed up transactions

—ud On UNIX platforms, run as a daemon.

-V Verbose operation

-wn Number of worker threads to apply incoming
messages (Not NetWare or Windows CE)

—Xx [size] Rename and restart the transaction log (Adaptive
Server Anywhere only).

directory The directory in which old transaction logs are held
(Adaptive Server Anywhere only)

The Message Agent sends and applies messages for SQL Remote replication,
and maintains the message tracking system to ensure message delivery.

The name of the Message Agent executable is as follows:
¢ dbremote The Message Agent for Adaptive Server Anywhere.
¢ ssremote The Message Agent for Adaptive Server Enterprise.

Y ou can also run the Message Agent from your own application by calling
into the DBTools library. For more information, see the file dbrmt.h in the h
subdirectory of your SQL Remote installation directory.

For Adaptive Server Anywhere, the user ID in the Message Agent command
must have either REMOTE DBA or DBA authority. For Adaptive Server
Enterprise, the user ID must have replication role.

The optional directory parameter specifies adirectory in which old
transaction logs are held, so that the Message Agent has access to events
from before the current log was started.

The Message Agent uses a number of connections to the database. For a
listing, see "Connections used by the Message Agent" on page 230.

303

The Message Agent

Option details

304

& For information on REMOTE DBA authority, see " The Message Agent
and replication security" on page 249.

@filename Read in options from the supplied file.

The file may contain line breaks, and may contain any set of options. For
example, the following command file holds a set of options for a Message
Agent that starts with a cache size of 4 Mb, sends messages only, and
connects to a database named field on a server named myserver:

-m 4096
-s
-c "eng=nyserver; dbn=fi el d; ui d=sa; pwd=sysadm n"

If this configuration file is saved as c:Iconfig.txt, it can be used in acommand
asfollows:

ssrenmote @:\config.txt
or

dbrenote @:\config.txt

@environment-variable Read in options from the supplied environment
variable.

The environment variable may contain any set of options. For example, the
first of the following pair of statements sets an environment variable holding
a set of options for a database server that starts with a cache size of 4 Mb,
receives messages only, and connects to a database named field on a server
named myser ver. The set statement should be entered all on one line:

set envvar=-m 4096 -r
-¢ "eng=nyserver; dbn=fi el d; ui d=sa; pwd=sysadmni n"

ssrenote @nvvar

—a Process the received messages (those in the inbox) without applying
them to the database. Used together with - v (for verbose output) and - p (so
the messages are not purged), this option can help detect problems with
incoming messages. Used without - p, this option purges the inbox without
applying the messages, which may be useful if a subscriptionis being
restarted.

—b Runin batch mode. In this mode, the Message Agent processes
incoming messages, scans the transaction log once and processes outgoing
messages, and then stops.

—c "parameter=value; ..." Specify connection parameters. For Adaptive
Server Anywhere, if this option is not specified, the environment variable
SQLCONNECT is used.

Chapter 14 Utilities and Options Reference

For example, the following statement runs dbremote on a database file
named c:Program Files\Sybase\SQL Anywhere 8lasademo.db, connecting
with user ID DBA and password SQL:

dbrenote -c "ui d=DBA;, pwd=SQL; dbf =c: \ Program
Fi | es\ Sybase\ SQL Anywher e 8\ asadeno. db"

The Message Agent must be run by a user with REMOTE DBA authority or
DBA authority.

& For information on REMOTE DBA authority, see "The Message Agent
and replication security" on page 249.

The Message Agent for Adaptive Server Anywhere supports the full range of
Adaptive Server Anywhere connection parameters. The Message Agent for
Adaptive Server Enterprise supports the following connection parameters:

Parameter Description

uiD LoginID

PWD Password

DBN (optional) Database name. If this parameter is not supplied, the
connection defaults to the default database for the login ID.

ENG Adaptive Server Enterprise name.

—cq "parameter=value; ..." Specify connection parameters for the stable

gueue. This option applies to Adaptive Server Enterprise only. If not
supplied, the values default to the - ¢ values.

—dl Display messagesin the Message Agent window or at the command
prompt and also in the log file if specified.

Specify encryption key (—ek) This option allows you to specify the
encryption key for strongly encrypted databases directly at the command
prompt. If you have a strongly encrypted database, you must provide the
encryption key to use the database or transaction log in any way, including
offline transaction logs. For strongly encrypted databases, you must specify
either - ek or - ep, but not both. The command will fail if you do not specify
akey for astrongly encrypted database.

Prompt for encryption key (—ep) This option alows you to specify that
you want to be prompted for the encryption key. This option causes a dialog
box to appear, in which you enter the encryption key. It provides an extra
measure of security by never allowing the encryption key to be seenin clear
text. For strongly encrypted databases, you must specify either - ek or - ep,
but not both. The command will fail if you do not specify akey for astrongly
encrypted database.

305

The Message Agent

306

—e locale-string This option appliesto Adaptive Server Enterprise only.
Specify Adaptive Server Enterprise locale information. The locale string has
the following format:

"l anguage_nane, char set _nane[, sort _order]"

By default, the Message Agent uses the default locale, which isdefined in
the file sybasellocalesl\locales.dat.

If language_name and charset_name are not supplied, the Message Agent
obtains them from Adaptive Server Enterprise. If sort_order is not supplied,
the Message Agent uses a binary sort order (sort by byte value).

—fqg Thisoption isfor use only with Adaptive Server Enterprise. It permits
afull scan of the stable queue when sending messages, starting from the
oldest confirm_sent value in the sr_remoteuser table.

Thisfeatureisintended for occasional use to clean out alarge stable queue.
If, for example, asingle user has not confirmed receipt of a message from a
long time ago, the stable queue may be very large. However, by running - f q
you can delete entries from more up-to-date users that have been confirmed,
even though they are more recent than the cutoff value at which entries are
deleted by default.

—g n Instructs the Message Agent to group transactions containing less
than n operations together with transactions that follow. The default is
twenty operations. Increasing the value of n can speed up processing of
incoming messages, by doing less commits. However, it can also cause
deadlock and blocking by increasing the size of transactions.

—i Scan transactions from the transaction log into the stable queue. This
option is available for Adaptive Server Enterprise only. It is used when you
wish to run a separate copy of the Message Agent for scanning the
transaction log and for sending and receiving messages.

If noneof -r, -i, or-s isspecified, the Message Agent executes all three
phases. Otherwise, only the indicated phases are executed.

& For moreinformation, see "Running multiple Message Agents' on
page 277.

—k Close window on completion when used together with the - o
parameter.

-l length Specifies the maximum length of each message to be sent, in
bytes. Longer transactions are split into more than one message. The default
is 50000 bytes and the minim length is 10000.

Chapter 14 Utilities and Options Reference

Caution
The maximum message length must be the same at all sitesin an
installation.

For platforms with restricted memory allocation, the value must be less than
the maximum memory allocation of the operating system.

—-m size Specifies a maximum amount of memory to be used by the
Message Agent for building messages and caching incoming messages. The
allowed size can be specified as n (in bytes), nK, or nM. The default is
2048K (2M).

When all remote databases are receiving unique subsets of the operations
being replicated, a separate message for each remote database is built up
concurrently. Only one message is built for a group of remote users that are
receiving the same operations. When the memory being used exceeds the - m
value, messages are sent before reaching their maximum size (as specified by
the-1 option).

When messages arrive, they are stored in memory by the Message Agent
until they are applied. This caching of messages prevents rereading of that
are out of order messages from the message system , which may lower
performance on large installations. When the memory usage specified using
the - moption is exceeded, messages are flushed in aleast-recently used
fashion.

-0 Append output to alog file. Default isto send output to the screen.

—os Specifies the maximum file size for logging output messages. The
allowed size can be specified as n (bytes), nK (Kb), or nM (Mb). By default
there is no limit, and the minimum limit is 20000 bytes.

Before SQL Remote |ogs output messagesto afile, it checks the current file
size. If the log message will make the file size exceed the specified size,
SQL Remote renames the output file to yymmddxx.dbr (for doremote) and
yymmddxx.ssr (for ssremote) where xx are sequential characters ranging
from AA to ZZ, and yymmdd represents the current year, month, and date.

If the Message Agent us running in continuous mode for along time, this
option allows you to manually delete old log files and free up disk space.

—ot Truncate the log file and then append output messages to it. Default is
to send output to the screen.

—p Process the messages without purging them.

—g For Windowing operating systems only, starts the Message Agent with
a minimized window.

307

The Message Agent

308

—-r Receive messages. If noneof -r, -i, or - s isspecified, the Message
Agent executes all three phases. Otherwise, only the indicated phases are
executed.

The Message Agent runs in continuous mode if called with -r. To have the
Message Agent shut down after receiving messages, usethe-b optionin
additionto - r.

—rd time By default, the Message Agent polls for incoming messages
every minute. Thisoption (r d stands for receive delay) allows the polling
frequency to be configured, which is useful when polling is expensive.

Y ou can use a suffix of safter the number to indicate seconds, which may be
useful if you want frequent polling. For example:

dbrenote -rd 30s

polls every thirty seconds.

& For moreinformation on polling, see "Tuning incoming message
polling" on page 236.

—ro Thisoptionisfor use at consolidated sites. When remote databases are
configured to send output log information to the consolidated database, this
option writes the information to afile. The option is provided to help
administrators troubleshoot errors at remote sites.

& For moreinformation, see " Troubleshooting errors at remote sites' on
page 232.

—rp When running in continuous mode, the Message Agent polls at certain
intervals for messages. After polling a set number of times (by default, one),
if amessage is missing, the Message Agent assumes it has got lost and
requests that it be resent. On slow message systems, this can result in many
unnecessary resend requests. Y ou can set the number of polls before aresend
request isissued using this option, to cut down on the number of resend
requests.

& For more information on configuring this option, see " Tuning incoming
message polling" on page 236.

—rt Thisoption isfor use at consolidated sites. It isidentical to the-r o
option except that the file is truncated on startup.

—ru Control theresend urgency. Thisisthe time between detection of a
resend request and when the Message Agent starts fulfilling the request. Use
this option to help the Message Agent collect resend requests from multiple
users before rescanning the log. The time unit can be any of {s= seconds; m
= minutes; h = hours; d = days}

Chapter 14 Utilities and Options Reference

—s Send messages. If noneof -r, -i, or - s is specified, the Message Agent
executes all three phases. Otherwise, only the indicated phases are executed.

—sd time Control the send delay which isthe time to wait between polls
for more transaction log data to send.

-t All trigger actions are replicated. If you do use this option, you must
ensure that the trigger actions are not carried out twice at remote databases,
once by the trigger being fired at the remote site, and once by the explicit
application of the replicated actions from the consolidated database.

To ensure that trigger actions are not carried out twice, you can wrap an |F
CURRENT REMOTE USER ISNULL ... END IF statement around the
body of the triggers. This option is available for Adaptive Server Anywhere
only.

—u Process only transactions that have been backed up. This option
prevents the Message Agent from processing transactions since the latest
backup. Using this option, outgoing transactions and confirmation of
incoming transactions are not sent until they have been backed up.

In Adaptive Server Anywhere, this means only transactions from renamed
logs are processed. |n Adaptive Server Enterprise, this means that only
transactions committed before the latest dump database or dump
transaction statement are processed.

—ud On UNIX platforms, you can run the Message Agent as a daemon by
supplying the - ud option.

If you run the Message Agent as a daemon, you must also supply the - o or
- ot option, to log output information.

If you run the Message Agent as adaemon and are using FTP or SMTP
message links, you must store the message link parameters in the database,
because the Message Agent does not prompt the user for these options when
running as a daemon.

& For information on message link parameters, see " Setting message type
control parameters' on page 219.

—-v Verbose output. This option displays the SQL statements contained in
the messages to the screen and, if the- o or - ot optionisused, to alogfile.

—-w n The number of worker threads used to apply incoming messages. The
default is zero, which means all messages are applied by the main (and only)
thread. A value of 1 (one) would have one thread receiving messages from
the message system and one thread applying messages to the database.

309

The Message Agent

Message system
control parameters

310

The - woption makes it possible to increase the throughput of incoming
messages with hardware upgrades. Putting the consolidated database on a
device that can perform many concurrent operations (a RAID array with a
striped logical drive) will improve throughput of incoming messages.
Multiple processors in the computer running the Message Agent could also
improve throughput of incoming messages.

The - woption will not improve performance significantly on hardware that
cannot perform many concurrent operations.

Incoming messages from a single remote database will never be applied on
multiple threads. M essages from a single remote database are always applied
serially in the correct order.

—x Rename and restart the transaction log after it has been scanned for
outgoing messages. |n some circumstances, replicating data to a consolidated
database can take the place of backing up remote databases, or renaming the
transaction log when the database server is shut down. This option is
available for Adaptive Server Anywhere only.

If the optional size qualifier is supplied, the transaction log is renamed only if
it islarger than the specified size. The allowed size can be specified asn (in
bytes), nK, or nM. The default is 0.

SQL Remote uses several registry settings to control aspects of message link
behavior.

The message link control parameters are stored in the following places:

¢ Windows Intheregistry, at the following location:

\\ HKEY_CURRENT USER
\ Sof t war e
\ Sybase
\SQL Renote

¢ NetWare You should create afile named dbremote.iniin the
sys:Isystem directory to hold the FILE system directory setting.

& For alisting of registry settings, see the section for each message
system under "Using message types’ on page 215.

Chapter 14 Utilities and Options Reference

The Database Extraction utility

Objects owned by
dbo

Y ou can access the remote database extraction utility in the following ways:
¢ From Sybase Central, for interactive use.

¢ From the system command prompt, using the ssxtract or dbxtract
utilities. Thisis useful for incorporating into batch or command files.

ssxtract is the extraction utility for Adaptive Server Enterprise, dbxtract
isthe extraction utility for Adaptive Server Anywhere.

By default, the extraction utility runs at isolation level zero. If you are
extracting a database from an active server, you should run it at isolation
level 3 (see "Extraction utility options' on page 314) to ensure that datain
the extracted database is consistent with data on the server. Running at
isolation level 3 may hamper others’ turnaround time on the server because
of the large number of locks required. It is recommended that you run the
extraction utility when the server is not busy, or run it against a copy of the
database (see "Designing an efficient extraction procedure” on page 196).

The dbo user ID owns a set of Adaptive Server Enterprise-compatible
system objects in an Adaptive Server Anywhere database.

For Adaptive Server Anywhere, the extraction utility does not unload the
objects created for the dbo user ID during database creation. Changes made
to these objects, such as redefining a system procedure, are lost when the
datais unloaded. Any objects created by the dbo user 1D since the
initialization of the database are unloaded by the Extraction utility, and so
these objects are preserved.

Extracting a remote database in Sybase Central

Running the extraction utility from Sybase Central carries out the following
tasks related to creating and synchronizing SQL Remote subscriptions:

¢ Createsacommand file to build a remote database containing a copy of
the datain a specified publication.

¢ Createsthe necessary SQL Remote objects, such as message types,
publisher and remote user 1Ds, publication and subscription, for the
remote database to receive messages from and send messages to the
consolidated database.

¢ Startsthe subscription at both the consolidated and remote databases.

311

The Database Extraction utility

< To extract a remote database from a running database
1 Connect to the database.

2 Right-click the database and choose Extract Database from the popup
menu.

3 Follow theinstructionsin the wizard.

% To extract a remote database from a database file or a running
database

1 Openthe Utilitiesfolder.
2 Intheright pane, double-click Extract Database.

3 Follow theinstructionsin the wizard.

The extraction utility

Purpose

Syntax

312

To extract aremote Adaptive Server Anywhere database from a consolidated
Adaptive Server Enterprise or Adaptive Server Anywhere database.

{ ssxtract | dbxtract } [options] [directory] subscriber

Option Description

—an database Creates a database file with the same settings as the
database being unloaded and automatically reloadsiit.

—ac"keyword=value; ..." | Connect to the database specified in the connect string to do
the reload.

-b Do not start subscriptions

—C"keyword=value; ..." Supply database connection parameters

—d Unload data only

—elanguage,charset Specify the locale to be used

—f Extract fully qualified publications

—ii Internal unload, internal reload

—ix Internal unload, external reload

—j count Iteration count for view creation statements

—l level Perform all extraction operations at specified isolation level

-k Close window on completion

-n Extract schema definition only

—ofile Output messagesto file

Chapter 14 Utilities and Options Reference

Option Description

—p character Escape character

—q Operate quietly: do not print messages or show windows

—r file Specify name of generated reload Interactive SQL command
file (default "reload.sql")

-u Unordered data

-V V erbose messages

—X Use external table loads

—xf Exclude foreign keys

—Xi External unload, internal reload

—Xp Exclude stored procedures

—xt Exclude triggers

—XV Exclude views

—XX External unload, external load

-y Overwrite command file without confirmation

directory The directory to which the files are written. Thisis not
needed if you use- an or - ac

subscriber The subscriber for whom the database is to be extracted.

Description ssxtract is the extraction utility for Adaptive Server Enterprise. It isrun

against a Adaptive Server Enterprise and creates acommand file for aremote
Adaptive Server Anywhere database.

dbxtract is the extraction utility for Adaptive Server Anywhere. It isrun
against an Adaptive Server Anywhere database and creates a command file
for aremote Adaptive Server Anywhere database.

Thereis no extraction utility to create remote Adaptive Server Enterprise
databases.

The extraction utility creates acommand file and a set of associated data
files. The command file can be run against a newly-initialized Adaptive
Server Anywhere database to create the database objects and load the data
for the remote database.

By default, the command fileis named reload.sql.

If the remote user is a group, then all the user 1Ds that are members of that
group are extracted. This allows multiple users on a remote database with
different user IDs, without requiring a custom extraction process.

313

The Database Extraction utility

SSXtract notes

Not all Adaptive Server Enterprise objects have corresponding objectsin
Adaptive Server Anywhere. The ssxtract utility has the following limitations:

¢ Single database All extracted objects must bein asingle Adaptive
Server Enterprise database.

¢ Passwords The password for the extracted user IDs are the same as
the user ID itself.

¢ Permissions Theextracted user ID is granted REMOTE DBA
authority.

¢ Named constraints These are extracted as Adaptive Server Anywhere
CHECK constraints.

¢ Systemtables Thesp_populate sgl_anywhere SQL Remote
procedure builds a set of Adaptive Server Anywhere system tablesin
TEMPDB from the Adaptive Server Enterprise system tables. The
extracted schema comes from these temporary system tables.

& For more information about the Extraction utility options, see
"Extraction utility options’ on page 314.

Extraction utility options

314

Create a database for reloading (—an) Y ou can combine the operations
of unloading a database, creating a new database, and loading the data using
this option.

For example, the following command (which should be entered all on one
line) creates a new database file named asacopy.db and copies the schema
and data for the field_user subscriber of asademo.db into it:

dbxtract -c "ui d=dba; pwd=sql ; dbf =asadeno. db" -an
asacopy.db fiel d_user

If you use this option, no copy of the datais created on disk, so you do not
specify an unload directory in the command. This provides greater security
for your data, but at some cost for performance.

Reload the data to an existing database (-ac) Y ou can combine the
operation of unloading a database and reloading the results into an existing
database using this option.

For example, the following command (which should be entered all on one
line) loads a copy of the data for the field_user subscriber into an existing
database file named newdemo.db:

dbxtract -c "ui d=dba; pwd=sql ; dbf =asadeno. db" -ac
"ui d=dba; pwd=sql ; dbf =newdeno. db" fiel d_user

Chapter 14 Utilities and Options Reference

If you use this option, no copy of the datais created on disk, so you do not
specify an unload directory in the command. This provides greater security
for your data, but at some cost for performance.

Do not start subscriptions automatically (-b) If this option is selected,
subscriptions at the consolidated database (for the remote database) and at
the remote database (for the consolidated database) must be started explicitly
using the START SUBSCRIPTION statement for replication to begin.

Connection parameters (—¢) A set of connection parameters, in astring.

4 dbxtract connection parameters The user 1D should have DBA
authority to ensure that the user has permissions on al the tablesin the
database.

For example, the following statement (which should be typed on one
line) extracts a database for remote user ID joe_remote from the
asademo database running on the sample_server server, connecting as
user ID DBA with password SQL. The datais unloaded into the
c:lunload directory.

ssxtract -c "eng=sanpl e_server; dbn=sadenv;
ui d=dba; pwd=sql " c:\extract joe renote

If connection parameters are not specified, connection parameters from
the SQLCONNECT environment variable are used, if set.

¢ ssxtract connection parameters The following connection

parameters are supported:

Parameter | Description

uiD LoginID

PWD Password

DBN (optional) Database name. If this parameter is not supplied,
the connection defaults to the default database for the login
ID.

ENG Adaptive Server Enterprise name.

ssxtract cannot extract passwords. It sets passwords to be the same as
the user ID.

Unload the data only (—d) If thisoption is selected, the schema definition
is not unloaded, and publications and subscriptions are not created at the
remote database. This option is for use when a remote database already exists
with the proper schema, and needs only to be filled with data.

315

The Database Extraction utility

316

Use specified locale (—e) This option applies to Adaptive Server
Enterprise only.

Specify Adaptive Server Enterprise locale information. The locale string has
the following format:

"l anguage_nane, char set _nane[, sort _order]"

By default, the Message Agent uses the default locale, which isdefined in
the file sybasellocalesl\locales.dat.

If language_name and charset_name are not supplied, the Message Agent
obtains them from Adaptive Server Enterprise. If sort_order is not supplied,
the Message Agent uses a binary sort order (sort by byte value).

Extract fully qualified publications (—f) In most cases, you do not need
to extract fully qualified publication definitions for the remote database,
sinceit typicaly replicates al rows back to the consolidated database
anyway.

However, you may want fully qualified publications for multi-tier setups or
for setups where the remote database has rows that are not in the
consolidated database.

Internal unload, internal load (—ii) Using this option forces the reload
script to use the internal UNLOAD and LOAD TABLE statements rather
than the Interactive SQL OUTPUT and INPUT statements to unload and
load data, respectively.

This combination of operations is the default behavior.

External operations takes the path of the datafiles relative to the current
working directory of dbxtract, while internal statements take the path relative
to the server.

Internal unload, external load (—ix) Using this option forces the reload
script to use the internal UNLOAD statement to unload data, and the
Interactive SQL INPUT statement to load the data into the new database.

External operations takes the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path relative
to the server.

Iteration count for views (—j) If there are nested views in the
consolidated database, this option specifies the maximum number of
iterations to use when extracting the views.

Chapter 14 Utilities and Options Reference

Perform extraction at a specified isolation level (—) The default
setting is an isolation level of zero. If you are extracting a database from an
active server, you should run it at isolation level 3 (see "Extraction utility
options’ on page 314) to ensure that data in the extracted database is
consistent with data on the server. Increasing the isolation level may result in
large numbers of locks being used by the extraction utility, and may restrict
database use by other users.

Unload the schema definition only (-n) With this definition, none of
the dataiis unloaded. The reload file contains SQL statements to build the
database structure only. Y ou can use the SYNCHRONIZE SUBSCRIPTION
statement to load the data over the messaging system. Publications,
subscriptions, PUBLISH and SUBSCRIBE permissions are part of the
schema.

Output messages to file (—0) Outputs the messages from the extraction
processto afile for later review.

Escape character (—p) The default escape character (\) can be replaced
by another character using this option.

Operate quietly (—-q) Display no messages except errors. Thisoption is
not available from other environments. Thisis available only from the
command-line utility.

Reload filename (-r) The default name for the reload command fileis
reload.sql in the current directory Y ou can specify a different file name with
this option.

Output the data unordered (-u) By default the datain each tableis
ordered by primary key. Unloads are quicker with the - u option, but loading
the data into the remote database is slower.

Verbose mode (—v) The name of the table being unloaded and the
number of rows unloaded are displayed. The SELECT statement used is also
displayed.

Exclude foreign key definitions (—xf) Y ou can use thisif the remote
database contains a subset of the consolidated database schema, and some
foreign key references are not present in the remote database.

External unload, internal load (—xi) The default behavior for unloading
the database is to use the UNLOAD statement, which is executed by the
database server. If you choose an external unload, dbxtract uses the
OUTPUT statement instead. The OUTPUT statement is executed at the
client.

317

The Database Extraction utility

318

External operations takes the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path relative
to the server.

Exclude stored procedure (—xp) Do not extract stored procedures from
the database.

Exclude triggers (—xt) Do not extract triggers from the database.
Exclude views (—xv) Do not extract views from the database.

External unload, external load (—xx) Use the OUTPUT statement to
unload the data, and the INPUT statement to load the data into the new
database.

The default unload behavior isto use the UNLOAD statement, and the
default loading behavior isto usethe LOAD TABLE statement. The internal
UNLOAD and LOAD TABLE statements are faster than OUTPUT and
INPUT.

External operations takes the path of the datafiles relative to the current
working directory of dbxtract, while internal statements take the path relative
to the server.

Operate without confirming actions (-y) Without this option, you are
prompted to confirm the replacement of an existing command file.

Chapter 14 Utilities and Options Reference

The SQL Remote Open Server

To take replication data from Replication Server and apply it to the
SQL Remote stable queue. This utility is needed only for databases
participating in both Replication Server (and using a Replication Agent) and

Purpose

Syntax
Options

Description

Option details

SQL Remote replication.

ssqueue [options] [open-server-name]

Option

Description

open-server-name

—c"keyword=value; ..."
—cq"keyword=value; ..."

—dl

—k
—ofile
—osfile

—otfile

An open server name, which must be declared in the
interfacesfile.

Supply database connection parameters

Supply database connection parameters for the stable
queue

Display messages in window

Close window on completion

Output messagesto file

Maximum file size for logging output messages
Truncate file and log output messages

Run with minimized window

Run as adaemon [UNIX]

Verbose operation

The SQL Remote Open Server is used to enable an Adaptive Server

Enterprise database to take part in both SQL Remote replication while acting

asaprimary sitein a Replication Server installation (or areplicate site using
asynchronous procedure calls).

The name of the executable is as follows:

¢ ssqueue.exe Windows operating systems.

¢ ssqueue UNIX operating systems.

open-server-name Replication Server must connect to the SQL Remote
Open Server, which therefore must have an open server name. This open
server nameis set at the command prompt, and must correspond to a master
and query entry in the interfaces file on the machine running the

SQL Remote Open Server, and to a query entry on the interfaces file of the
machine running Replication Server.

319

The SQL Remote Open Server

320

The interfaces file is named sql.ini on Windows operating systems, and
interfaces on UNIX.

The default value for the open server name is SSQueue.

—c Specify connection parameters to the database holding the data being
replicated. This connection is required for the SQL Remote Open Server to
gain access to the SQL Remote system tables.

The connection parameters must come from the following list:

Parameter Description

uiD LoginID

PWD Password

DBN (optional) Database name. If this parameter is not supplied, the
connection defaults to the default database for the login ID.

ENG Server name.

—cq Specify connection parameters for the stable queue. If not supplied,
the values default to the - ¢ values.

—dl Display messagesin the window or at the command prompt and also in
thelog file.

—k Close window on completion.
-0 Append output to alog file. Default isto send output to the screen.

—o0s Specifies the maximum file size for logging output messages. The
allowed size can be specified as n (bytes), nK (kb), or nM (Mb). By default
there is no limit, and the minimum limit is 20000 bytes.

Before SQL Remote |ogs output messagesto afile, it checks the current file
size. If the log message will make the filesize exceed the specified size,
SQL Remote renames the output file to yymmddxx.dbr (for doremote) and
yymmddxx.ssr (for ssremote) where xx are sequential characters ranging
from AA to ZZ, and yymmdd represents the current year, month, and date.

If the Message Agent us running in continuous mode for along time, this
option allows you to manually delete old log files and free up disk space.

—ot Truncate the log file and then append output messages to it. Default is
to send output to the screen.

—g For Windowing operating systems only, starts the Message Agent with
a minimized window.

Chapter 14 Utilities and Options Reference

—ud On UNIX platforms, you can run the SQL Remote Open Server as a
daemon by supplying the - ud option.

If you run as a daemon, you must also supply the - o or - ot option, to log
output information.

—-v Verbose output. This option displays the SQL statements contained in
the messages to the screen and, if the - o option is used, to alog file.

321

SQL Remote options

SQL Remote options

Function

Anywhere Syntax

Enterprise syntax:

Parameters

Description

322

Replication options are database options included to provide control over

replication behavior.

SET [TEMPORARY] OPTION

... [userid. | PUBLIC. loption_name = [option_value]

exec sp_remote_option option-name, option-value

Argument | Description
option_name | The name of the option being changed.
option-value | A string containing the setting for the option.

The following options are available.

OPTION VALUES DEFAULT

Blob_threshold integer, in kb 256

Compression -1t09 6

Delete old logs ON, OFF OFF

External_remote_options ON, OFF OFF

Qualify_owners ON, OFF OFF

Quote _all_identifiers ON, OFF OFF

Replication_error procedure-name NULL

Save_remote_passwords ON, OFF ON

SR_Date Format date-string yyyy/mm/dd

SR_Time_Format time-string hh:nn:ss.Ssssss

SR_Timestamp_Formeat timestamp-string yyyy/mm/dd
hh:nn:ss.Ssssss

Subscribe_by _remote ON,OFF ON

Verify_threshold integer 256

Verify_all_columns ON,OFF OFF

These options are used by the Message Agent, and should be set for the user
ID specified in the Message Agent command. They can also be set for

genera public use.

The options are as follows:

Chapter 14 Utilities and Options Reference

Blob_threshold option Any value longer than the Blob_threshold option
isreplicated asablob. That is, it is broken into pieces and replicated in
chunks, before being reconstituted by using a SQL variable and
concatenating the pieces at the recipient site.

If you are replicating blobs in an installation with Adaptive Server
Enterprise, you must ensure that Blob_threshold is set to avalue larger the
largest blob being replicated.

& For information on blob replication and Adaptive Server Enterprise, see
"Replication of blobs" on page 81.

Compression option Set the level of compression for messages. Values
can be from -1 to 9, and have the following meanings:

¢ -1 Sendmessagesin Version 5 format. Message Agents (both
dbremote and ssremote) from previous versions of SQL Remote cannot
read messages sent in Version 6 format. Y ou should ensure that
COMPRESSION isset to -1 until all Message Agentsin your system are
upgraded to Version 6.

¢ 0 Nocompression.

¢ 1to9 Increasing degrees of compression. Creating messages with
high compression can take longer than creating messages with low
compression.

Delete_old_logs option Thisoption isused by SQL Remote and by the
Adaptive Server Anywhere Replication Agent. The default setting is OFF.
When set to ON, the Message Agent (DBREMOTE) deletes each old
transaction log when all the changes it contains have been sent and
confirmed as received.

External_remote_options Thisoptionisused by SQL Remoteto
indicate whether the message link parameters should be stored in the
database (OFF) or externally (ON). By default, the setting is OFF.

Qualify_owners option Controls whether SQL statements being
replicated by SQL Remote should use qualified object names. The default in
Adaptive Server Anywhere is ON and the default in Adaptive Server
Enterpriseis OFF.

Qualifying ownersin Adaptive Server Enterprise setupsis rarely needed
because it is common for objects to be owned by dbo. When qualification is
not needed in Adaptive Server Anywhere setups, messages will be slightly
smaller with the option off.

Quote_all_identifiers option Controls whether SQL statements being
replicated by SQL Remote should use quoted identifiers. The default is OFF.

323

SQL Remote options

324

When this option is off, the dbremote quotes identifiers that require quotes
by Adaptive Server Anywhere (asit has aways done) and ssremote does not
guote any identifiers. When the option is on, all identifiers are quoted.

Replication_error option Specifies a stored procedure called by the
Message Agent when a SQL error occurs. By default no procedureis called.

The replication error procedure must have a single argument of type CHAR,
VARCHAR, or LONG VARCHAR. The procedure may be called once with
the SQL error message and once with the SQL statement that causes the
error.

While the option allows you to track and monitor SQL errorsin replication,
you must till design them out of your setup: this option is not intended to
resolve such errors.

Y ou can use atable with DEFAULT CURRENT REMOTE USER to record
the remote site that caused the error.

Save_remote_passwords option When a password is entered into the
message link dialog box on first connection, the parameter values are saved.
By default, Save remote passwordsis ON and the password is saved. If you
are storing the message link parameters externaly, rather than in the
database, you may wish not to save the passwords. Y ou can prevent the
passwords from being saved by setting this option to NO.

SR_Date_Format option The Message Agent uses this option when
replicating columns that store a date. The option is a string build from the
following symbols:

Symbol Description

vy Two digit year

yyyy Four-digit year

mm Two-digit month

mmm Character format for month
dd Two-digit day

Each symbol is substituted with the date being replicated.

If you set the mm format symbol in upper case, the corresponding characters
are also upper case.

For the digit formats, the case of the option setting controls padding. If the
symbols are the same case (such as DD), the number is padded with zeroes.
If the symbols are mixed case (such as Mm), the number is not zero padded.

Chapter 14 Utilities and Options Reference

SR_Time_Format option The Message Agent uses this option when
replicating columns that store atime. The option is a string build from the
following symbols:

Symbol Description

hh Two digit hours (24-hour clock)
nn Two-digit minutes

mm Two-digit minutesif following a

colon (asin hh:mm)

s9.s...] Two-digit seconds plus optional
fractions of a second.

Using mixed case in the formatting string suppresses leading zeroes.

SR_Timestamp_Format The Message Agent replicates datetime
information using this option. For Adaptive Server Anywherethisisthe
timestamp, datetime, and smalldatetime data types. For Adaptive Server
Enterprise, thisis the datetime and smalldatetime data types.

The format strings are taken from the SR_Date Format and
SR _Time Format settings.

The default setting isthe SR_Date Format setting, followed by the
SR _Time Format setting.

Subscribe_by remote option When set to ON, operations from remote
databases on rows with a subscribe by value that is NULL or an empty string
assume the remote user is subscribed to the row. When set to OFF, the
remote user is assumed not to be subscribed to the row.

Theonly limitation of thisoption isthat it will lead to errorsif aremote user
really does want to INSERT (or UPDATE) arow withaNULL or empty
subscription expression (for information held only at the consolidated
database). Thisis reasonably obscure and can be worked around by assigning
a subscription value in your installation that belongs to no remote user.

& For more information about this option, see "Using the
Subscribe_by_remote option with many-to-many relationships" on page 118,
and "Using the Subscribe_by remote option with many-to-many
relationships' on page 165.

Verify_threshold option If the datatype of acolumn islonger than the
threshold, old values for the column are not verified when an UPDATE is
replicated. The default setting is 1000.

This option keeps the size of SQL Remote messages down, but has the
disadvantage that conflicting updates of long values are not detected.

325

SQL Remote options

Examples

326

Verify_all_columns option The default setting is OFF. When set to ON,
messages contai ning updates published by the local database are sent with all
column values included, and a conflict in any column triggers a RESOLVE
UPDATE trigger at the subscriber database.

The extraction utility for Adaptive Server Enterprise sets the public optionin
remote Adaptive Server Anywhere databases to match the setting in the
Adaptive Server Enterprise database.

¢ Thefollowing statement sets the Verify_all_columns option to OFF in
Adaptive Server Anywhere, for all users:

SET OPTION PUBLIC. Verify_all_colums ="' CFF

¢ Thefollowing statements set the Verify_all_columns option to OFF in
Adaptive Server Enterprise:

exec sp_renote_option Verify all_colums, 'OFF
go

In Adaptive Server Enterprise, replication options are used only by
SQL Remote.

Chapter 14 Utilities and Options Reference

SQL Remote event-hook procedures

Notes

The #hook_dict
table

The following stored procedure names and arguments provide the interface
for customizing synchronization at SQL Remote databases.

Unless otherwise stated, the following apply to event-hook procedures:

¢ The stored procedures must either have DBA authority (Adaptive
Server Anywhere) or dbo authority (Adaptive Server Enterprise).

¢ The procedure must not commit or rollback operations, or perform any
action that performs an implicit commit. The actions of the procedure
are automatically committed by the calling application.

¢ You can troubleshoot the hooks by turning on the Message Agent
verbose mode.

¢ Thehooksfor dbremote and ssremote differ only in name.

The #hook_dict table is created immediately before a hook is called using the
following CREATE statement:

CREATE t abl e #hook_di ct (
nanme VARCHAR(128) NOT NULL UN QUE,
val ue VARCHAR(255) NOT NULL)

The Message Agent uses the #hook_dict table to pass values to hook
functions; hook functions use the #hook_dict table to pass values back to the

Message Agent.

sp_hook _dbremote begin and sp_hook _ssrmt_begin

Function

Rows in #hook_dict
table

Description

Use this stored procedure to add custom actions at the beginning of the
replication process.

Name | Values | Description

send trueor false Indicates if the process is performing the send
phase of replication.

receive trueor false Indicates if the process is performing the receive
phase of replication

If a procedure of this name exists, it is called when the Message Agent starts.

327

SQL Remote event-hook procedures

sp_hook _dbremote_end and sp_hook _ssrmt_end

Function Use this stored procedure to add custom actions just before the Message
Agent exits.
R%\:VS in #hook_dict Name Values Description
table
send trueor false Indicates if the process is performing the send
phase of replication.
receive trueor false Indicates if the process is performing the receive
phase of replication
exit code | integer A non-zero exit code indicates an error.
Description If a procedure of this name exists, it is called as the last event before the
Message Agent shuts down.

sp_hook_dbremote_shutdown and sp_hook_ssrmt_shutdown

Function Use this stored procedure to initiate a Message Agent shutdown.
R%\:VS in #hook_dict Name Values Description
table

send trueor false Indicates if the processis performing the send

phase of replication.

receive trueor false Indicates if the process is performing the receive
phase of replication

shutdown | trueor false Thisrow is false when the procedure is called. If
the procedure updates the row to true the
Message Agent is shut down.

Description If a procedure of this name exists, it is called when the Message Agent is
neither sending nor receiving messages, and permits a hook-initiated
shutdown of the Message Agent.

sp_hook_dbremote_receive_begin and
sp_hook_ssrmt_receive_begin

Function Use this stored procedure to perform actions before the start of the receive
phase of replication.

Rows in #hook_dict None

328

Chapter 14 Utilities and Options Reference

sp_hook _dbremote _receive _end and sp_hook_ssrmt_receive _end

Function Use this stored procedure to perform actions after the end of the receive
phase of replication.

Rows in #hook_dict None

sp_hook_dbremote_send_begin and sp_hook_ssrmt_send_begin

Function Use this stored procedure to perform actions before the start of the send
phase of replication.

Rows in #hook_dict None

sp_hook_dbremote_send_end and sp_hook _ssrmt_send_end

Function Use this stored procedure to perform actions after the end of the send phase
of replication.
Rows in #hook_dict None

sp_hook_dbremote_message_sent and
sp_hook _ssrmt_message_sent

Function Use this stored procedure to perform actions after any message is sent.

Rows in #hook_dict Name | Values

remote user | The message destination

sp_hook _dbremote_message_missing and
sp_hook _ssrmt_message_missing

Function Use this stored procedure to perform actions when the Message Agent has
determined that one or more messages is missing from a remote user.

Rows in #hook_dict Name | Values

remoteuser | The name of the remote user who will have to resend
messages.

329

SQL Remote event-hook procedures

sp_hook _dbremote_apply begin and sp_hook _ssrmt_apply begin

Function

Rows in #hook_dict

Use this stored procedure to perform actions just before the Message Agent
applies a set of messages from a user.

Name | Values

remoteuser | The name of the remote user who sent the messages about to
be applied.

sp_hook _dbremote apply_end and sp_hook_ssrmt_apply_end

Function

Rows in #hook_dict

330

Use this stored procedure to perform actions just after the Message Agent
has applied a set of messages from a user.

Name | Values

remoteuser | The name of the remote user who sent the messages that
have been applied.

CHAPTER 15

System Objects for Adaptive Server
Anywhere

About this chapter SQL Remote-specific system information is held in the Adaptive Server
Anywhere catalog. A more comprehensible version of thisinformation is
held in a set of system views.

Contents Topic Page
SQL Remote system tables 332
SQL Remote system views 338

331

SQL Remote system tables

SQL Remote system tables

This section describes the system tables used by SQL Remote to define and
manage SQL Remote information. In the following diagram, arrows indicate
foreign key relations between tables: the arrow leads from the foreign table
to the primary table.

SYSSUBSCRIPTION
publication_id <pk.fk> smallint _)
user_id <pk.fk> smallint user_id = user_id
subscribe_by <pk> char(128)
created numeric(20,0)
started numeric(20,0)
i SYSREMOTEUSER
publication_id = publication_id user_id <pk> smallint
consolidate char(1)
type_id <fk> smallint
SYSPUBLICATION address long varchar
— - frequency char(1)
ublication_id <pk> smallint send time time
publication_name char(128) log send nUMeric(20,0)
remarks long varchar time sent timestamp
log_sent numeric(20,0)
confirm_sent numeric(20,0)
publication_id = publication_id send count integer
‘ resend_count integer
SYSARTICLE time_received timestamp
publication_id <pk.fk> smallint log_received numeric(20,0)
table_id <pk> smallint confirm_received numeric(20,0)
where_expr long varchar receive_count integer
subscribe_by_expr long varchar rereceive_count integer
query char(1) ‘

type_id = type_id

publication_id = publication_id
table_id = table_id

\ SYSREMOTETYPE
SYSARTICLECOL type _id <pk> smallint
publication_id <pk,fk> smallint type_name char(128)
table_id <pk,fk> smallint publisher_address long varchar
column_id <pk> smallint remarks long varchar

These tables are described in more detail in the following sections.

SYSARTICLE table

Function Each row describes an article in a SQL Remote publication.

332

Chapter 15 System Objects for Adaptive Server Anywhere

Columns

Column

Data type

Description

publication_id

table_id

where_expr

subscribe_by expr

query

SYSARTICLECOL table

Function

Columns

UNSIGNED INT

UNSIGNED INT

LONG VARCHA
R

LONG VARCHA
R

CHAR()

The publication of which thisarticleisa
part.

Each article consists of columns and
rows from asingle table. This column
containsthe table ID for thistable.

For articles that contain a subset of rows
defined by aWHERE clause, this
column contains the search condition.

For articles that contain a subset of rows
defined by a SUBSCRIBE BY
expression, this column contains the
expression.

The SUBSCRIBE BY expression could
be a subquery that returns multiple
values. This column contains Y or N to
indicate if the expression is a subquery
(Y) or not (N). This column is used by
the Extraction utility

Each row identifies a column in an article, identifying the column, the table it

isin, and the publ

ication it is part of.

Column Data type Description

publication_id UNSIGNED IN | A uniqueidentifier for the publication of
T which the column is apart.

table id UNSIGNED IN | The table to which the column belongs.
T

column_id UNSIGNED IN | The column identifier, from the
T SYSCOLUMN system table.

SYSPUBLICATION table

Function

Each row describes a SQL Remote publication.

333

SQL Remote system tables

Columns

Column Data type Description

publication_id UNSIGNED INT A unique identifier for the publication
creator UNSIGNED INT The user ID that owns the publication
publication_name | VARCHAR(128) The name of the publication

remarks I&ONG VARCHA | Comments

SYSREMOTEOPTION table

Function

Columns

Each row describes the values of a SQL Remote message link parameter.

Column Data type Description

option_id UNSIGNED INT | Anidentification number for the
message link parameter.

user_id UNSIGNED INT | The user ID for which the parameter is
Set.

" setting00" VARCHAR(255) | Thevaue of the message link

SYSREMOTEOPTIONTYPE table

Function

Columns

parameter.

Each row describes one of the SQL Remote message link parameters.

Column Data type Description

option_id UNSIGNED INT | Anidentification number for the
message link parameter.

type_id SMALLINT An identification number for the
message type that uses this parameter

" option” VARCHAR(128) | The name of the message link
parameter.

SYSREMOTETYPE table

Function

334

Each row describes one of the SQL Remote message types, including the

publisher address.

Chapter 15 System Objects for Adaptive Server Anywhere

Columns

Column Data type Description

type_id SMALLINT An identification number for the
message type.

type_name VARCHAR(128) | The messagetype. Thereis aseparate
row for each of the following:
¢ FILE
¢+ MAPI
¢ VIM
¢ SMTP

publisher_address | VARCHAR(128) | The publisher’s address for the message
typetype_name. SQL Remote receives
messages from this address.

remarks LONG VARCHA | Comments

R

SYSREMOTEUSER table

Each row describes a user ID with REMOTE permissions (a subscriber),
together with the status of SQL Remote messages sent to and from that user.

Function

Columns

Column Data type Description

user_id UNSIGNED INT The user ID of the user with REMOTE
permissions.

consolidate CHAR(1) The column contains either an N to
indicate a user granted REMOTE
permissions, or aY to indicate a user
granted CONSOLIDATE permissions.

type_id SMALLINT The ID of the message system used to
send messages to this user.

address LONG VARCHA | The addressto which SQL Remote

R messages are to be sent. The address

must be appropriate for the
address_type.

frequency CHAR(1) How frequently SQL Remote messages
are to be sent. P for Periodically, and A
stands for Occasionally.

send_time TIME The next time messages are to be sent

to this user.

335

SQL Remote system tables

Column

Data type

Description

log_send

time_sent

log_sent

confirm_sent

send_count

resend_count

time_received

log_received

confirm_received

receive_count

rereceive_count

NUMERIC(20, 0)

TIMESTAMP

NUMERIC(20, 0)

NUMERIC(20, 0)

INT

INT

DATETIME

NUMERIC(20, 0)

NUMERIC(20, 0)

INT

INT

If log_send is greater than log_sent,
the Message Agent resends messages
immediately to the subscriber the next
timeitisrun.

The time the most recent message was
sent to this subscriber.

The local log offset for the most
recently sent operation to this
subscriber.

The log offset for the most recently
confirmed operation from this
subscriber.

The number of SQL Remote messages
have been sent to this subscriber.

Counter to ensure messages are applied
only once at the subscriber database.

The time the most recent message was
received from this subscriber.

The log offset in the subscriber’s
database for the operation most
recently received at the current
database.

The log offset in the subscriber’s
database for the most recent operation
for which a confirmation message has
been sent.

How number of messages received
from this subscriber.

Counter to ensure messages are applied
only once at the current database.

SYSSUBSCRIPTION table

Function Each row describes a subscription from one user 1D (which must have

REMOTE permissions) to one publication.

336

Chapter 15 System Objects for Adaptive Server Anywhere

Columns

Column Data type Description

publication_id UNSIGNED INT | Theidentifier for the publication to which
the user ID is subscribed.

user_id UNSIGNED INT | Theuser ID that is subscribed to the
publication.

subscribe_by VARCHAR(128) | For publicationswith a SUBSCRIBE BY
expression, this column holds the matching
value for this subscription.

created NUMERIC(20, 0) | The offset in the transaction log at which the
subscription was created.

started NUMERIC(20, 0) | The offset in the transaction log at which the

subscription was started.

337

SQL Remote system views

SQL Remote system views

This section describes the database views used by SQL Remote to present
and summarize SQL Remote information.

SYSARTICLES view

Function Each row lists describes an article.
Columns Column Description
publication_name The publication of which this articleis a part.
table_name Each article consists of columns and rows from a
single table. This column contains the name of this
table.
where_expr For articles that contain a subset of rows defined by
aWHERE clause, this column contains the search
condition.
subscribe_by_expr For articles that contain a subset of rows defined by
aSUBSCRIBE BY expression, this column
contains the expression.
SYSARTICLECOLS view
Function Each row describes a column that appearsin an article.
Columns Column Description
publication_name The name of the publication of which the column is
apart.
table_name The name of the table to which the column belongs.
column_name The column name.
SYSPUBLICATIONS view
Function Lists the names of al publications.

338

Chapter 15 System Objects for Adaptive Server Anywhere

Columns

Column | Description

publication_name | The name of the publication
createor The owner of the publication

remarks ‘ Comments

SYSREMOTEOPTIONS view

Function

Columns

Lists the SQL Remote message link parameters and their values, as stored in
the SYSREMOTEOPTION and SYSREMOTEOPTIONTYPE system tables, in
more readable form.

Column | Description
type_name The message link type.
" option” The option name.
setting | The option value.

SYSREMOTEUSERS view

Function

Columns

Lists information about remote users and their status.

Column Description
user_name The user ID of the user with REMOTE permissions.
consolidate The column contains either an N to indicate a user

with REMOTE permissions, or aY to indicate a user
with CONSOLIDATE permissions.

type_name The name of the message type used to send messages
to this user.

address The address to which SQL Remote messages are to
be sent. The address must be appropriate for the
address_type.

frequency How freguently SQL Remote messages are to be sent.

send_time The next time messages are to be sent to this user.

next_send The next time messages are to be sent to this user, in

amore comprehensible format.

log_send Messages are sent only to subscribers for whom
log_send is greater than log_sent.

339

SQL Remote system views

Column Description

time_sent The time the most recent message was sent to this
subscriber.

log_sent The transaction log offset for the most recently sent
operation.

confirm_sent The transaction log offset for the most recently
confirmed operation from this subscriber.

send_count How many SQL Remote messages have been sent.

resend_count Counter to ensure messages are applied only once at

time_received

log_received

confirm_received

receive _count

rereceive_count

SYSSUBSCRIPTIONS view

Function

Columns

340

the subscriber database.

The time the most recent message was received from
this subscriber.

The log offset in the subscriber’s database for the
operation most recently received at the current
database.

The log offset in the subscriber’s database for the
most recent operation for which a confirmation
message has been sent.

How many messages have been received.

Counter to ensure messages are applied only once at
the current database.

Each row lists information about a subscription.

Column

Description

publication_name

user_name

subscribe by

created

started

The name of the publication to which theuser ID is
subscribed.

The user ID that is subscribed to the publication.

For publications with a SUBSCRIBE BY
expression, this column holds the matching value
for this subscription.

The offset in the transaction log at which the
subscription was created.

The offset in the transaction log at which the
subscription was started.

CHAPTER 16

System Objects for Adaptive Server
Enterprise

About this chapter SQL Remote-specific system information is held in a set of tables called the
SQL Remote system tables. A more comprehensible version of this
information is held in a set of views, called the SQL Remote system views.

Contents Topic Page
SQL Remote system tables 342
SQL Remote system views 350
Stable Queue tables 354

341

SQL Remote system tables

SQL Remote system tables

#remote table

Function

Columns

Description

sr_article table

Function

342

This section describes the database tables used by SQL Remote to define and
manage SQL Remote information.

Caution
These tables are for use only by SQL Remote. Do not alter these tables or
their contents directly.

This temporary tableis created by the Message Agent to hold the name of
the current remote user and of the current publisher. Thistable existsonly in
Adaptive Server Enterprise.

Column | Data type | Description

current_remote user | VARCHAR(128) | Current remote user (from the
Message Agent command line).

current_publisher ‘ VARCHAR(128) | Current publisher

Thisis not a system table. When the Message Agent for Adaptive Server
Enterprise connects to the server, it holds the value of the current remote user
ID and the value of the current publisher in the #remotetable. This
temporary tableisheld in TEMPDB.

The values from #remote can be used in conflict resolution procedures.

The CREATE TABLE statement for thistableis:

CREATE TABLE #renote (
current_renote_user varchar(128),
current _publi sher varhcar (128)

)
The table has a single row.

Each row describes an article in a SQL Remote publication.

Chapter 16 System Objects for Adaptive Server Enterprise

Columns

Column Data type Description

publication_id INT The publication of which this articleis
apart.

table id INT Each article consists of columns and
rows from asingle table. This column
contains the table ID for thistable.

where_expr VARCHAR(128) For articles that contain a subset of

subscribe_by expr

subscribe_by view

sr_articlecol table

Function

Columns

sr_marker table

Function

Columns

rows defined by a WHERE clause, this
column contains the search condition.

VARCHAR(128) For articles that contain a subset of
rows defined by a SUBSCRIBE BY
expression, this column contains the
expression.

VARCHAR(128) For articles that contain a subset of the
rows defined by a view. This column
contains the name of the view.

Each row identifies a column in an article, identifying the column, the table it
isin, and the publication it is part of.

Column Data type Description

publication_id INT A unique identifier for the publication of
which the column is a part.

table id INT The table to which the column belongs.

column_id INT The column identifier, from the

SYSCOLUMN system table.

To ensure that messages received by the Message Agent are sent to remote
databases in the same session.

Column

| Data type | Description

mar ker

DATETIME A time value indicating when the
latest messages were applied.

343

SQL Remote system tables

Description

sr_object table

Function

Columns

sr_option table

Function

Columns

Description

When a consolidated database uses two Message Agents, one to populate the
stable queue (- i) and one to receive and send messages (- r - s), thesingle
row of the sr_marker tableis used to ensure that messages received and
applied to the database are sent before the Message Agent closes down.

Holds alist of SQL Remote objects. The extraction utility needs to know not
to extract the SQL Remote system objects. The sp_populate sgl_anywhere
procedure that creates a set of Adaptive Server Anywhere system tablesin
TEMPDB getsalist of SQL Remote objects from the sr_object table.

Column Data type Description
name VARCHAR(128) The name of the object.
type CHAR(1) One of the following:
¢ U User-defined table
¢ V View
¢ P Procedure

Each row describes a replication option used by SQL Remote.

Column | Data type | Description

VARCHAR(128)
VARCHAR(128)

option The name of the option.

value The setting for the option.

& For information about available options, see " SQL Remote options' on
page 322.

sr_passthrough table

Function

344

Each row describes a passthrough operation being sent to a user or to
subscribers to a publication.

Chapter 16 System Objects for Adaptive Server Enterprise

Columns

Column Data type Description

operation VARCHAR(20) A passthrough operation, or piece of a
passthrough operation, entered using
sp_passthrough or sp_passthrough_piece.

value VARCHAR(255) | A subscription column value indicating which
users are to receive the operation.

id INT A user who isto receive the operation.

sr_publication table

Function

Columns

Each row describes a SQL Remote publication.

Column

| Data type

| Description

publication_id | INT

publication_name ‘ VARCHAR(128)

sr_publisher table

Function

Columns

| Anidentifier for the publication
| The name of the publication.

The row holds the user ID of the publisher.

Column

| Data type

| Description

user_id

sr_remoteoption table

Function

Columns

| INT

| The user 1D of the publisher.

Each row describes the values of a SQL Remote message link parameter.

Column Data type Description

option_id INTEGER An identification number for the
message link parameter.

user_id INTEGER The user ID for which the parameter is
Set.

" setting00" VARCHAR(255) | Thevalue of the message link
parameter.

345

SQL Remote system tables

sr_remoteoptiontype table

Function

Columns

Each row describes one of the SQL Remote message link parameters.

Column Data type Description

option_id INTEGER An identification number for the
message link parameter.

type_id INTEGER An identification number for the
message type that uses this parameter

" option” VARCHAR(128) | The name of the message link

sr_remotetable table

Function

Columns

parameter.

Each row describes a table that is marked for replication using SQL Remote.

Column Data type Description

table id INT Theid of thetable.

resolve_name VARCHAR(128) | The name of the stored procedure to be
executed in the case of conflicts.

old_row_name VARCHAR(128) | Thetablethat holds the old row name.

remote_row_name | VARCHAR(128) | Thetablethat holds the remote row

sr_remotetype table

Function

346

name.

Each row describes one of the SQL Remote message types, including the

publisher address.

Chapter 16 System Objects for Adaptive Server Enterprise

Columns

Column

Data type

Description

type_id

type_name

publisher_address

sr_remoteuser table

Function

Columns

INT

VARCHAR(128)

VARCHAR(128)

An identification number for the
message type.

The message type. There is a separate
row for each of the following:

¢ FILE
¢+ MAPI
¢ VIM
¢ SMTP

The publisher’s address for the message
typetype name.

Each row describes a user ID with REMOTE permissions (a subscriber),
together with the status of SQL Remote messages sent to and from that user.

Column Data type Description

user_id INT The user ID of the user with REMOTE
permissions.

consolidate CHAR(1) The column contains either an N to
indicate a user granted REMOTE
permissions, or aY to indicate a user
granted CONSOLIDATE permissions.

type_id INT The ID of the message system used to
send messages to this user.

address VARCHAR(128) | Theaddressto which SQL Remote
messages are to be sent. The address
must be appropriate for the
address_type.

frequency CHAR(1) How frequently SQL Remote messages
are to be sent.

send_time DATETIME The next time messages are to be sent to
this user.

log_send NUMERIC(20, 0) | Messages are sent only to subscribers for
whom log_send is greater than log_sent.

time_sent DATETIME The time the most recent message was

sent to this subscriber.

347

SQL Remote system tables

Column Data type Description

log_sent NUMERIC(20, 0) | Thelog offset for the most recently sent
operation.

confirm_sent NUMERIC(20, 0) | Thelog offset for the most recently
confirmed operation from this
subscriber.

send_count INT How many SQL Remote messages have
been sent.

resend_count INT Counter to ensure messages are applied
only once at the subscriber database.

time_received DATETIME The time the most recent message was

log_received

confirm_received

receive_count

rereceive _count

fillerl
filler2
filler3
filler4

sr_subscription table

Function

348

NUMERIC(20, 0)

NUMERIC(20, 0)

INT

INT

CHAR(255)
CHAR(255)
CHAR(255)
CHAR(255)

received from this subscriber.

The log offset in the subscriber’s
database for the operation most recently
received at the current database.

The log offset in the subscriber’s
database for the most recent operation
for which a confirmation message has
been sent.

How many messages have been received
from this subscriber.

Counter to ensure messages are applied
only once at the current database.

Reserved
Reserved
Reserved

Reserved

Each row describes a subscription from one user ID (which must have
REMOTE permissions) to one publication.

Chapter 16 System Objects for Adaptive Server Enterprise

Columns

Column Data type Description

publication_id INT The identifier for the publication to which
the user ID is subscribed.

user_id INT The user ID that is subscribed to the
publication.

subscribe_by VARCHAR(128) | For publicationswith a SUBSCRIBE BY
expression, this column holds the matching
value for this subscription.

created NUMERIC(20, 0) | The offset in the transaction log at which the
subscription was created.

started NUMERIC(20, 0) | The offset in the transaction log at which the
subscription was started.

operation VARCHAR(20)

349

SQL Remote system views

SQL Remote system views

This section describes the database views used by SQL Remote to present
and summarize SQL Remote information.

sr_articles view

Function Each row lists describes an article.

Columns Column Description

publication_name The publication of which thisarticleis a part.

table_name Each article consists of columns and rows from a
single table. This column contains the name of this
table.

where_expr For articles that contain a subset of rows defined by
aWHERE clause, this column contains the search
condition.

subscribe by expr | For articlesthat contain a subset of rows defined by
aSUBSCRIBE BY expression, this column contains
the expression.

subscribe by view | For articlesthat contain a subset of rows defined by
aview, this column contains the name of the view.

sr_articlecols view

Function Each row describes a column that appearsin an article.

Columns Column Description
publication_name | The name of the publication of which the columnisa

part.

table_name The name of the table to which the column belongs.
column_name The column name.

sr_publications view

Function Lists the names of all publications.

350

Chapter 16 System Objects for Adaptive Server Enterprise

Columns

Column | Description

publication_name ‘ The name of the publication

sr_remoteoptions view

Function

Columns

Lists the SQL Remote message link parameters and their values, as stored in
the remoteoption and remoteoptiontype system tables, in more readable form.

Column | Description
type_name | The message link type.
" option” | The option name.
setting | The option value.

sr_remotetables view

Function

Columns

Lists the tables marked for SQL Remote replication, as stored in the
remotetable system table, in more readable form.

This table exists only in Adaptive Server Enterprise.

Column Description
table_name The name of the table.
resolve_name The name of the stored procedure to be executed in

the case of conflicts.

old_row_name The table that holds the old row name.

remote row_name | Thetable that holds the remote row name.

Sr_remotetypes view

Function

Lists the message types, as stored in the remotetype system table.

351

SQL Remote system views

Columns

Column Description
type_id An identification number for the message type.
type_name The message type. Thereis a separate row for each

publisher_address

sr_remoteusers view

Function

Columns

352

of the following:
¢ FILE

¢ MAPI

¢ VIM

¢ SMTP

The publisher’s address for the message type
type_name.

Lists information about remote users and their status.

Column Description

user_name The user ID of the user with REMOTE permissions.

consolidate The column contains either an N to indicate a user
granted REMOTE permissions, or aY to indicate a
user granted CONSOLIDATE permissions.

type_name The name of the message system used to send
messages to this user.

address The address to which SQL Remote messages are to
be sent. The address must be appropriate for the
address_type.

frequency How freguently SQL Remote messages are to be sent.

send_time The next time messages are to be sent to this user.

next_send The next time messages are to be sent to this user, in
amore comprehensible format.

log_send Messages are sent only to subscribers for whom
log_send is greater than log_sent.

time_sent The time the most recent message was sent to this
subscriber.

log_sent The log offset for the most recently sent operation.

confirm_sent The log offset for the most recently confirmed

operation from this subscriber.

Chapter 16 System Objects for Adaptive Server Enterprise

Column Description

send_count How many SQL Remote messages have been sent.

resend_count Counter to ensure messages are applied only once at
the subscriber database.

time_received The time the most recent message was received from
this subscriber.

log_received The log offset in the subscriber’s database for the
operation most recently received at the current
database.

confirm_received | Thelog offset in the subscriber’s database for the
most recent operation for which a confirmation

message has been sent.
receive _count How many messages have been received.
rereceive_count Counter to ensure messages are applied only once at
the current database.

sr_subscriptions view

Function

Columns

Each row lists information about a subscription.

Column Description

publication_name | The name of the publication to which theuser ID is
subscribed.

user_name The user ID that is subscribed to the publication.

subscribe_by For publications with a SUBSCRIBE BY expression,
this column holds the matching value for this
subscription.

created The offset in the transaction log at which the

subscription was created.

started The offset in the transaction log at which the
subscription was started.

353

Stable Queue tables

Stable Queue tables

This section describes the database tables used by SQL Remote to define and
manage the stable queue information. The stable queue may be kept in the
same database as the SQL Remote database, or in a separate database.

The stable queue is used only by SQL Remote for Adaptive Server
Enterprise.

Sr_queue_state table

Function A single row table that stores persistent global information about the state of
the stable queue.

354

Chapter 16 System Objects for Adaptive Server Enterprise

Columns

Column Data type Description

version INT The stable queue version number

page id INT Transaction log page id of the last
entry scanned.

row_id INT Transaction log row_id of the last

confirm_offset

commit_offset

backup_offset

mar ker

NUMERIC(20,0)

NUMERIC(20,0)

NUMERIC(20,0)

DATETIME

entry scanned.

The minimum value of the
confirmation offsets received from
al remote users. Thisvalueis used
by the Message Agent to decide
which transactions can be deleted
from the stable queue.

The transaction log offset of the
most recent transaction completed
before the oldest incomplete
transaction.

The transaction log offset of the last
dump database or dump
transaction command.

Thisinformation is used when the
Message Agent is run with the- u
option (replicate only backed up
transactions).

The most recent incoming message
that has been scanned into the stable
queue. When amessageis applied to
the Adaptive Server Enterprise
server, it setsthe time_received
column in sr_remoteuser. When the
transaction log is scanned and the
transactions from that message are
scanned into the stable queue, it sets
the time_received column of
Sr_queue_state.

The purpose of the columnis co-
ordination between one Message
Agent that is scanning the
transaction log continuously and
another Message Agent that is
receiving messages and sending
messages in batch mode. When in
batch mode, the Message Agent
receives messages, waits for those
messages to be scanned into the
stable queue, and then sends

355

Stable Queue tables

Column Data type Description

messages. The waiting is done
through the database by looking at
the time_received column of
Sr_queue_state.

confirmed_id NUMERIC(20,0) The sending thread deletes rows
with confirmed_id less than this
value from
sr_confirmed_transaction.

sr_transaction table

Function This table has one row for each transaction in the stable queue.
Columns Column Description
offset The transaction log offset of the commit operation for the
transaction. This value uniquely identifies each transaction
user_id The remote user where the transaction originated. This column
holds NULL if the transaction did not originate from a remote
user.

The user_id column is used to ensure that actions are not
replicated back to the remote site that entered them.

data The transaction itself, in an internal representation.

356

Chapter 16 System Objects for Adaptive Server Enterprise

sr_confirmed_transaction table

Function

Columns

Each row marks the corresponding row in sr_transaction.

Column | Data type | Description
confirmed_id ‘ NUMERIC (20,0) ‘ A unique ID
offset NUMERIC (20,0) | A copy of an offset used to mark rows

insr_transaction for deletion.

Ssr_queue_coordinate table

Function

Columns

A single row, that coordinates the SQL Remote log scanning thread and the
sending thread to access the stable queue and related tables.

Column | Datatype | Description

status CHAR(2) N if the stable queue has not yet been used
by SQL Remote. | and Sif the SQL Remote
log scanning thread and sending thread have
accessed the queue.

357

Stable Queue tables

358

CHAPTER 17
Command Reference for Adaptive Server

Anywhere

About this chapter

Contents

This chapter describes the SQL statements used for executing SQL Remote
commands, and the system tables, used for storing information about the
SQL Remoteinstallation and its state.

Topic Page
ALTER REMOTE MESSAGE TY PE statement 361
CREATE PUBLICATION statement 362
CREATE REMOTE MESSAGE TY PE statement 363
CREATE SUBSCRIPTION statement 364
CREATE TRIGGER statement 365
DROP PUBLICATION statement 367
DROP REMOTE MESSAGE TY PE statement 368
DROP SUBSCRIPTION statement 369
GRANT CONSOLIDATE statement 370
GRANT PUBLISH statement 371
GRANT REMOTE statement 372
GRANT REMOTE DBA statement 373
PASSTHROUGH statement 374
REMOTE RESET statement 375
REVOKE CONSOLIDATE statement 376
REVOKE PUBLISH statement 377
REVOKE REMOTE statement 378
REVOKE REMOTE DBA statement 379
SET REMOTE OPTION statement 380
START SUBSCRIPTION statement 381

359

ALTER REMOTE MESSAGE TYPE statement

STOP SUBSCRIPTION statement 382
SYNCHRONIZE SUBSCRIPTION statement 383
UPDATE statement 384

360

Chapter 17 Command Reference for Adaptive Server Anywhere

ALTER REMOTE MESSAGE TYPE statement

Function Use this statement to change the publisher’s message system, or the
publisher’s address for a given message system, for a message type that has
been created.

Syntax ALTER REMOTE MESSAGE TYPE message-system

ADDRESS address
message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

Parameters Parameter | Description

message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:

address A string containing a valid address for the specified message
system.
Permissions Must have DBA authority.
Side effects Automatic commit.
See also "ALTER REMOTE MESSAGE TY PE statement [SQL Remote]" on

page 218 of the book ASA SQL Reference Manual
"CREATE REMOTE MESSAGE TY PE statement" on page 363
"sp_remote_type procedure” on page 430

361

CREATE PUBLICATION statement

CREATE PUBLICATION statement

Function Use this statement to create a publication. In SQL Remote, publications
identify replicated datain both consolidated and remote databases.

Syntax CREATE PUBLICATION [owner.)publication-name
(TABLE article-description, ...)

owner, publication-name : identifier

article-description:
table-name [(column-name, ...)]
[WHERE search-condition]
[SUBSCRIBE BY expression |
"CREATE PUBLICATION statement" on page 314 of the book ASA SQL

See also
Reference Manual

362

Chapter 17 Command Reference for Adaptive Server Anywhere

CREATE REMOTE MESSAGE TYPE statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Use this statement to identify a message-link and return address for outgoing
messages from a database.

CREATE REMOTE MESSAGE TYPE message-system
ADDRESS address

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

Parameter | Description

message-system | One of the supported message systems.
address The address for the specified message system.

Must have DBA authority.
Automatic commit.

"CREATE REMOTE MESSAGE TY PE statement [SQL Remote]" on
page 317 of the book ASA SQL Reference Manual

"GRANT PUBLISH statement” on page 371

"GRANT REMOTE statement" on page 372

"GRANT CONSOLIDATE statement" on page 370

"sp_remote_type procedure” on page 430

"Using message types' on page 215

363

CREATE SUBSCRIPTION statement

CREATE SUBSCRIPTION statement

Function Use this statement to create a subscription for a user to a publication.

Syntax CREATE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id

publication-name: identifier
subscription-value, subscriber-id. string

subscriber-id: string

Parameters Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The subscriber receives al rows for which
the subscription expression matches the subscription value.

subscriber-id The user ID of the subscriber to the publication. This user
must have been granted REMOTE permissions.

Permissions Must have DBA authority.
Side effects Automatic commit.
See also "CREATE SUBSCRIPTION statement [SQL Remote]" on page 324 of the

book ASA SQL Reference Manual
"DROP SUBSCRIPTION statement” on page 369
"GRANT REMOTE statement" on page 372
"SYNCHRONIZE SUBSCRIPTION statement" on page 383
"START SUBSCRIPTION statement” on page 381
"sp_subscription procedure” on page 436

364

Chapter 17 Command Reference for Adaptive Server Anywhere

CREATE TRIGGER statement

Function

Syntax

Parameters

Use this statement to create a new trigger in the database. One form of
trigger is designed specifically for use by SQL Remote.

CREATE TRIGGER trigger-name trigger-time

trigger-event, ...
[ORDER integer] ON table-name
[REFERENCING [OLD AS old-name]
[NEW AS new-name]]
[REMOTE AS remote-name] |
[FOR EACH { ROW | STATEMENT }]
[WHEN (search-condition)]
[IF UPDATE (column-name) THEN
[{AND | OR } UPDATE (column-name)] ...]
compound-statement
[ELSEIF UPDATE (column-name) THEN
[{AND | OR } UPDATE (column-name)] ...
compound-statement
ENDIF]]

trigger-time:

BEFORE | AFTER | RESOLVE

trigger-event:

DELETE | INSERT | UPDATE
| UPDATE OF column-name [, column-name, ...]

trigger-time Row-level triggers can be defined to execute BEFORE or
AFTER theinsert, update, or delete. Statement-level triggers execute
AFTER the statement. The RESOLVE trigger timeis for use with

SQL Remote: it fires before row-level UPDATE or UPDATE OF column-
listsonly.

BEFORE UPDATE triggers fire any time an UPDATE occurs on arow,
whether or not the new val ue differs from the old value. AFTER UPDATE
triggersfire only if the new value is different from the old value.

Trigger events Triggers can be fired by one or more of the following

events:

¢ DELETE Invoked whenever arow of the associated table is deleted.

¢ INSERT Invoked whenever anew row isinserted into the table
associated with the trigger.

¢ UPDATE Invoked whenever arow of the associated table is updated.

¢ UPDATE OF column-list Invoked whenever arow of the associated

tableis updated and a column in the column-list is modified.

365

CREATE TRIGGER statement

Usage Anywhere.

Permissions Must have RESOURCE authority and have ALTER permissions on the table,
or must have DBA authority. CREATE TRIGGER puts atable lock on the
table and thus requires exclusive use of the table.

Side effects Automatic commit.

See also "CREATE TRIGGER statement [SQL Remote]" on page 366 of the book
ASA SQL Reference Manual
"UPDATE statement" on page 384

366

Chapter 17 Command Reference for Adaptive Server Anywhere

DROP PUBLICATION statement

Function Use this statement to drop a publication. In SQL Remote, publications
identify replicated datain both consolidated and remote databases.

Syntax DROP PUBLICATION [owner.)publication-name
owner, publication-name : identifier
See also "DROP PUBLICATION statement" on page 402 of the book ASA SQL
Reference Manual

367

DROP REMOTE MESSAGE TYPE statement

DROP REMOTE MESSAGE TYPE statement

Function

Syntax

Parameters

Permissions

Side effects

See also

368

Use this statement to del ete a message type definition from a database.
DROP REMOTE MESSAGE TYPE message-system
message-system: FILE | FTP | MAPI | SMTP | VIM

Parameter | Description

message-system ‘ One of the message systems supported by SQL Remote.

Must have DBA authority. To be able to drop the type, there must be no user
granted REMOTE or CONSOLIDATE permissions with this type.

Automatic commit.

"DROP REMOTE MESSAGE TY PE statement [SQL Remote]" on page 403
of the book ASA SQL Reference Manual

"CREATE REMOTE MESSAGE TY PE statement” on page 363

"ALTER REMOTE MESSAGE TY PE statement” on page 361

"sp_drop_remote_type procedure” on page 394

"Using message types' on page 215.

Chapter 17 Command Reference for Adaptive Server Anywhere

DROP SUBSCRIPTION statement

Use this statement to drop a subscription for a user from a publication.

Function

Syntax

Parameters

Permissions
Side effects

See also

DROP SUBSCRIPTION TO publication-name [(subscription-value)]
FOR subscriber-id, ...

subscription-value: string

subscriber-id: string

Parameter

Description

publication-name

subscription-value

subscriber-id

The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

A string that is compared to the subscription expression of
the publication. This valueis required because a user may
have more than one subscription to a publication.

The user ID of the subscriber to the publication.

Must have DBA authority.

Automatic commit.

"DROP SUBSCRIPTION statement [SQL Remote]" on page 407 of the
book ASA SQL Reference Manual

"CREATE SUBSCRIPTION statement" on page 364

"DROP SUBSCRIPTION statement” on page 369

369

GRANT CONSOLIDATE statement

GRANT CONSOLIDATE statement

Function

Syntax

Parameters

Permissions
Side effects

See also

370

Use this statement to identify the database immediately above the current
database in a SQL Remote hierarchy, who will receive messages from the
current database.

GRANT CONSOLIDATE
TO userid, ...
TYPE message-system, ...
ADDRESS address-string, ...
[SEND { EVERY | AT }Yhh:mm’]

message-system: FILE | FTP | MAPI | SMTP | VIM

address: string

Parameter Description

userid The user ID for the user to be granted the permission

message-system | One of the message systems supported by SQL Remote.

address The address for the specified message system.

Must have DBA authority.
Automatic commit.

"GRANT CONSOLIDATE statement [SQL Remote]" on page 447 of the
book ASA SQL Reference Manual

"GRANT REMOTE statement" on page 372

"REVOKE CONSOLIDATE statement” on page 376

"GRANT PUBLISH statement” on page 371

"sp_grant_consolidate procedure” on page 396

Chapter 17 Command Reference for Adaptive Server Anywhere

GRANT PUBLISH statement

Function

Syntax

Permissions
Side effects

See also

Use this statement to identify the publisher of the current database.
GRANT PUBLISH TO userid

Must have DBA authority.

Automatic commit.

"GRANT PUBLISH statement [SQL Remote]" on page 449 of the book ASA
QL Reference Manual

"GRANT REMOTE statement” on page 372

"GRANT CONSOLIDATE statement" on page 370

"REVOKE PUBLISH statement” on page 377

"CREATE PUBLICATION statement" on page 314 of the book ASA SQL
Reference Manual

"CREATE SUBSCRIPTION statement" on page 364

"sp_publisher procedure” on page 413

371

GRANT REMOTE statement

GRANT REMOTE statement

Function

Syntax

Parameters

Permissions
Side effects

See also

372

Use this statement to identify a database immediately below the current
database in a SQL Remote hierarchy, who will receive messages from the
current database. These are called remote users.

GRANT REMOTE TO userid, ...
TYPE message-system, ...
ADDRESS address-string, ...
[SEND { EVERY | AT } send-time]

Parameter Description

userid The user ID for the user to be granted the permission

message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:

FILE
FTP
MAPI
SMTP
¢ VIM

¢
¢
¢
¢

address-string A string containing a valid address for the specified message
system.

send-time A string containing a time specification in the form hh:mm.

Must have DBA authority.
Automatic commit.

"GRANT REMOTE statement [SQL Remote]" on page 450 of the book ASA
L Reference Manual

"GRANT CONSOLIDATE statement" on page 370

"REVOKE REMOTE statement" on page 378

"GRANT PUBLISH statement” on page 371

"sp_grant_remote procedure" on page 398

"Granting and revoking REMOTE and CONSOLIDATE permissions' on
page 209

Chapter 17 Command Reference for Adaptive Server Anywhere

GRANT REMOTE DBA statement

Function

Syntax

Permissions
Side effects

See also

Use this statement to provide DBA privilegesto a user 1D, but only when
connected from the Message Agent.

GRANT REMOTE DBA
TO userid, ...
IDENTIFIED BY password

Must have DBA authority.
Automatic commit.

"GRANT REMOTE DBA statement [SQL Remote]" on page 452 of the
book ASA SQL Reference Manual

"The Message Agent and replication security” on page 249

"REVOKE REMOTE DBA statement" on page 379

373

PASSTHROUGH statement

PASSTHROUGH statement

Function

Syntax 1
Syntax 2

Syntax 3
Permissions
Side effects

See also

374

Use this statement to start or stop passthrough mode for SQL Remote
administration. Forms 1 and 2 start passthrough mode, while form 3 stops
passthrough mode.

PASSTHROUGH [ONLY] FOR userid, ...

PASSTHROUGH [ONLY] FOR SUBSCRIPTION
TO [(owner)].publication-name [(constant)]

PASSTHROUGH STOP
Must have DBA authority.
None.

"PASSTHROUGH statement [SQL Remote]" on page 494 of the book ASA
0L Reference Manual
"sp_passthrough procedure” on page 406

Chapter 17 Command Reference for Adaptive Server Anywhere

REMOTE RESET statement

Function Use this statement in custom database-extraction procedures to start all
subscriptions for aremote user in asingle transaction.

Syntax REMOTE RESET userid

Permissions Must have DBA authority.

Side effects No automatic commit is done by this statement.

See also "REMOTE RESET statement [SQL Remote]" on page 506 of the book ASA

0L Reference Manual
"START SUBSCRIPTION statement" on page 381

375

REVOKE CONSOLIDATE statement

REVOKE CONSOLIDATE statement

Function Use this statement to stop a consolidated database from receiving
SQL Remote messages from this database.

Syntax REVOKE CONSOLIDATE FROM userid, ...

Permissions Must have DBA authority.

Side effects Automatic commit. Drops all subscriptions for the user.

See also "REVOKE CONSOLIDATE statement [SQL Remote]" on page 518 of the

book ASA SQL Reference Manual
"GRANT CONSOLIDATE statement" on page 370
"sp_revoke_consolidate procedure” on page 434

376

Chapter 17 Command Reference for Adaptive Server Anywhere

REVOKE PUBLISH statement

Function

Syntax
Permissions
Side effects

See also

Use this statement to terminate the identification of the named user ID as the
CURRENT publisher.

REVOKE PUBLISH FROM userid
Must have DBA authority.
Automatic commit.

"REVOKE PUBLISH statement [SQL Remote]" on page 519 of the book
ASA SQL Reference Manual

"GRANT PUBLISH statement” on page 371

"REVOKE REMOTE statement” on page 378

"CREATE PUBLICATION statement" on page 314 of the book ASA SQL
Reference Manual

"CREATE SUBSCRIPTION statement" on page 364

"sp_publisher procedure” on page 413

377

REVOKE REMOTE statement

REVOKE REMOTE statement

Function Use this statement to stop a user from being able to receive SQL Remote
messages from this database.

Syntax REVOKE REMOTE FROM userid, ...

Permissions Must have DBA authority.

Side effects Automatic commit. Drops all subscriptions for the user.

See also "REVOKE REMOTE statement [SQL Remote]" on page 520 of the book

ASA SQL Reference Manual
"sp_revoke_remote procedure” on page 435

378

Chapter 17 Command Reference for Adaptive Server Anywhere

REVOKE REMOTE DBA statement

Function Use this statement to provide DBA privilegesto a user 1D, but only when
connected from the Message Agent.

Syntax 1 REVOKE REMOTE DBA
FROM userid, ...
Permissions Must have DBA authority.
Side effects Automatic commit.
See also "REVOKE REMOTE DBA statement [SQL Remote]" on page 521 of the

book ASA SQL Reference Manual
"The Message Agent and replication security” on page 249
"GRANT REMOTE DBA statement" on page 373

379

SET REMOTE OPTION statement

SET REMOTE OPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

380

Use this statement to set a message control parameter for a SQL Remote
message link.

SET REMOTE link-name OPTION
[userid.| PUBLIC.]link-option-name = link-option-value

link-name:
file | ftp | mapi | smtp | vim

link-option-name:
file-option | ftp-option | mapi-option | smtp-option | vim-option

file-option:
debug | directory

ftp-option:
active_mode | debug | host | password | port | root_directory | user

mapi-option:
debug | force_download | ipm_receive | ipm_send | profile

smtp-option:
debug | local_host | pop3_host | pop3_password | pop3_userid
| smtp_host | top_supported

vim-option:
debug | password | path | receive_all | send_vim_mail | userid

link-option-value:
string

Must have DBA authority. The publisher can set their own options.
Automatic commit.

"sp_link_option procedure" on page 400

Chapter 17 Command Reference for Adaptive Server Anywhere

START SUBSCRIPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Use this statement to start a subscription for a user to a publication.

START SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id, ...

Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The value is required here because each
subscriber may have more than one subscription to a
publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Must have DBA authority.
Automatic commit.

"START SUBSCRIPTION statement [SQL Remote]" on page 554 of the
book ASA SQL Reference Manual

"CREATE SUBSCRIPTION statement" on page 364

"REMOTE RESET statement" on page 375

"SYNCHRONIZE SUBSCRIPTION statement” on page 383

"sp_subscription procedure” on page 436

381

STOP SUBSCRIPTION statement

STOP SUBSCRIPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

382

Use this statement to stop a subscription for a user to a publication.

STOP SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id, ...

Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The value is required here because each
subscriber may have more than one subscription to a
publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Must have DBA authority.
Automatic commit.

"STOP SUBSCRIPTION statement [SQL Remote]" on page 562 of the book
ASA SQL Reference Manual

"CREATE SUBSCRIPTION statement" on page 364

"SYNCHRONIZE SUBSCRIPTION statement” on page 383

Chapter 17 Command Reference for Adaptive Server Anywhere

SYNCHRONIZE SUBSCRIPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Use this statement to synchronize a subscription for a user to a publication.

SYNCHRONIZE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR remote-user, ...

Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The value is required here because each
subscriber may have more than one subscription to a
publication.

remote-user The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Must have DBA authority.
Automatic commit.

"SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]" on page 564
of the book ASA SQL Reference Manual

"CREATE SUBSCRIPTION statement" on page 364

"START SUBSCRIPTION statement” on page 381

383

UPDATE statement

UPDATE statement

Function

Syntax 1

Syntax 2

Usage

Permissions
Side effects

See also

384

Use this statement to modify datain the database.

UPDATE table-list
SET column-name = expression, ...
[VERIFY (column-name, ...) VALUES (expression, ...)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC]], ...]

UPDATE table
PUBLICATION publication
{ SUBSCRIBE BY expression |
OLD SUBSCRIBE BY expression
NEW SUBSCRIBE BY expression }
WHERE search-condition

expression: value | subquery
Syntax 1 and Syntax 2 are applicable only to SQL Remote.

Syntax 2 with no OLD and NEW SUBSCRIBE BY expressions must be
used in a BEFORE trigger.

Syntax 2 with OLD and NEW SUBSCRIBE BY expressions can be used
anywhere.

Must have UPDATE permission for the columns being modified.
None.

"UPDATE statement [SQL Remote]" on page 582 of the book ASA SQL
Reference Manual
"CREATE TRIGGER statement" on page 365

CHAPTER 18
Command Reference for Adaptive Server

Enterprise

About this chapter

Contents

This chapter describes the SQL Remote stored procedures, used for
executing SQL Remote commands.

Topic Page
sp_add_article procedure 387
sp_add_article_col procedure 389
sp_add_remote_table procedure 390
sp_create_publication procedure 392
sp_drop_publication procedure 393
sp_drop_remote_type procedure 394
sp_drop_sqgl_remote procedure 395
sp_grant_consolidate procedure 396
sp_grant_remote procedure 398
sp_link_option procedure 400
sp_modify_article procedure 402
sp_modify_remote_table procedure 404
sp_passthrough procedure 406
sp_passthrough_piece procedure 407
sp_passthrough_stop procedure 409
sp_passthrough_subscription procedure 410
sp_passthrough_user procedure 411
sp_populate_sgl_anywhere procedure 412
sp_publisher procedure 413
sp_queue_clean procedure 414
sp_queue_confirmed_delete_old procedure 415

385

sp_add_article procedure

sp_queue_confirmed_transaction procedure 416
sp_queue_delete_old procedure 417
sp_queue_drop procedure 418
sp_queue_dump_database procedure 419
sp_queue_dump_transaction procedure 420
Sp_queue_get_state procedure 421
sp_queue_log_transfer_reset procedure 422
sp_queue_read procedure 423
Sp_queue_reset procedure 424
sp_queue_set_confirm procedure 425
Sp_queue_set_progress procedure 426
Sp_queue_transaction procedure 427
sp_remote procedure 428
sp_remote_option procedure 429
sp_remote_type procedure 430
sp_remove_article procedure 431
sp_remove_article_col procedure 432
sp_remove_remote_table procedure 433
sp_revoke_consolidate procedure 434
sp_revoke_remote procedure 435
sp_subscription procedure 436
Sp_subscription_reset procedure 437

386

Chapter 18 Command Reference for Adaptive Server Enterprise

Ssp_add_article procedure

Purpose

Syntax

See also

Description

To add an article to a publication.

sp_add_article publication_name, table_name, where_expr,
subscribe_by_expr, subscribe_by view

Argument Description

publication_name The name of the publication to which the articleisto be
added.

table_name The table containing the article.

where_expr This optional argument must be a column name or

NULL. The publication includes only rows for which the
supplied column valueis not NULL.

The default valueis NULL, in which case no rows are
excluded from the publication.

subscribe_by_expr The new subscription expression defining which rows are
to beincluded in the publication for each subscription.

The expression must be the name of a column in
table_name. The default valueis NULL.

subscribe by view A view defining the columns and rows to be included in
the publication.

& For moreinformation, see " Tuning extraction
performance" on page 156 and "Tuning extraction
performance for shared rows" on page 163.

"sp_add_remote_table procedure" on page 390

"sp_create publication procedure” on page 392

"sp_remove_article procedure” on page 431

"CREATE PUBLICATION statement” on page 314 of the book ASA SQL
Reference Manual

Running sp_add_article adds an article to a publication. The table must be
marked for replication using sp_add_remote table before it can be added to
apublication; failure to do so leads to an error.

Calling sp_add_article adds all the columns of the table to a publication. If
you wish to include only some of the columns of the table in a publication
you must first run sp_add_article and then call sp_add_article col.

Aswith other data definition changes, in a production environment this
procedure should only be run on aquiet SQL Remote installation.

387

sp_add_article procedure

&~ For moreinformation on the requirements for a quiet system, see
"Making schema changes' on page 284.

Example ¢ Thefollowing statement adds the SalesRep table to a publication named
SalesRepData:
sp_add_article ' Sal esRepbData’, ' Sal esRep’
go

388

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_add_article_col procedure

Purpose To add acolumn to an article in a publication.
Syntax sp_add_article_col publication_name, table_name, column_name
Argument Description
publication_name The name of the publication to which the articleisto be
added.
table_name The table containing the article.
column_name The column to be added to the article in a publication
See also "sp_add_article procedure” on page 387

"sp_remove_article procedure” on page 431
"ALTER PUBLICATION statement" on page 216 of the book ASA SQL
Reference Manual

Description Running sp_add_article_col adds a column to an articlein a publication.
The table must first be added to the publication using the "sp_add_article
procedure” on page 387.

To add all the columns of atable to a publication you do not need to use
sp_add article col; just call sp_add article.

To add only some of the columns of a table to a publication you first call
sp_add article, and then call sp_add_article col for each of the columns
you wish to include in the publication.

As with other data definition changes, in a production environment this
procedure should only be run on aquiet SQL Remote installation.

& For moreinformation on the requirements for a quiet system, see
"Making schema changes' on page 284.

Example ¢ Thefollowing statements add the emp_id and emp_Iname columns of
the employee table to a publication named Personnel:
sp_add_article 'Personnel’, enpl oyee’
sp_add_article_col ’'Personnel’, ’'enployee, 'enp_id
sp_add_article_col 'Personnel’, 'enployee’,
"enp_| nane’
go

389

sp_add remote_table procedure

sp_add_remote table procedure

Purpose

Syntax

Authorization

See also

Description

390

To mark atable for SQL Remote replication.

sp_add_remote_table table_name,
[resolve_procedure, |
[old_row_name,]
[remote_row_name]

Argument Description

table_name The table to be marked for SQL Remote replication.

resolve_procedure The name of a stored procedure that carries out actions
when a conflict occurs.

old_row_name The name of atable holding the values in the table when
a conflict occurs.

remote_row_name The name of atable holding the values at the remote
database when a conflict-causing UPDATE statement
was applied.

Y ou must be a system administrator to execute this procedure.

"sp_modify_remote_table procedure" on page 404
"sp_remove _remote_table procedure” on page 433
"Managing conflicts' on page 166.

Each table in a database must be marked for replication by using
sp_add_remote_table before it can be included in any SQL Remote
publications. After executing sp_add_remote_table, you can add the table
to apublication using the "sp_add_article procedure” on page 387 and the
"sp_add_article col procedure” on page 389.

The sp_add_remote_table procedure calls sp_setreplicate, which flags the
table for replication. This tells Adaptive Server Enterprise to put extended
information into the transaction log. This information includes the entire
before and after images of the row.

The first argument is the name of the table to be marked for replication.

The remaining three arguments are optional. They are object names required
only for custom conflict resolution. If you are implementing custom conflict
resolution, you must supply the names of two tables, and a stored procedure.
The sp_add_remote_table procedure does not check for the existence of the
conflict resolution arguments: you can create them either before or after
marking the table for replication.

Chapter 18 Command Reference for Adaptive Server Enterprise

Examples

The two tables must have the same columns and data types astable
table_name.

¢

The following statement marks the Customer table for replication, using
default conflict resolution:

exec sp_add_renote_tabl e Custoner

The following statement marks the Customer table for replication, using
a stored procedure named Customer_Conflict to resolve conflicts. The
old and remote rows are stored in tables named old_Customer and
remote_Customer, respectively:

exec sp_add_renote_tabl e Custoner,
Cust orrer _Conf lict, ol d_Customrer, renote_Customner

391

sp_create publication procedure

Sp_create_publication procedure

Purpose

Syntax

See also

Description

Example

392

To create a publication.

sp_create_publication publication_name

Argument | Description

publication_name | The name of the publication

"sp_drop_publication procedure" on page 393
"CREATE PUBLICATION statement" on page 314 of the book ASA SQL
Reference Manual

Running sp_create publication creates a publication, but one with no
content. Once the publication is created, you must add articlesto it using the
"sp_add_remote_table procedure” on page 390 and the "sp_add_article
procedure” on page 387.

¢+ Thefollowing statement creates a publication named SalesRepData:

sp_create_publication ' Sal esRepDat a’
go

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_drop_publication procedure

Purpose

Syntax

See also

Description

Example

To drop a publication from the database.

sp_drop_publication publication_name

Argument | Description

publication_name | The name of the publication to be dropped

"sp_create publication procedure” on page 392
"DROP PUBLICATION statement" on page 402 of the book ASA SQL
Reference Manual

Running sp_drop_publication drops a publication from the database. All
articles that make up the publication, and subscriptions to the publication, are
also dropped.

¢ Thefollowing statement drops the publication named SalesRep:

sp_drop_publication ' Sal esRep’
go

393

sp_drop_remote_type procedure

sp_drop_remote type procedure

Purpose

Syntax

See also

Description

Example

394

To drop a message type from the database.

sp_drop_remote_type type name

Argument Description

type_name The message type to drop. This must be a string
containing one of the following:

¢ file
ftp
smtp
mapi

¢
¢
¢
¢ vim

"sp_remote_type procedure” on page 430
"DROP REMOTE MESSAGE TY PE statement" on page 368

Drops the named message type from the database.

¢ Thefollowing statement drops the MAPI message type from the
database;
sp_drop_renote_type mapi
go

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_drop_sql remote procedure

Purpose

Syntax

See also

Description

Example

To drop the SQL Remote system objects from a database.
sp_drop_SQL_remote
"sp_queue_drop procedure’" on page 418

Drops the SQL Remote system objects from the database, so that it can no
longer function in a SQL Remote installation.

The sole SQL Remote object not removed isthe sp_drop_sql_remote
procedure itself (a procedure cannot drop itself from a database). To
complete removal of SQL Remote requiresthat sp_drop_sgl_remote be
dropped explicitly after it is called.

The sp_drop_sqgl_remote procedure does not remove stable queue objects
from the database. To remove the stable queue, use the "sp_queue_drop
procedure” on page 418.

¢ Thefollowing statements remove SQL Remote system objects from a
database;

sp_drop_SQ. _renote_type
go

drop procedure sp_drop_SQ. renote
go

395

sp_grant_consolidate procedure

Sp_grant_consolidate procedure

Purpose To identify a database immediately above the current database in a
SQL Remote hierarchy, who will receive messages from the current
database. This procedure applies only to Adaptive Server Enterprise
databases acting as remote databases.

Syntax sp_grant_consolidate user_name, type_name, address
[, frequency [, send_time]

Argument Description
user_name The user ID who will be able to receive SQL Remote
messages.
type_name The message type to be used. This must be one of the
following:
+ file
¢ ftp
¢ smtp
¢ mapi
¢ vim
address A string holding the address, according to the specified
message type, to which the replication messages should
be sent for thisuser.
frequency A string containing one of the following:
¢ SEND EVERY Indicates that messages are sent at a
frequency specified by send_time.
4 SEND AT Indicates that messages are sent at atime of
day specified by send_time.
send_time A string containing a time specification with the
following meaning:
¢ If frequency is SEND EVERY, specifies alength of
time between messages.
¢ If frequency is SEND AT, specifies atime of day at
which messages will be sent.
If no frequency is specified, the Message Agent sends
messages, and then stops.
See also "sp_grant_remote procedure” on page 398

"sp_revoke consolidate procedure” on page 434

396

Chapter 18 Command Reference for Adaptive Server Enterprise

Description

Example

"GRANT CONSOLIDATE statement” on page 370

If the Adaptive Server Enterprise server is acting as aremote database in a
SQL Remote installation, the single database above the current database
must be granted consolidated permissions using the sp_grant_consolidate
procedure.

The consolidated user isidentified by a message system, identifying the
method by which messages are sent to and received from the consolidated
user. The address-name must be a valid address for the message-system,
enclosed in single quotes.

The sp_grant_consolidate procedure is required for the remote database to
receive messages, but does not by itself subscribe the remote user to any
data. To subscribe to data, a subscription must be created for the user ID to
one of the publicationsin the current database.

The optional frequency argument specifies a frequency at which messages
are sent. The send_time argument contains atime that is alength of time
between messages (for SEND EVERY) or atime of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If no frequency argument is supplied, the Message Agent processes
messages, and then stops. In order to run the Message Agent continuoudly,
you must ensure that every user with remote or consolidated permission has
afrequency specified.

¢ Thefollowing statement grants consolidated permissions to user
hq_user, using afile sharing system, sending messages to the address
hg_dir: No frequency arguments are specified, and the Message Agent
will runin batch mode.

sp_grant_consol i date
@ser _name=hq_user,
@ddr ess=hq_dir,
@ype_nane=file

go

397

sp_grant_remote procedure

sp_grant_remote procedure

Purpose To identify a database immediately below the current databasein a
SQL Remote hierarchy, who will receive messages from the current
database. These are called remote users.

Syntax sp_grant_remote user_name, type_name, address
[, frequency [, send_time]

Argument Description
user_name The user ID who will be able to receive SQL Remote
messages.
type_name The message type to be used. This must be one of the
following:
+ file
¢ ftp
¢ smtp
¢ mapi
¢ vim
address A string holding the address, according to the specified
message type, to which the replication messages should
be sent for thisuser.
frequency A string containing one of the following:
¢ SEND EVERY Indicates that messages are sent at a
frequency specified by send_time.
4 SEND AT Indicates that messages are sent at atime of
day specified by send_time.
send_time An optional string containing a time specification with
the following meaning:
¢ If frequency is SEND EVERY, specifies alength of
time between messages.
¢ If frequency is SEND AT, specifies atime of day at
which messages will be sent.
If no frequency is specified, the Message Agent sends
messages, and then stops.
See also "sp_revoke _remote procedure” on page 435

"GRANT REMOTE statement" on page 372

398

Chapter 18 Command Reference for Adaptive Server Enterprise

Description

Example

In a SQL Remote installation, each database receiving messages from the
current database must be granted REMOTE permissions using the
sp_grant_remote procedure.

The remote user isidentified by a message system, identifying the method by
which messages are sent to and received from the consolidated user. The
address-name must be a valid address for the message-system, enclosed in
single quotes.

The sp_grant_remote procedure is required for the remote database to
receive messages, but does not by itself subscribe the remote user to any
data. To subscribe to data, a subscription must be created for the user ID to
one of the publicationsin the current database.

The optional frequency argument specifies a frequency at which messages
are sent. The send_time argument contains atime that is alength of time
between messages (for SEND EVERY) or atime of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If no frequency argument is supplied, the Message Agent processes
messages, and then stops. In order to run the Message Agent continuoudly,
you must ensure that every user with REMOTE permission has a frequency
specified.

It is anticipated that at many consolidated databases, the Message Agent will
be run continuoudly, so that all remote databases would have a frequency
argument specified. A typical setup may involve sending messages to laptop
users daily (SEND AT) and to remote servers every hour or two (SEND
EVERY). You should use as few different times as possible, for efficiency.

¢ Thefollowing statement grants remote permissions to user SamsS, using
aMAPI e-mail system, sending messages to the address Singer, Samuel
once every two hours:

exec sp_grant _renote ' Sanf ,

T
' Si nger, Sanual’,
" SEND EVERY'

'’ 02: 00

go

399

sp_link_option procedure

sp_link_option procedure

Purpose

Syntax

Parameters

Permissions
Side effects

See also
Description

400

To set amessage control parameter for a SQL Remote message link.
sp_link_option link-name, userid, option-name, option-value

link-name:
file | ftp | mapi | smtp | vim

link-option-name:

file-option | fip-option | mapi-option | smtp-option | vim-option
file-option:

debug | directory
ftp-option:

active_mode | debug | host | password | port | root_directory | user

mapi-option:
debug | force_download | ipm_receive | ipm_send | profile

smtp-option:
debug | local_host | pop3_host | pop3_password | pop3_userid |
smtp_host | top_supported

vim-option:

debug | password | path | receive_all | send_vim_mail | userid
link-option-value:

string

Must have DBA authority. The publisher can set their own options.

Automatic commit.
"SET REMOTE OPTION statement” on page 380

The Message Agent saves message link parameters when the user enters
them in the message link dialog box when the message link isfirst used. In
this case, it is not necessary to use this procedure explicitly. This procedure
is most useful when preparing a consolidated database for extracting many
databases.

The option names are case sensitive. The case sensitivity of option values
depends on the option: boolean values are case insensitive, while the case
sensitivity of passwords, directory names, and other strings depend on the
cases sensitivity of the file system (for directory names), or the database (for
user 1Ds and passwords).

userid If no userid is specified, then the current publisher is assumed.

Option values The option values are message-link dependent. For more
information, see the following locations:

Chapter 18 Command Reference for Adaptive Server Enterprise

Example

¢
¢
¢
¢

¢

"The file message system" on page 220.
"The ftp message system" on page 221.
"The MAPI message system” on page 226.
"The SMTP message system" on page 223.
"The VIM message system™ on page 227.

The following statement sets the FTP host to ftp.mycompany.com for the ftp
link for user myuser.

exec sp_link_option ftp, nyuser,
host, 'ftp. nyconpany. com

401

sp_modify_article procedure

sp_modify article procedure

Purpose

Syntax

See also

Description

402

To change the description of an article in a procedure.

sp_modify_article
publication_name,
table_name,
[where_expr, |
[subscribe_by expr]
[subscribe_by view]

Argument Description

publication_name The name of the publication for which the articleis to be
modified.

table_name The table containing the article.

where_expr This optional argument must be a column name or

NULL. The publication includes only rows for which the
supplied column nameis not NULL.

The default valueis NULL, in which case no rows are
excluded from the publication..

subscribe by _expr The new subscription expression defining which rows are
to beincluded in the publication for each subscription.

The default valueisNULL.

subscribe_by view A view defining the rows and columnsto be included in
the publication. The default is NULL.

& For moreinformation, see " Tuning extraction
performance" on page 156 and "Tuning extraction
performance for shared rows" on page 163.

"sp_add_article procedure" on page 387

"sp_remove_article procedure” on page 431

"ALTER PUBLICATION statement" on page 216 of the book ASA SQL
Reference Manual

To change the description of an articlein a publication. The WHERE
expression, the subscription expression, and the subscription view can each
be changed.

As with other data definition changes, in a production environment this
procedure should only be run on aquiet SQL Remote installation.

&~ For moreinformation on the requirements for a quiet system, see
"Making schema changes' on page 284.

Chapter 18 Command Reference for Adaptive Server Enterprise

Examples The following statement changes an article in the SalesRepData publication
that takes information from the Customer table, so that it has no subscription
expression;

sp_nodify article Sal esRepbData, Custoner
go

The following statement changes an article in the SalesRepData publication
that takes information from the Customer table, so that it has a subscription
expression that istherep_key column:

sp_nodify_article Sal esRepDat a, Cust orrer,
NULL, rep_key
go

403

sp_modify_remote_table procedure

sp_modify remote table procedure

Purpose To change the resol ution objects for a table marked for SQL Remote
replication.
Syntax sp_modify_remote_table table_name,

[resolve_name,]
[old_row_name,]
[remote_row_name]

Argument Description
table_name A table marked for SQL Remote replication.
resolve_procedure The name of the new stored procedure for carrying out

actions when a conflict occurs.

old_row_name The name of the new table for holding the values in the
table when aconflict occurs.

remote_row_name The name of the new table for holding the values at the
remote database when a conflict-causing UPDATE
statement was applied.

See also "sp_add_remote_table procedure” on page 390
"sp_remove _remote_table procedure” on page 433
"Managing conflicts' on page 166.

Description Each table in a database must be marked for replication by using
sp_add_remote_table before it can be included in any SQL Remote
publications.

Thesp_modify_remote table alows you to change the way in which
conflict resolution is carried out for update conflicts occurring on this table.

The arguments are, in addition to the table name, the object names required
for custom conflict resolution. If you are implementing custom conflict
resolution, you must supply the names of two tables, and a stored procedure.
The sp_modify_remote_table procedure does not check for the existence of
the conflict resolution arguments: you can create them either before or after
marking the table for replication.

The two tables must have the same columns and data types as table
table_name.

Example The following statement instructs SQL Remote to use the resolve_Cust
procedure, the old_Cust table, and the remote_Cust table to resolve update
conflicts on the Customer table:

404

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_add_renote_tabl e Custoner, resolve_ Cust,
ol d_Cust, renote_Cust

go

405

sp_passthrough procedure

sp_passthrough procedure

Purpose

Syntax

See also

Description

Example

406

To send a SQL statement in passthrough mode.

sp_passthrough statement

Argument | Description

statement A string containing a statement to be executed in
passthrough mode.

"sp_passthrough_piece procedure" on page 407
"sp_passthrough_stop procedure” on page 409
"sp_passthrough_subscription procedure” on page 410
"sp_passthrough_user procedure" on page 411
"PASSTHROUGH statement" on page 374

To send passthrough operations. The recipients of the passthrough statement
are determined by previous callsto sp_passthrough _user and
sp_passthrough_subscription.

The string must be less than 255 characters long. For SQL statements longer
than 255 characters, you should execute a sequence of callsto the
sp_passthrough_piece procedures, and execute sp_passthrough for the
final piece of the statement and to cause the replication to occur.

Caution

You should always test your passthrough operations on a test database
with a remote database subscribed. You should never run untested
passthrough scripts against a production database.

¢ Thefollowing statement sends a create table statement to the current
recipients of passthrough statements.

exec sp_passt hrough
' OREATE TABLE sinple (
idinteger NOT NULL,
nane char (50))’
go

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_passthrough_piece procedure

Purpose

Syntax

See also

Description

Example

To build along SQL statement for passthrough.

sp_passthrough_piece string

Argument | Description
string A piece of astatement to be executed in passthrough
mode.

"sp_passthrough procedure" on page 406
"sp_passthrough_stop procedure” on page 409
"sp_passthrough_subscription procedure” on page 410
"sp_passthrough_user procedure" on page 411
"PASSTHROUGH statement" on page 374

The"sp_passthrough procedure” on page 406 is used to send statements
directly to a set of remote users. Statements that are longer than 255
characters have to be built up piece by piece.

To build and send along SQL statement, call sp_passthrough_piece for all
but the final piece of the statement, and then call sp_passthrough for the
final piece. This completes and replicates the statement.

All pieces of a passthrough statement must be built within asingle
transaction.

¢+ Thefollowing statements send along passthrough statement to the
current list of passthrough recipients:

begi n transaction
go
exec sp_passt hrough_pi ece ' CREATE TABLE
DBA. enpl oyee
(
enp_id integer NOT NULL,
manager _id integer NULL,
enp_fname char(20) NOT NULL,
enp_l name char (20) NOT NULL,’
go

407

sp_passthrough piece procedure

408

exec sp_passt hrough_pi ece ’

go

dept _id integer NOT NULL,
street char(40) NOT NULL,
city char(20) NOT NULL,
state char(4) NOT NULL,

zi p_code char(9) NOT NULL,
phone char(10) NULL,’

exec sp_passt hrough _piece ’'status

go

ss_nunber char(11) NOT NULL,

salary nuneric(20,3) NOT NULL,

start_date date NOT NULL,
term nation_date date NULL,
birth date date NULL,’

exec sp_passt hrough ’

go

bene_heal th_ins char (1) NULL,
bene life_ins char(1l) NULL,
bene_day_care char(1) NULL,
sex char(1) NULL,

PR MARY KEY (enp_id),

)1

comm t

go

char (1) NULL,

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_passthrough_stop procedure

Purpose

Syntax

See also

Description

Example

Resents passthrough mode
sp_passthrough_stop

"sp_passthrough procedure" on page 406
"sp_passthrough_subscription procedure” on page 410
"sp_passthrough_user procedure" on page 411
"PASSTHROUGH statement” on page 374

The sp_passthrough_stop procedure resents the list of recipients of
passthrough statements to be empty, and clears any statements that are
currently being built.

¢ Thefollowing statement resets the passthrough recipient list to be
empty.

exec sp_passt hrough_st op
go

409

sp_passthrough _subscription procedure

sp_passthrough _subscription procedure

Purpose

Syntax

See also

Description

Example

410

Adds subscribers to a given publication to the recipient list for passthrough
statements.

sp_passthrough_subscription publication_name, subscribe_by

Argument Description

publication_name The name of the publication

subscribe_by The subscription value for recipientsto receive
passthrough statements.

"sp_passthrough procedure" on page 406
"sp_passthrough_piece procedure" on page 407
"sp_passthrough_stop procedure” on page 409
"sp_passthrough_user procedure" on page 411
"PASSTHROUGH statement" on page 374

Thisis one of two ways that you can add to the list of recipients for
passthrough statements, the other being to use the "sp_passthrough_user
procedure” on page 411.

The users that are added to the recipient list by acall to the
sp_passthrough_subscription procedure are all those users subscribing to
the publication publication_name with a subscription value of subscribe_by.

The default setting for subscribe_by isNULL. In this case, all subscribersto
the publication receive the passthrough statements.

¢+ Thefollowing statement adds to the list of passthrough recipients the
subscriber or subscribers to the SalesRepData publication who use
subscription values of repl’.

Sp_passt hrough_subscri ption Sal esRepData, repl

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_passthrough_user procedure

Purpose

Syntax

See also

Description

Example

Adds a named user to thelist of recipients for passthrough statements.

sp_passthrough_user user_name

Argument | Description

user_name | The user to be added to the list of recipients.

"sp_passthrough procedure" on page 406
"sp_passthrough_piece procedure" on page 407
"sp_passthrough_stop procedure” on page 409
"sp_passthrough_subscription procedure” on page 410
"PASSTHROUGH statement" on page 374

Thisisone of two ways that you can add to the list of recipients for
passthrough statements, the other being to use the
"sp_passthrough_subscription procedure” on page 410.

The sp_passthrough_user procedure adds the named user to the list of
recipients for passthrough statements. The list remainsin force until reset
using the "sp_passthrough_stop procedure” on page 409.

¢ Thefollowing statement adds the user field_user to the list of recipients
for passthrough statements:

sp_passt hrough_user 'fiel d_user’
go

411

sp_populate_sql_anywhere procedure

sp_populate_sqgl anywhere procedure

Purpose To create a copy of the Adaptive Server Anywhere system tablesin the
TEMPDB. This procedureis used by the extraction utility ssxtract.

Syntax sp_populate_SQL_anywhere

Description To create a set of Adaptive Server Anywhere system tables for aremote

Adaptive Server Anywhere database, in TEMPDB. The information is used
by the extraction utility to construct an Adaptive Server Anywhere database
schema from the set of publications in the Adaptive Server Enterprise
consolidated database.

This procedure is used by the ssxtract extraction utility. It should not be
called directly.

412

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_publisher procedure

Purpose

Syntax

See also

Description

Examples

To set the publisher of the current database, or to remove the publisher.

sp_publisher [user_name]

Argument | Description
user_name The user ID to beidentifies as the publisher for the
database.

"Managing SQL Remote permissions’ on page 205.
"GRANT PUBLISH statement” on page 371

Each database in a SQL Remote installation is identified in outgoing
messages by a user 1D, called the publisher. The sp_publisher procedure
sets the publisher user 1D associated with these outgoing messages.

Each database can have at most one publisher; if a publisher already exists,
sp_publisher changes the name of the publisher.

If no user_name argument is provided, the current publisher is removed, so
that the database has no publisher. Only the permission to be the publisher is
removed; the user ID is not removed from the database.

¢ Thefollowing statement identifies the user ID joe as the publisher of the
current database:

sp_publisher joe
go

¢+ Thefollowing statement sets the current database to have no publisher:

sp_publ i sher
go

413

Sp_queue_clean procedure

sSp_queue_clean procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_clean

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It removes from the stable queue any transactions that
completed after the start of the oldest incomplete transaction the last time the
log was scanned.

414

Chapter 18 Command Reference for Adaptive Server Enterprise

sp_queue_confirmed_delete_old procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_confirmed_delete_old

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It removes from the stable queue any transactions whose
offsets are shown in sr_confirmed_transaction.

415

Sp_queue_confirmed_transaction procedure

sp_queue_confirmed_transaction procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_confirmed_transaction offset

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It adds the supplied offset to sr_confirmed_transaction.
SQL Remote removes from the stable queue any transactions whose offsets
match this offset.

416

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_queue_delete old procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_delete_old

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It deletes from the stable queue any transactions that have
been confirmed by all remote databases.

417

Sp_queue_drop procedure

Sp_queue_drop procedure

Purpose

Syntax

See also

Description

Examples

418

To drop the stable queue objects from a database..
sp_queue_drop
"sp_drop_sgl_remote procedure" on page 395

Drops the stable queue system objects from the database, so that the database
no longer supports a SQL Remote stable queue.

The sole stable queue object not removed isthe sp_queue_drop procedure

itself (a procedure cannot drop itself from a database). To complete removal
of the stable queue requires that sp_queue_drop be dropped explicitly after
itiscaled.

The sp_queue_drop procedure does not remove SQL Remote system
objects from the database. To remove the SQL Remote system objects, use
the "sp_drop_sgl_remote procedure” on page 395.

¢ Thefollowing statements remove the stable queue objects from the
database:

sp_queue_drop

go

drop procedure sp_queue_drop
go

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_queue_dump_database procedure

Purpose

Syntax

See also

Description

To facilitate recovery from media failure when the stable queueisin a
separate database from the SQL Remote objects.

sp_queue_dump_database

"sp_queue_dump_transaction procedure” on page 420
" Stable queue recovery issues’ on page 282

Keeping the stable queue in a separate database complicates backup and
recovery, as consistent versions of the two databases have to be recovered.

Normal recovery automatically restores the two databases to a consistent
state, but recovery from media failure takes some care. When restoring
database dumps, it isimportant to recover the stable queue to a consistent
point. The sp_queue dump_database procedure is provided to help with
recovery from mediafailure. It is called whenever adump databaseis
scanned.

As provided, the procedure does not carry out any operations. Y ou can
modify this stored procedure to issue adump database command in the
stable store database.

419

Sp_queue_dump_transaction procedure

Sp_queue_dump_transaction procedure

Purpose

Syntax

See also

Description

420

To facilitate recovery from mediafailure, when the stable queueisin a
separate database from the SQL Remote objects.

sp_queue_dump_transaction

"sp_queue_dump_database procedure” on page 419
" Stable queue recovery issues’ on page 282

Keeping the stable queue in a separate database complicates backup and
recovery, as consistent versions of the two databases have to be recovered.

Normal recovery automatically restores the two databases to a consistent
state, but recovery from media failure takes some care. When restoring
database dumps, it isimportant to recover the stable queue to a consistent
point. The sp_queue_dump_transaction procedure is provided to help with
recovery from mediafailure. It is called whenever adump transaction is
scanned.

As provided, the procedure does not carry out any operations. Y ou can
modify this stored procedure to issue adump transaction command in the
stable store database.

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_queue_get_state procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax Sp_queue_get_state

Description This procedure is used by the SQL Remote Message Agent, and should not
be called directly. It returns a description of the current state of the stable
queue.

421

sp_queue_log transfer_reset procedure

Sp_queue_log transfer_reset procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_log_transfer_reset

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It resets the page and row IDsto zero in the
Sr_queue_statetable.

422

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_queue_read procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_read start offset, stop_offset

Description This procedure reads transactions from the stable queue. It is exclusively for
use by the Message Agent.

423

Sp_queue_reset procedure

Sp_queue_reset procedure

Purpose To reset the server to a point where the stable queue is empty.
Syntax Sp_queue_reset
Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly in a production environment. It deletes all rows from the
stable queue sr_transaction table, and resetsthe sr_queue_state table,
ready for a new SQL Remote setup.

In a development phase, this procedure can be useful to reset the server.

424

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_queue_set_confirm procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_set_confirm confirm_offset

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It sets the minimum confirmation offset from all remote
usersinthe sr_queue statetable.

425

Sp_queue_set_progress procedure

Sp_queue_set_progress procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.
Syntax sp_queue_set_progress page_id, row_id, commit_offset, backup_offset,
marker
Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It setsthe transaction log scanning progress value in the
sr_queue_statetable.

426

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_queue_transaction procedure

Purpose This procedure is used by the SQL Remote Message Agent, and should not
be called directly.

Syntax sp_queue_transaction offset, user_id

Description This procedure is used by the SQL Remote Message Agent, and should not

be called directly. It adds a new transaction to the stable queue.

427

sp_remote procedure

sp_remote procedure

Purpose

Syntax

Description

428

This procedure is used by the SQL Remote Message Agent, and should not
be called directly, with a single exception described below. It manages rows
inthe sr_remoteuser table.

sp_remote operation, user_name [, offset] [, confirm]

Argument Description

operation The name of an action. The only value that should be
used by auser isreset; al others are for use by the
Message Agent.

user_name The name of the remote user being reset

offset Not used

confirm Not used

This procedure is used by the SQL Remote Message Agent, and should not
be called directly with the single exception of the reset call. It maintains the
message tracking information in the sr_remoteuser table.

The following specia case can be used directly, when creating a custom
database extraction process:

sp_renote reset, renote_user
where remote_user is the remote user name.

This command starts all subscriptions for aremote user in asingle
transaction. It setsthelog_sent and confirm_sent valuesin sr_remoteuser
table to the current position in the transaction log. It also sets the created and
started valuesin sr_subscription to the current position in the transaction
log for all subscriptions for this remote user. The procedure does not do a
commit. Y ou must do an explicit commit after this call.

In order to write an extraction process thet is safe on a live database, the data
must be extracted at isolation level 3 in the same transaction as the
subscriptions are started.

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_remote _option procedure

Purpose

Syntax

See also

Description

Example

To set a SQL Remote option.

sp_remote_option option_name, option_value

Argument | Description
option_name | The name of one of the SQL Remote options
option_value | The value to which the option is set.

"SQL Remote options' on page 322.

The SQL Remote options provide control over replication behavior. The
following options are available in Adaptive Server Enterprise:

OPTION VALUES DEFAULT
Blob_threshold Integer, in K 256
Compression -1to9 6
Delete old_logs ON, OFF OFF
Qualify_owners ON, OFF OFF
Quote_all_identifiers ON, OFF OFF
Replication_error procedure-name NULL
SR _Date Format time-string hh:nn:ss.Ssssss
SR_Time_Format date-string yyyy/mm/dd
SR_Timestamp_Format timestamp-string yyyy/mm/dd
hh:nn:ss.Ssssss
Subscribe_by remote ON,OFF ON
Verify_threshold integer 256
Verify_all_columns ON,OFF OFF

& For acomplete description of these options, see "SQL Remote options'

on page 322.

¢ Thefollowing statement setsthe Verify all_columns option to OFF, so
that old values of update statements applied by the Message Agent are
not checked automatically for all columns.

sp_renote_option Verify_all_col ums,

go

CFF

429

sp_remote_type procedure

sp_remote_type procedure

Purpose

Syntax

See also

Description

Example

430

To create or modify a SQL Remote message type.

sp_remote_type type_name publisher_address

Argument Description

type_name The message type to create or alter. This must be one of
the following:

¢ file
¢ ftp
¢ smtp
¢ mapi
¢ vim

publisher_address The address of the publisher under the specified message
type.

"sp_drop_remote_type procedure" on page 394
"ALTER REMOTE MESSAGE TY PE statement” on page 361

The Message Agent sends outgoing messages from a database using one of
the supported message links. Return messages for users employing the
specified link are sent to the specified address as long as the remote database
is created by the Extraction Utility. The Message Agent starts links only if it
has remote users for those links.

The address is the publisher’s address under the specified message system. If
itisan e-mail system, the address string must be avalid e-mail address. If it
is afile-sharing system, the address string is a subdirectory of the directory
set in the SQLREMOTE environment variable or registry entry, or of the
current directory if that is not set.

The following example creates a FILE message type for a database, and
gives the publisher’s address as a subdirectory of the SQLREMOTE location
named publisher:

sp_renote_type file, publisher
go

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_remove_article procedure

Purpose

Syntax

See also

Description

Example

To remove an article from a publication

sp_remove_article publication_name, table_name

Argument | Description

publication_name The name of the publication from which the articleisto
be deleted.

table_name | The table containing the article.

"sp_add_article procedure" on page 387

"ALTER PUBLICATION statement" on page 216 of the book ASA SQL
Reference Manual

Running sp_add_article removes an article from a publication. Any article
including parts of the named table is removed from the publication.

¢+ Thefollowing statement removes any articles that use part of the
SalesRep table from a publication named SalesRepData:

sp_renove_article Sal esRepData, Sal esRep
go

431

sp_remove_article_col procedure

sp_remove_article col procedure

column_name The column to be removed from the article.

Purpose To remove a column from an article in a publication.

Syntax sp_remove_article_col publication_name, article_name, column_name
Argument | Description
publication_name | The name of the publication to which the article belongs.
article_name | The article from which the column is to be removed.

See also "sp_add_article_col procedure" on page 389
"sp_remove_article procedure” on page 431
"ALTER PUBLICATION statement" on page 216 of the book ASA SQL
Reference Manual

Description Y ou can remove a column from a publication using sp_remove_article _col.

To remove a column using sp_remove_article _col, the column must have
been explicitly added to a publication using the "sp_add _article col
procedure” on page 389. Although the "sp_add_article procedure” on

page 387, without use of sp_add_article col, adds all the columns of atable
to a publication, you cannot remove a single column from such a publication
using sp_remove_article col.

Example ¢ Thefollowing statement removes the column emp_Iname of the
empl oyee table from a publication named Personnel:

sp_renove_article_col 'Personnel’, 'enployee’,
"enp_| nane’
go

432

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_remove_remote_table procedure

Purpose

Syntax

See also

Description

Example

To mark atable as unavailable for SQL Remote replication.

sp_remove_remote_table table_name

Argument | Description
table_name The table to be marked as not available for SQL Remote
replication.

"sp_add_remote_table procedure" on page 390
"sp_modify_remote_table procedure" on page 404

Marks atable as unavailable for replication. Once this procedure has been
called, the datain the table cannot be shared with other databases using
SQL Remote.

¢+ Thefollowing statement marks the employee table as unavailable for
replication:

sp_renove_renot e_t abl e enpl oyee
go

433

sp_revoke_consolidate procedure

Sp_revoke consolidate procedure

Purpose

Syntax

See also

Description

Example

434

To stop auser from being able to receive SQL Remote messages from this
database.

sp_revoke_consolidate user_name

Argument | Description

user_name The user ID who will no longer be ableto act asa
consolidated database.

"sp_grant_consolidate procedure" on page 396

The sp_revoke_consolidate procedure removes the consolidated database
user 1D from the list of users receiving messages from the current database.

¢ Thefollowing statement revokes consolidated permissions from user
hqg_user:

sp_revoke_consol i date hqg_user
go

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_revoke remote procedure

Purpose

Syntax

See also

Description

Example

To stop auser from being able to receive SQL Remote messages from this
database.
sp_revoke_remote user_name

Argument | Description

user_name The user ID who will no longer be able to receive
SQL Remote messages.

"sp_grant_remote procedure” on page 398

The sp_revoke remote procedure removes auser 1D from the list of users
receiving messages from the current database.

¢ Thefollowing statement revokes remote permissions from user Field
User:

sp_revoke_renote 'Field user’
go

435

Sp_subscription procedure

Sp_subscription procedure

Purpose To manage subscriptions.

Syntax sp_subscription operation,
publication_name,
user_name,

[subscribe_by]

Argument Description
operation The operation to be performed. This must be one of the
following:

4 create To create a subscription to a given publication for
auser.

4 drop To drop asubscription to agiven publication for a
user.

4 start To start a subscription to the named publication.
¢ stop To stop a subscription to the named publication.

¢ synchronize To synchronize a subscription to the named

publication.
publication_name | The name of the publication to which the subscription
refers.
user_name The user ID who is being subscribed to the publication.
subscribe_by The subscription value.
See also "Creating subscriptions" on page 182.
Description The sp_subscription procedure is used to manage subscriptions. The first

argument to the procedure (operation) specified whether the procedureis
being created, dropped, started, stopped, or synchronized.

In general, starting and synchronizing subscriptions is done using the
extraction utility.

Example ¢ Thefollowing statement creates a subscription for user SalesRepl to the
SalesRepData publication, which has no subscription expression.

sp_subscri ption create,
Sal esRepDat a,
Sal esRepl

go

436

Chapter 18 Command Reference for Adaptive Server Enterprise

Sp_subscription_reset procedure

Purpose Toreset adl SQL Remote information for all remote users.
Syntax sp_subscription_reset
Description This procedure resets all the entriesin the sr_remote_user and

sr_subscrioption tablesto zero or NULL.

437

Sp_subscription_reset procedure

438

PART FIVE

Appendix

The appendix provides additional information that is not necessarily required
for everyday use of the application.

439

440

APPENDIX A

SQL Remote for Adaptive Server Enterprise
and Adaptive Server Anywhere: Differences

About this This appendix summarizes the differences between SQL Remote for
Appendix Adaptive Server Enterprise and for Adaptive Server Anywhere.
This appendix describes the main differences between these versions of the
technology.
Contents Topic Page
Types of difference 442
Differences in functionality 443
Differences in approach 444
Limitations for Enterprise to Enterprise replication 446

441

Types of difference

Types of difference

The differences between the versions of the software are of the following
kinds:

¢ Functionality Tasksthat can be carried out by one of the two versions,
but not by the other.

¢ Approach Although asimilar result can be obtained, a different
approach is required in each version. This includes tasks that are carried
out in ways that are superficially different, but which have the same
result.

¢ Server differences Tasks associated with SQL Remote, such as
backup management, are different for the two servers. These differences
are not described here.

This appendix addresses only replication using Adaptive Server Anywhere as
remote databases. There are additional limitationsif using Adaptive Server
Enterprise as remote servers.

442

Appendix A SQL Remote for Adaptive Server Enterprise and Adaptive Server Anywhere:
Differences

Differences in functionality

The mgjor differencesin functionality between SQL Remote for Adaptive
Server Enterprise (SRE) and SQL Remote for Adaptive Server Anywhere
(SRA) are asfollows:

¢ Schemachanges For SRE, schema changes must be made on aquiet
system. A quiet system means the following:

¢ No transactions being replicated There can be no transactions
being replicated that modify the tables that are to be altered. All
transactions that modified tables being altered must be scanned
from the transaction log into the stable queue before the schemais
altered. Thisis performed by running the Message Agent normally,
orusingthe-i -b options. After the Message Agent completes,
you can make the schema change.

¢ Message Agent shut down The Message Agent must be shut
down when the schema change is being made.

¢ SQL Remote Open Server If you are using the SQL Remote
Open Server, it must be shut down when the schema change is
being made.

¢ Trigger action replication In SRE, trigger actions are replicated. In
SRA you have the choice of replicating trigger actions, but by default
they are not replicated. The replication of trigger actions requires SRE
users to ensure that triggers are not fired at remote databases.

¢ Platform availability SRA isavailable on awider variety of platforms
that SRE, reflecting the platform availability of the two servers.

¢ Publication definitions Publicationsin SRA can be more selective
than those in SRE. For example, in SRA you can use a WHERE clause
with any value. In SRE, you can only use ISNULL and ISNOT NULL
conditions in the WHERE clause.

443

Differences in approach

Differences in approach

There are some features of SQL Remote that must be approached in a
different manner in SRE and SRA.

4 Partitioning tables that do not contain the subscription expression
In SRA, publications can contain subgueries, and these allow tables that
do not contain a partition expression to nevertheless be distributed
properly among subscribers. In SRE, an additional column must be
added to such tables, containing alist of subscribers, and triggers must
be written to maintain the column. This column can have a maximum
size of 255.

& For descriptions, see "Partitioning tables that do not contain the
subscription expression” on page 103, and " Partitioning tables that do
not contain the subscription column” on page 150.

¢ Conflict resolution In SRA, conflict resolution is carried out using a
special trigger syntax. In SRE, stored procedures must be written to
carry out thistask.

& For descriptions, see "Managing conflicts' on page 120, and
"Managing conflicts' on page 166.

¢ Storing messages before sending In SRE, a separate table named
the stable queueis used to hold changes before replication. In SRA,
there is no stable queue; instead, the messages are retrieved from current
and old transaction log files.

¢ Commands Whereas SQL Remote tasks such as creating publications
are carried out using SQL statementsin SRA, they are carried out using
system stored proceduresin SRE.

Adaptive Server Enterprise procedures and Adaptive Server
Anywhere statements

In SQL Remote for Adaptive Server Anywhere, SQL statements are used to
carry out the tasks that these stored procedures carry out in Adaptive Server
Enterprise. The following table lists the SQL Remote procedures, and how
they correspond to SQL statementsin Adaptive Server Anywhere:

444

Appendix A SQL Remote for Adaptive Server Enterprise and Adaptive Server Anywhere:
Differences

Adaptive Server Enterprise Corresponding Adaptive Server
procedure Anywhere statement

sp_remote_type
sp_remote_type
sp_drop_remote_type
sp_grant_remote
sp_revoke_remote
sp_publisher
sp_publisher

sp_create_publication
sp_add_article
sp_add_article_col
sp_add_article
sp_remove_article
sp_add_article_col
sp_remove_article_col
sp_drop_publication
sp_subscription 'create’
sp_subscription 'drop’
sp_subscription 'start’

sp_subscription 'stop’

sp_subscription 'synchronize’

sp_passthrough_user

sp_passthrough_subscription

sp_passthrough_stop

CREATE REMOTE MESSAGE TYPE
ALTER REMOTE MESSAGE TYPE
DROP REMOTE MESSAGE TYPE
GRANT REMOTE

REVOKE REMOTE

GRANT PUBLISH

REVOKE PUBLISH

CREATE PUBLICATION

ALTER PUBLICATION

DROP PUBLICATION

CREATE SUBSCRIPTION

DROP SUBSCRIPTION

START SUBSCRIPTION

STOP SUBSCRIPTION
SYNCHRONIZE SUBSCRIPTION
PASSTHROUGH FOR USERID

PASSTHROUGH FOR SUBSCRIPTIO
N

PASSTHROUGH STOP

445

Limitations for Enterprise to Enterprise replication

Limitations for Enterprise to Enterprise

replication

446

If you wish to use SQL Remote for replication between Adaptive Server
Enterprise databases, rather than with Adaptive Server Anywhere remote
databases, you should be aware of the following limitations;

¢ Database extraction The extraction utility creates RELOAD.SQL
scripts and datafiles for building Adaptive Server Anywhere remote
databases. Setting up remote ASE databases requires an extraction
process created by the customer.

& For more information about how to create an extraction process,
see "sp_remote procedure” on page 428.

¢ Referential integrity errors Referential integrity is aways checked
immediately in Adaptive Server Enterprise, while Adaptive Server
Anywhere provides the WAIT_FOR_COMMIT option to control when
integrity is checked. This presents difficulties when rows move between
remote databases, as in territory realignment.

For example, suppose an Order table has a foreign key to a Customer

table which has aforeign key to a SalesRep table. The Customer tableis

subscribed by sales rep. The Order tableis also subscribed by sales rep
(it has aredundant column maintained by atrigger).

When arow in Customer is updated to point to anew salesrep, a
trigger firesto update the sales rep column in Order. The update on

Customer isreplicated as a delete to the old rep and an insert to the new

rep. Similarly, the triggered update on Order isreplicated as adelete to
the old rep and an insert to the new rep.

The problem occurs because SQL Remote replicates the operationsin
the order they occur, which means the Customer row is deleted before
the Order rows. This causes areferential integrity error.

¢ Schemaupgrades Schema upgrades are difficult to manage when
both consolidated and remote databases are Adaptive Server Enterprise
databases. Passthrough to remote Adaptive Server Enterprise databases
isdifficult to carry out.

The problem is due to the need for a quiet system for schema upgrades
(see "Differencesin functionality" on page 443). Passthrough puts
schema upgrade statements into the normal message stream. The
operations that precede the schema upgrade (in the same message or a
previous message) cannot possibly have been scanned from the
transaction log into the stable queue before the schema change takes
place.

Appendix A SQL Remote for Adaptive Server Enterprise and Adaptive Server Anywhere:
Differences

¢ Synchronize subscription Thisis not implemented for Adaptive
Server Enterprise remote databases.

447

Limitations for Enterprise to Enterprise replication

448

APPENDIX B
Supported Platforms and Message Links

About this This appendix summarizes the platforms and message links that

Appendix SQL Remote supports.

Contents Topic Page
Supported message systems 450
Supported operating systems 451

449

Supported message systems

Supported message systems

450

SQL Remote exchanges data among databases using an underlying message
system. SQL Remote supports the following message systems:

¢

¢
¢
¢

File sharing A simple system requiring no extra software.
FTP Internet file transfer protocol.
SMTP/POP Internet e-mail protocol.

MAPI Microsoft Messaging Application Programming Interface, used
in Microsoft products and in cc:Mail release 8 and later.

VIM Vendor Independent Messaging, used in Lotus Notes and in some
versions of Lotus cc:Mail.

Not al systems are supported on all operating systems. For all systems other
than the file sharing system, you must have purchased and installed the
appropriate message system software for SQL Remote to function over this
system. SQL Remote does not include the underlying message system
software.

Appendix B Supported Platforms and Message Links

Supported operating systems

SQL Remote for
Adaptive Server
Enterprise

SQL Remote for
Adaptive Server
Anywhere

SQL Remote for Adaptive Server Enterprise is available for the following
operating systems and message links:

¢

¢

Windows NT/2000/XP All message protocols.

Sun Microsystems Solaris/Sparc File sharing, FTP, and SMTP/POP
only.

SQL Remote for Adaptive Server Anywhere is available for the following
operating systems:

¢

¢

¢

Windows 95/98/Me All message links.
Windows NT/2000/XP All message links.

Windows CE FILE and SMTP/POP links. For the file link, dbremote
looksin IMy Documents|\Synchronized Files. On the desktop machine,
the SQLREMOTE environment variable or directory message link
parameter for the FILE link should be set to the following:

Uoyst enRoot % Profi | es\ useri d\ Personal \ ce- nachi ne- name\ Synchroni zed Fil es

¢

¢

where userid and ce-machine-name are set to the appropriate values.
With this setup, ActiveSync automatically synchronizes the message
files between the desktop and CE system.

Check Mobile Devices Toolsd ActiveSync Options to ensure that file
synchronization is activated.

& For information on setting message link parameters, see "Thefile
message system" on page 220.

Sun Microsystems Solaris/Sparc File sharing, FTP, and SMTP/POP
only.

Novell NetWare File sharing, FTP, and SMTP/POP only.
Linux File sharing, FTP, and SMTP/POP only.

For details of the supported UNIX operating system versions, see the
L Anywhere Sudio Read Me First for UNIX.

451

Supported operating systems

452

Index

#

#hook_dict table
dbremote, 327
unique primary keys, 131

A

ActiveSync
Windows CE, 451

Adaptive Server Anywhere

creating an Enterprise-compatible database, 72

Adaptive Server Enterprise
SQL Remote setup, 21
tutoria with SQL Remote, 51

adding
articles, 97

addresses
file sharing, 221
ftp, 221
setting for publisher, 216
SMTP, 223
SMTP/POP, 225

administering
SQL Remote, 13, 248

SQL Remote for Adaptive Server Anywhere,

247, 248

SQL Remote for Adaptive Server Enterprise, 271

SQL Remote overview, 204

altering
message types, 216, 217
publications, 97

article creation wizard
using, 97

article SQL Remote table
Adaptive Server Anywhere, 332
Adaptive Server Enterprise, 342

articlecol SQL Remote table
Adaptive Server Enterprise, 343
definition, 333

articlecols SQL Remote view
Adaptive Server Anywhere, 338
Adaptive Server Enterprise, 350

articles
adding, 97
column-wise partitioning, 143
creating, 91
notes on, 146
properties, 91
row-wise partitioning, 144
system table for, 333, 343
valid, 101, 149
wholetable, 143

articles SQL Remote view
Adaptive Server Anywhere, 338
Adaptive Server Enterprise, 350

asademo.db file
about, xvi

B

-b option
Message Agent, 230

453

c-C

backups
for remote databases, 264
for replication, 255, 259, 281
SQL Remote, 231

batch mode
Message Agent, 229

batches
passthrough mode, 270

binary large objects
replication, 81, 323

BLOB_THRESHOLD option
replication option, 323

BLOBs
replication, 81, 323

C

cache
for messages, 235

ccMail
SQL Remote, 215

character sets
compatible, 72
conversions, 73
SQL Remote, 73

collations
SQL Remote, 73

columns
publishing selected columns, 92

command line
environment variables, 304
Message Agent, 304

COMMIT statement
event-hook procedures, 327
replication, 76
compatibility
Adaptive Server Enterprise and Adaptive Server

Anywhere, 72, 199, 200
among databases, 72

COMPRESSION option
replication option, 323

454

configuration file
Message Agent options, 304

conflict detection
about, 167
long data types, 81
SQL Remote, 77, 121

conflict resolution
#remote, 171
approaches to, 124, 125, 127
example, 169, 171
implementing, 122, 167
limitations, 169
triggers, 122, 124, 167

conflicts
#remote, 171
approaches to resolving, 124, 125, 127
avoiding, 86
detection in SQL Remote, 87
example, 169, 171
locking, 101, 148
managing, 120, 166
not errors, 251, 279
not in Message Agent output, 251, 279
primary key, 129, 134, 176
replication, 86
reporting, 127
resolving, 122, 124, 167
SQL Remote, 87
SQL Remote handling of, 121, 167
VERIFY_ALL_COLUMNS option, 123

connections
Message Agent, 230

CONSOLIDATE permissions
granting, 209, 212
managing, 205
revoking, 209

consolidated databases
setting up (tutorial), 40, 57
tutorial for Adaptive Server Anywhere, 33

constraints
extraction utility, 199

continuous mode
Message Agent, 229

control statements
replication of, 269

conventions
documentation, Xiii

create database wizard
creating an Enterprise-compatible database, 72
using, 31

CREATE statements
replication, 80

CREATE SUBSCRIPTION statement
about, 139, 201

creating
articles, 91, 97
articles with column-wise partitioning, 143
articles with row-wise partitioning, 144
message types, 216, 217
publications, 42, 91, 143
publications (tutorial), 36
publications with column-wise partitioning, 92,

143

publications with row-wise partitioning, 93, 144
publications with whole tables, 91, 143
subscriptions, 43, 61, 139, 182
subscriptions (tutorial), 37

CURRENT PUBLISHER
tablefor, 342
tutorial, 35, 41

CURRENT REMOTE USER
conflict resolution, 171
specia constant, 124
table for, 342

Ccursors
passthrough mode, 269
replication and, 269

D

daemon
dbremote, 309
Message Agent, 309
ssremote, 309

datarecovery
SQL Remote, 231

data types
replication, 81

database extraction utility
SQL Remote, 312

databases
loading datainto, 193
procedures before extracting, 194
synchronizing (tutorid), 44

dates
replication, 82, 324

dbcc settrunc
using, 283

dbo user
system objects, 311

dbremote
#hook_dict table, 327
about, 229, 302
command, 302
introduction, 9
security, 249
tutorial, 46, 47, 65

dbunload utility
replication, 265

dbxtract utility
about, 191, 312
introduction, 44
sp_hook_dbxtract_begin procedure, 131
using, 193

DDL statements
replication of, 80
SQL Remote, 284

debug control parameter
file message type, 221
FTP message type, 222
MAPI message type, 226
SMTP message type, 224
VIM message type, 227

defaults
extraction utility, 199

DELETE statement
replication of, 76

DELETE_OLD_LOGS option
managing transaction logs, 259
replication option, 323

455

E-E

deleting
message types, 217

Deleting Corrupt Message error, 241

deploying
SQL Remote databases, 187, 188, 189

design

at the consolidated database, 72

conflicts and publications, 86

errors and publications, 86

locking, 101, 148

many-to-many example, 111, 115, 158

many-to-many relationships, 111, 158

performance for SQL Remote, 102

publications, 100, 127, 148, 174, 175

SQL Remote, 71

SQL Remote for Adaptive Server Anywhere, 89

SQL Remote for Adaptive Server Enterprise, 141

SQL Remote for Adaptive Server Enterprise
overview, 142

SQL Remote overview, 72, 90

differences
SQL Remote versions, 443

directory control parameter
file message type, 221

documentation
conventions, Xiii
SQL Anywhere Studio, x

DROP PUBLICATION statement
using, 98

dropping
message types, 217, 218
publications, 98

dsi_num_threads
Replication Server parameter, 295

dsi_sgl_data_style parameter
configuring, 296

dumps
coordinating, 297

456

E

e-mail
MAPI, 215
SMTP, 215
VIM, 215

encoding
about, 241
custom, 242

encryption
of messages, 232

environment variable option
Message Agent, 304

environment variables
SQLREMOTE, 219

error handling
about, 252, 279
default, 251, 279
ignoring errors, 251

errors
conflicts are not, 251, 279
handling, 252, 279
ignoring, 251
notification, 252, 279
primary key replication, 86
reporting, 251, 279
SQL statements and replication, 87
types of in replication, 86

event hooks

commits not allowed, 327

rollbacks not allowed, 327

sp_hook_dbremote_apply_begin stored
procedure, 330

sp_hook_dbremote_apply_end stored procedure,
330

sp_hook_dbremote_begin stored procedure, 327

sp_hook_dbremote_end stored procedure, 328

sp_hook_dbremote_message missing stored
procedure, 329

sp_hook_dbremote_message sent stored
procedure, 329

sp_hook_dbremote_receive_begin stored
procedure, 328

sp_hook_dbremote_receive_end stored
procedure, 329

sp_hook_dbremote_send_begin stored procedure,
329

sp_hook_dbremote_send_end stored procedure,
329

sp_hook_dbremote_shutdown stored procedure,
328

sp_hook_ssrmt_apply_begin stored procedure,
330

sp_hook_ssrmt_apply_end stored procedure, 330

sp_hook_ssrmt_begin stored procedure, 327

sp_hook_ssrmt_end stored procedure, 328

sp_hook_ssrmt_message_missing stored
procedure, 329

sp_hook_ssrmt_message sent stored procedure,
329

sp_hook_ssrmt_receive _begin stored procedure,
328

sp_hook_ssrmt_receive_end stored procedure,
329

sp_hook_ssrmt_send_begin stored procedure,
329

sp_hook_ssrmt_send_end stored procedure, 329

sp_hook_ssrmt_shutdown stored procedure, 328

synchronization, 327

extract database wizard
extracting a remote database in Sybase Central,
312
using, 37, 195

extracting
custom procedures, 196
databases, 187, 188, 191
designing a procedure, 196
many databases, 196
operating systems, 191
performance, 156, 163
procedures before, 194
reload files, 193
using Sybase Central, 195

extracting utility
groups, 197

extraction utility, 193
about, 191, 199, 200
for Adaptive Server Enterprise, 199, 200
limits, 197
options, 326
procedures before using, 194
purpose, 197
using from Sybase Central, 195

F

feedback
documentation, xvii
providing, xvii

file sharing
control parameters, 221
message type, 215, 220

FIRE_TRIGGERS option
trigger actions, 80

Force_Download control parameter
MAPI message type, 226

foreign key creation wizard
using, 32

foreign keys
publications, 100, 103, 148, 150, 153
territory realignment, 106, 107, 152

frequency
of sending, 211

ftp
control parameters, 221
message type, 215, 221
troubleshooting, 222

G

generating
unique column vaues, 129

global autoincrement
using to generate unique values, 129

GLOBAL_DATABASE_ID option
setting, 131

GRANT CONSOLIDATE statement, 209

GRANT PUBLISH statement, 205, 206, 207
consolidated database (tutorial), 41
tutoria, 34

GRANT REMOTE statement, 209
consolidated database (tutorial), 41
tutorial, 34

457

H-M

granting loading databases, 193
CONSOLIDATE permissions, 209 locki
publish permissions, 205, 206, 207 ocking

S in areplication system, 101, 148
remote permissions, 209 publication design, 129, 134, 176
groups

extracting, 197, 313 log management

SQL Remote, 231

log transfer interface

H the Message Agent, 283
LONG BINARY
host control parameter replication, 81

FTP message type, 222
LONG BINARY datatype

replication, 81
| LONG VARCHAR
replication, 81
icons LONG VARCHAR d
used in manuals, xiv S aatype
replication, 81
I statement LOOP statement

passthrough mode, 269

replication of, 269 passthrough mode, 269

Lotus Notes
IMAGE datatype
replication, 81 SQL Remote, 215, 227
INSERT statement LT™

replication of, 76 SQL Remote, 273

Internet
e-mail, 223
SQL Remote, 223 M
IPM_Receive control parameter -m option
MAPI message type, 226 Message Agent, 235
IPM_Send control parameter maintenance releases
MAPI message type, 226 upgrading, 189
many-to-many relationships
example, 111, 114, 158, 159
L publication design, 111, 158
Subscribe_by remote option, 165
-l option SUBSCRIBE_BY_REMOTE option, 118
Message Agent, 232 territory realignment, 115
triggers for, 116
|aptop computers
replication, 15 MAPI
SQL Remote, 15 control parameters, 226
limitations message type, 215
conflict resolution, 169 marker SQL Remote table
Enterprise to Enterprise, 446 Adaptive Server Enterprise, 343

458

mediafailure
SQL Remote, 231

Message Agent
about, 229, 277
batch mode, 229
command, 302
connections, 230
continuous mode, 229
delivering messages, 243, 244, 246
introduction, 9
-l option, 232
-m option, 235
message tracking, 243, 244, 246
output, 251, 279
performance, 234, 239
polling, 236
-rd option, 236
resend requests, 236
-rp option, 236, 237
running, 248
running as a service, 248
schema changes, 284
security, 232, 249, 277
settings, 232
SQL Remote administration, 204
starting, 248
subscription processing, 85
threading, 234
transaction log management, 255, 259, 264, 281
trigger replication, 80
tutorial, 46, 47, 64, 65
-u option, 231
user IDs, 277
worker threads, 234

message link parameters, 219
EXTERNAL_REMOTE_OPTIONS replication
option, 323

message links
supported, 450

message systems
supported, 450

message tracking
SQL Remote administration, 204

message type creation wizard
using, 216

message types
about, 215
dtering, 216, 217
creating, 216, 217
dropping, 217, 218
editing properties, 216
file sharing, 220, 221
ftp, 221
MAPI, 226
parameters, 219
SMTP, 224
SQL Remote administration, 204
VIM, 227
working with, 216

messages
caching, 235
compression, 241, 323
controlling size, 81
custom encoding, 242
delivering, 243, 244, 246
encoding, 241
in SQL Remote, 243, 244, 246
receiving (tutorial), 47, 65
resending, 236
sending (tutoria), 47, 65
synchronizing databases, 201
tracking, 243, 244, 246

Microsoft Exchange
profile, 226

missing messages
about, 237

mobile workforces
publication design, 95, 146

SQL Remote, 15
SQL Remote for, 13

multi-tier installations
passthrough statements, 269
permissions, 213

N

named constraints
extraction utility, 199

named defaults
extraction utility, 199

459

O-P

NCHAR datatype
extraction utility, 199

NetWare
SQL Remote, 221
supported message types, 215

newsgroups
technical support, xvii

Notes
SQL Remote, 215, 227

Novell NetWare
availability on, 451

NVARCHAR datatype
extraction utility, 199

O

object SQL Remote table
Adaptive Server Enterprise, 344

offsets
in transaction log, 244

operating systems
availability on, 451
supported, 449

option SQL Remote table
Adaptive Server Enterprise, 344

options

SUBSCRIBE_BY_REMOTE, 118, 165

the extraction utility, 326
VERIFY_THRESHOLD, 81

OUTPUT_LOG_SEND_LIMIT remote option

using, 232

OUTPUT_LOG_SEND_NOW remote option

using, 232

OUTPUT_LOG_SEND_ON_ERROR remote option

using, 232

P

partitioning
column-wise, 92, 143
row-wise, 93, 144

460

passthrough mode
Adaptive Server Enterprise, 285
batches, 270

for Adaptive Server Anywhere, 267

operations not replicated, 269
operations not replicated in, 269
uses, 268

passthrough SQL Remote table
Adaptive Server Enterprise, 344

PASSTHROUGH statement
using, 267

passthrough statements
multi-tier installations, 269

password control parameter
FTP message type, 222
VIM message type, 227

passwords
extraction utility, 199
saving, 324

Path control parameter
VIM message type, 227

patience
Message Agent, 237

performance
database extraction, 196
design tips for SQL Remote, 102
incoming messages, 236
Message Agent, 234
message sending, 239
number of subscriptions, 85
publications, 84
replication throughput, 234
replication turnaround time, 234
SQL Remote, 234
ssxtract, 156, 163
threading, 234

permissions
CONSOLIDATE, 209
granting CONSOLIDATE, 212
multi-tier installations, 213
publish, 205, 206, 207
publish (tutorial), 34, 41
remote, 209
remote (tutorial), 34, 41
revoking REMOTE, 213
SQL Remote administration, 204

P-pP

platforms
supported operating systems, 449

polling
messages, 236

pop3_host control parameter
SMTP message type, 224

pop3_password control parameter
SMTP message type, 224

pop3_userid control parameter
SMTP message type, 224

port control parameter
FTP message type, 222

primary key pools
about, 176
generating unique values using default global
autoincrement, 129
replenishing, 135, 178
replicating, 134, 177
summary, 138, 180

primary keys
generating unique vaues, 129
generating unique values using pools, 133
publications, 76, 100, 148
replication, 127, 129, 175
replication errors, 86
SQL Remote, 127, 175
uniqueness, 176

procedure groups
extraction utility, 199

procedures
passthrough mode, 269
replicating, 78
SQL Remote, 78
SQL Remote Open Server, 297
statements corresponding to, 444

profiles
Microsoft Exchange, 226

properties
articles, 91
message type properties, 216
publications, 91

publication creation wizard

creating an article using a subscription
expression, 95

creating SQL Remote publications, 36, 91

creating SQL Remote publications using a
WHERE clause, 93

creating SQL Remote publications with column-
wise partitioning, 92

publication design
Adaptive Server Anywhere, 89
for many subscribers, 95, 146
SQL Remote for Adaptive Server Enterprise, 141
using subscription expression, 95, 146

publication SQL Remote table
Adaptive Server Anywhere, 333
Adaptive Server Enterprise, 345

publications
about, 11
dtering, 97
column-wise partitioning, 92, 143
creating, 42, 91, 143
creating (tutorial), 36
design at consolidated database, 90
designing, 71, 72, 86, 100, 127, 148, 174, 175
dropping, 98
example, 50
foreign keys, 100, 103, 148, 150
locking, 101, 148
managing subscriptions, 139
many-to-many example, 111, 114, 115, 158, 159
many-to-many relationships, 111, 158
notes, 99
performance, 84, 102
primary keys, 100, 127, 129, 134, 148, 175, 176
properties, 91
referential integrity, 127, 174
row-wise partitioning, 93, 144
setting up, 91, 143
simple, 91, 143
subqueries, 103
tables in many publications, 84
transactions, 101, 148
using aWHERE clause, 93, 145
whole table, 91

publications SQL Remote view
Adaptive Server Anywhere, 338
Adaptive Server Enterprise, 350

461

O-R

publish permissions
granting, 205, 206, 207
granting (tutorial), 34
managing, 205
remote permissions (tutorial), 34, 41
revoking, 205, 206, 207

publish permissions (tutorial), 41

publisher
about, 205, 206, 207
adding to a database (tutoridl), 41
address, 216
creating, 205, 206, 207
tutorial, 35

publisher SQL Remote table
Adaptive Server Enterprise, 345

publishing
selected columns, 92

Q

QUALIFY_OWNERS option
replication option, 323

quiet system
definition, 284

QUOTE_ALL_IDENTIFIERS option
replication option, 323

R

-rd option
Message Agent, 236

receive_al control parameter
VIM message type, 227

receiving messages
(tutoridl), 47
tutorid, 65

recovery
SQL Remote, 231

referentia integrity
replication, 127, 174
SQL Remote, 127, 174

462

registry

SQL Remote, 219

reload files

database extraction, 193

remote databases

remote permissions, 209
setting up (tutorid), 37, 44, 45

remote permissions

granting, 209
managing, 205
revoking, 209, 213
Sybase Central, 210

remote user creation wizard

using, 35, 210

remoteoption SQL Remote table

Adaptive Server Anywhere, 334

remoteoptions SQL Remote view

Adaptive Server Anywhere, 339
Adaptive Server Enterprise, 351

remoteoptiontype SQL Remote table

Adaptive Server Anywhere, 334

remotetable table

about, 346

remotetables SQL Remote view

Adaptive Server Enterprise, 351

remotetype SQL Remote table

about, 346
Adaptive Server Anywhere, 334

remotetypes SQL Remote view

Adaptive Server Enterprise, 351

remoteuser SQL Remote table

about, 347
Adaptive Server Anywhere, 335

remoteuser table, 244

remoteusers SQL Remote view

Adaptive Server Anywhere, 339
Adaptive Server Enterprise, 352

replication

administering, 13

backup procedures, 255, 259, 264, 281
blobs, 81

case studies, 15, 17

conflicts, 86

data definition statements, 80
data types, 81

dbremote, 302

design, 100, 148

design overview, 100
Message Agent, 302

mobile workforces, 15

of control statements, 269

of cursor operations, 269

of cursor statements, 269

of SQL statements, 267

of stored procedures, 269
options, 322

passthrough mode, 267
primary key errors, 127, 175
primary keys, 129, 134, 176
procedures, 78

publications, 11

referentia integrity errors, 127, 174
server-to-laptop replication, 15
server-to-server, 17

setup examples, 15

ssqueue, 319

ssremote, 302

subscriptions, 11
synchronization, 312
transaction log, 76
transaction log and, 13
transaction log management, 255, 259, 264, 281
triggers, 79, 128

upgrading databases, 264

Replication Agent
SQL Remote, 273, 288, 289

replication conflicts
about, 166
managing, 120

replication definitions
Replication Server, 295

replication options
QUALIFY_OWNERS, 323
QUOTE_ALL_IDENTIFIERS, 323
REPLICATION_ERROR, 87, 252, 279, 324
SAVE_REMOTE_PASSWORDS, 324
SUBSCRIBE_BY_REMOTE, 325
VERIFY_ALL_COLUMNS, 326
VERIFY_THRESHOLD, 325

replication role
granting, 277

replication Server
using SQL Remote with, 319

Replication Server
configuring, 295
restart the connection, 296
SQL Remote, 273, 287, 288, 295
SQL Remote architecture, 289
ssqueue, 292

REPLICATION_ERROR option
and error handling procedures, 252
error handling, 279
replication option, 324
tracking SQL errors, 87

reporting
conflicts, 127
errors, 279
reporting errors, 251, 279

resend requests
about, 237
messages, 236

resetting
subscriptions, 437

RESOLVE UPDATE triggers, 122, 124
REVOKE CONSOLIDATE statement, 209
REVOKE PUBLISH statement, 205, 206, 207
REVOKE REMOTE statement, 209, 213

revoking
CONSOLIDATE permissions, 209
publish permissions, 205, 206, 207
remote permissions, 209

revoking remote permissions, 213

roles
extraction utility, 199

ROLLBACK statement
event-hook procedures, 327

root control parameter
FTP message type, 222

-rp option
Message Agent, 236, 237

463

S-S

rs_dumpdb setup
using, 297 SQL Remote for Adaptive Server Enterprise, 19,
21
rs_du.mptr§g7 SQL Remote for Adaptive Server Enterprise
using, overview, 20
running SQL Remote for Adaptive Server Enterprise
the Message Agent, 248 stable queue, 23
TEMPDB for SQL Remote, 21
SMTP
S control parameters, 224
e-mail, 223
salespub.sql message type, 215, 223
example publication, 50 SQL Remote, 223
sampl e database SMTP/POP
about asademo.db, xvi addresses, 225
SAVE_REMOTE_PASSWORDS option smtp_authenticate control parameter
replication option, 324 SMTP message type, 224
schema changes smtp_host control parameter
SQL Remote, 284 SMTP message type, 224
SQL Remote Open Server, 297

smtp_password control parameter
SEND AT SMTP message type, 225

frequency setting, 211 smtp_userid control parameter

SEND EVERY SMTP message type, 225
frequency setting, 211

software
send frequency dbremote, 302
selecting, 211 dbxtract, 312
the Message Agent, 229 ssqueue, 319
. . ssremote, 302
send_vim_mail control parameter ssxtract, 312

VIM message type, 227
sp_add _article procedure

sending messages syntax, 387

tutorial, 47, 65
sp_add_article_col procedure

server-to-server replication, 17 syntax, 389

services
add_remote_table procedure
Message Agent as, 248 Sp_syntgx, 390 P
setting up

consolidated database (tutorial), 33 sp_create publication procedure

. - tax, 392
consolidated databases (tutorial), 40, 57 syniax
publications, 91 sp_drop_publication procedure
remote databases (tutorial), 44 syntax, 393

remote databases (tutorial), 37

subscriptions, 139 sp_drop_remote_type procedure

syntax, 394

464

S-S5

sp_drop_sgl_remote procedure
syntax, 395
uninstalling SQL Remote for Adaptive Server
Enterprise, 26

sp_grant_consolidate procedure
syntax, 396

sp_grant_remote procedure
syntax, 398

sp_hook_dbremote_apply_begin stored procedure
SQL syntax, 330

sp_hook_dbremote_apply_end stored procedure
SQL syntax, 330

sp_hook_dbremote_begin stored procedure
SQL syntax, 327

sp_hook_dbremote_end stored procedure
SQL syntax, 328

sp_hook_dbremote_message missing stored
procedure
SQL syntax, 329

sp_hook_dbremote_message _sent stored procedure
SQL syntax, 329

sp_hook_dbremote _receive _begin stored procedure
SQL syntax, 328

sp_hook_dbremote_receive_end stored procedure
SQL syntax, 329

sp_hook_dbremote_send_begin stored procedure
SQL syntax, 329

sp_hook_dbremote_send _end stored procedure
SQL syntax, 329

sp_hook_dbremote_shutdown stored procedure
SQL syntax, 328

sp_hook_dbxtract_begin procedure
unique primary keys, 131
using, 131

sp_hook_ssrmt_apply_begin stored procedure

SQL syntax, 330

sp_hook_ssrmt_apply_end stored procedure
SQL syntax, 330

sp_hook_ssrmt_begin stored procedure
SQL syntax, 327

sp_hook_ssrmt_end stored procedure
SQL syntax, 328

sp_hook_ssrmt_message _missing stored procedure
SQL syntax, 329

sp_hook_ssrmt_message sent stored procedure
SQL syntax, 329

sp_hook_ssrmt_receive_begin stored procedure
SQL syntax, 328

sp_hook_ssrmt_receive_end stored procedure
SQL syntax, 329

sp_hook_ssrmt_send_begin stored procedure
SQL syntax, 329

sp_hook_ssrmt_send_end stored procedure
SQL syntax, 329

sp_hook_ssrmt_shutdown stored procedure
SQL syntax, 328

sp_link_option procedure
syntax, 400

sp_modify_article procedure
syntax, 402

sp_modify_remote_table procedure
syntax, 404

sp_passthrough procedure
about, 285
syntax, 406

sp_passthrough_piece procedure
about, 285
syntax, 407

sp_passthrough_stop procedure
about, 285
syntax, 409

sp_passthrough_subscription procedure
about, 285
syntax, 410

sp_passthrough_user procedure
about, 285
syntax, 411

sp_populate_sgl_anywhere procedure
about, 200
syntax, 412

465

S-S

sp_publisher procedure
syntax, 413

Sp_queue_clean procedure
syntax, 414

sp_queue_confirmed_delete old procedure
syntax, 415

sp_queue_confirmed_transaction procedure
syntax, 416

sp_queue_delete_old procedure
syntax, 417

sp_queue_drop procedure
syntax, 418
uninstalling SQL Remote stable queue, 26

sp_queue_dump_database procedure
syntax, 419

sp_queue_dump_transaction procedure
syntax, 420

Sp_queue_get_state procedure
syntax, 421

Sp_queue _log_transfer_reset procedure
syntax, 422

sp_queue_read procedure
syntax, 423

Sp_queue_reset procedure
syntax, 424

sp_queue_set_confirm procedure
syntax, 425

Sp_queue_set_progress procedure
syntax, 426

Sp_queue_transaction procedure
syntax, 427

sp_remote procedure
syntax, 428

Sp_remote_option procedure
syntax, 429

sp_remote_type procedure
syntax, 430

sp_remove_article procedure
syntax, 431

466

sp_remove_article_col procedure
syntax, 432

sp_remove _remote_table procedure
syntax, 433

sp_revoke _consolidate procedure
syntax, 434

sp_revoke remote procedure
syntax, 435

sp_setreplicate procedure
sp_add_remote_table, 390

sp_subscription procedure
about, 182
syntax, 436
using, 201

sp_subscription_reset procedure
syntax, 437

sp_user_extraction_hook
example, 162

sp_user_extraction_hook procedure
about, 200

SQL Anywhere Studio
documentation, x

SQL Remote
about, 4
about the manual, 5
administering, 13, 268
articles, 333
backup procedures, 255, 259, 264, 281
case studies, 15, 17
components, 8
concepts, 7
creating publications, 42
creating publications (tutorial), 36
dbremote (tutorial), 46, 47, 65
dbxtract utility, 312
design overview, 90
granting publish permissions (tutoria), 34, 41
granting remote permissions (tutorial), 34, 41
Message Agent (tutorial), 46, 47, 64, 65
Message Agent introduction, 9
message delivery, 243, 244, 246
message tracking, 243, 244, 246
message types for Windows CE, 217
mobile workforces, 13, 15
multi-tier installations, 269

S-S5

options, 322

publications, 11

server-to-laptop replication, 15
server-to-server replication, 17

setting up (tutorial), 55

setting up a consolidated database, 33, 40, 57
setting up aremote database, 44

setting up a remote database (tutorial), 37
setup examples, 15

setup for Adaptive Server Enterprise, 20, 21
ssremote (tutoria), 64, 65

ssxtract utility, 312

subscribers, 13

subscriptions, 11

system tables, 333

TEMPDB, 21

transaction log management, 255, 259, 264, 281
tutorial for Adaptive Server Enterprise, 51
uninstalling, 395, 418

unloading databases, 265

upgrading databases, 264

upgrading for Adaptive Server Enterprise, 25
user IDs, 277

SQL remote administration, 203
SQL Remote Open Server

architecture, 289
command line, 319
IRIX, 451
procedures, 297
schema changes, 284
setting up, 292

when needed, 288

SQL Remote procedures

sp_add_article, 387
sp_add_article_col, 389
sp_add_remote_table, 390
sp_create_publication, 392
sp_drop_publication, 393
sp_drop_remote_type, 394
sp_drop_sgl_remote, 395
sp_grant_consolidate, 396
Sp_grant_remote, 398
sp_link_option, 400
sp_modify_article, 402
sp_modify_remote table, 404
sp_passthrough, 406
sp_passthrough_piece, 407
sp_passthrough_stop, 409
sp_passthrough_subscription, 410

Sp_passthrough_user, 411
sp_populate_sgl_anywhere, 412
sp_publisher, 413

sp_queue _clean, 414
sp_queue_confirmed_delete_old, 415
sp_queue_confirmed_transaction, 416
sp_queue_delete old, 417
sp_queue_drop, 418
sp_queue_dump_database, 419
sp_queue_dump_transaction, 420
Sp_Qqueue_get_state, 421
sp_queue log_transfer_reset, 422
Sp_queue read, 423
Sp_Qqueue_reset, 424
sp_queue_set_confirm, 425
Sp_queue_set_progress, 426
Sp_queue_transaction, 427
Sp_remote, 428
Sp_remote_option, 429
sp_remote_type, 430

sp_remove _article, 431
sp_remove _article col, 432
sp_remove_remote_table, 433
sp_revoke_consolidate, 434
sp_revoke_remote, 435
sp_subscription, 436
sp_subscription_reset, 437

SQL Remote system tables

#remote, 342

article, 332, 342
articlecol, 333, 343
marker, 343

object, 344

option, 344
passthrough, 344
publication, 333, 345
publisher, 345
remoteoption, 334
remoteoptiontype, 334
remotetable, 346
remotetype, 334, 346
remoteuser, 335, 347
sr_article, 343
sr_remoteoption, 345
sr_remoteoptiontype, 346
subscription, 336, 348

SQL Remote system views

articlecols, 338, 350
articles, 338, 350
publications, 338, 350

467

S-S

remoteoptions, 339, 351 SQLREMOTE environment variable
remotetables, 351 dternative to, 221
remotetypes, 351 setting message control parameters, 219
remoteusers, 339, 352 squpdate.sgl
subscriptions, 340, 353 upgrading the stable queue, 25
SQIr_e;?(t:;T:r?tSSO sr_articletable
replication of, 76, 77 about, 342
SQL syntax sr_articlecol table
sp_hook_dbremote_apply_begin stored about, 343
procedure, 330 sr_confirmed_transaction table
sp_hook_dbremote_apply_end stored procedure, about, 357
330
sp_hook_dbremote_begin stored procedure, 327 sr_marker table
sp_hook_dbremote_end stored procedure, 328 about, 343
sp_hook_dbremote_message_missing stored s object table
procedure, 329 about, 344
sp_hook_dbremote_message_sent stored)
procedure, 329 sr_option table
sp_hook_dbremote _receive_begin stored about, 344
procedure, 328
sp_hook_dbremote receive_end stored sr_passthrough table
about, 344
procedure, 329
sp_hook_dbremote_send_begin stored procedure, sr_publication table
329 about, 345
hook_dbremote_send_end stored procedure, .
sp_329 - - - P sr_publisher SQL Remote table
sp_hook_dbremote_shutdown stored procedure, about, 345
328) sr_gueue_coordinate table
Q)_Igggk_ssrnn_appl y_begin stored procedure, about, 357
sp_hook_ssrmt_apply_end stored procedure, 330 sr_queue_state table
sp_hook_ssrmt_begin stored procedure, 327 about, 354
sp_hook_ssrmt_end stored pro_cedure, 328 sr_remoteoption SQL Remote table
sp_hook_ssrmt_message_missing stored
about, 345
procedure, 329
sp_hook_ssrmt_message sent stored procedure, sr_remoteoptiontype SQL Remote table
329 Adaptive Server Enterprise, 346
sp_l;ggk_ssrmt_receve_begm stored procedure, s remotetable table
sp_hook_ssrmt_receive_end stored procedure, about, 346
329 s_remotetype table
sp_hook_ssrmt_send_begin stored procedure, about, 346
329
sp_hook_ssrmt_send_end stored procedure, 329 sr_remoteuser table
sp_hook_ssrmt_shutdown stored procedure, 328 about, 347
SQLANY.INI sr_subscription table
SQL Remote, 219 about, 348

468

S-S5

sr_transaction table
about, 356

ssgueue
about, 287, 319
architecture, 289
command line, 319
IRIX, 451
setting up, 292
when needed, 288

ssremote
about, 229, 277, 302
command, 302
introduction, 9
Message Agent (tutorial), 64
security, 277
tutorial, 65

ssremote.sql
SQL Remote setup, 21

ssupdate.sql
upgrading SQL Remote for Adaptive Server
Enterprise, 25

ssxtract utility
about, 191, 312
using, 193, 199, 200

stable queue
cleaning, 306
Replication Server, 290
setup, 23
SQL Remote Open Server, 290
ssqueue, 290
system tables, 354

stableg.sql
SQL Remote setup, 23

starting
the Message Agent, 248

statements
replication of, 76, 77

stored procedures
passthrough mode, 269
replication of, 78
SQL Remote Open Server, 297

subqueries
publications, 103
SQL Remote, 103

SUBSCRIBE_BY_REMOTE option
many-to-many relationships, 118, 165
replication option, 325

subscription expressions
about, 95, 146
cost of evaluating, 84
in the transaction log, 84
many-valued, 84
subqueries, 103

subscription SQL Remote table
about, 348
Adaptive Server Anywhere definition, 336

subscription views
about, 163

subscription-list columns
about, 153
in SQL Remote, 150
maintaining, 155, 160, 162
triggers, 160
triggers for, 155

subscriptions
about, 11
creating, 43, 61, 139, 182
creating (tutorial), 37
managing, 139
Message Agent, 85
performance, 85
resetting, 437
setting up, 139, 182
synchronizing, 193, 201

subscriptions SQL Remote view
Adaptive Server Anywhere, 340
Adaptive Server Enterprise, 353

Sun Solaris
availability on, 451

support
newsgroups, xvii

Sybase Central
extraction utility, 195

message types, 217

synchronization
about, 191
customizing, 327
databases, 187, 188
event hooks, 327

469

T-U

operating systems, 191

using dbxtract, 193

using ssztract, 193

using the extraction utility, 193

SYNCHRONIZE SUBSCRIPTION statement
about, 201

synchronizing
SQL Remote databases using the message
system, 201

SYSREMOTEUSER table, 244

system objects
the dbo user, 311

system objects for Adaptive Server Anywhere, 331
system objects for Adaptive Server Enterprise, 341

system tables
stable queue, 354
SYSARTICLE, 333, 343

T

tables
column-wise partitioning, 92, 143
publishing, 91, 143
row-wise partitioning, 93, 144

technical support
newsgroups, xvii

TEMPDB
SQL Remote requirements, 21

territory realignment
about, 155
foreign keys, 107, 152
many-to-many relationships, 115
replication of UPDATES, 77
subscription-list columns, 153
triggersfor, 116

territory realignments
foreign keys, 106

testing
SQL Remote, 189

TEXT datatype
replication, 81

470

threading
Message Agent, 234

times
replication, 82, 325

timestamp columns
extraction utility, 199

transaction log
Adaptive Server Enterprise, 283
managing, 283
Message Agent, 302
message tracking, 244
offsets, 244
publications, 84
replication, 13, 76
scanning for SQL Remote Open Server, 288
SQL Remote, 13, 76, 302
update statements, 84

transaction log mirror
replication, 255, 281

transactions
replication, 76

triggers
conflict resolution, 122, 124, 167
replication, 79, 108, 128
replication option, 80
RESOLVE UPDATE, 122, 124
SQL Remote, 79, 128
subscription-list columns, 155, 160
territory realignment, 107, 108

troubleshooting
SQL Remote errors, 232

truncation point
in transaction log, 283
setting, 283

turnaround time
replication performance, 234

tutorias
SQL Remote for Adaptive Server Anywhere, 27
SQL Remote with Adaptive Server Enterprise, 51

U

-u option
Message Agent, 231

V-w

uninstalling
from a database, 395, 418
SQL Remote for Adaptive Server Enterprise, 26
SQL Remote stable queue, 26

unigue column values
generating, 129

unique values
generating using default global autoincrement,
129
generating using pools, 133

UNIX
supported message types, 215

unloading
consolidated databases, 265

UPDATE conflicts
about, 166
managing, 120

UPDATE statement
conflict detection, 77, 81
publications, 107
replication of, 76, 77, 106, 107, 152
territory realignment, 77

updates
information in transaction log, 84

upgrades
COMPRESSION option, 241
SQL Remote, 241

upgrading
replication, 264
SQL Remote, 264
SQL Remote for Adaptive Server Enterprise, 25
SQL Remoteinstallations, 189

user control parameter
FTP message type, 222

user creation wizard
using, 35, 206

user IDs
extracting groups, 197
Message Agent, 277

userid control parameter
VIM message type, 227

V

VERIFY_ALL_COLUMNS option
replication option, 326
using, 123

VERIFY_THRESHOLD
replication option, 325

VERIFY_THRESHOLD option
message size, 81

VIM
control parameters, 227
message type, 215, 227

w

WHERE clause
in publications, 93, 145

whole tables
publishing, 91

Windows
SQL Remote availability on, 451
supported SQL Remote message types, 215

Windows CE
ActiveSync, 451
replication, 451
SQL Remote message types, 217

wizards
article creation, 97
create database, 31
extract database, 37, 195, 312
foreign key creation, 32
message type creation, 216
publication creation, 36, 91, 92, 93, 95
remote user creation, 35, 210
user creation, 35, 206

worker threads
Message Agent, 234

471

472

	SQL Remote User's Guide
	About This Manual
	SQL Anywhere Studio documentation
	The SQL Anywhere Studio documentation set
	Documentation formats

	Documentation conventions
	Syntax conventions
	Graphic icons

	The Adaptive Server Anywhere sample database

	1. Welcome to SQL Remote
	About SQL Remote
	About this manual
	Product installation

	2. SQL Remote Concepts
	SQL Remote components
	The data server
	Client applications
	The Message Agent
	Message system client

	Publications and subscriptions
	SQL Remote features
	Some sample installations
	Server-to-laptop replication for mobile workforces
	Server-to-server replication among offices

	3. Setting Up SQL Remote
	Setup overview
	Preparing your Adaptive Server Enterprise server
	Ensuring TEMPDB is large enough
	Installing the SQL Remote system objects
	Command-line installation of the stable queue

	Upgrading SQL Remote for Adaptive Server Enterprise
	Uninstalling SQL Remote

	4. Tutorials for Adaptive Server Anywhere Users
	Introduction
	Goals
	The database
	Replication goals
	Sybase Central or command-line utilities

	Tutorial: Adaptive Server Anywhere replication using Sybase Central
	Preparing for the Sybase Central replication tutorial
	Setting up a consolidated database
	Set up the remote database in Sybase Central

	Tutorial: Adaptive Server Anywhere replication using Interactive SQL and dbxtract
	Preparing for the replication tutorial
	Set up the consolidated database
	Set up the remote database

	Start replicating data
	Enter data at the consolidated database
	Send data from the consolidated database
	Receive data at the remote database
	Replicate from the remote database to the consolidated database

	A sample publication

	5. A Tutorial for Adaptive Server Enterprise Users
	Introduction
	Goals
	The database
	Replication goals

	Tutorial: Adaptive Server Enterprise replication
	First steps
	Setting up the consolidated database

	Start replicating data
	Enter data at the consolidated database
	Send data from the consolidated database
	Receive data at the remote database
	Replicate from the remote database to the consolidated database

	6. Principles of SQL Remote Design
	Design overview
	Ensuring compatible databases
	Using compatible sort orders and character sets

	How statements are replicated
	Replication of inserts and deletes
	Replication of updates
	Replication of procedures
	Replication of triggers
	Replication of data definition statements

	How data types are replicated
	Replication of blobs
	Replication of dates and times

	Who gets what?
	Replication errors and conflicts
	Replication errors
	Replication conflicts
	Tracking SQL errors

	7. SQL Remote Design for Adaptive Server Anywhere
	Design overview
	Publishing data
	Publishing whole tables
	Publishing only some columns in a table
	Publishing only some rows in a table
	Publishing only some rows using a WHERE clause
	Publishing only some rows using a subscription expression
	Altering existing publications
	Dropping publications
	Notes on publications

	Publication design for Adaptive Server Anywhere
	Design issues overview
	Conditions for valid articles
	Design tips for performance

	Partitioning tables that do not contain the subscription expression
	The Contact example
	Partitioning the Customer table in the Contact example
	Partitioning the Contact table in the Contact example
	Territory realignment in the Contact example

	Sharing rows among several subscriptions
	The Policy example
	Territory realignment with a many-to-many relationship
	Using the Subscribe_by_remote option with many-to-many relationships

	Managing conflicts
	How SQL Remote handles conflicts
	Implementing conflict resolution
	Using conflict resolution triggers
	Conflict resolution examples
	Designing to avoid referential integrity errors
	Designing triggers to avoid errors

	Ensuring unique primary keys
	Using global autoincrement default column values
	Using primary key pools
	The primary key pool table
	Replicating the primary key pool
	Filling and replenishing the key pool
	Adding new customers
	Primary key pool summary

	Creating subscriptions

	8. SQL Remote Design for Adaptive Server Enterprise
	Design overview
	Creating publications
	Creating whole-table articles
	Creating articles containing some of the columns in a table
	Creating articles containing some of the rows in a table
	Notes on articles

	Publication design for Adaptive Server Enterprise
	Design issues overview
	Conditions for valid articles

	Partitioning tables that do not contain the subscription column
	The Contact example
	Territory realignment in the Contact example
	Partitioning the Customer table in the Contact example
	Adding a subscription-list column to the Contact table
	Maintaining the subscription-list column
	Tuning extraction performance

	Sharing rows among several subscriptions
	The Policy example
	Maintaining the subscription-list column
	Tuning extraction performance for shared rows
	Using the Subscribe_by_remote option with many-to-many relationships

	Managing conflicts
	How SQL Remote handles conflicts
	Implementing conflict resolution
	A first conflict resolution example
	A second conflict resolution example
	Designing to avoid referential integrity errors

	Ensuring unique primary keys
	The primary key pool
	Replicating the primary key pool
	Filling and replenishing the key pool
	Adding new customers
	Testing the key pool
	Primary key pool summary

	Creating subscriptions

	9. Deploying and Synchronizing Databases
	Deployment overview
	Test before deployment
	Changes to avoid on a running system

	Synchronizing databases
	Mixed operating systems and database extraction
	Notes on synchronization and extraction

	Using the extraction utility
	Creating a database from the reload files
	Before extracting a database
	Using the extraction utility from Sybase Central
	Designing an efficient extraction procedure
	Extracting groups
	Limits to using the extraction utility
	Using the extraction utility for Adaptive Server Enterprise

	Synchronizing data over a message system

	10. SQL Remote Administration
	Management overview
	Managing SQL Remote permissions
	Granting and revoking PUBLISH permissions
	Granting and revoking REMOTE and CONSOLIDATE permissions
	Assigning permissions in multi-tier installations

	Using message types
	Working with message types
	Setting message type control parameters
	The file message system
	The ftp message system
	The SMTP message system
	The MAPI message system
	The VIM message system

	Running the Message Agent
	Message Agent batch and continuous modes
	Connections used by the Message Agent
	Replication system recovery procedures
	Ensuring consistent Message Agent settings
	The Message Agent and replication security
	Troubleshooting errors at remote sites

	Tuning Message Agent performance
	Tuning throughput by controlling Message Agent threading
	Tuning throughput by caching messages
	Tuning incoming message polling
	Tuning the message sending process

	Encoding and compressing messages
	The encoding scheme
	Creating custom encoding schemes

	The message tracking system
	Status information in the remoteuser table
	Tracking messages by transaction log offsets
	Handling of lost or corrupt messages

	11. Administering SQL Remote for Adaptive Server Anywhere
	Running the Message Agent
	Starting the Message Agent
	Running the Message Agent as a service
	The Message Agent and replication security

	Error reporting and handling
	Default error handling
	Ignoring errors
	Implementing error handling procedures

	Transaction log and backup management
	Setting the transaction log directory
	Backup utility options
	Managing old transaction logs
	Recovery from database media failure for consolidated databases
	Backup procedures at remote databases
	Upgrading consolidated databases
	Unloading and reloading a database participating in replication

	Using passthrough mode
	Uses and limitations of passthrough mode
	Operations not replicated in passthrough mode

	12. Administering SQL Remote for Adaptive Server Enterprise
	How the Message Agent for Adaptive Server Enterprise works
	Scanning the transaction log
	The stable queue
	Message Agent operation phases

	Running the Message Agent
	The Message Agent and replication security
	Running multiple Message Agents

	Error reporting and handling
	Default error handling
	Implementing error handling procedures

	Adaptive Server Enterprise transaction log and backup management
	Protecting against media failure on the transaction log
	Stable queue recovery issues
	Transaction log management

	Making schema changes
	Using passthrough mode
	Schema modifications

	13. Using SQL Remote with Replication Server
	When you need to use the SQL Remote Open Server
	Architecture for Replication Server/SQL Remote installations
	How the pieces fit together

	Setting up SQL Remote Open Server
	Configuring Replication Server
	Set the dsi_xact_group_size parameter
	Set the dsi_num_threads parameter
	Create replication definitions for SQL Remote data
	Suspend and restart the connection

	Other issues

	14. Utilities and Options Reference
	The Message Agent
	The Database Extraction utility
	Extracting a remote database in Sybase Central
	The extraction utility
	Extraction utility options

	The SQL Remote Open Server
	SQL Remote options
	SQL Remote event-hook procedures
	sp_hook_dbremote_begin and sp_hook_ssrmt_begin
	sp_hook_dbremote_end and sp_hook_ssrmt_end
	sp_hook_dbremote_shutdown and sp_hook_ssrmt_shutdown
	sp_hook_dbremote_receive_begin and sp_hook_ssrmt_receive_begin
	sp_hook_dbremote_receive_end and sp_hook_ssrmt_receive_end
	sp_hook_dbremote_send_begin and sp_hook_ssrmt_send_begin
	sp_hook_dbremote_send_end and sp_hook_ssrmt_send_end
	sp_hook_dbremote_message_sent and sp_hook_ssrmt_message_sent
	sp_hook_dbremote_message_missing and sp_hook_ssrmt_message_missing
	sp_hook_dbremote_apply_begin and sp_hook_ssrmt_apply_begin
	sp_hook_dbremote_apply_end and sp_hook_ssrmt_apply_end

	15. System Objects for Adaptive Server Anywhere
	SQL Remote system tables
	SYSARTICLE table
	SYSARTICLECOL table
	SYSPUBLICATION table
	SYSREMOTEOPTION table
	SYSREMOTEOPTIONTYPE table
	SYSREMOTETYPE table
	SYSREMOTEUSER table
	SYSSUBSCRIPTION table

	SQL Remote system views
	SYSARTICLES view
	SYSARTICLECOLS view
	SYSPUBLICATIONS view
	SYSREMOTEOPTIONS view
	SYSREMOTEUSERS view
	SYSSUBSCRIPTIONS view

	16. System Objects for Adaptive Server Enterprise
	SQL Remote system tables
	#remote table
	sr_article table
	sr_articlecol table
	sr_marker table
	sr_object table
	sr_option table
	sr_passthrough table
	sr_publication table
	sr_publisher table
	sr_remoteoption table
	sr_remoteoptiontype table
	sr_remotetable table
	sr_remotetype table
	sr_remoteuser table
	sr_subscription table

	SQL Remote system views
	sr_articles view
	sr_articlecols view
	sr_publications view
	sr_remoteoptions view
	sr_remotetables view
	sr_remotetypes view
	sr_remoteusers view
	sr_subscriptions view

	Stable Queue tables
	sr_queue_state table
	sr_transaction table
	sr_confirmed_transaction table
	sr_queue_coordinate table

	17. Command Reference for Adaptive Server Anywhere
	ALTER REMOTE MESSAGE TYPE statement
	CREATE PUBLICATION statement
	CREATE REMOTE MESSAGE TYPE statement
	CREATE SUBSCRIPTION statement
	CREATE TRIGGER statement
	DROP PUBLICATION statement
	DROP REMOTE MESSAGE TYPE statement
	DROP SUBSCRIPTION statement
	GRANT CONSOLIDATE statement
	GRANT PUBLISH statement
	GRANT REMOTE statement
	GRANT REMOTE DBA statement
	PASSTHROUGH statement
	REMOTE RESET statement
	REVOKE CONSOLIDATE statement
	REVOKE PUBLISH statement
	REVOKE REMOTE statement
	REVOKE REMOTE DBA statement
	SET REMOTE OPTION statement
	START SUBSCRIPTION statement
	STOP SUBSCRIPTION statement
	SYNCHRONIZE SUBSCRIPTION statement
	UPDATE statement

	18. Command Reference for Adaptive Server Enterprise
	sp_add_article procedure
	sp_add_article_col procedure
	sp_add_remote_table procedure
	sp_create_publication procedure
	sp_drop_publication procedure
	sp_drop_remote_type procedure
	sp_drop_sql_remote procedure
	sp_grant_consolidate procedure
	sp_grant_remote procedure
	sp_link_option procedure
	sp_modify_article procedure
	sp_modify_remote_table procedure
	sp_passthrough procedure
	sp_passthrough_piece procedure
	sp_passthrough_stop procedure
	sp_passthrough_subscription procedure
	sp_passthrough_user procedure
	sp_populate_sql_anywhere procedure
	sp_publisher procedure
	sp_queue_clean procedure
	sp_queue_confirmed_delete_old procedure
	sp_queue_confirmed_transaction procedure
	sp_queue_delete_old procedure
	sp_queue_drop procedure
	sp_queue_dump_database procedure
	sp_queue_dump_transaction procedure
	sp_queue_get_state procedure
	sp_queue_log_transfer_reset procedure
	sp_queue_read procedure
	sp_queue_reset procedure
	sp_queue_set_confirm procedure
	sp_queue_set_progress procedure
	sp_queue_transaction procedure
	sp_remote procedure
	sp_remote_option procedure
	sp_remote_type procedure
	sp_remove_article procedure
	sp_remove_article_col procedure
	sp_remove_remote_table procedure
	sp_revoke_consolidate procedure
	sp_revoke_remote procedure
	sp_subscription procedure
	sp_subscription_reset procedure

	APPENDIX A: SQL Remote for Adaptive Server Enterprise and Adaptive Server Anywhere: Differences
	Types of difference
	Differences in functionality
	Differences in approach
	Adaptive Server Enterprise procedures and Adaptive Server Anywhere statements

	Limitations for Enterprise to Enterprise replication

	APPENDIX B: Supported Platforms and Message Links
	Supported operating systems

	Index

